Little Mathematics Library

R 57

GODEL’S
INCOMPLETENESS
THEOREM

HONYJNAPHBLIE JEKUMN 10 MATEMATHKE

B. A. Ycnenckuit

TEOPEMA TEIEJIfI O HEIIOJIHOTE

NapareanctBo «Hayka» Mocksa

LITTLE MATHEMATICS LIBRARY

V. A.Uspensky

GODEL'S
INCOMPLETENESS
THEOREM

HAL
MIR PUBLISHERS
MOSCOW

Translated from the Russian
by Neal Koblitz

First published 1987
Revised from the 1982 Russian edition

Ha arneaulickom ssbike

Printed in the Union of Soviet Socialist Republics

© MHsnatensctBo «Hayka». T'naBHas pepaknus
(pu3HKO-MaTeMaTAYeCKOR JAMTEPaTyphH, 1982

© English translation, Mir Publishers, 1987

Contents

Preface 6
{1, Statement of the Problem . 9
2. Basw Concepts from the Theory of Algonthms and Their
Application . 13
3. The Simplest Incompleteness ‘Criteria 22
4. The Language of Arithmetic . 25
5. Three Axioms for the Theory of Algorlthms 32
Appendixes
A. The Syntactic and Scmantic Formulations of the Incom-
pleteness Theorem 42

B. Arithmetic Sets and Tarski's Theorem on the Nonarith-
meticity of the Set of True Formulas of the Language of

Arithmetic e e e 46
C. The Language of Address Programs the Extended Lan-
guage of Arithmetic, and the Arithmeticity Axiom 53
D. Languages Connected with Associative Calculi 78
E. Historical Remarks 83
F. Exercises . . 87
Exercises for Sec. 2 87
Exercises for Sec. 3 89
Exercises for Sec. 4 90
Exercises for Sec. 5§ . 91
Exercises for Appendix A 92
Exercises for Appendix B 93
Exercises for Appendix C 93
Exercises for Appendix D . 94
G. Answers and Hints for the Exercises 96

Bibliography 104

Preface

There are some topics in mathematics which, though en-
joying a certain fame, have traditionally been considered
either too complicated or of insufficient importance to be
included in the core mathematical curriculum. Customarily,
such subjects are relegated to optional units of the syllabus,
independent study projects, seminar papers, and math club
talks. Among such topics are several which remain in this
nebulous status only because of inertia. An example is G6-
del’s incompleteness theorem.

Although very many mathematicians (and nonmathemati-
cians) have heard of Gédel’s theorem, very few could explain
exactly what the theorem says, let alone how it is proved.
Yet the result is so important, and the reasons for the funda-
mental incompleteness (i.e., the impossibility of ever attain-
ing a situation in which every true statement can be proved)
are so simple, that Godel's theorem can be taught to
first-year college students. Moreover, the only prerequisites
for understanding the proof are familiarity with the termi-
nology of set theory (the words “set,” “function,” “domain of
definition” and the like) and a certain facility at understand-
ing mathematical arguments. Thus, the proof is even ac-
cessible to an ambitious high school student.

The method of proving Godel’s theorem in this book is
different from Godel’s own method. Our method relies upon
elementary concepts from the theory of algorithms. All of

6

the necessary background information from this theory will
be explained as needed, so that as a by-product of the proof
the reader will become familiar with the basic facts of the
theory of algorithms.

This book is based on an article I wrote in the Uspekhi
M atematicheskikh Nauk journal, vol. 29, no. 1 (1974). Of
course, the intended readership is quite different, so the es-
say had to be rewritten. In particular, I have omitted discus-
sions of more specialized questions, and also all references
to the original publications; the curious reader can find these
in the article mentioned above. At the same time, I have
expanded the section on the connection between the seman-
tic and syntactic formulations of the incompleteness theorem,
and have added appendixes on Tarski’'s theorem on the
inexpressibility of truth and on the justification of the arith-
meticity axiom.

The plan of the book is as follows. In Sec. 1 we state the
incompleteness theorem and explain the precise meaning of
each element in the statement of the theorem. In particular,
the notion of a deductive system, which is central to the book,
is introduced; Sec. 2 contains an informal exposition of some
initial concepts from the theory of algorithms, which are
then used to give our first criteria for completeness and incom-
pleteness. In Sec. 3 we continue our study of the incomplete-
ness criteria; and in Sec. 4 we cover the language of formal
arithmetic, define exactly what it means for a statement in
that language to be true, and give a precise statement of
Godel’s incompleteness theorem for formal arithmetic. Sec-
tion 5 contains a development of the ideas concerning algo-
rithms which were briefly described in Sec. 2, culminating
in three axioms for the theory of algorithms. In Sec. 5 we
complete the proof of the incompleteness theorem for formal
arithmetic.

The book concludes with seven appendixes, which are writ-
ten in a somewhat more condensed style, but still without
assuming any special knowledge. In the first appendix we
examine the connection between the existence of true state-
ments which cannot be proved and the existence of statements
which cannot be either proved or disproved. In the second
appendix we prove ’I;arski's theorem on the inexpressibility
of truth, which is a strengthening of Gdédel's theorem. The
third appendix is concerned with justifying one of the axi-
oms of the theory of algorithms in Sec. 5, namely, the arith-
meticity axiom. For this purpose we introduce a particular

7

class of algorithms, the “address programs,” and we verify
the arithmeticity of functions which are computable by this
class of algorithms. In the fourth appendix the completeness
and incompleteness criteria in Sec. 2 are applied to languages
connected with what are called “associative calculi.” The
fifth appendix describes the original formulation of the in-
completeness theorem which Godel himself gave. The sixth
appendix contains exercises for the preceding sections. Fi-
nally, the last appendix gives answers and hints for these
exercises. The appendixes are mutually independent, and so
can be read in any order, except that Appendix C in certain
places assumes a familiarity with some concepts from Appen-
dix B.

If after reading this book the reader would like to know
more about mathematical logic and the theory of algorithms,
he or she can turn to the books listed at the end of the book.

Vliadimir Uspensky

1. Statement of the Problem

The incompleteness theorem, for which we will give a
precise statement in this section and later a proof, says
roughly the following: under certain conditions in any lan-
guage there exist true but unprovable statements.

When we state the theorem this way, almost every word
needs some explanation. Thus, we must start by explaining
the meaning of these words.

1.1. Language. We shall not give the most general possi-
ble definition of a language, but rather shall limit ‘ourselves
to those language concepts which we shall later need. There
are two such concepts: the “alphabet of a language” and the
“set of true statements in a language.”

1.1.1. Alphabet. By an alphabet we mean a_ finite list
of elementary signs (i.e., things which cannot be split up
into smaller units). These signs are called the letters of our
alphabet. By a word in the alphabet we mean a finite se-
quence of letters. For example, the usual words in the English
language (including proper names) are words in a 54-letter
alphabet (26 small letters, 26 capital letters, the hyphen and
apostrophe). As another example the natural numbers writ-
ten in decimal form are words in a ten-letter alphabet whose
letters are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. We shall use ordinary
capital letters to denote alphabets. If L is an alphabet, then
L™ denotes the set of all words in the alphabet L. We shall
assume that any language has an alphabet such that all the
expressions in the language (i.e., the names of varionsobjects,
statements concerning these objects, etc.) are words in
this alphabet. For example, any sentence in English, or in
fact any English language text, may be regarded as a word in
the alphabet which is obtained by expanding the 54-letter
alphabet to include punctuation marks, a space for use be-
tween words, a sign for paragraph indentation, and perhaps

9

a few other useful signs. When we assume that the expres-
sions in a language are words in some alphabet, we thereby
0

rule out “multilayered” expressions, such as g f(z)dz. But

a
this restriction is not very serious, because any such expres-
sion can be “stretched out” into a linear form using suitable
notational conventions.

Any set M which is contained in L™ is called a word set
in the alphabet L. 1f we say simply that M is a word set,
we mean that it is a word set in some alphabet. Now the
above assumption about a language can be rephrased as fol-
lows: in any language the set of expressions is a word set.

1.1.2. The Set of True Statements. We assume that we are

given a subset 7 of the set L™ (where L is the alphabet of
the language under consideration) which is called the set
of “true statements” (or simply “truths”). In going right to
the subset T we are omitting such intermediate steps as:
firstly, specifying which words of all the possible ones in the
alphabet L are correctly formed expressions in the language,
i.e., have a definite meaning in our interpretation of the
language (for example, 2 + 3, z +3, 2=y, 2= 3, 2 =
3, 2 = 2 are correctly formed expressions, while + =
z is not); secondly, which of all the expressions are formu-
las, i.e., in our interpretation make statements which may de-
pend on a parameter (for example, z = 3, z =y, 2 = 3,
2 = 2); thirdly, specifying which of all the possible formu-
las are closed formulas, i.e., statements which do not depend
on parameters (for example, 2 = 3, 2 = 2); and finally,
which of all the possible closed formulas are true statements
(for example, 2 = 2).

1.1.3. For our purposes it will be enough to consider that
a language is completely defined as soon as we are told its

alphabet L and the subset T of L™ Wae shall call any such
{L, T) a fundamental pair.

1.2. Unprovable. “Unprovable” means not provable, and
“provable” means having a proof.

1.3. Proof. Although the term “proof” is perhaps the most
important in mathematics*, it does not have an exact defi-
nition. The full notion of a proof, with all its ramifications,

* Bourbaki begins his Foundations of Mathematics with the words,
“From the time of the Greeks, to say ‘mathematics’ has meant the
same as to say ‘proof.’”)

10

belongs as much to the realm of psychology as to mathemat-
ics. After all, a proof is simply an argument which we find
so convincing that we are ready to use it to convince others.

1.3.1. When written down, a proof becomes a word in
some alphabet P, just as English language texts are words in
an alphabet L, as mentioned above. All proofs comprise a
subset (a rather wide-ranging subset, to be sure) of P*.
We shall not attempt to give a precise definition for this
“naive” and “absolute” concept of proof, or, equivalently,
for the corresponding subset of P™. Instead, we shall study
a formal analog of this notion of proof, for which we shall
still use the term “proof.” This analog has two essential fea-
tures which are different from the intuitive notion (though
the intuitive idea of a proof reflects these features to some
degree). In the first place, we shall allow different concepts
of proof, i.e., different proof-subsets of P%, and, in fact,
we shall also allow the alphabet P to vary. In the second
place, for each such concept of proof we shall require that
there be an effective method, or algorithm (a precise defini-
tion of this term will be given in Sec. 2), which verifies
whether or not a given word in the alphabet P is a proof. We
shall also assume that there is an algorithm which, given a
proof, determines what statement it proves. (In many situa-
tions, the statement being proved is simply the last state-
ment in the sequence of steps which make up the proof.)

1.3.2. Thus, our final definition is as follows:

1°. We have an alphabet L (the language alphabet) and
an alphabet P (the proof alphabet).

2°, In the set P* we are given a subset P, whose elements
are called proofs. We further assume that we have an algo-
rithm which, given an arbitrary word in the alphabet P,
enables us to determine whether or not it belongs to P.

3°. Wehave a functiond (to determine what is being proved)

whose domain of definition A satisfies P = A = P® and

whose range of values is in L We assume that we have an
algorithm which computes this function (the precise meaning
of the words “an algorithm computes a function” will be ex-
plained in Sec. 2). We shall say that an element p of P is a
proof of the word &8 (p) in the language alphabet L.

1.3.3. A triple (P, P, 6) which satisfies conditions 1°-
3 is called a deductive system over the alphabet L.

1.3.4. For the benefit of the reader who is familiar with the
usual way of characterizing a “proof” in terms of “axioms”

11

and “rules of deduction,” we now explain how this method
can be regarded as a special case of the definition in Subsec.
1.3.2. That is, a proof is usually defined to be a sequence of
expressions in a language such that each term either is an
axiom or else is obtained from the earlier terms using one
of the rules of deduction. If we add a new letter * to our lan-
guage alphabet, we can write out such a proof as a word in
the resulting alphabet: a sequence of expressions (C;, C,, . .
..., Cp) becomes the word C;#C,x . . *C,. The function
which determines what is being proved simply takes from
such a word the part that follows the last #. The algorithms
required by the definition in Subsec. 1.3.2 can easily be con-
structed once we specify any of the customary meanings of
“axiom” and “rules of deduction.”

1.4. Attempts at a Precise Formulation of the Incom-
pleteness Theorem.

1.4.1. First Attempt. “Under certain conditions, given a
fundamental pair (L, T) and a deductive system (P, P, §)
over L, there always exists a word in T which does not have
a proof.” This statement is still too vague. In particular, we
could obviously think up many deductive systems having
very few provable words. For example, there are no provable
words at all in the empty deductive system (where P = J).

1.4.2. Second Attempt. There is another more natural ap-
proach. Suppose we are given a language, in the precise mean-
ing that we are given a fundamental pair (L, 7). We now
look for a deductive system over L (intuitively, we look for
techniques of proof) in which we can prove as many words in
T as possible, ideally, all words in 7. Godel’s theorem de-
scribes a situation in which such a deductive system (in which
every word of 7 has a proof) does not exist. Thus, we would
like to make the following statement: “Under certain
conditions concerning the fundamental pair (L, T) there
does not exist a deductive system over L. in which every
word in T has a proof.” However, this statement is clearly
false, since one need only take the deductive system with
P=1L, P =P and § (p) = p for all p in P™; then every
word in L is trivially provable. Thus, we need a restric-
tion on the deductive systems that we are allowed to use.

1.5. Consistency. It is natural to require that only “true
statements,” i.e., words in T, can be proved. We say that a
deductive system (P, P, 8) is consistent relative to (or for)
the fundamental pair (L, T) if we have § (P) = T. In what

12

follows, we shall only be interested in consistent deductive
systems. If we have a language, it is very tempting to try
to find a consistent deductive system in which every true
statement is provable. The version of Gddel’s theorem which
we shall study states precisely that, under certain conditions
concerning the fundamental pair, it is impossible to find
such a deductive system.

1.6. Completeness. We say thatadeductive system (P, P,)
is complete relative to (or for) the fundamental pair (L, 7')
if we have 6 (£) = T. Our statement of the incompleteness
theorem now takes the following form:

under certain conditions concerning the fundamental pair
(L, T), there does not ezist any deductive system over L which
is both complete and consistent relative to (L, T).

For now we shall be satisfied with this formulation. In
later sections we shall specify the conditions which the fun-
damental pair must satisfy.

2. Basic Concepts from the Theory
of Algorithms and Their Application

Conditions for the nonexistence of a complete and consis-
tent deductive system can easily be given in terms of the
theory of algorithms.

For now, we shall only need the most general intuitive
idea of what an algorithm is: a set of instructions which,
given an input (also called the initial data or the argument)
from some set of possible inputs (for the given algorithm),
enables us to obtain an output if such an output exists or else
obtain nothing at all if there is no output for our particular
input. Notice that the set of possible inputs consists of all
inputs to which the algorithm can be applied, not only those
for which the algorithm gives an output. If there is an output
for a particular input, then we say that the algorithm can be
applied to this input and processes it to give the corresponding
output.

For our purposes, in order to avoid unnecessary digres-
sions, we shall suppose that the inputs and outputs of an
algorithm are words. More precisely: every algorithm has an
input alphabet, so that all possible inputs are words in this
alphabet, and an output alphabet, so that all outputs are
words in this output alphabet. This means, for example,

13

that in order to work with algorithms which process pairs
or sequences of words, we must first write such pairs or se-
quences as single words in a new alphabet. To be definite,
whenever we have an alphabet L we shall agree to let a star
stand for a new letter not in our alphabet L (thus, the star
denotes different letters in different situations). We shall
let L, denote the alphabet obtained by adding the star sym-
bol to our original alphabet L. In Subsec. 1.3.4 we already
agreed to write a sequence of words (C,, . . ., C,) in the al-
phabet L as the single word C; # .. % C, in the alphabet
L,. For example, a pair (C;, C,) will be written as C;*%C,
in the alphabet L.

Furthermore, suppose that for fixed n we have a set of n
alphabets L,, L,, ., L,. We then let x denote a letter that
is not in any of the alphabets L;, and we write a sequence
(Cy, . .., Cp)in which each C; is a word in the corresponding
alphabet L;, as the single word C;* *C, in the alpha-

bet (Ly ULy U... ULy),. We shall let L X . X Ly
denote the set of all such sequences of n words in the respec-
tive alphabets, or equivalently, the set of corresponding
single words formed using the star symbol.

The set of all inputs that can be processed by a given al-
gorithm is called the domain of applicability of the algo-
rithm. Any algorithm defines a function, namely, the func-
tion which associates the corresponding output to every
element in the domain of applicability. Thus, the domain
of definition of this function is precisely the domain of applic-
ability of the algorithm. We say that the algorithm com-
putes the function that is defined in this way.

We shall let 4 (z) denote the output obtained by applying
the algorithm A4 to the input x, and for brevity we write
A ({zy, zy, .., x,))simply as 4 (z;, z,, , 2,,). Then the
definition of the term “computes” can be rephrased as fol-
lows: the algorithm A computes the function f if we have
A (z) ~ f (z) for all 2. Here ~ is the “conditional equality”
sign, which is defined as follows: A ~ B either if A and B
are both undefined, or if 4 and B are both defined and are
the same.

A function which can be computed by some algorithm is
called a computable function. Thus, in part 3° of the defini-
tion of a proof (see Subsec. 1.3.2) we are saying that the
function which yields the statement being proved must be a
computable function.

Because of our assumptions about the meaning of an algo-

14

rithm, for every computable function we must havé two al-
phabets such that all possible arguments of the function are
words in the first alphabet and all possible values of the
function are words in the second alphabet.

We are especially interested in functions whose arguments
and values are natural numbers (we shall always include
zero in the natural numbers). Such functions are called
numerical functions. In order to be able to speak of computa-
ble numerical functions, we must introduce algorithms which
deal with numbers, and to do this we must first of all repre-
sent the natural numbers as words in some alphabet, called
a digital alphabet. There are various ways of doing this, for
example: (1) the binary system, in which numbers are writ-
ten in the alphabet {0, 1}; (2) the decimal system, which
uses the alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; (3) the system
using a one-letter alphabet { | } with the number n written
as the word || | (repeated n times); (4) the system in
which n is written as the word (||. .|) (where | is repeat-
ed n times) in the three-letter alphabet { |, (,)}; and so
on. We simply choose the most convenient system for our
particular purposes. Each symbol for a number (in some fixed
system) is called a digit. When we speak of algorithms and
computable functions which process numbers, strictly speak-
ing we shall mean algorithms and computable functions
which process the digits used to write these numbers (in
some chosen notational system).

Thus, the notion of a computable numerical function seems
to depend upon our choice of notational system for writ-
ing numbers. However, it is easy to show that a numerical
function which is computable in one notational system will
be computable in any other, at least for a large class of
notational systems. We shall say that two notational sys-
tems are equivalent if there exist an algorithm which pro-
cesses an arbitrary number written in the first system and gives
as output the same number written in the second system,
and also an algorithm which processes a number written in
the second system and gives as output the same number writ-
ten in the first system. The examples of notational systems
given above are obviously mutually equivalent.

We now show that a numerical function f which is compu-
table in one notational system will also be computable in any
equivalent notational system. Let C and D be algorithms
which translate from the first notational system to the
second and conversely, and let 4 be an algorithm which com-

15

etiumerable but nondecidable subset of the set of natural
numbers. The next lemma gives a condition for an enumera-
ble set to be decidable.

