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FOREWORD
By Professor W. H. Cockcroft

SYLLABUS reform in Great Britain cannot be achieved in our
schools without the willing and whole-hearted co-operation of the
teaching profession. The willingness of a growing minority of
mathematics teachers to consider the new syllabi has already been
shown by the demand for the new text-books which have appeared
in the last few years. But when, as at present, radical reforms are
proposed, it is surely essential for the well-being of our school
children that our mathematical teachers should not only be able
to see examples of school texts incorporating new material, but
that they should be able to find texts written to enable them to
make a proper judgement of the mathematical content of these
new courses before embarking upon them in the classroom.

D. E. Mansfield already has to his credit the school texts, based
on tested classroom material, written in collaboration with
D. Thompson: they were, of course, pioneers in this field. With
his present co-author, Mansfield now offers a working text for the
teacher; again they are among the leaders in attempting to fill an
obvious gap.

A word of warning: This is a working text. If you wish to proceed,
therefore, take out your paper and sharpen your pencils! With
your co-operation it could help you towards a position which our
system implicitly offers to every teacher—that of the independent
professional, designing his or her own syllabus, not dictated to by
any outside authority, examining or otherwise.

There are many advanced texts on set theory and group theory,
but most are written for the academically committed mathema-
tician. Mansfield and Bruckheimer have not made this assumption
about their readers; they have tried always to bear in mind the
kind of question which would arise in the mind of the teacher
when faced with new ideas. There are hints in plenty for classroom
use, but there are also many asides which have been incorporated
simply because the authors have tried to approach their advanced
material as teachers looking on the subject anew and facing learn-
ing difficulties themselves.

The authors offer you the results of their own efforts and thought
on this new material. I wish them, and you the reader, every
success in this effort.
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CHAPTER 1
INTRODUCTION

THE Preface to a book is usually skipped by most readers. We
think that a book of this sort needs explanation, and have therefore
written the explanation, not in the Preface, but in Chapter 1. We
need to make it clear to the potential reader what the purpose of
this book is, and we also wish to justify it and give a sufficiently
broad outline of its contents to allow the reader to see the book
as a whole.

Mathematics, at all levels, is changing rapidly, both in content
and in approach and attitude. This book has been written for
teachers and lecturers who have to cope with the changing teaching
situation; nevertheless, it is not a teaching book: it attempts to
present the reader with an outline of the changed situation and
attitude in a central area of the subject, and to show, implicitly
and by results, the justification for the change.

The following quotation from Klein’s book, Geometry: element-
ary mathematics from an advanced standpoint (Dover), written
nearly sixty years ago, is as significant now as it was then: ‘Too
often I have had the experience that, while students acquired
facility with the formulas, which are so useful in abbreviating long
expressions, they often failed to gain familiarity with their meaning,
and skill in manipulation prevented the student from going into
all the details of the subject and so gaining a mastery.’

Skill in manipulation is certainly not enough, although for a
long time we have taught as if it were: we want our students to
understand what they are doing, if only in order that they shall
cease from making foolish mistakes, the foolishness of which we
have difficulty in getting them to grasp. Such mistakes very often
arise from a lack of background in the student (and, perhaps, in
the teacher?). This book is an attempt to provide some of that
background, for we think that the very word ‘understand’,
italicized above, means ‘fit into a pre-existing background of ideas’.

Without some more or less coherent and unified background
grasp of the basic ideas of the subject (so far as one knows it),
no single part of it can be, in any proper sense, understood, for

the part cannot be fitted into the whole. Of course, one does not
9



10 CHAPTER 1

begin to study a subject with one’s background in it fully formed:
one builds up the background as one goes along. But it is this very
process of building up the appropriate background that we have
so neglected in our teaching: we have tended to pile up techniques
without bothering to show the relation of one to another, or the
relation of each to the basic ideas.

The fact seems to be that the number of important basic ideas
in mathematics is very small, while the number of special tech-
niques, each of which unfortunately can be ‘drilled’ home as a
separate entity, is very large. This book is an attempt to explain
some of the basic ideas and to indicate, mainly by means of
examples and exercises, the relation to them of some of the well-
known techniques.

It is this sort of relation which is sometimes loosely referred to
by the word ‘structure’. This word is freely bandied about nowa-
days, particularly in descriptions of modernized syllabuses. We
prefer to use ‘structure’ rather precisely, to mean relations between
the elements and operations of a set (see, for instance, the passage
quoted on page 225, Chapter 12). This definition may well mean
very little at present, for the idea of structure in this sense is
one of the things so disastrously omitted from our teaching. The
best way to grasp its meaning is to undertake a serious and active
study (involving the solution and construction of problems and
examples) of some particular structure, e.g. groups. To use the
word ‘structure’ as loosely as is sometimes done is to pay lip
service to a crucial idea: worse, it leads to the misplaced self-
satisfaction sometimes shown by people who use the word in this
sense but who teach no worthwhile grasp of structure at all.

It is convenient here to explain the distinction which we make
between examples and exercises. Both are printed in smaller type
than the main text as are some occasional notes.

The examples are lettered in alphabetical sequence throughout
each chapter: they are intended to illustrate and illuminate the
text and are, on the whole, essential to a proper understanding of
the text. The reader is very strongly recommended to do his best
to read them, to work them out, or to prove them as appropriate.
The results obtained in the examples are sometimes used later in
the text. Some, but by no means all, of the examples are of direct
use in the teaching situation.

On the other hand, the material of the exercises is not usually
required in the text (except in a few cases, which are specifically
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mentioned). The exercises are intended as further illustrations of
the text, and, in particular, show some of the possible applications
of the text in the teaching situation. The reader will not, of course,
expect to find in these exercises a comprehensive teaching scheme:
what he will find are merely miscellaneous illustrations. For a
teaching scheme the reader should go to a teaching text (e.g.
Mathematics: A New Approach, Books 1, 2 and 3, by Mansfield
and Thompson, Books 4 and 5 by Mansfield and Bruckheimer
(Chatto and Windus)) or, better, make his own. The exercises are
numbered sequentially in each batch.

Since the examples and exercises frequently demonstrate a
relation between a well-known technique and the basic ideas of the
text, it follows that they will contain techniques and subject matter
which have not yet been met in the text (or, in fact, may never be
introduced in the text) and some few of them may make consider-
able demands upon the skill of the reader in these techniques. This
should cause no difficulty: the main text is in sequence. It follows
also that the examples and exercises are not ‘in order of difficulty’
(whatever this means).

While on the subject of ‘difficulty’, we would mention that there
is a topological section at the end of each chapter. Topology is a
‘difficult’ subject in the sense that it is at present lacking in enough
elementary examples of anything resembling a rigorous kind.
Nevertheless, it is a subject with which one should try to come to
grips since it lies at the centre of much modern mathematics. It is
another subject whose language is that of ‘algebraic’ structure: its
subject matter is ‘topological’ structure and there may be an inter-
action between the two types of structure as we explain at the end
of Chapters 12 and 13. The fact that we use algebraic structure in
our topological investigations has motivated our choice of topo-
logical ideas: as far as possible, we have chosen the topological
topic in each chapter to match the ideas dealt with in the main part
of that chapter, so that many of the ‘easier’ topics in topology have
been omitted. Because of all this, the topological sections are often
quite demanding. For this reason care has been taken to ensure
that although the topology depends on the rest of the book, the
rest of the book is entirely independent of the topological sections.
Nevertheless, we hope that some readers will be encouraged to
introduce some of the subject into their courses and that they will
invent their own, more appropriate, teaching exercises. Slowly the
subject must come within the normal teaching syllabus.
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With the possible exception of the topological sections, it is felt
that the text should be well within the scope of any teacher of
mathematics: if he has not taught at or above G.C.E. O level he
may find some of the examples difficult, but he should nevertheless
be able to manage enough of them to serve the purpose.

In most chapters, and for most topics, the approach chosen has
been that of a loose, intuitive, informal establishment of the back-
ground for the ideas to come: once the concepts have had time to
form then they are defined precisely and a little formal develop-
ment is given. We have tried to avoid the unmotivated ‘Theorem-
Proof” type of exposition as far as possible, for except for the
sophisticated this form is not very effective in the teaching situa-
tion. We prefer the ‘probe and explore, verify and advance’ tech-
nique, where the results follow, rather than precede, the investiga-
tion.

It is perhaps proper to mention here that we have tried to apply
the same ideas to such things as the choice of defining properties
for particular structures. After all, we have some freedom: we can
choose any consistent set of axioms, and we can sometimes in-
corporate into the axioms some statements which are usually
theorems if this makes the structure seem more immediately
sensible and effective. The reader should not suppose that the
economy and elegance which he finds attractive is necessarily the
best approach for pupils.

Lastly, we use the mathematically sinful words ‘clearly’ and
‘obviously’ with considerable abandon, for in much of the book
no attempt at rigour is made. Worse, we use these words in two
quite different senses; sometimes to mean that the statement is
intuitively ‘self-evident’ (and we hope that what this means, if
anything, will not be the subject of correspondence!); on other
occasions we use the same words to mean that the proof of the
statement is trivial.

We now present a short summary of the main contents of each
chapter: we shall indicate the scope and the interconnection be-
tween the major topics: no attempt has been made to list all the
topics covered; all we try to do is give an overall picture.
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The mathematical ideas introduced in Chapters 2, 3 and 4 are the
fundamental language in terms of which we create our structure.

Chapter 2. The basic concept is undoubtedly that of a set, for
without a set of objects we have nothing to discuss. So the chapter
begins by introducing the elementary points one can discuss given
a set (or sets) of objects, e.g. the relations of the equality of sets
and inclusion of one set in another. Then we consider the forma-
tion of new sets from given sets, e.g. the combination operations of
union and intersection of sets. In introducing these basic definitions
we investigate the fundamental properties of relations and com-
bination operations. The brief discussion of the possible properties
of a relation prepares the ground for the details of Chapter 3: the
corresponding discussion of operations is not specifically men-
tioned again in a separate chapter, but constant use is made of it
throughout the book. There are a large number of elementary
‘teaching’ exercises and, in fact, the whole chapter can be regarded
as basic teaching material. The topological section defines a fopo-
logical space in the terms introduced in the chapter and a few
elementary examples are given.

Chapter 3. We are next interested in the problem of classification
of objects in a set. The word ‘same’ as applied to objects depends
for its use on the purpose to which the objects are being put. ‘All
monkeys look the same to me’: you tell that to a monkey! We
introduce the idea of an equivalence relation on a set of objects
which gives a precise mathematical context to the discussion. It
is remarkable how often an equivalence relation is implicit in any
particular field of mathematics where the words ‘convention’ and
‘representative’ are used: we give a few of the many elementary
examples scattered about mathematics, indicating the unification
and improvements in definition possible. One may be able to com-
bine the objects of a set (say, the integers under addition) and
one may also wish to classify them (say, the integers into two
classes, where all even numbers are the ‘same’ and all odd numbers
are the ‘same’). Can we induce a ‘sensible’ combination operation
onto the set of classes of equivalent elements (e.g. does ‘even + odd’
mean anything)? We answer questions of this sort by discussing
the compatibility of the operation and the relation. The topological
section is concerned with the induction of a topology on to a set
of equivalence classes.
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Chapter 4. Having obtained sets and classification of their con-
tents we now seek relations between sets. This requires the general
definition of a mapping and its associated concepts. Once again
the exercises show how many elementary mathematical examples
are properly expressed in the terms introduced. We consider the
problem analogous to the one discussed in the second half of
Chapter 3: given two sets each with its own operation and a
mapping of one to the other, are the operation and mapping com-
patible? i.e. if we combine two elements in the first set and then
map the result of the combination do we get the same result as we
would get if we mapped the two elements first and then combined
them ? If the result is the same we call the mapping a homomorphism
(in particular, when the mapping is one-one, an isomorphism).
Again, this idea is implicit in much of our elementary work, e.g.
logarithms. We go into more details for these mappings in
Chapters 8, 10 and 11 when we have obtained group structure.
The topological section gives a fundamental definition of a con-
tinuous mapping from one topological space to another and the
topological definition is compared with that used in real analysis.

Chapter 5. This chapter in a sense is a diversion. We use the
concepts of set, equivalence relation and mapping to establish the
intuitive idea of cardinal number. We establish a characteristic
property of an infinite set, and show, for instance, that our defini- -
tion of addition of two cardinal numbers is quite general and need
not be restricted to the finite case. The reader can see that the
ideas of Chapters 2, 3 and 4 allow us to obtain a high degree of
precision in this topic.

Chapter 6. We return to the main line of development. Given
a set S'and an operation of combination o we consider the problem
‘ind x if aox = b’, where a, b and x are members of S, and
obtain a structure in which the solution is guaranteed, i.e., we
define group structure. This is the main algebraic structure to be
discussed in the book and the topic is developed slowly by way
of examples, and a few general results (such as the uniqueness of
the solution) are proved. The topological section, which is quite
long, discusses continuous deformation as an intuitive notion and
compares it with fopological equivalence. We derive an equivalence
relation between topological spaces, homeomorphism: we further
show that the set of all homeomorphisms of a space onto itself
can be given group structure.
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Chapter 7. Some sets are born with group structure, some
achieve group structure and some have group structure thrust
upon them. We are here concerned almost entirely with teaching
exercises displaying sets with group structure, and sets which can
have group structure imposed upon them. This chapter includes
the important teaching exercises in which the natural numbers
are extended, (i) to form a group under multiplication (positive
rationals), (i) to form a group under addition (integers or directed
numbers). The topological section deals with a group associated
with braids: besides the general algebraic terms we use the intuitive
idea of continuous deformation only.

Chapter 8. We return to the idea of isomorphism as a con-
nection between structured sets (first introduced in Chapter 4) with
particular reference to isomorphic groups. As usual we investigate
the particular uses of the various concepts in teaching exercises.
Matrices are introduced in these exercises and discussed in applica-
tion in preparation for the formal development in Chapter 9. The
topological section is not directly relevant to the chapter, but
develops a few simple ideas for later application.

Chapter 9. Having created the excuse, and since we need the
ideas later, we devote a chapter to the discussion of matrix algebra.
The work is largely confined to 2 x 2 matrices, but the restriction
is only apparent and the methods and definitions are general. The
whole chapter, like Chapter 2, is largely a teaching chapter:
matrices, for very good reasons, are creeping into school syllabuses.
We present the topic from the structural point of view and
illustrate our previously established results. Matrix algebra is of
great practical importance in many technical fields. The topological
section introduced in this chapter is continued in Chapters 10 and
11. We develop a particular topological invariant, the fundamental
homotopy group. The section here introduces the idea of a curve in
a topological space, and its continuous deformation. The section
in Chapter 10 defines a path (a mapping whose image set is a
curve), equivalence classes of paths and combination of paths: we
show that we thus obtain a group. In Chapter 11 we give examples
of groups for some spaces and consider what happens to the
group under a mapping from one space onto another. In the
discussion we use many of the algebraic concepts previously
developed.
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Chapter 10. This chapter continues the discussion of Chapter 8
by considering homomorphic mappings of structured sets and, in
particular, groups. This theory is much richer in the sense that the
structures are not the ‘same’ (as is the case when they are iso-
morphic) and the relation between them needs a deeper investiga-
tion. Given a homomorphism of one group onto another we define
an equivalence relation in the first group using a particular sub-
group (the kernel) which turns the homomorphism into an iso-
morphism. We then consider the problem from the other side:
given any subgroups of a group G do we get an equivalence relation
and hence a new group (the factor group) which is the homomorphic
image of G? The discussion uses the language of Chapters 3 and 4
extensively. The problem of finding the subgroups of a group is
simplified by the result of Lagrange’s theorem, the proof of which
is there for the taking.

Chapter 11. Since Chapter 10 carried a greater weight of theory
than usual, Chapter 11 is devoted to examples, exercises, applica-
tions and extensions of the ideas of Chapter 10. Although much of
the material is suitable for pupils and students it is, for convenience,
all classified in this chapter as examples. The number of topics
covered is large.

Chapter 12. Group structure is central to geometrical studies as
explained by Klein. We give a brief outline in this chapter of this
approach to geometry which we define as a study of geometrical
objects or properties invariant under groups of transformations. We
describe how one can generalize from one geometry to another and
put the matrix theory of Chapter 9 to considerable use. This
chapter is again very much a teaching chapter. The topological
section (partially anticipating the main text of Chapter 13) con-
siders the interaction between a topology and a group structure,
both on one set, leading to the definition of a topological group.
The topological section of Chapter 13 continues this topic.

Chapter 13. With group structure as the basis, we conclude by
surveying some ‘higher’ structures. We come to a definition of a
field by showing that complete double group structure in a single
set is impossible if we require a particular interaction between the
two operations. Some basic results for fields (and rings) are given
in the examples and exercises. We also define a vector space, a
structure arising from the interaction of a field and a group, and
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again develop a few of the basic results in the examples and exercises.
The final paragraph, before the topological section, surveys the
situation as it can now be understood.

It is unfortunate that different authors use different notation and
symbolism. We explain our choices as we go along and try to
Justify them. One point needs to be mentioned here: the use of
brackets in the ‘mathematical’ text. (In the ordinary prose we use
brackets as parentheses, and for numbering, in any way which is
typographically convenient.) Broadly, there are three kinds of
bracket: round (); square []; and braces {}. It is common practice
to mix the three kinds to indicate priorities: we do not do this.
We indicate priority by size and weight of bracket. For example,
the various sizes of square bracket indicate ‘order of performance’,
e.g. [3 — [§ — %]I° Braces are reserved for one purpose only, to
indicate equivalence classes. Round brackets serve several purposes:
to indicate the beginning and end of a list of the elements of a set,
e.g. (Tom, Jim, Joan); to indicate the image of some element under
some mapping, e.g. f{x), and again different sizes indicate order,
e.g. sinh(log(x + v(x? + 1))); to enclose ordered pairs, triples, etc.,
and in the usual way for coordinates, matrices and permutations.

The number of cross-references is very high; the purpose of such
references is often merely to remind the reader of those other topics
more or less closely associated with that particular topic being
dealt with. The reader in whose mind the associated topics are
fresh need not, of course, turn up all the references.

The authors are grateful to Professor W. H. Cockcroft for the
corrections and other improvements arising from his scrutiny of
the typescript. They are also grateful to Mr F. R. Fraser for the
time and care devoted to the diagrams and cartoons.



CHAPTER 2
SETS

OUR object, as we have explained in Chapter 1, is, in part, to
present some of the concepts of what is vaguely referred to as
‘modern mathematics’ or as ‘abstract algebra’, or described by
some other equally misleading phrase. For example, the term
‘modern’ is purely relative, and only by an abuse of language can
subjects be called modern which were first discussed more than a
century ago. Again, by the emotive word ‘abstract’ we certainly do
not mean the opposite to concrete, nor do we mean something
which exists only as a mental concept. Some of the topics of
‘modern abstract mathematics’ are less abstract in these senses
than the so-called applied mathematics associated with weightless
elephants, inextensible strings or similar topics. We would perhaps
give a clearer picture by suggesting that that which is abstracted is
the essence, the basic substratum, on which and in terms of which
much of the rest of mathematics can be built.
.- One wonders whether the above paragraph has any real meaning
for the reader. One would think not, except for those readers who
are already familiar with some of the topics which we shall describe.
As usual, the preface and introduction are best understood after
reading thelast chapter in the book. Well, then, what of the beginner
for whom this book is intended ? Let him throw away any prejudices
or preconceived ideas, and let him apply himself to understand the
text and then, at the end, he may understand the headings too.

To work then! We must have something about which we can
talk, let us suppose then that we have a set of objects or elements.
What objects? That does not matter so long as we can recognize
them when we see them. The people who live next door at the
present time form a set, or if you do not like them, you might
prefer to think of all the books in your house, or the gobstoppers
in the sweetshop on the corner, or what you will. Notice that we
must always be able to decide, in theory at least, whether a given
object belongs to the set under consideration or not; that is, the
set of objects must be well defined.

There are essentially two ways in which we can define the objects
of a set: we can either list them all or give a description of the

18
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objects. The description must, of course, be complete. We shall
be satisfied with an intuitive comprehension of ‘complete’; the
‘complete’ meaning of ‘complete’ raises logical problems which lie
beyond the scope of this book. Thus, if we consider ‘the set of all
bench seats in Highgate Wood’ as a well-described set, then ‘the
set of all bench seats’ is an incomplete description of the first-
named set.

In some cases we can define the set in both ways; in other cases
only one of the two methods is feasible. For example, all the cars
registered in the county of Essex on the first of January 1965 could,
in fact, be listed, although the description of the set already given
would suffice. On the other hand ‘the set of all the stars in the
universe’ is a sufficient description to enable us to recognize an
object of the set, but we defy you to make a complete list. Can you
think of an example where a description is impossible, or at least
so awkward as to be regarded as pedantic?

NoTe: The idea of a set can also be obtained by using the concept of a
defining property as follows. A set of elements is specified by a property which
all the elements belonging to the set possess and which is not possessed by
elements not belonging to the set. This is very similar to giving a description
of the set and presents the same logical difficulties.

All the different words in the third paragraph in this chapter
form a set, which to save space we shall denote by P. Some words,
such as the word ‘set” itself, are repeated but, in general, it proves
inconvenient to write a particular word twice when we are only
interested in the words as a set of objects (see, however, Exercise 7,
page 33). From P we can form subsets, i.e. sets, the elements of
which are contained in P. In this instance we shall choose to form
the six subsets which are made up of all the different words between
successive punctuation marks, excluding commas and semi-colons.
We label these subsets p;, ps, . . ., ps respectively. Thus p, is the
set (what, objects), where the brackets are used to show where the
list begins and ends.* We shall use P and its subsets, as far as
possible, to illustrate subsequent remarks.

There are quite a number of interesting things that one can do
with a set of objects, without being specific about them or any
of the properties they may have. Thus, until we say any more
about our objects, all results will be valid for every set and every-
thing will be universally applicable.

* Other authors use braces, {}, to indicate where a list of elements of a set begins
and ends. We reserve braces for equivalence classes.
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It is clearly important, for the sake of economy if nothing else,
to be able to decide when two sets, 4 and B say, are the same. By
this term we shall mean that 4 and B have the same elements, and
in such a case we shall write 4 = B. For example,

ps = (what, objects) = (objects, what).

Notice that we are only listing the objects: the order in which we
list them is immaterial.

We have introduced here the symbol =, usually called an equals
sign. It is familiar to everyone, and we shall introduce other such
signs quite often, perhaps for no better reason than that if we were
to invent our own symbols every time, this book would become
extraordinarily difficult to read. It is important, therefore, to point
out that the reader must be careful not to associate with these
symbols any properties to which he is accustomed from his
previous use of them. If he bears this in mind, not only will he
avoid pitfalls, but he will not make the common and serious
mistake of assuming that we are engaged in trivialities which lead
nowhere; the ideas with which we deal are simple, commonsensical
and untechnical perhaps, but not trivial. It is also important to
note that even such a simple sign as the equals sign is in common
use with a number of different meanings; in each case, of course,
it is usually clear from the context which particular meaning is
being attached. The common use is for the expression ‘the same as’
in some specifically qualified respect. In general, we shall explain
the particular contextual use, but we may occasionally forget.

In particular, we note that the symbol as used here has three
fundamental properties:

@ if A =Bthen B =4,
() A =4,
(ii) if A = Band B = C, then 4 = C.

These results can be verified by saying in words exactly what each
statement means. Thus, the first would read: ‘If 4 has the same
elements as B then B has the same elements as A.” The three
properties have been given names: the first is called the symmetric
property, the second reflexive and the third fransitive. It can, of
course, be asked why we mention just these three properties, for
surely there are others? The answer to this is simply that these
three are found to be the essential ones: in normal life not all the
properties of a physical object may be relevant, or, alternatively,
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its further properties may be deducible from those already given.
For the moment we shall leave this point and return to a further
discussion of these properties later, when their significance should
become clear (Chapter 3). If two sets do not contain the same
objects, one set may perhaps lie entirely within the other, that is
all the elements of A, say, may also appear in B. We described such
a situation earlier by saying that A is a subset of B. If A4 is a proper
subset of B, i.e. all the elements of A appear in B but B has elements
which are not in A4, then we write

AcB

and read ‘A is properly contained in B’.

If we only know that all the elements in A4 are in B, but do not
know whether or not B contains elements which are not.in 4, we
write 4 £ B, denoting that 4 may be the same as B, but certainly
all the elements in A4 are also in B.

Since A <« Band A < B both express relations between 4 and B,
just as 4 = B does, we may ask whether our three fundamental
properties are also satisfied by these relations of inclusion. The
reader may easily convince himself (by replacing = by the appro-
priate symbol) that for < only (iii), the transitive property, is valid,
whereas for < (ii) and (iii) are true and (i), the symmetric property,
holds only in the special case when the sets have the same elements.

It is not surprising that these relations do not possess all the
fundamental properties, for, as we shall see in Chapter 3, any rela-
tion between objects which possesses these three properties is what
we shall call an equivalence relation. That is, elements which are so
related will be lumped together and considered, in some sense at
least, as equivalent. Now the relation of inclusion is not in this
category; it may be regarded as a relation which emphasizes the
difference rather than the similarity between sets, whereas the
equality relation is a statement about the ‘sameness’ of two sets.

Example ‘A. Let 4 be any set. We can form the set A’ of all subsets of A.
We shall say that two subsets of 4, 4, and A, say, are related if they have one
or more elements in common. Is this relation an equivalence relation for the
subsets of 47

An example of such a set 4’ is obtained if we take for A4 the set p, above.
Then py is the set
(to, work, then), (to, work), (to, then), (work, then), (to), (work), (then),
where each pair of brackets contains an element of p/. In this example (to,
work) and (work, then) are related but not (to, work) and (then). Note that
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we include p, itself among the elements of py: it is one of the two improper
subsets of any set; we shall introduce the second one later (page 24).

The elements of any one of the subsets p,, ps, €tc., are, of course,
elements of the set P. Further, it will be noticed that p,, for instance,
is contained in the combination of p, and ps, that is, the set which
contains all the elements in p, together with those in p;. (Note that
words like ‘a, set, or’ occur in both p, and p;, but as we remarked
earlier we would not in general write them twice in the combina-
tion of p, and p;.) Now this set has no label and to describe it each
time is wasteful, so we shall denote it by p, U p;. Then we can
write p; < (p, U p;). There are, of course, reasons other than that
of saving space for introducing symbolism. A neat and familiar
symbolism enables one to discern the pattern and symmetry of
mathematical relations. Although it may be doubtful whether
symbolism in itself has caused any major discoveries in mathe-
matics, it is fairly certain that a poor or inadequate notation not
only retards progress but it also hinders understanding.

The symbol U we have here introduced is usually read as ‘cup’.
A U Bis the set of all elements which are either in 4 or in B or in
both. Briefly we call this set the union of A and B. The union of two
sets is our first operation with sets; a law of combination of two
or more sets which gives a new set. In the same way as we investi-
gate any new relations that we come across, so we investigate the
operations which we perform to find out which elementary prop-
erties they possess. The first property is commutativity. Any opera-
tion is commutative if the order, in which the elements to be
combined are written, is immaterial. Thus, the union of two sets
A and B is commutative if

) AUB=BUA.

This property is seen to hold since the two unions contain the same
elements and the order of the elements is immaterial to the equality
of the sets. Suppose now that we have three sets 4, B and C. The
union of all three is that set which contains all the elements which
are in 4, B or C, or in any combination of two or in all three
(without repetitions). If we write this as A U B U C, is this correct
and unambiguous? If we introduce square brackets to denote
which combination is to be performed first, is

(b) fAUBJUC=Av[BuUC(]
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a true statement ? The reader can satisfy himself that (b) is a true
statement and agrees with our description by saying each side of
the expression in words. We express the truth of (b) by saying that
the cup operation is associative.

The fact that union satisfies (a) is of obvious utility. Not all operations with
which the reader is familiar enjoy this advantage. When we become familiar
with an operation the knowledge that the operation does, or does not, possess
this property becomes so much a part of us that we find it difficult to believe
that it is not obvious to a beginner. A careful analysis of similar properties
will help the pupil to avoid errors: it will also help the teacher to appreciate
the cause of the pupil’s difficulties. The second property (b) allows us to write
and manipulate 4 U BU C without ambiguity but again it should be noted
that not all operations possess it.

Example B. Verify that the operation of subtraction in the set of real
numbers is (a) not commutative, (b) not associative. It may be observed that
some children are taught that 9 — 5 — 2 is to be interpreted as [9 — 5] — 2.
This is certainly not a necessary property of the subtraction operation; it is a
purely arbitrary convention and not universally upheld.

It is clear that, by virtue of the associative property, we can
extend union to any number of sets and that the expression

AuvBuCuDu,,.vX
is quite unambiguous. (This statement demands a proof but we do
not give one.) If we return to our example we note that

P=p,Up,Up;Vp,UpsUpe,
but also P=p,Up,Up,Up;Vpe
This could lead us to speculate about such relations as
AVUB=A4 or AUBUC=A4uC
The first of these relations implies that all the elements which are
in 4 or B are the same as all the elements in 4. Thus B can contain

no elements which are not in 4, that is B < 4. In particular, it is
possible that B = 4,ie. A U 4 = A.

Example C. If AU BU C = AU C what general statement can be made
about B in terms of the inclusion relation? Write down also some special
statements, in terms of inclusion and equality, which satisfy the given equality.

A very common question is, ‘What have these things in com-
mon P—and it can also be asked of sets. If we have two sets 4 and
B, have they any objects in common ? We shall denote the set of
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common objects by 4 N B, that is, the set of all elements of 4 that
are also in B. In particular we shall employ the symbol @ to denote
that 4 and B have no elements in common by writing A N B = @.
In order for this last statement to be meaningful we must say that
@ is also a set, and that it is a subset common to A4 and B. There-
fore, we shall call @ the null or empty set and admit it as an im-
proper subset of any set. For instance, @ is the set of all five-storey
houses in a road of bungalows. In terms of our original ex-
ample P and its subsets we have,
P10 ps =9, p.Np, = (We, can, that).

The symbol N is read ‘cap’ and the set A N B is referred to briefly
as the intersection of A and B. Since the intersection of two sets is
a set we should examine this new operation to see whether it is
commutative and associative.

Example D. The reader should satisfy himself that this is the case, i.e. that
@ANB=BNA, ®MANBNCI=[ANBINC.

NoTE: At the end of Example A on page 22 we remarked that anyset 4 has
two improper subsets: one is A4 itself and the other is now seen to be @. It
follows that in the list of elements of p} in that example we should have
included an eighth element @. The set of all subsets of a given set A4 is called
the power set of A. We leave the reader to prove, or find elsewhere, the result
that if A is a set with a finite number n of elements, the power set of 4 contains
2" elements.

NoTE: That we call @ a set should cause no more intuitive difficulty than
calling zero a real number. We try to avoid special statements in mathe-
matics. Consider, for instance, the statement in Euclidean geometry that two
lines meet in a point unless they are parallel. We shall see in a much later
section (in Chapter 12) that this statement can be simplified to ‘two lines meet
in a point’ without the conditional clause. The effect of this simplification is
enormous; not only does the geometry become richer in a sense, but its
methods achieve a wonderful symmetry. Similarly, here, if we want to write
AN B = C without occasional qualification we must admit @ as a set.

Example E. AN G = 3, AU @ = A, for any set 4.

Now that we have two operations on sets we may ask the further
question whether these operations are distributive over each other.
We say that N is distributive from the left over U if

© ANn[BuCl=[AnBlufdnC(C]
and that N is distributive from the right over U if

@ [BUCINA=[BnAjuU[Cn A]
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By interchanging N and U we obtain relations which, if valid,
express that U is distributive from the left or from the right over N.

NoTe: For example, the operation of multiplication in the set of real
numbers is distributive over addition; e.g. 2.[3 + 5] =[2.3] + [2.5] and
[3 + 51.2 = [3.2] + [5.2]. But addition is not distributive over multiplica-
tion;ie.2 + [3.5] % [2 + 31.[2 + 51and [3.5] + 2 = (3 + 21.[5 + 2I.

Example F. Show that if in any set an operation is commutative and left
distributive over some other, then it is right distributive.

Example G. Investigate the distributivity of all pairs of the operations,
addition, subtraction, multiplication and division in the set of real numbers.
Note in particular that division is distributive from the right over addition
but not from the left—a very significant teaching point.

As yet we have not examined the validity of the relations (c) and
(d). It follows from the first of the two examples above that we
need only prove (or disprove) either (c) or (d). But to write out in
words an investigation of each side of the relation (c) would be-
come very tedious. A very useful intuitive verification is obtained
by representing a set by the interior and boundary of a closed
curve. We can then draw diagrams of both sides of any relation
and see if they are the same. Such diagrams are known as Venn
diagrams (introduced by John Venn in 1880). For instance 4 U B
and 4 N Bare represented by the shaded areas in the figures below.

%

AUB ANnB

Note that the second figure does not assert that there are neces-
sarily any elements at all in A N B, for the magnitude of the area
enclosed by each curve does not in any way represent the number
of elements in the set. Also note that a single set may be represented
by the interior of more than one closed curve. For example, if we
have two sets 4 and B, where A N B = @, then we may properly
define a set C as C = A4 U B, although the Venn diagram will then
represent the single set C as the interior of two closed curves,
one representing 4 and the other B. The obvious limitations of
this method of verification do not, in general, lead to abuse. On
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the other hand the advantages of an investigation of this type will
be made clear in Example 1. We shall first use Venn diagrams to
examine the validity of the relation (c). In each figure the region
shaded represents the set mentioned below that figure.

& @)

Ana ANC [Ansl uland

The last figures in each row have the same sections shaded, so we
may conjecture that the relation is true. We shall not be interested
in the more formal approach to set theory, and for teaching
purposes the Venn diagram is attractive and quite sufficient.

Example H. Use Venn diagrams to investigate whether union is distributive
over intersection.

Example I. We have been very careful so far to insert brackets which show
in which order the operations are to be performed, and yet in each case we
have justified their removal. So we shall now consider the brackets in the left-
hand side of the relation (c). Would it be justifiable, for instance, to remove
the brackets in the expression 4 N [BU C]? Is this expression the same as
[4N BlU C? A consideration of the following diagrams shows that this is
not the case.
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Thus the order in which the operations are performed for arbitrary sets 4, B
and C is important. If, for instance, we refer to our original example, we have
P10 [p Y ps] = (then), whereas [p; N p,] U p; = (then, what, objects). The
Venn diagram has here been found useful in disproving a suggested result,
since one counter example is sufficient to disprove a conjecture. On the other
hand, no number of true examples is a proof (unless, of course, there are only
a finite number of examples to which the conjecture can apply and these have
all been tested).
Writing # to mean ‘is not the same as’, we have, in general,

AN[BYCl #[ANBIVC.

But we may ask whether there exist special conditions under which the
equality holds. Consider the two diagrams again.

An[Buc]

It is clear that AN {BU Cl < [AN B]U C, and it would seem that the
equality can only hold if the cross-hatched section is the null set @, i.e. C < A.
This condition is in fact not only necessary, as shown here, but also sufficient.

The idea of necessary and sufficient conditions mentioned in this
last example can be stated precisely as follows. A result R is ‘neces-
sary’ for a result S if the truth of .S implies the truth of R. A result
Ris ‘sufficient’ for a result S if the truth of R implies the truth of S.
If one statement is both necessary and sufficient for another then
each implies the other and the two statements are in a sense
equivalent. For example, that one is a British subject is a necessary
condition for being able to vote in a British parliamentary election,
but it is by no means sufficient. Here ‘being a British subject’ is
the statement R and ‘being able to vote in an election’ is the state-
ment S. The reader is advised to make up simple examples of all
three possibilities and analyse them, to clarify the concept which
is of fundamental importance in mathematics,

Example J. Consider a set of statements. Let the individual statements be
denoted by R, S, . ... Let RnS denote that R is necessary for S, RsS that
R is sufficient for S, and Rn,sS that R is both necessary and sufficient for S.
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Investigate these three relations between statements to see which of (i), (ii) and
(iii) on page 20 they satisfy. In particular, show that »n,s is an equivalence
relation, i.e. that it satisfies all three.

Example K. We are continually trying to press home the idea of examining
all new relations and operations. In the last but one example we introduced
the new relation # between sets. Show that it is symmetric, but not reflexive
or transitive.

Example L. There are other laws of combination that we could invent for
sets. We introduce a further one which we shall denote by ~. A ~ B is
defined to be the set of elements of 4 which are not in B, that is 4 ‘less’ the
elements of 4 N B, as shown in the figure.

7

A~ B

This combination provides an example of a non-associative operation; verify
this. Investigate also other possibilities, such as:

@i is ~ commutative?

(i) is ~ left and right-distributive over N ?

(iii) -is U left and right-distributive over ~? Note here that since U is com-

mutative it must be both or neither.

(ivVis[d~BlUC=A4~[BUC(C]?

Example M. Give examples of 4 ~ B for sets 4 and B within your
experience.

Example N. If N is the set of natural numbers, E the set of even natural
numbers and P the set of prime numbers, we see that

EUN=PUN (=N).
The temptation to ‘cancel’ the N’s must be resisted: it does not follow that
E=P
Similarly, if R is the set of real numbers, 7 the set of irrational numbers and
T the set of transcendental numbers, we have
INT=RNT (=1
and, again, one must not ‘cancel’; it is not true that
I=R.
Also
E~N=P~N (= 0)

and, as before, E + P.
There is an operation on sets which does permit this sort of ‘cancelling’
procedure: it is the operation called symmetric difference. The symmetric
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difference of two sets, 4 and B, is defined as the set containing all members
of A which are not members of B together with all members of B which are
not members of A. This set is written 4 A B and is indicated by the shaded
sections of the Venn diagram below. It is evident that

AAB=[AVB] ~[4N Bl =[4 ~ BlU [B ~ A].

AAB

The symmetric difference operation is extremely important and is dealt with
more fully in Chapter 6. The reader should discover for himself whether or not
the following statements are true. (They are not all true.)

(a) a is commutative,

(b) & is associative.

(© N is distributive (both from the left and right or neither) over A.

(d) U is distributive over A.

@) If Aa B=AAa Citfollows that B = C,

At this point we shall break off the development of what we like
to regard as the ‘pure’ (but not, of course, ‘rigorous’) theory and
give some applications and illustrations from other fields. We wish
to re-emphasize that, as with the examples, exercises and notes
introduced in small print throughout the text, these applications
are not in the logical order of this book, but are introduced from
time to time to make the rest palatable and of direct use in a variety
of teaching situations. It is the application of general principles to
a collection of previously experienced particulars which gives the
whole subject interest. One should, therefore, not worry about
over-shooting the theory. It should, perhaps, also be pointed out
again that the illustrations and applications are not ‘in order of
difficulty’; such an order, if it exists at all, is intensely individual.

Exercises

Exercises 1 and 2 have been found useful for clarifying pupils’ ideas about
set notation.

1. Let N be the set of natural numbers 1, 2, 3, 4, . .; let P be the set of
prime numbers; let E be the set of even natural numbers. Then some of the
following statements are true and some are false. Which is which ?
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@PcN,®EcCN; QY)EUP=N;(dEUN=N;@E ENN=E,
OENP=0.

2. Let R be the set of all real numbers, 4 the set of algebraic numbers, 7
the set of transcendental numbers, I the set of irrational numbers, F the set of
rational numbers. Then some of the following statements are true and some
are false. Which is which?

@ IcA, ® FcA; € IVA=R; d) TUA=R; () I=T;
OFVI=A4;@QTNI=T, 0 TNF=0;OTNINF]=A.

3. Very simple geometrical examples are particularly effective in introduc-
ing set notation to young children. A typical example, concerning a plane
figure, follows.

Single points are referred to by single letters, e.g. 4. The set of all points on
the straight line joining two points, say A and B, is referred to as AB. The set
of all points inside, or on the boundaries of, the triangle ABC'is referred to as
ABC, and so on for any polygon. Note that, for instance, 4B means the set
of all points on the straight line segment while (&, F) means the set consisting
of two isolated points.

A

o £/\F G

-]
c

Use the figure given and simplify the following expressions, e.g. the answer
to (a) is AB.

(@) AEVU EB; (b) AEN EB; () DGN AB; (d) DGN AC;
(© DG N [ABU AC); () EBCFU AEF; (g) DGN ABC;
(h) EBCF N AEF; (i) BC N AEF.

4, A linear inequality in one variable is solvable intuitively, e.g. the solution
set of 3 — x > 0is evidently x < 3. The solution of a factorizable inequality
of higher degree can best be demonstrated by intersecting sets on the number
line. For example, to solve [3 — x][x — 2] > 0 we take

@ 3—x>0
and
x—-2>0

=4 -5 =2 =¢ i

WEA

ok
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and the intersection of these solution setsis 2 <x < 3... (@.

(i) 3—x<0
and
x—2<0
\
N R N : L . R 4 N 2
-4 -3 =2 ~j [e] ] .’;3 3 4 5
\

and the intersection of these solution sets is @ . . . (b).

The complete solution is the union of sets (a) and (b), in thiscase 2 < x < 3.
(Note: strictly, the phrase ‘x < 3’ does not indicate a set: it indicates a restric-
tion. Properly we should write ‘the set of all x such that x < 3’: the notation

favoured for this is (x; x < 3). In this notation the solution to this exercise is
;2 <x <3))

5. An inequality is a relation in the set of real numbers. Is a < b sym-
metric, reflexive or transitive? What about a < 5?

6. The solution set of a linear inequality in two variables may be represented
by the set of points of a half-plane: for example the set for whichx + y < 9
is represented by the unshaded area in the diagram below. (Thelinex + y = 9
is included in the unshaded area.)
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Similarly, the solution set of 2x + 5y < 35 is represented by the unshaded
area below.

[/
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The set which satisfies x + y < 9 and 2x + 5y < 35 simultaneously is the
intersection of these two unshaded sets. If also x > 2 and y > 3, the solution
set of all four inequalities is the intersection of four sets. This solution set is
represented by the unshaded area below together with its boundaries.
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The process by which solution sets of simultaneous linear inequalities involv-
ing two variables are obtained by the intersection of half-planes (in general,
for n variables, half-spaces) is the basis of the process sometimes called linear
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programming. For example, the set just obtained corresponds to the following
simple situation.

‘A firm makes two products, denoted by X and ¥, say. The total production
capagcity is, at most, 9 tons altogether per day. The firm has a permanent con-
tract to supply at least 2 tons of X every day to another firm and another
permanent contract to supply at least 3 tons of Y every day to yet another firm.
Each ton of X requires 20 machine hours in production, each ton of ¥ requires
50 machine hours in production, and the number of men and machines avail-
able is such that not more than 350 machine hours can be worked per day.’

Let x be the number of tons of X produced, and y the number of tons of Y.
Then with this interpretation, any point in the unshaded region corresponds
to an output which meets all requirements. This is often called the permissible
set. One can proceed to maximize or minimize any appropriate function of the
quantities of products. For example, if the profit is £8 on each ton of X and
£12 on each ton of Y, then the total profit would be 8x + 12y pounds. For
any arbitrary value of the profit, say p = p,, theline p, = 8x + 12y represents
the set of quantities for which the profit is p;, called the profit set p,. If the
intersection of this profit set p, with the permissible set is not empty, then a
profit of p, may be made and all the requirements are fulfilled. To maxi-
mize the profit, one observes that as p increases the line p = 8x + 12y
moves parallel to the y-axis, remaining parallel with p, = 8x + 12y. Hence
p is a maximum, and all requirements are fulfilled, at a particular vertex (or
along a particular boundary) of the permissible set (assuming that the per-
missible set is closed in the direction of increasing p, which is the case in our
example). In the example the most profitable point is that shown as 4 in the
last diagram, and the values of x and y are obtained as the intersection of the
solution sets of x + y = 9 and 2x + 5y = 35.

In practice the number of variables is rarely as small as two and computers
are required to evaluate the coordinates of all the vertices of the n-dimensional
permissible set. Alternatively a technique called the simplex method may be
used.

Note that the equals sign used in this exercise (like the inequality sign used
in exercise four) is a linguistic abbreviation in the definition of a set. Thus
x + y = 9 is the set of all pairs x and y of real numbers which are such that
their sum is the real number 9. It would be very forced to explain this use of
the equals sign as similar to the use we made of it earlier in the sense ‘is the
same set as’. When we for instance ‘subtract 9 from both sides of this equation’
we are saying that the set defined by x + y = 9 is the same as the set defined
by x + y — 9 = 0. In the notation of the note to Exercise 4 we could write
this latter statement as

&y;ix+y=9=&y;x+y—9=0)
where the equals sign between the brackets is used in our previous sense.

7. Let 4 be the set of prime factors of 70, i.e. 4 = (2, 5, 7). Let B be the
set of prime factors of 154, i.e. B = (2,7, 11). Thenif C= AN B, C =2, 7)
and the set C comprises the prime factors of 14, the ‘highest common factor’
of 70 and 154. Similarly, if D = AU B, D = (2, 5, 7, 11) and the set D com-
prises the prime factors of 770, the ‘lowest common multiple’ of 70 and 154,

It should be noticed that the above procedure fails to give the H.C.F. or

BSGT—B
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L.C.M. in the case of such a pair as 24 and 60, and it is of some interest to
modify the procedure in such a way that it does not break down. The reason
for the failure is that, in general, we do not list the ‘same’ element of a set
twice; but here, the fact that 2 is a three-fold prime factor of 24 and a two-fold
prime factor of 60 is essential to our purpose. This means that the three twos
in 24 are not the ‘same’, i.e. the set 4 of prime factors of 24is 4 = (2, 2, 2, 3).
To make this distinction the more obvious a possible method is to attach a
different suffix to each appearance of the same prime in the factorization of a
number, i.e. 4 = 24, 23, 23, 3).

It might also be observed that such numbers as 6 and 35 apparently have
a common factor, 1, but that the intersection of the sets of their prime factors
is 9. If, therefore, we wish to define common factors in terms of subsets of the
intersection of the sets of prime factors (and this seems a very natural defini-
tion) we must either say that

(a) numbers such as 6 and 35 have no common factor,
or (b) accept a convention that the empty set comprises the prime factors of 1,
or (c) admit 1 as a prime number.

Alternative (c) would destroy the so-called ‘fundamental theorem of arith-
metic’, which states that a natural number can be expressed as a product of
primes in one and only one way, irrespective of order. (For, if 1 were accepted
as a prime, then, for example,6 =2 x 3and6 =1 x 1 x 1 X 2 X 3, which
would disprove the theorem.) So we reject (¢). A further implication of our
rejection of (c) and retention of the fundamental theorem is that 1 is neither
prime nor composite. This means that the convention of (b) is unnecessary
because the set of prime factors of 1 is the empty set, and (a) is implied by our
definition of common factors.

8. Consider the set of all possible displacements of a point in a plane (a
displacement being specified by a distance and a direction). Combine any two
displacements by merely performing first the one upon some point and then
the other upon the resulting point. We denote the result of a displacement d
on a point O by d(0). For example, in the diagram, if d; and d, are two dis-
placements represented by the arrows AB and MN, then the combination of
d, with d, gives the figure OPQ, where P is d,(0) and @ is dy(P).

8 M

A

We observe that the combination of d; with d, is a displacement d;, where
di(0) is Q. Further, we observe that combination of displacements is com-
mutative: the order in which we combine them is immaterial to the total
_distance along the two displacements and to the equivalent single displace-
ment. The combination of displacements is also associative. In the following
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example we use the associativity and commutativity to prove a simple and
elegant result.

Consider the following problem: 4 and B are two points on either side of a
canal. It is required to construct the shortest possible pipe-line from A to B
with the condition that that part of the pipe-line which crosses the canal shall
be perpendicular to its banks. (The banks are straight and parallel.)

Now this is a problem involving three displacements: from A to the nearest
bank: across the canal: from the arrival point on the bank to B. Since only the
second of these displacements is known completely (in magnitude and direc-
tion) and since the combination of displacements is commutative, perform
this displacement first: that is from A lay off AC equal to the width of the
canal and in a direction perpendicular to the banks. Call this displacement d,.
Join C to B, letting CB cut the further bank at D. Call CD displacement d,
and DB displacement d;. Then the path AC.CD.DB is plainly the shortest
path. (Note that we use associativity.) It remains to alter the order of combina-
tion so that d, is performed first and 4, second, with dy last. This gives a path
AEDB of equal (minimum) length with displacement d, across the canal,
as required.
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Similar reasoning solves the corresponding problem involving the crossing
of two non-parallel canals of unequal width between the two end-points.

The examples we have given here are, on the whole, elementary. They show
how one can use the terminology and simple concepts which we have so far
introduced in a variety of ways. The number of possible examples is very large,
as any teacher who gives a little thought to his today’s lessons will readily
discover. It is not our purpose, however, to be encyclopaedic, and we shall
now continue with a few general remarks before closing the chapter with a
much more sophisticated and important example.

One often finds in books that a new combination of elements
of a set is introduced using a notation with which the reader is
already familiar from other contexts. The effect of this is very often
to obscure the necessity for investigating the elementary properties
of these concepts, or even in some cases to lead the student into
error. (For instance, the ludicrous notation of sin—! x, for what
is otherwise often called arc sin x, leads from time to time to
[sin-* x]? = sin-2 x.) Therefore, we shall use a neutral notation
for each new combination we introduce; we shall usually stick to
the same symbol, namely a small circle thus o, and indicate in a
note the notations commonly used in other texts. Subsequent to
its introduction and initial investigation, we may use a more
individual symbolism for any particular combination if we have
cause to use it often.

An ordered pair of two objects a and b is written (a, b) and we
shall say that (a, b) is the same as (c, d) if and only if a = c and
b = d, where ‘=" denotes ‘is the same as’. We use the expression
‘ordered’ because (g, b) is not the same as (b, a) except when a = b.
Given two sets 4 and B we can form a new set A o B which consists
of all ordered pairs of the form (a, b), where a is an element of A
and b is an element of B. It follows from our definition of the
equality of two ordered pairs that

AoB +# BoA,
i.e. this combination is not commutative: nor is it associative, i.e.
[AoBloC # Ao[Bo (],

since ((a, b), ¢) # (a, (b, ¢)); the first element in the ordered pair
on the left-hand side is (a, b), which is not the same as a, the first
element in the ordered pair on the right-hand side.

We shall often use the idea of an ordered pair. Many modern
authors consider it basic and express the concepts of function,
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relation, etc., in terms of it. We shall indicate how some of this is
done by notes in the appropriate places.

Example O. Let ] be the set of natural numbers then 7 o I can be considered
as the set of all positive fractions (not in their lowest terms), see Chapter 7.

Example P. Let R be the set of real numbers then R o R is the set of all
pairs of real numbers (x, y), i.e. a Cartesian coordinate system for the plane.
Also if A4 is the set of real numbers y such that O < y < 2x, R 0 A is a polar
coordinate system for the plane. If B is the set of real numbers x such that
O < x < 7 then Bo A is a coordinate system for the surface of a sphere.
There is an endless number of examples.

NoTtE: The operation ‘0’ is usually called the Cartesian product or direct
product of two sets and denoted by A x B; we shall denote it by 4 v B from
now on.

All the operations we have so far mentioned are so-called binary
operations, that is an operation ‘o’ on a set of elements such that,
given any pair of elements @ and b, ao b is a uniquely defined
element ¢, not necessarily belonging to the same set. Most of the
operations which we shall have cause to consider in this book will
be binary operations. We do find it necessary, however, occasion-
ally to introduce other operations: for instance, given three sets
A, B and C we can form the new set D of all ordered triples
(a, b, ¢) where a, b and ¢ are members of 4, B and C respectively;
(a, b, c) is the same as (@', b’, ¢’) if and only if a = a’, b = b/,
c=c.

It is clear that we can generalize this latter sort of combination
to any number of sets,i.e.n sets can be combined to form a new set
of ordered n-tuples. Note that this sort of combination is not the
repeated combination obtained by forming successive direct
products. For instance D is not the same as either 4 v [B v C] or
[4 v B] v C. Since there is some similarity with the direct product
(and, in fact, most authors call it the direct product of three sets)
we shall denote D by v ABC.

Example Q. Give examples of sets D = v ABC which are commonly used
in mathematics. For instance, the various three-dimensional coordinate-
systems.

* * * * *

We shall consider a final example of considerable importance
in modern mathematics, which we shall discuss and apply in later
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chapters. The reason for introducing it here is because the initial
unmotivated concept needs only the simple terminology of set
theory with which we are familiar.

Let 4 be any set of elements (often called points, in a geometrical
or topological context), and suppose that we have a system of
subsets of 4 which satisfies the following conditions:

(1) O and A are members of the system;

(i) the intersection of any two subsets of the system is a subset
of the system;

(iii) the union of any number of subsets of the system is a subset
of the system.

For any set A we denote a system of subsets satisfying conditions
(i) to (iii) by T': 4. The subsets of such a system are called the
open sets of T: A. The subset system is said to form a topology
for A, and A together with T': A4 is said to be a topological space
and written (4, T': A). Clearly the power set of 4 (i.e. the set of all
subsets of A) is a topology for 4, and at the other extreme 4 and @
also form a topology for A.

