taste

The Assert Set of Tools for Engineering

TASTE-Linux distribution documentation
vl.1l

Julien Delange

May 26, 2011

Contents

1 Introduction to the TASTE Linux distribution

1.1 Availability
2 Use the TASTE Linux distribution

21 Running the distribution oo oo

211 DeployonanUSBstick,

2.1.2 Emulation withQEMU
22 Accountsand password L Lo
23 Directoriesandpath L
2.4 Configuration of the analogy devices
2.5 Kernel modules automatically loaded
2.6 Kernel modules available
2.7 Configurationof thekernel
2.8 Rebuild yourownkernel o o o
2.9 Communication withthemachine

3 Use the Analogy layer for interaction with acquisition data boards

3.1 Documentation of the analogy layer
3.2 Use the board: the analogy_configtool
3.3 Usetheboard and theanalogy API
3.3.1 Getting channel information
3.3.2 Getting range information L L oL L oL
333 Acquiringdata L
3.34 Convert RAW data to programming types
3.3.5 Initialization and acquisitionexampleo oL

4 Development for the TASTE Linux distribution
4.1 Availablesoftware L

5 Annexes
5.1 Linksand websites e

Chapter 1

Introduction to the TASTE Linux
distribution

The TASTE Linux distribution was designed to be used for the implementation of Robotics appli-
cations. However, it can be tailored for the development of other real-time applications.

The distribution is based on Debian, stable version. On top of Debian, we build a customized
kernel based on the vanilla kernel (from http://www.kernel.org) and the Xenomai patch.

1.1 Availability

The latest version of the distribution is available on the internet, at the following address: http:
//download.tuxfamily.org/taste/linux—-taste/linux—taste.img

http://www.kernel.org
http://download.tuxfamily.org/taste/linux-taste/linux-taste.img
http://download.tuxfamily.org/taste/linux-taste/linux-taste.img

Chapter 2

Use the TASTE Linux distribution

2.1 Running the distribution

2.1.1 Deploy on an USB stick

You can put the distribution on a USB stick in order to be able to deploy it automatically on a
system. To do so, download the image and issue the following command on Linux:

dd if=taste-linux.img of=/path/to/your/usb/key/device

It will write the taste linux image on your usb stick so that you can run the distro from the usb
stick. Be careful, this would erase all existing data on your usb stick and even destroy the existing
filesystem (partitions and so on).

2.1.2 Emulation with QEMU

To run the image, you can use gemu for rapid development/prototyping. The following command
line would start the distro in gemu :

gemu -hda taste-linux.img -boot ¢ -net nic,vlan=0 \
-net tap,vlan=0, ifname=tap0, script=/etc/gemu-ifup -m 256 -localtime

Increase QEMU speed

You can run the system faster by using the virtualization functions of your architecture (if sup-
ported). In that case, use the -enable-kvm option when gemu is launched. Make sure that the
following modules are loaded into your kernel (depending on your processor manufacturer):
kvm—intel or kvm—amd).

Networking support within QEMU

If you want to connect your QEMU instance with your Linux system, you have to configure a
bridge. On regular Debian/Linux system, you can do that be editing your network configuration.
Proceed as it :

1. Edit /etc/network/interfaces and add the following lines (assuming that your com-
puter is connected using et h0 and that your network connection is configured with dhcp):

auto br0

iface br0 inet dhcp
bridge_ports ethO
bridge_fd 9
bridge_hello 2
bridge_maxage 12
bridge_stp off

2. Restart the network by ussing the following command:

/etc/init.d/networking restart

3. Edit /etc/gemu-1ifup and put the following lines:

#!/bin/sh

echo "Executing /etc/gemu-ifup"

echo "Bringing up $1 for bridged mode...
sudo /sbin/ifconfig $1 0.0.0.0 promisc up
echo "Adding $1 to br0..."

sudo /usr/sbin/brctl addif br0 $1

sleep 2

4. Launch QEMU with these additional parameters:

-net nic,vlan=0 -net tap,vlan=0,ifname=tap0,script=/etc/gemu-ifup

So, the following command would start gemu with KVM support and network configured:

gemu -hda taste-linux.img -boot c \
-net nic,vlan=0 —-net tap,vlan=0, ifname=tap0,script=/etc/gemu-ifup \
-m 256 —-localtime -enable-kvm -clock rtc