Lemma 3. 4 subset S of an enumerable set X is decidable

relative to X if and only if both S and its complement X \ S
are enumerable.
» If S is decidable, then so is X \{ S, and so both S and
X \\ S are enumerable, by Lemma 2. Conversely, suppose
that both S and X \ § are enumerable. If either one is emp-
ty, then S is decidable, by Lemma 1. Suppose that both S
and X \\ S are nonempty, in which case they are enumerat-
ed by some computable functions f and g, respectively.
Then, if we want to answer the question “Does = belong to
S?” for an arbitrary = in X, we need only compute succes-
sively

10), g@©), f(1), g), 2 g@)

until we encounter z. Note that x must eventually occur,
since the above sequence exhausts all of X. If z occurs
among the values of f, then x belongs to S; if z occurs among
the values of g, then 2 does not belong to S. W

Theorem 2. The set of all proofs (for a given deductive system)
is enumerable.
» The set of all words in the proof alphabet is enumerable
(see Example 2 above). Hence the theorem follows from Lem-
ma 2. W

Lemma 4 (the image of an enumerable set). Suppose that
R is an enumerable set and f is a computable function which
is defined on all elements of R. Then f (R) is an enumerable
set.
p If R is empty, then so is f (R). If R is enumerated by
the computable function p, then f (R) is enumerated by the
computable function y = f (p (z)). W

Example 5. Let | be a symbol in some alphabet L, and
let A = L. We let "|A4 denote the set of all words of the
form "|a, where a € A. If we set R = 4 and f (@) = T]a
in Lemma 4, we see that enumerability of 4 implies enu-
merability of 7] 4; and if weset R = 7|4 and f ("]a) = a,
we see that, conversely, enumerability of |4 implies enu-
merability of 4.

Example 6. We claim that L* X L™ is enumerable for

any alphabet L. In fact, the sets N? and L™ are both enu-
20

merable (see Examples 1 and 2 above). Let L™ be enumera-
ted by the computable sequence g. We define a computable
function f on the set N? by setting f (a, b) = (g (a), g (b)).
Obviously, f(N?) = L* X L* and then our claim fol-
lows from Lemma 4.

As usual, we let K; X K, X X K, denote the direct
product of the sets K,, K,, . ., K,, i.e., the set of all
n-tuples (k,, k,, k,) such that &, € K, k, € K,, .

.k, € K,. In view of our notational convention at the
beginning of the section, if L;, L, are alphabets and
K, = L7, ., K, = L7, then the product K, X X

n?
K, is a set of words in L)° X . X Ly,
Corollary 1 of Lemma 4. If K|, ., K, are enumerable
sets, then so is the product K, X . X K,.
» When n = 2, the proof follows the argument in Example
6 above. Then we proceed by induction, and apply Lemma

4 to the “obvious” computable function from (K; X

X Kn) X Kn'l'l to Kl X . X Kn X Kn+1. |

The r-tuple (C;,, .y Ci,;), where i; < n, o < n,
is called the projection of the n-tuple (C;, .., C,) onto the
i, ., i, axes, and isdenoted pr;,, .,; (C;, ., Cp). In
particular, we have pr, (C,, ..., C,) = Cy, pry, (C;, .

C,)=2C,, etc. If M = K, X X K., then we let

Pry,, ...,;, M denote the set of all possible projections
pri, ,m, where m € M.

Corollary 2 of Lemma 4. If L,, .., L, are alphabets, i,,
i, are positive integers not exceeding n, and M is an enu-

merable subset of L X X Ly, then pr;, M is
enumerable.
» It suffices to use the computable function z — pr; . i, |

Theorem 3. The set of all provable words (for a given deduc-
tive system) is enumerable.
» Let Q be the set of all provable words for the deductive
system (P, P, §). Obviously Q = 8 (P). But P is an enumer-
able set by Theorem 2. Hence Q is also enumerable, by
Lemma 4. B

It follows that if T is not an enumerable set, then it is
impossible to find a complete and consistent deductive sys-
tem for the pair (L, T), since the set Q of provable words for
any consistent deductive system is a proper subset of T,
and there will have to be an element in the complement
T\ Q. Such an element is a true but unprovable statement!

2

Theorems 1 and 3 together give a condition on a fundamen-
tal pair which is necessary and sufficient for the existence
of a complete and consistent deductive system for the pair.
This condition is enumerability of the set of all truths. One
would expect (and this is what turns out to be the case) that
in a “rich” or “expressive” language the set of all truths is
too complicated to be enumerable, and hence there are no
complete and consistent deductive systems for such a lan-
guage. However, the criterion in Theorems 1 and 3 is not very
convenient to use, since it is often difficult to study the en-
tire set T. In the next section we shall reformulate our crite-
rion so as to make it more “applicable.”

3. The Simplest Incompleteness Criteria

We now know that enumerability of the set T is equiva-
lent to the existence of a complete and consistent deductive
system for (L, T).

However, we might be interested not in all truths in the
language, but only in truths of a certain type or a certain
class, much as a student studying for a math exam is not
concerned with the truth of all mathematical statements,
but only those which are likely to be encountered on the
exam. For example, we might want to construct a deductive
system in which one can derive all true statements of length
at most 1000 and cannot derive any false statement of
length at most 1000. In this case, for a statement of length
greater than 1000 the question of whether or not it can be de-
rived in the deductive system may have nothing to do with
whether or not it is true. Moreover, in certain situations
(such as the language of set theory), one cannot even define
the set of all truths in their totality. This is why we restrict
ourselves to considering consistency and completeness for
subsets of the word set L We now proceed to the formal defi-
nitions.

Let (L, T) be a fundamental pair, let (P, P, §) be a deduc-
tive system over L, and let Q be the set of all provable
words. Suppose that V = L”, We say that the deductive
system (P, P, §)

(a) is consistent relative to V, if V.NQ <=V NT;

(b) is complete relative to V, if VNT <= V NQ.

Theorem 4. Suppose that V is an enumerable subset of L*,
and the set of true stqtements in V is not enymergble, Then therg

22

is no deductive system which is both consistent and complete
relative to V.
» By assumption, V N T is not enumerable. In order for a
deductive system to be complete and consistent relative
toV,wemust have VN 7T = V N 0. But V N Q must be enu-
merable, because of Theorem 3 and the following lemma. B
Lemma 5. The set-theoretic union or intersection of two enu-
merable sets is enumerable.
» Suppose that R and S are enumerable sets. We first
prove that R |JS is enumerable. This is trivial if one of the
two sets is empty. If both sets are nonempty, then we have
R = {p (0), p (1), .}Yand S = {0 (0), o (1), .}, where
p and o are computable sequences. Then we can enumerate
R | S by means of the computable sequence f defined as
follows: f (2n) = p (n), f (2n + 1) = o (n). We now prove
that R N S is enumerable. If R NS is empty, then it is
enumerable, by definition. Otherwise there exists an a such
that ¢ € R 1 S. Again suppose that R and S are enumera-
ted by the computable functions p and o. Since the set N2
is enumerable (see Example 1 in Sec. 2), it is enumerated by
some computable function g. Each value of g (n) is a pair
of natural numbers: let us denote the two numbers in this
pair by E (n) and v (n). The functions & and n are obviously
computable. We introduce a function %2 by setting

p (& (n)), if p (E(n)) =0 (n (n)),

a, otherwice.

h(n):{

The function h is computable, and it enumerates the set
RNS. wm

Remark 7. The condition in Theorem 4 is actually neces-
sary as well as sufficient for there not to exist a deductive
system, which is complete and consistent relative to V
(The necessity of this condition is even true without assum-
ing that V is enumerable.) Namely, if V N T is enumera-
ble, then the complete and consistent deductive system for
(I, V. N T) which exists by Theorem 1, will also be a com-
plete and consistent dednctive system for (L, T) relative
to V.

Clearly, a deductive system is consistent (or complete)
for (L, T) if and only if it is consistent (respectively, com-

plete) relative to any subset of L™ Hence, if we have a
gonsistent deductive system for (L, T) and want to show

4

putes the function f in the first notational system. (More pre-
cisely, the algorithm 4 computes the function of digits in
the first notational system which corresponds to f, which is
a function of numbers.) Then the following algorithm B
will compute f in the second notational system (more pre-
cisely, B will compute the function of digits in the second
notational system which corresponds to f):

B (z) ~ CAD (z).

That is, the set of instructions for the algorithm B can be de-
scribed as follows: “Translate the input z (a number written
in the second notational system) into the first notational sys-
tem, they apply the algorithm A4, and then translate the
output (if A gives an output)into the second notational sys-
tem.” In a similar way, the notion of an enumerable set of
numbers, which will be defined below, can be shown to be
independent of our choice of notational system for writing
numbers.

Because of this, once we have a digital system, we shall
not be pedantic about distinguishing between numbers and
the digits which represent them. For example, we shall use
the letter N to denote both the set of natural numbers and
the set of digital representations of natural numbers.

A set is said to be enumerable if either it is the empty set,
or it is the set of elements in some computable sequence (i.e.,
the set of values of some computable function which is de-
fined on the natural numbers). We say that the function (or
sequence) enumerates our set. Obviously, every enumerable
set is a word set.

Example 1. The set N? consisting of all pairs of natural
numbers is enumerable. One possible choice of enumerating
function is the function

¢ (n) = (a, b), where n = 2% (2b +1)—1.

Example 2. For any alphabet L, the set L™ of all words
in the alphabet is enumerable. One possible way to construct
an enumerating sequence is as follows. First order the ele-
ments of L in an arbitrary way. Then list the words in L
in the following order: with words of different lengths, the
shorter one comes first, and with words of the same length
we use alphabetical (also called lexicographical) order (i.e.,
when comparing two words, we find the first place, moving
from left to right, where the letters are different, and then
take the two words in the order in which those two different

16

letters occur in our ordering of the alphabet L). By listing
the words in this order, we obtain the required enumerating
sequence.

In this second example, one might ask how we know that
the sequence of words is enumerable, i.e., how can we ob-
tain an algorithm which, given %, produces the kth term
a, of the sequence? Here is one possible algorithm: write
out the first £ -1 elements of the sequence (i.e., a,,
a,, .., ap), and then take the last word that was
listed.

Example 3. The computable function f which enumerates

L and which was constructed in Example 2 gives us a one-

to-one correspondence from N to L™. Hence, we have a
well-defined inverse function f~!, which gives a one-to-one
correspondence from L% to N. This f-! is also computable,
for example, by the following algorithm: to compute ! (a),
successively write out f (0), f (1), f(2), until you
reach an n for which f (n) = a; this n is then 1 (a).

Example 4. If we have any two alphabets L, and L,, the
composition of the computable function mapping N onto
Ly in Example 2 with the computable function mapping LT
onto N in Example 3 gives us a computable function which
is a one-to-one correspondence between L;° and L;.

A subset S of a set A is said to be decidable relative to 4
if there exists an algorithm which determines whether or not
an element of 4 belongs to S. That is, the algorithm proces-
ses all the elements of S to a single output x (for example, xis
the word “yes”) and processes all the elements of the comple-
ment 4 \\ S to a second output word y (for example, “no”;
of course, it makes no difference which words z and y we
choose). Obviously, a subset S is decidable relative to 4
if and only if the set 4 \(§ is decidable relative to 4. In
part 2° of the definition of a proof (see Subsec. 1.3.2) we re-
quired that the set of all proofs be a decidable subset of the set
of all words in the proof alphabet.

From the definition of decidability it follows that the do-
main of applicability of the algorithm in the definition
must include all of 4. It makes no difference whatsoever
what happens if the algorithm is applied to words not in A.
For example, if we want to construct an algorithm which
distinguishes between the poetry of Pushkin and the poetry
of Lermontov (two famous Russian poets), in other words,
if we want to prove that the set of poems of Pushkin is de-

2-0974 17

cidable relative to the set consisting of all the poems of Push-
kin and Lermontov, then we do not at all care what output
is obtained (or if nothing is obtained) when we apply our al-
gorithm to the poetry of the Soviet poet Mayakovsky or to
the Instructions for installing a washing machine.

One might ask the natural question: what happens if we
use a more restrictive definition of decidability, and require
that the algorithm in the definition be applicable only
to elements of the set A? With this narrower definition, a
subset S is decidable relative to 4 if and only if the charac-
teristic function of S relative to A (i.e., the function defined
on A which takes the value 1 on § and O on 4 \ §) is com-
putable. As we shall see in Sec. 5 (Corollary 1 of the protocol
axiom), the domain of applicability of an algorithm is al-
ways an enumerable set. Hence, only enumerable sets could
have decidable subsets in the sense of this new, narrower
definition of decidability. But if our set A is enumerable, then
both definitions of decidable subsets are equivalent. Sup-
pose, for example, that f is a computable function which
enumerates 4, and B is an algorithm which decides the sub-
soet S relative to 4 in the sense of our first definition. Then
the following algorithm will also decide S relative to A
while at the same time having 4 as its domain of applica-
bility: take an arbitrary a, successively write out f (0), f (1),
f), , and, as soon as you obtain f (r) = a apply the
algorithm B to a.

Remark 1. Since any computable function, enumerable
set, or decidable subset is given by some algorithm, we can
use purely quantitative considerations to see that there must
exist functions which are not computable, sets which are
not enumerable, and subsets which are not decidable. (Here
we always mean word sets, functions having word sets as their
domain of definition, and so on.) Namely, any algorithm can,
if we want, ultimately be written in the English language
(perhaps with some mathematical symbols added), i.e., ac-
cording to Subsec. 1.1.1, it can be written as a word in some
rather large alphabet, and in any alphabet the set of all
words is a countable set. Of course, while this argument
proves the existence of nonalgorithmic objects, it is of no
use in constructing individual examples of such sets and
functions.

We are now ready to use these concepts from the theory of
algorithms to study the question of whether a complete and
consistent deductive system can exist.

18

Lemma 1. For any word set X, the sets & and X are de-
cidable relative to X.
»* Let X be a word set in the alphabet L. It is enough to
take the algorithm which gives the same output « for any in-
put word in L® This algorithm decides the set & and
also the set X relative to X. H**

Theorem 1. If T is an enumerable set, then one can find a
complete and consistent deductive system for the fundamental
pair {L, T).

p We have to give the triple (P, P, §). Recall that &
and P” are decidable relative to P*, by Lemma 1. If T =
&, then we take the triple (P, &, 8), where P and §
are arbltrary T+ @, thenT = {v(0),v(1),T(2), .}
where T is a computable function; we then identify n with
the word || | of length n and set P = {| }, P = P%,
=118

Remark 2. This proof is not really as artificial as it might
appear at first glance. In fact, if the set of truths in some
language is enumerable, i.e. forms an enumerable sequence,
then, in order to see that an expression belongs to this set
(i.e., in order to prove that the expression is true) it suffices
to give the number of the expression in the sequence (this
number can thus be considered to constitute the proof).

The converse of Theorem 1 will be proved later (Theorem
3). First we shall need to prove some auxiliary. lemmas.

Lemma 2 (enumerability of a decidable subset). 4 decid-
able subset of an enumerable set is enumerable.
» Suppose that S = A, and 4 is enumerated by the com-
putable function f. If § is the empty set, then S is enumer-
able, by definition. If S is nonempty, then there exists
an s such that s € S. We set

f(n), it f(n)€S,
g(n)= .
s, if f(n)ed~\S.
Clearly, g is a computable function which enumerates the
set S. H
From Lemma 2 it follows that any decidable subset of

the set of natural numbers is enumerable. However, the con-
verse is false: in Sec. 5 we shall construct an example of an

* The symbol ® marks the beginning of a proof.
** The symbol M marks the end of a proof.

2¢ 19

that this deductive system is incomplete for (L, T), then
we need only find a subset V of L relative to which our de-
ductive system is incomplete. We now give a construction
which enables us to find such a subset V in many important
cases.

We shall say that membership in a set of natural numbers
S is expressible by means of the fundamental pair (L, T')
if there exists a computable function f (expressing member-
ship in S) which is defined on the natural numbers, takes

values in L™, and has the properties:

(1) if n € S, then f (n) € T,

(2) if n €N X S. then f (n) € LN\ T.

The set V consisting of all values of such a function f is an
enumerable set. Hence (by Theorem 4), if we know that the
set V N T of true statements in V is not enumerable, we can
conclude that there does not exist a deductive system which
is complete and consistent relative to V And, as we shall
now see, V) T is a nonenumerable set if the set S is not
enumerable.

Lemma 6 (on the full preimage of an enumerable set).

Let f be a computable function whose domain of definition is an
enumerable set.* Let B be an arbitrary enumerable set. Then
the set f~1 (B) is enumerable.
p If f-1 (B) is empty, then it is enumerable, by definition.
Now suppose that ¢ € f~1 (B), and the set B is enumerated
by the computable function 4. Suppose that the domain of
definition of f is enumerated by the computable function
it,r. In order' to"enumerate the set /- (B) we proceed as fol-
ows.

We run through the set N X N and for each pair (m,
k) we check whether or not f takes g (m) (the “mth element
listed in the domain of definition of) to h (k) (the “kth
element listed in the set B”). If it does, then we include
g (m) in our list of the elements of f~! (B), and if it doesn’t,
then we simply list the element c.

More precisely, let &€ and n be defined as in the proof of
Lemma 5. We set

(p(n):{ gEm), if f(2E ()= (n(n),

e, otherwise,

* Actually, the domain of definition of any computable function
is enumerable; however, the proof of this fact requires some further
study of algorithms, which we shall postpone until Sec. 5,

24

It is easy to see that ¢ is a computable function which enu-
merates the set f~1 (B). W

We now return to the line of thought we left to prove Lem-
ma 6. Note that § = f~1 (V N T). Thus, if S is not enumer-
able, then neither is V N T (since, by Lemma 6, if V. N T
were enumerable, then its full inverse image S would also
be enumerable). In view of Theorem 4, we have thereby
proved:

Theorem 5. If there is a single nonenumerable set of natural
numbers in which membership is expressible by means of the
fundamental pair (L, T), then there cannot exist a complete
and consistent deductive system for (L, T). Moreover, there
cannot exist a deductive system which is both consistent and
complete relative to the set of values of the function which ex-
presses membership in our nonenumerable set.

Remark 2. The sufficient condition in Theorem 5 is also
a necessary condition for there not to exist a deductive
system with the indicated properties. In fact, if there is no
complete and consistent deductive system for (L, T), then
T is nonenumerable (by Theorem 1). Meanwhile, L* is
enumerable (see Example 2 in Sec. 2) and so is enumerated
by some computable function f. Since T = f (f~1 (7)), it
follows that the set f~! (T) is not enumerable (by Theorem
3). But the function f expresses membership in /! (T) by
means of the pair (L, T).

4. The Language of Arithmetic

In this section we apply the constructions of the earlier
sectiong to the language of arithmetic. Intuitively speaking,
the language of arithmetic is the language whose statements
are given in terms of natural numbers and the addition and
multiplication operations (using logical operations and the
equals sign). In order to give a formal definition, we must
construct a suitable fundamental pair. Of course, there are
many possible ways to construct such a pair. For example,
various different alphabets can be used. We shall choose a
14-letter alphabet A (our “arithmetic alphabet”) consisting
of the following symbols:

1°-2° the parentheses (and);

3° the symbol | for forming numbers;

4° the symbol z for forming variables;

9°-6° the addition sign + and multiplication sign

20

7° the equals sign = ;

8°-14° the logical symbols 7], A, V., —, <, 3, V (the
intuitive meanings of these symbols are as follows: “it is
false that,” “and,” “or,” “if ..., then,” “if and only if,”
“there exists such that,” “for all”).

In order to specify a suitable set of true statements, we
must look at some questions involving syntax. That is, we
must identify certain classes of words in A™ and study their
structure.