Example R. Let 4 be the set R* of positive real numbers.(note that zero is
excluded), and consider the system of subsets Ay, 4;, A, . « ., Am, . . ., where
Am is the subset of all positive real numbers less than or equal to the non-
negative integer m. Then @ belongs to the system since 4, = @, but 4 is not
a member of the system; we can rectify matters by specifically including 4.
Amy N A, = Am, if my < m, and so (ii) is satisfied. Finally, the union of any
number of subsets is either 4 or Ay, if m is the largest subscript in the union.

Example S. Let A4 be the set (g, b, ¢, d). Are the following systems of subsets
topologies for 4?

@ A4, 9, @b, ), (@, c), [d.

(i) 4,9, (a,b,c), (a,b,d), (a, b.

(ii) 4, B, (e, o), b, 0, (a, d), (c, D), b, d), (a, b).
Construct two further topologies for A4.

Example T. In Exercise 3 on page 30, let 4 be the set of all line-segments in

the figure, i.e. A = (AF, AC, AE, AB, BC, BD, BE, CG, CF, DE, DF, DG,
EF, EG, FG). Define some topologies for this set of elements.

Example U. Let S be any set with a topology T': S and let X be a fixed
subset of S. Consider subsets of X which can be expressed in the form AN X
where the A are open sets in T: 5. Show that the system of all such subsets of
X is a topology for X (this is discussed in detail at the end of Chapter 5).
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Let S be the set R+ in Example R and let X be the subset of all real numbers
x such that 13 < x < 3. Then if the topology for R+ is the one in Example R,
the open sets which form the induced topology for X are

g, Xand 11 < x < 2.
What are the open sets for the induced topology for X if X is the subset
G<x<HIUU<x<6)?

References

A very useful book for teachers is Sets, Relations, Functions by
Selby and Sweet, (McGraw-Hill) 1963. It contains numerous
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For the sophisticated, who would like to go further into set
theory in an abstract way, there is Sets, Logic and Axiomatic
Theories by R. R. Stoll, (Freeman) 1961.

There are, of course, very many other texts on sets at all levels.



CHAPTER 3
EQUIVALENCE RELATIONS

EARLIER we mentioned the concept of an equivalence relation
and we now return to this topic. It is an idea which arises naturally
whenever we wish to classify and compare objects. It also arises, as
we shall see in a number of places throughout this book, when we
wish to extend our subject in terms of objects already defined.

We shall denote a general relationship between objects of a set
by R, and the objects themselves by a, b, ¢,... Then R is an
equivalence relation if it satisfies the three properties,

(i) aRbimpliesbRa (symmetric)
) aRa (reflexive)
(i) aRband b Rcimply a Rc¢ (transitive).

All objects which are equivalent (i.e. stand in the relation R) to a
given object a form a subset called the equivalence class of a. We
denote the equivalence class of a by {a}. Note that in view of the
importance of equivalence we reserve braces, {}, to indicate equi-
valence classes throughout the book. The significance of the re-
flexive condition is that it ensures that a always belongs to at least
one equivalence class, namely {a}, even if there exists no other
element b to which g is equivalent.

The first relationship we discussed was the equality of two sets.
(Here the objects themselves are sets regarded as subsets of what
is sometimes called a wniversal set. This should not cause any con-
fusion; whether we call an object a set or a set an object depends
on our purpose. At most this is a linguistic difficulty. After all, if
you are selling them, boxes of chocolates are the objects of your
interest; on the other hand, if you are buying them, then the objects
of interest are the ser of chocolates in a box.) The investigation of
equality of sets is a classification problem. The equivalence classes
of equal sets are made up of sets which have the same elements; in
other words, if we take two sets from the same equivalence class
then their elements are the same, and if we take them from
different equivalence classes, there must be at least one element

which they do not have in common. In particular, it would follow
40
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here that one set cannot occur in two equivalence classes. If we
regard classification as the process of sorting objects into boxes
then we would intuitively require that:

(i) every object is put into some box, since otherwise an object
would remain unclassified,

(ii) any object taken from a box is just as good as any other
from the same box for the purpose for which they were classified,
and

(iii) two objects which are the same for the purpose of the classi-
fication should not appear in different boxes.

Example A. The local bookshop has shelves of second-hand books: all
books on one shelf are 6d, all on another 1s, and on a third 2s. The first
property listed above is automatically satisfied, since books not on a shelf are
not considered. Our only interest at present is the price of the books and we
would expect to pay only 1s for any book taken from the second shelf. On the
other hand, we might well be annoyed if we were charged 2s for a book from
the 6d shelf.

We shall now show what becomes of this intuitive discussion in
terms of a general equivalence relation. We have already remarked,
and we may well do so again, that the reflexive law ensures that
every object is classified, and is put into some equivalence class.
If b R a, then b belongs to {a}, so we may ask can we equally denote
the equivalence class {a} by {}, i.e. are the elements equivalent to
a the same as those equivalent to b? (As remarked earlier, it is
sometimes necessary to introduce some space-saving symbols, al-
though we like to keep this down to a minimum. In this case we
wish to introduce the symbol € which means ‘is a member of” or
‘belongs to’.) To answer the question, suppose c € {a}, then by
definition ¢ Ra, and since b R a implies a R b, we have by the
transitive law ¢ R b, i.e. ¢ € {b}. Thus {a} < {b}. Similarly, we can
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show thatif c € {b} then c € {a},i.e. {b} = {a}. Hence {a} = {b}, i.e.
an equivalence class can be represented by any one of its constituent
elements.

Next suppose that {a} and {b} have an element ¢ in common.
Then by the above argument, {a} = {c} and {b} = {c}, whence it
follows that {a} = {c}. Thus two equivalence classes are either
disjoint (no elements in common) or identical. In terms of our
established notation for sets we can write this

{@np}=0 or {a} ={bl
for any two equivalence classes. Since, repeating ourselves for the
second time, the reflexive law ensures that every element of the set
lies in some equivalence class, we may regard the equivalence
classes as a partition of a set into non-overlapping classes.

Example B. Rewrite the above arguments showing explicitly where we use
each of the three properties of an equivalence relation.
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Example C. Consider the map of Europe shown. Give some definitions of
equivalence relations which would arise from this sort of map. For instance,
the set of all people living in Europe and @ R b if a and b live in the same
country. Are there any special cases which must be assumed not to exist ?

Conversely, every partition of a set into non-overlapping subsets
gives a natural equivalence relation which is defined by saying that
two objects are equivalent if they belong to the same subset. The
reader should quickly check that this definition of equivalence
possesses the three properties.

Example D. A partition of the real numbers is m < x < m + 1, where m
takes all integral values (including zero).

Corlleil Vel Vel Ve Vs Vad V Vi
S5 N N 5 8 85NN
-3 -2 -l O | 2 3 4 5

Alternatively, we could have defined two real numbers x and y as equivalent
by,

xRyifm<x<m+landm<y <m + 1 for the same m.

Example E. The three properties of an equivalence relation can, in fact, be
replaced by two:

@ aRa, M aRband b Rcimply c R a.

We prove here that (a) and (b) imply the reflexive, transitive and sym-
metric properties and leave the converse, which is not difficult, to the reader.
The reflexive property is contained in both sets of conditions, so this needs
no proof. From (b) '

aRbandbRbimplybRa

but from (@) & R b is true, therefore, a R b implies & R @ and the symmetric
property is proved. Finally, to prove the transitive property, we use (b) and
the symmetric law:

aRband b Rcimply ¢ Ra and ¢ Ra implies a R c.

Example F. The following is suggested as a ‘proof”’ that the symmetric and
transitive properties imply the reflexive property. From the symmetric pro-
perty a R b implies b R a, which, using the transitive property, implies a R a.
Therefore, there is no necessity for the reflexive property at all. What is
wrong ?

In this connection, consider the set of all males in this country and the
relationship of being a brother. What about an only son?

Example G. There are numerous examples of real-life classifications which
are equivalence relations. For example, the set of all people who are in the
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London postal area, with the equivalence relation a R b if @ and b are in the
same postal district. Or the set of all people who pay tax under the P.A.Y.E.
system who have the same code number, etc. Make up some of your own
examples, if you feel like it, but check carefully that they are proper equival-
ence relations.

Example H. (i) The set of all real numbers and a R b if a is less than b is not
a proper equivalence relation. In fact, only the transitive property holds. This
is, of course, analogous to the relation of inclusion which we came across
in sets.

(ii) The set of all people in the London postal area and a Rb if @ and b
have brown eyes. The reflexive property is the only one which does not hold
here, but the effect is clearly serious, because this is hardly a classification at
all. In which class shall we put my little blue-eyed niece who lives in the
London postal area?

(iii) The set of all real numbers and @ R b if

m<a<m-+landm< b < m+ 1, for the same m,
where m is an integer or zero. Here 1 R 1 (withm = 0) and 1 R '14} (withm = 1)
but 4 and 14 are not equivalent, so that the transitive requirement is broken.
Notice that this relation does not give a partition: it can be converted into a
proper equivalence relation by replacing < by < at the second and fourth
occurrence. (See the Example D on page 43.)

(iv) Finally, consider the set of all people in the London area again. We
shall say that g R b if a is not taller than b. In this example the only property
which does not hold is the symmetric property.

It is suggested that the reader make up a number of his own examples of
relations which do not satisfy one or other of the three properties. It is
instructive to look for examples, having decided in advance which properties
are not to hold.

Although we only consider equivalence relations, we do not wish
to suggest that relations which do not satisfy the symmetric prop-
erty, for instance, are of no interest. After all, very many of our
binary operations are not commutative or not associative and we
still consider them. The properties which we have listed for both
operations and relations, and which we investigate for each new
operation and relation, should rather be regarded as the basic
properties, the knowledge of which helps us to use the new ‘symbol’
safely and effectively. Thus, relations which do not possess all our
three properties are investigated and classified in various books in
connection with the subject of ordering. In general, an ordering
relation must at least be transitive. The reader who is interested in
this complex topic should consult the two references at the end of
the previous chapter, inter alia. We have no particular use for
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ordering within our self-imposed context and so we shall not
discuss it all—it is the wood that matters.

Example I. An equivalence relation in a set A4 can be regarded as defining
a subset E of A v 4, where (q, b) belongs to the subset if a is related to b.
This subset is such that:

(i) if (@, bye Ethen (b,a) €E,

(i) @ aeEforallac A,

(iii) if (a, b) and (b, ¢) € E then (@, c) € E.
Conversely, any subset E of 4 v A which satisfies (i), (ii) and (iii) defines an
equivalence relation in A4 in an obvious way.

(a) If A is the set (1, 2, 3, 4) and the relation is ‘=’ what is the set E?

(b) With the same set A4, does the set (1, 1), (2, 2), (3, 3), 4, 4), (1,2), 2, 1)
define an equivalence relation? What are the equivalence classes?

() For any set 4, does A v A define an equivalence relation in 4? What
are the equivalence classes?

(d Let A4 be the set of all integers (with zero). Consider the subset E of
A v A which is made up of all the ordered pairs of the form (a, b),
where a — b is divisible by 2. (Note that the form (g, a) is in R for all
asince a — ais divisible by 2.) Does this define an equivalence relation ?
What are the equivalence classes?

Exercises

1. The usual example given to introduce this particular topic is that of a
clock-face on which we can count up to twelve and then have to begin again;
similarly the milometer in a car usually shows a mileage up to 99,999 miles
and then begins all over again.

These examples are typical of what we term congruence relations modulo
some real number r». We say that two real numbers a and & are congruent
modulo # if a and b differ by some integral multiple of n,

ie. a—b=kn,
where £ is an integer and we write a = b (mod »). Thus
13 =25 (mod 12), 263 = 95 (mod 12), 3,653,271 = 53,271 (mod 100,000).

This definition of congruence when restricted to integral a, b and » is the same
as saying that a and b leave the same remainder when divided by #. We leave
the reader to prove this.
We now prove that a R b if a = b (mod ») is an equivalence relation for
fixed n.
(i) if a =b (mod ») then a — b = kn, for some integer k.
Therefore, b — a = [— k]n, and b = a (mod n).

(i) a =a (mod n) sincea — a = 0.n.
Gii) if a = b (mod n) and b = ¢ (mod »)
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then a—b=knandb—c=1In,
for some integers k and /.
Therefore

a—c=[a—bl+1b—-cl=1I[k +lnand a =c (mod n).
There are many examples of such congruence relations: we give a few.

(a) The clock-face example. Two non-negative integers a, b are congruent
modulo 12 if @ — b = k.12. The equivalence (or residue) classes are
the sets

©,12,24,...),
(,13,25,...,
2, 14, 26, .. .),

(11, 11 + 12, 11 + 24,.. ).

(b) The integers modulo 2 yield two classes, the odd and even integers.
(¢) The real numbers modulo 27 correspond to the rotations in a plane

about a point: i.e. a rotation through g is in some sense the same as a
. 5
rotation through 5“ andg = —S—Zf (mod 27).

2. Consider the set v RRR of ordered triples (x, y, z) where R is the set of
real numbers. We say that (a, b, ¢) is related to (&', &', ¢’) if

=pa’, b=pb, c=npc,

for some real number p # 0. We write (g, b, ¢) = p(a’, b’, ¢’). This is an
equivalence relation in v RRR., We do not include (0, 0, 0). The set of
equivalence classes is a set of homogeneous coordinates in the projective
plane. We shall investigate the significance of homogeneous coordinates in
Chapter 12.

3. Inmany normal teaching situations we use representatives of equivalence
classes suitable to our purpose. We again give a few of the many possible
examples.

(a) Evaluate using tables 0-036%
No. Log

0036 2-5563 = 3 + 15563
0-3302 = 0-036% 1-5188

In fact, the logarithm to base 10 of 0-036 is any of ... —1:4437, 2-5563,
3 + 1-5563,4 + 2:5563, . ... and we have a natural equivalence class. It is
usually found that 2-5563 is the most convenient representative of the equi-
valence class with which to work, but, in particular, when we want to find a
cube root we choose a different representative 3 + 1-5563, for convenience
only: 6 -+ 4-5563 would have done almost as well and 4 -+ 2:5563 would also
do but is not so convenient.
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(b) Some ‘conventions’ are examples of the use of equivalence classes. For
example, it is conventional when representing a complex number in /6 form
to give the angle such that — = < 0 < =, Thus 1 + i is written v/2/ =/4 by
convention. Here 7/4 is the chosen representative of the equivalence class of
all real numbers of the form n/4 + 2k= where k is any integer. When finding
the cube roots of 1 + i, say, using de Moivre’s theorem, we choose three
suitable representatives, e.g. #/4, n/4 + 2n, n/4 + 4=,

(¢) The polar coordinates of a point (r, ) in the plane are usually chosen
so that 0 < 6 < 2n. Again this value is a representative of the equivalence
class 0, 0 + 27, 0 — 2=, .. .), ie. all real numbers of the form 0 + 2k=,
where k is any integer. These equivalence classes are the same as those in (b),
but conventionally, we choose a different representative. (Also cf. exercise 1 (c),
page 46.)

(d) Let Fbe the set of all real valued differentiable functions of one variable.
If fand g belong to F then we shall say that f R g if the derived functions f*
and g’ are the same, i.e. fand g differ by a real number. This is an equivalence
relation in F. The indefinite integral of f” is an equivalence class. For example

[ cos x dx = {sin x}
=(inx,sinx + 1,sinx — 7, .. .).
1 7 3n

. S5n . .
(e) arc sin V24 or T or — " or ... This again leads to a natural

equivalence relation in the set of real numbers, a R b if sin a = sin b. The
‘principal value’ of arc sin a is that representative 6 of the equivalence class

which is such that - 7—2t <0< Z—;
In fact, every ‘many-valued’ function leads to a natural equivalence relation
which will be described in the next chapter.
(f) Consider the set F of all rational numbers. We say that two fractions
a
b

equivalence classes are usually represented by the unique rational number

and s are equivalent if ad = bc. This is a proper equivalence relation. The
é
b

where a and b are mutually prime. But this is not always convenient: for

instance

2 1 12 7 19

iteTR TR
Because 2 was not convenient we chose a different representative of its
equivalence class. We shall return to a more detailed consideration of the
whole subject of the teaching of rational numbers in a later chapter.

(® Let V’ be the set of all directed straight line-segments in three-
dimensional space. We shall say that two line-segments are related if
(i) they have the same length,

(i) they have the same direction, i.e. they are parallel and have the same
sense.
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This is an equivalence relation in ¥”. The equivalence classes are known as
Jree vectors (or just vectors) and are the objects investigated in vector analysis
as applied to mechanics, hydro- and aerodynamics, electrical and magnetic
theory, etc. If P is any point of space then there is one line-segment in each
equivalence class which has its starting point at P. Such a representative of a
free vector is called a localized vector. In particular, if we have chosen a
coordinate system in space, then there is a localized vector starting at 0, the
origin of the system, representing each free vector. This localized vector is
called the position vector of its terminal point Q.

These seven examples are only some of the possible uses of the idea of
equivalence classes and their convenient or conventional representatives. We
think that they are sufficient to make the point that the concept of an equi-
valence relation can be used in many ways to give the student another initial
unifying theme. Mathematics is not a collection of isolated tricks, there are
always common ideas which can facilitate learning and understanding. (See
also the next exercise.)

4. Geometry abounds in relations between objects some of which are
equivalence relations. Which of the following relations are equivalence rela-
tions in the sets specified ?

(a) The set of all triangles with the relations,

(i) congruence,
(ii) similarity,
(iii) equality of area.
(b) The set of all lines in space with the relations,
(i) parallelism,
(ii) perpendicularity,
(iii) skewness, i.e. line 1 is related to line 2 if they are skew,
(iv) intersection.

(©) The set of all circles in the plane with the relations,
(i) orthogonal intersection,
(ii) concentricity.

Let S'be a set in which we have a binary operation o and an
equivalence relation R. (We shall restrict our present discussion
to a binary operation for which if @, b € S, a o b also belongs to
S.) Denote the set of equivalence classes by S’. Can we induce a
binary operation from S to S’ ? The natural procedure might be as
follows.

Let a, b, ¢, d, ... be elements of S and suppose a Rb and
cRd,ie.(a,b,...)and (c, d, .. .) are two elements of S’. Then
we define

@ab,..)o(,d,..)=(o0c,ao0d,...,boc,bod,...).
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But clearly, for this to be a proper definition (@oc, aod, ...,
boc,bod, ...) must be an element of S’. This means that, for
instance, [@ao ¢] R [b o d], i.e. that any

aRband cRdimply [aoc] R [bod].

If this is the case then we obtain a properly defined binary opera-
tion in S” and we say that the equivalence relation is compatible
with the binary operation; we can perform the combination of two
elements of S’ by combining any representative of the one with
any representative of the other, and the result is a representative
of the new element of §’. Since the operation in S’ is defined in
terms of the operation in S we shall use the same symbol and the
same name in S’.

Example J. Consider a set S of sets with the equivalence relation of equality.
Then A = Band C = Dimply AU C = BU D,
ANC=BnND,
AAB=CaD,
where 4, B, C, De S.

Example K. Consider the partition of the real numbers given in Example D
on page 43, i.e. that given by

XRy,wherem< x<m+1l,m<y<m-+1.

Then neither addition nor multiplication give an induced operation in the set
of equivalence classes. It is left to the reader to show this by specific examples.

Example L. Show that if a binary operation is commutative and associative
in S, then the induced binary operation (if it exists) is commutative and
associative in .

Exercises

We leave the reader to discover which of the many examples of sets .S (with
the usual operations appropriate to each) given in the previous set of exercises
(on pages 45-48) have an induced operation in the corresponding set S’. We
shall take the results of such an investigation for granted and give a few inter-
pretations and applications.

1. In Exercise 1(b) S is the set of all integers and both addition and multi-
plication can be induced into the set of residue classes modulo 2. This can be
interpreted as follows:

even -+ even = even, even + odd = odd, odd + odd = even;
even X even = even, even X odd = even, odd x odd = odd.

2. In Exercise 1(c) the addition of residue classes modulo 2= can be inter-
preted as the combination of rotations. Is there an interpretation of the
multiplication of residue classes?
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3. In Exercise 3(e) addition and multiplication in the set of real numbers
are not compatible with the equivalence relation, i.e. we do not get induced
operations in S”. That addition is not compatible is a result of the fact that
if sin ¢ = sin b and sin ¢ = sin d, it does not follow that

sin [a + ¢] = sin [b + d].

4. In Exercise 3(f) the operations of addition and multiplication are com-
patible with the equivalence relation, a fact which we constantly use. See also
Chapter 7, page 110, where we introduce rational numbers.

5. Occasionally we come across binary operations in a set .S with values in
another set 7. There are two common binary operations of this sort in the
set ¥V of Exercise 3(g). Given two line segments at a point P in space, the
product of the length of one with the length of the projection of the other
upon it, is a real number: i.e. suppose the two line-segments are PQ and PR
as shown in the figure, then

PRo PQ = (length PR) X (length PM) = (length PR) X (length PQ) X cos 6.

Q

Thus we have a binary operation in ¥’ with values in the set of real numbers.
It is commutative; associativity has no meaning.

We shall say that such a binary operation in a set .S with values in a set T
is compatible with an equivalence relation R in S, if

aRbandcRdimplyaoc =bod;

i.e. the result of combining two equivalence classes does not depend on the
choice of representatives. It follows that

@b,..)o(,d, .. )=ao0c
is a proper definition.

The binary operation which we introduced in V" is called the inner product
(or scalar product) of two localized vectors and it is compatible with the
equivalence relation. Hence we have a scalar product in the set V of free
vectors which occurs frequently in all the various applications of vector
analysis. For instance, two vectors are perpendicular if the inner product is
zero; the inner product of a vector with itself is the square of the length of the
vector. In mechanics, if one vector represents the force being exerted on a
body which is pulled by this force along a path represented by the other
vector, then the inner product represents the work done, etc.

The second binary operation in ¥, defined in terms of the figure, is

PR o PQ = (length PR) x (length PQ) x sin 6,
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It also has values in the set of real numbers and is commutative. Associativity
has no meaning. It is compatible with the equivalence relation and can, there-
fore, be used in ¥. For instance, two vectors are parallel if the result of this
binary operation is zero. In general, it represents the area of the parallelogram
defined by any appropriate pair of representatives of the two vectors. How-
ever, this binary operation is somewhat modified in vector analysis, so we
shall not pursue it further here.

* * * * *

We conclude with an example from topology.

Let S be a set with a topology T': .S and an equivalence relation
R. Let S’ be the set of equivalence classes and consider each of the
subsets U of S" for which all the individual elements in all the
equivalence classes in U together form an open subset of T': S.
For instance, in Example R of Chapter 2, page 38, suppose that
the set of positive reals has the equivalence relation

xRyifm<x<m+landm<y<m-+1,

where m takes all positive integral values (including zero). Denote
each of the equivalence classes by [m] for the appropriate m. Then
the single element [0], i.e. all x such that 0 < x <1, is such a
set U since this corresponds to the open set A4; in A. But [m],
m # 0, is not such a set U, whereas any subset of the form
OV 11V 2]v...)is.

In general, the set of all such subsets U in S” forms a topology
for S’ (denote this subset system by X). To prove this we shall use
the following notation: if A’ is a subset of S’ then we shall denote
by A the subset of S which consists of all the individual elements
in the classes of A4’; similarly B and B’, etc.

@) 8" € X because S is open in T:.S. Also ¥ € X because it
corresponds to @ in S.

(i) Any element in 4 N B will appear in some equivalence class
in A’ n B’. Further, if a € A but does not belong to B, then since
equivalence classes are made up of disjoint subsets of S, the equiva-
lence class corresponding to a belongs to A’ and not B'. It follows
that 4 N B in S corresponds to A’ N B’ in S’. Hence if A’ and
B’ belong to X (i.e. A and B are open in T': S and so is 4 N B)
A’ N B’ also belongs to X.

(iii) A union of subsets 4’ U B uU...in § corresponds to.
AV BuU...inS. Therefore,if A’, B’, C', ... all belong to X then
their union also belongs to X. Hence we have shown that X is a
topology for §'.
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Example M. Consider the same set (positive reals) and the same topology
as in the text above but with the equivalence relation

XRyifm<x<m+landm<y<m+1,m=0
and xRyif0<x<landO0O<y<1.

Show that the only open sets in the induced* topology for S’ are S’ and @.

Example N. Let S be the positive integers with zero. Consider the system
of sets of the form (3r, 3r + 1, 3r + 2), where r is any positive integer or zero,
together with all unions of such sets. If we include .S and @ this is a topology
for S.

If the equivalence relation is the clock-face one given in Exercise 1(a) on
page 46, show that the individual elements of S, regarded as sets, are open.

* Where a topology arises from some existing relation we shall usually say that it
has been ‘induced’ by it. The usual procedure is to reserve ‘induced’ for subset
topologies (see Chapter 2, Example U, page 38) while that above, arising from an
equivalence relation, is called the ‘identification’ topology.




CHAPTER 4
MAPPINGS

ONE of the simplest and most important, and yet most neglected,
of basic mathematical concepts is that of a mapping. Let 4 and A’
be any two sets, then any rule which assigns to any given element
a € 4 a subset of elements of A’ is said to be a mapping of A to A"
We say that a is mapped onto the subset; the latter is called the
image of a under the mapping. In general, we shall denote the
image by (a’, ...), where a’ is an element in the image set of a.
When the image is one element a’ only, then we shall omit the
brackets.

Example A. Consider the set of natural numbers and the rule which
assigns each natural number to its prime factors, then 12 is mapped onto 2
and 3, 70 is mapped onto 7 and 2 and 5, and 4 is mapped onto 2. The set of
images or image set is, of course, the set of prime numbers.

It is convenient to give a mapping a label, i.e. to denote the
mapping by a letter such as f; say: then we write symbolically

fra—(@,..)or*fla) = (a,...).

When we wish to consider the image of more than one element of
A this notation is naturally extended to subsets of 4. Thus
S:S— S orfiS) =S,

where S'is a subset of 4 and S is a subset of 4’. In particular f(4)
would mean the image of the complete set 4. Note that it is not
to be assumed that f{4) = 4’. In fact, if every element of 4’ is the
image of some element of 4 (i.e. f{d) = A’) then the mapping is
said to be onto A’, otherwise (i.e. fl4) = A) it is said to be into A’
When we do not wish to specify whether a mapping is onto or
into A’ we just say that it is to A’

* The second of these forms seems to tend to focus attention on the image under
the mapping, while the first gives more weight to the mapping itself. In the past much
trouble has been caused by the careless identification of the mapping with the image:
in an attempt to rectify this we shall often prefer the first form. This is not to claim
any particular merit for the first form: it is merely that its less traditional nature may

cause more careful reading.
53
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To invert a mapping, we must find the subset of 4 which maps
onto any element a’ of A’ under f; we say that this subset is the
inverse image of a’ under f.

A

onto into

Example B. If the sets and the mapping are those in the example above,
then the inverse image of the prime number 2 is

2,4,6,...),
i.e. the set of all even numbers. The inverse image of any prime number is
the set of all multiples of that prime.

If f is an into mapping then any element a’ € A’ may be the
image of no element of A. This would be the gase if @’ is not in
f(A4), i.e. using the notation introduced in Chapter 2, page 28, we
could say that @’ € [4" ~ f(4D)].

We shall denote the inverse mapping of f by an inverted f, thus /,
and we write

f:d—>(@,...) or fla)={(a,..),
and in particular, f: f{4) = A. We shall say that / is undefined
on A’ ~ f(A).

A is usually called the domain of the mapping fand 4’ the range*
of the mapping. We distinguish three main classes of mapping:

@) if to each element a of A there corresponds only one element
a’ of A’, then the mapping f'is said to be many-one;

(i) if £ maps a’ € f{4) onto just the one element a € 4, then f'is
said to be one-many;

(iii) if (@) and (i) hold simultaneously, that is, if f maps each
element a of 4 onto just one element a’ of A’ and conversely, if /

* Strictly, the term ‘range’ should be reserved for f(Aj. We prefer to use the word
loosely and achieve precision, where required, by the use of ‘onto’. (See example L,

page 57.)




MAPPINGS 55

maps each element a’ of f{4) = A’ ontojust one @, then the mapping
fis said to be one-one.

The last case is very important. If £ is a one-one onto mapping
then 4 and A’ are said to be in one-one correspondence, meaning
that to every element of A there corresponds just one element of

A’ and to every element of 4’ there corresponds just one element
of 4. :

We have introduced a considerable number of terms in the last
few paragraphs and we shall now attempt to clarify the concepts
in the notes and examples which follow.

Note: There are many synonyms for some of the terms we have used. On
the other hand, different authors adopt different usages, so that it is not easy
to give a list of synonyms and usages. It is always advisable to find out exactly
how an author defines his terms. There is one word which we should like to
mention expressly, and that is the word ‘function’ which is often taken to be
synonymous with our word mapping. Yet it is used in a slightly different form
in many cases, a form which is also different from the classical use of the
word function. It is restricted, by many authors, to apply only to what we
have called a many-one mapping (including, of course, a one-one mapping).
In classical terminology this would be a single-valued function. This use of
function has the following typical consequences.

(a) The mapping of the real numbers R onto the positive reals R+ defined
by fix —> x* or f(x) = x2, where x is a real number, is 2 many-one mapping
and, therefore, also a function in the new sense. The inverse mapping
J:R*—> R is, however, not a function since, for example, f:4 — (2, — 2).
The approach must be changed a little if we want our function to have an
. inverse which is also a function. We would have to consider two functions,
SiR*—> R* and f:R——> R+, where R~ has the obvious meaning. Thus
although the mapping looks the same in both cases, its domain differs, and
both mappings are now one-one. We leave the reader to make these functions
explicit.

In the theory of complex numbers many-one mappings of the complex
plane onto (or into) itself are made one-one by the construction of appropriate
Riemann surfaces.

(b) Sine:x —> sin x is a many-one mapping of R into R and hence also a
function. It maps R into R, or R onto the subset —1 < x < 1 of R. The in-
verse mapping arc sine:x —- arc sin x is not a function. Arc sine is a function,

cos . . n n . .
however, if its range is restricted to — 3 <x< > say. (Classical terminology

achieves the same end by the use of some such phrase as ‘principal values
only’.) Alternatively, sine may be regarded as the mapping of a set of equiv-
alence classes, i.e.

sipe: {x} —>sin x



56 CHAPTER 4

where x R y i sin x = sin y. This is a particular example of a general concept
given in one of the following examples.

It is clear that only a one-one function can have an inverse function in this
sense of the word.

In consequence of the above note, and also because many-one
mappings are of considerable importance, we shall call a many-one
mapping a function, and retain the word mapping to be used in
the general sense of many-many mappings of which many-one,
one-many and one-one mappings are special cases.

Example C. Consider a mapping f of the set 4 of all different words in
this sentence to the alphabet 4’, defined by taking as the image of each word
the last letter in the word. (We do not count f; 4 or A’ as words.) Thus

f(the) = e, f(mapping) =g
and f(¢) = (sentence, the, image), f (d) = (word, defined). Is this mapping a
function? Is it into or onto? What is the set f{4) on which f is defined, and is
4 a function?

If ¢ and b are words of the sentence, define e R b if both words have the
same last letter. Then the sentence is partitioned into equivalence classes and
the mapping of the equivalence classes into the alphabet has an inverse which
is a function.

Example D. Consider the set 4 of natural numbers less than nine and the
set 4’ which is the same as the set A4 in the previous example. A mapping f
is defined so that to each natural number in 4 corresponds the words with
that number of letters. Investigate this mapping as indicated in the previous
example.

Example E. The mappingf which mapseachpersononto hisnavel isa one-one
mapping of the set of all people onto the set of all navels. The mapping which
assigns to the‘centre’ of each town in England its latitude and longitude (to the
nearest second)is alsoa one-one mapping (we hope). It maps the setof all towns
in England into the set of pairs (a, b) where a is a latitude value and b is a
longitude value. If, however, the latitude and longitude values were assigned
to the nearest degree the mapping would be many-one.

o
5 — =

ch-:%qp
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Example F. The reader is advised to make up many examples of his own
and investigate them. In particular find examples of,

(i) a many-one mapping onto,
(ii) a one-one mapping into,
(iii) a one-many mapping into.

Example G. If a mapping fof a set A to a set A’ is one-many we can define
an equivalence relation on f(4) in a similar fashion to the two examples con-
sidered above. Let a’ and b’ € f(4), then we shall say that

a’ RV if f(@a) = f(b") = a, say.
Verify that this is a proper equivalence relation. Denote the set of equivalence

classes by A4,. The mapping f; which maps a to {f(a)} € A,isone-one. Construct
an example.

Example H. Let A4 to be a set on which an equivalence relation R has been
imposed. Let 4, be the set of equivalence classes. Then there is a natural many-
one map of 4 onto A, defined by f(a) = {a}.

Example I. A mapping may also be regarded as defining a set of ordered
pairs (a, a’), where the first element in each pair is an element belonging to the
domain of the mapping and the second element is an image of this element
in the range. Conversely, a set of ordered pairs defines a mapping by taking
all first elements as the domain and all second elements as the range. The
correspondence is then the natural one: a first element a corresponds to all
second elements of ordered pairs in which a has appeared as first element.
Thus in Example C on page 56 typical ordered pairs would be

(the, e), (sentence, e), (mapping, g), etc.
Notice, that as we have explained, (Jim, Mary) is not the same as (Mary, Jim).

Example J. In Example I on page 45 in the last chapter we showed that an
equivalence relation defines a set of ordered pairs of a particular type. This
set of ordered pairs, in turn, may be regarded as defining a mapping of 4 onto
itself or the equivalence relation. So we see that by an ‘abuse of language’
we may say that an equivalence relation is a special type of mapping.

Example K. Under what conditions is a set of ordered pairs a function? Is
the following set of ordered pairs a function?

(Lolita, Nabokov), (St. Joan, Shaw), (Agnes Grey, Brontg&), (Phoebe Thirsk,
Meyerstein), (Emma, Bronté), (Salomé, Wilde). Is the inverse a function?
Can you suggest a simple literary improvement to make it a function?

Example L. It may be asked why we bother with into mappings at all. Why
not always restrict 4’ to the image set of A? The answer to this is that we can
very often determine a set outside of which the image cannot lie without being
able to determine very easily the exact set of all images. Thus the mapping of
a name in the current London telephone directory onto the telephone number
(excluding the letters) is a mapping into the set of all four digit numbers. It
would be difficult to define the set for which this map would be onto (except,
of course, as the set of all four digit numbers in the telephone directory),
although the Post Office might know. Alternatively, one could go through the
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four volumes and make a list if one really wanted. The point is that the
essential information is described by the mapping into. Is this mapping a
function? Make up your own examples of mappings for which the into con-
cept is useful.

A rather sophisticated example arises from the fallacy which asserts that
every angle is an integral multiple of 7. Consider the mapping of the complex
numbers to the complex numbers defined by

tangent:z —- fan z.

(For the reader unfamiliar with the definition of tan in this context, we men-
tion that all the ‘usual’ formulae of ‘real’ trigonometry still apply.) One does
not often hear a teacher remark that tangent is a many-one mapping of some

of the real numbers onto the real numbers (ignoring g and such-like), so let us

suppose that tangent, as a mapping of the complex numbers to the complex
numbers, had also been introduced without comment. Let z; be a complex
number which maps onto i (i* = —1)* under tangent, i.e.
tanz; = i,

Let a be any number, then
tanz, --tana
1 —tanatanz,
__i+ttana

1 —itana
_ill —itanal

1 —itana

tan [z; + a] =

=i
= tan z;
Sz, +a =z + k=, for any integer k,
whence a = kn, as previously asserted.

The fallacy lies not in the individual steps in the ‘proof” but in the very first
assumption, i.e. ‘let tan z; = i’. In fact, tangent is a mapping of the complex

plane (possibly excluding points of the form [2k + l]g, k any integer) onto the

complex plane except for the two points £, i.e. there is no number z; whose
image is i.

Exercises

The general concept of a mapping (like many other general ideas) is much
easier to grasp than the particular concept of a real-valued function. Moreover,
one does not need to revise or enlarge one’s ideas when faced with slight

* There is no good reason why one should always use the label i as here, and we
do not do so. The i~j confusion in the minds of some students is a typical consequence
of misplaced ‘consistency’. For an introduction to complex numbers see the article
by M. Bruckheimer and N. Gowar in Mathematics Teaching, May, 1965.
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variants; the same terminology will get one through all mathematics. Another
point is that one can give what one might call ‘non-numerical’ examples of the
terms introduced, which usually tends to add to the interest.

Having introduced the general ideas one can then use the terminology
whenever convenient and useful. We give a few examples.

1. The range and domain of a mapping are useful things to know; for
instance, in the following cases, suggest a domain and determine the corre-
sponding (onto) range.

1
1-x
What are the inverse mappings? Are they functions? Into or onto?

In this way we gain a knowledge of the mappings and add to the precision
and accuracy of our statements.

2. A particular class of mappings of special interest are the constant map-
pings, i.e. fis a constant mapping if it maps all elements in its domain 4 onto
a single element b, say. An example of such a mapping is

x —>sin? x + cos? x = [sin x]? 4 [cos x]?2
which maps the real numbers onto the single element 1.

/, //?I‘m\

x— @ V1 —x2, (i) (i) tan x,  (iv) log x.

3. The idea of the composition of independent mappings allows us to
analyse our particular examples further.

If fmaps 4 to 4" and g maps 4’ to A” then we can combine f and g to
form a map % of 4 to A”. A is defined by saying that

h(a@) = g(f@)
and we write 2 = g o f. This combination of two mappings is clearly in general
not commutative (e.g. x — sin [2x] ## x —- 2 [sin x]), but it is associative.

Analyse the following mappings (using a suitable domain) by decomposing
them into simpler mappings. State the intermediary ranges and domains.

x—> () sin [x?], (i) [sin x]%, (i) sin[sinx], (v) VI — x%

4. One should be careful to distinguish between a mapping and an image
in the range. It is a general and confusing abuse of language to refer to a
function f(x). f(x) is very rarely a function, it is very often a real number: fis a
function. This confusion can easily be avoided by a little more precision in
statement and, in some cases, a better notation. Incidentally, if the derivative
of a real-valued function f (where f'is a many-one mapping of the reals into
the reals) is denoted by f” then f/(0) means the value of the function f” at zero;
but if the function is said to be f(x) and its derivative f’(x), then f/(0) is a
notation which confuses many students.
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5. Consider the set of all differentiable real-valued functions. Then the
mapping D defined by

D:f—f

is a many-one mapping of the set into the set of all real-valued functions, and
D is, therefore, a function. The inverse [ of D is not a function, since the
inverse image of f” is the set of all functions of the form

f+e

where ¢ is any real number. But if we introduce the natural equivalence
relation mentioned in Exercise 3(d) on page 47 in the previous chapter, then
the inverse mapping is a function.

6. The graph of a mapping is the set of ordered pairs defined by the map-
ping. Thus the graph of the function square:x —» x?, mapping the real
numbers onto the positive reals, is the set of ordered pairs of the form (x, x?)
where x is any real number. In general, if f maps 4 into 4’ then the graph of f
is the set of ordered pairs (g, f(a)).

Sometimes we can draw pictures to represent the graph of a mapping. For
instance, if fmaps the reals into the reals we can use the conventional Cartesian
coordinate system and represent the element (a, f(@)) of the graph by the
point with coordinates (a, f(a)).

When one has developed the idea of a continuous function one can use it
to define a curve in any space 4 as the image under a continuous many-one
mapping of the interval 0 < x < 1 of the set of real numbers into A. (See
Chapter 8, page 135, and Mansfield & Bruckheimer, Mathematics: A New
Approach, Book 5.) This definition is then seen to tie up with the intuitive
concept of a curve.

7. A binary operation in a set S with values in a set 7" can be represented
as a mapping of S v .Sto T. Thus if a o b = ¢, we write

0:(a, b) —c.

The binary operation is commutative if 0((a, ) = 0((b, @)). We leave the
reader to express the associative property in these terms: notice that our
definition of associativity is meaningful only if T < S.

Are the following binary operations commutative and/or associative ?

@) (a,b) —>a®, (i) (a,b)—>|a-b|, where | a-b| denotes the absolute
value of a-b.

Suppose that we have a set S with a binary operation o with
values in S and a set T with a binary operation 0, and a many-one
mapping f of S onto T. f'is said to be a homomorphic mapping (or
a homomorphism) if it preserves the structure of Sin 7, i.e. if

Sfaob) = fla) O fb).
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The structure of T is said to be a homomorphic image of the
structure of S. When the mapping f is one-one then f'is called an
isomorphic mapping (or an isomorphism); the structures are said
to be isomorphic.

These concepts are of the utmost importance and we shall study
them in more detail, for the particular case when the binary opera-
tion gives group structure, in subsequent chapters. Here we shall
give a few general examples.

Example M. Suppose that we have a set S with a binary operation o and
an equivalence relation R which is compatible with o. Then the narural mapping
Sof an element a € S to the equivalence class {a} € §, is a homorphism, For, by
definition of the compatibility of R and o we have

faob) = {aob} = {a}o {b}
= f(a) o f(b).

(Note that this becomes clearer if we use different symbols for the operations,
for instance, if we use O for the combination of equivalence classes, the above
reads

flaod) = {aod} = {a} 0 {b}
= f(a) O f(b).

We do not, in general, use different symbols because the operations are
closely linked and a mass of unusual symbolism makes a book unreadable.)

An example of such a situation is given by Exercise 1 in Chapter 3, page
49, where we took the set of natural numbers N with the operation of multi-
plication and the equivalence relation @ R b if @ = b (mod 2). We stated there
that multiplication is compatible with the equivalence relation and, therefore,
we get the induced multiplication in the set of equivalence classes. This latter
set P consists of the two elements E = (2,4,...)and 0 = (1, 3, 5,...) and
the induced multiplication (which is commutative) is

EXE=E ExXxQ0=E 0x0=0.

The natural many-one correspondence fillustrated below is a homomorphism.
It maps the odd numbers onto 0 and the even numbers onto E.

In P: (o] E
Taking a particular example we have

f@x3H={2x3}=F
2} x 3} =E x0=E.

([
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Example N. The above case is very simple; but suppose we have two sets
each with its operation and we are required to decide whether they are iso-
morphic or homomorphic or neither. For instance, consider the set of all real
numbers with addition and with multiplication. We shall denote the two
structures by (R, +) and (R, X). Since we have the same fundamental set
we clearly have a one-one mapping (in fact, many such) between (R, +) and
(R, x); is there an isomorphic mapping? Let us suppose that f is an iso-
morphic mapping, then

fla +0) = f(a) x f(0), because f is an isomorphism,
but f(a + 0) = f(a)’

where a is any real number. It follows that f(0) = 1. Also

fla + — a) = fl@ x f(—a), because fis an isomorphism,
but f@a+ —a) =f0) =1.

Therefore, f(@) X f(— @) = 1 so that f(a) = f—(l—a)
Now f is a one-one mapping, therefore (since f(0) = 1) there is an element
b # 0, b e (R, +) which maps onto 0 in (R, %). The last result implies that
— b maps onto 1/0, which is not a real number and hence there is no iso-
morphism between (R, +) and (R, X).

Another way of showing that no isomorphism exists is as follows: let b e
(R, +), then there is always an a, such thata + a = b. This implies that under
an isomorphism f

f@ x fla) =f®) . . . . )

Now if fis one-one, then f(b) is any element of (R, x), and the equation (1)
is certainly not satisfied for all elements of (R, x).

Exercise
Well-known examples of isomorphisms between (R+, x) and (R, +) are
log,:a® — x,
where a is any positive real number (5 1) and R+ is the set of all positive real
numbers (without zero). The inverse mapping is antilog, :x —> a® and is also
an isomorphism (see next example). Incidentally, it is because these mappings
are isomorphisms that we use ‘logs’ to solve our problems. The statement
log bc =logb + logc

tells us that the two structures are homomorphic, and if the mapping were not
one-one we might have considerable difficulty in obtaining an answer—con-
sider, for instance, the slide-rule as an example of a homorphism.

Example O. If £ is an isomorphism* of S onto T, then f is an isomorphism
of T'onto S. For, f is one-one because fis, and if a, b € S, then, because fis

* Notice that an isomorphism implies the existence of binary operations in each
of the two sets and, to be precise, one ought to specify them. See footnote to
Example Q.
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an isomorphism,
Jf@ o f®) = f(faob)),
=aob, (because fis one-one)
= f(f@) o J(fB)), (again because fis one-one).
Example P. If we consider a collection of sets, each with a binary operation,
then the relationship S R T'if .S is isomorphic to T is an equivalence relation.
(i We have just shown that § R Timplies TR S.

(i) The identity mapping which maps each element of .S onto itself is an
isomorphism of .S onto itself, and so SR S.

(iii) SRT and TRU imply SR U. For, let the binary operations in
S, Tand Ubeo, 0 and > respectively, and denote an isomorphism of S onto
T'by fand of T onto U by g. Then if a and b are any elements of § we have

flaob) =fl@of®

&f@ o f®) = g(f@) > g(f/B).
Now consider the combination % of f and g as defined in Exercise 3 on
page 59. It is a one-one mapping of S onto U and
h(@ao b) =g(f(ao b))

=g(fl@) 0 f®) =g(f@) > g(f )

= h(a) > k().
Is a homomorphism’ an equivalence relation on sets ? If not, why not?

Example Q. If (S, 0)* is mapped homomorphically onto (T, 0O), then show

that if o is commutative and/or associative, O is commutative and/or associ-
ative.

* * % * *

We finish the chapter in the usual way with an example from
topology. Let S; be a set with a topology T': S; and let S, be
another set with topology T': S,, then a many-one mapping f of
Sy onto S, is said to be continuous if for every set UeT': S,,
JU)eT: S, In words this can be expressed by saying that the
function f'is continuous if the inverse image of any set open in the
topology of S, is open in the topology of S;. The following example
should clarify why we adopt this definition.

Example R. A ‘real valued function f of one real variable’ (i.e. a2 many-one
mapping of the reals onto a subset of the reals) is defined to be continuous in
text-books on analysis in the following way.

*f is continuous at a point x = a if given any real number € > 0, there
exists a > 0 such that

& —f@| <,
for all 0 < | x —a] < 8. In general, f is continuous over a range if it is

* (S, o) indicates ‘the set S with binary operation o’
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continuous at all points a of the range. If we represent the situation pictorially
thus
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then the definition means that ‘fis continuous at the point x = q if given any
interval* ABabout f(a) on the line representing the values of (0, f(x)) then there
exists an interval CD about a on the line representing the values of (x, 0) such
that for all points x in CD, f(x) lies within AB’.} Now f is a one-one mapping
(in the case illustrated) of a subset of the line (x, 0) onto a subset of the line
(0, f(x)), and AB contains the interval PQ which is the image of CD. Thus
we can again restate the result as °fis contihuous at a point x = g, if for any
interval PQ about f(a), f{PQ) = CDis an interval’. Now if we wrote ‘open set’
for ‘interval’, we would be back, almost word for word, to our general
definition above. Nevertheless, the two terms are not synonymous.

In fact the set of all intervals do not form a topology for the real line, since
the union of any two intervals is not necessarily an interval. For instance,

G<x<hHUR<x <85

is not an interval. So we define the natural topology for the real line to be the
set of all intervals and their unions (including the real line and @, of course).
(See, however, the next example.)

* By interval we mean an interval like 0 < x < 1 throughout which is usually
called an ‘open interval’ in analysis, in contrast to a ‘closed interval’ (like 0 < x < 1)
or a ‘half-open interval’ (like 0 < x < 1). We do not use the expression ‘open’ with
this meaning in the text, in order not to create a confusion with the more general
topological term.

4 We could take this statement as motivation for a topological definition of con-
tinuity as follows:

A many-one mapping f from S, to S, with topologies T":.S; and TS, is continuous
at the point x € Sy, if for any set ¥ such that f(x) € ¥ and V € TS, there exists an
open set U € T: S, such that x € U and f(U) < V. If f is continuous at every point
x of S, then f is continuous on §;.

This definition can be proved equivalent to our previous definition. We do not
give the proof since we make no use of it. The proof can be found in, for instance,
M. J. Mansfield, Introduction to Topology (Van Nostrand).
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Example S. A subset of the open sets of a topology TS is said to form a
base for the topology if every open set of TS is a union of sets of this subset.
(Thus the natural topology of the real line has a base made up of all intervals.)
Conversely, given a system of subsets of a set .S such that the intersection of
any two subsets also belongs to the system, we can define a topology in S by
forming all the unions of these subsets.

We can now prove very easily that, if B is a base for T:.S,, then a function
fof $; onto S; is continuous if and only if f(UB) is open in T S; for every set
Usg € B. (The Up are the sets of the base B.)

Let U be an arbitrary open set of T S; and Ug € B. Then suppose that f(Ug)
is open in T S; for all Up. U is a union of sets Ur and so f(U)is a union of
sets of the form f(Up), all of which are open in T S;, therefore f(U)is open in
T S,.* Conversely, suppose that f is continuous, then, since U is an open set
of T:S,, by the definition of continuity, f(Ug) is open in T:.S;. This proves
the result.

Using this result, we see that we can replace ‘interval’ by ‘open set in the
natural topology of the real line’ in the above example. For although ‘open
set’ is more general than ‘a set of the base’, we see that we can generalize.

Example T. The natural mapping f (Example M, page 61) of a set S onto a
set of equivalence classes S, of S is continuous if the topology in S, is defined
from the topology of S as at the end of the last chapter.

Example U. Using the topological definition of continuity and the idea of
a base, show that the following functions are continuous mappings of the
real numbers onto the real numbers with the natural topology in each case.

i x—x, i) x — x5,
Example V. Consider the following function illustrated by its graph in the
normal way.

(q,f(x))

b e e —— ——

(0,0)
=7

* We should have verified that the inverse image of a union of sets U is the union
of the inverse images of the Ug. We leave this to the reader.
BSGT—C
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The inverse image of the interval AB is CD U EF and this set contains the
inverse image of the point D’ which is D itself. Such a set, which contains an
end point, is not an open set in the natural topology of the real line since it
is not an interval of the form a < x < b nor is it a union of any such intervals.
Therefore the function is not a continuous mapping of the real line into itself
with the natural topology of the real line. This does not, of course, preclude it
from being continuous if different topologies are defined for the real line.



CHAPTER 5
CARDINALS

IN the last three chapters we defined our fundamental concepts.
Before discussing the idea of a group and associated topics, we will
give an intuitive idea of cardinal numbers defined in terms of set,
mapping and equivalence relation. In this section all maps con-
sidered will be onto.

We take two sets 4 and A’ to be equivalent if there exists a
one-onemap f: A — A’. We verify that this is a proper equivalence
relation. By definition / is one-one and so 4 R 4’ implies A’ R A.
Also A R A since the map f: a — a, the identity map, is a one-one
mapping of 4 onto A. Further, if

fiA—>A and g:A'— A"
are one-one onto, then we can define a mapping #: 4 — A" by
ha) = g(f@) = gla) = a".

This mapping is one-one and onto because f and g are one-one
and onto, which completes the verification.

So we can form the equivalence classes of all sets which are in
one-one correspondence with each other. We shall as usual denote
thege equivalence classes by {4}, and we shall call the equivalence
class associated with A the cardinal number associated with A. We
emphasize that cardinal number is the name of a class of elements,
the elements being sets. Thus all sets which belong to the same
equivalence class as 4 (i.e. are in one-one correspondence with A)
will have the same associated cardinal number.

67
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We hope that the reader will excuse the repetition in the previous
paragraph, but we wished to make what seemed to us an important
point, which is often found difficult.

Nork: In spite of what we have written above, what we have done is not
really unusual at all. We have re-worded in our terms the common enough
statement that 3 is an abstraction (in the sense of Chapter 2, page 18) from
3 men, three oranges, a set containing a boy, a dog and a football, a piano
trio, a trilogy, etc. The idea that three is what all these sets have in common
is an intuitive idea, since any number of triples may have some property in
common other than their three-fold quality, whereas our present approach
can be used as a beginning for the precise grounding of much mathematics.
(See also later!)

We define the cardinal number associated with the null set to
be 0. The set whose only member I am will have an associated
cardinal denoted by 1. The reader may go on to assign labels, of
his own choosing, to various other sets which cannot be put into
one-one correspondence with each other. He is warned, however,
that nothing is to be gained by being unconventional in this respect.
Just because he changes his spectacles there is no need to change
the car number-plates. Labels have no intrinsic value; it is the
properties of the labelled objects which are of interest and these
remain to be discovered.

F is of interest to note that the equivalence classes here defined
are quite different from those we could have obtained using the
idea of equality of sets, which was our first equivalence relation.
In the present case the sets are not necessarily equal by any means;
we have just selected one property that they have in common,
i.e. they can all be put into one-one correspondence with each
other. Equal sets are equivalent in this sense also, but equivalent
sets are not necessarily equal.