5. If you want to avoid to type your password each time the /etc/gemu-ifup script is in-
voked, you have to configure sudo. In that case, invoke visudo (as root) and change your
configuration like this:

Cmnd_Alias QEMU=/sbin/ifconfig, /sbin/modprobe, /usr/sbin/brctl
youruser ALL=NOPASSWD: QEMU

or

Cmnd_Alias QEMU=/sbin/ifconfig, /sbin/modprobe, /usr/sbin/brctl
$yourgroup ALL=NOPASSWD: QEMU

2.2 Accounts and password

The root password is:

taste

The system also defines a regular user account:
e Username: taste

e Password: taste

2.3 Directories and path

The following directories have to be considered if you plan to develop for this target/platform:
e Xenomai main directory: /usr/xenomai

e Xenomai libraries: /usr/xenomai/lib

2.4 Configuration of the analogy devices

First of all, you have to load the appropriate kernel module (for example analogy_ni_pcimio).
Then, you have to invoke the analogy_config from Xenomai tools to be able to load and control
the card. Invoke it like this:

analogy_config DEVICEID DEVICEDRIVER

For example, you can invoke the tool as it:

analogy_config analogy0O analogy_ni_pcimio

Then, in that case, the device would be available in the analogy framework in Xenomai under
the name analogyO.

2.5 Kernel modules automatically loaded

When the system starts, the following modules are automatically loaded:
® Xeno_posix

e xeno_native

2.6 Kernel modules available

The kernel modules specific to Xenomai are located in the following directories:
e /lib/modules/KERNEL_VERSION/kernel/kernel/xenomai
e /lib/modules/KERNEL_VERSION/kernel/drivers/xenomai
The following modules are available:
® xXeno_nucleus
e xeno_uitron
® Xeno_vrtx
e xeno_native
® xXeno_vxworks
e xeno_rtdm
® Xeno_psos
® Xeno_posix
e xeno_analogy
e analogy_sb526
e analogy_parport
e analogy_8255
e analogy_ni_mio

e analogy_ni_tio

10

e analogy_ni_pcimio
e analogy_ni_mite

e analogy_fake

e analogy_loop

e xeno_rtipc

e xeno_rtdmtest

e xeno_klat

e xeno_switchtest

e xeno_irgbench

e xeno_timerbench

e xeno_sigtest

e xeno_can_peak_pci
® Xeno_can_mem

e xeno_can_esd_pci
® xeno_can_ems_pci
e xeno_can_peak_dng
e xeno_can_sjal000
e xeno_can_plx_pci
® xXeno_can_isa

e xeno_can_ixxat_pci
® xXeno_can_virt

® xXeno_can

e xeno_16550A

2.7 Configuration of the kernel

The kernel sources are available in /usr/src/linux. The sources of Xenomai are also available
in the /usr/src directory. The configuration file of the kernel is availablein /usr/src/linux/.config.

11

2.8 Rebuild your own kernel

You can rebuild your own kernel by issuing the following command in the /usr/src/linux
directory:

make-kpkg ——-initrd kernel_image

2.9 Communication with the machine

A ssh server is installed within the VM. File transfer operations and access to the machine can be
done using ssh of any sftp-compliant program.

12

Chapter 3

Use the Analogy layer for interaction
with acquisition data boards

The TASTE linux distribution embedds the xenomai real-time kernel. Is also includes an analogy
layer which purpose is to interface with acquisition boards, such as the one supported by the
comedi drivers.

This analogy layer provides user functions to communicate with acquisition boards in a uni-
form and smooth way. In the following, we explain where you can find relevant documentation
to use the analogy layer and provide an example of the use of these boards.

3.1 Documentation of the analogy layer

User-level functions that interacts with the analogy layer of Xenomai are documented in the Xeno-
mai API document. It is available on the Xenomai website (http://www.xenomai .org), either
in PDF or HTML format'.

3.2 Use the board: the analogy_config tool

First of all, you must define the boards that will be used by your system. You do that using the
analogy_config tool. This tool specify which driver (kernel module) is used for each board.
Each board is identified using a number, starting from 0 (so, the first board will be analogy0).