We shall let ™ denote the word «...o (repeated n times),
where a is a letter. If n = 0, then the word &" is empty (con-
tains no letters). By a number we mean a word of the form
(I™), where n >0, and by a variable we mean a word of the
form (z"), where n > 0. In our intuitive interpretation of
the language, the word (|®) is a way of writing the number
n, and the word (z") is one of an infinite sequence of varia-
bles (we might need an arbitrarily large number of these
variables to write a statement in arithmetic). We now give
the following inductive definition of a term:

1° all numbers and all variables are terms;'

2° if t and u are terms, then (¢ + u) and (¢-u) are terms.

Any variable which occurs in a term will be called a

parameter of the term. A term which has no parameters is
called a constant.

Example 1. The term ((] | 1) (|1)) is a constant. The
terms (()-(z)) and ((] | |) + (zx)) are not constants: (z) is
a parameter in the first of these terms and (zz) is a parameter
in the second.

JTo any constant term we can associate a number, called
its value, according to the following rules:

1° the value of (|™) is the number n.

2° the value of a constant term of the form (¢ + u) is
the sum of the values of the constant terms ¢t and u, and the

value of the constant term (£-u) is the product of the values
of the constant terms ¢ and u.

Example 2. The constant term ((| | 1) + ((|)-(] 1))) has
value 5.

A word of the form (¢ = u), where ¢ and u are terms, will
be called an elementary formula. We then give an inductive
definition of a formula, as follows:

1° any elementarv formula is a formula:

2° if & is a formula, then “]a is a formula:|

{3° if ¢ and B are formulas, then (@ A B), (« V B)y (@ >

26

— PB) and (¢ < P) are formulas;

4° if o is a formula and & is a variable, then 3fa and
VEa are formulas.

Example 3. The word

3 @)V (zz) 7] (@)= (zz)) +* V (22) ((z) = (22)))

is a formula.

For ease of reading, we shall abbreviate terms and formu-
las, writing » in place of (|*) and z, in place of (z"), and
omitting outer parentheses. For example, the formula in
Example 3 can be written in abbreviated form as follows:

Az, V 2, 7| (2, =2x,) < Vz, (2, =1,).

The true statements in our language will be defined as a
subset of the set of all formulas. But first we need to intro-
duce the notions of a formula’s parameters and the substi-
tution of numbers in place of variables.

To every formula we associate a certain finite set of vari-
ables; these variables will be called the parameters of the
formula. The set of parameters of a formula is defined in-
ductively according to the following rules:

1° the set of parameters of an elementary formula (t = u)
consists of all of the parameters of the term ¢ together with
all of the parameters of the term u;

2° the formula "o has the same parameters as the formu-
la a;

3° the set of parameters of the formula (@ A 8), (@ V B),
(¢ — B) or (@ < B) consists of all of the parameters of the
formula o together with all of the parameters of the formu-
la B;

4° the set of parameters of the formula 3t or VEa con-
sists of all of the parameters of the formula o except for &.

Example 4. The only parameter of the formula in Example
3 is z,. In fact, the formula (2, =x,) has parameters z,
and z,, as does the formula | (xr;=zx,), the formula
Vz, 7] (x; ==z,) has only one parameter z,, and the for-
mula 3z,Vz, 7] (r,=z,) has no parameters. Meanwhile,
the formula Vz, (z, = z,) has one parameter z,.

More intuitively, the parameters are simply the varia-
bles which occur freely in the formula, i.e., which are not in
the range of the quantifiers 3 and V.

Formulas having no parameters are called closed formulas.
The formula in Example 3 is not a closed formula. Closed

o7

formulas can be interpreted as statements about the set of
natural numbers. A closed formula is said to be “true” or
“false” in accordance with the rules described below (which
agree with the intuitive meaning of the symbols in the for-
mula). The closed formulas which are given the value “true”

will form our set of “true statements of the language of
arithmetic.”

Example 5. The sentence “for every natural number ex-
cept zero there exists a smaller natural number” can be
translated into the following closed formula of arithmetic:

Vz, (7] (2, = 0) — 3z,3z, (7](25
=0) A ((z + z3) =1,)))-

Note that, because our language does not have the symbol
<<, we had to write “z, is less than z,” in a roundabout way,
namely:

Azy (TN =0) A ((xy + z5) =2))).

Before describing how to determine the value of a closed
formula, we need to introduce one final technical definition.
We now define the result of substituting the number n in place
of the variable w in the formula c.. This result is a formula
which is denoted S¥o and is defined inductively according
to the following rules:

1° the result of substituting » in place of w in an elementa-
ry formula (t=u) is simply the result of replacing all oc-
currences of the variable w by the number n;

2° 87 Ta="187 o

3° if A is any of the symbols A, \/, -, or <>, then

Sw (arp)=(S7 arSy B);

4° if Q is one of the symbols V or 3 and if & is a variable,
then the result of substituting n in vlace of w in the formula
Qta is the formula Q&S¥a, provided that the variable w
is different from the variable &; otherwise (if w and E are
the same variable) the result of the substitution is simply
the original formula Qta.

Example 6. If o is the formula in Example 3, then
St is 3x,Vz, 7| (2, =2,) < Vz, (h=1x,), and S*a
is . Notice that if we replaced all oceurrences of z, in o by
5. then we would obtain the word 3I5Vz, 7| (S=u1,) -
Vz, (5=uz,), which is not a formula. Thus, an important
feature of our definition is that the occurrences of w which

P

fall in the range of 3w or Vw are left unchanged when a
number is substituted in place of w.

Lemma 7. The set of parameters of the formula SPa con-
sists of all the parameters of a which are different from w.
p This rather obvious fact can be proved by induction on
the number of steps in the construction of o (or by induc-
tion on the length of the word o). M

We are now ready to proceed to the determination of the
value of a closed formula. As mentioned above, there are
two possible values: “true” (7') and “false” (#). A closed for-
mula having the value 7' will be called a “true statement,”
and a closed formula having the value F# will be called a
“false statement.” We assign values to closed formulas
using induction on the number of steps in the construction
of the formula, as follows:

1° the closed formula (t=u) is true if the values of the
constant terms ¢ and u are equal; otherwise it is false;

2° the formula "o is true if o is a false statement; other-
wise it is false;

3° the formula (x/\P) is true if both o and P are true
statements, otherwise it is false;

4° the closed formula (o \/ B) is true if at least one of
a or P is true, otherwise (o \/ P) is false;

5° the formula (¢ —) is false if o is a true statement and
P is a false statement, otherwise (@ — f) is true;

6° the formula (o <> P) is true if @ and P are closed formu-
las with the same truth value, otherwise (o <>) is false;

7° the closed formula 3§x is true if there exists a number
n such that Six is a true statement; if no such number
exists, then Ifa is false;

8° the closed formula VE&a is true if Ssa is true for all
n; otherwise VEo is false.

In connection with 7° and 8° we note that S3x is a closed
formula, since the formula o has no parameters other than
£ (otherwise 3ta and VEx would not be closed formu-
las).

Example 7. The formula in Example 5 is true. The for-
mula in Example 3 is neither true nor false, since it is not
a closed formula. However, the result of substitution of any
number in place of z; in the formula in Example 3 is a true
statement.

Thus, it is the true closed formulas which we have chosen
to be the true statements of arithmetic. If we let 7' denote
the set of true statements, we arrive at the fundamental pair

29

(A, T) for the language of arithmetic. The question that
interests us is whether there exists a complete and consistent
deductive system for this pair. We shall use the criterion
in the last section to show that no such deductive system
exists.

To do this, we must show that there exists a nonenumer-
able set of natural numbers such that membership in this
set is expressible by means of our fundamental pair (A,
T). For this purpose we shall introduce a certain class of
sets such that membership in any set in this class is expres-
sible by means of (A, T'). We shall then look for a nonenu-
merable set in this particular class. The class of sets we are
speaking of is the class of so-called “arithmetic sets.” It is
defined as follows.

Let a be a formula having no parameters except perhaps
the variable z;. Then S% o is a closed statement, true or
false, for any n. We consider the set of such and only such
numbers n for which S%a is a true statement. We shall
say that this set is associated with the formula a. Any set of
numbers which is associated with some formula in A will be
called a Gidel-arithmetic set, or, for brevity, simply an
arithmetic set.

Arithmetic sets have several obvious properties:

Property 1. The complement of an arithmetic set is an
arithmetic set. Namely, if M is associated with the formula
a, then (N\\ M) is associated with the formula .

Property 2. The union or intersection of two arithmetic
sets is an arithmetic set. Namely, if M, and M, are associa-
ted with a, and a.,, respectively, then M, 1 M, is associated
with (¢, A\ @), and M, U M, is associated with (a; \/ a,).

Property 3. Membership in any arithmetic set is expres-
sible by means of (A, T). Namely, suppose that the arith-
metic set M is associated with the formula o. We define the
function f as follows: the value of f at n is the word S .
Then f is a computable function which expresses member-
ship in M.

The key step in our proof of Godel’s theorem is the fol-
lowing claim:

(*) there exists a nonenumerable arithmetic set.

We shall postpone the proof of this claim until the next
section. Once the claim has been proved, we can then con-
clude, because of Property 3 and Theorem 5, that:

there does not exist a complete and consistent deductive sys-

30

tem for the fundamental pair (A, T') of the language of arith-
metic.

This result is Godel’s incompleteness theorem for formal
arithmetic, it says that, given any carefully defined notion
of proof, there exists either a provable but false statement
in the language of arithmetic or else a true but unprovable
statement in the language of arithmetic.

Remark 1. Suppose that M is a nonenumerable arithmetic
set. According to the second part of Theorem 95, if f is any
computable function expressing membership in M and
V is its set of values, then there does not exist a deductive
system which is both complete and consistent relative to V.
Thus, if we have a consistent deductive system, we must be
able to find true but unprovable statements by looking no
farther than the sequence f (0), f (1), f (2), . We just saw
that we can for f take the function n — S¥a, where M
is associated with a. If we choose f in this way, it is natural
to interpret the word f (n) as the statement that “n € M.”
Hence, speaking informally, we see that a true but unprov-
able statement can be found (for any consistent deductive
system!) among the statements of the form “rn € M.” In the
next section we shall see that the set M can be chosen in
such a way that its complement £ =N\ M is enumerable.
Thus, there exists an enumerable set £ such that for any con-
sistent deductive system there is a true statement of the
form “n does not belong to £” which is unprovable. (Note
that, by Theorem 1, it would be impossible to have “n
belongs to £” in place of “n does not belong to E” here.)

Remark 2. Several of the definitionps in this section use
induction on the number of steps in the construction of the
terms and formulas. Here a possible difficulty arises. Sup-
pose, for example, that a word X had the form (o A B)
and simultaneously had the form (o’ — '), where «, B,
a’, and B’ are formulas. In this case the requirements of the
sections of the inductive definition relating to formulas of
the form (@ A B) and to formulas of the form (o' — B’)
might contradict one another.

For this reason, when we give inductive definitions we
must be sure that the terms and formulas can be analyzed
in a unique way, i.e., that the different cases in the definition
of a term and in the definition of a formula are mutually
exclusive. When in our definitions a term or formula is ob-
tained as a result of combining two terms or formulas, the
terms or formulas which are being combined must be

31

uniquely determined. This is the purpose for which the paren-
theses are used in formulas. If we want a formal proof that
terms and formulas can be analyzed in a unique way, the
following fact will be useful:

the number of left parentheses in a term or formula is equal
to the number of right parentheses; and if the word X comes at
the beginning of a term or formula and is not the whole term
or formula, then the number of left parentheses in X is greater
than the number of right parentheses.

It is amusing to note that the role parentheses play in
preventing ambiguities in our formal language is analogous
to the role of punctuation in the natural language of every-
day speech. For example, where one places the comma in the
sentence “Execute we cannot show mercy!” has a crucial
effect on the meaning; the decision about where to put the
comma amounts to a choice between “Execute /\ we cannot
show mercy!” and “Execute we cannot /\ show mercy!”
By the way, it is possible to find sentences in natural lan-
guage with ambiguities that cannot be cleared up by pun-
ctuation.

5. Three Axioms for the Theory
of Algorithms

5.0. Our goal now is to prove the claim (%) in the last
section. However, the rather diffuse ideas about algorithms
with which we have been satisfied in the earlier sections are
not sufficient to prove this claim.

The traditional method of continuing our argument would
be to refine the idea of an algorithm, i.e., replace the some-
what indefinite concept of algorithm which we have been
using, which has the advantage of being completely general,
by a more precise and restricted notion, i.e., by a “special
type of algorithm.” By the way, it should be mentioned that
this narrower notion of an algorithm would have a claim to
being equivalent to our original definition, in the sense that
the class of computable functions which arises from one defi-
nition is the same as the class of computable functions aris-
ing from another (and, therefore, the class of enumerable
sets is the same for each definition). This claim that the
classes of computable functions (or enumerable sets) are
the same does not have the status of a theorem that can be
proved, it is rather a conjecture that can be verified in prac-

32

tice. We can then construct a precise mathematical theory
of functions which are_computable by the “special type of
algorithm” (here the proof of facts analogous to those in Prob-
lems 9 and 10 for Appendix C turns out to be technically
the most difficult part of this theory). The unprovable belief
that the class of functions computable by the “special type
of algorithm” coincides with the class of all computable
functions is important only for the purpose of justifying the
meaningfulness of the theory. For more details on one such
traditional approach, see Appendix C.

i However, here we shall choose another method. Without
committing ourselves to a special type of algorithm, we
shall instead impose some restrictions on our original con-
ception of an algorithm. These restrictions will be stated in
the form of three axioms: the protocol axiom, the program
axiom, and the arithmeticity axiom.

5.1. The First Axiom. We consider the process of applying
an arbitrary algorithm A4 to the input z to obtain the output
y. We shall assume that all of the intermediate computa-
tions, the entire computing process leading from z to y
(where the word “computation” is meant in the broadest pos-
sible sense, by no means including just numerical calcula-
tion) can be written down in a record in such a way that this
“protocol” contains exhaustive information about the succes-
sive stages of the computing process.

Example 1. When checking a computer program it is of-
ten necessary to print out not only the final result but also
all of the intermediate results. The resulting “computer
protocol” is a word in the output alphabet of the computer,
perhaps with the addition of a sign for a blank, a sign for a
new line, etc.

Example 2. Suppose we want to check whether children
learning how to add a column of figures have correctly un-
derstood the addition algorithm. We might require that in
their written work, in addition to the final result, they also
write down all of their steps in some agreed upon notational
system. One might use a notational system for the computa-
tions in which, for example, the protocol for adding 68 and
9967 would be

1 11 111 1111 1111
68, 9967 68 68 68 68 68 68 10035
9967 9967 9967 9967 9967 9967
5 35 035 0035 10035

3—0974 33

Each term in the protocol is either a decimal number (in
our example 10035), or else a pair of numbers (in our exam-
ple 68, 9967), or else a four-storey structure such as

11
68

9967
35

(the “basement” and “attic” may be empty). It is not hard
to make the protocol into a word in some alphabet. Namely,
one need only introduce some additional symbols so that,
for example, the above four-storey structure can be written
first as a table

.l.1|1|.
.I.l.\ﬁls
:‘9'9‘6'7
...Ia‘s

and then as a word: (**11%/%x%68/#9967/%*%35). The entire
protocol is written as follows:

(68 + 9967) (##xx#/4xx68/%9967/sex w4) (44 L/ #4568/
*9967/5xxx5) (4211 #/%x %68/ %9967/ %4 %35)(+ 11 1% /%% %68/
*9967/xx035)(1111%/5%x68/+9967/%«0035) (1111#/%#%68/
»9967/10035)(10035).

In this notational system the protocol for adding any two
numbers is a word in the 15-letter alphabet {0, 1, 2, 3, 4,
51 67 70 81 97 (9)1 /v + *)-

These examples suggest the following general considera-
tions. We shall suppose that:

(1) for each algorithm A4 there is an alphabet I1, (the pro-
tocol alphabet), and all protocols describing the operation of
A for the various inputs in the algorithm’s domain of appli-
cability together form a subset P, of the set II;

(2) there exist computable functions @ and ® such that,
for each protocol py in Py, the values @ (p,) and o (p,) are,
respectively, the input z and the output y for which the pro-
tocol p, was written (i.e., p, is a protocol for the processing
of z into y);

34

(3) P, is decidable relative to 11%.

We restate this more briefly in the form of an axiom, which
we shall call the protocol axiom:

for each algorithm A there exist an alphabetIl,, a decidable
subset P, of the set II®, a computable function a, and a compu-
table function o, such that:

A (z) = y if and only if there ezists p, in P, for which
a(po) = = and @ (po) = ¥

This axiom has the followmg

Corollary 1. The domain of applicability and the set of out-
puts of an algorithm are enumerable sets.

p The first of these sets is a (P,), and the second is o (P,).
Both of these sets are enumerable in view of Lemmas 2 and
4 and Example 2 in Sec. 2. H

Corollary 2. The domain of definition and the set of values
of any computable function are enumerable sets.

» This follows immediately from Corollary 1. W

Corollary 3. The graph of any computable function (i.e.,

the set of all pairs (z, y) for which f (z) = y) is an enumerable
set.
» We apply the protocol axiom to the algorithm which
computes f and find the corresponding set P, and functions
a and . We then construct a computable function ¢ by
setting ¢V (p) = (a (p), ® (p)). Finally, we note that the
graph of f is precisely the set y(P,), so it remains to apply
Lemma 4. H

Remark 1. We could have obtained Corollary 2 as a con-
sequence of Corollary 3. Namely, we could apply Corollary
2 of Lemma 4 and note that the domain of definition and the
set of values of a function are, respectively, pr; M and pr; M,
where M is the graph of the function.

Remark 2. Enumerability of the graph of a function is not
only a necessary condition (as we established in Corollary 3)
but also a sufficient condition for the function to be compu-
table. In fact, if the graph is the empty set, then the func-
tion is nowhere defined and so is computable. If the graph
of the function f is nonempty and is enumerated by the com-
putable function v, then one can use the following algorithm
to compute f: to compute the value f(a), go through the
pairsy (0), ¥ (1), ¥ (2), ... until you obtain a pair whose first
term is a; then f (a) is the second term in this pair.

5.2. The Second Axiom. Functions whose arguments lie
in X and whose values lie in Y are customarily called fun-
ctions from X to Y. Similarly, an algorithm whose possible

3 35

inputs lie in X and whose outputs lie in ¥ will be called an
algorithm from X to Y Here we may take X = K* and
Y = L* where K and L are alphabets. An algorithm from

K™ to L™ is a set of instructions, i.e., a text in English or
some other language (perhaps an artificial language crea-
ted especially for writing algorithms). Although in concrete
situations there is usually no problem in deciding whether
or not a given text is an algorithm, nevertheless the notion
of a set of instructions is too vague to enable us unambigu-
ously to distinguish between a text which is aset of instruc-
tions and a text which is not a set of instructions. We do
not have a single sufficiently precise way of understanding
what a set of instructions means. The instructions could be
written in any of many languages, and even within a single
language the problem of interpreting the meaning of a text
is rather complicated.

Nevertheless, we shall assume (this will be the program
axiom) that it is possible to identify with full certainty a set
congisting of all sets of instructions according to a single
uniform interpretation of what that means. This class of
sets of instructions will be representative in a sense that will
be made more precise below. The sets of instructions in this
representative class will be called programs.

We shall say that two algorithms are equivalent if they
have the same domain of applicability and if they give the
game output when they process any input in the domain of
applicability. A set of algorithms from K% to L™ will be
said to be representative (for the alphabets K and L) if any

algorithm from K® to L™ is equivalent to some algorithm
in our set. When we said before that we want to be able to
identify this set with “full certainty,” we meant that we
want it to be a decidable subset of the set of all words in
some alphabet. When we say that we should have a “single
uniform interpretation” of what a program is, we mean that
there should be an algorithm U which is applicable to pairs
(program p, input a) and which gives as output the result
of applying the program p to the input a. (Here ¢ denotes an
input for p; (p, a) is an input for U.)