NoTE: We should add one further word of warning before continuing. We
are not trying to establish a logically complete system, even if this were pos-
sible. One man’s logic is another man’s fallacy. (See, for example, Nidditch,
Introductory Formal Logic of Mathematics (University Tutorial Press), who
writes, ‘In its whole literature, from Euclid to Bourbaki inclusive, there are
scarcely any proofs in the logical sense.”) Our aim is rather to develop some
of the ideas of mathematics and to show some of their applications, as we
have tried to explain in Chapter 1. Therefore, there are large gaps in our
present development as there will be gaps in many other places. We rely very
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much on intuition rather than on axioms, and the reader who is interested in
the logical foundations must consult more sophisticated works. We do not
wish to obscure entirely one of our main purposes which was to write a book
which would give the teacher some background to ‘modern mathematics’ as
well as indicate some elementary applications.

Since we have gone to great lengths to establish the idea of
equivalence classes, and especially in the last case to make the con-
cept as clear as words will allow, we propose to use our definition
of a cardinal number to develop the properties of cardinals as
equivalence classes.

Let 4 and A’ be any two sets such that 4 N 4’ = @. We shall
show that union for two such sets is compatible (in the sense of
Chapter 3, page 49) with the equivalence relation of one-one cor-
respondence. That is, we show that

ARBand A’ R B imply* [AuU A'] R[BU B']
where AN A" =@ = Bn B'. (Once we have proved this we are
entitled to extend union to equivalence classes, as we shall explain.)

By definition of the equivalence classes, there exist one-one maps
fand g such that

f:B—>A and g:B — A4
Define the map 4: BU B — AU A’ by

_(fp)ifbeB
h(b) = {g(b) ifbe B
S g
BU B Au A

We wish to show that 4 is one-one onto. Certainly sinceBNB =@
and f and g are one-one, corresponding to an element b€ B U B’
there is just one element A(b) of 4 U A’. Also A is onto, because any
element a € A U A’ which is in A is the image of some element b of
B< B U B, and similarly for any @’ € A U A’ which isin A4’. Thus
h is at worst many-one onto, and we shall finally show that it is
one-one. Let b, be any element, other than b, b, € B U B’. Then if b

* There is a symbol in common use for ‘implies’, viz. =. For example, ‘A implies
B’ is written ‘A = B’. If, also, B implies A one writes ‘A <= B’.
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and b, € B, f(b) # f(by) since f is one-one and so h(b) # h(b,).
Similarly if b and b, € B, g(b) # g(by) so h(b) # h(b,). On the
other hand if beB and b,eB then AWM) ==f(b)e A and
h(b,) = g(by) e A’; thus, once again, since AN A = G, hb)
# h(b,). This completes the proof that 4 is a one-one map of
BUB onto AU A',ie. [AUA]R[BV Bl

We have rather laboured this proof, but it is very important to
make sure that our statements are meaningful. Subsequent proofs
of this kind will usually be left explicitly to the reader. Eventually
one achieves a sort of intuitive feeling for a result of this kind and
this makes the proof little more than a formality.

If we now define

{AYyu {4’} = {4V A"}

then this is a proper definition if 4 N 4’ = @, i.e. if the chosen
representatives of the equivalence classes are disjoint: we may not
choose our representatives arbitrarily.

Example A. {(Mary, JIm)} U {(1, 2, 3)} = {(Mary, Jim, 1, 2, 3)}, which in
terms of the usual labels for cardinal numbers reads
2U3 =5
But {(Mary, Jim)} U {(Jim)} is undefined as it stands : we could, however, take
a different representative for the second class.

The binary operation here defined for cardinal numbers is usually
called summation of the two cardinal numbers; we also speak of
adding two cardinal numbers and addition. The usual symbol for
this binary operation is -+, but it is perhaps not a good idea to
introduce this symbol with all its implications yet.

Example B. Show that the summation of cardinals is a commutative and
associative operation (where all the sets used are disjoint in the sense that
their intersections are empty). This is a special case of Example L, Chapter 3,
page 49.

Example C. {4} U {9} = {4}. (Note that although @ < 4, 8N A4 = 3.)

Example D. If B is a subset of 4, verify that

{4 ~B}u {B} = {4}.

AnB

A
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Example E. Let 4 and 4’ be any two sets, such that A N 4’ = @, and let
B and B’ be two further sets in one-one correspondence with 4 and A4’
respectively. Show that A U A4’ is in one-one correspondence with BU B’ U C
where C is in one-one correspondence with B N B, but such that

BNC=BNC=a.

(Sets In one-one correspondence are represented
by similar shading)

Using this we can obtain a result for the sum of two cardinal numbers in
the case where the representative sets intersect, as follows:

{B}U {B'} = {4}U {4’} = {4U A’} = {BU B’V C}
={BUB}U{C} = {BUB}U {BN B}

Hence {B} U {B'} = {BU B’} U {BN B’} is consistent with the definition for
the sum of two cardinal numbers when the representatives chosen are not
disjoint.

Clearly, what we have so painstakingly defined above are the
natural numbers with zero and the addition of these numbers . . .
or have we ? Before we investigate this any further we shall discuss
a few exercises, and adopt the more usual notation for the cardinal
number associated with 4, and that is #(4). We shall also now
use 4. When, however, we wish to emphasize the fact that the
cardinal numbers are names of equivalence classes, we shall return
to the original notation. The addition formula for cardinal
numbers is now :

n(A) + n(A) =n(AV A) +nA4nA).
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Exercises

1. The relation #n(4) + n(B) = n(AU B) + n(4 N B) can be demonstrated
by means of Venn diagrams. In the diagram below the crosses represent the

elements of the sets.

It is evident that if we count the crosses in 4, to obtain n(4), and count the
crosses in B, to obtain n(B), then, in the sum n(4) + n(B) the crossesin A N B
have been counted twice. Hence n(4) + n(B) exceeds n(4 U B) by n(4 N B)
and this is the required resuit,

n(d) + nB) =n(AUB) +nANB) . . .M

Pupils of above average ability will be able to discover for themselves, by
similar means, the corresponding result for three sets.

A

A 8

C

It may, however, be thought advisable to deduce this result from the previous
one, using the known properties of union and intersection, as follows. First
demonstrate, using the diagram, that

[ANCIN[BNCl=ANBNC . . . @

Then expressing 4 U BU C as [4 U B]U C according to the associative
property of U, we have
nAVBUCQC) =n([AU BV C) =n(AU B) + n(C) — n([AV BN O),
from equation (1)*
= n(4) + (B + n(C) — [r(4N B) + n([AV B1N O],
using equation (1) again,

= n(4) + n(B) + n(C) — AN B) + nfAN CI1V (BN CD},

* We have not introduced ‘—’ in our main text, but, as we have explained more
than once, the examples and exercises are not in logical or teaching sequence. In
Chapter 7 (page 113) we shall extend our number system and introduce subtraction;
for the purpose of these exercises we assume that this has been done. One could, of
course, avoid the use of —, but the proof would be stilted.
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using the fact that N is distributive over U,

=n(4) + n(B) + n(C) — N(AN B + ndN C)
+aBNOI +ndAN CIN [BNCD,
using equation (1) again.

Finally, using equation (2) to reduce n([A N CIN [BN CDton(AN BN O),
we have the result

nAVUBYC =nld) +nB) +n(C) — AN B) + n(AN O
+nBNO]+nANBNC) . )]

2. It is of interest to find, in some numerical cases, the number of elements
in each of the sections of a Venn diagram of three sets. If the numbers are
small the results can be obtained by trial and error, working ‘from inside
outwards’. For example if, of 8 boys all of whom are wearing at least one
article of school uniform, it is known that

5 wear school blazers, 2 wear blazers and ties,
4 wear school ties, 3 wear ties and caps,
5 wear school caps, 3 wear caps and blazers,

then one does not need result (3) above to discover that the only possible
arrangement is as shown below.

B|aze" S Ties

Caps

From this diagram questions like ‘How many of these boys are wearing all
three articles of school uniform ?’, ‘How many of these boys are each wearing
just one article of school uniform ?’ can be answered.

If the numbers are large trial and error becomes impracticable and pupils
see that result (3) is useful. Let us imagine that every house in a village of
426 houses has one or more of the gas, electricity or telephone services con-
nected, and 250 have gas, 200 have electricity, 150 have a telephone, while 78
have gas and electricity, 76 have electricity and telephone, and 56 have tele-
phone and gas. Then the question ‘How many of these houses have all three
services ?* is not readily answered by trial and error.

Result (3), however, gives

426 =250 + 200 + 150 — [78 - 76 + 561 + n(AN BN O)

so that the number required is 36.

Other questions from the same problem, such as ‘How many houses have
gas only? can then be answered by inserting the numbers in the Venn
diagram, with 36 in the triple intersection and proceeding outwards.
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3. An agency is asked to make a survey on the viewing and listening habits
of people in this country. It employs women to make door-to-door calls. They
fill in on a prepared sheet the answers to the questions. From the returns of
one of these women, the following information is taken.

She visited 475 homes and found that 433 watched B.B.C. television, 362
commercial television, and 231 listened to the radio. Also 312 watched both
commercial television and B.B.C., 130 received commercial television and
radio, 196 received B.B.C. television and radio, and 98 received all three.

Do you think that the agency should make use of this woman in any further
surveys they conduct?

We proceed somewhat intuitively to investigate our definition
of cardinal number. We shall say that two labels are different if
they have different markings on them. Thus the label with a 0 on
it, which was attached to the class with representative the empty
set, and the label with a 1 on it, which was attached to the class
with representative myself, are different. But either of these labels
could be hung round my neck—i.e. each single label (whatever its
marking) can be put in one-one correspondence with myself—
i.e. label 0 and label 1 are both representatives of the cardinal
number 1.

Thus

' C

K7

n(label 0) + n(abel 1) =1 4+ 1
(sometimes denoted by the shape 2). So we can have a new label
with the device 1 + 1 on it, and

1 4+ 1 = n(label 0) + n(abel 1)

= n(label 1) 4 nlabel 1 4 1)
= n(label 1, label 1 4 1)
= n(myself, you).
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We can go on in this way. For instance, next time
n(label 0, label 1) +ndabel 1 + D =( + 1) + 1

= n(label 0, label 1, label 1 + 1)
= n(myself, you, Khrushchev),

assuming that you, myself and Khrushchev are all distinct.

Suppose now that a label r has been assigned to the set of all

labels previously allocated. Call this set L,, then

nlL,)=r >
and n(L,) + n(label r) =r + 1,
since label r does not occur in L,, and we have another label with
which to continue the process. It would seem, therefore, that the
process is unending. The problem is how to express this within
our defined terms, and of what significance is it ?

The fact that the process is unending is easily dealt with. Consider
the set of such labels L and define a mapping of L to L by mapping
any label r onto label r + 1. Then 0 is mapped onto 1 and 1 onto
1 + 1, etc., but nothing is mapped onto 0, that is with the excep-
tion of 0 every label is of the form r + 1 (where we use the identity

5] [2] [ all o
P I TR

0 + 1 = 1) and is the image of the label r. Thus we have estab-
lished a one-one correspondence of L into L; precisely L onto (L
less the label 0). Any set in one-one correspondence with L can
also be mapped one-one into itself. Hence this is a property of the
equivalence class.

A study of what we have done will show that such a mapping
is only possible because given any label r we can invent a new one
r + 1, or at least we feel we can.

Example F. Consider all the words as listed in any dictionary and map each
word into the one succeeding it. This is a map of the set into itself. In the
dictionary I have before me this mapping looks like this

. . . abate, abatis, abattoir, abature, . . .
N N N N Yy
. . . abate, abatis, abattoir, abature. . . .
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Of course, the first entry in the second row, which is usually ‘a’, has no arrow
leading to it, i.e. it is the image of no element in the row above. But if I now
turn my attention to the other end of the dictionary, the last entries are

. « « Zyme, Zymome, zymurgy, zythum,
N N N

. « . Zyme, zymome, zymurgy, zythum,

and zythum in the first row has no image in the second row, unless I map it
onto ‘a’ back at the beginning. This set thus does not have the character of
our labels above. In fact, no set which is completely within our experience has
this property, however large the set may be.

We shall say that a set which can be put into one-one correspond-
ence with a proper subset of itself has an associated infinite
cardinal number. Remember that all we are saying is that the
equivalence class, of which the set of all labels described above is
a representative, shall have the name ‘infinite’. Sets which do not
have the above property of being in one-one correspondence with
a subset of themselves will be said to have an associated finite
cardinal number.

From now on we shall say briefly that a set has a cardinal
number, where we mean the associated equivalence class of the
set. Thus the cardinal number of a set 4 is {4} or n(4).

Example G. The cardinal number 1 is finite.

Any number as the word is commonly understood is a finite
cardinal number. We have so far introduced one infinite cardinal
number n(L). The symbol very often used for this number is the
first letter of the Hebrew alphabet with a suffix 0, viz. &, (aleph 0).
The set of finite cardinal numbers or natural numbers with zero
we shall denote by N. These finite cardinal numbers are, of course,
the symbols on our labels, thus L and N are in one-one correspond-
ence. Any set which belongs to the same equivalence class as N
(i.e. is in one-one correspondence with N) is said to be countably
infinite. All countably infinite sets have the cardinal number X,.
We shall from now on use 0, 1, 2, . . . for the elements of N.

Example H. Show that if a finite number of objects is removed from a
countably infinite set then it is still countably infinite. This means that it does
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not make sense to say that all the natural numbers are more or less than all
the natural numbers greater than ten. (See also the exercises which follow.)

Example L 8, + 8, = Ry, i.e.
nL Y N) = n(L) = n(N),

whereas if 4 and B are sets each with finite cardinal number m, it is never
true that

n(A) + n(B) = m,
unless m = 0.
Notice here that we are running into no real trouble when dealing with the
addition of infinite cardinal numbers. But notice, also and again, that although
L cLYUN, nll) = n(L\V N).

Exercises

1. The obvious fact that in any finite set of consecutive natural numbers
there are more natural numbers than even numbers leads pupils to a false
generalization when talking about ‘all’ natural numbers. To correct this, a
one-one correspondence may be displayed as follows

N 1 2 3 4 5 6 7.
A
E 2 4 6 8 10 12 14...

and emphasis laid on the statement that both sequences are to be imagined
as continuing indefinitely. Then, to each and every member of N there cor-
responds just one member of E and to each and every member of E there
corresponds just one member of N. Hence it cannot be true that one set has
more numbers than the other, although one is a subset of the other.

Pupils may be asked to set up a one-one correspondence between the set of
natural numbers and the set of multiples of three, between the set of natural
numbers and the set of multiples of four, between the set of multiples of three
and the set of multiples of four, and so on. In all these cases the mappings
and their inverses are one-one and onto and can be represented as algebraic
functions: for instance, in the correspondence set out above, if »; is the ith
member of N and e; is the ith member of E, then e; = 2n; and n; = }eq.

Consider also the set of primes, P. Then there is a one-one correspondence
between the members of N and P, viz.

N 1 2 3 4 5 6 7..
A A A
O S S R R

P 2 3 5 7 11 13 17...

where again, both sequences continue indefinitely. Again, this mapping and
its inverse are both one-one and onto, but it can be proved that there is no
exact algebraic relation betweéen p; and n;. Nevertheless, both mappings are
functions and p is a subset of N.

2. It follows from Exercise 1 that the even numbers are countably infinite,
the multiples of three are countably infinite, the primes are countably infinite
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and so on. The statement that the set of positive rationals F is countably
infinite requires a little more work. Let us, for the moment, define the set of

. a
positive rationals as the set of all pairs 3 where g and b are natural numbers.

Then there is a one-one correspondence between these pairs and the set of
crosses below (continued indefinitely).

44+ xXx X X X X xXx X X
J4+ x x x-xX X X X %X x
24+ X x x X X X .Xx X X

N -
[yeps N
ES
(.= =
o
-y

Now, by describing a path from cross to cross, the crosses are passed in
order, and hence a one-one correspondence is established between the crosses
(and, hence, the positive rationals) and the natural numbers. There are many
possible paths; a specimen path is shown below. The first few terms of the
resulting correspondence between N and F are shown on page 79.

q
54
44 X X
34 X X X
24 X x X
14+ X X X

':l +—t-5
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N 1 2 3 4 5 6 7 8 9 10 11.
A A
R A R T

rF 12 1 3 2 1 4 3 2 1 5
i 1 2 1 2 3 1 2 3 7 1

If we wish to count only those fractions which are in their lowest terms, then
we merely omit appropriate members as we come to them: having counted

1 . .. . 1
i we do not wish to count % so we omit it, the 5 in N then corresponds to 3

in F and so on. Other modifications may be made as desired.

3. As in Exercise 1, pupils feel that there must be ‘more’ points on a line
segment 2 inches long than on a coplanar line segment 1 inch long. Again,
a correspondence can be displayed between the two sets of points but, it
should be stated clearly, this time neither set is countably infinite (see below).

Let AB and CD be the line segments. Let AC intersect BD in O. Then if P
is any point on 4B and OP intersects CD in P’, we may put P and P’ in
correspondence.

Similarly each point on AB has just one corresponding point on CD and
vice-versa. .

To demonstrate that the set of all points on a finite line segment is not
countably infinite, proceed as follows. Let the segment be 4B: with A4 associate
the number -00000 . . .; with B associate the number -9999 . . .; with every
other point associate the non-terminating decimal corresponding to the dis-
tance of the point from A in terms of the appropriate unit. (A rational whose
decimal representation terminates may be regarded as non-terminating by the
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addition of zeros: e.g. 3 = 500000 . . .). Then, if possible, let a correspond-
ence between the natural numbers-and these decimals be

N S
1«———>-00000 ...

> T Lal3lyls » » -

<
s=r+1¢ 5182535455 « ¢+ «

=1+ 26——————> titytstyts . . .

where the ry, si, t, etc., are the digits 0, 1,2, 3, 4,..., 9 in some order.
@& = +50000 . .. = 49999 . . ., and if we admit the second decimal representa-
tion of 4 we shall get into difficulties. Therefore we exclude all decimal repre-
sentations ending in an infinite succession of 9’s except -999 . . . itself.) Now
form a decimal whose first digit is 1, whose second digit is a 1 if the second
digit in the second decimal is 0 and otherwise is one less than that second
digit, and in general, whose nth digit is

@) a 1 if the nth digit in the nth decimal is 0,
or (b) is one less than the nth digit in the nth decimal,

if that digit is not zero. Plainly, this decimal differs in at least one place from
every decimal in the list, and does not end in an infinite succession of 9s:
hence the point corresponding to this decimal is not associated with any
number of N: hence the correspondence is not one-one, and the set of all
points is not countably infinite. We denote the cardinal number of this set
by K. It is an example of an infinite cardinal number different from 8.

So far we have introduced the idea of cardinal numbers (finite
and infinite) and their addition. Clearly, even as far as the basic
concepts are concerned, we have only scratched the surface. How-
ever, the immediate subsequent development is relatively straight-
forward, and so we shall indicate it with comments in the following
examples. The reader who wishes to skip them is welcome to do so;
it should not prejudice his understanding of subsequent chapters.
On the other hand, for the reader who is interested in this topic,
more information can be found in 4 Survey of Modern Algebra by
Birkoff and Mac Lane (Macmillan). An interesting book of rather
a different type is Number, The Language of Science, by T. Dantzig
(Allen and Unwin).
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Example J. In Chapter 2 we introduced the binary operation v. This
binary operation is compatible with our equivalence relation of one-one
correspondence, i.e.

ARBand A’ R B imply [Av A1 R[BvV Bl

The details are left to the reader, we merely remark that if fis a one-one map
of A onto B and g a one-one map of A" onto B’ then % is a one-one map of
A v A’ into B v B’, where

ha, a")y = (fa), gla?).
We can, therefore, induce the binary operation v onto the set of equivalence
classes, and we get

{d} v {B} = {4 v B},
or in more usual notation

n(A) x n(B) = n(A v B).
We call this new binary operation for cardinal numbers multiplication.

Example K. v as applied to sets (rather than the equivalence classes) is
neither commutative nor associative; as applied to equivalence classes, how-
ever, it is both. For, although A v B = B v A, there is a one-one corre-
spondence between A v B and B v A. Similarly, there is a one-one corre-
spondence between A v [Bv Cland [4 v B] v C.

Example L. In Example I, page 77, we mentioned that 8, 4+ 8; = N,.
This means that the equation ¢ + x = a, where a is a cardinal, does not
necessarily have the solution x = 0. This is only true if 4 is a finite cardinal.

One can further show that multiplication of cardinal numbers is distributive
over addition, i.e. that

fA} v [{B}V {CH] = [{4} v {B}] U [{4} v {C}),
or in more usual notation that
nA4) X [n(B) + n(O)] = [n(A4) X n(B)] + [n(4) X n(C)].
This proof can be supplied by the reader by exhibiting a one-one corre-
spondence between
Av{BUCland [AvBlU[4V C]l

(They are, in fact, equal.)

It follows that Ry + 8y =[1 4 1] X Ry =2 X R, =8, but 2 # 1.
Thus we cannot ‘cancel’ in either addition or multiplication, unless we know
that our cardinals are finite. We have not, of course, proved the latter half of

the last sentence; the reader might like to put forward some reasoning of his
own.

Example M. Can any of the other binary operations on sets be induced onto
the cardinal numbers (with suitable provisos, if necessary)?
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We conclude this chapter with another short topological note.
Let S be a topological space with topology 7': S, and let ¥ be any
subset of S. We gave V an induced topology (cf. Example U at
the end of Chapter 2) known as the subset topology. A topology
for ¥V was there suggested as the system of all sets of the form
V U where UeT': S. We shall now prove that this system is a
topology for V.

VNG =0 and VN S =V, therefore ¥V and @ belong to
the system.

(i) Let U, and U, be any two open sets of 7': S. Then V' n U,
and V' N U, belong to the system and their intersection is
nUY)NVnU) =VnU,nNnU,). But Uy n U, is open in
T: S, therefore V' N (U, N Uy) belongs to the system.

(iii) Finally, consider any system of sets of the form ¥ n U where
the U are open in T': S. Intersection is distributive over union,
therefore the union of all sets of the system is of the form V' n W,
where W is the union of all the U. But the sets U e T': S, therefore
W is open in T': S, and hence ¥V n W belongs to the system.

Example N. Consider the subset 0 < x < 1 of the real line. (We discussed
the natural topology of the real line at the end of the last chapter.) The base
for its subset topology is the sets of the forms

O0<x<k, I<x<l, I<x<k

where I > 0, k < 1, ] < k. These sets together with all unions of them and the
sets @ and 0 < x < 1, are the open sets of the subset topology.

Xx — | sin x | is a many-one mapping of the real line onto this subset. Is it
a continuous mapping of the real line with the natural topology ? (Remember
that to show this we need only show that the inverse images of the sets of the
base for the subset topology are open sets in the natural topology for the
real line.)
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Example O. Consider N (the subset of natural numbers with zero) of the
real numbers with the natural topology. Every element of N is open in the
subset topology; forif ne N, NN (n — 3 < x <n + 1) = n. Any topology
in which every element is itself an open set is said to be the discrete topology.
Thus the subset topology for N is the discrete topology.

Consider the function f which maps any real number onto its integral part
(ignoring the sign). For instance

(=23 =2, f(7005) =7, fH =0.

This function is not a continuous mapping of the reals onto N with the above
topologies: the inverse image of the open set 2, for instance, is the set

(—3<x< —2)UR<x<3
and this is not an open set in the topology for the reals. Note the exception:
the inverse image of the open set 0 in T': N is the set
—1<x<l1
which is open in the topology for the reals.
Example P. In the text the subset ¥ was not itself specified as being open
in T': S and, therefore, the open sets in the subset topology for ¥ were not

necessarily open in T': S. If, however, ¥ is open in T': S, then any open set of
the subset topology is openin T': S.
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GROUPS

GIVEN any two sets A and B their union 4 U B = C, say, is
uniquely defined. On the other hand, given any two sets 4 and B,
a set X such that A U X = B is not necessarily uniquely defined
and, indeed, may not exist. In fact, the set X is uniquely defined if
and only if 4 = @, in which case X = B. The set X is defined, but
not uniquely, if 4 =€ Band A # ©@; X isthen given by an expression
of the form [B ~ A] U C where C < A. Since A4 is not empty, at
least two solutions exist, corresponding to C = @ and C = 4. If
A is a finite set with cardinal number n, then there are 2" solutions,
corresponding to all possible subsets of 4. If 4 is an infinite set
there is an infinity of solutions. If 4 # @ and 4 & B then the set
X does not exist.

Example A. The reader should draw Venn diagrams illustrating some
special cases, e.g.

@ANB=0Q, A+ 0, B+ O
b)BcA, B+ 0O

and verify that no set X can be found to satisfy 4 U X = B. He should also
illustrate

© A<B A+0
and verify the existence of several solutions of AW X = B.

A somewhat similar situation obtains for the intersection opera-
tion. Given two sets A and B, their intersection 4 N B = C, say,
is uniquely defined, but, given two sets 4 and B a set X is not
necessarily uniquely defined to satisfy 4 N X = B.

Example B. The reader should illustrate each of the possible cases and put
them in three categories according to whether 4 N X = B gives

(@) X uniquely defined,
(b) X defined, but not uniquely,
(¢) X non-existent.
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The situation is quite different with the operation called ‘sym-
metric difference’. We shall, as before, in Chapter 2, write the
symmetric difference of two sets 4 and B as 4 A B. It is the set
whose members are those members of 4 which are not members
of B together with those members of B which are not members of 4.

4 8

A A4 B js shaded

Example C. We mentioned symmetric difference in the second chapter and
asked the reader to discover some of its properties. Since we are going to
investigate one property in detail it might be as well if the reader were to
revise his knowledge and reconsider this binary operation. For instance, is it
associative? Commutative? Distributive with respect to union and/or inter-
section? Can it be expressed in terms of union and intersection only? Can it
be expressed in terms of union, intersection and ~?

Given any two sets 4 and B, their symmetric difference
A A B = C, say, is uniquely defined. Given two sets 4 and B, a
set X such that 4 A X = Bis also uniquely defined as X = 4 A B,
as we shall show in general later.

Example D. Verify that no matter what case of two gives sets 4 and B is
chosen, the set X = 4 A B is uniquely defined and satisfies 4 A X = B.

The question now arises, why this fundamental distinction be-
tween the one operation and the others? We shall answer this
question by deriving A A X = B from X = 4 A B and consider-
ing the properties required to perform the derivation. If the union
and intersection operations do not possess these properties then
the reason for the distinction will be clear.

(1) We know that given any two sets 4 and B, 4 A B defines
a unique set. Call this set X. Then

X=A4AAB.

(2) We wish to find the set 4 A X. Now, since X and 4 A B are
equal sets, that is, they have the same members, 4 A X and
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A A [4 A B]will be equal. Also since A is associative, 4 A [4 A B]
may be written as [4 A A] A B. Hence

AAX=[A4AA] AB.

(3) Consider [4 A A] A B. Now A A A is the set consisting of
those members of A which are not members of A, that is
A A A= 9. Hence

AAX =0 ArB.

(4) @ A Bis the set consisting of those members of @ which are
not members of B (and there are no such members) together with
those members of B which are not members of 9 (and none of the
members of B are members of ). Hence

O AB=B.

Thus A A X = B and the solution is valid.
Now let us list the properties which have been used.

(1) states that the symmetric difference of any two sets 4 and B
exists and is a uniquely defined set.

(2) states that A is associative.

@ and (3) together state that

(a) for any set B a particular set exists (in fact, @) such that
its symmetric difference with B is B itself,

and (b) that this particular set can be obtained as the result of
combining any set A4 with some set (in fact, 4 itself) by
the operation of symmetric difference.

Example E. Union and intersection possess the properties stated under
(1) and (2). (a) is also satisfied for union since BU @ = B for all B. Property
(a) is also satisfied for intersection if we regard all our sets B as subsets of
some ‘universal set’ U, for then BN U = B. But consider (b). For union and
any set A we must have a set A’ such that

AV A =0
and this is clearly impossible if 4 # @.
For intersection and any set 4 we must have a set 4’ such that
AN A = U, the universal set
and this is again impossible if 4 = U.

So it would seem that the essential difference (in the context of our present
argument) between union and intersection on the one hand, and symmetric
difference on the other, is that for the latter for any set A we have a set .
A’(A’ = A)such that 4 A A’ = @, where @ o B = B for all B. We shall now
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show that this difference is, in fact, essential in that it guarantees a solution
to the problem 4 A X = B, and a unique one at that.

Let us generalize the properties above. Consider a set S with
elements a, b, ... (the elements may, of course, themselves be
sets) and an operation o which is such that

(i) aobis a uniquely defined member of S for all a,bes;
(i) o is associative;

(iii) there is a member of S, called a neutral element or identity,
and written e, such that
eoa=a
for allae S;

(iv) corresponding to every a € S there is an element in S, say ¢,
called an inverse of a, such that

coa=e.

We shall now show that, under these conditions, the equation
ao x = b has a unique and specific solution in S for all @, b € S.
(Note that we do not wish to imply that there is a unique identity
element, or a unique inverse element corresponding to any
element a. For the time being we only assume that an identity
element exists and an inverse for each element a. We shall prove
later that it is a necessary consequence of properties (i) to (iv) that
the identity is unique in S and that each element has a unique
inverse.)

Consider the equation a o x = b.

By (iv) there exists an element ¢ which is such that co g — e,and
we can write

coflaox]=cob.

This gives [coalox=cob (from (i1))
ie. eox=cob (from (iv))
whence =cob (from (iii))

and this is defined and belongs to .S (from (i)).

So we see that the equation has at least one solution in the set S;
we still need to show that it has only one. To prove this, suppose
that it has two solutions, x, and x, say, i.e.

aox; =b and qox, =b.
Then ao0Xx; =aox,
sand colaox] =colaox,
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where ¢ is an inverse of a (from (iv)). Whence, by (ii) and (iii) we
have
[coalox, = [coalox,
ie. e0X, = €eo0 X,
and hence X = Xa.
Hence the solution x = ¢ o b is unique.

A set S, with an operation o, which possesses the properties (i),
(i), (iii) and (iv) is called a group. If the number of elements of S
is infinite, S is called an infinite group, otherwise it is called a
finite group.

Example F. The set S of all subsets of some set, with the operation of sym-
metric difference, forms a group. A A B is a uniquely defined subset for all
subsets A and B, A is associative, @ is the neutral element since @ A A=A
forall A€ S, and, lastly A2 A =B forall 4€ S.

It is precisely the last property, the existence of an inverse for any set A,
which neither union nor intersection possess.

We have shown that the defining properties of a group are
sufficient to guarantee a solution of the equation
aox =b.
But what about the equation x o a = b, when the binary operation
o is not commutative ? We shall show that this also has a solution
by showing that for the same e and ¢ as in the defining properties
above
aoe=a and aoc=e.
It is then clear that an analysis similar to the one given for the
solution of a o x = b will provide the solution, x, of xoa = b,
and show that it is unique.
(a) To prove a o e = a. Consider
coaoe] = [coa]oe(by (i)
=eoe (by (v))
=e (by (iii))
=coa
Now c is an element of S and, therefore, by (iv) must itself have
a ‘left’ inverse, d say, whence
do[cofaoe]] =dolcoa]
ie. [doclo[aoe]l =[doc]loa (by (i),
" le. eofaoel =ceoa,
whence aoe=a (by @iD).
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(b) To prove ao ¢ = e. Consider
cofaocl=[coaloc (by (i)
=(eoc) (by (iv))
=c (by (iii)).
Whence using the d mentioned above, we have

[doclofaoc] =doc,
ie. eofaoc]=e
aoc=e (by (iii)).
So we see that in any group a ‘left’ identity is also a ‘right’ identity:
also, for any element a “left’ inverse is a ‘right’ inverse.

It follows that if @ and b are members of a group S, then there
exists in .S’ a member x such that @ o x = b, and there exists in S a
member y such that y o @ = b. If, in accordance with property (iv)
coa=-e(andhencegoc =e),thenx =cobandy =boc.

We proved earlier that the solution, x, of @ 0 x = b is unique.
Consider the two special cases

i aox =a, (i) aox =e.
They will have unique solutions. But we know one solution of @,
i.e. e, hence this is the only one; the identity element in a group
is unique. We also know a solution of (ii), i.e. the inverse of a
which we denoted by c. Again this is the only solution; the inverse
of any element a in a group is unique.*

Example G. The reader should verify that the set of all positive rational
numbers forms a group under multiplication, that 1 is the neutral element and
that the inverse of a is a—*. Hence, if @ and b are positive rationals, it is always
possible to find a positive rational x such that ax = b (see Chapter7,Exercise 7,
page 110 et seq.). He should also verify that the same set does not form a group
for addition, and that if a and b are positive rationals it is not always possible
to find a positive rational x such that a -+ x = b.

It is perhaps unfortunate that the example above has had a
powerful influence on notation. The effect has been (i) that the
neutral element in any group is often denoted by the symbol 7,
(ii) that the inverse of an element a is usually denoted by @~ and,
(iii) that the symbol for the operation is often omitted altogether,
the result of combining two elements a and b by the defined opera-
tion being written ab, the operation being understood from the

* Notice that this implies that the 4 mentioned above is a.
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context. We shall not adopt this notation and the reader is warned
that its attractive suggestiveness is not without disadvantages. (The
reader who wishes to discover these disadvantages should rework
some of the examples and exercises in the later part of this book,
using the I, a~ notation.) We prefer, when we are talking about
an abstract group or groups in general, to retain the notation
already introduced, that is, to represent the operation by ‘o’ and
the neutral element by ‘¢’. We shall, from now on, represent the
inverse of a by ‘@’.
In this notation we can define a group as follows.
If G is a set of elements for which an operation o is defined, then
G is a group if and only if
(a) the operation o, applied to any pair of elements @, be G,
gives a unique element ¢ € G, and we write ao b = c; (This
is called the requirement of closure.)

() foralla, b, ce G
ao[boc]=[aobloc=aoboc;
(This is called the requirement of associativity.)

(c) there is an element e € G (called the neutral element) such
that for each and every a € G,

eoa=aqo0e=a;
(This is the requirement of a neutral element.)

(d) to each a € G there corresponds an element d € G (called the
inverse of a) such that

aod=doa=ce.
(This is the requirement of inverses.)

It should be noted that (as proved above) the neutral element e is

a single, specific, unique element, which is the neutral element for

every member of G, but that each element a possesses its own unique

inverse d. Thus if a and b are distinct members of G
aoe=coa=a

and boe=eob=0>0,

but although aod =doa=e,

it is not true that b o @ = e, orthataod =e.

We would also point out that (c) and (d) differ slightly from the
properties (iii) and (iv) we gave earlier. We proved thateoa = a
and d o a = eimply a 0o e = a and a o @ = e. Therefore, although
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we have no need to include the latter two properties in our defini-
tion, it seems advisable to do so in order to emphasize that, even
though the group may not be commutative, the left inverse of any
element is also its right inverse, and that there is only one neutral
element, whether from the left or the right.

If a group G possesses the additional property that, for every
a,beg,

aob=boa
then G is said to be a commutative (or Abelian) group.

Example H. The reader may verify that the set of all integers (i.e. directed
numbers) forms a group for addition (see Chapter 7, Exercise 8, page 112
et seq.), that 0 is the neutral element and that the inverse of @ is —a. Hence
if @ and b are integers it is always possible to find an integer x such that
a + x = b. He may also verify that the same set does not form a group for
multiplication, and that, if ¢ and b are integers, it is not always possible to
find an integer x such thata x x = b.

The group of integers under addition compares with the group of positive
rationals under multiplication in that it also has led to some authors adopting
‘- as the symbol for any group operation, with 0 as the neutral element and
—a as the inverse of a. (We shall not adopt this notation either.)

Example L (a) Is the set of all integers a group for subtraction?
(b) Is the set of negative rationals a group for multiplication ?
(©) Is the set of all integers, including zero, together with all
positive and negative rationals, a group for addition?
(d) Is the set of all integers, including zero, together with all
positive and negative rationals, a group for multiplication ?

To these four questions, three of the answers are ‘No’: the reader is strongly
urged to check carefully all the defining properties in each case.

Example J. Is the set of all subsets of a set a group for the operation ~7?

If Gisa group*and a, be G, thenaox = b and yoa = b are
always rigorously, explicitly and uniquely solvable, using the
operation ‘o’ only, by the process of operating on both sides with
d, from the left and right respectively, and using the properties of
associativity and the neutral element. If a set Sis not a group under
operation o it does not necessarily follow that aox — b and
y 0 a = b are not solvable. For example, an explicit solution can
be obtained in any set S closed under o for which a mapping f exists

* Strictly we should say ‘If (G, o) is a group’.
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of S into itself so that f(a) o (@ o b) = b for all a and b in S. Also,
of course, other methods such as trial and error may be successful.

Example K. The set of all integers does not form a group for subtraction
but if @ and & are integers it is always possible to find an integer x such that
a — x = b. The reader may solve this equation rigorously using the subtrac-
tion operation only.

Example L. The set of natural numbers does not form a group under
multiplication, but if @ and b are natural numbers it is sometimes possible to
find 2 natural number x such that a X x = b. The reader should attempt to
solve this equation rigorously, using the multiplication operation only. (It
must not be assumed that the inverse of a exists.)

It may be noted that the usual process, that is, to divide both sides by a and
then to decide whether b = a is a natural number, is equivalent to recognizing
that the set of natural numbers is a subset of the group of positive rationals

under multiplication. In this group Z x b always exists and it merely remains

to decide whether or not }z % b is a member of the equivalence class identified

with some natural number (see Chapter 3, Exercise 3(f), page47 and Chapter 7,
Exercise 7, page 110).

In Chapter 2, page 29, we asked the reader to verify that if
A, B and C are sets and A represents the operation of symmetric
difference, then

AAB=AAC
implies B=C,
that is, ‘left-cancellation’ is possible. The analogous result holds

for any group, for, if a, b and ¢ are members of a group (G, o), then
both sides of

aob=aoc
may be operated on, from the left, by 4, giving, by the associative
property
eob=coc
that is, b=c
Similarly, in a group, ‘right-cancellation’ is always valid.

If group structure is not present as, for example, with the
subsets of some set as elements and union (or intersection) as the-
operation, then ‘cancelling’ is not necessarily valid. (Examples were
given in Chapter 2, Example N, page 28.)
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Because group structure guarantees

(i) the explicit solution of cox = b (ie. x=43dob) and

xo0a=>(i.e. x =boad), and

(i) the validity of left and right cancellation (i.e. aob = goc¢

orboa=coaimplyb = ¢),

it naturally follows that sets and operations with group structure
occupy a privileged position.* It would be possible to argue that
among the important tasks of mathematics is that of investigating
existing sets and operations to discover which of them form groups:
at the same time, where possible, by extensions of sets or modifica-
tions of operations, to introduce group structure where it did not
previously exist.

The ideas implicit in the last paragraph underlie the whole
structural approach to mathematics; groups and higher structures
(which possess the group properties together with others) are
singled out and defined because of the facilities they guarantee or
the frequency of their occurrence. They are then studied in their
abstract form, and existing concepts are categorized according to
the structures they exhibit. Thus the solution of a problem or the
establishment of a property in the abstract structure automatically
solves the analogous problem, or establishes the analogous prop-
erty, in a multitude of existing algebraic systems all of which possess
the same structure. Where a problem arises in an algebraic system
which does not already possess the structure necessary to provide
its solution then modifications are attempted in order to achieve
that degree of structure.

In respect of groups, we shall postpone further investigation of
the abstract structure until a few examples have been given

(a) of further existing sets possessing group structure,

(b) of the modifications directed to producing group structure
where it did not previously exist.

This we shall do in the next chapter. We shall finish this chapter
with one further example and our usual section on topology.

* A group may be defined directly in terms of (i) as a non empty set closed under
an associative operation o so that for all g and b in the set there exists an x and y in
the set such that

aox=b=yoa.
Such a definition is not very satisfactory in the teaching situation since its conciseness
and completeness make the motivation of further discussion difficult and the crucial
ideas of neutral and inverse elements have to be artificially extracted by formal
analysis,
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Example M. The well-known ‘method of dimensions’ in school physics
states that to every physical quantity (or class of equivalent quantities) there
corresponds a dimensional expression of the form MeLATY where «, f and ¥
are real: the values of «, 8 and y are obtained by expressing the particular
quantity in terms of a set of ‘fundamental’ physical quantities, say mass (M),
length (L) and time (7). For example, the quantity ‘acceleration’ has the cor-
responding expression M®LT—?, since acceleration is change of distance (i.e.
a length) per unit time per unit time. The set of all such dimensional expres-
sions forms a group under the operation of multiplication according to the
usual process of addition of indices, so that, typically,

MOLBTY X MBLATV: = Moatoa] ButBTyitys,

The group property is an immediate consequence of the fact that the set of
reals forms a group for addition.

Tn the traditional introductory example it is assumed that the time () of
swing of a simple pendulum in vacuo depends, at most, upon the mass (m) of
the bob, the length () of the pendulum and the acceleration (g) due to gravity,
and it is required to find the precise form of the dependence. For our purposes
we take the assumption to imply

t = m*lvg?, where x, y and z are to be determined.

Each quantity is now replaced by the corresponding element from the
group, giving
MPOLOT? = [MILOTOR[MOLIT° WM L T?F,
that is MPOLOT? = MELY+2T—22,

whence x =0,y =4, z = —3%, giving, apparently, ¢ = J i Now this
g

expression is incorrect: the correct result is ¢ = 27 J _l After answering the
g

following questions the reader should be able to explain the discrepancy.

(a) What is the result of combining the neutral element of any group with
any other element of that group?

(b) What is the neutral element of the particular group under discussion,
the group of dimensions?

(c) To what class of entities does this neutral element correspond ?

(d) Can the method of dimensions (in the above elementary form) predict
the presence or absence of one of these entities?

Any reader unfamiliar with the above technique might also solve the
following example. Newton’s law of gravitation states that the force (F)
between two particles of masses m; and m, at a distance r apart is given by

_ Gmym,

rz ’

where G is sometimes called the ‘gravitational constant’. Find the dimensional
expression for G. (Force, being defined as mass X acceleration, has the
dimensional expression M*LT~2.)

* * * * *
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Now to our concluding topological section. The concept of con-
tinuity is at the heart of topology. For instance, two geometrical
figures in three-dimensional space which can be continuously
deformed into each other are topologically equivalent. Note that
this is only an example, not a definition. A rectangle can be con-
tinuously deformed into a circle, and vice versa, therefore we would
say that a rectangle is topologically equivalent to a circle. But a
cube within a cube cannot be deformed physically and continuously
into two cubes next to each other, but, nevertheless, the two con-
figurations are topologically equivalent because we can map them
mathematically and continuously into each other. (See Chapter 8,
Examplel, page134.) It may make the situation clearer if we point
out that our intuition tends to accept continuity only if it can
provide us with a set of pictures showing the stages through which
one object passes in its deformation into the other; on the other
hand, topological equivalence is not concerned with the inter-
mediate stages at all. We use the intuitive idea of continuous
deformation at the end of Chapter 7 to discuss the theory of braids
and at the ends of Chapters 9, 10 and 11 to construct the group
associated with the continuous deformation of curves,

The above may or may not be helpful; however, the discussion
has no real meaning since the continuity of a mapping depends
upon the topologies chosen in the domain and the range. For
instance, any two sets A and B in one-one correspondence may
be continuously mapped into one another if we take the open sets
for 4 to be A and @ and the open sets for B to be B and @. (These
are proper topologies.) Then the one-one correspondence is a
continuous mapping.

However, such a truism as the above is not useful: if topological
equivalence is to be a useful idea we must restrict the choice of
topologies. For example, the previous discussion could be made
meaningful by allocating to three dimensional space and the men-
tioned subspaces that topology which is implicit in real analysis, in
the same way as our previously defined natural topology for the
real line coincides both with our intuition and the ideas used in
analysis. In this and subsequent topological notes we shall assume,
unless otherwise stated, that three dimensional space has been
given this topology, and that any surfaces in this space have been
given the corresponding subset topology. This is an important
point, for changing the topology may alter the results,

So clearly our imagination is not sufficient to provide us with
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a definition of topological equivalence. Real and complex classical
analysis do, of course, deal with the idea of continuity, but this is
far too special and ill founded for our purpose. After all, con-
tinuity in analysis is defined in terms of distance, and distance is
certainly not necessarily unaltered under a continuous mapping.
If we were to use this definition, then not only would we restrict
ourselves to spaces in which distance (or a quantity, known as a
metric, which has the same essential property as distance) could be
defined, but all our definitions and results, although themselves
unaltered by a continuous mapping, would be given in terms of a
quantity (distance) which is not.

But analysis does provide us with the clue. We must just rework
our ideas until distance is eliminated and a more general concept
is found instead. At the end of the last chapter we did this in
reverse. We showed that the topological definition of continuity,
in the special case of a real-valued function of one real variable,
was the same as the definition in terms of distance. Further, we see
that in analysis we use the idea of distance to define an interval
0 < |x —a]| <é, say, where the important point is that the
interval does not include the end-points. Now this property of an
interval is preserved under the continuous mappings of analysis;
deform the interval continuously by any one of these mappings
and an interval of the real line without its end-points will become
the arc of some curve, but still without its end points. So the ‘open
set’ which replaced ‘interval’ as at the end of Chapter 4 has become
the fundamental concept in topology. In terms of open sets we
define the topology of a set (as at the end of Chapter 2) and the
idea of a continuous function (as at the end of Chapter 4).

This then justifies the use of open set as a basic element in our
definition of continuity, but not the actual definition of a topo-
logical space (a set with its topology is called a topological space)
as given by us at the end of Chapter 2. Now although this can
again be explained as a generalization of the interval in analysis,
the process is a little more sophisticated and yet common enough
in mathematics. It is precisely the same process as could have led
us from, say, the positive rational numbers with multiplication to
the concept of a group. We abstract those defining properties
which, while common to a large number of particular examples,
are convenient to develop a general theory. Now only experience*

* In fact the definition given is a synthesis of the various definitions which have
arisen in the historical development of the subject.
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can teach us what is convenient, and although, in teaching, one
naturally tries to motivate the choice of defining properties, we
demand so little of a topological space that we could well accept
the definition and go on to see what we can get out of such a
structure. We propose to do this.

Example N. We have already given one topology for the real numbers R,
i.e. that topology whose base is the set of all (open) intervals. Another topo-
logy is given by taking the open sets to be

@@ Rand @, and
(ii) all the sets of the form x < a forae R.

The reader might like to invent some of his own topologies for R: in par-
ticular there is, of course, the discrete topology (see Chapter 5, page 83) and
the indiscrete topology whose open sets are just R and @.

We stated above that a rectangle and a square are topologically
equivalent, because each can be continuously deformed into the
other. Now this intuitive idea can easily be made precise. We
require some definition of topological equivalence for abstract
topological spaces, and we would like such a definition to provide
us with an equivalence relation for spaces. In the first place we
shall require the points of the two topological spaces (4, T': A) and
(B, T': B) to be in one-one correspondence. (A many-one mapping
of a set 4 onto a set B will not give us an equivalence relation,
since there is not necessarily a many-one mapping of B onto A.)
Then from our discussion above, we shall clearly require the exist-
ence of a one-one mapping of (4, T': 4) onto (B, T: B) which is
continuous. But this again is not sufficient; perhaps there is no
continuous mapping of (B, T': B) onto (4, T': A): examples of such
a situationare known to exist (see Example Q, page 101). Therefore,
we go one step further, and require the existence of a bi-continuous
mapping, i.e. it and its inverse must be continuous. To summarize
then; we shall say that a topological space (4, T': 4) is topologically
equivalent to a topological space (B, T': B) if there is a one-one
bi-continuous mapping of (4, T': 4) onto (B, T': B). Such a map-
ping is called a homeomorphism (note the ‘e’) and the spaces are
said to be homeomorphic.

We have not quite proved that ‘homeomorphism’ is an equiva-
lence relation on spaces. In obtaining our definition we made sure

that the relation was symmetric, but paid no attention to the other
BSGTD
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two required properties of an equivalence relation. The reflexive
property is self-evident; the identity mapping of (4, T': 4) onto
(4, T: A) which maps every point onto itself, is a homeomorphism.
The transitive property is, however, far from evident. If fis a
homeomorphism of (4, T': A) onto (B, T: B) and g is a homeo-
morphism of (B, T': B) onto (C, T: C) then we have a mapping
h=gof of (4, T:A) onto (C, T: C) which is one-one (see
Chapter 5, page 67). It remains to prove that 4 is bi-continuous.
We shall prove, in a little while, the stronger result that if fand g
are continuous many-one mappings then their combination 4 is
also continuous. It will follow that if fand g are homeomorphisms
that # = g of is a homeomorphism; for the inverse of 4 is the
combination fo & and f and § are, of course, continuous by
definition.

Before we prove the outstanding result, let us consider a different
approach which is not only relevant to this chapter, but also of
great importance in mathematics, as we intend to show in sub-
sequent chapters. Distance we said is not a useful topological con-
cept. Now what exactly does this mean ? Suppose that we are given
a topological space (4, T: A) in which distance is defined and
that the images of two elements P, Q of 4 under a continuous
mapping f of A onto itself are f{P) and f(Q), then the distance
between P and Q is not necessarily the same as the distance between

S(P) and Q).

Example O. Suppose that the real line and its subsets have the natural
topology and the usual distance. Then x — + +/x is a homeomorphism of,
say, 0 < x < 1 onto itself. The points } and 1 map onto the points  and 1.

We shall say that distance is not a fopological invariant, i.e. it is
not necessarily preserved under a homeomorphic mapping. Topo-
logy concerns itself with those things which are invariant under
homeomorphic mappings, for homeomorphisms give rise to group
structure (see page 99).

Example P. A common elementary example of a topological invariant is
that usually illustrated by a torus and a sphere. It is intuitively evident that
we cannot remove the hole in the torus without regarding different points as
identical and thus breaking the one-one requirement, so we cannot deform
the surface of the torus into the surface of the sphere. (Try it with a ring and
ball.) We can express a difference between the two in very loose topological
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terms as follows. We can imagine any closed curve drawn on the surface of
a sphere being deformed continuously into any other closed curve on the
sphere, and a closed curve is intuitively a topological invariant. But we can
find two closed curves on a torus which cannot be continuously deformed into
each other; for instance the two shown in the diagram. Therefore, it would
seem that the sphere and torus cannot be topologically equivalent (see also
the topological notes to Chapter 9 and Chapter 11).

,1

Now consider a topological space (4, T: A) (remember that a
topological space is a set with a definite topology) and the set of
all mappings which are homeomorphisms of the topological space
onto itself. This set of homeomorphisms H, under the usual binary
operation for the combination of two mappings, forms a group.
What is more, the mappings which we rejected earlier (e.g. many-
one, continuous one-one but not bi-continuous) in our attempt to
find a proper equivalence relation, do not form groups, and for
the same reasons. We shall illustrate this point while showing that
H does form a group.

(@) The combination of any two elements f, g € H, i.e.

h=gof,
is uniquely defined, and will be a member of H when we prove the
result which is already outstanding from our previous considera-
tions.

(b) Leth, g, f be members of H and let a be any point of 4, such

that
fla) = b, gb) = ¢ and h(c) = d,

then [[hoglofl(@) = [hoglh) =h(e®) =h(c) =d
and  [holgof]l@ = h(g(fl@)) = h(g®)) = k() = d.
Hence the combination is associative.

(¢) The identity mapping e of 4 onto itself is a homeomorphism
and

[e 0 fl(@) = e (fia)) = ed) = b = fa)

and [foell@ = f(e@) = fa).
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(d) Since f is a homeomorphism so is /, and fo/f (and fof)
maps any element of 4 onto itself, i.e. fof =fof =e.

It is in this last point that we need our mapping to be bi-
continuous (and not merely continuous) in order that the inverse fis
guaranteed continuous. Similarly f must be one-one, in order
that f should be one-one; if f were many-one, then / would be
one-many.

Let us summarize the two aspects of topology which we have
described.

(i) Two topological spaces are equivalent if there is a one-one
bi-continuous mapping of one space onto another.

(ii) A topological invariant in a space is an object, or quantity
determined by an object, which is invariant under the group
of homeomorphisms of the space onto itself.

We now propose to prove the outstanding result. Suppose
that £ is a continuous many-one mapping of a topological space
(4, T': A) onto a topological space (B, T': B) and that g is a con-
tinuous many-one mapping of (B, T': B) onto a topological space
(C, T: C) and consider the mapping 2 = go f of 4 onto C. We
shall show that 4 is continuous. Let U be any set open in T': C,
then y(U) = Y, say, is the set of all those elements of 4 which are
mapped onto U by & = g o f; i.e., by definition, f{Y) = Z, say, is
the set of all those elements of B which are mapped onto U by g;
in other words Z = 8(U) and

Y =J(3(0y).

But g is continuous, therefore 3(U) is open in T': B; similarly
F(BW)) is open in T: A, ie. Y is open in T: 4, whence 4 is
continuous. This completes the proof.
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NoTE: As we said above, the set of all homeomorphisms of a
space onto itself form a group. Therefore, we shall now adopt the -
group notation for mappings and denote the inverse of f by f (and
we shall henceforth use this notation for any mappings even when
the structure is not a group).

Example Q. In Example N on page 97 we gave various topologies for the
set of real numbers R. Consider the mapping f, defined by

f = x.

