EXERCICE 1

>    with(LinearAlgebra):

>    S := <<-1,0>|<0,1>>;

S := Matrix(%id = 51314252)

>    T := (1/sqrt(2))*<<-1,1>|<1,1>>;

T := Matrix(%id = 51680676)

>    R := (S.T);

R := Matrix(%id = 51750908)

>    seq(R^k,k=0..8);

Matrix(%id = 51777000), Matrix(%id = 51779932), Matrix(%id = 51794484), Matrix(%id = 51821672), Matrix(%id = 51844160), Matrix(%id = 51875892), Matrix(%id = 51904820), Matrix(%id = 51945204), Matrix(%i...

>    S.R;

Matrix(%id = 52032572)

>    Phi := M -> S.M;

Phi := M -> S.M

>    liste := table([seq(R^k,k=0..7),seq(R^k.S,k=0..7)]);

liste := TABLE([1 = Matrix(%id = 54701332), 2 = Matrix(%id = 54828712), 3 = Matrix(%id = 53324792), 5 = Matrix(%id = 53940412), 4 = Matrix(%id = 53472964), 7 = Matrix(%id = 54253380), 6 = Matrix(%id = ...
liste := TABLE([1 = Matrix(%id = 54701332), 2 = Matrix(%id = 54828712), 3 = Matrix(%id = 53324792), 5 = Matrix(%id = 53940412), 4 = Matrix(%id = 53472964), 7 = Matrix(%id = 54253380), 6 = Matrix(%id = ...
liste := TABLE([1 = Matrix(%id = 54701332), 2 = Matrix(%id = 54828712), 3 = Matrix(%id = 53324792), 5 = Matrix(%id = 53940412), 4 = Matrix(%id = 53472964), 7 = Matrix(%id = 54253380), 6 = Matrix(%id = ...
liste := TABLE([1 = Matrix(%id = 54701332), 2 = Matrix(%id = 54828712), 3 = Matrix(%id = 53324792), 5 = Matrix(%id = 53940412), 4 = Matrix(%id = 53472964), 7 = Matrix(%id = 54253380), 6 = Matrix(%id = ...

>    sigma := proc(k)
local j;
 for j from 1 to 16 do
    if Equal(Phi(liste[k]),liste[j])
    then RETURN(j);
    fi;
 od;
end:

>    sigma(1);

9

>    sigma := table([seq(sigma(k),k=1..16)]);

sigma := TABLE([1 = 9, 2 = 16, 3 = 15, 5 = 13, 4 = 14, 7 = 11, 6 = 12, 10 = 8, 11 = 7, 8 = 10, 9 = 1, 15 = 3, 14 = 4, 13 = 5, 12 = 6, 16 = 2])

>    signature := product(product((sigma[j] - sigma[i])/(j-i),j=i+1..16),i=1..16);

signature := 1


__________________________________________________________________________________________________________________________________________________________

EXERCICE 2
___________________________________________________________________________________________________________________________


>    restart;

>    u := n -> evalf(product(1 + I/k^2, k = 1..n));

u := n -> evalf(product(1+1/k^2*I,k = 1 .. n))

>    v := n -> evalf(product(1 + 2*I/k, k = 1 .. n));

v := n -> evalf(product(1+2*I/k,k = 1 .. n))

>    P := (w,N) -> plot([seq([Re(w(j)),Im(w(j))],j = 1 .. N)]):

>    P(v,500);

[Maple Plot]

>    P(u,200);

[Maple Plot]

>    l := limit(u(n),n=infinity);

l := .2142572474+1.456521355*I

>    abs(l);

1.472195852

>    argument(l);

1.424741778

>    abs(u(6));

1.471313122

>    argument(u(1000));

1.423742278

>   


__________________________________________________________________________________________________________________________________________________________

EXERCICE 3
___________________________________________________________________________________________________________________________

>    P := (n,x) -> product((1 + x/(2*k)) / (1 + x/(2*k - 1)), k = 1..n);

P := (n, x) -> product((1+1/2*x/k)/(1+x/(2*k-1)),k = 1 .. n)

>    assume(n,posint);simplify(limit(P(n,x),x=infinity));

1/Pi^(1/2)/GAMMA(n+1)*GAMMA(n+1/2)

>    plot([seq(P(n,x),n = 1..30)],x=0..20,thickness=[3,1$9]);

[Maple Plot]

>    p := x -> simplify(limit(P(n,x),n=infinity));

p := x -> simplify(limit(P(n,x),n = infinity))

>    assume(j,posint);

>    simplify(p(2*j));

1/GAMMA(1+j)/Pi^(1/2)*GAMMA(1/2+j)

>    seq(p(2*j),j=1..10);

1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, 12155/65536, 46189/262144

>    pj := m -> ((2*m)!/((m!)^2*2^(2*m)));

pj := m -> (2*m)!/m!^2/(2^(2*m))

>    seq(pj(j),j=1..10);

1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, 12155/65536, 46189/262144

>    series(pj(j),j=infinity,2);

1/Pi^(1/2)*(1/j)^(1/2)+O((1/j)^(3/2))


__________________________________________________________________________________________________________________________________________________________

EXERCICE 4
___________________________________________________________________________________________________________________________

>    # question a

>    restart;

>    M1 := s -> [arcsinh(s), sqrt(1+s^2)];

M1 := s -> [arcsinh(s), sqrt(1+s^2)]

>    G := (M,s) -> map(z -> (1/s)*int(z,u = 0..s), M(u));

G := (M, s) -> map(z -> 1/s*int(z,u = 0 .. s),M(u))