Remark 3. 1t is not hard to show that any of the tradi-
tional approaches using a “special type of algorithm” can be
reduced to the above scheme. Any such refinement of the
notion of algorithm essentially amounts to a particular choice
of a set P, of programs and an algorithm U which explains

36

how to apply the program to initial data; it is then claimed
(as an unprovable stipulation) that the set P, is representa-
tive.

Thus, we shall assume that:

(1) for any two alphabets K and L there is an alphabet
I1, (the program alphabet) and a set P, of algorithms which
are called programs and are written in the alphabet II;
(i.e., P, = II7Y

(2) there exists an algorithm U from TI7 X K® to L® (the
algorithm for applying a program) such that U (p, a) is
the result of applying p to a;

(3) the set P, is representative;

(4) the set P, is decidable relative to II7.

Here we are by no means assuming that the alphabet 11,
the set P, and the algorithm U can be chosen only in one
way. Any triple (Il,, P,, U), whereIl, is an alphabet, P,
is the set of all programs written in this alphabet, and U
is an algorithm describing how a program processes input,
will be called a programming method from K= to L™ Thus,
for fixed K and L there may be various possible program-
ming methods.

Remark 4. Our assumptions (1)-(4) do not fully define

what a “programming method” means. That concept in its
entirety will remain something for us to understand on an
intuitive level. The above assumptions merely give some
properties of this concept (and not all the properties, as a
deeper analysis will show), properties which we are as-
suming are satisfied by some triple.
P We now proceed to state the second axiom. But first we
need some notation. Suppose that G is an arbitrary algorithm
from II7 X K% toLy If p € 117, then we let G, denote the
following algorithm from K® to L*: for any a in K”» take
the output from applying G, to a to be the result of applying
G to the pair {p, a); in other words, G, (a) >~ G (p, a).
Using this notation, we can restate our assumptions (1)-
(4) as the following program aziom:

for any two alphabets K and L there exist an alphabet I1,,
a decidable subset P, of the set II7, and an algorithm U from
Iy x K® to L™, with the following properties: for every algo-
rithm A from K* to L™ there is a p in P, such that the algo-
rithms A and U, are equivalent.

This axiom also has some important corollaries. But first
we give a few definitions.

37

Suppose that I, X and Y are sets, and F is a function from
I X X toY. If i is an element of I, then we let F; denote
the function from X to Y which is defined on z for which the
pair (i, z) is in the domain of definition of F and which
takes the value F (i, z) at such an z. Using the conditional
equality sign, we can abbreviate this definition as follows:
F; (z) >~ F (i,).

Now suppose that @ is some class of functions from X
to Y We shall say that a function F from I X X to Y is
universal for the class @ if the following two conditions
hold:

1° the function F; belongs to the class @ for every i € I;

2° each function in @ is F; for some i; in other words, for
every ¢ € @ there exists i € I such that ¢ (z) >~ F (i,)
for all z€X.

Corollary 1 of the program axiom. Suppose that K and L
are two alphabets, and @ is the family of all computable
functions from K™ to L™. Then there exists a computable fun-
ction from N X K*® to L™ which is universal for the class ®.
p Condition 1° automatically holds for any computable
function F (since if F is computable, then so are all of the
F,). So we need only construct a computable function F
from N X K% to L™ which satisfies condition 2°. We con-
sider the alphabet I1,, the decidable subset P, of the set
17, and the algorithm U from II7 X K* to L™, the existence
of which is ensured by the program axiom. Since P, is a de-
cidable subset of an enumerable set, it is enumerable, by
Lemma 2; let f be a function which enumerates P,. Then we
claim that the function F defined by the relation

F (i, 2) > U (f (i), @)
has the desired property.

To see this, let @ be any computable function from K*
to Le, and let 4 be an algorithm which computes ¢, i.e.,
A (z) ~ @ (z) for all z € K. By the program axiom, there
exists a p in P, such that the following conditional equality
holds for all = € K*™:

U (p, z) ~ A (z).

Since p € Py, we have p=f (i) for some i; then for this

i we have the chain of conditional equalities:
F@,z)~U(f@)z)~U(p z)~A () ~o¢ (),
which shows that our function F satisfies condition 2° in

the definition of a universal function. W

38

As a special case of Corollary 1 we have:

Corollary 2. There exists a computable function F from
N X N to N which isuniversal for the class of all computable
functions from N to N.
p We obtain Corollary 2 from Corollary 1 if we take both K
and L to be one of the digital alphabets for writing numbers,
for example, the alphabet {|}. W

We shall say that two functions f and g from X to Y are
everywhere different if there is no z in X for which the con-
ditional equality f (z) ~ g (z) holds. This means that for
every z at least one of the functions f or g is defined at z,
and, if both functions are defined at z, then they have differ-
ent values there.

Corollary 3 (from Corollary 2). There exists a computable
function d from N to N such that no computable function from
N to N can be everywhere different from d.

p Let F be the universal function in Corollary 2. We
take d to be the function defined by the relation:

d @) ~F (i, i)

Then d (i) ~ F, (i), so that d and F; cannot be everywhere
different. But, since any computable function from N to
N is F; for some i, this means that no computable function
from N to N can be everywhere different from d. M

This corollary might at first seem paradoxical, since it
would seem that, for example, the functiond, (z) ~ d (z) +1
is everywhere different from d. The explanation for this
apparent paradox is that d is a function which is not defined
everywhere, so that at values of z for which d (and hence d,)
is undefined we have the conditional equality d, (z) ~ d (z).
But what if, instead of d;, we considered a function D,
which extends d; and is everywhere defined (this means that
D, is a function which is everywhere defined and which coin-
cides with d, wherever d, is defined)? Now this D, is every-
where different from d: if d (z) is defined, then d, (z) is also
defined and is equal to d (z) + 1, in which case D, (z) =
d (z) + 1 4 d (z); while if d (z) is not defined, then we
also have D, (z) 4« d (z), because the left side is defined and
the right side is not. Have we found a contradiction to Corol-
lary 3? No, there is no contradiction here, we have merely
proved that an everywhere defined extension of the function
d; cannot be computable. This gives us:

Corollary 4 (from Corollary 3). There ezists a computable

39

function from N to N which does not have a computable exten-
sion defined on all of N.

Suppose that ¢ is a computable function as in Corollary 4,
i.e., it does not have a computable extension to N. Could
the domain of definition of ¢ be a decidable subset of N? It is
easy to see that the answer is no. Namely, if the domain of
definition were a decidable subset of N, then the function Q
defined by setting

q (z), if z is in the domain of definition of g,

Q(’)={ 0,

if is not in the domain of definition of ¢,

would be a computable everywhere defined extension of q.
Thus, the domain of definition of ¢ is a nondecidable set.
According to Corollary 2 of the protocol axiom, this set is
enumerable. We have thereby proved

Corollary 5 (from Corollary 4). There exists an enumerable
nondecidable subset of the set of natural numbers.

The fact that such a subset of N exists is one of the most
important facts to come out of the theory of algorithms.

Since a subset of the natural numbers is decidable if and
only if both it and its complement are enumerable (by Lem-
ma 3), the preceding corollary can be restated as follows:

Corollary 6 (from Corollary 5). There exists an enumerable
subset of the set of natural numbers whose complement is not
enumerable.

5.3. The Third Axiom. If one ignores the (rather impor-
tant) fact that computers can only work with functions de-
fined on finite sets of natural numbers (since extremely large
values of the argument simply will not fit in the computer),
we may suppose that the functions which computers can
compute are the computable numerical functions as defined
above. It is well known that the basic operations which a
computer can perform are addition, multiplication, and the
logical operations. Experience working with computers leads
one to the conviction that any computable function can be
programmed using these operations. Consequently, one is
led to believe that any enumerable set of natural numbers
(since it is the set of values of a computable function) can
be described in terms of addition, multiplication, and the
logical operations. These considerations (for more details,
see Appendix C) motivate the introduction of the following
arithmeticity axiom:

40

every enumerable set of natural numbers is arithmetic.

Finally, the claim in the last section, which it was our goal
to prove, is now an immediate consequence of this axiom:

there exists an arithmetic set which is not enumerable.
Namely, the complement of the set in Corollary 6 above is
such an arithmetic set: it is a nonenumerable set with enumer-
able complement. Note that this set will be arithmetic be-
cause its complement is arithmetic (the first property of
arithmetic sets).

We have thereby finished the proof of the incompleteness
theorem. As we noted before, the existence of a nonenumera-
ble arithmetic set implies the existence of a nonenumerable set
such that membership in the set is expressible in arithmetic.
This implies that there does not exist a deductive system
for (A, T) which is complete and consistent relative to a
certain enumerable subset V. Consequently, no consistent
deductive system can be complete for (A, T).

Appendixes

A. The Syntactic and Semantic
Formulations of the Incompleteness Theorem

A.1. Statement of the Problem. It is natural to call the
version of Gédel’s incompleteness theorem that we proved a
“semantic” formulation, since it says something about the
truth of statements of arithmetic. In general, the word “se-
mantic” refers to the part of the study of a language (in our
case the language of arithmetic) which is concerned with the
meaning of expressions and their truth or falsity. This part
of linguistic study is to be distinguished from syntax which
investigates expressions in the language as combinations of
symbols apart from their meaning. (Sometimes the word
“syntactic” is used in a narrower sense, referring to the part
of grammar which studies how words are combined in sen-
tences of a natural language.) We would like to proceed to a
syntactic formulation of the incompleteness theorem, i.e.,
our present purpose is to remove to whatever extent possible
every reference to the truth of statements.

A completely satisfactory execution of this task would re-
quire us to make the notion of a proof much more concrete.
This would take us beyond the scope of this short book. Ne-
vertheless, in this appendix we shall take a few steps in this
direction.

A.2. Syntactic Consistency and Syntactic Completeness.
Suppose that (P, P, §) is a deductive system over the alpha-
bet A of the language of arithmetic. (For the remainder of
this appendix we shall only be concerned with deductive
systems over A.) We shall say that the deductive system is
syntactically consistent if there does not exist a closed formu-
laa for which both o and “]a are provable in the deductive
system. We shall say that the deductive system is syrtacti-
cally complete if at least one of the closed formulasa or "|a
is provable in the deductive system for any closed formula a.

These definitions can be stated more briefly if one first
defines the notion of a closed formula which is refutable in
the deductive system: this is a closed formula @ such that
“le is provable in the deductive system. We can now restate

42

the above definitions as follows: a deductive system is syntac-
tically consistent if there is no closed formula which is both
provable and refutable in it, and the system is syntactically
complete if every closed formula is either provable or re-
futable.

The lemma that follows gives the connection between these
notions and our earlier notions of a deductive system which
is consistent or complete for (A, T'). Werecall that a deduc-
tive system is said to be consistent if all provable closed
formulas are true, and it is said to be complete if all true
closed formulas are provable.

Lemma A.1. (A) A consistent deductive system is syntacti-
cally consistent.

(B® A complete deductive system is syntactically complete.

(C) If a deductive system is consistent, then it is complete if

and only if it is syntactically complete.
» (A) If @ and “|a were both provable in a consistent deduc-
tive system, then a and ~|a would both be true, and this
contradicts the definition of truth. (B) One of the closed
formulasa or “ja must be true, and hence must be provable
if the deductive system is complete. (C) Suppose that the de-
ductive system is consistent and syntactically complete. To
show that it is complete, let a be a true closed formula. Then
“|a is false, and so "]a cannot be provable (because the system
is consistent). Then, since the system is syntactically com-
plete, o must be provable. B

Because of the lemma, it is natural to propose the fol-
lowing syntactic version of the incompleteness theorem:

there does not exist a syntactically consistent and syntactical-
ly complete deductive system for the language of arithmetic.

This version has the advantage that, in the first place, it
implies the semantic version of the incompleteness theorem
we proved above, and, in the second place, there is nothing
in it which refers to the truth of a statement. However, this
statement as it stands is false. For example, a deductive sys-
tem in which a closed formula is provable if and only if the
symbol “|occurs an even number of times (such a dedactive
system exists, by Theorem 1) is syntactically consistent and
syntactically complete.

Upon reflection, we arrive at the conclusion that this failu-
re is due to the absence in the above formulation of any con-
nection with the usual meaning of the symbols of the alpha-
bet A. In our example of a syntactically consistent and syn-
tactically complete deductive system, both the formula

43

(2-2) = 4 and the formula (2:2) = 5 are provable. We can
extricate ourselves from this situation if we impose the re-
quirement on the deductive system that certain closed for-
mulas must be provable in it. We now make this more precise.

“Suppose that D, and D are deductive systems. We shall
say that D is an extension of D, if every closed formula which
is provable in D is also provable in D. (In this case, obvi-
ously every closed formula which is refutable in D, is also
refutable in D.) We shall say that a deductive system D , is
completable if it has a completion, i.e., an extension which
is a syntactically consistent and syntactically complete de-
ductive system. The example above shows that the empty
deductive system (in which no statement is provable) is
completable.

Using the concept of completability, we can propose ano-
ther syntactic version of Gddel’s incompleteness theorem:

there exists an uncompletable deductive system.

But this version is meaningless since any syntactically in-
consistent deductive system is uncompletable. Besides, we
want the syntactic version of the incompleteness theorem to
imply the semantic version proved above. This requirement
will be satisfied if we choose the following version:

there exists an uncompletable consistent deductive system.
(This assertion implies, by the way, that there cannot exist
a complete and consistent deductive system, since such a de-
ductive system would be a completion of any consistent
system.) It is this syntactic version which we shall study.

But before proving this syntactic incompleteness theorem,
we first explain why it is better than our original (semantic)
version of the theorem. After all, it refers to the property
of consistency, which is defined using the notion of truth.
The crucial point is that it is possible to give an uncomplet-
able consistent deductive system explicitly, and for this
explicitly described deductive system the uncompletability
property does not involve the concept of truth. (Of course,
in our eyes the value of this property comes from our belief
in the consistency of the deductive system.)

We now proceed to the proof of the above statement. We
shall need some new concepts from the theory of algorithms.

A.3. Inseparable Sets. Suppose that K is an alphabet
and 4 and B are disjoint subsets of K*. We shall say that the
set C separates A from B if Ac C and B N C @. If the

set C separates A from B, then its complement (in K%)
44

separates B from 4. We shall say that A and B are separable

if there exists a decidable subset C of the set K* which
separates A from B. (In this case the complement of C is

a decidable subset of K™ which separates B from A4.)
Lemma A.2. Two disjoint sets A and B are separable if and

only if the function from K* to N which is defined by setting

1, if x€ A,
f(x)'_:‘{oﬁ if xEBa
undefined, if x¢A(B,

has an everywhere defined computable extension.
p If gis an extension of f which is computable and is defined
everywhere, then the decidable set {z | g () = 1} separates
A from B. Conversely, if C is a decidable set which separa-
tes 4 from B, then the computable function g which equals 1
on elements of C and O elsewhere is an extension of /. W
Lemma A.3. There exist inseparable enumerable subsets
of N.
» According to the preceding lemma, it suffices to show
that there exists a computable function 2 from N to N
which takes on only the two values 0 and 1 and which does
not have an everywhere defined computable extension. In
that case the sets {z |~ (z) = 1} and {z | A (z) = 0} will
be enumerable (by Lemma 6 and Corollary 1 of the protocol
axiom) and inseparable. In order to construct a function 2
with the desired properties, we refer to the proof of Corollary
4 of the program axiom in Sec. 5 and consider the function d
which has the property that no computable function can be
everywhere different from it. We define the function 4 as
follows:

1, if d(x)=0,
h(z)y=4 0, if d(x) is defined and nonzero,
undefined, if d(z) is undefined.

Any everywhere defined extension of # would be everywhere
different from d; hence it could not be computable. Ml
We now stale a criterion for a deductive system to be
uncompletable which uses the notion of inseparability.
Theorem A.1. If the set of provable closed formulas and the
set of refutable closed formulas in a given deductive system are
inseparable, then this deductive system is uncompletable.
~ If the deductive system had a completion, then the set

45

of provable closed formulas and the set of refutable closed
formulas in the completion would be disjoint enumerable
sets which together exhaust the set of all closed formulas.
By Lemma 3, each of these two sets—in particular, the set
S of provable closed formulas—is a decidable subset of the
set of all closed formulas, and hence a decidable subset of
the set A». The set S separates the set of closed formulas
provable in our original deductive system from the set of
closed formulas which are refutable in that system. But this
contradicts the hypothesis of the theorem. W

A.4. Construction of an Uncompletable Deductive Sys-
tem. We shall use Theorem A.1 to construct an uncompletable
deductive system. Let P and Q be inseparable enumerable
subsets of N (such sets exist by Lemma A.3). P is an arith-
metic set, by the arithmeticity axiom (see Sec. 5); let P be
associated with the formula a. Let [n € P] denote the
formula S%a (where n is a number). The formula [n € P]
is true if and only if » € P. For each n in P we consider the
(true) formula [r € P]; for each n in Q we consider the (also
true) formula 7] [n € P]. These formulas form an enumera-
ble set. According to Theorem 1, there exists a deductive
system in which these formulas and only these formulas are
provable. This deductive system is consistent. We now show
that it is uncompletable. According to Theorem A.1, in order
to do this it suffices to prove that the set of provable for-
mulas in the deductive system and the set of refutable for-
mulas are inseparable. We now show this. If n € P, then the
formula [n € P] is provable; if n € Q, then the formula
[rn € P] is refutable. Thus, if S were a decidable set which
separated the provable formulas from the refutable ones,
then the decidable set {n | [n € P] € S} would separate P
from @, and this is impossible. We have thus constructed an
uncompletable deductive system.

B. Arithmetic Sets and Tarski’'s Theorem
on the Nonarithmeticity of the Set

of True Formulas of the Language
of Arithmetic

As explained in Sec. 4, the closed formulas of the lan-
guage of arithmetic are statements about properties ot the
set of natural numbers and the operations of addition and

48

multiplication. These statements can be either true or false.
However, the question “True or false?” has no meaning for
formulas with parameters. If we replace the parameters in
a formula by numbers, then we obtain a closed formula
whose truth value in general depends upon which numbers
we substituted in place of the variables. Thus, formulas
with parameters can be interpreted as properties of natural
numbers.

Example 1. The result of substituting » in place of z, in
the formula 3z, ((z, + z,) = z,) is a true statement if and
only if n is even. Thus, we could say that this formula
expresses the property “z, is even.” It is also common to say
(somewhat imprecisely) that this formula is true for even
values of z; and false for odd values of z,.

Example 2. The formula 3z, ((z; + z3) = z,) expresses
the property “z,<C z,.”

Example 3. The formula 3z, ((z,-z,) = ;) expresses the
property “z; divides z,.”

Example 4. Let [z, divides z;] denote the formula in
Example 3. Then the formula

Vz, ([z, divides z3]— ((z; = 1) V (2, = 23)))

expresses the property “z; is prime or equal to 1.”
Example 5. Let [x; is even] denote the formula in Exam-
ple 1. Then the formula

Vz, (Iz, divides z3]— ([z, is even] \/ (z; = 1)))

expresses the property “every divisor of z; is either even or
equal to 1,” i.e., “z, is a power of 2.”

Properties which are expressible by the formulas of the
language of arithmetic are called arithmetic properties.
The subset of N* consisting of k-tuples of natural numbers
having a certain arithmetic property is called an arithmetic
subset of IN*. The definition of an arithmetic subset of N
that was given in Sec. 4 is a special case (k = 1) of this
definition.