Is it a continuous mapping of R (with one topology) onto R (with another
topology) ? Is it a homeomorphism?
For example, consider

(f: R: (R with the ‘natural topology’) —> R4 (R with the discrete topology).

() fis not continuous, for any x € R is open in Ry, but its inverse image x
is not open in R;.

(ii) f'is continuous, for the image of any (open) interval in R is open in R4
because this image is the union of its discrete elements, each of which
is open in Rg.
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CHAPTER 7
EXERCISES

IN this chapter we shall give examples of groups and modifications
of existing sets to obtain groups.

1. Certain objects have the property of symmetry: that is, there is more
than one way in which they can be fitted into a close-fitting fixed framework.
For example, a cube can be fitted into a close-fitting cubical box in many
different ways. (How many ?)

Imagine an equilateral triangle cut out of some transparent material with
the vertices lettered 4, B and C. This triangle can be fitted into a close-fitting
fixed frame in preciscly six ways, as shown in the diagram below. (In the
diagrams the letters are shown the right way up in spite of the fact that they
would really be tilted or seen in reverse. The fixed frame is shown in dotted
lines.)

an axis OO’ through the centre of the frame and perpendicular to its plane.
Then if we start, in each case, with position (@), the other five positions may
be obtained by performing the following rotations:

Rotation b: 120° anticlockwise about 00O’
» c: 240° s 1] oo’
»»  d:180° about dd’
’ e: 180° about ee’
»  J: 180° about £,
102
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To this list we add a sixth, a rotation of 0° called rotation a.

These six rotations are the elements of a group. The elements are combined
by starting with position (@) and performing first one rotation and then per-
forming the other upon the result of the first. (We call this the operation of
‘subsequent performance’ and indicate it by the symbol o, as usual.) Thus
b o e means (starting from position (a)) ‘rotate 180° about ee’, then rotate
through 120° anticlockwise about @0”. (Note that the e rotation is performed
first.) The position arrived at is

===

which is the same as that produced by the single rotation d. Hence we write
boe =d.

Notice that we do #nor imply by the equals sign that rotating 180° about ee’
followed by rotating through 120° about OO’ is the same as rotating 180°
about dd’. The equals sign here implies, merely, that the final position is the
same.

In a similar way, eob =f

@ Copy and complete the following table, noticing that the two results
boe = dand e o b = fhave been inserted in the appropriate places.
(By convention the result 5 o e is placed in row b, column e, while
the result e o b is in row e, column 5.)

o a b c d e f

a

e f
f

(i) The statement that the system forms a group implies that the operation
is known to be associative. How do we know this?

(iii) What is the neutral element of the group?

(iv) List the inverses of the six elements.
(v) Is the group commutative?
(vi) Solve the equationscox =dand xoc = d.
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(vii) The two elements a and f form a group by themselves, with the same
operation. The group table is:

o a f
a a f
flf a

Such a group, using the same operation as the original group, but using only
some of its elements, is called a subgroup of the original group. Find two
other subgroups with two elements and find also a subgroup with three
elements.

The interested reader will find Herman Weyl’s beautiful book Symmetry.
(Princeton University Press) well worth reading.

2. In Chapter 3, Exercise 1, page 45, we discussed residue classes and men-
tioned subsequently that congruence to a modulus is an equivalence relation
compatible with the operations of multiplication and addition. Consider, in
particular, the set of all integers and the residue classes modulo 7, i.e. the
classes :

(..-21, ~-14, —7,0, 7,14,21,...) class O
(..—20, —13, —6,1, 8,15,22,..) class A4
G¢..—19,-12, —5,2, 9,16,23,...) class B
(..—18, —11, —4,3,10,17,24,...) class C
¢..-—17, —-10, —3,4, 11, 18, 25,...) class D
(..-—16, — 9, —2,5,12,19,26,...) class E
¢..—15 — 8, —1,6,13,20,27,...) class F

Since multiplication is compatible with the equivalence relation we can
multiply two residue classes using any representatives from each class, and
the class to which the result belongs is independent of the choice of repre-
sentatives.

Thus, for example, we can calculate E x B by taking, say, 9 from class B
and —2, say, from E, then

E X B = the residue class containing (—2 x 9 = —18),
ie. EXxXB=C.

@ It would certainly be instructive (if the reader has the patience) to
verify again that multiplication is compatible with the equivalence
relation. In general, for an equivalence relation R and an operation o,
we defined this to mean

aRband cRdimply [aoc] R{bod].
In particular, we want to show
a=b(@mod 7) and ¢ =d (mod 7) imply [@ X c] = {b X d] (mod 7).

(ii) Taking the six classes 4, B, C, D, E, F as elements, and using the
operation of multiplication, verify that the structure is a group and
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copy and complete the following table. Is the group commutative (cf.
Example L, Chapter 3, page 49)?

X y | B C D E F
A
B
C
D
C
F

(iil) Verify that the structure obtained by using the same operation on all
seven classes O, 4, B, C, D, E, Fis not a group. Is it a group under
addition?

The structures obtained in Exercises 1¢i) and 2(ii) are two different groups
each having six elements. (Finite groups are said to be different if one table
cannot be obtained from the other by renaming elements or altering the order
of rows and columns, i.e. the groups are not isomorphic.) It can be shown
that, in this sense, no other groups of six elements exist, that is, that every
other group table of six elements can be transformed into one of the above
two by renaming or re-ordering (see Chapter 11).

3. Consider the set whose elements are the six mappings of the reals into
the reals

x—1

1
fiix—x, fz:x—rm, fiix—

1 x
f4.x-—->;_-’ f5.X'—);c—:——1-, fs.x—>1 - X,
and take as operation o the combination of two mappings, so that, for
example
fiofe= x—>—1- o —>—1— ——x——>—1~
avsr X * 1 —x| 1
1—x
=x-~>1-x
=fe

() Verify that this system is a group.

(i) Relabel the elements with the letters a, b, ¢, d, e, fin such a way that
the group table becomes identical with that of Exercise 1G).

(iii) Verify that it is impossible to relabel with the letters A, B, C,DEF
so that the table becomes identical with that of Exercise 2(ii).
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4. Consider the set of all symmetries of a regular hexagon with centre O.

(@ Show that the subset of all symmetries, obtainable by rotating the
hexagon about an axis through O and perpendicular to the plane of
the hexagon, form a group with the operation described in Exercise 1.
Construct the group table.

(i) Relabelling the rotations (or re-ordering the columns or rows of the
group table) if necessary, show that the group table is identical with
one of Exercise 1(i) or Exercise 2(ii).

(iii) Construct the group tablefor thesetof all symmetries of the hexagon and
find as many subgroups as you can. (The group has twelve elements.)

5. For those familiar with vector analysis we remark that the set of all
vectors with the vector product as operation does not form a group. The
operation is not associative and there is no neutral element (and, ipso facto,
inverses are not defined). The inherent difficulty in manipulating equations
involving the vector product certainly stems from this fact. (The generalization
of vectors as quaternions removes this difficulty but has the disadvantage
that the physical interpretation of quaternions is not so obvious.)

6. The group in this exercise is usually associated with more advanced
mathematics. Consider the set of all complex functions,i.e. the set of all many-
one mappings of the complex numbers (or some subset) into the complex
numbers. A complex function f is usually represented as a correspondence
between two complex planes; if z = x + iy is any complex number in the
domain of fand if w is the image of z under £,

and w=u + iv = f(2),
then we would represent z in one complex plane and w in another.
£/} A
/—?\ \
"z ;f (@)=w
v iv
X ! > 72 v ! >y
z-plane w-plane

In particular the mapping f:z — é is a one-one mapping of the z-plane onto

the w-plane except that the origin, z = 0, has no image point. Rather than
make a special statement it is usual to adjoin a special point, the point at
infinity,* to the complex plane; in other words we adjoin a point which is

* This is an unfortunate name since it implies that we have a point in the plane at
an infinite distance from the origin and this is pure nonsense. The point at infinity
is extra to all the points of a complex plane: it can be represented by any point not
in the plane (e.g. by a point one inch above the origin).
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defined to be the image of z = 0 under the mapping f:z —> i The point

is usually denoted by co. (There are, incidentally, other good reasons for
introducing the point at infinity, but these do not concern us.)

Now the set of all many-one mappings of the complex plane onto the com-
plex plane is far too general a class of functions to be of any special mathe-
matical interest (see for example Titchmarsh, The Theory of Functions,
(Oxford) pages 64 et seq.). So we consider a subset of all those functions which
are differentiable in some domain. Such functions are called analytic (in the
domain). The theory of analytic functions is probably one of the most
beautiful in mathematics. In particular we note that an analytic function of
an analytic function is analytic. In our terminology this means that if we
combine two analytic functions we get another member of the set.* The
identity mapping, e:z —> z, is also analytic, so, following the train of thought
in this chapter, it remains to investigate the existence of the inverse of any
function f.

It is clear that a general function f has no inverse, because if fis many-one
then the inverse mapping is not a function; and, generally, in the theory of
analytic functions this is of no consequence. Only in particular branches do we
require inverse functions; for instance, in the applications of the theory of
mappings to hydrodynamics, electrical theory, etc. Here we are interested
only in the existence of group structure, so we shall restrict our analytic
functions to be one-one mappings (often called bi-uniform). This is still
not sufficient restriction, for if £is any one-one analytic function there is no
guarantee that £ is analytic.

Suppose that f and f are analytic and write

w = f(2),
and so z = f(w) = f(f(D).

Differentiating with respect to z, we have
_ df(w) _ df dw df df

= "o & v
df'_ 1 . .df
It follows that = _df’ o # 0.
dz

Thus, a necessary condition that £ should be analytic is that g(z) # 0. This

condition is also sufficient.

In general, as we saw earlier, the combination of functions is associative,
and so we now have a group structure for this restricted set of analytic func-
tions (see the footnote). There is a result which states that the most general

* If fis analytic in a domain D and g is analytic in a domain D’, then we can say
very little about the domain in which fog is analytic. So the statement in the text
is not true without some limitation. We run into the same difficulties when dealing
with associativity. We have, however, glossed over these difficulties, because, in the
end, we shall give an example of a set of functions which forms a group and in which
the domain of each function is the whole complex plane.
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one-one analytic mapping of the whole complex plane onto the complex
plane is
az+b
cz+d

where a, b, ¢, d are (complex) constants. Such a mapping is variously called a
linear, bilinear or Mdbius transformation.
(i) Find the inverse of the mapping.
(i) Show that the derivative of this mapping is non-zero if ad — be 0.
(iii) Show, by direct substitution, that the combination of two such map-
pings is again such a mapping.
@iv) ¢ = b = 0,d = a = 1 gives the identity mapping e:z —> z.
(v) Any bilinear mapping can be composed of four basic mappings.
(@) z—> z + «, o any complex number. This represents a translation in
the plane.
(b) z —> ze%, 6 any real number. This represents a rotation in the plane,
about the origin.
(¢) z—> az, a any real number. This represents a dilation (¢ > 1), ora
contraction (g < 1), i.e. a figure is mapped onto a similar figure
with a scale of 1:a.

ad — bc # 0.

1 . . . .
@z— > This represents an inversion in the unit circle, centre the

origin.
. . az + b
_) .
Now consider the mapping z ozt d »
(AY If ¢ =0, then this can be written z—>a'z 4 b’, where
a =g and b = g Then if a’ = pe*¥, p and ¢ real, we can de-
compose this mapping into
© & @

Z—>pz—>pe¥z = a'z—>a’z + V.
B) If ¢ # 0, then write

az +b _  [ad — bc] 1 +£1
cz+d c ‘cz+d ¢
3 be — ad .
and suppose ¢ = pe*t and i p 9 _ K= re®, where p, ¢, r and

0 are real. Then the decomposition is

© o
2 —> pz —> pedz
@ @, © , ®

= d —_ 6
cz—>cz + __>cz+d cz+d-)cz+de

K @ g a az+b
_ - = .
cz+d cz+d ¢ cz+d
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The only one of the mappings (a), (b), (¢) or (d) which changes the shape of
figures in the complex plane is the inversion (d). Since the inversion of a circle
or a straight line is a circle or straight line, it follows that circles and straight
lines are transformed into circles and straight lines by a bilinear mapping.

(vi) Show that each of the sets of mappings (a), (b) and (c) forms a subgroup
of the group of all bilinear mappings. What about (d)?

(vii) Under the mapping z — Z_——:—-S’ which point z maps onto the point at
infinity? What is the image of the point at infinity? Answer the
same questions for the mappings (a) to (d).

We shall now leave the straightforward examples of groups and
turn to another aspect of the use of group ideas. There will, of
course, be many more examples of groups in subsequent chapters. »

The following two examples of extensions of sets to form groups
may, with suitable pupils, be made the basis for the teaching of
much elementary arithmetic. Suitable pupils are those who are

(@) familiar with the properties of natural numbers under addi-
tion and multiplication,

(b) familiar with simple group structures and the fact that simple
problems of the type a o x = b are solvable in a group,

(c) either completely unacquainted with the properties of frac-
tions and directed numbers or, although acquainted with
them, sufficiently academically inclined to be prepared to
reconsider these properties in a more unified way.

(For a discussion of this topic within the general teaching scheme
see Mansfield and Thompson, Mathematics: A New Approach,
Teachers’ and Pupils’ Books 3, Chapters 1 and 9 (Chatto and
Windus).)

The work may well be introduced once some simple examples
of groups have been considered, and the specific advantages of the
structure realized, by constructing the following table, which is in-
tended to show whether or not the set of natural numbers, 1, 2, 3, 4,
. . . possesses the four group properties under the operations of
addition, subtraction, multiplication and division.

Natural numbers | + | — l X | +
Closure v X v X
Associativity v X v X
Neutral element X x | YA)| x
Inverses X X X X
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Evidently the set does not form a group under any of these opera-
tions and hence the situation is unsatisfactory in that if g and b are
natural numbers there may not always be an x in the set such that
a o x = b where o stands for any of the four operations. Our pur-
pose is to extend the set so that groups are formed where possible,
and we shall use the properties of the natural numbers only. The
extended system will include a subset which can be identified (un-
der an isomorphism, see Chapter 4, page 61) with the natural
numbers. Plainly the operations of subtraction and division may
be discarded since they fulfil none of the four conditions. Of the
remaining two operations we consider multiplication first since it
fails in respect of one property only.

7. We wish to invent a new set, using natural numbers only, so that it

‘contains’ the natural numbers, but so that the equation
ax =b
always has a solution in the set, when @ and b are members of the set. Now in
the cases where a natural number x does exist to satisfy ax = b (where a and
b are natural numbers) the value of x is completely specified by the values
of a and b and we want to preserve this property*. (The asterisk, here and
subsequently, is inserted for future reference.) Hence we may define x by the
pair of natural numbers (a, 4):
if x, satisfies a;x; = b, we define x; by (a,, by,
and if x, satisfies a;x; = b, we define x; by (a,, by).
But if x; and x, are as defined, and they are natural numbers, we have, neces-
sarily,
@43 X1X3 = bib,
and we also wish to preserve this property*. Hence
X1X5 is defined by (a1a,, biby)

which implies that our combination operation (which we shall denote by a
simple dot, because we are extending multiplication of natural numbers)
for these pairs of natural numbers is

(al, bl) -(‘12, bz) = (a]_az, b]_bz) . . . . (1)

If we now take all pairs of natural numbers (a, b) (and not only those which
correspond to a natural number x) as the members of a set, then equation
(1) defines an operation by which any two pairs of natural numbers may be
combined to produce another pair of natural numbers. (Note that since
a,, ay, b, and b, are natural numbers so also are a,a,; and b,b,.)
Plainly (1, 1) is an identity element, since
@ b).(1, 1) = 1, 1).(a, b) = (a, b),
but so far, the system does not possess inverses: there is, for example, no palr

(a, b) such that
(2, 3)-(“, b) = (1’ 1)'
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However, we observe that if x is a natural number satisfying ax = b (so that
x is defined by (a, b)), we have, necessarily, for any natural number %,

kax = kb
so that the same x is defined by (ka, kb) and we also (and finally) wish to
retain this property*. Hence

(ka, kb) = (a, b),

where the equals sign is used in the sense that both pairs define the same x.
It is convenient to write this in the equivalent form

(alsbl) = (a2’ bz) ifalba = agbl. . . )]
Now the relation (2) is an equivalence relation for the set of all pairs of natural
numbers. It partitions the set into non-overlapping equivalence classes and

the combination defined by equation (1) is compatible with the equivalence
relation, i.e. if

(a1, b)) = (as, by and (c;, dy) = (ca, dp) then (aic;, bidy) = (aycs, body),
for a,¢:1b:d; = [ab,]leids] = [bialld ;] = bidiases.

It follows that we can take these equivalence classes as the elements of a set
and that classes can be combined by applying the operation given by equation
(1) to any two representative members of the two classes, and then identifying
the class to which the result belongs. Then, with the equivalence class con-
taining (1, 1) as identity element, the system forms a group. It may be seen
that operation defined by equation (1) is necessarily associative, since multi-
plication of natural numbers is associative. It may also be seen that if {(a, b)}
is a class, then

{(a, BY}.{(b, @)} = {(ab, ab)} by equation (1)
={U, 1} by relation (2).
Thus the class whose representative is (a, b) has as inverse the class whose
representative is (b, a).
Further, as required, there always exists a class {(x, »)} such that

{(as b)}'{(xa y)} = {(C, d)},
for operating on both sides with {(b, a)}, the inverse of {(a, b)}, we have

{d, D} ACx, »} = {G, &)}.{(c, D},
{&x, M} = {be, ad)}. . N ©))
Since the operation is commutative, {(bc, ad)} automatically satisfies
{&x, }.{@a, B} = {(c, D}.

Thus our object has been achieved, in that we have defined a group structure
purely in terms of natural numbers. It remains to be seen that the systems
‘contains’ the natural numbers; more precisely that it has a subset which can
be identified isomorphically with the natural numbers. It is already obvious
that many of the properties of the natural numbers have been deliberately
retained (see the three occurrences of an * above).

Some of the equivalence classes have members of the form (m, ma). In each
such class there is a member for which the first element of the ordered pair is
least, viz. the pair (1, a). The mapping i

i:a— {d, &)}



112 CHAPTER 7

is clearly one-one. Also

i{ab) = {1, ab)} = {1, &}.{{1, B} = i(a).i(b),
and so i is an isomorphism between the natural numbers and the subset of
equivalence classes of the form {(1, a)}.

It is inconvenient to continue repeating ‘class whose representative is’ or
using the multiple brackets {()}, so we usually denote each whole equivalence
class by that one of its members for which the first element of the ordered pair
is least: if this member is (g, b) it is usually written as b/a and the whole
equivalence class is called the positive rational b/a.

It is suggested that pupils in the category ‘unacquainted with fractions’
should now be introduced to the usual physical interpretations and that some
corresponding interpretations of the operation defined by equation (1) above
should also be investigated (noticing that multiplication of a fraction by a
fraction and of a fraction by a natural number are obtained directly from
equation (1), while division of a fraction or a whole number by a whole number
or a fraction are obtained from equation (3): ‘cancellation’ and ‘reduction to
lowest terms’ follow from relation (2)).

8. We now construct a set, using only natural numbers, forming a group for
an operation corresponding to addition, so that the system, in the sense
explained in the previous exercises, ‘contains’ the natural numbers, and so
that if a and b are members of the set there is always an x such that

a+x=b
and a y such that y+a=>a,
where the 4 denotes the operation of addition extended to the new set.

The construction is analogous to that in the last example and will, in con-
sequence, be abbreviated. In the cases where a natural number x, exists to
satisfy a, + x, = b, (@, and b, are natural numbers), we define x, by (a, by).
If a natural number x, satisfies a, + x, = b,, we define x, by (a,, by).

Now it follows that
[a + a5l + [x; + x,] = by + by,
so we define x; + x; by (@ + a,, b; + by). Hence

@y, b)) + (ay, by) = (@ + a5, by + by) . . )]
Again, if x is a natural number and satisfies
a+x=2a,

then for any natural number k,
at+k+x=>5b+k,
so that the same x is defined by (a, b) and by (@ + k, b + k).

We write @a+kb+k)=(@b
in the more convenient form
(al, bl) = (az, bz) ifa1 + bz =aqa, + bl' . . . (2)

Now the set of all pairs of natural numbers is partitioned into equivalence
classes by the relation (2). We take the equivalence classes as elements, and as
in the previous exercise show that addition is compatible with the equivalence
relation. Therefore, we can combine any two equivalence classes by combining
two representative members by the operation defined by equation (1) and
identifying the equivalence class to which the result belongs.
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The set is closed under this operation since @, + a; and b, -+ b, are natural
numbsers if a;, a,, b, and b, are natural numbers.

The operation is associative because addition of natural numbers is associ-
ative,

The identity element is the class containing (1, 1), for

{@ b} + {1, D} = {@ + 1,5 + 1)} from equation (1)
= {(a, b)} by relation (2).

The class {(a, b)} has as inverse the class {(b, a)}, for

{@, B} + {b, @} = {(a + b,a + b} from equation (1)
= {{1, 1D} by relation (2).
Hence this system of equivalence classes forms a group.

Again, for conciseness, each equivalence class is allotted a name, determined
as follows: in any class choose a pair @, s). Then, if r > S, r — s is a natural
number, say ¢. The whole class is given the name the integer, or directed
number, —t. If r < s, s — r is a natural number, say t. The whole class is
given the name the integer, or directed number, -+, If, finally, r = s, the
whole class is given the name the integer 0. (If r = s, (r, 8) is a member of the
class (1, 1); it follows that 0 is the neutral element.)*

The mapping i:a—> {(1, a + 1)} = + a is clearly a one-one mapping of
the natural numbers onto a subset of the integers. The mapping is an iso-
morphism:
la+b)={l0,a+b+1D}={Q,a+b+2}

={l,a+ D} +{A,b + 1)} = ila) + i®).
Hence the natural numbers may be identified with the classes +1, +2, 43,
... and the system in this sense ‘contains’ the natural numbers.
Since the system is a group, if

{@, B} + {¢x, »} = {(c, d)}
we may add the inverse of {(a, b)}, that is {(b, @)}, to both sides, obtaining
LD} + {0} ={b+c,a+d)},

ie. {C»y={b+c,a+d} . . . . G

It is suggested that appropriate pupils perform such calculations as
+3 + +5, -3+ +5, +3 + —5 and —3 + —S5, by choosing particular
representatives of the equivalence classes and using equation (1) and relation
(2). For example, to calculate +3 + —S5 they might take (1, 4) as representing
+3 and (7, 2) as representing —5. Then

A4,H +7,2)=@8,6) by equation (1)
and the class which (8, 6) represents is named —2. Hence
+3 4+ =5 = -2,

Again subtraction may be performed by equation (3). For instance
—3 — —5 may be calculated by taking (4, 1) as representing —3 and 3,3
as representing —5. It is required to find (x, y) such that

(8: 3) + (x! y) = (4, 1)
* This, the traditional notation for the integers, is offensive and obscure. In order

to distinguish the elements from the operations many teachers now write, for
example, -1 + +2 = +1,
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and, by equation (3), (x, ») = (7, 9 and {(7, 9} has the name +2. Hence
—3— —5=+2.

The usual interpretations in terms of thermometer scales, altitudes and
bank balances may follow.

9. The process which we have described in the last two exercises can be
continued (with variations) until the whole system of rationals with addition
and multiplication has been constructed. But after the last two exercises the
process may well become too tedious for both pupil and teacher, and, there-
fore, for teaching purposes a compromise is suggested as outlined in Mansfield
and Thompson, Mathematics. A New Approach (Chatto & Windus) (especially,
Teachers’ Book 3, Chapter 9). Nevertheless, it is advisable that the teacher
should be aware of the fact that the structural approach can be continued to
develop the whole system of rationals. We do this in Chapter 13, where it is
more appropriate.

Our last example of a group structure in this chapter is a topological one.

10. There are many fascinating topics which belong to the byways of
topology. Although they may once have been associated with ‘recreational
mathematics’ their theory has been developed and has engaged the attention
of many famous mathematicians. Such topics are the map colouring problem,
the theory of knots and braids and many topics now included in the theory of
graphs. All these belong properly to the wide field of topology and they have
all led to much serious mathematics, and in a number of cases to problems
still unsolved.

As an example to end this chapter we shall describe the group associated
with the theory of braids: for more information the reader is referred to
Reidemeister, Knotentheorie, (Chelsea), 1948, and the bibliography given by
him.

Let /, and [, be two equal parallel lines and let 4,, ..., Anand By, ..., Bxs
be n points equidistantly spaced on each line respectively.* Then a braid of
order n is a system of n threads (mathematically represented by non-inter-
secting space curves) joining the A’s to B’s: only one thread terminates at
any of the points. Also we shall require that the projection of the threads into
the plane of /; and [, is such that any line / parallel to /; and /, meets each curve
once only. Thus a typical projection of a braid would look like the figure on
page 115, where over and under crossings of the threads are shown in an
obvious way. As we shall see later, it is inconvenient to have exactly the situa-
tion depicted where [ passes through two double-points, so we deform the
pattern slightly so that no two double-points lie on the same parallel /. In fact

* Our definition might seem somewhat special, but it is given in this form for
subsequent convenience. If the points were not equidistantly spaced we would just
allow a further continuous deformation which moved the points into the required
positions without reordering, etc.
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we shall allow any continuous* deformation of the threads, and two braids
will be said to be equivalent if they have the same number of threads and if they
can be continuously deformed into each other. This is a proper equivalence
relation.

We can combine braids of the same order by sticking them end to end.
We can formalize this as follows: Let the braids be denoted in an obvious
way by 21 = ll’ lg; A]_, TS An; B19 PRYS Bn and Zg = Il” lz’; All, DTS Anl;
By, ..., By, then we define the combination by laying J, along /;* so that the
points By, . .., Bs and 4/, . . ., A,’ are matched. (If the distances between the
A’s and B’s are not the same then we can always perform an affine trans-
formation (see Chapter 12) to arrange this.) We then suppress /; and /; and
imagine the threads to run uninterruptedly from /, to /). The new braid is
again of order » and we shall denote it by Z; o0 Z,. We give an example.

A A A A,

§ N 3 A A Ay Ay
/ \y\\ / \
L éz/ia, B
: 4.

i /_1'2\.;1;43 ™~
\ \
= il AN
Bl B2 3 84
202,

13 1 !
\ 8, 8 B

If Z, is equivalent to Z,” and Z, to Z,’ then Z, 0 Z, is equivalent to Z,’ 0 Z,".
* By ‘continuous deformation® we mean the physical deformation of a thread in
three dimensional space without breaking it or making joins.
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This means that we can combine equivalence classes according to the defin-
ition

{Z30{Z,} = {Z,02Z,}.
Combination of braids is associative: the braid in which each 4; is joined to
B; without crossings defines a class {e} and clearly

{Zi}o{e} = {e}o {2y} = {Z}.

Therefore, if we can define the inverse of {Z,}, we shall have a group structure
for the set of all braids of given order #. In fact {Zl} is the inverse, where Z;
is the mirror image of Z; in J,. We shall, however, develop the inverse other-
wise.

Instead of combining braids we can chop them up into elementary sections
by lines parallel to the lines /; and /, so that each section contains one crossing
only. Thus Z, illustrated above would be divided into six elementary sections
as shown below.

If in any elementary section the i-th thread crosses over the (i 4 1)-th thread,
counting from the left along the top line of the section, then we denote that
section by §;: if the i-th thread passes under the (¢ + 1)-th thread we denote it
by S;. It is clear that

{Si} 0 {8i} = {8} o {Si} = {e}.
Note that the numbering of the threads will change from section to section
and that we work from the top to the bottom of the braid. In the above figure
we have

Zy=85;08508,080808.
Hence {Zs} = {S:} 0 {85} o {Si}o {§2} o {S;} o {57} . ¢))
Since the combination of braids is associative, it follows* that

{Zz} = {81} 0 {S;} 0 {S:} 0 {S1} 0 {Ss} 0 {§2}9
which exhibits the inverse explicitly. The reader might like to draw this braid.
_Every equivalence class {Z} can be written as a combination of {S;} and
{Si}, therefore we say that the {S;} are generating elements of the group. If the
braids are of order n, then there are n — 1 generating elements,
{Sl}’ . ooy {Sn—l}-

Two braids of order » will be equivalent if the corresponding combin-
ations of generating elements define the same group element. For instance in

* Note that the inverse of an expression like g, 0 g, is §50 £y.
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the braid Z,, the thread 4,’B,’ passes over all the other threads and we can
alter its position arbitrarily. Thus an equivalent braid would be Zy

whence {Z:} = {Z} = (S} o (S} o (S} 0 {8} 0 {8} 0 (55} . - @
Thus (1) and (2) would define the same group element.

Reidemeister shows that any continuous transformation of braids can be
obtained from three elementary transformations. By examining the effect of
these elementary transformations on any combination of generating elements

one can obtain the following two relations satisfied by the generating elements
of a braid group

{Si}o{Si} ={S;}o{S:i} j=#i+ 1,i —1 3
and {Si} 0 {Si1} 0 {8} = {Sit1} 0 {Si} 0 {S;14} @

These are the defining relations for the group and they are the algebraic
expression of the geometrical concept of a continuous transformation: the
relations can be verified by drawing the corresponding braids. The reader is
recommended to do this in order to appreciate their geometric significance.

Given two braids Z, and Z;, one can form the corresponding expressions in
the group. If Z, and Z, are equivalent then their corresponding expressions
can be transformed into each other using the defining relations (3) and @).
Alternatively we can examine the expression corresponding to {Z,} o {Z;}
using the defining relations. If the braids are equivalent then we must so be
able to simplify the expression corresponding to {Z,} o {Z,} that we obtain
{e}. For instance, using the example {Z,} above consider

{2} 0{Z} _ 5 .

= {S,;} o {52} 0 {S:} o {81} 0 {S5} 0 {85} 0 {Si} o {Ss} o {S:} o {Si}o {Ss} o {§z}
T T o{flo{F}o{S}o........ by 3)
R TTL PO o{8}o{f}o {&}o{F)o{S:}o{Ss}o{S}etc. by@)

The following are elementary exercises on this topic.

(@) Prove that if Z; is equivalent to Z, then in Z; 0 Z, each 4; must be
joined to B;.

(b) Show that the group of braids of order 2 is an infinite group generated
by the element {S,}.
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(¢) Draw the braids of order 3 corresponding to
® 50850808 (i)SoS08 08,
(i) $,0 8,05, 05,.
(When drawmg braids corresponding to combinations of generating
elements it is best to construct them section by section using straight
lines, e.g. S; 0 S, in a four braid would be shown as follows.)

~

Are any of the three braids equivalent?
(d) Show that the braids of order » in which 4 is joined to B; for all i,
form a subgroup of the general group (see also the end of Chapter 11).




CHAPTER 8
ISOMORPHISMS

IN this chapter we shall return to our investigation of group
structure: we shall be concerned with isomorphisms. We defined
this term in Chapter 4, which is now a long way off, so we shall
repeat ourselves.

Consider the set of natural numbers, N = (1, 2, 3, 4, .. .), with
the operation of addition. Consider also the set of positive integral
powers of two, P = (2, 4, 8, 16, . . .), with the operation of multi-
plication. It is well known that a one-one correspondence can be
set up between the members of these two sets, N and P, so that
the result of combining any two elements from one set (by the
operation defined for that set) corresponds to the result of com-
bining the corresponding elements from the other set (by the oper-
ation defined for that set). The correspondence is shown below:

N 1 2 3 4 5 6...

A

P 2 4 8 16 32 64...

and we have, for example,
mN 2+ 4= 6
A
Yoyt
inP 4 x16 =64.

Any two sets, each with its defined operation, which together
exhibit the property described in the last paragraph, are said to
be isomorphic to each other (or isomorphic structures). The one-
to-one correspondence in such a case is called an isomorphic map-
ping (or isomorphism): either set may be taken as domain and the
other as range, and the image of the combination of two elements
in the domain is the combination of the corresponding elements in
the range.

In the particular example quoted above the sets do not form
groups for the stated operations but, in view of the importance of
group structure, we shall be mainly concerned with isomorphic
groups. Two groups, G and H, with elements (g,, g, €3, - . .) and
(hy, hs, B, . . ) respectively, and operations symbolized by o and O

119
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respectively, are said to be isomorphic if a one-one (onto) mapping
can be established between the elements of the two sets so that if
any two elements g; and g; of G correspond to 4, and h, of H
respectively, and

8i08; = &
and h, O h,=h,,
then g; corresponds to 4,. We can put this in other words. Let i
be the one-one mapping of G onto H, then i is an isomorphism if

i(gog") = i(g) Oig),
where g and g’ are any elements of G.

Example A. Extend the two sets in the example with which this chapter
began so that they become isomorphic groups, retaining as subsets the sets
N and P and retaining the same operations. Describe the isomorphic mapping
precisely (cf. Chapter 4, the exercise on page 62).

Example B. Let G and H be two isomorphic groups as in the text above
and let ¢ and ¢’ be their identity elements respectively. Show that
ite) = ¢, -
and that if i(¢) = h then i(®) = h.
(Cf. Chapter 4, Example N, page 62.)

Exercises*

1. In the first exercise (Chapter 7, page 103) and the third exercise (Chapter
7, page 105) in the previous chapter the following two group combination
tables should have been obtained.

o a b cdef o H L i i s fs

a | abecdef H AL s i s 1o
b | bcalfde fo | o s A s s Nu
¢c | cabeyfd L | o i fa i fo fs
d | de fabec Lo | o fs s A S S
e | e fdcab | i s i AL
f | fde b ca ol o i i i i A

* Since most of this chapter is concerned with exercises, we have numbered the
exercises sequentially for easy reference. There are minor interruptions throughout:
these are either general statements which are used subsequently, or examples which
have no apparent direct application to the teaching situation.
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The one-to-one correspondence set out below
a b ¢ d e f
1Pt 8t d
Hh i i s S
does NOT establish an isomorphism, for
boe =d,
and f; corresponds to b, f; corresponds to e, but
feofs =fi
and f; does not correspond to d.
An isomorphism does in fact exist and is established by the isomorphic

mapping
a b ¢ d e f

PrEr iy
AN A A

and the correspondence indicates the relabelling required in Exercise 3(ii) on
page 105 in the previous chapter.

Two isomorphic groups must necessarily have the same structure
(hence the term ‘isomorphic’): they are, abstractly, the same group,
i.e. in the classification of groups they belong to the same equiva-
lence class (cf. Chapter 4, Example O, page 62). It is sometimes
evident, from dissimilarities in structure, that two groups are not
isomorphic. For example, the group table obtained in Exercise 2(ii)
on page 105 in the previous chapter contains six elements like the
tables above: however, it is immediately evident that it is not iso-
morphic to them because it is commutative, while the group we
have been discussing is non-commutative (cf. Chapter 4, Example
Q, page 63).

2. Pupils may be asked to consider the two groups whose tables are set
out below: they can be asked either to establish an isomorphic mapping
(i.e. ‘relabel’) or to give good reasons why no isomorphism exists.

o a, a, ag a, O bl bz b3 b4
a, a, a, ag ay b]_ bl bg b3 b4
[72 A, a3 ay a bg bg b1 b‘, bs
as G a3 a, a, by by by by by
ay 4G a4 ay a b, by by by b



122 CHAPTER 38

(Sufficient reasons are, for example,

(i) the ‘a’ group contains only one subgroup with two elements while the
‘b’ group contains several such subgroups, or

(ii) in the ‘b’ group b, is the neutral element and the combination of every
element with itself is the neutral element: in the ‘a’ group a; is the
neutral element but the combination of a, with itself, or a, with itself,
is not a;.)

Example C. Both the statements made at the end of the above exercise can
be proved quite generally. We use the notation of the groups G and H above.
(1) If G, is a subgroup of G then i(G;) = H;, the image of G, under the
isomorphism i of G onto H, is a subgroup of H.
This can be proved as follows
(a) H,,is closed, for let &y, 1y’ € H, and let i(gy) = hy and i (g,") = hy', then
kO hy = i(g,) 0i(gy) = i(g; 081, because i is an isomorphism
= i(g,"), where g,” € G, because G, is a group, and hence
i(g,") = " € H,.
(b) Combination in H, is associative because it is the same as in H.
(¢) The identity element e € G belongs to G, (prove this) and its image
i(e) belongs to H, and is the identity element (cf. Example B, page 120).
(@) If hy€ H, then %, € H,. For suppose i(g,) = h;, then i(§) = ky (cf.
Example B, page 120), and &, € G,.

(2) Show thatif geGand go g = e, then i(g) = h also satisfies h O h = ¢,
where e’ is the identity element of H. In general, if g" = e, where n is an integer,
then A" = ¢’. (We here use the index notation to represent repeated combin-
ation of the element with itself.)

3. Pupils are usually interested in the statement that the two groups in
Exercise 2 represent the only possible groups of four elements, that is, that
every other group of four elements is isomorphic to one of these. This (and
similar statements) follows from Lagrange’s Theorem which we shall prove
subsequently.

Teachers, who, knowing that the only two different groups of six elements
are those obtained in Chapter 7, Exercise 1(i), page 103, and Exercise 2(ii),
page 105, propose to challenge their pupils to produce group tables not iso-
morphic to either of these should beware of the fact that apparently satis-
factory tables can be produced which are certainly not isomorphic to them.
Such tables do not, of course, represent groups at all and at least one of the
group properties will not hold: unfortunately, if the associative requirement
is the only one broken, this has to be demonstrated by the very tedious process
of trial with every triple of elements until a case of failure is found.

4. Consider the eight rectangular patterns of four numbers
01 0 —1 01 -1
A = E] B = 3 C = » D = 0 L
10 1 0 -10 -1 0
10 -10 1 0 -1 0
E= ,F= ,G = ,H= )
01 01 0 —1 0 —1,
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The operation by which two patterns may be combined to produce a pattern
is symbolized by o, as usual, and is given below. (The double suffix notation
by which, for example, a, is the number in the second row and first column,
is sometimes convenient but not essential.)

(an alz) o (bn bm) - (aubn + s aybis + ambn:)
Qa1 dgy by bas @y1byy + Gy anbis + agebsy)’
so that, for example,
(0 —1 1 0 0.1 + [-1].0 0.0 + [—-1].[—1]
BoG = o =
1 0 0 —1 1.1 + 0.0 1.0 +0.[—-1]

01
= = A.
10
Although this law of combination may seem difficult to remember at first, it

soon comes with practice.

(i) Show that the eight patterns are the elements of a group for the oper-
ation o specified and write out the group table.

(ii) What is the neutral element ?
(iii) Is the group commutative ?
(iv) Make a list showing the inverse of each element.

Rectangular patterns of numbers, of which the eight above are
special cases, are known as matrices. They are of the utmost
mathematical importance, as is the operation o, and we shall fre-
quently return to them in increasing detail later (see, especially,
the next chapter). :

5. Cut out a cardboard square and letter its vertices, on both sides,
4, B, C, D. This square can be fitted into a fixed square frame in eight differ-
ent ways as below

-] A A o o C c B C D ] A A 8 8 Cc

c ol e _cla__ sl lo 4 ls _4le s lo s »
(@) (8) (e} (@) () ] 2] ()

As in Exercise 1 of the previous chapter (page 102), we obtain each position
from the first position by rotations aboutaxes fixed in the frameas shown below

b' g f’

Nk

e e’
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together with an axis 00’ through the centre of the frame perpendicular to its
plane.

Name and describe each of the eight rotations (including one of 0°) and
use the o operation and the = symbol as in Exercise 1 of the previous chapter.
Verify that the eight rotations form a group for the o operation and establish
an isomorphic correspondence between this group and that of Exercise 4 on
page 122.

6. It is of considerable importance to discover the ‘reason’ for the iso-
morphism of the groups in the last two examples. If (x, y) are the coordinates
of a point P in a plane with respect to some rectangular coordinates, then we

$3
call the pattern (y) the column vector of the point. Such a column vector is

. . a b\ . e
just an example of a rectangular matrix. If ( d) is a square matrix (.c. a
¢

square array) of four numbers, then we define
(2)<C)
o
cd y,

(ax + by)
cx + dy ’

which is again a column vector. For example, if the point P is (3, 4) and the

to be

.. [—~10
square matrix is 01/ then

—10 3 [(—11.3 + 0.4 -3
o = = .
01 4 03+14 4
-3
Now if ( 4) is interpreted as the column vector of a point P’, so that the

coordinates of P’ are (—3, 4), we call P’ the transform of P under(_(l) (l))
On graph paper, draw the triangle with vertices 4(2, 2), B(, 2), C(2, 5.
Find the transforms A4’, B’ and C’ of 4, B and C under (_(1) (1)) and draw the
triangle of which A’, B’ and C’ are the vertices. Triangle 4’B’C’ is called the
transform of the triangle ABC under <_(1) (l)) It will be seen that if 4BC is
rotated through 180° about the y-axis it takes up the position 4’B'C".
Hence, in this sense, the matrix (—(1) (1)> with the o operation represents a
rotation of 180° about the y-axis. Thus, in Exercise 5, a rotation of 180° about

gg’ corresponds to matrix F in Exercise 4, and one corresponding pair of
elements in the isomorphism is established.
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The process by which triangle ABC is transformed into triangle A’B’'C’ is
called a transformation: it is evident that the particular transformation we have
just dealt with may be described in either of two ways:

(i) in ‘geometrical’ terms, for example as a rotation through 180° about the
y-axis (or gg’ axis). (There are other ‘geometrical’ descriptions of the
same transformation: e.g. ‘a reflection in the y-axis’.)*

0
under
0 1)
the operation o.

Repeat the above process with each of the other seven matrices of Exercise
4 and describe, in ‘geometrical’ terms, the transformation corresponding to
each. Hence associate each matrix with the corresponding rotation of Exer-
cise 5, thus, once again, establishing the isomorphism between the two groups.

(ii) in matrix terms, as the transformation corresponding to (

7. Find the matrices which, operating on column vectors by the o operation,
correspond to the transformations of Chapter 7, Exercise 1, page 102. The
following may be helpful.

Since there are two rotations about OO’ it will be convenient to find the
matrix corresponding to a rotation through 6 about QO0’, rather than con-
sider the two numerical cases separately.

. Let P'(x/, ¥ be the transform of P(x, y) under an anticlockwise rotation
through 6 about OO’. Then in the diagram below, angle P'OP = angle
N’ON = 6. Also angle MP'N’ = 6.

Hence x" = OL — MN’' = xcosf — ysin§,
and Yy =NL+PM=xsin0 + ycos®.

In matrix notation this gives
(x’ _ (lcos 6].x + [~sin 6].y
¥y [sin8].x + [cos 0].y
cos 0 — sin 0 x
=" o . . .M
sin 0 cos 0 y

* In two-dimensional geometry it is usual to refer to this transformation as a
reflection in order to remain in the plane.
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so that the matrix (c.os 0 s 0) corresponds to a rotation of 9 anti-
sin 6 cos 0
clockwise about O0’, and the two particular matrices required may be found
by substitution of numerical values for 0.

Again there are three rotations through 180° about axes in the plane (re-
flections). We therefore consider a rotation of 180° about an axis in the plane
at 0 to the x-axis, as in the diagram below.

Angle NON’ = 20 and angle MN'P’ = 20.

Hence x’ = ON’cos 20 4+ P’N’sin 28 = x cos 20 + y sin 26,
and ¥ = ON’sin 20 — P’N’ cos 20 = x sin 26 — y cos 26.

X cos 20  sin 20
That is ={ o x
g sin 20 — cos 26
and the three particular matrices may be found by substitution for 6.

8. Teachers might like to make use of the matrix equation labelled (1) in
the previous exercise to verify the standard ‘sine sum’ and ‘cosine sum’
formulae, by observing that a rotation through 8 about OO’ followed by a
further rotation through ¢ about OO’ plainly produces the same transform-
ation as a rotation of 8 + ¢ about O0O’. (But note that the mechanics of the
verification could be much simplified if a little more matrix technique were
developed first, particularly the associativity of the o operation, see Chapter
9, Example E, page 140.)

We have established in equation (1) that the result of a rotation through an

angle 0 can be written
x’ _ [xcos 0 — ysin 6
'] \xsin® + ycos8/

Suppose that this is followed by a rotation through an angle ¢, then if (;)

U4

) under this further rotation, we have

”

X
transforms into (y
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o) -
y” sin ¢ cos ¢ AN

X cos ¢ cos @ — ysinbcosd — xsinbsing — ycos0sin ¢

xcosfsing —ysinfsing + xsinfcosé + ycosfcos ¢/

s

) as the transform of (x) under a single
Y,

”

If, on the other hand, we regard C

rotation through [0 + 4], we have, using equation (1) again

® (x”) _ (x cos [0 + ¢] — ysin [0 + 981)

3" xsin [0 + ¢] + ycos [0 + $]

But (A) and (B) must represent the same point for all choices of x and ¥, SO
make any particular choice, x = 1, y = 0 say. Then we get

cos [0 + ¢] cos ¢ cos 0 — sin O sin ¢
(sin [0+ ¢]> - (cos@ sin ¢ -+ sin 8 cos ¢>‘
Similarly, if we choose x = 0, y = 1, we get
—sin[6 + ¢] —sinf cos ¢ — cos Osin ¢
( cos [0 + ¢]) - ( cos 0 cos ¢ -—sinﬂsin¢)
which is the same result.
Note that we have made a particular choice for x and y, and it might be sup-

posed that we could get different results if we made other choices. If it is so
supposed, the best thing to do at this level is to try it.

9. The expression (A) in the previous exercise can be written
(x”) (cos¢cos6—-sin0sin¢ — sin 0 cos ¢ — cos 0sin ¢ x
= o
¥y cos 0 sin ¢ + sin 0 cos ¢ cos ¢ cos 0 — sin O sin ¢

cos¢ —sing cos 0 —sinﬂ:l X
= [} o]
sing  cos¢ sin@ cosf ’
and it follows from our investigations that the combination of the two matrices
in the square bracket is the same as the matrix

(cos 0+¢] —sin[ + ¢])
sin [0 + ¢] cosl0 +¢] /

Consider the set of all matrices corresponding to the set of all such rotations,
i.e. all matrices of the form

cosf@ —sinb )

sin@ cosb /'
we shall denote such a matrix by the capital letter corresponding to the angle
involved, i.e. the last matrix will be denoted by @. To each rotation about
0O’ there corresponds a matrix @ and to each @ there corresponds a rotation

but before we can say that the correspondence is one-to-one we must define
what we mean by the equality of two matrices.
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DEFINITION: Two matrices are equal if and only if they are
identical, i.e. the arrays have exactly the same shape and cor-
responding elements in the two arrays are the same. Thus, for

example
10 -1 0
10=109é019é 0 1)
01 0 1 0 0 0 0

Exercise 9 (continued). It now follows that i: rot.0 — O, the correspondence
discussed above, is one-one. We can combine rotations by performing them
successively, and then i is an isomorphism of the rotations onto the matrices
under the o operation, as we have shown at the beginning of this exercise.

The set of all rotations mod 2= (Chapter 3, Exercise 1, page 49) about

OO’ forms a group and it, therefore, follows that the set of all matrices
corresponding to these rotations forms a group (cf. Example C Part (1), page
122 with minor modifications).

(i) What is the identity element for rotations ? What is the identity element
for rotation matrices? (Note that they must correspond under the iso-
morphism.)

(ii) What is the inverse element for a rotation through 6 ? What is the inverse

of the matrix ©? (Note that these must also correspond.)

10. Show that the set of four elements 1, —1, j, —j form a group under
multiplication with j2 = — 1.

Show also that the subset (B, C, E, H) of the set of matrices in Exercise
4, on page 122, forms a group under the o operation.

Show that these two groups are isomorphic. This is a special case of an
isomorphism which will be discussed later in the next chapter, in Exercise
4, page 144.

11. Show that the six matrices

10\ /01 w0 »? 0\ /0 0?\ /0 w

01 10/ \0w? \0 o/ \@0 w? 0
form a group under the o operation where w? = 1 (o # 1); show, further,
that the group is isomorphic to that of Exercise 1 on page 120.

Example D. Consider a group G with a finite number of elements (g,, g5, . . .,
gn) and operation o. Evidently the set (#;, £2, £3, . . . , £a) forms a group under
the same operation o (where &; represents, as usual, the inverse of g; in G).
If the one-one correspondence #, defined by

i(gr) = &r
is an isomorphism, prove that G is commutative.

Example E. The set of »n anticlockwise rotations of a regular n-sided plane
polygon about an axis through its centre perpendicular to its plane through
angles k.2n/nfork =1, 2, 3, ..., n plainly form a group where the o oper-
ation is successive performance modulo 2z, and this group is isomorphic to
a certain group of matrices. Write down the matrix corresponding to the
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b
rotation through k.2n/n. If this matrix is (a d) find the values of x satisfying
c

la — x][d — x1 — be = 0 (this equation is known as the characteristic equa-
tion of the matrix) and put k = 1, 2, 3, .. ., n. What are these values? If Y
is the set of values of x with the operation of multiplication, and § is the set
of rotations under o, are X and § isomorphic structures ?

12. Consider R the group of all real numbers, with the operation of ad-
dition. Let r, s and ¢ be typical members of this group. Consider also the
mapping

fir—>a"
where a is a fixed positive real number other than unity.

The domain of this mapping is R. What is the range? The elements of the
range form a group H under the operation of multiplication, for

(1) a" X a® = a™*anda"™*e Hsincer + s € R,

@) a" x [a* X a'] = [a" x a*] X &,

3)a" xa® =a® x a" =a"and a’ e Hsince 0 € R,

@a" xaT=a"xa =aand a" € Hsince —re R.

Name a non-negative real number which does not belong to H. Note that the
neutral element of R corresponds to the neutral element of H.
The groups R and H are isomorphic for if, in R, » + s = v, we have in H,
a X a® =at =g
But the elements of two isomorphic groups are in one-to-one correspondence
and H is a subset of R. Could this occur if either H or R were a finite set?
The isomorphism breaks down if we take @ = 1 for the set H then becomes

finite and an infinite set cannot be in one-to-one correspondence with a finite
set. How many members has H in this case?

13. Consider the two equivalence classes, even whole numbers (represented
by A), and odd whole numbers (represented by B). Then from the well-known
results ‘even x odd = even’ and so on, we have the table

X A B
System 1 A A A Table 1
B A B

On the other hand, using the equally well-known results ‘even + odd = odd’
and so on, we have the table

+ A B
System 2 A A B Table 2
B B A

B3SG T-E
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Now consider the two electric circuits below, each containing a battery, a
bulb and two switches (switch 1 and switch 2),

System 3 Switch oA Sh'ltc/) oA :

[, S—

Switch Switch
System 4 l—H><<‘°—j E—"

To use one of these circuits to combine, say, B and 4 (in that order) we set
switch 1 to position B and switch 2 to position A. If the bulb lights up we take
the result of the combination to be B, while if it does not we take the result to
be A. For example, in system 3

Ao A=A,
where we use o to represent the operation of combination.
Write out the table for system 3 (call it Table 3) and another table for system
4 (call it Table 4). Compare them with Tables 1 and 2.
Two of the tables represent equivalent structures (not groups). Which are
they?
Two of the tables represent equivalent groups.

14. (@ We consider pairs of real numbers (@, 5) and define the operations
® and ® by

@bo,d=@+cb+d
(a, b)® (¢, d) = (ac — bd, ad + bc).

(i) Show that @ and ® are commutative.

(i) Show that ® is distributive over ®.

(iii) We define g(a, b) to be (ga, gb), where g is any real number. Show that
@ + g)a, b) = pla, b) @ 4(a, b).

@iv) Consider the particular elements (0, 1) and (I, 0), and obtain the

following results:
1§,0ed,0 =01,0, O,De1,00 =00,1, O, DLeO,1)=—101,0).

(v) Any element (@, b) can be written as a(l, 0) @ 5(0, 1). For brevity we
write (1, 0) as x and (0, 1) as y. Writing (a, b) ® (a, b) as (a, b)? rewrite
@v) in terms of x and y, e.g. y? = — 1.x.

(vi) Show that the system above is isomorphic under @ and ® to the system
usually known as complex numbers under addition and multiplication
respectively.




ISOMORPHISMS 131

(b) In an analogous way we can construct other systems, some of which are
useful or interesting and some of which are not, by defining combinations of
n-tuples of real numbers. We give some examples, all of which are, in fact, in
the ‘useful or interesting’ category.

W @boodefNH=@+db+ec+f
and (@, b,0)®d, e, f) = (ad + be + of, 0, 0).
(See Chapter 9, Exercise 6 (iv), page 149.)

(i) @ b, d)=@+c,b+d)
and (a, BY® (¢, d) = (ac, ad + bc).
(See Chapter 9, Exercise 4 (c), pages 138 and 145.)

(i) (@, Y (e, d)=(a + ¢, b + d)
and (a, b)® (¢, d) = (ac + bd, ad + bc).
(See Chapter 9, Exercise 4 (b), pages 138 and 144.)