So, to associate an analogy device with a driver, you just have to invoke the following com-
mand:

analogy_config analogy_device kernel_module
For example:

analogy_config analogyO analogy_ni_pcimio

1you can check out this page for example http://www.xenomai.org/documentation/xenomai-2.5/html/
api/index.html and search within the Analogy API module

13

http://www.xenomai.org
http://www.xenomai.org/documentation/xenomai-2.5/html/api/index.html
http://www.xenomai.org/documentation/xenomai-2.5/html/api/index.html

In this case, the card analogy0 is identified as using the kernel module analogy_ni_pcimio.
When using the analogy API, you will refer to it using the name analogy0.

3.3 Use the board and the analogy API

First of all, you have to include the header file analogy.h provided by the analogy layer of
xenomai. For that, you have to use the following pre-processing code:

’ #include <xenomai/analogy/analogy.h>

Then, you have to open the device. This is done by using the function a41_open function
which opens the device and stores relevant information about it in a structure with the type
a4l_desc_t. The following listing illustrates how to use this function (note that a return code
different from 0 means that an error was raised when opening the device) :

a4l _desc_t arm_device;
ret = a4l_open (&arm_device, "analogy0")

if (ret 1= 0)

{
printf ("[EXOARM] Error while opening the arm device, return code=%d \n", ret);

return;
}
Then, once the device is opened, you need to fill its descriptor informations. This is done by
calling the a41_fill_desc function, like this:

ret = a4l_fill_desc (&arm_device)

if (ret = 0)

{
printf ("[EXOARM] Error while calling fill_desc (), return code=%d \n", ret)

return;

3.3.1 Getting channel information

Then, for each channel of the acquisition board, you need to get channel information. This is
done with the a41_get_chinfo function. For example, the following function call will retrieve
information for the first channel of the device opened in the arm_device variable. Note that a
return code different from 0 means that an error happened.

a4l_chinfo_t channel_infos;

ret = a4l_get_chinfo (&arm_device, 0, 0, &channel_infos);
if (ret 1= 0)

{
printf ("[EXOARM] Error invoking a4l_get_chinfo\n");

}

3.3.2 Getting range information

Then, for each channel, you need to get the range information, which indicate to maximum
and minimum value that can be acquired on a particular channel. You can get this informa-

14

tion by calling the a41_get_rnginfo function. It will store information about data range in
a a4l_rnginfo_t structure, that will be used later when acquiring/converting data.

The following listing shows how to get range informations for the first channel on the device
opened using the arm_device variable.

a4l_rnginfo_t range_infos;
ret = a4l_get_rnginfo (&arm_device, 0, 0, 0, &range_infos);
if (ret 1= 0)
{
printf ("[EXOARM] Error invoking a4l_get_rnginfo\n");
1

3.3.3 Acquiring data

Then, you acquire the data using the a41l_sync_read function. This function gets raw data,
meaning that the acquired data cannot be used directly and has to be converted later on in a
programming-language dependent type (for example, an int or a double).

So, when you acquire a data, you just have to provide a buffer to store the data and specify its
size. In the following listing, we acquire data on the first channel and store it in the buffer raw,
which has a length of 128 bytes.

uint8_t raw[128];
ret = a4l_sync_read (&arm_device, 0, 0, 0, &raw, 128);
if (ret <= 0)
{
printf ("[arm] Error while acquiring the data\n");

}

3.3.4 Convert RAW data to programming types

Finally, you need to convert the RAW data acquired previously to a type that can be used in your
programming language. This is done with the serie of functions a41_rawtox. To convert the raw
data into a double type, you can use the a41_rawtod function.

Conversion function requires the channel and range informations that has been taken previ-
ously (see the previous sections). The following listing illustrates how you can convert the raw
data acquired previously into a double type using the channel and range informations obtained
previously in the variable range_infos and channe_infos.

double converted_value;
ret = a4l_rawtod (&channel_infos, &range_infos, &converted_value, &raw, 1);

if (ret <= 0)
{

printf ("[arm] Error while converting the data\n");

}

3.3.5 Initialization and acquisition example

The following listing shows an example of the use of an acquisition board. We assume the board
was initialized using the analogy_config and opened as analogy0. Then, it opens the data,

15

get range and channel informations and finally acquires data on the first channel every second. It
finally outputs the data on the standard output.