We now make these definitions precise. Suppose that o
is a formula in the language of arithmetic, w,, ., Wp are
variables, and ¢, ., ¢p are numbers. By the result of sub-
stituting ¢;, ., cp in place of wy, ., wp in @ we mean the
formula

w e W w Wy QW
SCII vee cppa = Scf e Sc:bc.‘a’

47

which is obtained from o by successively/substituting c; in
place of wy, ¢, in place of w,, . ., cp in place of wy. (It is
easy to see that these substitutions can be performed in any
order; for example, the result would have been the same if

we had defined SZ’;,’,:’:;"OL as Sot .S’:;’a.)
Let o be a formula of arithmetic whose parameters are

a subset of z,, ., Zx. We consider the subset of N* consist-
ing of k-tuples (¢;, ., ¢y) for which the closed formula

X1eaeX

Scl,.,cza is true. We shall say that this set is associated

with the formula a. A set which is associated with a formula
of arithmetic will be called an arithmetic set. When &k = 1,
this gives us the earlier definition (in Sec. 4) of an arithmet-
ic subset of the set of natural numbers., We shall identify
properties with the sets of objects having the property, and
so shall speak of the arithmeticity of properties of natural
numbers.

Example 6. The sets {(x;, x3) | z; = 23}, {{x1, T3, Z3) | 1+
zy = &3} and {{z, T, T3) | £;-x, = 3} are all arithmetic,
since they are associated with the formulas z; = z,, (z;+
z3) = x4, and (x,-x,) = x3, respectively.

Example 7. The set {(z;, z,) | 7;<C x,} is associated with
the formula in Example 2, and so is an arithmetic set.

Example 8. The set {{r;, z;) | z; divides x,} is arithmet-
ic. To construct a formula with which it is associated, we
must slightly modify the formulain Example 3 by inter-
changing z, and ;.

Example Y. The set of prime numbers and the set of powers
of 2 are arithmetic subsets of the set of natural numbers
(see Examples 4 and 9).

The properties of arithmetic subsets of IN that were given
in Sec. 4 hold more generally for arithmetic subsets of ¥,
In particular, we have:

Lemma B.1. (a) T'he complement (in W") of an arithmetic
subset of WN* is arithmetic; ‘

(b) the union or intersection of two arithmetic subsetsof IN*
is arithmetic.

The next lemma says that arithmeticity is preserved if one
permutes the coordinates.

Lemma B.2. Let o be a permutation of the set {1, . k}
(i.e., a one-to-one correspondence from the set to itself), and let
M be an arithmetic suvset of w*. I'hen the set

1‘46 = {(xl, o ey .13;;) l (.”130(1), e ey :co(h)) E Il./[}
48

is arithmetic.
p If the set M is associated with the formula e, then the set

MP is associated with the formula «® which is obtained from
a by replacing each variable in the list z,, .y Zy by the
corresponding variable in the list z54), .., Zow). W

The next two lemmas give a connection between the clas-
ses of arithmetic subsets of N* for different k.

Lemma B.3. If M is an arithmetic subset of N*, then
M X Nt is an arithmetic subset of NF+R,
p In fact, M X N* is associated with the same formula
as M. B

Lemma B.4. If M < WN**" is an arithmetic subset, then its

projection onto the first k coordinates, i.e., the set

M = {(z,, zp) | Azp4y - Azpan ({2,

Zp4n) € M)},
is an arithmetic subset of N*,
p If M is associated with the formula &, then M’ is associ-
ated with the formula 3xp4,. .. Jzpipo.

Combining Lemmas B.2 and B.4, we can conclude that the
projection of an arithmetic set onto any set of axes is arith-
metic. M

Suppose that M < N?is an arithmetic set. For eachn € N
we consider the “cross-section” M,, which is the set of z
for which (n, z) € M. Since it is a projection of the set
({r} X N) N M, it is arithmetic. We shall say that M/ < N?
is a universal arithmetic set if any arithmetic subset of N
is a cross-section of M. It turns out that there is no such set.

Theorem B.1. A universal arithmetic set does not exist.
That is, for any arithmetic set M < N? there exists an arithmet-
ic set Q= N which is different from every cross-section of M.
» The set Q == {z | {(z,) ¢ M} is arithmetic, since it is
a projection of the set (N*\\M) N {{z, y) | z = y}. But it
cannot be a cross-section of M, since if Q were the same as M ,,,
then, by the definition of M,, we would have n € 0 <
(n, n) EM; but n€Q<(n, n)gM, by the definition
of Q. (In other words, ¢ and M, cannot coincide because
they “look different” at n.) B

A function f from W* to W" is said to be arithmetic if
its graph is an arithmetic subset of IN**,

Lemma B.5. The image and preimage of an arithmetic
set under an arithmetic function are arithmetic sets.

» As a lirst case let us consider the image of an arithmetic

4—0974 49

set A= N under an arithmetic function f from N to N.
This image is a projection of the set (graph of f) N (4 X N),
and so is an arithmetic set. In other words, if we let [f (z;) =
z,] denote the formula with which the graph of f is asso-
ciated and let [2; € A] denote the formula with which the
set A is associated, then the formula

3e,(If (21) = 2 N L2 € 4))

is true for values of x, belonging to the image of A and for
no other values. So in order to find a formula with which the
image of A is associated, it suffices to permule the variables
(interchange z; and).

The preimage of an arithmetic set 4 under the function f
is associated with the formula

axz([f (xl) = le /\ {ze € A])v

where [z, € A] denotes the formula obtained from [z, € A]
by interchanging the variables z; and z,. The general case of
a function from N* to N* is proved in the same way. W
We are interested in proving Tarski's theorem, which
says:
the set of true formulas of arithmetic is nonarithmetic.
In order to make sense of this assertion, we have to explain
what we mean by arithmeticity of a set of formulas, which

is a subset of A* This can be done as follows: choose a one-
to-one correspondence between A” and iN (a number ing of A™),

so that each word X in A™ is associated to some natural
number (called the number of X in this numbering). We say

that a set M — A” is arithmetic (with respect to the chosen
numbering) if the set of numbers of the words in M is an
arithmetic subset of iN.

Of course, this definition depends on the choice of num-
bering of the words in the alphabet A. We say that two num-
berings are arithmetically equivalent if the function which
goes from the number of a word in one numbering to ils num-
ber in the other numbering is an arithmetic function.

Lemma B.6. If a set M — A% isarithmetic relative to a giv-
en numbering n;, then it is arithmelic relative to any num-
bering my which is arithmetically equivalent to m,.

» By assumption, sz, (M) (which consists of all n;-numbers
of words in M) is an arithmetic set. Since the set s, (M) is
the image of m; (M) under the function which goes from
ng-numbers to g,-numbers, and since this function is

50

arithmetic by assumption, it foliows that =, (i) is alse
arithmetic. Wl

Finally, we define an arithmetic set of words in the alpha-
bet A to be a set which is arithmetic relative to some com-
putable numbering of A¥. (A numbering is said to be com-
putable if the function which associates a number to every
word is a computable function. In this case the inverse,
which associates the word with number 7 to a natural num-
ber n, is also a computable function. The existence of com-
putable numberings of A™ was established in Example 3 of
Sec. 2.)

We now show that this definition can equally well be given
in the form: an arithmetic set of words is a set which is
arithmetic relative to any computable numbering of A%,
If n; and 7, are two computable numberings, then the func-
tion which goes from the m;-number of a word to its m,-
number is a computable function from N to N. (It can be
computed by the following algorithm: given an argument x,
run through all words in the alphabet A, compute their
si;-numbers, and wait for a word to appear whose m;-num-
ber is z; once this word has been found, compute its m,-
number.) Thus, our claim follows once we prove the fol-
lowing lemma.

Lemma B.7. Every computable function from NP to N7 is

arithmetic.
» The graph of a computable function from N’ to N7 is
an enumerable subset of WNP*? by Corollary 3 of the protocol
axiom. Hence the lemma follows from the following streng-
thened form of the arithmeticity axiom:

every enumerable subset of N is arithmetic.

(In Sec. 5 we called the special case of this for # = 1 the
arithmeticity axiom.) H

Theorem B.2. The set T of true formulas of arithmeticgis

not an arithmetic set.
» We shall show that if 7' were arithmetic, then a universal
arithmetic set would exist, in contradiction to Theorem B.1.
Following Godel, we shall call a formula a class formula if
it has no parameters other than z,. The set of all class for-
mulas is a decidable subset of the enumerable set A*, and
so is enumerable. We fix an enumeration a,, o, 04, of
the set of class formulas. We consider the set

M = {(n, m) | the result of substituting
m in place of z; in a, is a true statement}.

4w 51

Since the nth cross-section of this set is obviously asso-
ciated with the formula a,, it follows that the cross-sec-
tions of this set exhaust all arithmetic subsets of IN. I't remains
to show that if T were arithmetic, then M would also be
arithmetic.

Recalling the definition of arithmeticity of a set of words,

we fix an arbitrary computable numbering of A™ Let T’ be
the set of numbers of words in 7 under this numbering.
Let S be the function which associates to the pair (m, n)
the number of the word which is the result of substituting m
in place of z, in a,. S is a computable function, and so,
by Lemma B.7, it is an arithmetic function. The set M is
the preimage of 7' under the function S. Thus, the arithme-
ticity of T’ implies that M is arithmetic, by Lemma B.S5.
Theorem B.2 is proved. W

A close examination of the proof of Theorem B.2 reveals
that it is connected with the “liar paradox.” We briefly ex-
plain this connection.

The liar paradox is the following. Someone announces:

“What I am saying now is a lie.” Is this statement true or
false? Either answer to this question leads to a contradic-
tion. If we say the statement is true, then, because of the
very meaning of thestatement, it must be false; and converse-
ly. We nowgive a presentation of our proof of Theorem B.2
in a form which resembles this paradox.
» Suppose that the set of numbers of true statements of
arithmetic is an arithmetic set. Let [word with number z; is
true] denote the formula which has one parameter z; and
which expresses the property “the word with number z; belongs
to T, ” i.e., the property “z3 € T'.” The function S is arith-
metic; we let

[z4 is the number of the result of substituting x,
in the z;th class formula]

denote the formula with which the graph of S is associated.
The formula

Jz; ([word with number z; is true]
N\ [z is the number of the result of substituting x,

in the z;th class formulal)
has parameters 2, and z,. The set M is associated with this
formula, which we shall henceforth denote by

[result of substituting x, in the z,th class formula is truel.
52

The rest of the argument follows the proof of the theorem
that there is no universal arithmetic set. We consider the
formula

13z, ((x; = x5) A lresult of substituting z,
in the x,th class formula is truel),

which we shall denote by
[result of substituting z; in the z;th class formula is false].

This last formula has one parameter z,, and corresponds to
the set Q in the proof of Theorem B.1, in the sense that the
result of substituting = in place of z; in this formula is true
if and only if the result of substituting » in the nth class
formula is false. This formula is a class formula, and so has
some number (which we denote n) in the enumeration of the
class formulas. We now substitute n in place of z; in our
formula, and denote the result of this substitution by

Iresult of substituting n
in the nth class formula is false].

This is a closed formula which is true if and only if the
result of substituting the number r in the nth class formula
is false. But this closed formula is nothing other than that
very result of substituting n in the nth class formula. Thus,
the closed formula

[result of substituting n
in the nth class formula is false)

is true if and only if it is false. We would have been com-
pletely justified in denoting the statement: [I am lying]. We
have obtained a contradiction, which shows that the set of
true formulas of arithmetic is not an arithmetic set. @

C. The Language of Address Programs,
the Extended Language of Arithmetic,

and the Arithmeticity Axiom

In this appendix we shall attempt to justify the arithme-
ticity axiom. Our plan of argument is as follows. First we
shall describe a certain concrete class of algorithms—the
class of address programs. It is natural to use the term
“address-computable” to refer to functions which are com-

53

putable using algorithms from this class. Next we shall prove
that the range of values of any address-computable function
is an arithmetic set. This will justify the arithmeticity axi-
om—provided that one believes that every computable
function is address-computable.

Asan aid in carrying out this program we shall introduce
an extended language of arithmetic, which has some addi-
tional means of expression not in the language of arithmetic
that was described in Sec. 4. We shall show that the set of
values of any address-computable function can be described
by a formula in this extended language of arithmetic. Then
we shall show that the use of this extended language was
not actually essential, i.e., for every formula in the extend-
ed language we can find a substitute in the usual language
of arithmetic. This will imply that the set of values of any
address-computable function can be described by a formula
in the language of arithmetic, i.e., it is an arithmetic set.

We begin with the following simple observation: in order
to justify the arithmeticity axiom (and even the streng-
thened version in Appendix B), it suffices for us to be able to
prove that

the graph of any computable function from N to N is an

arithmetic subset of NZ2.
(The definition of an arithmetic subset of N? was given in
Appendix B.) To see this, suppose that this assertion is true.
Then every enumerable subset of N is arithmetic, since it is
a projection of the graph of the computable function which
enumerates it (see Lemma B.4). We now prove from this
that the strengthened version of the arithmeticity axiom
holds.

Let M = N* be an enumerable set, and let g be the func-
tion from N to N* which enumerates it. The value of g
at the number n is a k-tuple g (r) = (g, (n), - &r ().
The functions g;, ., gx are computable functions from N
to W, and so, by our assumption, their graphs are arithmet-
ic. We let [g; (z;) = x,] denote the formulas with which these
graphs are associated. The graph of g is an arithmetic
subset of N*+1 because it is associated with the formula

lg) (z,) = z,]
A (g2 (x1) = x5l A (- Algk (1) = Zuiad).),
where we have let [g; (z;) = z;+,l denote the formula ob-

tained from [g; (z;) = z,| by the permutation of variables
which interchanges z, and z;+,. The set M is the projection

54

of the graph of g onto the z,, Zyr+q-axes, and so is an
arithmetic set.

Thus, our goal is now to prove that the graph of any com-
putable function from N to N is an arithmetic subset of N2,
Thisisnot, however, a trivial task, as thereader willundoubt-
edly agree after trying to prove directly, for example, the
arithmeticity of the exponential function to base 2, i.e., the
arithmeticity of the set {(z, y)|y = 2*}.

C.1. The Language of Address Programs. We now describe
a class of algorithms of a special type, which we shall call
address programs. These programs are reminiscent of real
“machine language” programs used with actual computers.

An address program is a sequence of commands listed in
order. Each command has one of the following forms:

1° R (a) < b (assigning a value);

2° R (a) < R (b) (moving a value);

3° R (a) < R (b) + R (c) (addition);

4° R (a) < R (b)-R (¢) (multiplication);

5° GO TO n (unconditional transfer);

6° IF R (a) = R (b) GO TO m ELSE GO TO rn (condi-
tional transfer);

7° STOP.

Here a, b and ¢ are arbitrary natural numbers (“register
numbers”), and m and n are natural numbers which denote
the order of a command in the program. The last command
in any program must be a command of the form 7° We have
given names for the types of commands in parentheses.

Here is a simple example of an address program:
Example 1.

1 R(1)«~1

4 R (2) <« R (2)-R (1)

5R(1)«~R(1)+R@3)

6 IF R (1) = R (0) GO TO 7 ELSE GO TO 4

7 R(0) <« R (2)

8 STOP.

Address programs can be executed on “address machines”
(which exist only in theory).

An address machine isTassumed to have infinitely many
locations for storing “natural numbers (its memory). These
locations are called registers. At a given instant exactly
one number is stored in each register. The registers are num-

55

bered 0, 1, 2, and are denoted R (0), R (1), R (2),
respectively.

An address machine executes the program in the order that
the commands are numbered; this order is violated only
when a conditional or unconditional transfer command is exe-
cuted. Before giving more precise definitions, we shall
describe how an address machine goes through the program
in Example 1. Suppose that we start with the number 100 in
the register R (0) and zero in each of the other registers.
The first three commands assign the initial value 1 to the
registers R (1)-R (3). The number in the register R (3) does
not change during the rest of the execution of the program,
the number in R (1) increases by 1 from time to time (at
command 5; recall that R (3) always stores the number 1),
and the number in R (2) is multiplied by the value in R (1)
from time to time. The execution stops when the number in
R (1) becomes equal to the number in R (0). The following
table shows how the numbers in the registers change as the
program is executed:

command

number R (0) R(1) R(2) R (3) R (4)
1 100 0 0 0 0
2 100 1 0 0 0
3 100 1 1 0 0
4 100 1 1 1 0
5 100 1 1 1 0
6 100 2 1 1 0
4 100 2 1 1 0
5 100 2 2 1 0
6 100 3 2 1 0
4 100 3 2 1 0
5 100 3 6 1 0
6 100 4 6 1 0
4 100 4 6 1 0
6 100 99 98! 1 0
4 100 99 981 1 0
5 100 99 99! 1 0
6 100 100 99! 1 0
7 100 100 991 1 0
8 99! 100 991 1 0

56

As aresult of the execution of this program the number
991(1.2.. -99) is put into the register R(0). If 200 rather
than 100 were in R (0) at the beginning, then at the end we
would have to fit the number 199! (1-2.. .-199) into our
register R (0). And if all registers stored zero at the beginning,
then the execution of the program would never stop.

We now give some precise definitions. The state of an
address machine is an infinite sequence of natural numbers
s = (Sq, S, .) almost all of which (i.e., all but finitely
many) are zero. If s, = 0, then we call the state a final
state (or stop); if s,==> 1, then we call it a working state, and
we call s, the command number being executed. We call
$;+y the number in the ith register.

Let p be an address program, and let s = (s, s, . .)
be a working state. We say that p is applicable to the state s
if 5o is the number of a command of p (there might not be
a command with number s, if s, is too large). In this case
we define a state s’ which is called the immediate result of
applying the program p to the state s. This state s’ = (s,,
$;y . . .) is determined as follows:

1° if command number s, has the form R (a) <— b, then
Sg =50 +1, 8iy1 = s;4, for is=a, and s;4y = b (all
registers except for the ath remain unchanged, the number
in the ath register is replaced by b, and the machine moves
on to the next command);

2° if command number s, has the form R (a) < R (b),
then s; = s, + 1, siz1 = 8;i4q for i~ a, and sg41 = Sp4a
(all registers except for the ath remain unchanged, the num-
ber in the ath register is replaced by the number in the bth
register, and the machine moves on to the next command);

3° if command number s, has the form R (a) < R (b) +
R (c), then s =s, +1, siy1 =84, for ia, and
Sa4t = Sp+1 + Sc+q (all registers except for the ath
remain unchanged, the number in the ath register is replaced
by the sum of the numbers in the bth and cth registers,
and the machine moves on to the next command);

4° if command number s, has the form R (a) <- R (b)-R (c),
then s; = sy + 1, siy1 = s34, for i==a, and sgqq =
Sb+1-Se+1 (same as 3° except with multiplication instead of
addition);

5° if command number s, has the form GO TO n, then s; =
n,"and si;q = $;4, for all i (all registers remain unchanged,
and the machine moves on to the nth command);

6° if command number s, has the form IF R (a) = R (b)

57

GO TO m ELSE GO TO n, then s}, = s;1, for all {, and s,
is equal to m if s,4; = s+, and equal to n if s 4, = Sp4+y
(all registers remain unchanged, and the machine moves
either to the mth or nth command, depending on whether
or not the numbers in the ath and bth registers are equal);

7° if command number s, has the form STOP, then s}, =
$; 4+ for all ¢ and s, = O (the machine goes to the final state).

This completes the definition of the immediate result of
applying a program to a state. We note that if p is applica-
ble to the state s, then the immediate result of applying p
to s is either a final state or else a state to which p is again
applicable. We always assume that the numbers m and r in
transfer commands are numbers of commands in the pro-
gram, and that the last command is STOP.

By a protocol for an address program p we mean a sequence
of states s%, s!, . ., s® such that each state after s® is the
immediate result of applying p to the preceding state,
and the last state is a final state. We call s° the iritial state
of the protocol. There exists at most one protocol for a given
address program and a given initial state; there might be no
protocol, if either p is not applicable to s® or there is no final
state in the sequence of states obtained by successively
applying p.