V) @, b, c, )@ (e, f, g, i) =(a +e,b+fc t+gd+h
and (a, b, c,d)® e, f, 8, ) = (ae — bf — cg — dh,af + be + ch — dg,
ag + ec + df — bh, ah + de + bg — cf).
(See Chapter 9, Exercise 4 (d), pages 139 and 145.)

Investigate these systems as suggested in (a). In particular, define an x and y
and show that in (ii) y® = 0.x = (0, 0) and in (iii) y* = 1.x = x:in (iv) one
would have to define x, y, z and w in an analogous way.

(¢) Ineach of the above examples we have two operations. This really means
that we have a more complicated structure (see Chapter 13). We can, however,
investigate each combination operation separately to see if we have group
structure. It will generally be found that the r-tuple containing all zeros should
be discarded to obtain multiplicative group structure: in some cases not even
this will help. For the significance of this see Chapter 13.

(d) The reader might like to set up a different system of his own similar
to any one of (a), (b) (i) or (b) (iii) in particular.

The usual and convenient, but rather obscure, method of definition of such
structures as the above is ‘backwards’. (We do this ourselves, but only as a
convenient form of reference; see the exercises referred to in (b) above.) For
instance, one defines the set of complex numbers as the set of numbers of the
form a + by where y* = — 1 and a and b are real, with [a + byl + [c + dy]
=la+cl+1b+dlyand [a+ by] x [¢c + dy] = [ac — bd] + [ad + bcly.
One consequence of this approach is the unfortunate temptation, given
y? = — 1, to make unjustified deductions about y itself arising from y x y
= — 1, and falsely treating the last x sign as identical with that in @ X = gb.
At the best this approach is incomplete. (The student engineer is much en-
couraged, at the cost of subsequent disillusionment, by being told that y (or
J to an engineer) has something to do with a phase change of n/2. The dis-
illusion could be avoided by carefully pointing out the isomorphism: after
all one does not have to use the word.) It would seem that for teaching pur-
poses one should mix the two approaches, pointing out the difference between
the elements and operations where appropriate, seeking to arrive at a rigorous
system, intuitively motivated.

* * * * *
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At the end of the last chapter we gave a topological example
from what was once one of the more light-hearted aspects of this
subject, but which has led to much serious mathematics. We
return now to a little more formal development.

We have already had two examples of the induction (see foot-
note, Chapter 3, page 52) of a topology from one set into a related
set: the first case was one in which we had an equivalence relation
on the set and the second was that of a subset. In the first case
we defined the topology on the set of equivalence classes in such
a way that the natural mapping of an element onto the equivalence
class is continuous. In the second case if U is a subset of S we
have a natural (and only apparently trivial) mapping of U into S

irueU—>ues

and this is continuous if U has the subset topology:* conversely
we could define a topology for U by requiring i to be continuous.
It is this idea of defining a topology in order to make a natural
mapping continuous which also motivates this section in which we
introduce a topology into the direct product of two spaces.

At the end of Chapter 4, (Example S, page 65), we mentioned
the idea of a base foratopology. It is useful tosee howeconomically
a topology can be specified, and we can define something less than
a base. A sub-base for a topology is a family of sets F such that the
set of all intersections of a finite number of sets of F is a base for
the topology.

Example F. A base for the natural topology for the reals R is the set of all
intervals of the form @ < x < b. A sub-base for this topology is the family
of all infinite intervals of the form x < a or x > a for any a € R. Thus the
interval 0 < x < 1 is the intersection of the two ‘sub-base elements’ x > 0
and x <1

x<|

O<x<l

A

W\

x>0

Example G. If (4, T: A4) and (B, T:B) are two topological spaces and if F
is a sub-base for T":B then a function f of A4 onto B is continuous if and only
if /(Up) is open in T: 4 for all Ug € F (cf. Example S on page 65 at the end of
Chapter 4).

* Note that we must define #:V—> VN U, VeT:S.
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Now consider two sets 4 and B with topologies T': 4 and T: B.
There are two natural mappings of the direct product 4 v B onto
the original sets, viz. p;: 4 v B— A4 defined by p,: (@, b) — a
and p,: A v B— B defined by p,: (a, b)) — b. By obvious ana-
logy with our more common experience 4 and B are called coor-
dinate spaces and p, and p, are called the projections into the co-
ordinate spaces. We shall try to induce a topology into 4 v B by
requiring that each of the two projections be continuous. Let U
be an open set in T': 4 then 5,(U) = U v B will have to be open
in T': A v B to satisfy our requirement. Similarly if ¥ is open in
T': B then py(V) = A v ¥V must be open in T: A v B. So the pro-
jections will be continuous if we admit as open sets of 7: 4 v B
all sets of the form U v B and A4 v V where U is open in T': 4
and Vis open in T': B. But these sets do not themselves constitute
a topology nor even a base: consider, for example,

[ UVBIN[AvV]=UVY,

and U v V is not necessarily a set of the type Uv Bor 4 v V.
Before we resolve this difficulty in a simple way we consider a
more familiar example.

Example H. The normal Cartesian coordinate system for the Euclidean
plane is the set R v R and the images of the projections are the coordinates of
the points of the plane. The sets defined above are then infinite strips as
illustrated, where U is the interval ¢ < x < b and V'is the interval d < y<ec.
The union of these two sets is rather difficult to describe, and the intersection
(the cross-hatched section) is U v V. The natural topology for the real plane
is defined analogously to that of the real line: a base is the set of all interiors
of rectangles. We see that the sets U v R and R v ¥ form a sub-base for the
topology of the plane.

14 ‘//

Y X,

Q\\\,\ N
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Example 1. In Chapter 6, page 95, we said that a cube within a cube is
topologically equivalent to two cubes next to each other. Now that we have
described a topology for the plane the reader might like to consider the cor-
responding two dimensional configurations below and show that they are
homeomorphic, where each configuration is regarded as a subset of the plane
in which it lies and is given subset topology.

N

In general, consider the sets U v Band A v V. These will define
a sub-base for the topology of 4 v B, if the set of all sets of the
form U v V (where U is open in T': A and V is open in 7" B) is
a base. To prove this we have to show that the intersection of any
two of these sets is another one of these sets, i.e. that

[UvVIn[UyvV]=XVvY

where U, U, and X are open in T': 4 and ¥, ¥, and Y are open in
T: B.1n fact

[UVVIN[U v =IUnU]Vv[VnV]
We leave this to the reader to consider and it is suggested that
he take the case of the Euclidean plane as an illustration.

The topology we have here constructed is called the product
topology and the space and its topology is called the product space.

Example J. A subset X of 4 v B is open in the product topology if and
only if for each (a, b) € X there are open sets Ue T: 4 and V € T: B such that
acUandbeVand [UV V]c X.

Example K. An interesting result is the following: a many-one mapping f
of a topological space (X, T:X) into a product space (4 v B, T:4 v B) is
continuous if and only if the two mappings p; o f and p, o f are continuous
where p; and p, are the projections, as on the previous page.

If fis continuous then p; o fand p; o fare also continuous because p; and
D are designed to be continuous and a continuous function of a continuous
function is continuous, as we proved at the end of Chapter 6. On the other
hand if p; o fis continuous, then if U is open in T: 4 we have

/_J ~
(o1 0 FIU) = F(BL)) = F(W), say,
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is open in T: X. But W = p,(U) is open in T:4 v B because p, is always
continuous and all such W together with all 5,(V) form a sub-base for T: 4 v B.
Therefore, by Example G above, fis continuous.

As an application of this consider the idea of a curve. At an elementary
level we assume that everyone knows what we are talking about, but we can
give a precise and general definition. A curve in any topological space
(4, T: A) is the image of a continuous many-one mapping of some interval
a < t < b of the real line with the natural topology into (4, T': A). We shall
consider this in more detail in the next chapter: here we shall just consider how
this agrees with the definition of a plane curve given in analysis, By our
definition a plane curve is the image of a continuous many-one mapping of,
say, the interval T, a < t < b, of R into R v R with the natural topologies
understood. Now p; o fis a mapping of the interval T into R which, by our
result above, must be continuous. But the image of p, o f is just the set of
x-coordinates of the points of the curve so we may write p; o f () = x(¢) and
so “x(t) is a continuous function of # (in the terminology of analysis). Similarly
D3 0 f(t) = () is continuous and we have the more usual definition of a plane
curve given in analysis (see Phillips, 4 Course of Analysis, (Cambridge)).



CHAPTER 9
MATRICES

WE introduced the idea of a matrix by a geometrical application
in the earlier exercises in the last chapter. Matrix algebra is an
important enough topic in mathematics today to warrant our
spending some time on it. We shall, therefore, develop some of the
simple ideas here, confining ourselves in the main to the square
two-by-two matrices and the two-by-one column vectors, with
which the reader is already familiar. Although this course may
seem somewhat restrictive we choose it for a number of reasons:

(1) The methods involved will be quite general and the reader
should have no difficulty with larger matrices introduced sub-
sequently.

(2) The technical manipulation remains simple and does not
obscure the principles.

(3) There are many interesting isomorphisms of sets of 2x 2
(two-by-two) matrices onto known mathematical structures which
afford interesting teaching possibilities—we shall give some of
these.

(4) Partially by way of reason (3) and also for other reasons,
the statement that the theory of 2 X 2 matrices contains much of
mathematics, although imprecise, is evocative of the vast scope of
this small topic. We will allow ourselves one major departure from
the above scheme and that is that we shall, whenever possible,
give general definitions. This will avoid the necessity of undue
repetition.

DEFINITION: A matrix is a rectangular array of elements for
which ‘multiplication and addition’ are defined (usually elements
of a field, see Chapter 13) arranged in rows and columns. If there
are r rows and s columns, the matrix is said to be an r by s (written
r X §) matrix.

DEFINITION: Two matrices are equal if they are both r x s for
the same r and s and have identical entries in corresponding
positions.

136
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DEFINITION: The ‘sum’ of two r X s matrices, the corre-
sponding operation being denoted by @ (later by +),is the r X s
matrix obtained by adding the corresponding elements of the two
matrices. Thus if the element in the ith row and the jth column
of an r x s matrix 4 is denoted by a;;, so that we can abbreviate
the whole matrix to 4 = (ay), then we have

A@B=(a)® Oy = (ay + by,
where B is a matrix of the same shape as 4. The operation is

known as matrix addition. Note that we cannot add a matrix to
a matrix of a different shape.

1 0\ /2 3 3 3
Example A. 5] =
2 1 1 -1 3 0
and ! 0)@ ! is undefined.
21 0

Exercises

It is assumed that pupils have been given a motivated introduction to
matrices such as those given in

(i) Mansfield and Thompson, Mathematics: A New Approach, Book 3
(Chatto and Windus), 1964.

(i) G. Matthews, Matrices 1 (Edward Arnold), 1964.

1. Matrix addition is commutative. Matrix addition is associative.

2. The set of all 2 x 2 matrices form a group for the operation ®. What is
the identity element ?

3. Theset of all 2 x 1 matrices form a group for the operation ®. What is
the identity element?

4. There are a number of sets of matrices which form groups for matrix
addition and which are isomorphic to other common mathematical
structures. (There are, in general, several sets isomorphic to each struc-
ture. The reason for our particular choice is given at the end of this
exercise.)

b
(a) Consider the set of all 2 x 2 matrices of the form ( “ ) where
a

a and b are real. This set is a group for the operation ®. There is a one-one
correspondence between this set and the set of complex numbers

b
f:( “ )—>a+bi,wherei2= —1.
—b a

fis an isomorphism of this set of matrices under matrix addition onto the set
of complex numbers under addition.
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b
(b) Consider the set of all 2 x 2 matrices of the form (: a) where ¢ and b

are real. This set is a group for matrix addition. There is a one-one corre-
spondence between this set and the set of numbers of the form a + bi, where
i® = 1 and a and b are real (cf. Chapter 8, Exercise 14 (b) (iii), page 131). This
is not of great interest from our point of view and so we will modify the
system slightly.

b
Consider the set of all matrices of the form (Z a) where a, b are positive

real numbers. (This set is not a group for matrix addition.) Let f be the

mapping 5
f: (“ )-M + [~b]
b a

of this set of matrices onto the set of real numbers. It is not one-one; for
example

21 32
: -2 —1}=1land f: 3 =21 =1.
f(lz) +[-1] anf(23>—> + [-2]
We can make it one-one by providing the appropriate equivalence relation:
that is ab is equivalent to ¢ ifa+ [—b)] =c + [-d]
b a d ¢

(i) Check that this is a proper equivalence relation.
(i) Show that matrix addition is compatible with the equivalence relation.

(iii) Show that the set of equivalence classes with induced matrix addition
forms a group.

(iv) Show that this group is isomorphic to the set of all real numbers under
addition.

b
(©) The set of all matrices of the form (g ), where a and b are real, forms
a

a group under the operation ©. This group is isomorphic to the so-called dual
numbers under addition. A dual number is an expression of the form a + bi,
where i? = 0 and a and b are real (cf. Chapter 8, Exercise 14 (b) (ii), page 131).

o
(d) The set of all matrices of the form ( 3 lf), where « and 8 are complex
hand o

and .a is the conjugate of «, forms a group under matrix addition. This group

is isomorphic to the set of quaternions under addition. A guaternion may also

be regarded as an expression of the form a + bi + ¢j + dk, where
BP==kP=—1 ij=—ji=k jhk=—ki=i ki=—ik=j

(cf. Chapter 8, Exercise 14 (b) (iv), page 131).

The isomorphism is given by the correspondence

o

where« =a + bl,f=c +dl, I? = —1.

o f
3 —>a + bi + ¢ + dk,
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(e) The set of matrices in section (d) can be put into one-one correspondence
with a set of 4 x 4 matrices with real entries. Suppose that

a=qaq+bl,f=c+d,

then
a b ¢ d
« - —b a-d c¢
-Ba —c d a-b
—d—cc b a

is an isomorphism between the two sets of matrices under matrix addition.

The isomorphisms exhibited in this exercise are in themselves trivial and if
this were all, they would be of little interest, but, as we shall show later (except
for case (e) because it is too tedious), the mapping given in each case is also
an isomorphism of the multiplicative structure of the sets involved. This means
that we can study these complete structures by studying certain subsets of
2 X 2 matrices.

The sum of two r X s matrices 4 and B will now be denoted
by 4 + B.

X1
X3
DEFINITION: Let X be then x 1 column vector| ° JandletY

Xn

be the 1 X n row vector (¥, ¥; . . . ¥»). Then the ‘product’, de-
noted by Yo X, of Y and X is defined to be the element

WX + YaXe + . o o YaXa.
Note that X o Y is not yet defined (see Example D below).

2
Example B. a 3o (_1) =2+[-3]1=-1,

2
and < 1) o (1 3)is not yet defined.

DEFINITION: Let 4 be a matrix with » columns and B a
matrix with n rows, then the product, denoted by 4o B, of 4
and B is the matrix C whose element in the ith row and jth column
is the product of the ith row of 4 and jth column of B in the sense
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of the word ‘product’ in the above definition. Thus, with the usual
notation

Cy = ay blj + ai2b2j +o.ot a‘”bm"

The operation o is known as matrix multiplication.

If 41is an r X n matrix and B is an » X s matrix, then 40 B is
an r x s matrix. Note that B o A may not be defined and even
when it is defined 4 o B is not necessarily the same as Bo 4.

21
Example C. (13)0( 10)=(1><2+3><[—1] 1x14+3x0
=(=11
21 . o .
and( ) 0) o (1 3) is not defined. The first matrix in the case for which the

operation is defined is a 1 x 2 matrix, the second is 2 x 2 and the product
isl x 2.

Examle D 13 21 (—11
. o] =
xample 21/°\-10 32
(21) (13) (4 7>
and ) = .
~10/°\21 1 -3

Thus multiplication of matrices is not commutative.

2x1 2x3 2 6\ othata 3o 2)isa single eloment
. S 1 n
“1x1—1x3 -1 =3 _p) 18 @ single cleme

2
Note also that in Example B above we now have ( 1) o (1 3) defined as

2
and( l)o(l 3)is a 2 x 2 matrix.

Example E. Multiplication of matrices is associative provided it is defined.
Matrix multiplication is distributive (from the left and right) over matrix

b
addition. Verify this for 2 x 2 matrices (: d)'

Exercises

1. The identity element in the set M of all 2 x 2 matrices under multi-

10
plication is (0 1)' The set M is closed under multiplication, and multi-
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0
M, but
0 0) € bu

plication is associative. But M is not a group. For instance, (

b
there is no matrix 4 = (a d) such that
(4

00 of? b\ (10

00 cd 01/
We shall look for the subset M’ of M which does form a group under multi-
plication. The method used is quite general and can be used for any square
matrix, whatever the size. A modification of this general method appears in
Mansfield and Thompson: Mathematics: A New Approach, Books 3 and 5.
Other methods of finding the inverse of a 2 X 2 matrix exist but the reader
should note that some of them do not readily extend to larger matrices.*

Consider the equation

(é?)°(33>=(2’§). LW

and suppose that we can find a matrix X which is such that
¥ ab 10
o = .
cd 0
b
Then X is, of course, the inverse of (a d>' If we premultiply equation (1) by
c

X then, since matrix multiplication is associative we have

o (o] (Ca) == (a) - G

In fact, we do not go straight to the inverse X, but we shall premultiply both
sides of equation (1) by a series of matrices X;, Xz, . . ., Xn Which are con-
structed in such a way that the right-hand side is transformed step-by-step

'ntoloi X 0 X30 X; 1o oab
i 01,.e. A 2 1001 cd

a b 10
=Xn°...X20X1° cd = 01-

It follows that the term enclosed in the square brackets on the left-hand side
is the X we are looking for.
In the first place let us transform the first entry a into 1. We shall suppose
a # 0 (f a = 0, see later) and premultiply both sides of equation (1) by
* The following description of a procedure for finding the inverse of a matrix is
too brief and rather obscure. It should be preceded by a discussion of those matrices
which effect elementary row transformations.
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Iy
(a ).* Then using the associativity of matrix multiplication, we have

0 1
1 a b b
<a 0) ° < ) B (1 ;> - . . (2)
0o 1 ¢ d ¢ d

10
Premultiply both sides of equation (2) by < . 1) so that the bottom left-

hand element of the matrix on the right-hand side of the equation becomes 0.

Thus
10 1 0 a 10 1 b
ofla (o] d = _ 1 (o) a
— 1 0o 1 ¢ ¢ c d
ie.
5 0 ab 1 g
o< d)= s | . )]
_£ 1) 0o 4-2
a a

The next step is to produce a 1 in the bottom right-hand corner on the right-
hand side without spoiling the 1 and 0 already achieved. We can do this, if,

1 0
and only if, ad — be # 0. Then premultiplying equation (3) by ( a )

ad-be
we obtain
1
- 0 b
a a 1 -
0 ( ) = aj. . . (4)
—c a cd 0 1
ad-bc ad-bc
* The reader might object that there is a simpler matrix which achieves our stated

1
object, viz. (;z 0), but this has a disastrous effect on future steps, for

NN

10
and there is no matrix which can transform this into ( ) ‘Simpler’ has to be

01
qualified. Roughly, for our purpose, a matrix is simple if it causes a minimum of

irrelevant disturbance to the matrix which it premultiplies: above all it should have an
1

1
inverse so that we can retrace our steps. In this sense ( a 0) is simpler than ( a 0).
01 00
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b
1 =2
Finally, premultiply equation (4) by ( a) giving

0 1
d -b

ad-bc  ad-be ab 10
—c a |° (c d) - (0 >

ad-bc  ad-be

b
It follows from this last equation that the inverse of (a d) is
(4

d —b
ad-bc  ad-be
—e a ®
ad-bc ad-be

subject, so far, to the conditions a # 0, ad-bc + 0.

b
Suppose now that a = 0, then if ¢ = 0, ad-bc = 0 and the matrix (g d)

. . u v - .
has no inverse, for if ( ) is any matrix
wX

05b o u v bw bx
0d w X dw dx
and there is no choice of u, v, x and w which makes the last matrix the

identity matrix.
If a =0, and ¢ # 0, then equation (1) becomes

(1) (o= (o)

01
Premultiplying both sides by (1 0) brings ¢ into the leading position, i.e.

01y (05 (e
10/ \cd/ \0b
and the steps can now continue as above provided that be # 0.

b
Summing up it follows that the matrix (a d) has an inverse given by (5)
¢

if, and only if, ad-bc # 0. This defines the set M’ for which we are looking,
where we leave the reader to show that M’ is closed under o. The expression

ab
ad-bc is called the determinant of the matrix d)’ Since M’ is a group, left
c

inverses are also right inverses although the operation is not commutative.
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2. Use the method, but not the result, of the last exercise to construct the

. —-12
inverse of .
(33)
3. The more able pupil should be able to devise a corresponding method

2 0 3
to find the inverse of say <1 2 -1}
0 1 -2

4. In this exercise we refer back section by section to Exercise 4 in the last
set of exercises on page 137 et seq.

(a) The set of complex numbers (excluding zero) forms a group under
multiplication. The one-one correspondence f

b
f:( N )—>a+bi where i? = —1
—ba

is an isomorphism of the multiplicative structures of the two sets, for
ab cd ac-bd ad + bc
: = f: —bd d [
% (—b a) ° (—d c) s (—bc—ad —bd + ac) —> lac-bd]+lad + bel,
but the last expression is equal to {a + bi]lc -+ di] which is equal to

ab cd
X .
d [(—b a)] d [(—d c)]
It follows that we can study the structure of the complex numbers by studying

b
the set of 2 X 2 matrices of the form ( N a) with real elements g and b,

a* + b* #0.

Note that although, in general, matrix multiplication is not commutative,
it is commutative for this subset. Prove this directly.

(b) Matrix multiplication is compatible with the equivalence relation intro-

b c a b
duced in Exercise 4 (b) above, i.e. if 4 is equivalent to and
ba dc b a
. . ¢ d a b a b\ . .
is equivalent to , then o , ) is equivalent to
d ¢ b a b a

cd c d
dc ° d )
. k k ip e s
The equivalence class bk corresponds to zero, and if this is excluded,

the remaining set of equivalence classes forms a group under matrix multi-
plication which is isomorphic to the set of all real numbers (without zero)
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under multiplication.* It follows that we can study the structure of the real

numbers by studying the structure of the set of matrices of the form (: b)
a

where a and b are positive.
Note that this subset of M is also commutative under matrix multiplica-
tion. Any negative number —a corresponds to a class with representative

1 a+1 .-
( 41 1 ) and any positive number a corresponds to a class with
a

1
1 a+1
= negative, etc.) using these matrix representations.
(©) The dual numbers, witha # 0, form a group under multiplication. The

a
representative ( ) Verify the rule of signs (i.e. positive X negative

. .1 b .
inverse of @ + bi (i = 0) is PR of. The mapping

f: (a b) —>a + bi
0a

is an isomorphism of the multiplicative structures, and, in particular, of the
two subsets which form groups. So, once again, we can study the structure of
dual numbers by studying the structure of the corresponding subset of M. The
subset is commutative under multiplication, matrix multiplication is associa-
tive and distributive over matrix addition. It follows that corresponding
results hold for the dual numbers. Solve the equation [1 + 2ilx =3 — 4i
using the equivalent matrix representation.

(d) Show that the multiplicative structure of the quaternions is isomorphic
o
to the set of matrices of the form (_ B g) under multiplication, where « and

p are complex. It follows that quaternion multiplication is associative and
distributive over quaternion addition.

By considering this matrix representation show that quaternion multi-
plication is not commutative. Also find under what conditions the quaternion
a + bi + ¢j + dk has a multiplicative inverse. (Answer: Not allof a, b, ¢, d
Z€ro.)

A pure quaternion is a quaternion for which a = 0. Show, by considering
the corresponding matrix, that the square of a pure quaternion is a negative
real number.

Much of what we have discussed in the two exercises 4 of this chapter (and
for that matter the whole of matrix theory itself) finds its proper mathematical

k k
* If we include zero and the equivalence class {(k k)} in the two sets, then we

still have an isomorphism, but we no Ionger have a group structure because these
elements have no multiplicative inverse. The same remark applies in other examples
in which we have left out the neutral element for addition when dealing with multi-
plicative isomorphisms (see Chapter 13).
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setting in the theory of rings, fields and vector spaces. We cannot, however,
within the compass of this book discuss these topics (except in a limited way
in Chapter 13), so we have fitted them as best we can within our existing
framework.

5. There are other isomorphisms which use the multiplicative structure of
matrices only. These can be used, as those of the previous exercise, to improve
the manipulative skill of pupils in a novel way. This has the double advantage
of avoiding tedious repetition and of introducing worthwhile mathematical
concepts.

0
(a) The mapping f, of the set of all matrices of the form (g b)’ where

a and b are integers, onto the set of rationals, defined by

a0 a
f:(Ob)—)B ab# 0

is not one-one, but preserves their respective multiplicative structures (it does
not preserve their additive structures). To make the mapping an isomorphism
we put an obvious equivalence relation on the set of matrices, viz.

4] 0
(g b) is equivalent to (; d) if ad = be,

and show that matrix multiplication is compatible with the equivalence
relation.

Note that the set of matrices does not form a group, but the set of equi-
valance classes does. If a and b are rationals, however, the set of matrices does
form a group. The same remarks apply to the next example, where, in fact, in
the application, we have rational entries in our matrices. But, if one wants to
use these matrices to improve or investigate the combination of rationals,
one must, of course, only allow integral elements in our matrices.

b
(b) Consider the set of all matrices of the form (0 Z), a and b integers,

with the same equivalence relation as in part (a). The equivalence relation is
compatible with matrix multiplication and the mapping f

i)y~ v

is an isomorphism of the multiplicative structure of the matrices onto the set
of rationals under addition.

One can avoid the use of equivalence classes by considering homomorphisms
instead of isomorphisms—we shall develop homomorphisms in the next
chapter.

A useless application of this isomorphism, which may take the fancy of
somebody, is to the process of finding partial fractions—it has no advantage
over the usual method except novelty. Consider the problem of finding the

2x +3 A B C

. . . f -
partial fractions of T 20 — 1 in the form Ti3 +x 1 +x =5
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This is equivalent to finding A4, B, C in the matrix equation
[x + 2]{x? — 1] 2x +3
( 0 [x + 21[x* — 1])

x+2 A4 o x+1 B x—1 C
= 0
0 x+2 0 x+1 0 x-—1/
0
Now a matrix of the type (0 (J;) is very little affected when multiplied (pre

or post) by another matrix—in fact, it retains its general form. We can produce

three of these on the right-hand side: for example put x = —1, then
01 14 0B -2 C 0 —2B
(00) =(0 1)°(0 0)°( 0 —)=(o 0 )
whence B = —1, etc.

Many standard examination questions can be cast in this form—but it is
doubtful, as we have said, whether the actual solution by matrices has any
advantage except novelty.

6. Consider the set of all (free) vectors V in three dimensions, i.e. the set
discussed in Chapter 3, Exercise 3(g), page 47 and page 50. We first introduce
two operations not discussed there.

(i) Scalar multiplication: let k be any real number and PQ any line segment,
then we define £PQ to be the line-segment beginning at P, | k |* times as long
as PQ, and in the direction PQ if & is positive, in the opposite direction if &
is negative.

This definition of scalar multiplication is compatible with the equivalence
relation of Exercise 3(g), page 47, i.e. if

PQ R ST then kPQ R kST,
and so we can talk of multiplying a (free) vector by a scalar.

(i) If OP and PQ are two line-segments, then we define the addition of

OP and PQ by
OPo PQ = 0Q.

(a) Show that scalar multiplication is distributive over addition, i.e. that
k[OP o PQ] = kOP o kPQ.

a

(0]
* | k | means the absolute value of k, e.g. |2] =] — 2] = 2.
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(b) According to our definition commutativity has no meaning for addition
of line segments.

(c) Show that addition is compatible with the equivalence relation. Notice
that we can add any two (free) vectors, because every vector contains a line-
segment starting from any point of space (the localized vector).

(d) Show that the addition of (free) vectors is commutative and compare
Example L, Chapter 3, page 49 and (b) above.

(e) By definition {PQ} o {QP} = {PP} and this needs interpretation. We
shall add to our set of vectors a so-called zero vector, i.e. a vector of zero
length. It is rather difficult to talk of the direction of such a vector and so we
say it has no direction.

Why bother with such a vector ? To answer this show that without the zero
vector V is not a group for addition, and that with this “fictional’ addition we
have a group structure. The difficulty with the zero vector is an intuitive one
and we shall see that a simple isomorphism overcomes this difficulty. We
shall now establish this isomorphism.

(iii) Suppose that we have a set of (right-handed) mutually perpendicular
axes in three-dimensional space with the usual Cartesian coordinate system.
Let OX, OY, OZ be the line-segments shown in the diagram, each line seg-
ment being of unit length.

We then have three vectors {O0X}, {0 Y} and {OZ} which are usually denoted
by i, j, k respectively, in vector analysis. Using the two operations introduced
above we can express any vector v € Vin terms of these three ‘orthogonal unit
vectors’. Let OP be the localized vector starting at the origin which is a
member of the vector v, and let the projection of OP on the x, y-plane be 0Q.
Also let the projection of P onto the z-axis be T, and the projection of Q onto
the x- and y-axes be R and § respectively. Then
OR=a0X, 0O0S=b0Y, OT=cOZ

for some real numbers a, b and c. Now

{00} = {ORo RQ} = {OR} 0 {08} = a{OX} 0 b{OY}
and

{OP} = {0Q 0 QP} = {0Q} 0 {OT} = [4{0OX} 0 b{O Y} 0 c{OZ}
= a{0OX}o b{0OY}o c{0Z},
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since o is associative. (e, b and ¢ are, of course, the coordinates of P.) We
thus have a one-one correspondence between all non-zero vectors v and the

set of 3 x 1 matrices
a
fiv={OP} — <b)
c

(We could, of course, establish this correspondence more quickly by the series
a
of one-one mappings » — OP - coordinates of P —» <b ; the sophistica-
c
tion of the reader will decide which he prefers.)
(a) The mapping f is an isomorphism of the additive structure of the non-
zero vectors onto the additive structure of the set of all 3 x 1 matrices
0
excluding the one matrix <0> . There is nothing unusual or intuitively difficult
0

about this matrix, so we admit it to our set and in order to maintain the
isomorphism we add the so-called zero vector to our set of vectors. In this way
the intuitive difficulty of the zero vector is overcome by the absence of such
a difficulty for the matrix. (Show that the isomorphism is so maintained.)

(b) We introduce scalar multiplication for matrices to correspond to scalar
multiplication for vectors, i.e. we define

{()-(£)

for any real number k. (In general, if A is any matrix, we define kA4 to be that
matrix whose elements are & times the corresponding elements in A4.)

(@) Note that kg (where ¢ is the zero vector) = o0 and that 0a = o.

Note: So far we have denoted matrix multiplication by o;
matrices are usually written next to each other to denote matrix
multiplication (i.e. 4 0B = 4AB) and from now on we shall do
the same.

(iv) Using the idea of the correspondence f we can express the inner product
of two vectors (see Chapter 3, page 50) as the product of two matrices. If we
denote the inner product operation by a dot, then

al
v.Y’ = (ab o (b’) . . . . D
c/
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a a’
where v—> (b) and v’ —> (b’).
c ¢

The validity of (1) can be demonstrated by the following steps.

(a) Denote addition of vectors by + and the inner product of two vectors
by a dot. (These are the usual notations.) Then show that the inner product
is distributive over addition, i.e. if @, b and ¢ are vectors, that

a.lb+cl=ab+ac

This can be done by choosing suitable representative localized vectors for the
free vectors.

(b) Show that a.[kb] = kl[a.b], where k is any real number.
(c) Denote {0X}, {OY}, {OZ} by i, j, k respectively, and show that
Li=ji=kk=1, ij=jk=Fki=0.
(d) Then, finally, if v = ai 4 bj + ckand v’ = a’i + b’j + c’k, we can use
(@), (b) and (c) to evaluate
v.v" = [ai + bj + ckl.la’i + b + c'k]
=aa’ + bb’ + cc’

a’ a
=(bo (b’) = (@b c) (b)
c c

7. Although this is not the right place we wish to mention some other
common cases in which one-one correspondences are used to overcome the
intuitive difficulties. We have, in the previous example, met one case where
the zero vector is rather a difficult concept, but where the 3 X 1 column
matrix with three zero entries is quite natural.

In Chapter 7, page 106, we introduced the point at infinity in the complex

plane as the image of z = 0 under the mapping z — i This in itself was a

one-one correspondence used to define the non-intuitive concept. There is
another interesting way of looking at this. Suppose that we have a complex
plane with a sphere in contact with it at the origin say. Let P be the point on
the sphere at the opposite pole to the point of contact. Then we set up a cor-
respondence between the points of the complex plane and the points of the
sphere as follows: let Z be any point in the plane, then the point in which PZ
mesets the sphere is the point corresponding to Z. The correspondence is one-
to-one except for P itself which has no image point in the plane; therefore we
adjoin the point at infinity to the plane.

In Chapter 12, we shall discuss the projective plane and there introduce
the ‘line at infinity’ in the plane. This can also be motivated from a ‘finitely”
situated model by a one-one correspondence.
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a
(a b ¢) is usually called the transpose of <b> In general, if 4 is
¢

any matrix, the transpose of A is the matrix obtained by inter-
changing rows and columns, e.g.

1 2
_ (1 0 1
transpose ((l) 2) = (2 3 6)

Note that the first row, read left to right, becomes the first column,
read top to bottom.

8. An interesting subset of the set of all 2 x 2 matrices is the set of matrices
such as 4 where 4 multiplied by its transpose is the unit matrix Iie.

10
AA’ =1 = (0 1), where A’ is the transpose of A.

(In general, any square matrix 4 with the property 44’ = I, where I is the
unit matrix of the correct size, is called orthogonal.)

(a) The equation A4’ = I, means that 4’ is the right-inverse of A4, i.e.
A belongs to the group of all 2 x 2 matrices M’ of Exercise 1, page 143. Since
in a group, right-inverses are also left-inverses, we have

AA=1

(b) Show that the transpose of the transpose of any matrix 4 is A. Show

also that, for 2 x 2 matrices A4 and B,
4By = B’A’.
This result holds for square matrices of any order.

(c) We shall denote the set of orthogonal 2 x 2 matrices by O,. From
(@) and the fact that the transpose of A4’ is A it follows thatif 4 € O3, then A’
is also orthogonal.

(d O, is a group under matrix multiplication. It is clear that I O;andis
the unit element, that the inverse of A4 is 4’ and that matrix multiplication is
associative. It remains to show that O, is closed, i.e. thatif 4 and Be O, then
AB € 0,. Consider

[ABl[ABY

h

[AB1[B’A’] = A[BB’l4’ = AIA’
‘=1

'
b

b
d

)

N’

€ O, then
a b\ fa c 10
cd/\6d/ \o1/)

ie a%? - b®  ac + bd _ 10
- ac +bd c*+a:) \o1)

() Suppose that 4 = (

[

N
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whence a2+ b*=1,c*+d*=1andac + bd =0.
Froma? + b? = 1, it follows that we can write a = cos 8, b = sin 0. Similarly
we can write ¢ = sin ¢, d = cos ¢. The last relation then reads
cos 0 sin ¢ -+ sin 8 cos ¢ = 0,

whence sin [0 + ¢] = 0 and 8 = — ¢ is one solution of this. Thus some of
the matrices of O, are of the form

cos¢ —sing
(sin ¢ cosd )
and we have met these matrices before (see Chapter 8, Exercise 7, page 125).
We could, however, make other choices, e.g.
a=cos0,b=sin0,¢c=sin¢,d= —cos ¢
whence the last relation is
cos 0sinb —sin@cos ¢ =0,ie. 6 = ¢

cos¢ sin ¢

and we have the matrices of the form ( ), which we have again

sin ¢ —cos ¢
met (see Chapter 8, Exercise 7, page 126).

These two types of matrices are in fact the only possible types and so we
see the significance of the group O,. Show that the rotation matrices form a
subgroup of O, and the reflection matrices do not.

cos¢ —sin¢

(f) Note that the set of rotation matrices ( ) are a subset of

sin ¢ cos ¢

ab . .
the set of matrices ( ) which we found were isomorphic to the complex
a

numbers (Exercise 4 (a), page 144). Under that isomorphism

(0?895 _sm¢)—>cos¢+isin¢=e‘¢.
sin¢$ cos¢

and, as is well known, the effect of multiplying a complex number by &% is
to rotate its representation in the complex plane through an angle ¢.

9. In Chapter 7, page 108, we mentioned the bilinear mapping

f_z_>az+b
) cz +d

of the complex plane onto the complex plane. Consider the correspondence

<“ b>—>f ad — be + 0.

ad — bc #0

cd ‘
) ka kb ab .
It is not one-one, because =k where k is any non-zero (com-
ke kd cd

plex) number, also maps onto f.
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(i) Put the appropriate equivalence relation on the set of 2 x 2 matrices
with complex elements, so that the correspondence is one-one.

(i) Show that the equivalence relation is compatible with matrix multi-
plication.

(iii) Show that the one-one correspondence is an isomorphism of the group
of equivalence classes of matrices under multiplication onto the group of
bilinear functions under their usual combination.

An excellent book on matrices in the teaching field is Introduc-
tion to Matrix Algebra published by Yale University Press for the
School Mathematics Study Group. There is a students’ and a
teachers’ text.

* * * % %*

In this section we shall lead up to a description of another group
occurring in topology which we shall finally describe at the end of
the next chapter. Our approach will be a mixture of the intuitive
and the precise: to prove all our statements rigorously in an intro-
ductory account serves only to obscure the ideas. On the other
hand, it is instructive to see how the ideas can be given a precise
mathematical formulation, and we shall therefore prove a few
results and indicate the gaps.

It is intuitively obvious that a hyperboloid of two sheets is not
homeomorphic to, say, the surface of a sphere (see the remark on
the natural topology for three dimensional space, Chapter 6,
page 95); equally it is intuitive, though perhaps not quite so obvi-
ous, that a torus is not homeomorphic to either. The hyperboloid
is in two pieces, whereas the sphere and torus are in one: the
torus has a hole in it and the sphere has not. We can put this in
topological terms by using the definition of a curve introduced in
the previous chapter. There we defined a curve as the image of a
many-one continuous mapping of any interval of the form
a <x <b of the reals R with the natural topology into the space
under consideration. Since any such interval of R is homeomorphic
to any other such interval, we always choose the interval to be
0 <x < 1which we shall denote by R;. To return to our examples;
given any point P on one sheet of the hyperboloid and any point
P, on the other sheet it is intuitively obvious that there is
no curve which joins P to Py, whereas for any two points on a
sphere or a torus there is always a curve joining them. Hence the
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hyperboloid cannot be homeomorphic to the sphere or the torus,
because the homeomorphic image of a curve is a curve.

The difference between the sphere and the torus can also be
expressed in terms of curves, as at the end of Chapter 6. If fis the
function defining a curve in a topological space then the curve is
closed if f(0) = f(1). Using our intuition we can see that any
closed curve on a sphere can be continuously deformed into a
point—drop a stone into a calm sea: further any curve, closed or
not, can be deformed into any other on the sphere in a continuous
way. This is not true on a torus. None of the curves a, b, or c,
it would seem, can be continuously deformed into each other, and
only one can be continuously deformed into a point.

Example F. Are there any further curves on a torus which are not deform-
able into each other or into 4, & or ¢? (See end of Chapter 11.)

So we see that the idea of a curve and its continuous deforma-
tion are useful topological concepts in highlighting the difference
between topological spaces. We shall, therefore, try to make the
concept of a continuous deformation more precise. Let f be a
continuous many-one mapping of (Ry, T': R)* into a topological
space (X, T': X): if s € R, then f(s) is a point of the curve and f(0)
and f(1) are its end points. We shall restrict ourselves to the con-
tinuous deformation of curves with the same end points, this being
sufficient for our purpose at the end of the next chapter: the
restriction is also applied to the intermediate curves of the defor-
mation, i.e. they also have the same end points as the original and
final curves.

Let fo(R,) and fi(R,) be two such curves then a continuous
deformation of f(R,) into fi(R,) would seem to involve a series
of intermediate curves. In other words if we regard all the functions

* T: R, is the subset topology for R; induced by the natural topology for R.
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-=£(0)
= ave s l(o)

X

=fi (1) =f ()= =£,(1)

of R, into X, whose images are these curves, as themselves points
of another space Y, then the sort of continuous series of curves
we are looking for can be envisaged as associated with a curve
in Y.

NortE: The last statement may be sufficiently evocative to be excusable,
but it is precisely meaningless. What is the topology for ¥? Before one can
speak of a curve in ¥ one must have a topology. The reader might like to
define a topology in Y. With this topology is our last statement above valid ?

Having beaten about the bush for Iong enough, let us now come
to the final definition. We are looking for a family of curves the
first of which is f4(R,) and the last of which is f;(R,) and such that
they all have the same end points. Since they are to vary con-
tinuously, we can denote the family of curves by a continuous
function F of (R, V Ry, T: R, V R)) into (X, T': X) such that for
any fixed ¢ € R,, F(R,, t) is one of the corresponding system of
curves and in particular that

F(S: O) = fO (S), F(Ss 1) =f;.(s)
and FQO, 1 =fo(0) =£i0), F(,1t) = fo(1) =f£,(1).
(Note the tenuous conceptual connection between this precise
statement and the meaningless one above.)



156 CHAPTER 9

RVR,

F(1,2)

Norte: If we remove the second set of conditions, i.e. we have a general
set of paths without fixed end points (and f,(Ry) and f1(R,) need not necessarily
have the same end points either), then we may have a more general continuous
deformation. A simple example of this type is given by the function F of
R, V R, into R v R (with their natural topologies) defined by

Fi(s, 00— (s, [1 — £ls + 2.
F(s,0) = (s, 5) and F(s, 1) = (5, €9 which shows that the segment of the
straight line (in the usual diagrammatic representation using (s, v) coordinates)
v = s is deformable in the plane, with the natural topology, into a segment of

the exponential curve v = ¢*. The reader might like to sketch some of the
intermediate curves.

¥
34
21 Q
(&
M )
3
S } >3
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Example G. As an example of deformation with fixed end points consider
deforming (in the plane, with the natural topology) the upper half of the unit
circle shown in the diagram into the lower half,

2

The equations for the two halves are v = ++/[s — s?] and the function F
given by
Fi(,0—>(, [1 — 2t]1v[s — 52D
achieves the required deformation:
Fi5,0) = (s, vIs — 8%, Fi5, 1) =, — Vs — 52
and F(0, £) = (0, 0), F{1, ») = (1, 0) as required. What are the intermediate
curves ? This problem is particularly simple because we chose our fixed points
conveniently. Find a mapping F which deforms the upper half of the ellipse
s2 4+ 42 =1

into the lower half. Remember that according to our definition of a curve
0<s< 1.

1t is a much more difficult problem to discuss analytically deformations on

a sphere or torus, because we have no convenient coordinate system: we,
therefore, rely on intuition to a great extent.



CHAPTER 10
HOMOMORPHISMS

WE defined homomorphism in Chapter 4, but as with isomorphisms
in Chapter 8, we shall repeat ourselves briefly. A homomorphism
preserves structure as does an isomorphism, but unlike an iso-
morphism it is not necessarily a one-one mapping. From the
examples of homomorphisms already given (see the list in the next
example) it is clear that the idea of homomorphic images is an
important one. We found that two isomorphic structures are
essentially and mathematically equivalent, their only difference
being that the corresponding objects of the two sets have (perhaps)
acquired different names. With a homomorphism the situation is
somewhat different: if fis a homomorphism of the set 4 onto the
set B then

@) in the technical aspect of mathematics we solve our problem
in the more convenient set and then find the corresponding solution
in the other set if required by using the homomorphism f,

(i) in the theoretical aspect of mathematics we use one set and
the homomorphism f to throw light on the structure of the other,
as we shall show.

The formal definition of a homomorphism (for groups) is as
follows: Let G and H be two groups, with elements (g, gs, g3, - - .)
and (%, Ay, A, . . .) respectively, and operations symbolized by o
and O respectively. H is said to be a homomorphic image of G
if a many-one (onto) mapping can be established from G to H so
that if any two elements g; and g; of G map onto 4, and 4, respect-
ively, and if

8:08; = &k
vy oy
and hpth =h1’>

and g; maps onto A,. We can put this in other words. Let £ be the

many-one mapping of G onto H, then fis a homomorphism if
fgog) =fg) O fgh,

where g and g’ belong to G. (In this chapter all our theory will be

devoted to groups, although we may sometimes give examples of

sets which do not form groups.)
158
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Note that if fis a homomorphism of G onto H, f is not neces-
sarily a homomorphism of H onto G (cf. isomorphisms) and G is
not necessarily a homomorphic image of H at all. This means that
‘homomorphic’ does not provide us with an equivalence relation
between sets,

Example A. We have introduced a number of homomorphisms (not neces-
sarily of groups) throughout the text and we list them here to remind the
reader. The chapter and page numbers in brackets refer to the first mention
of these homomorphisms.

(I) A set S with operation o and an equivalence relation R compatible
with o. Let S be the set of equivalence classes and a be an element of S, then

fra—>{a}e s
is a homomorphism of .§ onto $” with the induced operation o (Chapter 4,
page 61).

(2) The mapping of the natural numbers onto the classes E and O of the
even and odd numbers respectively, is a particular example of case (1)
(Chapter 4; page 61).

(3) The slide-rule (Chapter 4, page 62).

ab
(4) The mapping of the matrices <b ), (where a and b are positive real
a

b
numbers) onto the real numbers given by <: a) —>a + [—b] is a homo-

morphism of the multiplicative structure of the matrices* onto the additive
structure of the reals (Chapter 9, pages 138 and 144).

a0
(5) The mapping of the matrices (0 b)’ (where a and b are non-zero

a0 a . .
integers) given by (0 b) —>3 onto the rationals, is a homomorphism of one

multiplicative structure onto the other (Chapter 9, page 146).

b
(6) The mapping of the matrices (0 Z), (where a and b are integers and

b a a
b +# 0) onto the rationals given by (a b) >} is @ homomorphism of the

multiplicative structure of matrices onto the additive structure of the rationals
(Chapter 9, page 146).

b
(7) The mapping # which maps the matrix (a d) onto the function
c

f_z__>az+b
: cz+d

* See the footnote on page 145,

ad — bc #0
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is 2 homomorphism of the multiplicative structure of these 2 X 2 matrices
onto the set of functions with their usual law of combination (Chapter 9,
page 152).

We shall adopt the following notation throughout the rest of
this chapter unless otherwise stated: G and H are two groups,
where H is the homomorphic image of G under the mapping f; the
elements of G will be denoted by small g’s with subscripts and
dashes (primes) as necessary, with the exception of the neutral
element which will be denoted by eg to distinguish it from eg, the
neutral element in H. The binary operation in G will be denoted
by o, and in H by O.

We noted that for two isomorphic groups the image of the
neutral element for one group is the neutral element for the other
group. Now this is still true when we only have a homomorphism,
for

Sflgoer) =fg) Ofee)
because fis a homomorphism, but (g o eg) = f(g), therefore

[8) =g 0 flew,

i.e. fleg) = ey. But e may not be the only element of G which
maps onto ey under f; since f'is many-one. Let K be the subset of
G of all those elements whose image is ey: thus if gx € K, then

flgr) = en.

This subset K is of particular importance: it is called the kernel of
the homomorphism.

Example B. In the previous example we gave seven homomorphisms: find
the kernel of each. For example, the kernel of the fifth homomorphism is the

0
set of matrices of the form (g )
a

Note that although not all the sets in the seven examples form groups we
can still say that the kernel of the homomorphism is the set of all those
clements which map onto the identity element whenever the image set con-
tains an identity element. In 4) to (7) we turned the homomorphisms into
isomorphisms by introducing new sets using equivalence relations which can
be found in the previous chapter. What do you notice about the kernel of the
homomorphism and the neutral equivalence class in the new sets in each case ?

Example C. Any set which is a homomorphic image of a group is a group.
For, let G be the group and let H be the homomorphic image. Then O is
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associative because o is; H contains an element en, the image of eg, which

acts as neutral element ; the inverse of anelement & = f(g)e Hish = f(§) e H.

Finally H is closed because if 4 = f(g) and &’ = f(g") belong to H, then
hok =f(e)0fg) =flgog) =g

for some g7 € G. Note, however, that if H is a group and f'is a homomorphic
mapping of G onto H, then it does not follow that G is a group. We have had
some examples of this.

We shall now prove that the kernel K of a homomorphism of a
group G onto a group H is a subgroup of G, i.e. a subset of G
which forms a group for o.

Example D. Before embarking on the formal proof the reader might like
to verify the accuracy of the statement for some of the kernels of those
homomorphisms found in Example C in which both sets are groups.

We have to show that K is a group under o.

(1) The operation o is associative in G and since K < G it is also
associative in K.

) Ifgand g’ € K, i.e. f{g) = f(g") = ey, then since fis a homo-
morphism it follows that

flgog) =) DAg) = ex O en = en,

i.e. go g’ € K, so that K is closed under o.

3) eq € K, as we have shown above.

4) gog = gog = eg (where, as usual, § is the inverse of g in
G), and since the mapping is a homomorphism, it follows that

) OB =8 0 ) = en.
Now if g € K, f(g) = ey, therefore, we have
ex Of(8) =f(&) Den = ep,

ie. f(§) =éyg =eg,andso geKifge K.
Hence K is a group under o.

We have thus proved that the kernel of any homomorphism of
a group G is a subgroup of G, and, given a sufficient degree of
sophistication, we might suppose that all subgroups of G are

kernels of some homomorphism. This is, however, not true and

we shall investigate it later (Example E illustrates this remark).
BSGT—F
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Example E. Consider the group G with six elements (see Chapter 8, page 120)
whose group table is

o g &1 82 & 81 &

€q a &1 8 &8s 81 &5
1 & & € & 8 &
&2 g2 €¢ &1 81 85 &3
83 & 81 & ¢€a &1 &2

&4 g1 85 & &2 €g £

&s g 8 &1 &1 82 ¢€q

The pair (e¢, &) form a subgroup and we shall suppose that there exists a
homomorphism fonto a group H with these elements as kernel. So the homo-
morphic image of G can have at most five elements and we shall write

fleg) = en = f(ga), f(g) = by, (g = hy, f(80) = hy, f(gs) = hs.
Using the hypothesis that fis a homomorphism we have
flgsog) =flgd O fg) =enDhy =hy
But from the group table g; 0 g, = g, therefore
hy = h,.
Similarly, considering g; o g5 = &s, We get fi; = hs. Hence H can have at most

three elements ez, k4, bz, say. Now, using the same argument we have further
that

flgiogy =f(g) O f(g) = h O by

and since 8108 =eg Ok =ep.
But flgaogsy =flgo O f(gs) = h O hyand g4 085 = &1
Therefore

h]_th =h1 = €H,
which contradicts our assumption that the kernel is (e¢, g). (It also follows
that &, must be the same as eg, so that H copsists of ey only. It is true that
for any group G there exists a homomorphism which maps G onto the single
element ez = H, i.e. the kernel of the homomorphism is G. Such a homo-
morphism is too trival and will not be admitted.)
Consider the same problem for any other subgroup of our original group.

Example F. Let U be a finite subset of G closed under o, so that if gand g’
are members of U then (g o g”) € U. Prove that U is a subgroup of G. (Hints:
Since G is a group, o is associative. It is given that U is closed. It remains to
prove that the neutral element eq is necessarily a member of U and that if
g€ Uthen g € U. Let U have n distinct members g: ¢ = 1, 2,3, .., n) and let
gi be any one of them. Consider the n combinations gjo0 gi,{ = 1,2,3,..,m.
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Exercises

1. Consider the group R of all rational numbers (excluding zero) under the
operation of multiplication and the group S = (p, #) where the operation o is
defined by the table

O p n
p p n
n np

Establish the homomorphism of (R, x) onto (S, 0). What is the kernel?

2. Consider the group I of all integers under addition and the set
M = (0’ 1, 29 3’ 4’ 5: 6)

under the operation symbolized by @ where the result of combining any two
elements is defined to be the remainder left after dividing their sum by 7.
Verify that M is a group. Use the equivalence classes set out in Chapter 7,
page 104, to establish a homomorphism of (I, +) onto (M, ®). What is the
kernel of this homomorphism? Verify that the kernel is a group under
addition.

Note that a homomorphic image group arises in a similar way from the
set of residue classes to any modulus », where » is a natural number,
M=Q,1,2,..,[n — 1D and 7 is replaced by »n in the definition of ®.

3. Let M be the set of all 2 X 2 matrices (where the elements are real
numbers) with the operation of matrix multiplication. Let R be the set of all
real numbers under multiplication.

b
(i) Prove that the mapping of any matrix (a d) € M onto the real number
c

(ad — bc) € R, i.e. the determinant of the matrix, establishes a homomorphism
of the multiplicative structure of the matrices onto (R, x). Use this result to
show that an orthogonal 2 x 2 matrix has determinant + 1.

(ii)) Aswe noticed in Chapter 9, page 141, the set M under multiplication is
not a group; nor is the structure (R, x)a group. The removal of one element
from (R, x) gives (R, X) group structure. Which element ?