>   

>    Gamma := M -> plot([seq(M(0.1*s),s = 0..700)],color=blue):

>    Delta := M -> plot([seq(G(M,0.1*s),s = 0..1500)],color=red):

>    P := M -> plots[display](Gamma(M),Delta(M));

P := M -> plots[display](Gamma(M),Delta(M))

>    P(M1);

[Maple Plot]

>    M2 := s -> [cos(s),sin(s)]:

>    P(M2);

[Maple Plot]

>    G(M2,s);

[1/s*sin(s), 1/s*(1-cos(s))]

>    plots[display](Gamma(M2),Delta(M2),seq(plot([M2(s),G(M2,s)],color=wheat),s in [Pi/2,3*Pi/4,Pi]));

[Maple Plot]

>   


__________________________________________________________________________________________________________________________________________________________

EXERCICE 5
___________________________________________________________________________________________________________________________

>    A := (X - 1)*(X - 2)*(X - 3):

>    B := X^3:

>    f := P -> rem(B*P,A,X);

f := P -> rem(B*P,A,X)

>    P := a*X^2 + b*X + c;

P := a*X^2+b*X+c

>    solve([seq(coeff(f(P),X,k) = 0,k = 0..2)],[a,b,c]);

[[a = 0, b = 0, c = 0]]

>    Q := collect(f(P) - lambda*P,X);

Q := (90*a+25*b+6*c-lambda*a)*X^2+(-60*b-239*a-11*c-lambda*b)*X+36*b-lambda*c+6*c+150*a

>    solve([seq(coeff(Q,X,k) = 0,k=0..2)],[a,b,c,lambda]);

[[a = 0, b = 0, c = 0, lambda = lambda], [a = a, b = -5*a, c = 6*a, lambda = 1], [a = a, b = -4*a, c = 3*a, lambda = 8], [a = a, b = -3*a, c = 2*a, lambda = 27]]

>    with(LinearAlgebra):

>    mat := f -> Transpose(Matrix(3,3,[seq(seq(coeff(f(E),X,k),k=0..2),E in [1,X,X^2])])):

>    # Ou bien : mat := f -> <<seq(coeff(f(1),X,k),k=0..2)>|<seq(coeff(f(X),X,k),k=0..2)>|<seq(coeff(f(X^2),X,k),k=0..2)>>:

>    # ou bien : mat:= f -> Matrix(3,3,[seq(PolynomialTools[CoefficientVector](f(E),X), E in [1,X,X^2])]);

>    mat(f);

Matrix(%id = 53585888)

>    Eigenvectors(mat(f));

Vector(%id = 54876176), Matrix(%id = 54878668)

>    ?lagrange;


__________________________________________________________________________________________________________________________________________________________

EXERCICE 6
___________________________________________________________________________________________________________________________

>    restart;

>    A := Matrix(6,6,(i,j) -> if j-i = 1 or (i,j) = (1,6) then 1 else 0 fi);

A := Matrix(%id = 49770340)

>    M := Matrix(6,6,(i,j) -> m[i,j]);

M := Matrix(%id = 50929172)

>    B := A.M - 2*M.A:

>    S := solve([seq(seq(B[i,j], j = 1..6),i=1..6)],[seq(seq(m[i,j], j = 1..6),i=1..6)]);

S := [[m[1,1] = 1/4*m[3,3], m[1,2] = 1/4*m[3,4], m[1,3] = 1/4*m[3,5], m[1,4] = 1/2*m[2,5], m[1,5] = 1/2*m[2,6]+15/4*m[3,3], m[1,6] = m[1,6], m[2,1] = 0, m[2,2] = 1/2*m[3,3], m[2,3] = 1/2*m[3,4], m[2,4]...
S := [[m[1,1] = 1/4*m[3,3], m[1,2] = 1/4*m[3,4], m[1,3] = 1/4*m[3,5], m[1,4] = 1/2*m[2,5], m[1,5] = 1/2*m[2,6]+15/4*m[3,3], m[1,6] = m[1,6], m[2,1] = 0, m[2,2] = 1/2*m[3,3], m[2,3] = 1/2*m[3,4], m[2,4]...

>    ?assign;

>    assign(S);

>    4*M;

Matrix(%id = 50954340)

>   


__________________________________________________________________________________________________________________________________________________________

EXERCICE 7
___________________________________________________________________________________________________________________________

>    i1 := int(t^n*(1 - t)^m,t = 0..1);

i1 := GAMMA(m+1)*GAMMA(n+1)/GAMMA(m+2+n)

>    convert(i1,factorial);

m!*n!/(m+1+n)!

>    i2 := int(x^4*(1 - x)^4/(1 + x^2),x =  0..1);

i2 := 22/7-Pi

>    22/7 - (1/2)*int(x^4*(1 - x)^4,x =  0..1);

3959/1260

>    22/7 - int(x^4*(1 - x)^4,x =  0..1);

1979/630

>    1979*2;

3958

>    A := quo(x^4*(1 - x)^4,1 + x^2,x);

A := x^6-4*x^5+5*x^4-4*x^2+4

>    L := k -> int(A*(x*(1 - x))^(4*k), x = 0..1);

L := k -> int(A*(x*(1-x))^(4*k),x = 0 .. 1)

>    L(0),L(1);

22/7, 76/15015

>    i3 := (1/4)*int(x^8*(1 - x)^8, x = 0..1);

i3 := 1/875160

>    L(0) - (1/4)*L(1) + (1/2)*i3;

38491543/12252240

>    L(0) - (1/4)*L(1) + i3;

3849155/1225224

>