Suppose that p is an address program and k is a natural
number. We consider the function f from N* to N which is
defined as follows: the value of f at the k-tuple (a,, ., ap)
is b if there exists a protocol for p whose initial state is
1, a,, a,, < ag, 0, 0, .) and if b is the number in the
Oth register at the final state of this protocol. In other words,
the value of f at (a,, ., @y) is the number in R (0) after the
execution of the program if a,, . ., ap were in R (0), .

., R (k — 1) and zeros were in all the other registers at
the beginning of the execution of the program, and the
program begins with command number 1. We then call f
a function which is k-computable by the program p (or sim-
ply computable by p if the value of kis clear from the context).

Example 2. Let p be the address program in Example 1.
The following function f; is 1-computable by this program:
f1 (0) is not defined, f, (i) = (i — 1)! for i 1. The function
fo which is 2-computable by p is as follows: f, (i, j) is not
defined if i =0, f, (i, j) = (G —1) if i=1.

Functions which are k-computable by address programs
will be called address-computable functions of £ variables. It
is obvious that all address-computable functions are com-

58

putable. And all known computable functions turn out to be
address-computable. Thus, it is reasonable to conjecture
that the class of computable functions from N* to N and
the class of address-computable functions are the same.
Assuming this conjecture to be true, we shall now proceed
to prove the arithmeticity axiom on that basis.

C.2. The Extended Language of Arithmetic. As an aid in
proving arithmeticity of address-computable functions we
shall develop an extended language of arithmetic. In order
to define this language, we have to introduce some modi-
fications to the definition of the language of arithmetic in
Sec. 4.

We add two new symbols to the alphabet of arithmetic: v
(for forming one-place functional variables) and w (for form-
ing two-place functional variables). A word of the form
(v") will be called a one-place functional variable, and a word
of the form (w™) will be called a two-place functional variable.
(IHere n = 1.) We shall use the notation v, and w, to abbre-
viate these one- and two-place functional variables. The
interpretation we have in mind for one- and two-place func-
tional variables is everywhere defined functions of one and
two variables, where the variables and the functions take
on natural number values. We shall call our old variables
z, numerical variables.

We define a term in the extended language of arithmetic
as follows:

1° a numerical variable is a term;

2° if ¢ and u are terms, then (¢ 4 u) and (¢-u) are terms;

3° if p is a one-place functional variable and ¢ is a term,
then p (f) is a term;

4° if r is a two-place functional variable and ¢ and u are
terms, then r (¢, u) is a term.

Example 1. The words (v, (z;) + 23), vy (V5 Wy (T1, Z2))),
and w, (w, (z;, z,), z;) are terms in the extended language
of arithmetic.

As before, an elementary formula is two terms joined by
an equals sign (except that now the terms are in the extended
language). The jormulas of the extended language of arith-
metic are defined in the same way as in Sec. 4, except that
in 4° the variable £ can be either a numerical variable, a one-
place functional variable, or a two-place functional variable.

Example 2. The words Vv, (v, (z;) = v; (25)), Va, V
zy (U (21) = v, (23)), and Y, Vz,Vz, (wy (2, 7)) =w; (T2s 1))
are formulas.

59

The parameters of terms and formulas are defined as in
Sec. 4; parameters can include functional as well as nu-
merical variables.

Example 3. The parameters in Example 1 are v,, z; and
z, for the first term; v,, vs, w,, 7, and z, for the second term;
and w,, z;, z, and z; for the third term. The parameters in
Example 2 are z, and z, for the first formula; v, for the second
formula; and the third formula has no parameters.

Formulas which have no parameters are called closed for-
mulas of the extended language of arithmetic.

We must now determine which are the true closed formu-
las of the extended language of arithmetic. We will have two
different definitions of truth for the formulas of the extend-
ed language of arithmetic, i.e., two interpretations of this
extended language. In one definition the functional variables
can be any (everywhere defined) functions in one or two
variables with the variables taking on natural number
values, and in the other definition they can only be finite
functions, i.e., functions which are nonzero only at finitely
many values of the argument. In order to avoid having to
give essentially the same definition twice, we shall refer
to the class of admissible functions, by which we shall mean
either the class of all functions or the class of all finite
functions.

The definition of truth will be similar to that in Sec. 4.
The new ingredient will be the case of a formula which
begins with a quantifier with respect to a functional varia-
ble. Here we encounter the following problem: we would like
to say, for example, that the formula Vva is true if, for
all admissible values of v, the formula obtained from «
by substituting the values in place of v is true. However,
our language is not equipped with anything that can be
substituted in place of a functional variable. This dilem-
ma can be resolved as follows: we must introduce functional
constants into our language, one for each admissible func-
tion.

We now give the precise definitions. We choose a set of
symbols which is in one-to-one correspondence with the set
of admissible functions. We shall call the symbols in this
set functional constants which describe the corresponding
functions. Each one is either a one-place or a two-place
functional constant, depending on the number of variables
in the corresponding function. We shall substitute function-
al constants in place of functional variables having the same

60

number of arguments. By an cvaluated term (or evaiuated
formula) we shall mean the result of substituting any func-
tional constants in place of all of the functional parameters
and any numbers in place of all of the numerical parameters
in some term (or formula) of the extended language of
arithmetic. This substitution is carried out in the same
way as in Sec. 4, i.e., only occurrences of a variable which are
outside of the range of action of quantifiers are replaced.
A special case of an evaluated term is a constant term,
i.e., one with no parameters (such a term is then also a term
of the usual language of arithmetic). A special case of an
evaluated formula is a closed formula of the extended lan-
guage of arithmetic.

We can now define the value of an evaluated term or
formula in a way which is completely analogous to the cor-
responding definitions for constant terms and closed formu-
las in the usual language of arithmetic. The values of evalu-
ated terms are defined as follows:

1° the value of (| “) is the number n;

2° the value of an evaluated term of the form (¢ + u)
is the sum of the values of the evaluated terms ¢ and u,
and the value of an evaluated term of the form (¢-u) is the
product of the values of the evaluated terms ¢ and u;

3° the value of an evaluated term of the form y (¢), where y
is a one-place functional constant and ¢ is an evaluated term,
is the value of the function described by y at the number
which is the value of the evaluated terms i;

4° the value of an evaluated term of the form § (¢, u),
where 0 is a two-place functional constant and ¢ and u are
evaluated terms, is the value of the function from WN® to N
described by 6 at the pair (value of ¢, value of u).

To define the value of an evaluated formula, we can now
use the definition in Sec. 4 of the value of a closed formula
in the language of arithmetic, replacing the words “closed
formula” by “evaluated formula” and “constant term” by
“evaluated term,” specifying in 7° and 8° that is a numerical
variable, and inserting the following two paragraphs:

9° the evaluated formula 3JIEx, where { is a functional
variable, is true if there exists a functional constant y with
the same number of arguments as § and having the property

that the evaluated formula Ssa is true; if no such functional
constant exists, then the evaluated formula 3I&a is false;

10° the evaluated formula VEox, where § is a functional
variable, is true if, for every functional constant y with the

61

gathe number of arguments as "&, the evaluated formuia

Ssa is true; otherwise the evaluated formula VEa is false.
Now that we have defined the value of an evaluated for-
mula, we know how to determine the value of a closed for-
mula of the extended language of arithmetic as a special
case. This special case will be especially important for us
later on.
Example 4. The closed formula

Va,Vz, (Yo, (v, (7)) = vy (25))—> (2, = x5)),

which says “if the values of all admissible functions at z,
and xz, are the same, then z;, = a,, ”is true for either of the
two interpretations of the set of admissible functions (all
functions or only finite functions).

Example 5. The closed formula

Vo 3z,Vz, (vy (2, + 22)) = 0),

which says that “every admissible function is equal to O for

all sufficiently large values of the argument,” is true if

admissible functions are the finite functions, and it is false

if the class of admissible functions consists of all functions.
Example 6. The closed formula

Vw3, V2, (v (2) = w, (z,, 7,))

is true for either interpretation of admissible functions.
Example 7. The following closed formula says that there
exists an admissible one-to-one correspondence between N2

and N:
3w, (Va,3r,3z5 (wy (23, Z3) = 3,)
AV V¥V Ny (0 (29, z5)
= Wy (X, T5))—> (&2 = z4) N\ (23 = x5)))).
It is true if we take all functions to be admissible, and it is
false if we take only the finite functions.

Example 8. The statement that “the inequality 2% = a;
holds for all &;” can be translated into the following formula
in the extended language of arithmetic (with either of the
two interpretations of admissiblejfunctions):

Vi, Yo, (((vy (0)
= 1) A\ Vz, ([z,<< 21— (0 ((x2 + 1))
= (2:v; (2))))) > [2, < vy (7))
62

Here [z,<z,] denotes the formula dz,((z, + z,) = z,),
and [z,<< v, (z;)] denotes the formula 3z, ((x, + z5) =
v; (xy)). This closed formula can be read as follows:
“if v, is the sequence of natural numbers whose first term is 1
and each of whose successive terms through the (x; 4 1)th
term is twice the previous one, then v, (z;) 2= z;.” The stip-
ulation “through the (z, + 1)th term” is necessary if only
finite functions are admissible.

In Appendix B we interpreted formulas in the language
of arithmetic which have parameters as expressing proper-
ties of the natural numbers. In the same way we may regard
formulas in the extended language of arithmetic as express-
ing properties of natural numbers and functions.

Example 9. The formula

3z; ((vy (@) + 23) = vy (31))

expresses the following property: the value of the admissible
function v; at the number z; is not less than its value at the
number z,. This last statement is not phrased completely
correctly, since v; is a functional variable and not a func-
tion, and z; and z, are numerical variables and not numbers.
The phrasing is an abbreviated way of saying, “The result
of substituting numbers n, and n, in place of z; and z, and
substituting a functional constant describing an admissible
function in place of v, is a true evaluated formula of the
extended language of arithmetic (with either of the two
interpretations of admissible functions) if and only if the
value of this admissible function at n, is no less than its
value at n,.”
Example 10. The formula
Va,Va,3zs () (21) + x5) = vy (271 + 23)))

expresses the property that “the admissible function v, is
a nondecreasing function.”

Even if we only look at formulas in the extended language
of arithmetic which have no functional parameters, we still
have new possibilities that were absent in the earlier lan-
guage of arithmetic.

Example 11. The formula

vy (0, 0) = 1) A\ Vas ([23< 7,
— (U1 (23 + 1)) = 20 (@3))) N\ (1 (=) = 2a))

where [z;<C ,] is, of course, an abbreviation for Iz, ((x3 +
zy) = x,), expresses the property mentioned at the begin-

63

ning of Appendix C: “z, = 2¥.” This holds for either of the
two interpretations of admissible functions; if all func-
tions are admissible, then we do not need the stipulation
[13< xll-

The properties of natural numbers which are expressible
by formulas in the extended language of arithmetic will be
called analytic properties or weakly analytic properties,
depending on whether we are taking the admissible functions
to be all functions or only the finite functions. We shall
identify properties with the sets of objects having the prop-
erties, and so shall also speak of analytic and weakly
analytic sets.

More precisely, let o be a formula in the extended lan-
guage of arithmetic not having any functional parameters
and not having any numerical parameters other than
Zy, .., Zp. Let ny, . ., np be a set of £ numbers. If we
substitute these numbers in place of the respective varia-
bles z,, ., Zx, weobtain a closed formula in the extended
language of arithmetic. We shall say that the set of £-tuples
(ny, .., ng) for which this closed formula is true is associat-
ed with the formula o (if we are taking all functions to be
admissible) or weakly associated with o (if only the finite
functions are admissible). A set which is associated (or weak-
ly associated) with a formula in the extended language of
arithmetic will be called an analytic set (respectively,
a weakly analytic set).

Example 12. As Example 11 shows, the set {{zy, z3) | z, =
2%} is both analytic and weakly analytic.

Any arithmetic set is obviously both analytic and weakly
analytic. We shall later prove that all weakly analytic sets
are arithmetic. But not all analytic sets are arithmetic.
It can be shown that the set of numbers of the true statements
in the language of arithmetic (in any numbering of A) is
analytic; but this set is not arithmetic, by Tarski’s theorem
(see Appendix B). We note in passing that an argument simi-
lar to the proof of Tarski’s theorem can be used to show that
the set of all closed formulas in the extended language of
arithmetic which are true when one takes all functions to be
admissible, is not an analytic set.

In the next subsection we prove that the graph of any
address-computable function is a weakly analytic set. When
combined with the result mentioned above about arithme-
ticity of any weakly analytic set, thiswill allow us to con-

64

clude that any address-computable function is arithmetic,

C.3. Expressibility of Address-Computable Functions in
the Extended Language of Arithmetic. In this subsection we
shall prove that the graph of any address-computable func-
tion is a weakly analytic set. Later (in Subsecs. C.4-C.6) we
shall prove that any weakly analytic set is arithmetic;
this will then complete the proof that address-computable
functions are arithmetic, and so sets which are enumerated
by such functions are also arithmetic.

Let p be an address program. We shall prove that certain
properties connected with the program p are expressible in
the extended language of arithmetic. In what follows, when
we refer to the truth of evaluated formulas in the extended
language of arithmetic, we shall always be interpreting
admissible functions to be only the finite functions.

Recall that an address machine state is a sequence of
natural numbers all but finitely many of which are zero.
Such state is nothing more nor less than a finite function.

Lemma C.1. The property “the state v, is the immediate

result of applying the program p to the state v,” is expressible
in the extended language of arithmetic. (This means that there
exists a formula o in the extended language of arithmetic
with the one-place functional variables v, and v, as its param-
eters such that the result of substituting two functional
constants describing finite functions in place of v, and v, is
true evaluated formula if and only if the state described by
the second functional constant is the immediate result of apply-
ing the program p to the state described by the first functional
constant.)
» Given a program p, we shall describe how to construct
the required formula. (Of course, the formula itself will de-
pend on p.) Our formula o will have the forma; A . Aa,
(where it makes no difference how the parentheses, which we
have omitted, are inserted). Here n is the number of com-
mands in the program, and the formula a; corresponds to the
ith command. Each «; is one of seven types of formulas,
depending on which of the seven types of commands for
address machines is the ith command in the program. The
formulas are constructed by following along the seven parts
of the definition of the immediate result of applying an
address program. We shall explain how this is done using
two examples.

Example 1. Suppose that command 37 has the form

37 R (16) < R (2)-R (16).

5—0974 65

In this case the formula o4, is as follows:
(v (0) = 37)— (Vz, (T|(z, = 16)— (va((z; + 1)) ‘
= v (& + 1N A @2 (17) = (0 (17)-0,).

Example 2. Suppose that command 81 has the form
81 IF R (3) = R (4) GO TO 7 ELSE GO TO 23.

In this case the formula ag, is as follows:

(v, (0) = 81) = (Va; (vy (7, + 1) = vy (7 + 1)) A (1 (4)
=1 0)> @ (0)=7) A ("o (4) = v, (5))— (ve g;;)
= 23)))).

This completes the proof of the lemma. M

Our next step is to construct a formula which expresses
the property of “being a protocol for applying an address pro-
gram p of length #; -+ 1.” A protocol is a sequence of states,
i.e., a sequence of finite functions.

Our language does not have sequences of functions as such,
but it does have objects which amount to the same thing.
Namely, we shall identify a sequence of functionss?, s, . . . of
one variable with the function S (r, m) of two variables,
which is defined by setting S (n, m) = s" (m). Thus, we shall
say that an everywhere defined function S from N? to N
describes a protocol for a program p of length k& 4- 1 if the
sequence s, . . ., s" of functions of one variable which are
defined by setting s* () = S (i, z) is a protocol for applying
the address program p.

Lemma C.2. There exists a formula § which has a two-place
functional variable w,, two one-place functional variables v,
and vy, and a single numerical variable x, as its parameters
and which expresses the following property:

“wy describes a protocol of length z, + 1,

v, is the initial state of this protocol, and

Uy is the final state of this protocol.”

p The desired formula has the following form:

([vy=w{] \ [y =wy"]) A (2(0) =0))

A VZN03¥0, (224 1<) A (03 =" A v =wit*'])
— [y, is the immediate result of applying p to vy]).

Here [v, = w§]l is an abbreviation for the formula
Vag (v (z3) = wy (0, z3)); [ve = wi**!] is an abbreviation

66

for Vzy (vy (z3) = w; ((z2 + 1), 5)), and [v, = w¥] and
[v, = wi*] are to be interpreted analogously; and, finally,
[v, is the immediate result of applying p to v;] denotes the
formula in Lemma C.{ with the variables v, and v, replaced
by vy and v,, respectively.

We are now ready to prove that the graph of an address-
computable function is weakly analytic.

Theorem C.1. The graph of an address-computable func-
tion from N* to N is a weakly analytic set.
p Let f be an address-computable function from N* to N
and let p be an address program which computes f. The
graph of f consists of the (& -+ 1)-tuples (z,, oy Thy Tptyp)
for which there exists a protocol w; of some length with
initial state v, and final state v, such that

v 0)=1,v (1) =2, vy (k) = g,
v, (@) =0 for z=k + 1, vy (1) = zp4,.

If we write all this as a formula in the extended language
of arithmetic, we obtain the desired formula—a formula with
which the graph of f is weakly associated. The theorem is
proved. W

In the next subsections, C.4-C.6, we prove that any
weakly analytic set—and hence the graph of any address-
computable function—is an arithmetic set.

C.4. Reducing the Extended Language of Arithmetic to
the Usual Language of Arithmetic. In this subsection we
shall prove that any weakly analytic set is arithmetic,
i.e., that adding to the language of arithmetic variables
which run through all the firite functions of one or two
natural variables does not increase the expressive possibili-
ties of the language. As noted above, the condition that the
functions be finite is essential: adding variables which run
through aell functions does result in a significantly more
expressive language.

We first give a rough explanation of why the addition of
variables denoting finite functions does not have any essen-
tial effect. The point is that these functions form a countable
set, they can be labeled by the natural numbers (and this
labeling turns out to be arithmetic in a sense that will be
made precise below), and then we can speak of a function’s
label rather than the function itself. In this way we can
limit ourselves to working with the natural numbers.

We now make this more precise. Suppose that v is a map

5e 67

which associates an everywhere defined finite function of
one variable to every element of N*, i.e., to every k-tuple
of natural numbers. We call such a map a labeling of the
finite functions of one variable by means of elements of N* if
each finite function corresponds to at least one (and per-
haps more) elements of N*. If a k-tuple {(a;, . ., az)
corresponds to a function s, then we call this k-tuple a label
for s (in the particular labeling system). We say that a la-
beling is arithmetic if the set

{{ay, ..., ap, x, y,)| the value of the finite function
with label (a;, ., az) at the number z is equal to y}

is an arithmetic set.

The key step in our proof that weakly analytic sets are
arithmetic is the following claim:

(*) for some k there exists an arithmetic labeling of the
finite functions by means of elements of N®.

In Subsecs. C.5-C.6 we shall give two dlﬁerent proofs of
this claim. In the remainder of Subsec. C.4 we shall show
how the claim implies arithmeticity of weakly analytic sets.

We could give a definition of an arithmetic labeling of
everywhere defined finite functions of two variables by
analogy with the above definition of an arithmetic labeling
of finite functions of one variable. It turns out that the ex-
istence of such a labeling follows from the existence of an
arithmetic labeling for finite functions of one variable.
Namely, if we want to label a function f from N2 to N,
we first label its “cross-sections,” i.e., the functions f, (z) =
/ (n, z), and we then label the sequence made up from
the labels of the cross-sections. More precisely, we have the
following easily proved lemma:

Lemma C.3. If v is an arithmetic labeling of the finite
functions of one variable by means of elements of N*, where
0, 0, , 0) is the label of the zero finite function, then the
followmg functwn W is an arithmetic labeling of the ﬁnzte
functions of two variables by means of elements of Neo

associates the k>-tuple {(ai, N S ar) to the
function from N2 to N whose value at the pair (p, q) is
vv(eh o ad) (@) Ve .. a) () (@)

It is easy to see that the restriction that (0, 0, .., 0)
be the label of the zero function is not essential. Any arith-
metic labeling can easily be changed so as to have this

68

property, by simply interchanging two labels; the resulting
labeling is still arithmetic.