(iii) Which class of elements must then be removed from M to regain the
homomorphism? The remainder of M then forms a group.

(iv) What is the kernel of the homomorphism? Verify that the kernel is
a group. :

4. The A, B, C, D scales of a standard slide rule represent homomorphic
images of the positive real numbers. Discuss the operations in the two groups.

The kernel for the C, D scales homomorphism differs from that for the
A, B scales, In what way ? What practical significance has this difference?
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5. Some of the mappings which are in ‘common mathematical use’ are
homomorphisms. Which of the following mappings of the multiplicative
group of all non-zero real numbers onto a subset of itself are homomorphisms ?
Are any isomorphisms ?

@ x—> |x]; Gi) x — x2; @id) x—-—>;lc; (i) x — 2x; (v) x—> [x + 11%;

(vi) x —> —-i; i) x— €% (ii) x —>1 ifx>0and x—> —1if x <O0;

(ix) x — log x; (X) x — integral part of x.

As proved in Example C on page 160, the homomorphic image of a group
is a group: find the homomorphic image groups in those of theexamples above
which are homomorphisms. Also, find the kernels of the homomorphisms.

6. Exactly as the last example, except that the mappings are considered to
be mappings of the additive group of all real numbers onto a subset of itself.

@) x—[x]; () x—>x2; (i) x—2x; (V) x—>x +3; W) x—
(vi) x —> integral part of x; (vi) x—> 0 if x < 0 and x—> x if x > 0;
(vii) x — sin x.

7. Consider the set of all differentiable functions F which map the reals into

the reals. Let the combination be addition, then the mapping of F onto a set
F’ defined by

f—>derivativeof f fe F
is a homomorphism, since
S+ g —> derivative of f + derivativeof g f, g€ F.

What is the kernel? Compare this result with the equivalence relation in
Chapter 3, Exercise 3 (d), page 47.

8. Thesetofall2 x 1 matrices with real elements is a group G under matrix

ab
addition. Let 4 = ( d) be any fixed 2 x 2 matrix with real elements, then

c
the mapping of G into itself defined by

60 0
—_ =X ¢
Yy, cd/\y ¥y

is a homomorphism of G onto a subgroup of itself. Under what conditions on
A is it an isomorphism?

Determine the subgroup (and consider its geometric representation) and
the kernel of the homomorphism in each of the following cases.

i 4= (1 1); Gi) 4 = (1 0); (i) 4 = (1 0);
11 00 01

. 11 01\ . 12

i) 4 = (2 > W 4= (0 > i) 4 = (2 1).
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We return to our general investigation of homomorphisms of
groups. We have indicated vaguely in some of the various examples
and exercises that there is some connection between the kernel of
a homomorphism and the equivalence relation which turns the
homomorphism into an isomorphism. This connection will be the
object of our next investigation ; in order to simplify the subsequent
abstract argument we begin by considéring an example.* The
reader should check the statements made.

The mapping f of any matrix (‘cz Z) with non-zero determinant

(and real elements) onto the function x — ax +b
cx +d

morphism of the multiplicative group G of these 2 X 2 matrices
onto the group H of such functions with the combination of sub-
stitution. The kernel K of the homomorphism is the group of

is a homo-

elements of the form (I(; 2) We can put an equivalence relation on

G to obtain a group G’ of equivalence classes, so that the homo-
morphism induces an isomorphism of G’ onto H, where the opera-
tion and mapping are induced from G to G'. The equivalence

relation R is

ab ab\..[fab\ ,(ab

(o=@ a)eCa)-+(a)
for some non-zero real number k. Now what is the connection
between the kernel of this homomorphism and the equivalence
relation ? In the first place we notice that the set of elements of X

forms one equivalence class (i.e. one element) of G*, and that this
element is the neutral element, for

{60} - {Gea)) - {2
Secondly, if (Z 2) R (Z Zﬁ) then (j Zﬁ) — (j 3)(’5 2) for

* In the following example, if complex numbers were used instead of real numbers,
we would have the situation discussed on page 152. We do not refer directly to this
in deference to the reader unfamiliar with complex numbers.
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some non-zero k. Thus the elements of any one equivalence class

{(? Z)} are the elements of K premultiplied by any one particular
element of the class. For instance, the class {(_} _?)} contains

all the elements of the form (__} _(1)> (l(; 2) and we write this class

( __} _?)K. Equally, if we had chosen say (_g g) to represent

this class we could write <—§ g)K to express the same class.

Further we could post-multiply the elements of K by the chosen
representative matrix and still obtain the same equivalence class.

We can investigate the general case in a precisely similar way.
Let f be a homomorphic mapping of a group G onto a group H
and let the kernel be K. Then in our usual notation, and with the
previous example in mind, we define a relation on the elements of
G by

gRg if flg) =fg"),

i.e. two elements are related if they map to the same element of H.
This is clearly an equivalence relation, and the kernel K is the
equivalence class of elements which maps onto ez. We thus now
have a set G’ of equivalence classes which is in one-one correspond-
ence with the group H. We next show that the equivalence relation
is compatible with the operation o in G, i.e. that

ifgRg'and g, Rg, then [gog] R[g' 0 g,'].
This follows because fis a homomorphism, for

flgogy =g U fig) =g Dfg") =g og.

We can thus combine the equivalence classes by the operation o,
i.e. the definition {g} o {g'} = {g 0 g’} is proper.

We could now show that G’ is a group for the induced operation,
but choose instead to show the stronger result, i.e. that G’ is iso-
morphic to H. We have already seen that G’ is in one-one cor-
respondence with H, the correspondence being

S g —>f©®
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and we show that f” sets up a homomorphism from G’ to H by

{gog't—>flgog) =flg) O fg"
=f'(gh 0 {g'h.
Thus f” represents a one-one homomorphism, that is, an iso-
morphism.
Further if {g} € G’, then we can show that {g} = gK, where gk
means the set of elements of K premultiplied by g. For if g’ Rg
then g exists since we are in a group and

f&og) =f@) Ofgh.

But under a homomorphism f; & maps to the inverse of f(g) which
is the same as the inverse of f(g"), since f(g) = f(g’), and so

f(§og) = en.
Therefore o g’ € K, i.e. §o g’ = k, for some k € K, whence
g, = g0 k,

which proves that {g} = gK. But every element of the formgo k,
for some k£ € K, maps to f{g) and so is equivalent to g. Thus
gK < {g} and our statement is proved.

Let us summarize what we have proved. If fis a homomorphism
of G onto H then

@) the kernel K is a subgroup of G;
() gRg if f{g) = flg") is an equivalence relation on G com-

patible with o and we obtain a group of equivalence classes
G’ isomorphic with H. K is the identity element of G’;

(iii) the equivalence classes are of the form gK. It follows, by
the definition of o in G’ and G, that

[gK] o [g:K] = [g 0 g:]K;
(@iv) see Example G below.

It is usual to write G/K instead of G’ and to call this group a factor
group of G. The sets gK are called the left cosets of K in G. The
word left is used because the elements of K are premultiplied, or
multiplied on the left, by g. (See, however, the following example.)

Example G. The above abstract analysis is simple, in fact, so simple that it
is difficult to follow. The only way to get on is to prove some results oneself.
It is, therefore, suggested that the reader prove the following.

(iv) gK = Kg, where Kg means the set of all the elements of the formk o g
for any fixed g and all ¥ € K. Note that this does not mean that
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k o g = g o k necessarily, but that ko g = g o k’ for some k, k' € K.
In words, this result states that the left and right cosets, for the same g,
of Kin G are equal sets.

Exercises

1. Theset R® = v RRR of all triples of real numbers (x, y, z) forms a group
under vector addition defined by
&Y, D+ XY, =+x,y+y,z+2)
and the set R? = R v R of all pairs of reals (x’, y") forms a group under the
same operation. R® is homomorphically mapped onto R? by the equations
x+y+z=x
Sx ~y+z=y
Describe the infinite set of triples which form the kernel of this homo-
morphism and use it to obtain the complete set of solutions of
xX+y+z=3
5x —y+z=S5.
Note that, by what we have proved above, if X is the kernel of a homo-
morphism and g € G maps onto # € H, then the complete set of elements
which maps onto # is gK. Note also that the equations can be written in the

matrix form
Xy (1 11 (x
) ~\s =11\

if desired. The homomorphic property of the mapping is then immediately
evident.

2. In Exercise 7 above the reader (or pupil) was asked to find the kernel of
the homomorphism of the group of differentiable real functions F onto a
group F’. This kernel is clearly all the constant functions ¢, : x —> g, for all
X € R, the set of reals, and where a is a real number.

Thus if the function fis a particular solution of Z—i’ = h where % is a known

function of the reals into the reals, the complete solution is the coset fK = the
set of functions of the form f + ¢, for all real a, where
[+ ca:ix—>f(x) + a.
Investigate similarly the complete solution of
dy
- f=h.
TS
An important class of differential equations is the set of second order linear
differential equations with constant coefficients, i.e. the equations of the form
a? b Y =i
dx? dx Y ?
where a, b and c are real or complex constants. We may consider the problem
of their solution in this context and then the usual expression

y = complementary function + particular integral
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becomes
y = kernel + particular integral
where ‘kernel’ is the kernel of the homomorphism

d%y
y—>ad—;c—2+bl—iz+cy

3. Let G be the group of non-zero complex numbers z with the operation
of multiplication. If we map z onto z% we obtain a homomorphic mapping of
G onto G. What is the kernel?

Given that z = 1 — i 4/3 is one of the sixth roots of 64, find the other five.

Find the value of [2 + 2i4/3).

4. Let V, be the group of all (free) vectors in a given plane under vector
addition and show that if @ € V; (a + 0) is a given vector, then the mapping
of a vector onto its inner product with g is a homomorphism of V; onto the

real numbers under addition.
Find the complete solution of a.x = b where b is a given real number and
a.x represents the inner product of g and x.

5. Referring to Exercise 8 above (page 164), find the cosets corresponding

10
to the kernel of the homomorphism 4 = (0 0) and interpret them geo-

11
metrically. Do the same for 4 = (2 2).

6. The mapping z—> | z|, where z is a complex number, is a homo-
morphism of the multiplicative group of non-zero complex numbers onto the
multiplicative group of non-zero reals. What is the geometrical representation
in the complex plane of the kernel and the cosets of the kernel ?

The mapping z — arg z is a homomorphism of the multiplicative group of
non-zero complex numbers onto the additive group of equivalence classes of
real numbers modulo 2. What is the geometrical representation of the kernel
and the cosets of the kernel?

So far we have shown that if a homomorphic mapping exists
from a group G onto a group H, then the kernel X of the homo-
morphism is a subgroup of G with certain properties ((ii) to (iv) on
page 167, and the group H is isomorphic to the factor group G/K.
We now look for the possible homomorphisms of a group G. We
know the rather weak result that there cannot be more homo-
morphisms than subgroups, and as we already discovered in
Example E on page 162 there are subgroups which are not the
kernels of homomorphisms.

Let G be any group and F any subgroup of G, then (i) to (iv)
imply that F will be subject to certain restrictions if it is the kernel
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of some homomorphism. We ask the reader to bear the properties
(ii) to (iv) in mind in the following discussion: we shall refer to
them explicitly from time to time.

Consider the left cosets of F in G, i.e. the cosets gF where g is
any element of G. Let gF and g'F be any two cosets g # g’. Then
we shall show that they are either equal or distinct, i.e.

gFNg'F=gF=gF or gFNng'F=a.
Suppose that the two cosets have some element in common, i.e.
gof=gof
for some f, f’ € F. Then any other element of gF, say g o f;, can be
written

gofi=golfoflofy=gol[f ofofil.
But Fis a group, so f’ o fo f; = f, say, where f; € F, and so every
element of gF is a member of g’F. Similarly every element of
g'F is an element of gF and our statement is proved.

It follows that we have a partition of G into left cosets of F
(since eq € F, gegF and so every element of G is in some left coset),
and therefore we have an equivalence relation on G defined by the
partition. This corresponds to the first part of property (iii) of the
kernel K above and we see that we have not had to impose any
restrictions on F as yet. We can state the equivalence relation
explicitly: g R g’ if g and g’ belong to the same left coset of F, i.e. if

g =gof . . . . 4]
for some f € F, or, what is the same thing, if §o g’ € F.

Example H. Using the definition g R g’ if § o g’ € F, show directly that this
is an equivalence relation and that the equivalence classes are the left cosets
of Fin G.

Our next point is clearly to investigate the compatibility of the
equivalence relation and the binary operation. We wish to show
that if

g Rg' and g, R g then [go g,] R {g’' o gll.
Now from equation (1) above this becomes ‘if
g =gofandg; =g ofitheng'ogl =[goglofy,
for some f € F. Now

gogi=I[goflolgiofi]
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and we see that there is no reason to suppose it always true that
[goflolgiofil=[gogdofi. . . (2

Example I In Example E on page 162 we chose the subgroup (eg, g5). The
corresponding left cosets are
e &5), (81, &5), (82, £2)
as the reader may easily satisfy himself. Hence

g1 Rg;and g Rgy,
but g, 0 g, = e¢ and g; 0 g, = g, and e is not equivalent to g,. Thus it is
impossible to define (g4, g5) 0 (g2, g1) as the class whose representative is
obtained by combining any element of the one with any element of the other,
since the resulting class here depends on the choice of elements.

It follows that we must impose some condition on the subgroup F
at this stage in order to obtain the required compatibility. We
must somehow be able to get the g, on the left-hand side of
equation (2) onto the other side of the f. To require that the g,
should commute with the f is unnecessarily restrictive; all we need

is that

fogi=g,0f . . . . €))
for some f” € F. Then equation (2) will be satisfied and our opera-
tion will be compatible with the equivalence relation. Now we
require that equation (3) shall be satisfied for all fe Fand g, € G:
this means that we must have

Fg, =g/ Fforallg;,inG . . . &

which is our property (iv) for the kernel K. If a group G has a
subgroup F which has this property then F is said to be an in-
variant* subgroup. For such a subgroup the left coset for any
clement is the same as the right coset.

If Fis an invariant subgroup, equation (2) is satisfied and we
can then define the combination of two left cosets by

gFog\F =[goglF.
It remains to show that with this definition the set of left cosets
forms a group which is a homomorphic image of G. This is left
as a simple exercise to the reader. (Note that F = egF is the
identity element of the group.)
We have now proved the following fundamental theorem:
Theorem: If Fis any invariant subgroup of G then the factor group

* There are various names in use beside ‘invariant’, e.g. normal, self-conjugate,



172 CHAPTER 10

G/F is a homomorphic image of G' and the kernel of the homo-
morphism is F. Further, if H is any homomorphic image of the
group G, then H is isomorphic to the factor group G/K, where K
is the kernel of the homomorphism.

This theorem shows that by listing the invariant subgroups of
G and forming the corresponding factor groups we can completely
investigate all possible homomorphisms of G: also, given any
arbitrary homomorphism of G we can identify it structurally with
the factor group corresponding to its kernel. There is just one
point here: before we can find the invariant subgroups of a group
G we must be able to find the subgroups of a group G. Suppose G
has n elements (we say, G is of order n) then there are 2" subsets.
For a subset to be a subgroup it must at least contain the neutral
element of G, so there seems to be at most something like 2%~ sub-
sets which might possibly be subgroups. But even this number is
rather large: for the group of order 6 in the last example we would
have to examine 32 subsets. So it would seem advisable to find
some further restriction on subsets, i.e. a further necessary condi-
tion which any subset must satisfy if it is a subgroup. In fact, we
have passed over an almost ready made condition in our previous
working without noticing it.

Let G be any finite group of order #» and F be any subgroup
(invariant or not) of G. Then we have shown that the left cosets
of Fin G form a partition of G. Let w be the number of distinct
cosets; w is known as the index of F in G. Each coset contains
exactly the same number of elements, for if g is any fixed element
of G and f runs through all the elements of F, then

g =gof

takes a different value for each value of f (becauseif gof =go f;
it follows that f = f;) and so a one-one correspondence can be
established between the elements of F and the elements of each
coset. Let m be the number of elements in F, then the number of
elements in all the distinct cosets is mw. But F contains eq, there-
fore g o F contains g and the distinct cosets together contain all
the elements of G, thus

mw = Rn.

It follows that m divides n. We have thus proved Lagrange’s
Theorem: The order of a subgroup divides the order of the group.

In our example of the group of order 6, we can now have sub-
groups of order 1, 2 and 3 only. The subgroup of order 1 is ez and
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we discount this since every group has this subgroup. Since ez must
belong to every subgroup, we have now at most 15 subgroups. We
shall investigate this case completely at the beginning of the next
chapter.

NoTE: It should be unnecessary to point out that the left coset of Fin G
which contains the neutral element is the group F itself. Since the neutral
element occurs in no other coset (for the cosets are non-overlapping), no other
coset can be a group for the o operation.

We have covered a little more theory than usual in this chapter
so we will devote the next chapter to some miscellanea: examples,
exercises, applications and extensions of the ideas introduced in
this chapter. Many of the examples are suitable for more advanced
pupils, although we shall list them all as examples. Lagrange’s
theorem in particular, with its many beautiful consequences, is
easy to prove and can be done with most classes of 15-year-old
pupils of average ability.

* %* * * *

We conclude this chapter by continuing the note at the end of
the previous chapter, obtaining a particular topological group, the
fundamental homotopy group. This group is a topological in-
variant (see Chapter 11, Example R, page 200) and hence in theory
provides us with a possible means of distinguishing between dif-
ferent topological spaces in the sense that any two spaces with
different fundamental groups cannot be homomorphic. The dis-
cussion which follows is fairly technical and the reader who wishes
may omit, in particular, details of the construction of the homotopy
functions F. He should, at least, read pages 176 to 177 and under-
stand the terms used. (Incidentally, it should be borne in mind
that not all closed curves are deformable into one another in any
arbitrarily given topological space or even in such a physical case
as the surface of a torus: one tends to lose sight of this in the
technical trivia.)

In the first place we reorientate our discussion slightly. It is the
usual practice in this theory to discuss the continuous functions
of fon R, (the closed unit interval of the real line) with the natural
subset topology into the topological space (X, T': X) rather than
the images of these functions, the curves in X, The reason for this
is that this approach allows of immediate generalization: we too
will talk about the functions, although we shall not go into the
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generalizations. The continuous function f'we shall call a path into
X because the word ‘path’ has an everyday meaning somewhat
similar to that of ‘curve’ we emphasize the technical use we are
here making of these words: the image under fis not the path; the
image is a curve, the path is the mapping itself. A path f will be
said to be closed if f(0) = f(1). For the motivation of our sub-
sequent remarks we rely implicitly on the idea of a curve: the
reader is asked to bear this in mind.*

A path f, is said to be homotopic to a path f; if there exists a
continuous function F on (R, vV R, T: R, Vv R, into (X, T: X)
such that F(s, 0) = f(s) and F(s, 1) = f;(s) for all s€ R,. (This will
imply that we can continuously deform the curve So(RY into the
curve f1(R,).) If x, and x, belong to X, and if F exists satisfying,
not only the previous conditions, but also

FQO, t) = fo(0) = f,(0) = x,,
F(l’ 1) =f0(1) =f2.l(l) = X1,

for all ¢ € Ry, then we shall say that f, is homotopic to f; relative
to xy and x,. .

Let f and g be paths into a topological space (X, T': X) such
that f{1) = g(0). Then it is intuitively reasonable that we can com-
bine these two paths into a new path # = gof. (Consider the
corresponding curves.) To do this analytically we must so combine
them that % is a continuous mapping of (R, T': R,) into X, T: X).
Consider the function 4 defined by

_ [f2s) » 0<s<3}
W) =1g@s—1y | 3 <s<l.

We notice that #(0) = f0), A1) = g(1)and thath}) = D = g0,
which expresses our intuitive ideas exactly. It would remain to
show that 4 is continuous: we shall not do this, but the reader
might like to try; it is not difficult.

Having described the combination of two particular paths and
remembering that we are, in the end, looking for a group, our next
step would be to look for something that might act as a sort of
identity element. For any point x € X we can define a special path
e, which is such that it maps the whole of R, onto x, i.e.

e =x , 0<s <1.

* The reader can of course draw pictures: these are helpful to focus attention on
the problem in hand but he should remember that he would be drawing curves and
not paths.
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We can combine this with a path fif either f{0) = x or /(1) = x.
In the first case we would have 2 = f o e,, where
_Je2=x , 0<s <}

KO =\fos—1 . t<s<l,
but this is not the same as £, although the image set of % and f are
the same. It would seem likely, however, that 4 is homotopic to
S relative to x and f(1). We can make the homotopy explicit by
finding the function F on R; v R, into X: consider, as a first
attempt

X , 0<s<t2
Fs, ) = f([t ~|—vl]l:s —_;]) , 12 <s<l.
Then F(s,0) = {;(s) : g zi 2(1)} = f(5)
x » 0<s<3| _
and Fis, 1) = {/’(25' — L i<s<if™ h(s).

Also F(, t) = x, but F(1, t) = f([t + 1][1 — ¢/2]) which is not
necessarily the same as f{(1). Therefore, F is not the required
function. Before we give a satisfactory function we point out two
further requirements of the function F which are somewhat
obscured in the technicalities. These requirements are both associ-
ated with the continuity of F:

(i) We must ensure that for all values of (s, ¢) the function F
is properly defined on R,: for instance, for the F above F(1, %)
= f(35/32) which is not defined.

(ii) Where Fis defined ‘in bits’ over R, v R, we must ensure that
on any overlap the bits have the same image in X: for instance,
in our example, the bits overlap at s = #/2, and here

F(t/Z, 1) = {3;(0) = x,

so we see that this condition is satisfied.
A satisfactory function F (which meets all six requirements) is
1 —1¢
X , 0 <s < —5

F(s, t) =

’ 2s — 1 ) 1—1¢

2 41) “las<l
f( t+1 + ’ 2 s

That the first four conditions are satisfied we leave the reader to

check: the value (1 — 1)/2 for splitting the interval R, has been
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chosen to ensure continuity (as well as from the requirement
F(s, 0) = h(s)): it remains to show that

O<M+l<lforl———t<s<l.
t+1
i 1 —1¢ 2[s — 1]
Since s > 5 and T <0
1 —1¢
2':——— _1]
we have As—11 L 2 1 L

t+1 7 41
which satisfies the left-hand inequality: the right-hand inequality
2[s — 1]

<0.
t+1 0

is a consequence of the fact that

Example J. We have spent rather a long time over this one case in order to
fry to illustrate the methods and snags, but the only way to pursue this topic
is for the reader to struggle for himself. We suggest, therefore, that he try the
other half of the problem (before reading any further in this section): that is,
suppose that f(1) = x and that we form & = ¢, o f; then show that % is
homotopic to f by finding a relevant homotopy function F,

Example K. As we shall see later the relation of being homotopic is an
equivalence relation in a set of paths. It follows that ' is homotopic to 4 in
the case discussed in the text and in Example J. Find the corresponding
homotopy functions F. Can you suggest a general result ?

Let us now see how far we have got. It would seem that we must
introduce the idea of homotopy classes, i.e. classes of homotopic
paths, and with luck these will be equivalence classes. It then
follows that we must show that the combination that we have
defined is compatible with the equivalence relation. Further it looks
as if the class containing the path e, will act as the identity element,
but we know that in a group the left identity is the same as the right
identity and at the moment e, o f may be defined (i.e. if x = f(1))
and fo e, may not be defined (i.e. if x # f{0)), hence we shall
require

J0) =) = x,
i.e. the set of paths we shall consider are all the closed paths to a

point x € X, The combination of any two such paths belongs to
the set so the closure requirement for a group is satisfied. It remains
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to discover whether the combination of classes is associative and
to find an inverse. If we can do all this we shall have a group. We
shall prove some of the results and leave the rest explicitly to the
reader: there is only one point at each stage of our investigation,
to find the relevant homotopy function F. We shall take the con-
tinuity of each function that we construct for granted, merely
adopting the safeguards mentioned above: in general it is not
difficult to prove the continuity and a generally applicable result
can be obtained.

(1) Denote the set of closed paths to x e X such that f(0)
= f(1) = x by P,. If f and g belong to P, and f is homotopic
to g relative to x (i.e. f(0) = g(0) = f(1) = g(1) = x and there
exists a function F such that F(0, t) = F(l, t) = x, etc.) then we
shall write f ~g. We wish to show that ~ is an equivalence
relation.

(@) ~ is symmetric. Suppose that f ~ g then there exists a
function F such that

F(S, 0) =f(S), F(S’ l) = g(s), F((), t) = F(l, 1) = x.
Consider Fi(s, t) = F(s, 1 — t), then
Fl(s, 0) = F(S, l) = g(S), Fl(s’ 1) =f(S),
and Fl(o, t) =F1(1, t) = X.
Hence g ~ f.

(b) ~ is reflexive. Define F(s, t) = f(s) for all ¢, which proves
the result. (Incidentally, this function can be seen to be continuous
because the topology for any direct product is so chosen that the
projections are continuous, and we can decompose F into two
continuous functions, i.e.

F: (s, t)— s—f(s))

(c) ~ is transitive. Suppose that f ~ g and g ~ & then there
exist functions F and G of the required type. We wish to define
a function H which shows that f ~ h. Consider
F(s, 2t) , 0<t <3
Gis,2t—1) , 1 <t<l.

Note the similarity between this function and that obtained for

the combination of two paths. We leave the reader to check the
details.

(2) Denote the set of equivalence classes defined in P, (by the
relation ~) by P,. We wish to show that the combination defined

H(s, t) =
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in P, is compatible with ~ and can, therefore, be defined in P,
ie.if f ~ gand f; ~ g, then we shall prove that [fo f;] ~ [g 0 g,].
(Note that since we are dealing with closed paths, combination is
always defined, and the result is always a closed path in P,.) Since
f~gand f; ~ g,, there exist functions F and F; of the required
type: define

_ [FQ2s, t) , 0<s <
Hs D =1pas -1, . 3 <s<l.
Then H(s, 0) = ?f(zg;()jl )
_ [ f@2s) , 0<s <4

A -1, 3 <s <1}=[f0f1](s),

and we leave the reader to check the rest of the conditions. Again
note the way that the function H was formed.

(3) We now have a combination in P,, which is closed and
contains an identity element {e,}. It remains to show that com-
bination is associative and that there exists an inverse for each
element in P,. We shall consider the latter point first: let f be any
path belonging to P, so that {f} € P,: as s € R, goes from 0 to 1
we have a sense for the description of the curve f(R,) and it would
seem reasonable that if we reverse the sense we shall undo the
curve: to be more precise define a new path f; by

fils) =fA — ),
whence £,(0) = f(1) = f(0) = f,(1) = x, therefore f; € P,. We wish
to show that
{fofl} = {ew}:
ie. that [fo f,] ~e,. Let fof; = h, then
1—-28) , 0<s<
hs) = fézs— 13 , 31 <s <Jf

The function F we are looking for must be e, when ¢ = 1, i.e. f(0)
or f(1): this suggests that we might introduce a factor 1 — ¢ some-
where, so we try
_Jfal —zel —2shp , 0 <s<%

Flo D =71 —tl2s — 1D ., % <s <l1.
Then F(s,0) = h(s), but F(0,1) = f(1 — t)and F1,t) = f1 — 1)
which will not do. (Incidentally, the two continuity conditions are
satisfied.) We leave the reader to modify the function suitably.
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Lastly we must show that if £, g and 4 belong to P, that

[fogloh ~folgoh]
If k =[fog]ohthen

h(2s) , 0 <s <
k(s) =q8(ds —2) , I <s<
(4s —3) , 3I<s<l

and a similar expression for f'o [g o A]. It is clearly going to require
considerable ingenuity to produce a function F: the reader might
like to try: we shall be satisfied that intuitively such a function must
exist. (Consider combining the corresponding curves.)

Thus, finally, we have produced our group P, at any point
x € X. This is the fundamental group at x: we shall consider some
examples and some of its properties at the end of the next chapter.
In particular, we shall prove that the fundamental group is a topo-
logical invariant, i.e. that if X; is homeomorphic to X, under a
homeomorphism g then P,, x € X, is isomorphic to Pjy,: we
would like to think, however, that this again is an intuitive result
since the whole definition of P, has been in topological terms.

P o=




CHAPTER 11
CONSEQUENCES

Example A. We shall first find all the subgroups of the group of order 6
which we considered in the previous chapter (see page 172). Its combination
table is

o g &1 8 & 84 &5

e € &1 82 8 81 &
&1 81 8 €g & 8 &
82 82 € &1 81 85 &3
&s & 81 &5 €c¢ 81 &

&a 81 & &3 8 €g &1

85 8 83 & &1 &2 e€g

Since the order of a subgroup divides the order of the group we can only have
proper subgroups of order 2 and 3. A subgroup of order 2 must contain eg
and one other element g; which is such that

£i108i = ég
Hence from the combination table we find that there are three subgroups of
order 2, i.e.
(eq» 83, (eq» 8a)s (eq &5)-

Any subgroup of order 3 contains e and two other elements g;, g;. But a
group is closed, therefore g; o g; must be one of these three elements: it is
easily seen that it cannot be g; or gj, SO £i0 85 = gj 0 £g: = eqg. If we now
write out the combination table for this group, remembering that no element
may be repeated in any row or column (why ?), we find that the subgroup is
completely determined.

o eqg & &i
€a e & &
&i &g eq
&gi 8i €g

180
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From the above group table, this is only satisfied by i = 1 or j = 2 (or vice
versa). Hence there is one subgroup of order 3.

The three groups of order 2 are isomorphic. There is, of course, only one
abstract group of order two, i.e. every combination table is of the form

(o] e a
e e a
a a e

These three particular subgroups are not invariant and so do not give rise to
a homomorphism.

The discussion we gave above for the subgroup of order 3 shows that there
is only one abstract group of order 3, i.e. any group of order three has a
combination table of the form

o e a b
e e a b
a a b e
b b e a

The fact that there is only one abstract group of order 2 and one of order 3
is a particular result of the general statement in Example E (iv).
Returning to our group of order 6 and its subgroup of order 3, we notice
that the subgroup is invariant: we show the left cosets explicitly.
ec (e, 81, 8) = (€q, 81, 805 &1 (e 815 &2 = (81, &3 €03
82 (eqr &1, 82 = (82, €, 81)5 &8s (€, 81, 8 = (&3, 8us &)}
ga(eq, 81, &) = (84, &5 83)5 &5 (€cs &1, 8D = (&5, &3, 8-
The two distinct cosets are (eq, £1, &2 and (g3, £4, &5). They form a group
under the induced operation o. This factor group is, of course, isomorphic to
the abstract group of order 2.
So this group of order 6 considered has

(1) 3 subgroups of order 2 and 1 of order 3,

(2) 1 invariant subgroup of order 3, and hence

(3) a homomorphism onto the abstract group of order 2.

Example B. If /is a homomorphism of G onto H, show that the order of H

divides the order of G.
(Hint: if K is the kernel of £, [order K] X [order H] = [order G].)

Example C. Any subgroup of an Abelian group is invariant.

Example D. It is an immediate corollary of Lagrange’s Theorem that a
group of prime order has no subgroups: in consequence, it also admits no
homomorphic images.
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Example E. The order n of an element g of a group G is defined as the least
positive integer n for which g = ey, whereg” =gogo...0g,ie. gcom-
bined with itself # times. In a group of infinite order there is no reason why
n should be finite, but in a group of finite order » must be finite, for consider
the sequence

ee, 8 8% 8% . ..

These are all elements of G (G is closed), but since G is finite we must get
repetition at some stage, i.e. we must have

gt=g* s>t
and so, since g* o [#]* = eq and g* o [§]* = g*~¢, we have
eq =gt

and the ordernof gissuch that n < s — 1.
If g € G and g is of order n, then the elements
&g gz’ LI gﬂ—l, g” = €q
form an Abelian subgroup of G. Hence, by Lagrange’s theorem, the order of
any element of a finite group, divides the order of the group. (Note that if
g is of order n, the inverse of g"is g™, r < n.)

A group generated in this way by one element is called a cyclic group. The
choice of name is easily explained. All cyclic groups of the same order are
clearly isomorphic and for any given order #, say, rotations in a plane about
a fixed point through an angle of 2z/n form a cyclic group of order n. Any
point in the plane is transformed into itself after n applications of this rotation
operation: on its way it describes » points equally spaced on the circumference
of a circle centre the fixed point. (In general, if all the elements of a group
may be represented as powers or combinations of powers of the elements of
some subset, then the elements in this subset are called the generating elements
of the group (e.g. the note on braids, Chapter 7, page 116).)

Clearly we have a cyclic group Cy of any order n. It follows that the group
of order 3 is a cyclic group of the form e, g, g2. This is a special case of the
general result (iv) below.

(@) There are isomorphic representations of the cyclic group other than

the geometric one given above.

(i) Find a 2 x 2 matrix representation of the cyclic group of order six.
(Hint: use the geometric representation.)

(iii) Consider the group of elements 1, 2, 3, 4 with multiplication modulo 5.
Find the order of each of the elements and show that the group is
cyclic. Which of these elements generates the whole group ? Consider
other ‘modulo’ groups.

(iv) Use Lagrange’s theorem to show that there is only one abstract group
of each prime order, i.e. the cyclic group of that order. (Hint: consider
the order of an element g.)

(v) Show that any homomorphic image of a cyclic group is cyclic.

(vi) Show that any subgroup of a cyclic group is cyclic. (Hint: if g generates
G and g7 and g¢ belong to the subgroup then g% belongs to the subgroup
where d is the highest common factor of r and s.)
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Example F. Lagrange’s theorem, together with the fact that the order of any
element divides the order of the group, can be used to investigate the number
of possible abstract, non-isomorphic groups of any given order. For orders
with a small number of factors this is a relatively easy problem, but with
increasing number of factors it usually becomes more difficult.

Of the groups of order less than 8, the only ones we have not settled are the
groups of order 4 and 6. Consider the problem for groups of order 4. We gave
two non-isomorphic group tables in Chapter 8, Exercise 2, page 121: in fact,
these are the only two abstract groups of order 4. We leave the proof to the
reader with the following hints. The elements of the group can either be of
order 4 or 2. If there is one element of order 4 it generates the group, which
is therefore cyclic (see the first table and notice the cyclic arrangement).
Otherwise the three non-neutral elements must be of order 2. It remains to
show that there can be only one such group: this can be done directly by
trying to fill in the gaps in the combination table given below. It will be found
that there is only one possibility for each empty place.

o e a b ¢
e e a b ¢
a a e

b b e

c c e

There are two groups of order 6: one is certainly cyclic. Except for this
case the elements of a group of order 6 can be only of order 2 or 3. Show that
not all elements can be of order 2: hence there must be at least one element
g of order three, whence three elements of the group are eq 8, g% Let g, be
any further element then g,, g, 0 g and g, o g2 must be the other three ele-
ments, whence g} must be already listed: show that g2 must be equal to eg
etc. See the reference below.

If we consider the number of possible abstract groups of order 8 we see
immediately that the problem becomes more involved. We have, of course,
the cyclic group of order 8 generated by one eclement of order 8. But then we
can have elements of order 4 or 2 and possible combinations of these must be
considered. In fact there are five groups and the reader can find a survey of
such groups in Ledermann, Introduction to the Theory of Finite Groups (Oliver
and Boyd).

The reader who is interested can pursue the problem to groups of higher
order: it is not always more difficult. For instance, there are only two groups
of order 9.

Example G. In order to grasp the ideas of the previous chapter, especially
the idea of an invariant subgroup and the multiplication of cosets, it is
advisable to work an example in full as we did for the group of order 6 in
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Example A. For this purpose we suggest that the reader find and investigate
all the subgroups of the group of order 8 whose table is given below.

o | e f g h i j k1

e e f g h i j k1
f|r h e j k1 i
g | g h e f k1 i
h | A

e f gl i
k j e h g

-~
-~
~

jlji il k f e
k| kj il g f e

I I kK j i h g f e

This group, known as the dikedral group of order 8, is isomorphic to the
group of symmetries of the square considered in Chapter 8, page 123. Asa
typical result we mention that the group has five subgroups of order two, of
which only one is invariant. This means that the factor group for this invariant
subgroup is of order 4: it remains to discover with which of the two abstract
groups of order 4 it is isomorphic. To do this latter part, the reader is advised
to calculate the cosets as in Example A of this chapter and then to set up the
combination table for the distinct cosets. It would also be useful to show
directly, as in Chapter 10, Example E, page 162, that any one of the other
subgroups of order two is not the kernel of a homomorphism.

Example H. Let H be an invariant subgroup of a group G then gH = Hg
for all g € G. This means that for any element # € H there must beanh, e H
such that

B

. goh="hog,

ie. gohog =h;.

Conversely,ifgo ko ge H,forallge Gand h € H, gH = Hg. Thus we can
rephrase our definition of an invariant subgroup in the following form: H is
an invariant subgroup of the group G if g o /2 0 £ belongs to H for allge G
and / € H, or briefly if gHg = H for all g € G. Note that replacing g by &' we
get the equivalent statement: H is an invariant subgroup of G if #Hg' = H
forallg’ € G.

Example 1. So far in this chapter we have confined our examples to finite
groups: we shall now give a few examples of infinite groups with invariant
subgroups.

1. As we shall see in the next chapter certain groups of square matrices
with real elements play an important role in geometry. Among these groups
are the orthogonal group and the similarity group. We have already met the
orthogonal group O, of 2 x 2 matrices: it is the set of all matrices 4 such that

A4 =1, . . . . @
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10
where A’ is the transpose of 4 and I is the unit 2 X 2 matrix 0 1>. The

similarity group S, is the set of 2 x 2 matrices B such that
BB =11, . . . . N )]

where 1 is any non-zero positive real number. We leave the reader to verify
that this is a group along the lines indicated for 0,. (Why must A be non-
zero

Clearly O, is a subgroup of S,. We will show that it is an invariant sub-
group. To do this we must show that (cf. equation (4) of Chapter 10, page 171)

O,;B = BO, for all B in S,.
This is the same as showing that
forall 4 € O, AB = BA, for some A4, € 0,,
i.e. that B 5
(BABl€O,ie that [BABIBABY =1

Now B = %B’ by the definition of S,;. Consider

1., 1,1 T1. U onl®
SBAB||:BAB| =|:B4B||: B4'B
) 7 2 p)

= B B’A:l I[A’B] by equation (2)

= B B’:| IB by equation (1)

= I Py
by equation (2) and the fact that a right-inverse in a group is also the left
inverse. It follows that BAB € O,. Thus S,/0, is the homomorphic image of
S, with kernel O,.

This latter group is rather difficult to visualize, so we shall investigate the
cosets which are its elements in an attempt to establish an isomorphism with
a more well-known group. Let B be any element of S, such that BB’ = kI.
Consider the elements of the coset BO, and let BA, A € O,, be any one. Then

[BAI[BAY = BAA’'B’ = BIB’ = kI,
i.e. every element of the coset BO, satisfies an equation of the form (2) for a
fixed scalar 4 (= &, in this case). But perhaps there are two cosets BO, and

* There are two points here which we have not explicitly mentioned:
(i) A[AB] = [A]B = MAB], for any matrices A and B.

(ii) The extension of the transpose operation to the product of any number of
matrices, The reader was asked to prove that for 2 X' 2 matrices 4 and B

[4BY = BA’

(see Chapter 9, Exercise 8 (b), page 151) and it follows from this and the associativity
of matrix multiplication that for any 2 X 2 matrices A4, B, C

[ABC) = C'B’A4’,
etc. In fact the results are quite general and apply equally to » X n matrices.
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CO,, say, whose elements satisfy the equation XX’ = kI for the same k. To
see whether this is the case or not we shall try to find some relation between
B and C. Now we can always find a matrix Y € §, such that C = BY (we are
working in a group) and if CC’ = kI, we have

[BY1[BY) = BYY'B’ = ki,

. . I S
where premultiplying by the inverse of B, viz. EB , and postmultiplying by

—l-B, the inverse of B’, we have

k
l 4 '1 p— 1B’ kI 1
kBiIB[YY’]B,{B— A kB ,

and this simplifies to

YY = % BB=1,
which shows that Y € O, and, therefore, BO, = CO,. Thus, to summarize:
matrices B and C, belonging to S, belong to the same coset of O, in S, if,
and only if, they both satisfy the equation of the form (2) for the same value
of 4, i.e. there is a one-one correspondence between the cosets and the positive
real numbers. We leave the reader to complete the isomorphism.

We could have obtained the result more directly by showing that the
mapping of the multiplicative group of S, onto the positive reals under
multiplication defined by

B— A

where B satisfies BB’ = i1, is a homomorphism with kernel O,. Then, sub-
sequently, we could have investigated the cosets. The reader should remember
that the method which most appeals to him may not be the best method to
teach. Most of our mathematical teaching still remains unmotivated either
from within or from without mathematics. A series of theorems or problems
of the type ‘Show that O, is an invariant subgroup of S, and that S;/0, is
isomorphic to the multiplicative group of positive reals’, may be stimulating
to the sophisticated but is more likely, at all levels, to yield the muttered
reaction of ‘So what? If possible one should not begin with the result and
then provide the investigation. If one wishes one’s students to react then one
should present them with a reasonable problem suitably motivated depending
on their level, and not with the answer. This cannot, of course, always be
done; time, energy and, in the case of books, space is lacking; but it ought to
be one of our aims.

To continue with our problem. The reader might like to consider its
generalization to larger square matrices. He might also like to consider
analogous problems for other groups of 2 x 2 matrices of which we give a
few below. All the groups are multiplicative.

The largest multiplicative group of 2 x 2 matrices is, of course, the group
M’ of all non-singular matrices, i.e. the group of matrices which possess
multiplicative inverses. So far in this example we have met the two subgroups
S; and O,. We suggest for consideration the sets of matrices of the following
form also.

o (2 azo; @t an (%) @ (®°
Y\o 1/ 1) ™ 01 ™ot
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2. We have come across many other subgroups of 2 x 2 matrices in
Chapter 9 and one can consider these in their matrix form or in their iso-
morphic numerical form. For instance, consider the additive groups of
matrices. M, the set of all 2 X 2 matrices, is our main group and it is Abelian.
Therefore all the subgroups are invariant. It only remains to recognize the
factor groups.

On the other hand, the multiplicative group M’ is not Abelian and, there-
fore, the corresponding subgroups of the multiplicative structure given in
Chapter 9 may not be invariant.

Of all these possible combinations of groups and subgroups we consider a
final example, the complex numbers as a subgroup of the quaternions. The
additive group of quaternions is Abelian, therefore the complex numbers form
an invariant additive subgroup. The factor group is the set of cosets of the
form gC* = {g + ¢}, where g is a fixed quaternion and ¢ € C, the set of
complex numbers. Using our matrix representation of these sets we suppose

that
o f d ( ab)
q(—»(_ﬁli)an c<> b a)

where a, b are real and «, § are complex. Thus
a+a B+b
—B—b a-+ a)
and the matrix representation of the coset gC is obtained by letting a and b
take all real values. All the matrices in the representation of ¢C, therefore,

are such that the complex part of each entry is the same, i.e. if @ = r 4+ sjand
B =1t + uj, j2 = —1, then each matrix in the representation of gC can be

written
s wu
Cl + ] 2
u —s

where ¢, is a real matrix depending on ¢. Thus there is a one-one cor-

q+c<—-><

S u
respondence between the cosets gC and the matrices of the form ( )
U —s

This form of matrix is not directly recognizable as one of those given in
Chapter 9 but we can establish a further one-one correspondence of the form

)=

which is recognizable as the matrix corresponding to the complex number
u -+ js. We leave the reader to show that

us
qC<—>< )
—su

* The reader is reminded that gC signifies the set obtained by combining (under
the group operation, and here this is addition) the element ¢ with every element in C,

is an isomorphism.
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Now consider the multiplicative structures. The multiplicative group of
non-zero quaternions is not Abelian, therefore, the subgroup of non-zero
complex numbers is not necessarily invariant. To investigate whether it is or
not we will consider the quaternions and complex numbers in their ‘standard’
form and not their isomorphic matrix forms. Letq =a + bi + ¢j + dkbea
quaternion and « = u 4 vl be a complex number, /2 = —1. Then o, con-
sidered as a quaternion element, is written as « = u + 0 + vj + 0.k (see
Chapter 9, Exercise 4 (d), page 138), and we leave the reader to verify that
g a g is not a complex number where

1
_a2+b’+c’+d2
is the inverse of g. Hence the complex numbers are not an invariant subgroup

of the quaternions under multiplication and there is no corresponding factor
group.

Example J. Suppose that H is any subgroup of G, then if H is not invariant
gH§ for some g € G is not H (see Example H, page 184) but some othersubset
H, of G. In fact, H, is a group isomorphic to H; we leave this to the reader
to prove. H, is said to be conjugate to H and this is why an invariant subgroup
is often called self-conjugate.

The type of transformation g [something] & is important in certain applica-
tions of group theory, so we shall consider it a little further. Let G be a group
and g, g’ any two elements of G and suppose that there exists some element
&1 € G, such that

[a — bi — ¢f — dk)

]

g10g0f =g,
then g’ is said to be a conjugate of g. Clearly every element is self-conjugate,
i.e. is a conjugate of itself, for

eogoé=g (asogogog=y¢g)

and if g’ is a conjugate of g then g is a conjugate of g/, forif g, 020 8, = ¢’
then &, 0 g’ 0 g, = g, and g, is, of course, the inverse of &,. Thus the relation
‘g conjugate of g”’ is reflexive and symmetric; it is an equivalence relation if
it is also transitive, i.e. if ‘g conjugate of g’’ and ‘g’ conjugate of g imply
‘g conjugate of g/ ’. Now ‘g conjugate of g’ ’ implies that there is an element
g1 € G such that g, 0 g 0 &, = g’ and similarly we have for some g, € G,

o’

g:08° 08, =¢g".
Hence
[g:08]0g0[g08:] =g”

f_J
and [gz0g4] = &, 0 &;, thus ‘g conjugate of g”°.

Since the relation of being conjugate is an equivalence relation it divides
the elements of G into non-overlapping classes, the elements in each class
being conjugate to each other. To construct these classes for any given group G
(we shall immediately consider an example) we begin with any element g and
form the expressions of the form g, o g o &, for all g, € G and so find all the
elements conjugate to g: then we take any element g’, not belonging to this
class, and proceed similarly, and so on till all the elements of the group are
exhausted.
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As an example we choose the symmetry group of the square (the dihedral
group Dj; of order 8) which we have already considered in Chapter 8, Exer-
cise 5, page 123 and on page 184 in this chapter. To save the reader continu-
ally referring back we reproduce the figure and the group table here, using a
slightly different notation. a, b, ¢, d will refer to rotations through 180° about

(o)

(0) (8)

the axes marked (@), (b), (¢) and (d) respectively. e will refer to a rotation
through 0° about an axis through the centre of the frame and perpendicular
to its plane; f, g, h will refer to rotations of 90°, 180° and 270° respectively
about this axis. The group table then is

o | e abcdif gh

e e a b ¢

d

a | ae h g fde b
g
h

b b f e h a d c
c c g f e b a d
‘ d d h g f e ¢c b a
‘ f f b c dagh e
g g cdab h e f

h | hdabece f g

Clearly e is in a class by itself since x 0 ¢ 0 ¥ = e for all x belonging to Dy.
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(The reader might like to show that any element of a group which com-
mutes with every other element of the group is in a class by itself. Also, he
might like to show that the set of all elements which commute with every ele-
ment of the group form a subgroup. This subgroup is called the centre of the
group. Is it an invariant subgroup ? In an Abelian group each element is con-
jugate to itself only.)

Now consider the next element a and form all the expressions of the form
xo0aoX,xe D,

bogob=boaob=c; coao&=coaoc=a;etc

It will be found that we get either a or ¢ in every case. So our second class
is {a, ¢}. Continuing in this way we obtain the following set of classes:

{e}, {a, ¢}, b, d}, {f, 1}, {g}-

(The element g commutes with every element of the group. This can be seen
in the group table by noting that each entry g has a mirror image in the main
diagonal from top left to bottom right.)

We can give these classes an interesting geometrical significance by con-
sidering the elements of Dy as mappings of the points of the square (in general,
the whole plane: cf. Chapter 8, Exercises 6 and 7, page 124). This is best
described using a conventional coordinate system, i.e. the x-axis along the
axis marked () and the y-axis along the axis marked (¢). If P is a point with
coordinates (x, ), then a(P), the reflection of P in the (a)-axis (or x-axis) has
coordinates (x, —y); similarly the reader may find the new coordinates for
each of the other seven symmetry operations. (Note that they correspond to
the eight possible combinations of 4 x and &+ y.)

Now consider the relation ¢ = foao f and let P be any point and
a(P) = Q, say. Then

(fP)) = [co fiP) = [foao fofiP) = [foalP) = f(alP)) = f(Q).

Thus, if @ maps P to Q, ¢ maps f(P) to f(Q), or to put it otherwise the effect
of @ on P is the same as ¢ on f(P). A similar sort of relation clearly holds for
all conjugate transformations. One might say, very naively, that conjugate
elements must be elements of the same ‘kind’, where the word ‘kind’ is left
imprecise. (But it does not necessarily follow that elements of the same ‘kind’
are conjugate: see later.) For example, a and ¢ are both rotations of 180°,
but about different axes; the element f (where we call f the auxiliary element)
puts along the (a)-axis those points of the square which would otherwise have
lain along the (c)-axis: the operation a then achieves the same result as
operation ¢ would have done, except, of course, that to achieve the same final
position the operation fmust be undone, that is, f = f must be applied. Hence
one can easily see, from the diagram, that a is conjugate to ¢ using as auxiliary
operation any one of £, d, b, h (for each one of these maps the points of the
square which lie along the (c)-axis onto the (a)-axis: more simply, these
operations applied to the axes map the one into the other).

In a similar way, b and d plainly could be (and are) conjugate: again they
are both rotations of 180°. The auxiliary operation here could evidently be a,
for instance, but could not be g, for g does not map the points lying along
the (d)-axis onto the (b)-axis.
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On the other hand, a and b are also elements of the same ‘kind’, but the
auxiliary operation required is a rotation of 45° or 135° or a reflection in the
line bisecting either of the angles between the () and (b)-axis; no such opera-
tion exists in this group so that a and b are not conjugate.

We leave the reader to consider £, g and %, which certainly cannot be con-
jugate to a, b, ¢ or d. Notice that g maps every one of the other axes into

- itself.

In considering the transformations of three dimensional space the same
type of reasoning holds: for example, rotations of the same magnitude and
sense about different axes will be conjugate if an operation exists in the group
which would map one axis onto the other; on the other hand, a plane of
reflection evidently cannot be conjugate to an axis of rotation, since they are
of different ‘kinds’. (In two dimensions an axis of reflection may be regarded
as an axis of 180° rotation: the corresponding result fails in three dimensions.)

(It does not necessarily follow thatif g, 0208, = g theng,0g’0 8, = g,
i.e. that & and g’ are mutually conjugate for the same auxiliary element g,.
The reader may discover the condition that this should be so.)

The symmetry groups and their conjugacy classes are of considerable
importance in quantum mechanics and various chemical theories. There one
is interested in what are known as matrix representations of the symmetry
groups: in our terms a matrix representation of a symmetry group is a
homomorphic image whose elements are matrices. An isomorphic image
whose elements are matrices is called a faithful representation. One group can,
of course, have many representations. A faithful representation of the group
Dy is the set of eight matrices given in Chapter 8, Exercise 4, page 122. Since
this group of matrices, Mj say, is isomorphic to Dy, the classes of conjugate
elements of My are the images of the classes of D;; the same applies for
other faithful representations of D and, of course, for the faithful representa-
tions of any group. Another faithful representation of D could be obtained

ab0
b
by ‘bordering’ each 2 x 2 matrix (a ) of M obtaining { ¢ d 0 }.
cd 001

In the application of this theory not all matrix representations are of
-interest: the so-called irreducible representations are the important ones. It is
not our purpose to explain this specialized theory here (for those interested
see, for instance, Cotton, Chemical Applications of Group Theory (Wiley)
1963), but we can prove one quite simple and elegant result requiring the
following definition. The character (trace, spur) of a square matrix A is the
sum of the elements in its leading diagonal.

o\
o

\
N\

<.

\\
3

2N\

bo\?/

6\)

7/

N,

¥

N

We denote the character of 4 by the Greek letter chi x(4). Now although
matrices do not, in general, commute under multiplication, it is true that if



192 CHAPTER 11

A and B are n X n matrices and AB = C and BA = D, then the characters
of C and D are equal, that is

x(C) = (D) . . . . ¢ )]

We leave the reader to prove this in the 2 X 2 case, and more generally if he
wishes. If, then, we have two matrices X and Y which belong to the same
conjugacy class of a matrix representation of a group, there must be a third
matrix Z, say, in the matrix group such that

X=2ZYZ. _ .
Consider y(X) = x(ZYZ) = y([ZY]Z) = y(Z[ZY)), by equation (1)
= 1([ZZ]Y) = x(T),

i.e. the characters of matrices representing conjugate elements of a group are
the same. This is why in the so-called character tables of the symmetry groups,
the elements can be grouped in conjugacy classes, i.e. equivalence classes of
conjugate elements.