#include <stdio.h>
#include <xenomai/analogy/analogy.h>

int main ()

{
int ret;
a4l_desc_t arm_device;

a4l_chinfo_t channel_infos;
a4l_rnginfo_t range_infos;

double val;
uint8_t raw[128];

ret = a4l_open (&arm_device, "analogy0");

if (ret I=0)

{
printf ("[EXOARM] Error while opening the arm device, return code=%d \n", ret);

return;

}

arm_device.sbdata = malloc(arm_device.sbsize);

ret = a4l_fill_desc (&arm_device);

if (ret I=0)

{
printf ("[EXOARM] Error while calling fill_desc (), return code=%d \n", ret);
return;

ret = a4l_get_chinfo (&arm_device, 0, 0, &channel_infos);
if (ret !=0)
{

printf ("[EXOARM] Error invoking a4l_get_chinfo\n");

}

ret = a4l_get_rnginfo (&arm_device, 0, 0, 0, &range_infos);
if (ret != 0)

{
printf ("[EXOARM] Error invoking a4l_get_rnginfo\n");

}

while (1)

{
ret = a4l_sync_read (&arm_device, 0, 0, 0, &raw, 128);
if (ret <= 0)
{

printf ("[arm] Error while acquiring the data\n");

}

ret = a4l_rawtod (channel_infos, range_infos, &val, &raw, 1);
if (ret <= 0)
{

printf ("[arm] Error while converting the data\n");

16

17

18

Chapter 4

Development for the TASTE Linux
distribution

4.1 Available software

The following development tools are available within the distribution:

e binutils
e GCC

e Xenomai with POSIX and Native skins

19

20

Chapter 5

Annexes

5.1 Links and websites

e Debian - http://www.debian.org
e Xenomai-http://www.xenomai.org
e Comedi-http://www.comedi.org

e System configuration for QEMU and network concerns: http://compsoc.dur.ac.uk/
~djw/gemu.html

21

http://www.debian.org
http://www.xenomai.org
http://www.comedi.org
http://compsoc.dur.ac.uk/~djw/qemu.html
http://compsoc.dur.ac.uk/~djw/qemu.html

22

Bibliography

[1] T. Vergnaud, B. Zalila, and J. Hugues. Ocarina: a Compiler for the AADL. Technical report,
Télécom Paris, 2006.

[2] SAE. Architecture Analysis & Design Language v2 (AS5506A). SAE, jan 2009. available at http:

//wWww.sae.org.

[3] SAE. Data Modeling Annex for the Architecture Analysis & Design Language v2 (AS5506A). SAE,
nov 2009. available at http://www.sae.org.

[4] SAE. Programming Language Annex for the Architecture Analysis & Design Language v2
(AS5506A). SAE, nov 2009. available at http://www.sae.org.

[5] Jerome Hugues and Bechir Zalila. PolyORB High Integrity User’s Guide, jan 2007.

[6] Thomas Vergnaud, Bechir Zalila, and Jerome Hugues. Ocarina: a Compiler for the AADL, jun
2006.

[7] Xenomai Team. Xenomai API documentation, 2011.

23

http://www.sae.org
http://www.sae.org
http://www.sae.org
http://www.sae.org

	Introduction to the TASTE Linux distribution
	Availability

	Use the TASTE Linux distribution
	Running the distribution
	Deploy on an USB stick
	Emulation with QEMU

	Accounts and password
	Directories and path
	Configuration of the analogy devices
	Kernel modules automatically loaded
	Kernel modules available
	Configuration of the kernel
	Rebuild your own kernel
	Communication with the machine

	Use the Analogy layer for interaction with acquisition data boards
	Documentation of the analogy layer
	Use the board: the analogy_config tool
	Use the board and the analogy API
	Getting channel information
	Getting range information
	Acquiring data
	Convert RAW data to programming types
	Initialization and acquisition example

	Development for the TASTE Linux distribution
	Available software

	Annexes
	Links and websites