Thus, we suppose that we have some fixed arithmetic label-
ing v of the finite functions of one variable by means of
elements of N*, and also some fixed arithmetic labeling p
of the finite functions of two variables by means of ele-
ments of N*,

For each formula in the extended language of arithmetic,
we shall construct its “translation,” which is a formula in
the language of arithmetic which says the same thing as the
original formula, but about the labels of functions rather
than the functions themselves. For convenience, we shall add
to the language of arithmetic some new variables for num-

bers: & new variables V3, ., V% for each one-place func-
tional variablev; in the extended language of arithmetic, and

k new variables W%, ., W" for each two-place functional
variable w;. Clearly, the class of arithmetic sets is not
affected by this addition—it makes no difference what
names one has for variables! We now give a precise’definition
of the translation of a formula.

Suppose that « is a formula in the extended language of
arithmetic having numerical parameters Tp» Lt

one-place functional parameters v, ., vg , and two-place
functional parameters Wy, w, . Let f be a formula of
the (usual) language of arithmetic whose parameters are
a subset of {z,, ., z,_, 27 S Vf,n, “ V;n,
W;l, . W’,‘l, o Wr, W’}s}. Then B is called
a translation of o if, for any natural numbers Zy Gy,
V,;l . Vgn, Wﬁl, . Wfs, the result of substituting
these numbers in place of the corresponding variables in
is a true statement in the language of arithmetic if and only
if the result of substituting xp , Zp,» v (Vg
k 7
Va)s v (Vi V), w (Wi, wh),
oo (W, W?) (more precisely, numerical and
functional constants which describe these numbers and
functions).in place of Tp o Tpyy Vg Vg Wrys
w,_ in the formula o is a true evaluated formula of
the extended language of arithmetic.

Theorem C.2. Every formula in the extended language of
arithmetic has a iranslation,

69

Before proving this theorem, we remark that a special

case of the theorem —the case of formulas having no function-
al parameters—obviously implies our claim that weakly
analytic sets are arithmetic: if a set is weakly associated
with a formula in the extended language of arithmetic, then
the same set is associated with the translation of this for-
mula.
p Assuming for now that translations have been constructed
for the elementary formulas in the extended language of
arithmetic, we shall show how to build up translations of
the other formulas.

Lemma C.4. 1° If § is a translation of o, then ~|B is a trans-
lation of Tle;

2° if B, and B, are translations of a; and a.,, then

(Br A B2)s (B1V B2)y (Bi—B2)s (Br < B2)

are translations, respectively, of the formulas
(@1 A &), (@1 V @), (o= ay), (@ <> ay);

3° if B is a translation of @ and Q is one of the symbols V¥
or 3, then:

Qz;f is a translation of Qzx;c,
QV.. QV?B is a translation of Quix, and
Qw.i. QW’,‘ﬁ is a translation of Cuw;o.

This lemma follows immediately from the definition of
a translation and the definition of the truth value of formu-
las. Because of the lemma, our task is reduced to translating
the elementary formulas, i.e., formulas of the form (f = u),
where £ and u are terms in'the extended language of arithmet-
ic. If we replace this formula by 3 ((t = E) A (v = E)),
where £ is a numerical variable which does not appear in
either ¢ or u, and use parts 2° and 3° of the lemma, we see
that it suffices to translate formulas of the form (¢t = §),
where ¢ is a term and £ is a numerical variable. We prove
that such a translation can be constructed using induction
on the number of steps in the construction of the term t:

1° if t is a variable or number, then the formula is its own
translation;

2°if ¢t is (u; + u,), then we replace the formula ((u, +
u;) = E), by

3, Iy (0 =M0) A (w3 =) A (E = (g + ny),
70

.-

where m; and m, are numerical variables different from E
:and not occurring in ¢, and then use the induction assumption
.and Lemma C.4;

3° the case when ¢ is of the form (u,-u,) is analogous to 2°;

4° if t is p (u), where u is a term and p is a one-place func-
tional wvariable, then we first replace the formula (p (u) =
€) by 3n((w =n) A (p (n) = E)), where 7 is a numer-
ical variable different from & and not occurring in u; hence,
it suffices to be able to translate a formula of the form
{p () = &), and this is possible because of our assumption
that an arithmetic labeling exists;

5° the case when ¢ is of the form r (u,, u,), where u, and u,
are terms and r is a two-place functional variable, is analo-
gous to 4°. @

Example 1. A translation of the formula

Va, () (2,) = v, (21))
is:
Vz; 3z, (Ithe value of the one-place function with

label (Vi{, ., Vi) at the number z, is z,] A [the value of

the one-place function with label (V;, V%) at the
number z, is z,]),

where the bracketed notation denotes the formulas in the
language of arithmetic which express the properties de-
scribed there. These formulas exist because there exists an
arithmetic labeling.

Thus, in order to complete the proof that weakly analytic
sets are arithmetic, it remains only to construct an arithmet-
ic labeling of the finite functions of one variable.

C.5. First Method of Constructing an Arithmetic Labeling—
Godel’s Method. We begin with the following observation:
it is enough to prove that there exists an everywhere defined

arithmetic function P (z,, z;, y) with the following
property:

(*) for every finite sequence of natural numbers n,, . ny
there exist a,, ., a; such that P (a,, a;, 0) = nyg,
B(ay, . ., a; 1) =ny, - B (ay, o a3, k) = ny.
(Here the values of f (a;, ., a;, y) fory > k can be arbit-
rary.) Suppose that § has this property. Let v be the map
which to every (i + 1)-tuple {(z;, . ., z;, h) associates the
finite function s (y), which equals B (z,, . Zi, y) for

y<\h and equals O for y >h, Then v is an arithmetic
7

labeling of the finite functions of one variable by means of
elements of N**: it is a labeling because of (), and it is
arithmetic because f is an arithmetic function and the
condition y<C k is an arithmetic property.

Thus, it suffices to construct a function of i + 1 variables
satisfying () for some natural number i. Following Gdédel,
we take our function to be

B (zy, x5, y) = (the remainder
when z, is divided by z, (y + 1) + 1)

The arithmeticity of this function follows from the arith-
meticity of the property “r; is the remainder when z, is di-
vided by z,,” which is expressed by the formula [z; << x,]
A Az, (z, = ((z2-x;,) + z3)), where [z3 <<z,] denotes
the formula 3Jz; (((zs + z5) + 1) = z,). To prove
(), we must use some simple facts from number theory,
whose proofs can be found in most introductory textbooks
on the subject. For the rest of this subsection we shall say
“number” when we mean “natural number.”

A number a is called a divisor of a number b if ¢ = be
for some ¢. If a is a divisor of b and ¢, then it is a divisor
of b 4+ ¢ and of b — ¢. A prime number is a number p > 1
which has no divisors other than 1 and p. Every number
can be written as a product of prime factors, and in essen-
tially only one way, i.e., two factorizations can differ only
in the order one writes the prime factors. If a product of
several numbers is divisible by a prime p, then at least
one of the factors is divisible by p. Two numbers ¢ and b
are said to be relatively prime if they have no divisors in
common except for 1. The numbers a and b are relatively
prime if and only if their factorizations into a product of
primes have no prime factors in common. If q,, .y Gy
are pairwise relatively prime, and if b is divisible by each a;,
then b is divisible by a,-a,-. .-a,.

Suppose that a,, ., ay are pairwise relatively prime.
We now consider the question: what (¥ + 1)-tuples (r,,

. ., ry) of remainders are possible when a number z is
divided by a,, ., ay? The remainder when « is divided by
a; is one of the numbers 0, 1, . ., a; — 1; thus, there are
a¢+a;-. .-ap possible (kK 4 1)-tuples of remainders. The
next lemma says that all these possibilities actually occur.

Lemma C.5 (the “Chinese remainder theorem”). Suppose
that ay, . . . , apare pairwise relatively prime,andr,, . . ., Ty

2

satisfy r;<<a; for all i. Then there exists a number x having
remainder r; when divided by a;, for each i.
p We shall call two numbers equivalent if they give the
same remainders when divided by each of the a;. If two
numbers are equivalent, then their difference is divisible
by each a;, and hence by ay-. .-a, (here we use the relative
primality of the ;). Thus, no two of the numbers 0, 1, .
ay-- -+ap — 1 are equivalent, i.e., each of these numbers
has a different (¥ + 1)-tuple of remainders. But there are
exactly as many of these numbers as there are possible
(k¢ + 1)-tuples of remainders. Thus, any (k -+ 1)-tuple
{ros ., ry) for which r; < a; for each iisa (k 4 1)-tuple
of remainders obtained by dividing some x by a,, . ., ay. B
Lemma C.6. For any n we can find a number b such that
b+1, 2b +1, ., nb + 1 are pairwise relatively prime.
The number b can be chosen to be larger than any number
specified in advance.
» We first note that if p is a common prime divisor of kb +
1 and hb + 1, then p is a divisor of their difference
(k — k) b. But p cannot divide b, since if it did we would
obtain a remainder of 1 when kb + 1 or kb + 1 is divided
by p. Hence & — h is divisible by p. From this it follows
that b + 1, ., nb + 1 will be relatively prime if they
have no common divisors less than n. This can be accom-
plished, for example, by taking b to be a multiple of 1-2- .

. .-n; then the numbers b |+ 1, ., nb +1 will each
give a remainder of 1 when divided by any number from 2 to
n. This completes the proof of the lemma. M

We can now easily prove the property (%) for our func-
tion f. Namely, suppose that n,, ., n, are arbitrary natural
numbers. We have to find z, and z, such that the remainder
when z, is divided by z, (i + 1) + 1 isr; fori<C k. Accord-
ing to Lemma C.6, we can find z, such that the numbers
z, + 1, ., 2y (k 4+ 1) 4+ 1 are pairwise relatively prime
and z, is greater than any of the numbers n,, ny. It
finally remains to choose z, using Lemma C.5.

This completes the construction of an arithmetic labeling
by Goédel’s method. In the next subsection we shall look at
another method of constructing an arithmetic labeling,
without the use of number-theoretic considerations. This
second method is due to R. M. Smullyan (see his book Theory
of Formal Systems, Princeton, 1961).

C.6. Second Method of Constructing an Arithmetic Label-
jng —Smullyan’s Method, We first introduce the notion of

73

an arithmetic labeling of finite subsets of N by natural
numbers, which is analogous to the notion of a labeling of
finite functions by means of elements of N'. Namely, a func-
tion T which associates a subset of N to every natural
number is called a labeling if every finite subset of N is
the value of v at some natural number. If t (y) = A, we
shall call y the label of the set A (relative to the la-
beling t). A labeling is said to be arithmetic if the set

{ y)lz et (@)}

is an arithmetic subset of N2,

Note that we do not require that all of the subsets corre-
sponding to natural numbers be finite. (Here the analogy
with the definition of a labeling of finite functions breaks
down.)

We shall later show that arithmetic labelings of the
finite subsets of N by natural numbers exist. But before
proving this, we shall show how this fact implies the exis-
tence of an arithmetic labeling of the finite functions of one
variable. Thus, suppose that we have an arithmetic labeling
T of the finite subsets of N by natural numbers.

Lemma C.7. There exists an arithmetic function from N?

to N which is defined on all of N?* and takes distinct elements
of N2 to distinct elements of N.
p» We take the function which takes a pair (n;, n,) to the
number which is the smallest label of the set {n,, n, + n,}.
In other words, the value of this function at (n;, n,) is equal
to k if and only if n, € T (k), n, + ny € v (k), any number
belonging to 7 (k) is equal to either n, or n, 4 n,, and any
number less than & does not have this property. All of this
can be written as a formula in the language of arithmetic,
and so our function is arithmetic. That this function ta-
kes distinct pairs to distinct numbers follows easily from
the definition. W

We now construct an arithmetic labeling of the finite
subsets of N? by natural numbers. Namely, we let the num-
ber k& correspond to the subset of N? consisting of pairs
(z, y) for which v (z, y) belongs to the set T (k), where
v is the function in Lemma C.7 and t is an arithmetic label-
ing of the finite subsets of N by natural numbers. It is
easy to see that every finite subset of N2 corresponds to
some number, and that the set {(k, z, y) | the pair (z, y)

is in the subset of [N? corresponding to the number k}
74

is an arithmetic subset of N3. (Of course, these two require-
ments are what we had in mind when we spoke of construct-
ing an arithmetic labeling of the subsets of N2.)

We are now ready to construct an arithmetic labeling of
the finite functions of one variable by means of elements
of N2. We must describe the function s that corresponds to
the pair of natural numbers (%,). Let A be the subset of
N2 which corresponds to % under our arithmetic labeling
of the subsets of N2, Given a number z < h, if there exist y
for which (z, y) € A, then s (z) is equal to the smallest
such y; if no such y exists, then s (z) = 0. Given a number
z > h, we set s (z) = 0. The function corresponding to any
pair (k, k) is a finite function, since it is zero for values
of the argument greater than .. To find a label for a given
finite function s, we first take 2 to be the greatest number at
which s has a nonzero value, and then take & to be the label
of the set {{(z, y) |2 <Ch and y = s (z)}. If we write the
definition of the labeling we just constructed as a formula
in the language of arithmetic, we see that the labeling is
indeed arithmetic.

To complete the proof by Smullyan’s method of the exis-
tence of arithmetic labelings of finite functions, it thus
remains for us to construct an arithmetic labeling of the
finite subsets of N. In the construction we shall make use
of the binary system for writing integers.

The binary representation of a natural number (except
for 0) always begins with a 1. If we agree to drop that initial 1,
then we obtain a one-to-one correspondence between the
set of all positive integers and the set of all words in the
alphabet {0, 1}. That is, the instruction “Take the number,
add 1 to it, write the result in binary, and drop the initial 1”
gives a one-to-one correspondence between the set of natural
numbers and the set of words in the alphabet {0, 1}, as
follows:

0 empty word
1 0

2 1

3 00

4 01

5 10

6 1

7 000
8 001

The words in the right column are in order of increasing
Iength, with words of the same length arranged in alpha-
betical order. We shall call an integer in the left column the
“number” of the word in the right column in the same row.
In this numbering every set of (binary) words corresponds
to a set of natural numbers. For example, the set of words
consisting only of zeros corresponds to the set of numbers
which are one less than a power of two. Using this numbering,
we say that a set of words is arithmetic, meaning that the
corresponding set of natural numbers is arithmetic. We shall
also say that a property of words is arithmetic if the set
of words satisfying the property is arithmetic. We similarly
define the notion of an arithmetic subset of ({0, 1}*)",
the set consisting of all n-tuples of words, and speak of an
arithmetic property of n-tuples of words.

We now show that certain concrete properties are arith-
metic.

1° The word X comes before the word Y in the above
ordering. In fact, this holds if and only if the number of X
is less than the number of Y

2° The word X consists only of zeros. Here, by what was
said above, it suffices to verify arithmeticity of the property
of “being a power of two,” and this follows, as explained
in Appendix B, from the fact that a number z is a power of
two if and only if every divisor of z is either 1 or an even
number.

3° The word X consists only of ones. In fact, a word con-
sists only of ones if and only if the succeeding word consists
only of zeros.

4° The word Y consists only of zeros and has the same
length as the word X. In fact, this is equivalent to requiring
that the number of Y be the largest among all numbers of
words consisting only of zeros which do not exceed the
number of X.

5° The words X and Y have the same length. This is
equivalent to the existence of a word Z consisting only of
zeros and having the same length as X and the same length
as Y; so arithmeticity follows using 4°.

6° The word X is the concatenation of the words Y and Z,
i.e., it is obtained by writing Z after Y to the right, X = Y Z.
This is the most difficult in our list of arithmetic properties.
Here the argument requires that we recall our particular
method of numbering words. Roughly speaking, this,prop-
erty is arithmetic because the number z whose binary

76

tepresentation is obtained by joining the binary represen-
tations of y and z, is obtained by multiplying y by 2(ensthot z)
and adding z. Of course, we must take into account that our
numbering system for words involves adding 1 and then
dropping the first 1 in the binary representation. We now
go through the argument in more detail.

Let z, y and z be the numbers of the words X, Y and Z.
This means that z -+ 1 is written as 1X in binary, y + 1
as 1Y, and z + 1 as 1Z. Let u be the number of the word
having the same length as Z but consisting only of zeros.
Then v -+ 1 in binary is 100 . . . O (with length of Z zeros).
If X is the concatenation of Y and Z, then multiplying
y+1 by u+1 and adding (z +1) — (v + 1) gives
z + 1. We can now conclude that our property is arithmetic,
since a formula expressing the property in the language of
arithmetic need only say: “There exists u, which is the
number of a word of the same length as Z and consisting
only of zeros, such that (y + 1)-(w +1) + (z — u) is
equal to z 4+ 1.” The clause about having the same length
as Z and consisting only of zeros can be expressed in the
language of arithmetic, by 4°.

The arithmeticity of the property of “being the concatena-
tion” easily implies that several other properties are also
arithmetic.

7° The word X is the beginning of the word Y, i.e., there
exists a word Z such that Y is the concatenation of X and Z.

8° The word X is the end of the word Y, i.e., there exists
a word Z such that Y is the concatenation of Z and X.

9° The word X is a subword of the word Y In fact, X is
a subword of Y if and only if it is the beginning of an end
of Y.

10° The word X is the concatenation of the words Y, Z
and V. Here we note that X is the concatenationof Y, Z
and V if and only if there exists a word W such that W is
the concatenation of Y and Z and X is the concatenation
of W and V.

We can similarly prove for any fixed n that the property
“Y is the concatenation of X,, .., X,” is arithmetic.

We are now ready to construct an arithmetic labeling of
the finite sets of natural numbers. Suppose that z and y
are natural numbers, and X and Y are the corresponding
words. Let U be the longest word consisting only of zeros
which is a subword of Y. We shall stipulate that the number
z belongs to the set v (y) if the word 1U1X1U1 is a subword

77

of ¥ We now prove that t is a labeling of the finite sets
of natural numbers.

Suppose that {z,, ., Zn} is a finite set of natural
numbers, and {X,, ., Xp} is the set of corresponding
words. Let U be a word consisting only of zeros which is
longer than any of the words X, X,. We let Y denote
the word

1U1X,1U1X,1U1 1U1X,1U1.

Then the number of the word Y will be a label of the set
{ry, .., z,}. This labeling is easily shown to be arithmet-
ic, using the above list of arithmetic properties of words.
This completes the construction of an arithmetic labeling
by Smullyan’s method.

D. Languages Connected with Associative
Calculi

In this appendix we shall look at examples of languages
whose sets of true statements are relatively simple in struc-
ture. These examples are connected with the so-called “asso-
ciative calculi.”

An associative calculus in the alphabet L is an arbitrary
finite set of rules which describe a type of transformation
of words in L. These rules are called two-sided substitutions,
or simply (since we shall not deal with one-sided substitu-
tions) substitutions in the alphabet L. Each substitution in the
alphabet L is written in the form

P« 0,

where P and Q are words in L and the symbol < is not a
letter of L. (For example, or <> er is a substitution in the
Latin alphabet.) A substitution rule P <« Q means that
whenever P occurs as part of another word it can be re-
placed by Q, and vice versa. We now state this more precisely
in the form of some definitions.