Referring back to our representation M of Dg we see that E, which has
character 2, and H, which has character —2, must be in classes by themselves;
E corresponds to ¢ and H to g in D,. All the other elements of Mj have
character zero; this shows, incidentally, that the converse of our result is not
true; two matrices with the same character do not necessarily belong to the
same class.

The reader might like to consider some examples of his own along lines
similar to those used in this example. The symmetry group of an equilateral
triangle (Chapter 7, page 103) is a group of order 6 and another much larger
group is provided by the group of symmetries of the cube which is of order 48.
(If one restricts oneself to three dimensions and will not turn the cube inside
out the order reduces to 24.)

Example K. Lagrange’s theorem states that for any finite group the order
of a subgroup divides the order of the group. A similar result holds for con-
jugacy classes as defined in the last example: the number of elements in a
class of conjugate elements divides the order of the group.

We prove this by considering a given element g of a group G. Now, it is
clear that if # € G commutes with g then n o g o /i = g and so produces no
new clement. Let N be; the subset of G of all those elements which commute
with g, then N is a subgroup, for

@@ N contains e, and the operation in N is associative;
(i) N is closed, for if 7y, #; € N then
[nonlog =njogon, = golnonyl;

(iii) if n; € N then n, 0 g = g o n; and hence pre- and post-multiplying by
fiywehavegos, =f,0g.
Therefore, the order #x of N divides the order 2¢ of G. Now consider the
decomposition of G into left-cosets of N and let g, N be any such coset, then
if n e N we have

[gionlogolfiod)] =g0g08 =g, say,
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and we see that every element of g, N gives the same element g’ conjugate to g.
But if g,N is distinct from g,N, do the elements of g,N give an element g”’
conjugate to g and g = g’ (i.e. do two distinct cosets give different con-
Jjugates for g)? Suppose that
820808, =g,0804,

then, premultiplying by &, and postmultiplying by g, we have

[f10g:]0g =golfiogl,
i.e. &, 0 g5 € N, therefore g, = g, o nfor some n € N. Thus g,N and g,N cannot
be distinct. Hence there are as many elements conjugate to g as there are
distinct cosets; but the number of distinct cosets is 4¢/Ax which proves our
stated result that the number of elements in a conjugacy class decides the order
of the group.

In our decomposition of Dj; into conjugacy classes we had classes of 1 and
of 2 elements: we had no classes with 4 elements, i.e. not every factor of the
order of the group need be represented, the extreme case being an Abelian
group in which every element is conjugate to itself only, whatever the order
of the group.

Equally, of course, there need not be a subgroup corresponding to every
factor of the order of the group.

The following two examples are in the form of references or brief indications
for the reader who would like to pursue certain topics further.

Example L. An interesting application of the concept of cosets, etc., to
coding and circuitry can be found in the second chapter of Some Lessons in
Mathematics, ed. Fletcher (C.U.P.), 1964.

Example M. We have nowhere in this book mentioned groups of permuta-
tions, and although a first mention is certainly appropriate in the iso-
morphisms chapter, we indicate the theory here because some of the points
to be made are only now meaningful.

Consider a set of n objects in some order and give the objects labels
1, 2,..., n in that order. Any rearrangement of the objects is called a per-
mutation; we describe the permutation by the corresponding rearrangement
of 1, 2, ... n. If the new arrangement is say, X1, Xs, . . ., X then we denote

the permutation by
12 ...n
(xl X oo x,.)
For example, all the permutations of three objects are represented by
123 123 123 123 123 123
(1 2 3)’ (3 1 2)’ (2 3 1)’ (2 1 3)’ <3 2 1)’ <1 3 2)'
The number of permutations of 7 objects is z!.
We can combine permutations: e.g.

123 123 123
(e} ==
321 231 213

BSGT—G
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ie. 1—2-—>2,1 goes to 2 in the first permutation (reading from the right
as usual) and 2 goes to 2 in the second permutation, thus 1 goes to 2 in the
combination; etc. We can, of course, write a permutation in a number of

equivalent ways, e.g.
123\ /3 12y
321/ \t132) "

but it makes no difference to the resulting rearrangement of any objects to
which the permutation is applied. Thus an alternative way of combining two
permutations would be to write

123 123 231 123 123
= [s] =
321/°\231 213/°\231 213
i.e. to rearrange the order of the columns in the left-hand bracket so that the
top row of that bracket is the sameas the bottom row in the right-hand bracket,

then whatever the way in which the permutations are written the result of the
combination is

top row in right-hand bracket
bottom row in left-hand bracket/’

This method of performing the combination of two permutations has
advantages in theoretical work, for instance, in proving that combination is
associative and in proving Cayley’s theorem (see below).

It can be proved that the set of n! permutations of # things forms a group
with this law of combination. In the first place the reader might like to show
this for the set of 6 permutations above. Is the group so obtained Abelian?
To which of the two abstract groups of order 6 is this group isomorphic?
(The proof of the general result can be found in Ledermann; The Theory of
Finite Groups (Oliver and Boyd), as can many of the other results mentioned
here without proof.) The complete group of permutations of » elements (of
order n!) is called the symmetric group of degree n and denoted by P,.

Now let G be any finite group with elements g4, g3, - . ., g and let g be any
one of these elements and consider the correspondence

( & & .- & )

g—>

08 &£0&3...8048y,

Certainly all the g o g; are distinct and therefore, as g runs through all
elements in G, we have a mapping of the group G onto a set of permutations.
This can be shown to be an isomorphism and then we have the celebrated
theorem of Cayley: Cayley’s Theorem: Any finite group G of order 4 is
isomorphic to a group of permutations which is a subgroup of Pj.

So we have another type of representation for a group: in Example J we
saw how some groups can be represented by multiplicative groups of matrices
and now Cayley’s theorem shows that every group can be represented by a
group of permutations.
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Consider the example of the group of order 4 whose combination table is
[o] b1 bz ba b4

b, by by by by
b, by b, by by
b, by by b, by

by | by by by b
Then b,, which is the identity element, corresponds to the identity permutation

1234 .
( ) Consider b,:

1234
byob, byoby, byob, byob,) \bg by by by
34
, etc. The group of
214 3) group
permutations is a subgroup of the symmetric group P, of order 24.

It should be fairly evident that just as the matrix representation of a group
is not unique so the representation of a group as a subgroup of P, for some
particular n is not unique. For instance, if we consider the group Dy and
apply the method of the foregoing example, then we get a representation
which is a subgroup of Pg. On the other hand, we can regard the symmetry
operations as permutations of the vertices of the square and obtain a repre-
sentation which is a subgroup of P,.

We can divide permutations into two classes called, for a reason which will
become evident, even and odd. We consider a particular case: let P denote
the polynomial

[x: — x,10x; — x3][x; — 5] for any fixed unequal xy, Xx;, X3
and consider the effect of permuting the subscripts. The set of all permuta-
tions is, of course, P,: any one permutation of the subscripts has the effect of
either changing the sign of P or not. Separate P; into two classes:

(i) even permutations which do not change the sign of P,

(ii) odd permutations which change the sign of P.

Then the even permutations are
123 123 123
, and
123 312 231
and the odd permutations are
123 123 123
s and .
213 321 132

1t is clear that if we consider the combination of two permutations then if both
are even the result is even, if both are odd then the result is even, etc. It

1
Therefore, b, corresponds to the permutation (
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follows that the mapping of an even permutation onto +1 and an odd per-
mutation onto —1 is a homomorphism of the group P, onto the multiplicative
group with elements (+1, —1) (or the additive group of elements 0, 1 modulo 2
—hence, perhaps, the names even and odd). The kernel of this homomorphism
is the group A4; of all the even permutations in P, which is, therefore, an
invariant subgroup of P;. A, is called the alternating group of degree 3.

In general we can divide P, into odd and even permutations (the reader
might like to consider ways of doing this which do not depend upon the
change of sign of a polynomial) and the even permutations form an invariant
subgroup A, of order 4[n!], the alternating group of degree n.

Incidentally, we can give the definition of a symmetric polynomial. Poly-
nomials like x, + x; + x; or x2 — 2x, x; + x3 are called symmetric because
they are unaltered by any permutation of their subscripts, i.e. they are
invariant under the appropriate symmetric groups. On the other hand,
X1 — X3 + x5 is not symmetric. In general a polynomial involving » subscripts
is symmetric if it is invariant under the symmetric group P, of permutation
of the subscripts. But even if a polynomial is not symmetric one can find all
those permutations of the subscripts under which the polynomial is invariant:
this set forms a group, called the group of the polynomial. For instance, the
group of x; — x; + X is the pair

(1 2 3) (1 2 3>
and .
123 321
(Find the group of x? + x;x; + x2 + x5 + X3 + x3x; + X3.)

So far the results mentioned in this example have been fairly simple to
prove and the reader would be well advised to try to prove them for himself
without consulting texts, but the last result we give (there are, of course, many
more significant results in this theory) is far from elementary and we do not
suggest that the reader try to prove it without help. A group which possesses
no invariant subgroups is called a simple group. The following theorem is due
to Galois:

Ay is a simple group when n > 4. (It is this result which is used to prove
that no general algebraic method exists for the solution of algebraic equations
of degree greater than 4.) The reader might like to find an invariant subgroup
of A4.

* * * * *

We continue the topological note at the end of Chapter 10 by
considering some examples.

Example N. Consider any point x on a sphere. Every closed curve at x can
be continuously deformed to x, hence every closed path to x is homotopic
to e. Therefore the fundamental group at x is {e;} for all points x on the
sphere.

Example O. Consider any point x on the torus: there are three simple non-
homotopic paths to x corresponding to the three curves a, b and ¢ in the
figure on page 197: denote the paths by ez, fand g respectively. But these are
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./

not the only non-homotopic paths: f2 = fo f, f3, f4, . . . are all non-homo-
topic: similarly g2, g8, ... are all non-homotopic. The fundamental group
P; has generators {f} and {g}: it would seem, however, that possibly

{f}o{g} ={g}o {f}.

L

The curve is the
image of f*

This is in fact the case although not very easy to see: intuitively, one must try
to deform the curve corresponding to fo g into the curve corresponding to
gof, i.e. the combination of the curve » with ¢ into the combination of
¢ with b, remembering that there is a definite sense in which these curves are
traversed. One really requires more general methods: this once again brings
us up against the difficulty in topology, the paucity of elementary examples
which have a relatively simple solution. Mathematically, integration theory is
probably harder than elementary topology, but one can give a great number
of examples.

Example P. What is the fundamental group at any point of the curved
surface of a cylinder?

In the above examples the fundamental group is the same
abstract group at any point of the space. It is obvious, however,
that this need not always be the case: for instance, we could take
as our topological space the union of the surface of a sphere and
the surface of a torus (see Chapter 6, page 95). We are led, there-
fore, to ask the following question: under what circumstances is
the fundamental group at a point x of a topological space (X, T': X)
isomorphic to the fundamental group at x’ € X? Consider the
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intuitive situation in terms of curves. If there is a curve from x’
to x (b in the diagram) then any closed curve at x’ (e in the diagram)
can be made into a closed curve at x by simply traversing the
joining curve (b) twice. Thus, in the figure, we would go from
x to x’ along b, nip smartly round a and come back along b. In
exactly the same way any closed curve at x can be made into a
closed curve at x’. It would seem that we have here a sufficient
condition to answer our question. (It is clearly not a necessary

condition; consider the space consisting of the union of two dis-
joint spheres.) We define a space (X, T: X) to be path-connected,
if for any two points x, x’ € X there exists a path* f such that
SO = x, f(1) = x'. After the next example, we shall try to prove
that in a path-connected space the fundamental groups at any
two points are isomorphic. The reader is asked to bear the intuitive
discussion in mind.

Example Q. In any topological space (X, T: X) we can say that any point
x is related to any point x’ if there exists a path f such that £(0) = x and
S = x’. Show that this relation is an equivalence relation. (In fact, all the
results necessary for this occur as trivial details buried in the technicalities of
the note at the end of the previous chapter.) It follows that in any path-
connected space the whole space is the only equivalence class. It also follows
that we can modify our definition of a path-connected space: we need merely
require that for any fixed point x, and all other points x there exist paths f
such that f(0) = x, and (1) = x.

Let x and x’ be any two points in the path-connected space
(X, T: X) and let p be a path such that p(0) = x and p(l) = x'.

*(Remember that a path is a continuous many-one mapping of (R,, T: Ry into
X, T: X).



CONSEQUENCES 199
Denote by p, the path defined by

i) =p(l — 9.
Then if fe P, (the set of closed paths to x), po[fop]elP,. If
we consider the mapping k of P, to P,. defined by
k:{f}—{polfopil}
we are immediately in difficulties: we do not even know whether
it is justifiable to remove the square brackets: we have not dealt,
in general, with anything but the homotopy of closed paths, In
fact, however, we need not have imposed this restriction (that the
paths be closed) in many of the cases at the end of the last chapter
(the exceptions being where combination would otherwise have
been undefined) had we not wanted to construct a group. In our
attempt to prove that P, is isomorphic to P, we shall need a
number of results about the homotopy of paths with fixed end
points (i.e. homotopy relative to x and x’): these results can be
obtained with but trivial modifications from those of the previous
chapter. We shall leave the details to the reader, indicating by
asterisks where the gaps occur.
The mapping k is

k:{ft—>{polfopl} ={pofop}* ={p}o{f}o{p}*
In the first place we require that k£ should not depend on the choice
of f, i.e. if {f} = {g} then we wish to show that

{pro{fto{p} ={pto{gto{p}
Let g, be defined for g like p, for p above, then consider

{p}o{f}o{p}o[{p}o{g:}o{p:}]
= {p}o{f}ofe}o{gi}o{p,} since {p:}o {p} = {es}*,

= {p}o{f}o{gi}o{p:} since {f} o {e,} = {f},
= {p}o{p:} since {g} = {f1},
= {e,} since {p} o {p,} = {e,}*.

Finally, since {p} o {g,} o {p1} is the inverse of {p} o {g} o {p,} we
have our result.

Now the rest is quickly disposed of. k is certainly an onto
mapping as our intuitive discussion in terms of curves has shown.
Further, for any fand g,

k{fHoklgh={p}o{fio{pi}o{p}o{g}oi{p}
= {p}o{f}o{g}o{p:}
= {p}o{fog}o{p}
=k({fog}
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and so k is a homomorphism. The kernel of the homomorphism
is the set of all those elements of P, which map onto {e,.}: but if
k{fH ={pto{fto{p} = {es}
then {f} = {p.} o {e.} o {p} and {p,} 0 {e;} = {p1}*, therefore
{f} = {pi} o {p} = {e.}.

Thus the kernel contains the identity element only and the homo-
morphism is an isomorphism. (Note that the last result with an
asterisk was in fact proved at the end of the previous chapter before
we confined ourselves to closed paths.)

These proofs tend to become very technical and tedious to read:
the only amusement to be gained is to construct them oneself,
slowly building up the details from the intuitive picture of the
corresponding curves. For this reason we shall leave our last im-
portant result to the reader as an example with hints.

Example R. If fis a many-one continuous mapping of a topological space
(4, T: A) into a topological space (B, T: B), then a closed path to a point
a € A can be mapped into a closed path to the point f(a) € B: i.e. if pe P,,
then fO p € Pya) .*

(i) Show that if p’ ~p, p’€P,, then fOp’' ~fOp. (Hint: if Fis a
homotopy function for p’ ~ p, consider £ F.)

@ii) From (i) it follows that we can define a mapping k of P; into P}, by

k:{p}— {foOp}
Show that this mapping is a homomorphic mapping, but note that it is into
and not onto. (Hint: if p and g € P, then, infact,fO [pog] = [fo plo [fO ¢l.)

(iii) Show that if fis a homeomorphism then k is onto.

@iv) If fis a homeomorphism, its inverse fis a continuous one-one mapping
of (B, T: B) onto (4, T: A) and defines a homomorphism k&, of P} onto
P, given by

ky:{h}— {foh}  hePjy.
Show that &; O k is the identity mapping of P, onto itself, and hence that
P, is isomorphic to P} .
We append an example on braids (cf. end of Chapter 7, Section (d), p. 118).

Example S. Show that the braids of order # in which 4; is joined to B;, for
all i, form an invariant subgroup of the group of all braids of order ». Con-
sider the group of braids of order 2: describe the factor group derived from
the above invariant subgroup.

* We have used [J to denote the combination of the two functions fand p because
this is different from the combination of paths. Here we mean the successive applica-
tion, when we combine paths we do not. In particular the combination of functions
under [J is associative, a fact to be used in (iii) and (iv).



CHAPTER 12
GEOMETRY

WE tried to express at the end of Chapter 6 the fact that topology
is the study of the ‘invariants’ of topological spaces under the
group of transformations whose elements are one-one bi-continu-
ous mappings and whose combination is successive application.
It is precisely this approach, the study of invariants under a par-
ticular group, which is favoured in geometry today. The first per-
son to make this explicit was Felix Klein in his celebrated ‘Erlanger
Programm’ in 1872. Consequently geometry has become a sys-
tematic study at the heart of mathematics and provides interesting
applications and illustrations of group theory.

It is impossible in one short chapter to hope to give a systematic
study of geometric theories; what we shall attempt to do is illus-
trate the approach. We can do this in two ways: we can either
begin with a geometrical object and find a group of transforma-
tions which leave it invariant or we can reverse the order and
begin with a given group and discover some of the geometric
objects it leaves invariant. We have already given examples of the
first type of investigation: the group D, of symmetries of the
square maps the square into itself, but this is not the only group
which has this property. We could chop the square up and re-
arrange the pieces, or shrink bits of it and stretch other bits to
fill the holes, etc., assuming that we can always reverse the process
and satisfy the other group conditions. Clearly what we must
decide is what we wish to admit as a transformation in any par-
ticular case. As far as the symmetry groups, as they are usually
called, are concerned, we shall make this precise (see page 205).

This suggests that our second method of investigation would be
more reasonable, and we propose to adopt this as the easier alter-
native. So we shall summarize our view of geometry as the study
of the properties of certain spaces which are invariant under
chosen groups of transformations: the transformations will al-
ways be one-one mappings of the space to itself,

For the time being we will consider transformations of the plane.
We have already mentioned rotations and reflections, so let us

begin with these. If a particular transformation maps a point P to
201
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a point P’, then we say that P is an invariant point of that trans-
formation if P = P’ (not to be confused with the invariants spoken
of above: P would only be an invariant in that sense if P = P’ for
all transformations of the group: for example, the set of all rota-
tions about a fixed point O form a group* and O is a group invari-
ant). So we see that a significant distinction between a rotation
about a point in the plane and a reflection in a line in the plane
is that a rotation has only one invariant point, the centre of rota-
tion, whereas a reflection has a line of invariant points, the axis
of the reflection. (A translation has no invariant points.) There is,
of course, the exceptional case of the identity transformation: all
points of the plane are invariant under this transformation.

The set of all rotations about a point P form a group. If R is
any other point in the plane then there is a transformation in the
group which transforms R into any chosen point R’ which lies on
the circle of radius PR and centre P. Therefore, if we are looking
for invariant figures under this group, we see that they can only
be the set of concentric circles centre P. If ¢ is any angle, where

= pi—t radians for integral p and g, then the set of all rotations

through multiples of ¢ forms a group and this group not only
leaves thecirclescentre Pinvariant but alsoa set of regular polygons
centre P. Thus if ¢ = 100°, any regular polygon centre P with 18
or a multiple of 18 vertices is invariant.

Reflection in a given line / together with the identity transforma-
tion form a group since a reflection in /, followed by a reflection
in /, gets you back to where you started. A figure will be invariant
under this group if for each point 4 of the figure distant d from /
there is another point 4’ of the figure such that A4’ is perpendi-
cular to / and A’ is also distant d from /. Thus examples of in-
variant figures are shown on the opposite page.

The type of problem we have been considering is really rather
special. In the first place the groups have been relatively simple
and we have only considered which geometric figures remain in-
variant, rather than more general geometric concepts, i.e. we have
regarded our transformations from the point of view of symmetry

* Rotations about a point in the plane form a group, regarded as rotations;
however, regarded as transformations of the plane they form a group under com-
bination modulo 2. In this chapter all combinations of rotations are to be under-
stood as modulo 2.
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operations. It should be made clear that by invariant one can mean
one of two things:

(i) that a geometric figure is mapped onto itself; this is in-
variance in the sense we have been using it, e.g. square 4
is mapped onto square A;or

(ii) that a geometric property is preserved under the group of
transformations, e.g. the property of being square, i.e.
squares are mapped into squares but square 4 may be
mapped onto square B.

It is invariance in the second sense which we shall now be
considering,

Does the set of all rotations about all points in the plane form
a group ? The only point which may be in some doubt is whether
the combination of two rotations is another rotation. If the two
rotations are about the same point there is nothing to prove, so
suppose that the centres of rotation are distinct, then it is easy to
convince oneself by taking a special case that the result is not
always a rotation. For instance, let O and O’ be the two centres
of rotation and AB be any line segment as shown. If we rotate 4B

>

»
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about O through an angle « clockwise and then about O’ through an
angle « anticlockwise, the final position 4,B; of AB is parallel to
ABand in the same sense, and so there can be no centre of rotation.
In fact, the general result is that the combination of rotations in
the same sense (i.e. both clockwise or both anticlockwise about
their respective centres) through angles ¢ and ¢’ about centres O
and O'is arotation if § + ¢’ # 2x, and a translation (as in our
example, « clockwise = 27 — « anticlockwise) if ¢ + ¢’ = 2x.

Example A, Prove this result. (Hint: show first that the combination of two
reflections in lines /;, /; intersecting at a point P is a rotation with centre P
through twice the angle between /; and /,, the sense depending on the order in
which the reflections are performed. Then decompose each of the two rotations
¢ and ¢’ into two reflections, using the line of centres OO’ as one of the reflect-
ing lines in each case.)

So in order to obtain a group we must (at least) add to the
rotations the translations. Do we now have a group ? The answer
is yes, because we can now prove that the combination of a rota-
tion and a translation is a rotation and the combination of two
translations is a translation. This group is called the group of dis-
Pplacements. A very significant invariant is distance: to any pair of
points A4 and B we can associate a real positive number which is
the distance between the points, or alternatively, if p denotes the
set of all points in the plane, then distance is a mapping of p v p
onto the non-negative real numbers (see Example D). Any trans-
formation which leaves distance invariant is called an isometry:
the group of displacements is often called the group of direct
isometries.

Example B. Prove that the combination of a rotation and a translation (and
a translation with a rotation) is a rotation. (Hint: using the result of the
previous example, express the translation as two rotations. Alternatively one
can express the rotation as two reflections in intersecting lines, as above,
and the translation as two reflections in a pair of parallel lines. In either case,
by careful choice of the reflection lines the result is elegantly proved.)

Example C. The set of all translations form an Abelian group.

Example D. Denote the distance mapping of p v p onto the non-negative
reals by d and write
d:(P, Py —> d(PP"), P,Pep.
Then d has the following characteristic properties:
(i) d(PP’) = 0if and only if P is the same point as P,



GEOMETRY 205

G d(PP’) + d(P'P”) > d(PP”), for any points P, P’, P" € p,

(iii) d(PP") = d(P’P).

If S is any set and d is a many-one mapping of .§ v S into the non-
negative reals with the properties (i) to (iii), then d is said to be a merric for S.
(In fact (iii) can be proved from (i) and @ii) by choosing suitable points.)
Are the following mappings metrics ?

(a) S is the set V of (free) vectors and d maps any element (v, v) eV Vv ¥V
onto the inner product v.v; (see Chapter 3, page 50).

(b) S'is the set F of integrable real-valued functions in an interval (a, b) and
d maps any element (f, fy) € F v F onto

b
J [f(x) — AP dx.

(c) S is any set and d maps any element (s, s) €S v.Sonto 0 if s = 5" and
onto 1if s # 5.

The word ‘direct’ in direct isometries has the following signi-
ficance. To any three points we can give a definite sense (usually
indicated by the alphabetical order of the letters which are their
names): thus the two congruent triangles in the figure have opposite
senses. The sense is described by the arrow,

A

) G

C 8 8 C

i.e. we walk from 4 to B to Cto 4 in the first triangle and describe
the boundary in a clockwise movement, whereas in the second
triangle we walk from A4 to B to C to 4 and describe the boundary
in an anticlockwise movement. Now both rotations and transla-
tions preserve sense, hence the name direct isometries.

Another isometry which we have mentioned is reflection: this
is an indirect isometry. Thus, whereas neither a rotation about a
point in the plane nor a translation can bring the first triangle into
coincidence with the second as drawn above, a reflection can. We
develop some more results in isometric geometry in the following
exercises.

NOTE: We can now eliminate the vagueness on the first page
of this chapter. The allowable transformations of the square are
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to be isometries: in general the symmetry group of a figure is a
subgroup of the group of all isometries of the plane.

Exercises

1. There are three possibilities for combining reflections in axes in the plane:
(i) when both axes are in the same line the combination is the identity;

(ii) when the axes are parallel lines /; and /, the result is a translation
through twice the distance between the lines and in a direction per-
pendicular to them;

Z, L2
4.4__ ___:.4_: ______ . AZ x+Y=
&y%j‘ .2x+21/=2d
e~ ———~ 7 AN
. —-\\
.B__./__:':.‘: _____ 8 Z_EE.B' xz-y=d
€ x__ _____ S P x_-%:._é . .2.'1:— 2y= 2d
I, I

(iii) when the reflections are in axes /, and /, inclined at an angle « and inter-
secting at a point O the result is a rotation about O through an angle
2a (or 27 — 2a, depending upon the order of combination).

4
.l A| 22
Cd
A
N,
S
\\
\\
~
”,\—'Az
x +y =0

S.2x + 2y =2c
7, od OA = OA,= OA,

(Observe that the combination of reflections is not commutative.) Thus, as
remarked in the examples above, we have the following decompositions:
() a rotation into two reflections (notice that the combination of two
indirect isometries is a direct isometry);
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(ii) a translation into two reflections or two rotations.

Using these decompositions many results can beelegantly proved. For instance,
investigate the combination of three reflections in the four possible cases
(a) lines are parallel, (b) lines intersect in pairs in three points, (¢) lines inter-
sect in one point and (d) two lines are parallel and the third intersects them.

2. Are there any more isometries of the plane? The answer to this can be
given in two stages:

(i) any two congruent triangles are related by a unique isometry;

(ii) every isometry can be decomposed into at most three reflections.

The first result is based on the fact that any fourth point is entirely determined
by its distances from the three points of a given triangle. Thus, if each of two
isometries maps A, B and C onto A4,, B, and C; then any further point D must
be so mapped that DA, DB and DC are preserved in length and are mapped
onto D;A4;, D,B,, D,C,, and there is only one point D, which satisfies this
condition. This result can either be demonstrated intuitively (which is the way
we prefer to regard geometry) or it can be proved from a proper set of axioms
(not Euclid’s!) (see, for instance, Coxeter*).

To prove the second result we use the first which shows that we need only
consider the mappings of congruent triangles, and divide the proof (following
Coxeter) into four parts, indicating the reflections necessary to bring ABC
into coincidence with 4’B’C’. (1) When the triangles ABC, A4,B,C, coincide
we have the identity transformation which (see Exercise 1) can be regarded as
a double reflection. Cases (2), (3) and (4) are illustrated in the following
diagrams, where each is reduced to a predecessor by a reflection in the line /,
where /, in each diagram, is the perpendicular bisector of 4A;.

This result shows that we can get all our isometries by combining reflections
and that at most three (case 4(b)) reflections are required. Hence there are no
new isometries. Furthermore, as we have seen, rotations and translations can
be decomposed into reflections.

3. A reflection is an indirect isometry: rotations and translations are direct
isometries. Show that (see also Example B on page 204) the combination of
two direct isometries is direct, the combination of a direct and indirect iso-
metry is indirect, and the combination of two indirect isometries is direct.
Hence show that the mapping

rotations and translations — + 1
reflections — —1

is a homomorphism of the group of isometries onto the multiplicative group
with elements (+1, —1). What is the kernel?
An alternative approach is to show that the direct isometries form a normalt

* The references are given in a bibliography on page 225.
+ We use the word ‘normal’ instead of ‘invariant’ in this chapter to avoid con-
fusion with geometrical invariants.
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subgroup of the group of all isometries. To do this one must prove that given
a reflection R, then for any direct isometry D we must have

RoD =D oR

where D, is another direct isometry. We can then realize the factor group.
Note: the identity is a direct isometry.

- -
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/ and then
7 case (3)(b)

The next two exercises give some interesting applications of this geometric
theory: many more can be found in Yaglom.

4. Problem: Small objects in mass production pass through each of two
machines. During the process in the first machine the objects travel around a
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circle centre O, of radius 9 feet. During the process in the second machine the
objects travel around a circle centre O, of radius 11 feet. O, is 30 feet in a
direction N.20°E. from O,. The two citcular tracks are to be joined by a
straight conveyor belt running precisely North to South and exactly 15 feet
long. Draw a plan of the two circles and construct, exactly, the two possible
positions of the conveyor belt. (A diagram has not been given, in order to
avoid giving the game away to those who prefer to attempt the construction
by traditional methods:)

Solution: Translate the circle centre O, through 15 feet due South. Let it
now cut the circle centre O, in 4 and B. 4 and B lie on the circle centre O,;
but they have undergone a translation 15 feet due South from the original
circle centre O, : since translations form a group, the inverse of this translation
exists and restores A and B to the original circle centre O,. Let A’ be the image
of A and B’ the image of B under a translation 15 feet due North. Then A" and
B’ are on the circle centre O;, A and B are on the circle centre O,, A’A = B'B
= 15 feet and A’A4 and B’B are both in the direction North to South. Hence
A’A and B’B represent the two possible positions of the conveyor belt.

({If one alters the centres or radii of the two circles, are there always two
solutions ?)

5. If ABCD is a quadrilateral and O, is a point outside it so that the angle
AO,B = 40° and A0, = BO, then we call O; the 40° node of 4B.

Problem: Plot the points 0,45, 5), 04(55, 40), O5(18, 57), 0,(1,22). Con-
struct the quadrilateral ABCD such that O, is the 90° node of 4B, O, is the
90° node of BC, O, is the 60° node of CD and O, is the 60° node of DA.

Solution: Take an arbitrary point X. Rotate it through 90° about O, to X;,
rotate X; through 90° about O, to X;, rotate X, through 60° about O; to X,
rotate X; through 60° about O, to X;. (The rotations to be in the appropriate
senses.) Now imagine that the vertex 4 had been known, and that the line-
segment AX had undergone the four rotations. Plainly, as X goes to X, 4
goes back to A4 via B, C and D. But under rotation the length of line-segments
is invariant. Therefore AX = AX,;. Hence A lies on the perpendicular bi-
sector of XX,. Draw this bisector and let it be PQ. Repeat the procedure for
another arbitrary point Y and draw RS, the perpendicular bisector of YY,.
Then A is given by the intersection of PQ with RS. B, C and D may then be
obtained by rotating A about 0,, O, and O, in succession. (4, B, C and D
are (20, 5), (45, 30), 45, 50) and (25, 30) approximately.)

6. Let us introduce a coordinate system into our plane with fixed origin O.
(Note that we are interested in the transformation of points of the plane and
not in changing our coordinate system.) Then let (x, y) be the coordinates of
a point P and (x’, ") be the coordinates of the point P’ into which P is trans-
formed by an isometry.

@ A translation is completely specified by giving the coordinates of the
point onto which the origin is transformed. Suppose O is mapped onto (04
with coordinates (a, b), then

()-C)+ )
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(i) A rotation about the origin was discussed in Chapter 8, Exercise 7,
page 125. If the rotation is through an angle 0, then

x’ cos —sinb\ /x
y) \sin6 cos® )
If the rotation is not about the origin, then we may first translate the origin

to the centre of rotation,* then perform the rotation, and then translate back
to the original position of the origin, so that in general we have

x\ fcos6 —sin6 |: x a :l + (a
) \sin0 cos6 ¥y b b)’
where (a, b) is the centre of rotation.

(iii) We also discussed a reflection in a line passing through the origin in
the same exercise. If the line makes an angle 6 with the x-axis then

x’ __ fcos 20 sin 20 x
¥’ sin20 —cos20/\y/’

If the line does not pass through the origin we can first translate the origin
to some point (@, b) on the line and then perform the reflection and translate
back. Thus if the line makes an angle 6 with the x-axis, we have

()= Gz Z)[6) -G+ ()

We notice that all three cases may be summarized in the equation
()-7()+ ()
Y y d)’
. ¢
since - T(:) + (Z) = (d) for some ¢ and d,

where T'e O,, i.e. T'is an orthogonal matrix. For a translation T = I, the unit
matrix, for a rotation the determinant of T is +1 and for a reflection it is
—1. Describe the isometry given by

6)-( 20+ 0)

We can, of course, prove many of the results in the foregoing exercises using
a coordinate system, but here we shall examine a further property of isometries
as a last example of this geometry.

The direct isometries are a normal subgroup of the group of all isometries,
as we discovered in Exercise 3. Another obvious subgroup is the group of all

* We are here changing the coordinate system temporarily and leaving the points
of the plane fixed. This is because our transformation matrices are linked to the
coordinate system in a special way. When we have performed our transformation
of the points of the plane we restore the coordinate system to its original position
thus obtaining the coordinates of the transformed point in terms of those of the
original point with respect to a fixed coordinate system.
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translations. Is it normal ? And if so what is the factor group ? Writing

X c
(y) = X and (d) = k, the general isometric transformation is given by

X—>X,=TX + k, Te O,
and the translations are given by X; = X + k. Suppose that we follow the
general isometry by another general isometry X; — X, = T X; + ki, then
the combination is given by
= [Tlﬂ X + T]_k + k]_ . . . (1)
If the second isometry is chosen to undo the first, i.e. is the inverse of the first,
we must have X; = X which implies

0
TIT = Iand le + k1 = <0>,

ie. T, = T = T (the transpose of T, since T € O,)
and k1 = _le = - T’k.
Now if the translations are a normal subgroup we must have
iotol=t,

where i is any isometry and ¢, ¢, are translations: therefore, consider
X,—> Xo =TX, —Tklo[X;— X, = X1 + k(o [X— X; = TX + K]

=[Xo—> X3lo[X;—> X, =TX + k + kil

=Xo—> X, =TITX+k+k]l—Tk

=X, —>X;=X+Tk
which is a translation. Therefore, the translations are a normal subgroup of
the group of all isometries. It remains to realize the factor group. It can be
deduced from the above working that every element in any one coset is of the
form X — X, = TX + k for varying k and fixed T. Therefore, there is a
one-one correspondence between the cosets and the matrices T € Oy: this
correspondence can be shown to be an isomorphism and hence the factor
group can be realized as the group of all rotations about a point P and reflec-
tions in lines passing through P.

The reader might like to consider whether the group of rotations about a

fixed point is a normal subgroup of the group of all isometries.

In Exercise 6 we saw that the group of isometries can be repre-
sented in terms of coordinates by the transformations

X_—>X1=TX+k T€02
We can use this form to generalize and obtain other geometries. If
X‘—>X1=AX+k and Xl’_)'X2=BX]_+k1

are any two transformations, where 4 and B are 2 X 2 matrices
and k and k, are 2 x 1 matrices, then their combination is

X—> X, = B[AX + k] + k, = [BAIX + Bk + k.
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Thus any set of such transformations will be closed under this
combination if 4 and B are chosen from a closed subset of the
multiplicative set of all 2 x 2 matrices. Further, if the transforma-
tions are to form a group, each must have an inverse. The second
transformation will be the inverse of the first if

BA—=1 and Bk +k, — (8).

From BA = I we see that 4 and B must be non-singular (i.e. have
multiplicative inverses) and we can always arrange k; to satisfy

Bk + k;, = (8) whatever B and k. It follows that corresponding

to any multiplicative subgroup of the group of non-singular 2 X 2
matrices we obtain a group of transformations of the plane and
hence a geometry. (By a geometry we mean the study of invariants
under a group of transformations.) We shall consider two par-
ticular cases in the following exercises; these are

(i) the geometry corresponding to the similarity group (see
Example I of the last chapter), i.e. the set of matrices
satisfying

AA" = i1
where A is any positive real number, and

(i) the geometry corresponding to the whole group M’ of all
non-singular 2 X 2 matrices.

Exercises

1. The most important invariant under the group of isometries (hence the
name) is the distance between points; what becomes of this invariant under the
group of similarities ? Remembering that the isometries are a subgroup of the
similarity group, we need only consider the distance between two points of
which one is at the origin of coordinates. For if we wish to consider the effect
of a similarity transformation on the distance between P and Q, we can always
first map the plane onto itself in such a way that P is mapped onto the origin
by a translation, which does not alter the distance PQ.

Let OP be a line-segment, where O is the origin and P has coordinates
(x, »). Then if the length of OPis k

k?=x®+ y2=(x y)(x) = X'X, where X = (;) and X" is the transpose of X.
Y, .

(In general, the [distance]? between any two points with coordinate vectors
Xy and X; is [X; — X)[X, — X;1)
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Let X— X; = AX + k be any similarity transformation, then we can
decompose it into two transformations

X‘—)'Xz =X+1&~k, .Yg'—)Xl =AX3
of which X —> X, is a translation which does not alter the length and so we

need only consider the effect of X; —> X; on a line segment OP. This trans-
formation maps

Xa,Xg to Xl’Xl = [AXz]’[AX’z] = Xz,[A’A]Xg = AXR,XQ for some 4 > 0.
Hence distance is multiplied by a factor 4 and is no longer invariant: A depends
on the choice of similarity transformation. (Using the result in brackets above
we can derive the result more directly if we wish. The origin is mapped onto
O, with coordinates given by the vector k under X —- X; and the general
point P onto P; with coordinates given by the vector X;. Hence the length d,
of O,P, is given by

d® =[AX + k = kI'[AX + k — k] = [AX]'[AX]
as before).

We have lost the most important invariant of distance, but since every
distance under any particular similarity is multiplied by the same factor, the
ratio of any two distances is invariant. It follows, in particular, that angles
are preserved.

It is clear from this exercise that that part of classical Euclidean geometry
which deals with similar figures corresponds to the geometry of similarity
transformations (hence the name). Similarities are combinations of isometries
with uniform dilatations or contractions. Drawing anything to scale is a simi-
larity transformation. Consider the pantograph.

2. We can prove many similarity results ‘similar’ to those given in the notes
on isometries. Corresponding to translation, rotation and reflection we have
dilatation, dilative rotation (or spiral similarity) and dilative reflection.

A dilatation preserves direction and maps any line segment into a parallel
line segment. Any two parallel line segments are related by a unique dila-
tation. Algebraically a dilatation is represented by

X—>Xi=aX+k o a real non-zero number.

The dilatations contain as a subset the translation isometries. Defining direct
and indirect similarities analogously to direct and indirect isometries, a dila-
tation is a direct similarity. There is an important difference between trans-
lations and dilatations: whereas a translation has no invariant point, a dila-
tation which is not a translation has an invariant point. Algebraically a point
is invariant if under a transformation X —> Xj, there is a point for which
X: = X, i.e. any invariant point of a dilatation is given by

X=aX+k,
whence Il —a]X =k
and since « = 1 (we have excluded translations) we get the unique point
1
X = 1= 0‘k.

As an example, consider the two line segments AB, 4’B’ whose end points
are A1, 2), B2, 3), 40, -1), B'(3, 2). Find the dilatation which maps
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A —> A’ and B—»> B’: find also the invariant point of this transformation and
give a general construction for the invariant point.
A spiral similarity is the combination of a non-translative dilatation and
a rotation about the invariant point of the dilatation. The invariant point thus
remains invariant and is called the centre of the similarity. A spiral similarity
is also a direct similarity. If we choose the origin as the centre of the similarity
the transformation takes the form
cos@ —sinb
X— X; = o] X.
sin 6 cos 0
If the centre is not at the origin then we may proceed as in Exercise 6 above
and get
cosd —sinf
X—> X = oc(

. X —kl+k=aoTX + k,,
sinf cos@

a
where k = <b> gives the position of the centre.

As an example the reader might like to prove that the combination of two
spiral similarities is usually, but not always, another spiral similarity. What is
the special case when it is not? Instead of using the pure geometry approach
we suggest the algebraic approach, i.e. consider the combination of the two
transformations

X—)Xl =aTX+kandX1"—)X2 =a1T1X1+k1,

where T and T; belong to O,*, the subgroup of O, with determinant +1
which represents the rotations. There are many other similar problems and
examples which can be made up by analogy with the isometry examples and
exercises given earlier.

Our last similarity is the dilative reflection which is a non-translative dila-
tation followed by a reflection in an axis through the invariant point of the
dilatation. The general transformation of this type is represented by

X—> X, =aTX + £,

where T € O,~, the subset of O, with determinant —1 which represents the
reflections. Dilative reflections are indirect similarities.

Once again there are many exercises and problems analogous to the
exercises set earlier for isometries. In particular: any two similar triangles are
related by a unique similarity. For more information see Coxeter.

3. One now has a large number of subgroups and one can continue to
illustrate the algebraic theory by investigating whether the subgroups are
normal, and if they are normal one can realize the factor groups. We leave
the reader to answer, if he wishes, such questions as ‘are the translations still
a normal subgroup of the larger group of similarities ?’; ‘are the dilatations ?’;
‘what are the factor groups?” etc. ...

4. We now turn to our second geometry and try to get some idea of its
invariants. The general transformation in this geometry is

X_—>X1=AX+k,
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where A is any non-singular 2 x 2 matrix. We certainly cannot expect length
to be an invariant since we have lost that already under the more restricted
set of similarity transformations. But have we lost the ratio of lengths?
Referring back to Exercise 1 on page 213 we see that
X'X— X{X; = X'AAX

under the transformation X —> X; = AX. But 4’4 is no longer necessarily
of the form Al, so that the lengths of two line-segments and OP and OQ are
not altered in the same ratio. Thus angle is not invariant in this geometry.

A line Ix + my + n = 0 transforms into another line: so we can say that
linearity is an invariant. Let us investigate this correspondence exactly: let A

b
be the matrix (a d) and k be the matrix (;) thenthelineIx + my + n =0
c

is transformed into
llax + by +el + mlex +dy +fl+n=0
under the mapping X —> AX + k. Similarly the line x + m’y +n' =0 is
transformed into
Ulax + by + el + m'lex +dy +f1+n =0.
It follows that if our original lines were parallel, i.e. /:¥ = m:m’, then the
transformed lines will also be parallel since
{la + mcl:lVa +m'cl = b +md:Ub +mdl =mm'.
So we have an invariant—parallelism: it is the fundamental invariant of this
geometry which is called affine geometry.

In both similarity and isometry geometry only special triangles are uniquely
related (similar and congruent triangles respectively). What sort of triangles
are related in affine geometry ? Consider the image of the triangle with vertices
A0, 1), B(0, 0) and C(1, 0) under the transformation X — AX + k; the new
triangle has co-ordinates 4,(b + e, d + f), By (e, ), Cila + e, ¢ +f). We are
assured that these three points form a proper triangle and are not collinear
because our transformation is one-one and maps lines into lines. Now ¢ and f
may certainly be chosen arbitrarily and a, b, ¢, d are only related by the fact
that we must have ad — bc # 0: so it would seem that we can map the given
triangle into any triangle whatsoever.

a
I
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For instance, in the diagram, we have chosen A4,B,C; to be 4,(2, 0), B,(3, 3),
C1(0, 3) then the mapping of ABC to A,B,C; is accomplished with

e=3,f=3b=—-1,d=—-3,a=-3,¢=0,

i x— (31 X+(3
1.€. 0—3 3 N

In general, any two triangles are related by an affine transformation. Is
the transformation uniquely defined by giving a pair of corresponding
triangles ?

5. It is of some interest to consider well-known theorems and the usual
geometrical objects and discover to which geometry they really belong, i.c.
of the three geometries so far considered, to find the ‘largest’ (i.e. the most
comprehensive), in which the objects are invariant. For instance, a square is
not an invariant object of affine geometry: a square can be mapped into an
arbitrary parallelogram by an affine transformation (prove this!). A square is
always mapped into a square in similarity geometry; so the square belongs to
this sub-geometry of affine geometry.

As an example of a theorem which belongs to affine geometry consider the
following: the diagonals of a parallelogram bisect each other. A parallelogram
PQRS is obviously an affine object, but at first sight it might seem that bi-
section has something to do with distance or at least ratio of distance, but if
X —> X; and Y—> Y; under an affine transformation then

X + Y]—3X; + Yi]

and so mid-points are transformed to mid-points. (In fact, any linear expres-
sion such as «X + gY, where «, 8 are real numbers, is preserved under an
affine transformation: we express this by saying that an affine transformation
is linear.) So if our stated result is true we should be able to prove it within
affine geometry. Let PQRS be the parallelogram: then there is always an
affine transformation X—> X; = AX + k which maps P, Q and R into
Py(0, 0), 0,00, 1) and R((1, 0). Since the property of being a parallelogram is
preserved under X —>- X;, S; will have coordinates (1, 1). The intersection of
the diagonals of P, Q; R, S, is found to be (4, ) which is the mid-point of these
diagonals, hence transferring back under X; — X we have that PR and QS
bisect each other. Notice that we are getting an affine property of a parallelo-
gram from a property of the square. This is an important aspect of this whole
approach to geometry.

As an example the reader might like to prove some such affine result as ‘in
triangle ABC a line parallel to AB divides AC and BC in the same ratio’.

6. We found that isometries could be represented by combinations of
translations, rotations and reflections: we also explained similarities in a
similar way. The same can be done for affinities. The essentially new trans-
formation is a shear translation: under a shear translation there is an invariant
line (invariant pointwise in the sense that points on it are invariant, and not
merely in the sense that it is mapped into itself) and each other point moves
parallel to this line, the distance moved being proportional to its distance from
the line.
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For instance, if we choose the invariant line as coincident with the x-axis,
then y =0 is mapped onto y = 0 and any point (x, ) is mapped onto (x + ky,
»), where k is a constant. Hence the transformation becomes

1k
X——>X1=( )X
01

>

Q Q

LK,
—>

e e s e it St e o e o o T

R 'R

If the invariant line is not coincident with the x-axis we may first rotate the
x-axis so that it is parallel to the line, then translate it into coincidence, per-
form the shear translation to get the compound transformation,

T PG

and then return to our original coordinate system by the transformation

X x cosf sin@ I:X + 0 :'

6 e .

! : —sinf® cosf ! f

Find a shear translation in which the line x + y =1 is the invariant line.
Notice that if we write a shear translation in the form

X—>AX +k

it follows that the determinant of 4 is +1, but this property does not serve
to identify a shear translation.

At this stage it would seem that our obvious algebraic genera-
lization of geometries is at an end. But geometrically we may still
consider a reasonable further extension: after all, we are still a long
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way from the topological group of all bi-continuous one-one trans-
formations. Let us consider the set of all bi-continuous one-one
transformations which map lines into lines. It is not difficult to see
that this set forms a group, so we must have a corresponding
geometry.

An obvious subset of this group is given by

s o = ax + by + ¢
1 _al/x +b”y + C”

- _ax+by+4c
Yy )1 '—'a”x +blly +C”

with an as yet unstated condition to ensure that the transformation
is reversible (we shall come to this later). The important point is
(see, for instance, Klein) that this set of transformations is in fact
the whole group. The group is usually called the projective group.

Example E. The image of the parallel lines
x+y+1=0,2x+2y+1=0

under the transformation given by the equations

»+1 2

T2+ 1Y T2y 1
is the pair of non-parallel lines
2% +y1 +4=0,2x, + 2y, +7 =0,

and the transformation equations belong to the projective group.

From this last example we see that parallelism is no longer an
invariant: we shall also see that ‘P lies between A and B, i.e.
‘intermediacy’ is no longer an invariant (see Exercise 1, page 221).
But in spite of the seeming paucity of natural invariants, projective
geometry is one of the most elegant mathematical systems. We
shall only have time and space to hint at it, but the interested
reader will find plenty to entertain him in such books as those by
Klein and Coxeter. Two elementary and important theorems
which do belong to projective geometry are those known as the
theorems of Pappus and Desargues. We shall prove the latter in
an exercise.

The loss of parallelism is serious: two given lines may meet but
their images under a transformation may not, or vice versa, as we
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saw in the above example. While we are listing our problems let
us note a few more deficiencies. The transformation equations
given above are clumsy: the introduction of the fractional nota-
tion has made us lose the convenience of matrices. Further, even
in the sub-geometries we have to use both matrix addition and
multiplication and, as we noticed in Exercise 6, page 211, finding
the inverse of a transformation involves us in two equations. It
would be very nice to get rid of all these difficulties at one go.*
We can, in fact, get rid of them all by employing homogeneous
coordinates: replace the coordinates (x’, y’) of P by the ratios

x' = g, y = 5’ z # 0, and let P have the homogeneous coordi-
nates (x, y, z). Then (ax, ay, az) and (x, y, z), where a is any real
non-zero number, will represent the same point. In other words, if
R® = VRRR is the set of all triples of real numbers (x, y, z),
then we say that (x, y, z) is equivalent to (x;, y;, z;) if x; = ax,
¥, == ay, z; = az, for some non-zero «. This is a proper equivalence
relation and we can identify the equivalence classes one-one with
the points of the plane under a more usual coordinate system, with
the exception of the classes with elements of the form (x, y, 0).
There is no algebraic reason for omitting these classes so we shall
enrich our plane and define the projective plane which includes
points corresponding to the classes in which z = 0. We do not,
however, include the class {(0, 0, 0)}.7 This means that we have a
new set of points {(x, y, 0)}. Note that the projective plane is more
than our normal conception of the plane.

In homogeneous coordinates the equation of a line becomes
Ix + my 4 nz = 0 and we shall say that any homogeneous linear
equation represents a line. It can then be verified that in the pro-
jective plane any two distinct points lie on a unique line and any
two distinct lines intersect in a unique point.

Example F. Find the line defined by the points {(1, 2, 1)} and {(3, 0, 1)}.
Find also the point defined by the lines x + 2y + z =0 and 3x 4+ z = 0.

* The following discussion is even more sketchy than that preceding and we beg
many questions. To establish the system properly would give undue emphasis to
what we consider a sideline in this book : we again refer the reader to the books listed
on page 225.

+ One reason for rejecting {(0, 0, 0)} is that our more immediate intuitive ideas of
geometry would collapse: for example every line would pass through {(0, 0, 0)}.
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Our last statement implies that distinct parallel lines now also
have a point of intersection. Consider

Ix+my+nz=0

Ix +my +n'z=0.
Subtracting, we get [# — n']z = 0 and since our lines are distinct
n —n' # 0 and so z = 0, which means that the point of inter-
section is one of our new points. All parallel lines meet in the line
z = 0 (notice that according to our definition any linear equation
represents a line). Their point of intersection is given by the
class {(m, —I, 0)}.

So we have got rid of the first difficulty: all lines in the projective
plane meet. What about the transformation equations in this
new system? It is easily seen that the projective transformation
equations can now be written in the form

x, =ax + by + ¢z
nw=ax+by+cz
zi=a'x + b’y +c"z.
There is a one-one correspondence between such equations

a b ¢
and the 3 X 3 matrices <a’ b’ c'). Suppose that we have a
all bll C”

second transformation X; — X, and we do the necessary substi-
tutions to obtain (x,, y,, Z,) in terms of (x, y, z), then after a tedious
manipulation it will be seen that the combination of the two trans-
formations corresponds to multiplying their respective matrices. So

x

if we write X = ( y) we can represent a projective transformation
Z

by X— X, 1 = AX, ’

where A is the 3 X 3 matrix obtained from the transformation
equations. It follows that the projective transformations can be
represented by the group of all invertible 3 x 3 matrices. The
invertibility is the unstated condition on page 218.

NoTe: We have not discussed the invertibility of 3 x 3 matrices but,
basically, it follows the lines described in Chapter 9, Exercise 1, page 141.
The algebraic analysis of that exercise becomes a little tedious for a 3 x 3
matrix and we do not suggest that it be done without a little further develop-
ment of the general theory, especially of determinants (numerical examples,
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however, are best done by that method). Note also that we are taking for
granted that the product of two invertible matrices is invertible.

The affine transformations form a subgroup of the projective
transformations: the subgroup is given by putting a” = 0 = b”,
¢” = 1, hence in homogeneous coordinates the affine transforma-
tions are

a b ¢
X— X, = AX, where 4 = <a’ b ¢
0 0 1

and (Z, 2,) is non-singular. The similarity group is given by the

same equation but requires (Z, z,) = B to satisfy BB’ = I,

while the isometry group requires BB’ = I, i.e. B€ O,.

We have achieved all our aims and much more besides as the
exercises will show. It is clear that the line z = 0 is invariant under
the group of affine transformations and this is what one might
expect since parallelism is an invariant of affine geometry. The
addition of the special points of the line z = 0 allows a remarkable
simplification in geometry: if we want to get back to the non-
homogeneous system it is not difficult to interpret our results. The
line z = 0 is called either the line at infinity or the vanishing line:
the latter term (although not the more common in the literature)
is surely to be preferred. For a topological investigation of the
projective plane see Lietzmann: Visual Topology, Pt. II, Ch. 4
(Chatto & Windus), 1965. The idea of points at infinity goes back
to Kepler.

Exercises

1. To show that ‘intermediacy’ is no longer invariant consider the non-
homogeneous transformation equations given in Example E on page 218 and
the three collinear points (x;, ;) with coordinates (—1, —2), (0, —4), (1, —6).
They correspond to the collinear points (x, ) with coordinates (1, —2),
(-3, 2), (—4, % respectively. Notice that (—1, —2) lies on one side and
(0, —4) and (1, —6) on the other side of the point (—4%, —3) which is the point
collinear with the (x;, y;) which maps onto the vanishing point on the new line.

2. In the affine plane any triangle is equivalent to any other triangle and so
we could give any three non-collinear points the coordinates (0, 0), (1, 0) and
(0, 1). In the projective plane any set of four points, no three of which are
collinear, is equivalent to any other such set and we can choose any four
points, no three of which are collinear, to have homogeneous coordinates
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{c, 0, M}, {(O, 1, M}, {0, 0, 1} and {(1, 1, 1)}. We leave the proof of this to
the reader.

3. Notallinvertible 3 x 3 matrices determine distinct projective transform-
ations. If A4 is one such matrix, then 24, where 1 is any real non-zero number,
determines the same transformation as A.

4. Desargues’s Theorem. Let ABC and A’B’C’ be two triangles such that
the lines joining their corresponding vertices are concurrent in the point P,
then the intersections of their corresponding sides are collinear.

To prove this choose A4, B, C, P to have homogeneous coordinates {(1, 0, 0)},
{(0, 1, O}, {(0, 0, D} and {(1, 1, 1)} respectively. Now if X; and X; represent
any two points* on a line Ix + my + nz = 0 then X = aX; + fX,, « and
B real numbers (not both zero), is the vector of another point on the same line.
(This is most easily seen by writing the equation of the line in the form
L’X =0 where L’ = ({ m n). (When « # 0 we can divide through by «

and absorb the factor E into the vector, then X = X; 4 f’X;. For varying #’
we can obtain all points on the line except X itself: if we allow the improper
value g’ = g-to deal with this we can represent all the points on’ the line in

this form. It follows that 4’, B, C’ have coordinates {(Z, 1, 1)}, {d, u, 1D},

x x
* We represent any point {(x, y, z)} by the vector ( y). This means that a (x) and
z z

x
( y), a # 0, represents the same point. We usually absorb any unnecessary factors
z

into the vector.
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{{1, 1, »}. Consequently using the same method, any points on 4B and 4’B’
are {(1, 4, 00} and {(4 + 4, 1 + A4, 1 + A)}. AB and A’B’ intersect at the
point where these coordinates are the same, for some choice of 4; and 4,. It is

easily seen that 4, = —1and 4, = }ITE—? satisfies this condition and so we

can write the point of intersection of 4B and A’B’ as
{(l - 1: 1 — &, 0)}'
It can be similarly shown that the intersection of BC and B’C’ and AC and
A'C’ are
{(0’ n = 1, 1 - 7’)} and {(1 - }': 0) v - 1)}'
We wish to show that these three points are collinear: denote their respective
representative vectors by X;, X; and X;. Then we notice that
N+X54+X=0
which shows that any one vector can be expressed as a linear combination of
the other two and the vectors must therefore represent collinear points.
Our proof has been unnecessarily long because we have developed our
techniques as we went along. Given that X = X; + «X; represents any point
on the join of X; and X; and in consequence three points represented by X,
X; and X; are collinear if there exist «, 8 and y, not all zero, such that
aX1 -+ ﬁXz -+ 7A,3 = 09
then the proof is a relatively simple matter. We could further improve matters
by adopting some simpler notational conventions.

5. The Principle of Duality. We have already noted a remarkable symmetry
between points and lines in the projective plane, viz. two distinct points lie
on a unique line and two distinct lines intersect in a unique point. Consider
the equation Ix + my + nz = 0. The line is specified by the class of triples
{{, m, )}. Instead of thinking of the /, m, n as fixed (except for a multiple) and
allowing the x, y, z to vary giving all the points of the line, we can reverse the
system. Let the x, y, z be fixed (except for a multiple) and allow the /, m, n to
vary, then we shall clearly get all the lines through the point with homogeneous
coordinates {(x, y, 2}. We call {(/, m, n)} line coordinates and {(x, y, z)} point
coordinates: we may regard Ix + my + nz = 0 as the equation of a point or
the equation of a line.

It follows that because of this symmetry we can replace points by lines (and
vice versa) and make other suitable word changes in the proof of any theorem
and we get another theorem: the same algebra will do for both. This principle
is known as the principle of duality. (Consider Example F on page 219 again.)

As an example we write out the ‘dual’ of Desargues’s Theorem: Let ABC
and A’B’C’ be two triangles such that the intersections of their corresponding
sides are collinear in a line p, then the joins of their corresponding vertices
are concurrent. Note the following ‘dual’ words illustrated in this theorem:

() a triangle is a self-dual figure, defined by three non-collinear points or
three non-concurrent lines;

(ii) intersection <> join, vertices <> sides, collinear <> concurrent.

The dual of Desargues’s Theorem is what one might usually call the converse:
this is not always the case. ‘



224 CHAPTER 12

6. Another consequence of our improved notation in homogeneous co-
ordinates is that we can now invent more geometries in an obvious way.
Projective geometry is the study of properties invariant under the transform-
ations of the form

X —_ X 1 = A.A’, ~
where A is any invertible 3 x 3 matrix. This group of matrices 4 has many
subgroups besides those which correspond to the affine, similarity and iso-
metry groups. For instance we might consider the geometry corresponding to
the transformations

X—>X,=TX
where T is an orthogonal 3 x 3 matrix, i.e. satisfying TT” = I. We leave this,
like many other things in this chapter particularly, to the interested reader.

7. Finally we suggest a further direction in which we could extend the
theory. The points or lines of the projective plane are in one-one correspond-
ence with the set of classes of ordered triples {(x, y, 2)}. Now we need not take
the elements of our ordered triples from the reals, we could take our elements
from any other field (see the next chapter), and the same axiomatic basis as
for the general projective plane will provide a basis for this geometry as well.
In particular we could take our elements from a finite field (this is developed
in Coxeter) and obtain finite projective geometries.

As an example consider the field with elements 0, 1 and addition and multi-
plication modulo 2. There will only be one triple in each class. The points of
this finite projective plane are

0,0,1),(0,1,0), (1,0,0, (1, 1,0, 1,0, 1), 0,1, 1, (1, 1, 1),

i.e. seven points. A line will be defined as in any other projective geometry,
and if there are seven points, there will be seven lines. Two points P and P’
define a unique line and any third point will lie on this line only if it is the sum
(modulo 2) of the vectors representing P and P’. Using this fact we obtain
the following configuration, where the dotted line is also a line in this finite
geometry, even though we cannot represent it so in our diagram.

(0,0 .,0) (o)

Notice that there are three lines through any point and three points on every
line. The reader might like to consider the finite projective plane correspond-
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ing to the field with elements 0, 1, 2 under addition and multiplication
modulo 3. Find two triangles the joins of whose corresponding points are
concurrent and identify the line in which the intersection of corresponding
sides are collinear. Note that we need at least ten points for a non-degenerate
case of Desargues’s Theorem and we have only seven in the case illustrated.

As we have repeatedly said in this chapter, we have only been
able to give the barest sketch of geometric theories. Our point
was to show that the idea of algebraic structure permeates this
subject as well and conversely that we can use geometry to illustrate
the algebra: as for the rest we leave the reader to consult such
works as those which we cite below.

Yaglom: Geometric Transformations (Random House), 1962.
This book deals with isometries using pure geometric methods. It
contains a large number of interesting examples.

Coxeter: Introduction to Geometry (Wiley), 1961. This is a fas-
cinating encyclopaedic book. It covers a vast field and gives a good
insight into the range of modern geometry.

Klein: Geometry: elementary mathematics from an advanced
standpoint (Dover). This is a book written for teachers nearly
60 years ago by a master in the field.

Semple and Kneebone: Algebraic Projective Geometry (Oxford).
This is a mathematical specialist’s book, but the first part “The
origins and development of geometrical knowledge’ makes very
rewarding reading. It emphasizes the structural aspect of geo-
metry. We quote: ‘Mathematics, as conceived today, is funda-
mentally the study of structure. Thus, although arithmetic is osten-
sibly about numbers and geometry about points and lines, the
real objects of study in these branches of mathematics are the
relations which exist between numbers and between geometrical
entities.’

The next two references are of a completely different sort: they
illustrate this geometry in the teaching situation.

Fletcher (ed.): Some Lessons in Mathematics (C.U.P.), 1964.
One of the lessons in this book is on geometry.

Mansfield and Thompson: Mathematics: A New Approach,
Book 3 (Chatto and Windus), 1964.

Mansfield and Bruckheimer: Mathematics: A New Approach,
Books 4 and 5 (Chatto and Windus).

Lastly, the texts now in preparation for the School Mathematics
Project and available from the Cambridge University Press contain

BSGT—H
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many useful examples although the reference to the basic algebraic
structure is minimal.

* * * * *

At the beginning of Chapter 13 we consider a set with two
binary operations: clearly, in order to obtain something new, in-
teresting and useful, we must have some interaction between the
two structures. What is true of algebraic structures is equally true
of our present situation where we shall consider a set with a group
structure and a topology. If the two structures are unrelated then
there is nothing new to say, so we choose some interaction and
we shall require that the group operations shall be continuous in
the topological space formed by the set and the topology. This
statement can be given precision as follows.

Let (G, o) be a group with a topology T': G then we have the
product topology defined in G v G. Combination in G can be
considered as a many-one mapping ¢ of G v G onto G defined by

c:(g, g)—>gog 2,8 €G.
Further, in a group we can form inverses and so we have a map-
ping i of G onto G defined by
i:g—g.
If the two mappings cand i are continuous then we shall say that
(G, o, T': G) is a topological group.

Example G. Verify that any group can be given the structure of a topologi-
cal group by giving the set of elements in G the discrete topology. (Notice
that if G has discrete topology so has G v G.)

Example H. Verify that the additive group of real numbers R with the
natural topology for R is a topological group. With the same topology, is the
multiplicative group of non-zero real numbers a topological group? What
happens if it has a different topology as in Chapter 6, Example N, page 97?

Example 1. Consider the following group G of order four defined by its
combination table

o a b c d
a a b c d
b b a c
c c d

d d ¢ a
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- In Chapter 2, Example S (ii), page 38 we gave a systemof subsets which formed
a topology for the set of four elements: this system is

G’ Q’ (a’ b’ c)’ (a’ b’ d)’ (a’ b)‘

The mapping i maps each element onto itself and is, therefore, clearly con-
tinuous. In order to decide whether the mapping ¢ is continuous it might seem
advisable to discover the open sets of G v G. By definition of the product
topology a sub-base is composed of all the sets of the form U v G andGvV
where U and ¥ are open in T:G. So, for example, if we take U = (a, b), we
have U v G as the set whose elements are
(a, @), (a, b), (a, ¢), (a, &), b, @), b, b), B, ©), b, d).
In all the sub-base will contain 8 such sets, two of which are G v Gand 9. In
order to obtain the base for 7:G v G we must consider all intersections of
these 8 sets: then, finally, all unions of sets of the base will give the open sets
of T:G v G. Not exactly a thought to be relished: the reader might like to '
try to list all the sets in T:G v G. But, in fact, this is not necessary: consider
Example J of Chapter 8 (page 134). The inverse image under the mapping ¢ of
the open set (a, b) € T:G is the set X, where the elements of X are
(a, a)’ (b, b)’ (c’ c), (d’ d)’ (a’ b)’ (b, a)’ (c, d), (d’ c)’

and, for instance, there are no open sets U, Ve T: G, ce U, c € V such that
U v V < X.This proves that Xis not open in T: G v G and hence the mapping
¢ is not continuous.

Construct another topology for G, other than the discrete topology, and
consider whether the result gives G the structure of a topological group.

Example J. Consider theset Mof all2 x 2 matrices with real elements. We
can introduce a topology into M as follows. M can be put into one-one cor-
respondence with the set R* = v RRRR of all 4-tuples of real numbers: €.g.

A= (“ b>——><a, b, ¢, d).
cd,

Now R* can be given a topology by analogy with the product topology. We
shall require each of the four projections of R* onto Rto be continuous (where
R has its usual topology) and so obtain a sub-base for T R* whose sets are of
the form VURRR, vRURR, VRRUR, VRRRU. 1t is easy enough to form a
mental picture of the situation. The resulting topology coincides with the
implicit topology of real analysis of functions of four (in general, many)
variables. We can now allocate a topology to M in such a way as to make the
one-one correspondence with R* a homeomorphism.

We can prove, as in Chapter 8, Example K, page 134, that any function f
of a topological space (X, T:X) into the generalized product space (R,
T: R%) is continuous if, and only if, pro f(r = 1,2,3, 4 is a continuous map-
ping of (X, T: X) into (R, T: R) where the p,are projections of R* onto R, e.g.

pa:(a, b, c, d)—>b.
Using this result the reader should prove the following results.

@ If A, Be M and ¢ and i are defined by

c:(4,B)— A + B
and itA— —1.4,
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show that c and i are continuous. It follows that the additive group of 2 x 2
matrices is a topological group with the defined topology.

(ii) If 4, B € M and c is defined by

c:(A4, B)— AB,
show that ¢ is continuous. If further A is defined show that
itd—> 4
is continuous. It follows that if we give the set M’ of invertible 2 x 2 matrices
subset topology, then M’ under multiplication has the structure of a topo-
logical group.

As a hint we indicate the proof of the first part of (ii). ¢ is a mapping of the
space (M v M, T: M v M) homeomorphic to (R* v R4, T:R* v R into M,
and (M, T: M) is homeomorphic to the generalized product space (R4, T: RY.
Therefore, ¢ can be decomposed into the mappings

MV M<>R'VR'—> Rt <> M.

The first and last mappings in this series are certainly continuous. Consider
the middle mapping f, say, then
profi((a, b, c,d), @, b, ¢, d))—> aa’ + bc’

i.e. the image of p, o fis a polynomial in four ‘variables’ and every such poly-
nomial is continuous (as proved in real analysis, and we have the same
topology as that implicit in real analysis). Similarly p, o f, etc., are continuous,
whence fis continuous. Finally, since ¢ is composed of continuous mappings
it is itself continuous.

Incidentally, we note that the mapping of an element 4 € M onto its deter-
minant is a continuous mapping. Now the set M’ maps onto the non-zero real
numbers, and this is an open set in T: R, hence M’ is open in (M, T: M).

Example K. Show that in a topological group the mapping i is a homeo-
morphism.

We shall continue the development of the elementary proper-
ties of topological groups, mainly by way of examples, at the end
of Chapter 13.



CHAPTER 13
EXTENSIONS

ALTHOUGH the title of this book restricts us to set and group
theory we find ourselves unable to conclude without some reference
to some of the ‘higher’ structures. Of necessity, in a single short
chapter, such reference can only be brief and incomplete: much
of the theory will be developed in examples with suitable hints:
the reader who has worked a fair number of the examples in the
earlier chapters of this book should find that he can tackle the
problems with some measure of success for the fundamental
methods are the same: group concepts are the basis for the
development.

Undoubtedly the group is the fundamental structure, but this is
not the end of the story. It would be the end if it were true that
the higher structures were simply multiple groups, but this is not
the case, for a very good reason.

It is perfectly possible for the same set G to possess group
structure for each of two or more distinct operations: indeed, we
now give an example.

Let G = (a, b, c,d). Let the operation @ be defined by the left-
hand table and the operation ® by the right-hand table.

&) a b ¢ d ® a b c d
a a b c d a a b ¢ d
b b a d c b b a d c
c c d b a c c dab
d d ¢c abd d d c¢c b a

Then G has double group structure. Unfortunately, such a group
is almost useless in practice (except, of course, as two single
groups), for the two operations are unrelated to each other. In’
particular, neither is distributive over the other. For example, '
c®do®al=cd=2b,
while [codl@lc®al =b@dc=d.
229
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If we impose, in addition to double group structure, the further
requirement that one of the two operations should be distributive
over the other, then we meet a contradiction, as we now show.
(For convenience, as explained later, we change our notation
slightly.)

Let G be a group for @, with neutral element ,g, and a group
for ®, with neutral element ,g. Let ® be distributive over @. Take
any g # ,g. Then

g @ o =8
since g is neutral for ®. Hence

g0[g®gl=20®g,
ie. [e®glolg®@gl=2®g,
since ® is distributive over ®. Now g ® g and g ® ,g are elements
of G, since G is a group for ®. Hence the last equation implies that

g ® o8 = 08>
for there is only one neutral element for each operation. Now
since G is a group for ® and .g € G, g has an inverse for ®
Let it be ,g. Then

(g ® o8] ® 08 = o8 ® o8,
i.c. g2® g ® ’0§] =18,

since ® is associative and ,g is the neutral element for ®. But
this gives

) g ®18 =18,

1.C. 8 =18,

which contradicts our assumption for g. Hence it is not possible
for the same set to possess group structure for two different opera-~
tions of which one is distributive over the other.

Since we cannot have what we want we look to see what we can have—and
the notation in the last proof was chosen to be suggestive. If G is the set of
all rational numbers, then we have multiplication distributive over addition,
group structure for addition and group structure for multip]ication with one
single exception: the neutral element for addition has no inverse for multi-
plication. The crucial step in the proof above, the existence of o8, is destroyed
and the contradiction disappears.

A set with two combination operations is called a field if it
forms a commutative group for one operation (usually called addi-
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tion) and forms a commutative group for another operation (usu-
ally called multiplication) which is distributive over the first, with
the single exception that the neutral element for addition has no
inverse for multiplication. The reader is warned that in some texts
one meets statements like ‘The non-zero elements from a field
form a group for multiplication’. This is a further example of the
suggestive, but possibly dangerous, type of notation referred to
in Chapter 6, page 89.

The following examples are elementary: they are, however,
necessary for a grasp of the field concept. The reader is recom-
mended to work through them.

Example A, Which of the following sets and operations form fields?

(@) Theset of all2 x 2 matrices with rational elements under addition and
multiplication.

(b) The set of all invertible 2 x 2 matrices with rational elements under the
same operations as in (a).

(c) The set (0, 1) under addition and multiplication modulo 2.
(@) The set (0, 1, 2, 3) under addition and multiplication modulo 4.
(e) The set (a, b, ¢, d) with @ and ® defined by

@ a b ¢ d ® a b ¢ d
a a b ¢ d a a a a a
b b a d ¢ b a b ¢ d
c c d b a c a ¢c d b
d d c ab b ad b ¢

(f) The complex numbers under addition and multiplication.
(g) The dual numbers under addition and multiplication.
Example B. With the notation above, we have already proved £ ® o& = o8

without invoking commutativity. Prove also that ,g ® g = (g, without using
the commutative properties.

From here on we shall use the obvious notation, + and X
for the operations, but shall represent the additive inverse of g by &
and the multiplicative inverse of g by g, using g and ,g, as above,
for the additive and multiplicative neutral elements respectively.
(We use og and g rather than g, and g, for the sake of conveni-
ence: see, for example, Exercise 2, page 234, where the notation
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would become awkward if we did not have g, available as a general
element of the field.)

Example C. In a field, as defined above, the distributivity is from both left
and right,

Example D. If g and g’ are elements of a field, prove that
Exg=gxg.
(This is, of course, the result which corresponds to something like
-2 X —3=6
in the rational number field. Hint: consider
lexgl+llexg1+ExgN=llgxgl+lexgll+1[&xg]

and use distributivity and Example C.)

Example E. In a field, if g x g’ = ,2 then either g =ggor g’ =,g. (Hint:

assume g # og, then g X g’ = g = g X .g, etc.) To what property in the
rational number field does this correspond?

Example F. If ¢ and g’ are elements of a field prove:
(a) g~ = 1g~ X &,
~ 7 ~7 r—.—-J
B Exg =gxg=[gxgl
—
©@Ig+g1=8+g.
To what properties in the rational number field do these results correspond ?

Example G, If [g x x] + g’ = g”, where g # g, prove that
x = g X [gll + gl]
is a unique solution.

Exercises

1. From Example G it is evident that if @, b and ¢ (@ 5 ,g) are members of
a field then there is in the field a unique x to satisfy [@ X x] + & = ¢. Now
the set of natural numbers do not form a field for addition and multiplication,
and if @, b and ¢ are members of this set then the solution of [axx]+b=c
may not exist in the set. If we regard the (non-zero) natural numbers as funda-
mental we must use this set only, in a similar manner to that in Chapter 7,
Exercises 7 and 8, page 110 et seq., to create the appropriate elements and
operations.

Let ay, ay, by, b, ¢, and ¢, be natural numbers: we require

[al X x1] + bl =0

to specify a unique x,. Let x, be defined by the triple (a1, b1, ¢y). Similarly, let
[az % x5] + by = cu, where x, is defined by the triple (az;s by, ;). Then, in the
cases when x, and x, are natural numbers, we know that

@ayx1xy + bicy + bycy = bib, + cycs,
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where we adopt the more conventional notation and drop the symbol for
multiplication. Hence the product, x1x,, or (@, by, ¢;)as, bs, ¢p), is specified
by the triple (a,as, bics + bacy, bibs + €3¢5). Similarly, the sum satisfies
aas[x; + x2] + aibs + ash, = aies + azey,

so that the sum, x; + X,, or (a;, by, ¢) + (@, by, €, is specified by the triple
(@,ay, @by + azby, a;c; + ascy). Lastly, in the case when the same natural
number x satisfies the two equattons

ax + b =0
and axx + by = ¢,
we know that ascy + @by = ayc; + aghy.
So we have the relation

(a1, by, €1) R (ag, by, ¢) if  aye; + arhy = aycz + azhy.

The reader might like to verify that this is a proper equivalence relation: he
is warned that the verification of the transitive property is very tedious.

If we preserve all the above properties, then the set of all triples of natural
numbers has two operations defined as above and an equivalence relation
which can be shown to be compatible with the two operations. It remains to
verify that the equivalence classes, with these operations, have all the field
properties. In particular, one should verify that

(i) the neutral element for addition is {(1, 1, 1)},

(i) the additive inverse of {(a, b, ©)} is {(a, c, b)},

(iii) the neutral element for multiplication is {1, 1, 2)},

(iv) the multiplicative inverse of {(a, b, ¢)} is given by {(x, y, 2)}, where

ifb>c
x=b—cy=a+1z=1,
andifc > b
x=c—by=1,z=a+1,
and if b = ¢ that no multiplicative inverse exists (and hence that
{1, 1, 1} has no such inverse).
(It should be unnecessary to give the reminder thata, b, ¢, x, y, z
are all non-zero natural numbers.)
Further, one should specify the sets of classes of triples which are

(v) isomorphic with the natural numbers under addition and multi-
plication,
(vi) isomorphic with the integers under addition and multiplication,

(vil) isomorphic with the positive rationals under addition and multiplica-
tion,
and finally,
(viii) identify the whole set of classes of triples with the set of directed
rationals.
One may also, for amusement, show that the square of any triple is a
member of the set specified in (vii).
It is very difficult to imagine circumstances under which the above is an
appropriate method of introducing directed rationals to a class. By contrast,
the work suggested in Chapter 7, page 110 et seq., usually proves entirely



234 CHAPTER 13

acceptable. Rather than make one large intuitive leap from that stage to this,
some teachers might prefer to break it into smaller jumps. Having already
obtained the group operations in the two sets, positive rationals and integers,
it is readily possible to derive definitions of the other operation in each case
by regarding multiplication by a natural number as equivalent to repeated
addition and requiring that multiplication be distributive over addition.

2. The results of Examples E and G together imply that the equation

[[g:r % x1 + &1] x [[ga X x] +38] % ... x [[gn % x] + g2] =08,
where none of the g, g, . . ., &x are equal to g, has n solutions.
@ The system of residue classes of the integers modulo 5 is a field, and
with the obvious interpretations of + and X, the equation
2XxxX[x+11=0
has two solutions. What are they?
(ii) The system of residue classes modulo 6 is not a field. Why not? In this
system, how many solutions has
2xxX[x+11 =07
3. Prove that +/2 is not a rational number and hence prove that the set of
all numbers of the form a + b+/2, where a and b are rationals, is a field.

NoTE : Pupils often find manipulative difficulties in dividing, say, 3 + 4+4/2
by 1 + +/2. This offers an opportunity to point out the superiority of using
the multiplicative inverse rather than a division process. (The multiplicative

1 1=-v2
T v2 =~ 1 + +/2. Hence the process

is achieved by multiplying 3 + 4v2 by —1 + v2)

inverse of 1 + +/2 is

To construct the set of all real numbers would take us consider-
ably further than we wish to go in this book. For the purpose of
the exercises which follow we assume that the reals form a field
for addition and multiplication. A field may or may not contain
subfields: the definition of a subfield of a field is the obvious one,
and the reader is left to formulate it for himself,

4. Show that every subfield of the field of real numbers under addition and
multiplication contains the field of rationals.

5. Let S be the set of all ordered pairs of real numbers (a, b). Define
(a]_, bl) + (az; bz) = (al + a2, bl + bs)
and @1, By) X (@, by) = (@103 — bibs, arhy + ashy).
Prove that this structure is a field. Prove also that the subset for which 5 = 0
is a subfield isomorphic to the real numbers. Further prove that for any pair

(a, b),
(a, b) = (a, 0) + [0, 1) x (b, W]

and lastly, that (0, 1) x (0, 1) = (—1, 0).
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(Cf. Chapter 8, Exercise 14, page 130, where we originally discussed this
system among others.)

6. A field is a structure as near as we can get to a double group, with
distributivity. An intermediate structure, between a group and a field, is a
ring. A ring is a set which is a commutative group for one operation (usually
called addition) and which is closed under another associative operation
(usually called multiplication) distributive over addition. (See the next exercise
for some examples of rings.)

A fourteen-year-old boy, asked to define a prime number, replied, ‘A
natural number 7 such that the ring of residue classes modulo » is a field.
For every natural number z > 1, does the set of residue classes modulo form
a ring? Is the boy’s definition of a prime adequate?

7. If the multiplication operation in a ring is also commutative, the ring is
said to be commutative: otherwise it is called non-commutative. If a ring
possesses a neutral element for the multiplication operation, itissaidtobea
‘ring with unity’: the absence of such an element is often emphasized by the
phrase ‘ring without unity’.

The set of all integers forms a ring for addition and multiplication. What
sort of ring? The set of all even integers forms a ring for addition and multi-
plication. What sort of ring? Does the set of all 2 X 2 matrices with real
elements possess any of the above structures for matrix addition and matrix
multiplication? If so, which? Does the result & X & = o, which we have
proved for a field, hold for all rings? Which of the results, proved for fields
in Examples D, E, F and G, hold for rings?

8. Take as elements the subsets of some set E. Use two of the operations
of union and intersection and symmetric difference to construct a commuta-
tive ring with unity. In how many ways can this be done? Construct examples
and Venn diagrams of three subsets 4, B and C to show that in this structure
the solution of

[A0D X]oB=C
may be (a) non-existent, (b) unique, (c) existent, but not unique (where o and
O represent the chosen ring operations of ‘addition’ and ‘multiplication’

respectively). On the other hand, if B, C and D are given subsets of E and
it is known that

G BAC=D
and i) XA[DNnBl=DnNC,
what can you deduce about X?

Having introduced a field and obtained some familiarity with
the definition, we might now proceed by analogy with our dis-
cussion of groups and consider isomorphisms and homorphisms
of fields. By now we should hardly need to define these terms, but
we will do so in order to establish our notation at the same time.
A homomorphism of a field F onto a field G is a many-one mapping
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B of F onto G which preserves structure, i.e. if f, f’ € F, then f is

such that

B:f + 1 —Bf+S) =B +BUH
and Bif X f— B X f) =B X B,
where we denote the operations in F and G by the same symbols
4 and x. If B is one-one then it is an isomorphism. We discuss
homomorphisms and isomorphisms of fields in the following
examples. The reader might like to reconsider a more unified
treatment of the Exercises 4 of Chapter 9 (pages 137 and 144),
instead of our discussion there which separated the additive and
multiplicative structures.

‘Example H. If 8 is a homomorphism of F onto G show that

@ BGLf) =g and BGS) =g,
where .f, .f are the additive and multiplicative identities of F and, similarly,
o& and ¢ for G,
@i if p(f) = g then
B(f) =g and B =§(f¢of3-

Note that these results are in fact already proved for groups since f is a
homomorphism of the additive group structure and a homomorphism of the
multiplicative ‘group’ structure. (The inverted commas around ‘group’ are
here used to indicate the absence of a multiplicative inverse for the additive
neutral element.)

Example I. When we were working with homomorphic groups we dis-
covered that the kernel of the homomorphism played an essential role. We
would expect something similar to happen for fields: the only problem is
which set of elements do we take as the kernel; all the elements which map
onto ,g, or all the elements which map onto ,g?

(i) We know that B(f) = og. Suppose that there is some other element
f # of such that B(f) = ,g and show that this leads to a contradiction. (Hint:
use part (ii) of the previous example.)

(i) If, on the other hand, we consider all those elements which map onto
1€ we arrive at no immediate contradiction as in part (i), but we do not
achieve a subfield either (and this is equally discouraging, remembering that
the kernel of a group homomorphism is always a subgroup). For if (f) = ,g,
then

BS +1f) =18 +18 #.8
and so f + ,f does not belong to the set.

So analogous considerations to those we used for groups are thoroughly
unpromising—or are they? Perhaps we are looking for something which is
not there. Consider the implication of part (i): regarding # as a homomorphic
mapping of the additive group structure of F onto the additive group structure
of G. The kernel is the identity element only: hence the homomorphism (as
applied to the additive structures) must be an isomorphism. Thus a field has
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no homomorphic images: two fields are either isomorphic or structurally
unrelated.

Example J. A ring is a much more profitable structure from the point of
view of homomorphic images.

@ If B is a homomorphism of a ring R onto a ring R show that the
elements of R which map onto the identity element of the additive group
structure of R’ form a subring S of R.

(i) Show further that this subring § possesses the property that if s€ S
and r is any element of R, then 7 X s and s X r both belong to S. (Cf.
invariant subgroups of a group.)

(iii) Show that any subring S of a ring R with the property (ii) leads to a
homomorphism of R onto another ring R’. (Hint: by analogy with groups
define an equivalence relation on R by showing that the cosets of the form
{r + s} for fixed r and 5 € S, are a partition of R: this equivalence relation is
compatible with addition and multiplication, etc.)

The set of all integers J forms a ring and the set of all multiples of 5 forms
a subring S with property (ii). Using the same notation as for groups, what
is the factor ring J/S? Notice that the factor ring is, in fact, a field. If, how-
ever, we take the set of all multiples of 4 the factor ring is not a field. For a
general explanation of this situation see Birkhoff and Mac Lane, A Survey
of Modern Algebra (Macmillan), Chapter 13.

Example K. Returning to our discussion of Example 1 we shall try to
answer the question implicit in the last sentence. Clearly, we can no longer
make direct use of the analogy with groups: we must discover some of the
special character of a field due to the interaction of the group and ‘group’
structures and the distinction of the additive identity. But let us not lose sight
of the group ideas: we are trying to classify fields in the same way that we
began to classify groups in Chapter 11. There we found that the order of an
element of a group had the interesting property that it divided the order of
the group (if it was finite), and we used this property from time to time. What
happens in a field? In the multiplicative ‘group’ we are unlikely to get any-
thing new: the multiplicative order of any element will have the same property
as before, i.e. if the field is finite of order n, say, the order of the element will
be a factor of n — 1. But what of the additive order ? ,fis our special element.
Define the additive order of f€ F to be the least positive integer s such that
the sum f + f + f + . . ., containing s terms, is of. Denote by *f the sum of
r terms each equal to f; then the following results are a simple consequence
of our notation and the distributivity of X over +.

Il xf =fx[f1="Ifx[f]
Hence show that if s is the additive order of f it is also the additive order of
any other element f’ € F, where neither f nor f” is of (remember Example E.)
It follows that all elements of a field other than of have the same additive
order which is called the characteristic of the field.

(@ Show that the characteristic, s, of a field is either infinite or a prime
number. (Hint: if s is finite but not prime suppose s = ab, then

== X
(where ,fis the multiplicative identity) and use Example E.)



238 CHAPTER 13

(ii) Show that if the characteristic is a prime integer r that , f generates an
additive subgroup G of the additive structure of F and that G is a subfield of F
isomorphic to the field of residue classes of integers modulo #. (One has to
show that ¢f—- {a} is an isomorphism.)

(ii) We extend our notation slightly before considering the corresponding
result for a field with infinite characteristic. Let a be any integer, then we
define

8f=9fifa> 0% =2 ifa <0,%=,f,ifa=0.
Further we shall denote the multiplicative inverse of ¢f by %f, a # 0.

If Fis a field with infinite characteristic show that the elements of the form
2f x 3f, b # 0, form a subfield isomorphic with the field of rational numbers.
~ a
b

by analogy with (ii) above and form the additive subgroup generated by 1 f
then we do not get a subfield. What do we get? Does it help if we form the
additive group generated by ,fand .fD

Thus we see that every field contains a subfield isomorphic to the rationals
or to the residue classes to some modulus. It would seem that at this stage
we could justifiably simplify our notation and write

0f=0’1f=13 af=af;f= _f;etc.

We are now in a position where the unjustified suggestiveness of the notation
does not provide the results, but the results suggest the notation. Since we
shall not pursue the technical details we shall not modify our notation.

It is not difficult to show that if r is the characteristic of any finite field,
that F has r” elements for some integer #. Further, although perhaps not quite
so elementary, it can be shown that for any prime r and any integer n > 0
there exists a field with r* elements. The reader who would like to continue
these investigations, which have considerable consequences, should consult
the reference at the end of Example J. There it is shown that any two finite
fields of the same order are isomorphic, which finally answers the classification
problem for finite fields. We choose, however, to put our feet back firmly on
the ground and consider the more elementary notions of other structures.

(Hint: show that {f x !f—> —is an isomorphism. Notice that if we proceed

Clearly a field is not the most general structure of which we
have examples. Consider, for instance, the additive group M of all
2 x 2 matrices with real elements together with the field R of real
numbers (under addition and multiplication), where the interac-
tion between the two sets is defined as scalar multiplication, i.e. if

ab . ka kb
keRand (c d) = A € M, then kA is defined as (kc kd)'
that we have chosen to ignore at least one further operation in M
which gives it ring structure.) The reader should bear this example

(Note
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in mind and reformulate the abstract concepts in the following
paragraphs in terms of it.

Group structure and field structure are ‘practical’ in the sense
that they guarantee the explicit solution of particular types of
problem (specifically a o x = b and [a 0 x] O b = c respectively).
They also arise frequently in practice, largely for this very reason.
The next structure we have selected to discuss is a vector space,
which may be regarded as a combination of a group and a field.
Vector space structure offers no further guarantees as to solvability
in the elementary sense: its importance rests, in the first place, on
its extremely wide occurrence, and the economy of effort with
which results true for the abstract structure may be applied to
particular instances. At a more sophisticated level vector spaces
acquire an ever-increasing importance.

We define a vector space as a set ¥ whose elements form a
commutative group for an operation represented by o, together
with a set F whose elements form a field for the operations which
we shall denote by + and X as usual, with the additional require-
ments that

() any element v € V can be combined with any element '€ F
by a further operation O so that for allv and f, fOv eV,

i [f+f1ov=[fDv]olf O],
i fowod]=[foOvlolfOv]
av) foif/favl=[fxf10v,

W fOv =y,

where ,f'is the multiplicative neutral element of F and f, f* are any
elements of F and v, v’ any elements of ¥. When these conditions
are met V is said to be a vector space over the field F. We reserve v,
for the neutral element in the group structure of ¥V, of for the
additive neutral element of F, ,f for the multiplicative neutral
element of F and f and f for the additive and multiplicative in-
verses of frespectively. The reader who wishes to do so, may well
use the simplified notation of the previous page.

The definition is excessively complicated and the reader should
try to obtain some appreciation of the details by considering the
significance of each condition in terms of our example above. For
instance, that our example satisfies the second condition arises
from the fact that multiplication is distributive over addition in
the field of real numbers. In fact, this condition and the third can
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be regarded as distributive conditions, although technically, since
we change the operation + to o in (ii) this stretches the meaning
of distributivity considerably. Similarly, condition (i) corresponds
to what we would call a closure condition, (iv) to an associative
condition and (v) to the existence of an identity.

We should also remark that, as usual, we ought to motivate the
choice of defining conditions: given enough space we might pos-
sibly do this although it seems doubtful whether it can be done as
effectively as, for instance, for groups. It is not, in general, suffi-
cient to say that this is what mathematicians call a vector space:
given a sophisticated enough audience they might well be willing
to wait to see what we can get out of our definition, but it is doubt-
ful whether this is pedagogically sound even then. Since this is
effectively a summary chapter we shall be satisfied with pointing
out the omission.

Example L. Prove the following consequences of our definition.

@) of O v = v,, for all v. (Hint: use (i) with f = f" = )

(b) fO vy = v,, for all f. (Hint: use (ii).)

© vo[,fov) = v, for all v. (Hint: use (i), with f = ,f and f’ =,

and (a).)

(@) [fov]l o [foOov] = v, for all fand v.

Example M. Defining a subspace of V as a subset of ¥ which is a vector
space over F for the same operation o as ¥, prove that a subset .S is a subspace
if and only if

[s"osle s, foralls,sin S,
and [fos) €S, forall sin S and all fin F.

Example N. If vy, vs, v3, . . ., vn are any fixed members of ¥V, prove that the

set of all elements of the form
[AiO0vlo[fyOvs]lo...o[fn0uval,
where the £}, f5, . . ., fa take all values in F, is a subspace of V.

Elements of this form are called linear combinations of vy, v,, . . ., vn, and
the subspace which all linear combinations of v,, v,, . . ., v, generate is said
to be spanned by v, Vgy . . vy Un.

Ifv=(Aavlo...0olfnOv.lwhatis [fyov]0...0[f.Ov,]? Hint:
it might be advisable to start with one or two terms on the right-hand side
and then to consider the general case.)

Exercises

1. Which of the following structures are vector spaces? In the case of
structures which are vector spaces specify the elements v,, of and ,f.
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(@ V., = set of all localized vectors (see Chapter 3, page 48) in a plane,
combined by vector addition (see Chapter 9, Exercise 6, page 147), F = set of
real numbers under addition and multiplication, f0 v = scalar multiple of
v by f (ibid).

(b) V» = set of all free vectors in a plane, combination of vectors and F
and fO v as in (a).

(©) V, = subset of V3 consisting of all free vectors whose direction is
parallel to a fixed straight line, combination of vectors and F and fo v as
in (b).

(d) V4 = set of all triples of real numbers (x, y, 2), combined by
Cy, Do, Y, ) =+x,y+¥,z+2)
F = set of real numbers under addition and multiplication,

fox,y, 2) = (x, 7 2.

() V, = set of all n-tuples (for fixed n) of real numbers combined by
analogy with (d). F = set of real numbers under addition and multiplication,
f o v defined by analogy with (d).

) Vy = subset of ¥, consisting of all n-tuples of integers combined as in
(e), Fand O as in (e).

(&) V, = set of all triples of symbols 0 and 1 (so that typical members of ¥y
are (0, 1, 0), (1, 1, 0), (0, 0, 1), etc.), combined by addition of corresponding
members modulo 2, e.g. (0,1,00,1,0) =(1,0, 0). F is the set (0, 1)
with addition and multiplication modulo 2, fOv corresponding to multi-
plication modulo 2 of each member of v by f.

() Vi = set of all n-tuples (for fixed n) of symbols 0 and 1: otherwise
defined by analogy with (g).

@ Vi = set of all real valued functions of x which are definedon0 < x< 1.
Two members of V; are combined by algebraic addition, i.e. if », v* € Vs then
po v :x—>v(x) + v"(x). Fis the set of real numbers under addition and
multiplication, and if fe Fand v € Vi then fO v is defined to be the function
v’ which is such that v’(x) = f.v(x).

() V; = subset of ¥; consisting of all continuous functions, F and O as
in ).

&) Vi == set of all polynomials of degree three with real coefficients, com-
bination being algebraic addition. F = set of real numbers under addition
and multiplication, and if

v=ax® + bx% +cx +d, fav = fax® + fbx® + foex + fd.
) V; = set of all polynomials of degree not more than five. Otherwise as
in k).
(m) V., = subset of ¥; consisting of all functions whose images are posi-
tive. Otherwise as in (.

There are many other examples of vector spaces, €.g. sets of matrices as on
page 238; we leave the reader to find or make up more if he wishes.
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2. If pupils named 4, B, C, D, E take examinations in subjects. called
a, b, c, . . ., and obtain non-negative percentage marks as in the table below

a b c
A XAa XAb XAe
B XBa XBp XBe
C
D
E XEa XEb XEc
then the columns may be ‘added’ so that g o b = XAa + x4p
XBa + XBp
XEa + XEp.

We take the set of all possible columns as V and take F as the set of real
numbers under addition and multiplication, and allow that subjects may be

‘weighted” by any real numbers, so that, for example, fO a = f X x4,
f X XBa

f X xEa.

The structure is not a vector space. Why not?

The candidates’ marks in each subject are converted by the following
mapping

XRs — X
xR —> 22 — X8
[<f]

where X; is the mean of all the candidates’ marks in the subject s and o, is
the standard deviation of the marks in the subject s. Does the corresponding
structure, with F and weighting as before, form a vector space?

3. The set of elements which span a given space is not unique. For
instance, the space V} in Exercise 1 is spanned by the set of four polynomials
, x, x*, x%. It is also spanned by the set (4, x — 4, 2x3 4 x2, 2x3), for any
polynomial of degree three, ax® + bx® + cx + d, where a, b, ¢, d are real
numbers, can be expressed as

d
(g - b)Zx"’ + b[2x3 + x?] + ofx — 4] + (c + 2)4.
Find a set of five polynomials which span the space. Is it possible to find a

set of fewer than four polynomials which span this space?

4. Free vectors in three dimensional space, combined by vector addition,
with F as the field of real numbers and O as scalar multiplication of a vector
by a real number, is spanned by the set of three vectors represented by the
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position vectors of the points (1, 0, 0), (0, 1, 0), (0, 0, 1). Is it true that the
same space is spanned by any set of three different vectors? If not, give an
example of a set of three different vectors which do not span the space. In
geometrical terms, what space is spanned by the vectors represented by the
position vectors of the two points (0, 2, 1) and (1, 3, 2)? In geometrical terms,
what space is spanned by the vectors represented by the position vectors of
the two points (0, 2, 1) and (0, 4, 2)? Can the last space be spanned by less
than two vectors?

If S = (vy, Vs, - - -» Un) is @ subset of a vector space V over a field
F and if elements of F, fi, fa, - . -» fu, can be found, not all of which
are equal to of, so that

[fiowlolfpOvo...0olfaOvs] =10, . .M
then the vectors vy, Us, . . ., U are said to be linearly dependent.
If the only set of elements of F satisfying equation (1) is
fi = fa=...=fa = of, then the vectors of S are said to be linearly
independent.

Example O. Prove that a set of elements of a vector space is linearly
dependent if, and only if, one of them can be expressed as a linear combination
of the others.

Example P. Let v be a linear combination of the linearly independent set
{0y, Vgs « « +» Un), SO that for some fi, Sor o v s Sn

v=L[fiovlo[feOvlo...0[faO0vnk
Prove that there is no other linear combination of these vi (i =.1, 2,0 1)
which is equal to ». (Hint: assume that there is, and obtain a contradiction;
the last part of Example N can be used for this.) Prove also that if, instead,
theset of v; G = 1,2, . . ., n) are linearly dependent, then v can be expressed
in at Jeast two different ways as a linear combination of the v;.

Example Q. Let (o3, s, . . -, Un) be a set of n elements spanning a space S.
Prove that if, from the space S, a set of more than 7 elements is chosen, then
this set is linearly dependent.

The least number of elements which span a space S is called the dimension
of S, so that this example shows that the dimension of S is less than or equal
to n. Further, any set of linearly independent elements which span S is called
a basis for S, and Example P shows that any vector v € S can be expressed as
a unique linear combination of the elements of a basis.

Show further, that if the v; are linearly dependent then S is spanned by less
than » vectors. Finally, prove that if ¥ is a vector space of dimension n that
any set of n linearly independent elements of V is a basis for V.

11 Gz i3 . . Gin

. . Qg Qg Qa3. . . Qan
Example R. Consider the matrix 4 =

amy Gma Qms . . Qmn
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where the elements are real numbers. Regard each column as an element
1, Vg, . - ., Uy Of @ vector space V over the field F of real numbers, so that the
space is similar to V, of Exercise 1 on page 241. Then the number of linearly
independent columns of A is the dimension of the space spanned by the
v (¢ =1,2,...,n. This quantity is of considerable importance in matrix
theory and its applications (e.g. the theory of linear equations) and is called
the rank of A.

(@) What is the rank of a column matrix G.c. an m x 1 matrix) not all of
whose elements are 07

(b) Whatis the rank of arow (i.e.al x » matrix) not all of whose elements
are 0?

10 100
(c) What is the rank of )? of |[010]}?
01 001

(d) What is the rank of any invertible 2 x 2 matrix? Is any matrix of rank
2 necessarily 2 x 2 and invertible?

() What is the highest possible rank of a matrix with m rows and n
columns, m > n?

(f) What is the highest possible rank of an m x n matrix?

Following on from Example Q it is not far to prove that every
finite dimensional vector space ¥ over a field F is isomorphic to
a unique vector space which is the set of n-tuples of F, where n
is the dimension of V. (We have not defined the term ‘isomorphism’
for a vector space but it is not difficult to imagine what it will be.)
We are really then only at the beginning of a vast and intriguing
theory with many applications. For instance, we could examine a
subspace of a vector space with a view to defining an equivalence
relation in the space compatible with the operations, and so lead-
ing on to a factor vector space. (In fact, every subspace of a vector
space leads to such an equivalence relation and, hence, a factor
space. This has led to the remark that the vector space structure is
‘simpler’ than group structure, but notice that this can be regarded
as purely a matter of special definition: we are using an Abelian
group in our structure and any subgroup of an Abelian group is
invariant.) Beside the extension of the theory in this direction
there are many more extensions, e.g, linear operators, dual spaces,
Euclidean spaces, etc. Also, we can connect up withthe geometrical
discussions of the previous chapter by considering the effect of a
change of coordinate system (which corresponds to a change of
basis in the vector space) on the matrices which represent the
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transformations. For the interested reader, Birkhoff and Mac Lane
(op. cit.) gives much more information.

What then? Are we anywhere near the end? Obviously not:
consider the example on page 238 with which we began our note
on vector spaces; we ignored another obvious combination opera-
tion. We are led on to algebras: an algebra is roughly a vector
space and a ring structure combined. And not only can we go
onwards, we can return to the very beginning and weaken the
group conditions to obtain loops, groupoids, semigroups, etc.
Whether or not one cares to examine all these structures indivi-
dually is very much a matter of taste and inclination: the impor-
tance lies in the approach to mathematics. As the amount of know-
ledge increases and as the applications of mathematics grow in
number and the complexity and quantity of material needed gets
steadily greater, so the need to systematize our thought becomes
more and more acute. The structural examination of mathematics
not only helps in that direction, but it also seems to have educa-
tional value.

* * * * *

In this final section we continue the note on topological groups
begun at the end of Chapter 12. Probably the most important
point about a topological group is that many of the properties of
the space can be discovered by examining the open sets containing
the identity, for there is always a homeomorphism that maps the
identity into any other point. It is this aspect of a topological
group that we shall try to bring out in the following examples.

Example R, Consider the following two mappings in a topological group:
@ left translation by a fixed element g, € G defined by
g—>810¢%¢
for all g € G. We denote this mapping by Lg,;
(i) right translation by a fixed element g, € G defined by
g—>804
for all £ € G. We denote this mapping by Rg,.

Show that both L, and Ry, are homeomorphisms of (G, T: G) onto itself.
This result implies that given any two elements g, g’ € G there exists a
homeomorphism under which g is mapped onto gheg Ly n@=g. A
topological space (which need not necessarily be a topological group) is called
homogeneous if given any two points, a homeomorphism exists which maps
one point onto the other.
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Example S. Show that L, = i 0 R; 0/ where i is the mapping defined at
the end of Chapter 12, page 226 and O denotes combination of mappings.

Let (4, T: 4) and (B, T': B) be two topological spaces and let f
be a many-one mapping of 4 to B. Then we shall say that f is
continuous at a point a € A if for every open set Ue T': B which
contains f(a), f(U)e T: A. It is clear that a continuous function
of (4, T: A) to (B, T: B) is continuous at every point of 4, and
conversely, that if a function of (4, T: 4) to (B, T: B) is con-
tinuous at every point of A it is a continuous mapping of (4, T': 4)
to (B, T: B). An open set of T:4 containing a point a we shall
call an open neighbourhood in T: A of a.

Example T. Let (G, o, T: G) be a topological groupand let Uin T: G be an
open neighbourhood of the identity e. Further, if g € G, let g o U be the set
of all elements of the form g o g’ for all g’ € U. Show that g o U is an open
neighbourhood in T': G of g. (Hint: use the result of Example R.) Conversely,
if U is an open neighbourhood in T': G of a point g € G then g o U is an open
neighbourhood in T': G of e.

Example U. Let (G, o) be a group with a topology T: G. Then we can show
that (G, T: G)* is a topological group if and only if

(i the left and right translations L, and Ry, g, &’ € G, are continuous
mappings of (G, T: G) onto itself;

(iD the mapping c: (g, g) —> g 0 g’ is a continuous mapping of (G v G,
T:G v G)onto (G, T: G at the point (e, &) € GV G;

(iii) the mapping i: g —> & is a continuous mapping of (G, T: G) onto
itself at the point e € G.

The demonstration of one half of the proposition is fairly clear: if (G, T: &
is a topological group, then (i), (i) and (iii) follow from the definition of such
a structure and Example R. It remains to prove that these three conditions
ensure that (G, T: G) is a topological group, i.e. that the mapping c is con-
tinuous at any point (g4, £:") € G v G and that the mapping i is continuous
at any point g € G . We leave this to the reader. (Hint: if (gy, g,") is any point
of GVvGletg =g, 0ouandg’ = vo g/, where u, v € G, and show, using (i),
that

(g,8)—>(fog, 8’08 =,

is a continuous mapping of (G v G, T: G v & onto itself, and note that if
(g, &) belongs to an open neighbourhood in T': G v G of (g4, g1") then (u, v)
belongs to an open neighbourhood in T': G v G of (e, e). Then consider the
mapping ¢ at (g3, £,°) decomposed in the form

(g, &)—> W, v)—>uov—>[g,0oulovog’]l =gog’
A similar, but simpler analysis will prove the second result as well.)

* Strictly, we should write (G, o, T : G) is a topological group . . .’
Y pological group
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These last two examples begin to show bow much of the topo-
logy of a topological group is determined by the open neighbour-
hoods of the identity, and more and stronger results of this nature
can be proved. Instead we turn to a different aspect of topological
groups which fits in better with the development of the group
theory in the earlier chapters of this book.

Example V. Let H be a subgroup of a group G. Show that @G T:0)is
a topological group then (H, T: H) is also & topological group, where T: H
is the subset topology for H considered as a subset of G.

Example W. A many-one mapping fof a topological group (G, o, T': G) onto
a topological group (G, O, T': G") is a continuous homomorphism if it is a con-
tinuous mapping of the topological structure of G onto the topological
structure of G, and if it is a homomorphism of the group structure of G onto
the group structure of G’. The mapping f will be a continuous isomorphism if
it is one-one. Verify that L, and R, are not continuous isomorphisms of
(G, T: G onto itself.

An example of a topological isomorphism of a topological group (G, T: &)
onto itself is the mapping g —> £, 0 £ 0 g, Where g, is a fixed element of G.
Verify this result: note that the mapping can be written g —- Ry, O L, (g),
(where 0O denotes combination of mappings).

Example X. Let H be an invariant subgroup of a group G. Then if
(G, T: G) is a topological group, (H, T: H) is an invariant topological sub-
group, where T': H is subset topology. We have defined the factor group G/H
and the topology T': G/H induced by T': G onto the space G/H of equivalence
classes of G. If H is open in T': G show that T': G/H is the discrete topology.
(Hint: use Example T.) It follows that (G/H, T: G/H) is a topological group.
The natural mapping f of G onto G/H defined by f: g —> gH is, of course,
a continuous homomorphism.

Now consider the case when H is an invariant subgroup but not necessarily
open in T: G. (It is, in fact, still the case that (G/H, T: G/H) is a topological
group, but the proof is somewhat more complicated.)

Just to emphasize our remarks on page 245 that we are never
more than just beginning, we suggest the following final example.

Example Y. Define a topological field and give an example of such a struc-
ture. What results can you deduce from your definition?

We would also like to suggest that it might be a good idea for
the reader to go back now and see what he can make of the remarks
about ‘structure’ in Chapter 1.
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