Given an associative calculus (i.e., a list of substitutions),
we introduce the notion of contiguity and equivalence of
words. Two words 4 and B are said to be contiguous, de-
noted 4 _| B, if there exist words P, Q, X and Y such that
(1) 4 = XPY, (2) B = XQY, and (3) at least one of the
substitutions P <> Q or Q < P is a substitution in the given

78

tssociative calculus. A finite sequence of words ((}, .

, Cp) in the alphabet L is said to be a contiguity chain
if we have C; 1 Ci4q for each i. Finally, we say that two
words 4 and B are equivalent if there exists a contlgulty
chain (C,, C,) such that C; = 4 and C,

Remark 1. If we form the quotient of the set L°° by this
equivalence relation, we obtain an algebraic system with
an associative operation (coming from the operation of
writing words next to one another). This explains the ter-
minology “associative calculus.”

Suppose we have a fixed associative calculus in the alpha-
bet L. There exists an algorithm which, given any two

words A and B in L™, determines whether or not they are
contiguous. For example, we could obtain such an algorithm
by running through all 4-tuples of words P, Q, X, Y of
length no greater than the maximum length of 4 and B,
and then checking conditions (1)-(3). Thus, the set of all

pairs of contiguous words is a decidable subset of L™ X L%
However, it is not at all obvious, except in the simplest
cases, that there exists an algorithm which determines
whether or not two words are equivalent.

Example 1. Suppose that L = {a, b, ¢} and the associa-
tive calculus is given by the following substitutions:

ab <> ba, ac < ca, bc <> cb.

Here it is obvious that 4 and B are equivalent if and only
if the number of a’s in the word 4 is equal to the number
of a’s in B, and likewise for b and c. This associative calculus
is an example of what is called a commutative calculus.

In the general situation, it is not clear how to construct
an algorithm which, given two arbitrary words, determines
whether or not they are equivalent, i.e., whether or not
there exists a contiguity chain connecting them. In fact,
A. A. Markov and E. L. Post showed that it is possible to
find an associative calculus whose equivalence recognition
problem is undecidable (in other words, for which there is
no algorithm which determines whether two words are equiv-
alent). For a proof of the existence of such an associative
calculus, see, for example, Kleene's book Introduction to
Metamathematics. Here we shall give without proof an
example due to G.S. Tseitin.

Example 2. Suppose that L = {a, b, ¢, d, e}, and the

79

agsoclative calculus is given by the following substitutions!
ac < ca, ad <>da, bc <> cb, bd <> db,
eca <> ce, edb <> de, cca <> ccae.
Tseitin showed that this associative calculus does not have
an equivalence recognition algorithm.

An associative calculus will be said to be decidable if
there exists an algorithm which recognizes equivalence in
the calculus; otherwise, the calculus will be said to be
undecidable. Clearly, decidability of an associative calculus

is equivalent to decidability of the subset of L™ X L%
consisting of all pairs of equivalent words (or decidability
of the subset of all pairs of inequivalent words).

Suppose we have a fixed associative calculus ¥ in the
alphabet L.. We let T+ (respectively, 7-) denote the set of
all words (in the alphabet L,) of the form A * B, where
A €L%, B €L%, and A4 isequivalent (respectively, inequiv-
alent) to B. Thus, 7* J T~ = L® X L* and the calculus
3 is decidable if and only if T* (or equivalently T'-) is
a decidable subset of L™ X L.

Remark 2. Note that the set 7% (or T-) for the calculus
in Example 2 is one example of an undecidable subset of

L® x L%. The characteristic function of this subset is then
an example of a noncomputable function.

Given any associative calculus in an alphabet L, we can
now speak of two languages connected with it: the positive
language, whose statements are all possible assertions that
two words in L are equivalent, and the negative language,
whose statements are all possible assertions that two words
in L are inequivalent. In both cases the statements can be

regarded as elements of the set L™ X L* In the positive
language, the word A * B will be interpreted as asserting
that A is equivalent to B; hence T'* is the set of true state-
ments. In the negative language, the word 4 x B will be
interpreted as asserting that A is inequivalent to B; hence
T- is the set of true statements.

Recall that in Subsec. 1.1.3 we agreed to define a language
by giving a fundamental pair. Thus, suppose we have a fixed
alphabet L and an associative calculus J in this alphabet.
We shall call (L,, 7'*) the fundamental pair of the positive
language connected with J, and (Ly, T~) the fundamental
pair of the negative language connected with J.

We shall be interested in whether there is a complete and

80

consistent deductive system for (L., T*) and for (L, T-).
We shall see that this question always has a positive answer
in the first case, while in the second case the answer depends
upon whether the calculus J is decidable.
Lemma D.1. The set E of all contiguity chains is a de-

cidable subset of L.
p This lemma follows from the existence of an algorithm
which determines whether an arbitrary pair of words in L™
satisfies the contiguity relation. l

Theorem D.1. In any associative calculus the set of all pairs
of equivalent words is enumerable.
p We define a function ¢ on L] by setting

¢ (CyxCy* *xCp)=C,%C,

for each word C;*C, . .xC,, where each C; is a word
in the alphabet L. Then two words 4 and B are equivalent
if and only if A *B = ¢ (C) for some contiguity chain C.
That is, T* = @ (E), where E is the set of all contiguity
chains. The set E is a decidable subset of L, by Lemma D.1,
and so is enumerable (by Lemma 2 of Sec. 2). But ¢ is obvi-
ously a computable function; hence, the set ¢ (E) = T'*
is enumerable, as was to be proved. W

Remark 3. Thus, in an undecidable calculus the set T+
is an example of an enumerable but undecidable subset of

the enumerable set L™ X L*. By Lemma 3 of Sec. 2, such
a subset is also an example of an enumerable set with non-
enumerable complement. See also Remark 5 below.
Corollary of Theorem D.1. There exists a complete and con-
sistent deductive system for the fundamental pair of the positive
language connected with an arbitrary associative calculus.
Remark 4. To obtain the deductive system in the corollary,
there is no need to refer to Theorem 1 of Sec. 2. We can sim-
ply choose the deductive system (L., E, ¢), where £ and ¢
are as in the proof of Theorem D.1; it will be a complete
and consistent deductive system for the fundamental pair
(Lg, T*). This deductive system is quite natural from an
intuitive point of view, since the best way to show that two
words A and B are equivalent is to exhibit a contiguity chain
connecting them.
We now ask about a deductive system for (L, 7).
Theorem D.2. Given an associative calculus, the set of all
pairs of inequivalent words is enumerable if and only if the
calculus is decidable.

» We first recall that L™ X L% is enumerable (see Exam-

1/9 6—0974 81

ple 6 in Sec. 2). Suppose that the calculus is decidable. Then

T- is a decidable subset of L™ X L%, and so T~ is enumer-
able, by Lemma 2 of Sec. 2. Now suppose that, conversely,
T- is enumerable. Since its complement T'* in the enumerable

set L™ X L% is also enumerable, by Theorem D.1, it follows
by Lemma 3 of Sec. 2 that T~ is a decidable subset of

L* X L%, and so our associative calculus is decidable. W

Remark 5. Thus, if we have an undecidable associative
calculus, T+ will be an example of an enumerable set with
nonenumerable complement (in an enumerable, larger set).
By Lemma 3 of Sec. 2, any such example is also an example
of an enumerable set which is undecidable (relative to the
enumerable, larger set). Thus, the existence of an enumer-
able but undecidable set, which we proved in Sec. 5, can
also be obtained as a corollary of the existence of undecidable
associative calculi. But it should be mentioned that the
usual proofs that some associative calculus is undecidable
rely upon the existence of an enumerable undecidable set
(this is true of Example 2, for instance). Thus, the latter
fact should be proved without relying upon the existence
of undecidable associative calculi.

Corollary of Theorem D.2. There exists a complete and
consistent deductive system for the fundamental pair of the
negative language connected with an associative calculus if
and only if the calculus is decidable.

Given an arbitrary associative calculus J in the alpha-
bet L, we now introduce its universal language, whose state-
ments consist both of assertions that two words are equiv-
alent and assertions that two words are inequivalent.
Here we need a way to distinguish between the two types
of statements. For this purpose we add one more letter]
to the alphabet L, where we are supposing that 7|, like the
symbols <> and =, are not letters in L. We let L’ denote
the alphabet L |J {#, 7]}. Now we let "|7~ denote the set
of all words of the form "|P, where P € T-. We set T° =
T+ "] T-, and form the fundamental pair (L', 7°). It is
natural to interpret an element ¢t of 7° as a true statement
about the equivalence (if ¢ € T'*) or inequivalence (if ¢t € |7 ")
of two words.

Theorem D.3. Given any associative calculus J, the corre-
sponding set T° is enumerable if and only if the calculus is
decidable.

» If J is decidable, then '~ is enumerable, by Theorem D.2,
and so |T- is also enumerable (see Example 5 in Sec. 2).

82

Then 7° is enumerable, by Lemma 5 of Sec. 3. Now suppose
that T° is enumerable. We form the set 7JL’* of all words
in the alphabet L’ which begin with 7]; this set is enumer-
able (see Examples 2 and 5 in Sec. 2). By Lemma 5 of Sec. 3,
the intersection 7° 7] L'~ is enumerable. But 7° | T|L'® =
7]T-. Hence "|T- is enumerable, and then so is 7~ (see
Example 5 in Sec. 2). But then the calculus J is decidable,
by Theorem D.2. W

Corollary. There exists a complete and consistent deductive
system for the fundamental pair of the universal language
connected with an associative calculus if and only if the cal-
culus is decidable.

E. Historical Remarks

One of the truly great mathematicians of the 20th century
(and undoubtedly the greatest mathematical logician) was
Kurt Godel. He was born on 28 April, 1906 in Brno, in what
was Austria-Hungary and is now Czechoslovakia. From
the 1940s until his death on 14 January, 1978, Gédel worked
at the Institute for Advanced Study in Princeton. The
name Godel is connected with the most important theorems
in mathematical logic: the completeness theorem for pre-
dicate calculus (1930), the incompleteness theorem for
arithmetic (1930), and the theorem on consistency of the
axiom of choice with the continuum-hypothesis (1938).

The completeness theorem for predicate calculus says that
it is possible to find a complete and consistent deductive
system for the language of the logic of predicates. More
precisely, Godel proved that a particular concrete deductive
system (that was known before) fulfills this role. Thus, in
that deductive system one can prove all true statements of
predicate logic, i.e., any formula which expresses a “law
of logic”; and it is impossible to prove any other formula.
Here by a “law of logic” we mean a formula whose truth
is preserved regardless of the meaning ascribed to the various
names in the formula.

On the other hand, the incompleteness theorem for arith-
metic—to which the present book is devoted—says that we
do not have this situation in arithmetic. Not only do all
known deductive systems fail to be consistent or else fail
to be complete, but it is inherently impossible to find a com-
plete and consistent deductive system. As explained above

6% 83

in the main text, this means that there is no possible notion
of a formal proof which would lead to all the truths of arith-
metic and only the truths of arithmetic being provable.
Below we shall state the incompleteness theorem in the form
given by Godel himself.

The theorem on consistency of the axiom of choice and
the continuum-hypothesis says that set theory remains con-
sistent if we add both the axiom of choice and an axiom
expressing the continuum-hypothesis, provided that it was
consistent before these two axioms were added. This theorem
of Gédel's was the first fundamental result in the study of
the consistency of the assertions of set theory. To a large
extent it changed our way of thinking about the meaning
of set-theoretic statements, and gave rise to a new line of
investigation in mathematical logic.

Godel’s theorems are discussed in more detail in the books
cited in Bibliography at the end of the book. Godel was
responsible for many other important concepts and results,
such as the first definition (in 1934) of the notion of a recur-
sive function (Herbrand-Gédel recursiveness). We shall
not attempt to list all of G6del’s contributions here, rather
we shall use the remainder of this appendix to describe
Godel’s original formulation of the incompleteness theorem.

Godel’s famous paper “Uber formal unentscheidbare Sitze
der Principia Mathematica und verwandter Systeme I”
(“On formally undecidable propositions of Principia Mathe-
matica* and related systems I”) was published on p. 173-198
of the first issue of vol. 38 (1931) of the Leipzig journal
Monatshefte fiir Mathematik und Physik (it was presented on
17 Nov., 1930). A preliminary synopsis of the results was
published in the Viennese journal Anzeiger der Akademia der
Wissenschaften in Wien, Mathematischnaturwissenschaftliche
Klasse, no. 19 (1930) (report of meeting held on 23 Oct., 1930).

In this paper Godel showed that for a large class of formal
systems there must inevitably exist an undecidable state-
ment, i.e., a statement such that neither it nor its negation
can be derived from the axioms of the given system. The
papesr contained the following theorem (Theorem VI on
p. 187):

For every w-consistent recursive class % of formulas

there exists a recursive class formula r such that neither

* The epic monograph on mathematical logic by A. Whitehead
and B. Russell, Principia Mathematica, Cambridge, 1925.

84

v Gen r nor Neg (v Gen r) belongs to Flg (x) (where v is
a free variable in the formula r).

Some words of explanation are needed for this formulation.
The discussion below will suppose that the reader has a
rudimentary acquaintance with some facts from mathemati-
cal logic.

Gdodel’s theorem here is speaking of the formulas in a cer-
tain formal system P, which is constructed on p. 176-178
of the paper. Rather than taking the time for a precise
description of this formal system, we shall be content simply
to give the following quotation from Gédel: “In essence, P
is the system which is obtained if one supplements the Peano
axioms with the logical structure of Principia Mathematica
(with numbers as the individua and the ‘follows after’
relation as an undefined notion)” (p. 176).

The italics in Godel's theorem have a special meaning.
They indicate that we are not speaking directly about symbol
combinations in the formal system (variables, formulas,
etc.), but are rather referring to the numbers of these symbol-
ic expressions in some fixed numbering system (now called
the Godel numbering). For example, a class formula is a
formula with one free variable. Hence, a class formula is
a nonnegative integer which is the number of a class formula.

The notation v Gen r stands for the number of the formula
obtained by putting the universal quantifier and the vari-
able with number v in front of the formula with number r.
Neg (v Gen r) is the number of the negation of the formula
with number v Gen r. Fig (x) denotes the class of numbers
of the formulas which are deducible from the formulas whose
numbers form the class %. (In the deductions the axioms
can be used, so that here x can actually be regarded as being
combined with the axioms of the original system.)

We shall not define what “recursive classes” and “recursive
formulas” are. These terms refer to the possibility of de-
fining the classes and formulas under consideration by means
of primitive recursive functions (which are called simply
“recursive functions” in Goédel's paper).

The property that a class be ®-consistent is a stronger
condition than simple consistency. (Later, Rosser strength-
ened Godel's original formulation of the theorem by showing
that w-consistency can be replaced with a weaker consistency
condition.) Whereas a class is consistent if it is impossible
to derive both a formula and its negation, a class is ®-con-
sistent if it is impossible to derive both a formula of the

85

form “there exists z such that W (z)” and also all formulas
of the form “not U (0),” “not U (1),” “not N (2),” and so on.
In the notation of Goédel’s paper, a class x of formulas (i.e.,
numbers of formulas) is said to be w-consistent if there does
not exist a class formula a for which: (1) Neg (v Gen a) €
Flg (»), and (2) Sb (aZw) € Flg () forall n. Here Sb (azq)
denotes the number of the result of substituting the formula
with number Z (r) into the formula with number @ in place
of the variable with number v; Z (r) is the number of n.

Thus, Theorem VI says that for any class of formulas which
satisfies certain conditions there exists a formula having
a rather simple form such that neither this formula nor its
negation can be derived from the class. Since Peano’s
axioms of arithmetic are the central ingredient in the forma}
system P upon which this theorem is based (recall that the
theorem refers to the formulas of this system and deducibil-
ity using the rules of this system), Godel’s theorem is often
interpreted as a statement about the incompleteness of for-
mal arithmetic. Here incompleteness should be understood
from the syntactic point of view (see Appendix A).

Remark 1. 1f we regard the system P as being formal arith-
metic, then the incompleteness of formal arithmetic is only
a very special case of Theorem VI obtained by taking » = g.
Here the theorem guarantees incompleteness provided that
P itself is w-consistent, i.e., its class of axioms is w-con-
sistent. In this special case Flg (%) consists simply of the
numbers of all formulas that are provable in P.

Remark 2. To be sure, the undecidable formula in Theo-
rem VI—namely, the formula with number v Gen r—does
not have an arithmetic character, i.e., it is not written
in the simplest arithmetic language. However, in this con-
nection Godel’s paper contains some important further
results. On p. 193 we find the following Theorem VIII:

In any formal system as in Theorem VI, there exist
undecidable arithmetic statements.
Here a formula is said to be “arithmetic” if it is constructed
using variables indexed by natural numbers, the equality
relation, and the addition and multiplication operations.

It should be noted in passing that the symbols =, +
and are not in the original alphabet of P. Thus, an “arith-
metic formula” can only really exist in a suitable extension
of P. In P itself these symbols must be regarded as abbre-
viations. For example, on p. 177 of Gédel's paper, the expres-
sion z;, = y, is defined to be an abbreviation for the formula

86

“aLIl (24 (21) D x5 (¥1))," where z,II is Godel’s notation
for what we denoted Vz,. (Godel's paper does not give the
analogous definitions for z + y and 2 — y.)

Remark 3. As Godel himself noted (p. 190), his proof of
Theorem VI not only applies to the concrete system P in
his paper, but also for any system satisfying the following
two fundamental properties:

(1) the system’s axioms and rules of deduction can be
defined recursively;

(2) any recursive relation can be defined within the
system.

As Godel notes, these properties hold for the axiom sys-
tems of Zermelo-Fraenkel and von Neumann for set theory,
and also for axiomatic number theory based on the
Peano postulates and recursive definitions. Thus, there are
undecidable propositions in each of these systems, as
we see by setting x = g in the theorem (see Remark 1
above).

Of course, the incompleteness result for each of these
systems requires that the system be w-consistent. In all
concrete cases, this consistency should be viewed as a work-
ing hypothesis, which comes from our belief in the reason-
ableness of the system, i.e., our confidence that itis a true
reflection of a certain reality.

F. Exercises

This appendix contains exercises for various sections of
the book. The starred exercises are the more difficult ones.

Exercises for Sec. 2

2.1.fShow that in any set the union or intersection of two
decidable subsets is a decidable subset.

2.2. Show that the union or intersection of two enumerable
sets is enumerable.

2.3. Show that if the graph of a function is enumerable—
then the function is computable. (The converse is proved in
Sec. 5.

2.4.)Show that if 4 < N is decidable (or enumerable),
then {z | 2z € A} is decidable (respectively, enumerable).

2.5. Show that if A = N 1is enumerable, then B =

87

{x| 3k €N (kx € A)} is enumerable. (But if A4 is de-
cidable, it does not necessarily follow that B is decidable;
see Exercise 5.16).

2.6. Show that the set N?® of all triples of natural numbers
is enumerable.

2.7. Prove that a set A — N is enumerable if and only
if it is a projection of some decidable subset R of the set N2.

2.8. Show that if A is a decidable subset of B and C is a
decidable subset of D, then A X C is a decidable subset of
B x D.

2.9. Prove that any infinite enumerable set P can be enu-
merated by a computable function without repetitions, i.e.,
there exists a computable function p defined on all of N
such that P2 = {p (0), p (1), .} and p (r) 5= p (m), when
n = m.

2.10. Let A be some set of natural numbers. We define the
direct listing of A to be the function which takes 0 to the
smallest element in 4, 1 to the next smallest element in A4,
and so on. (If A is a finite set, then the direct listing is not
an everywhere defined function.) Prove that 4 is a decidable
subset of N if and only if its direct listing is a computable
function.

2.11. Show that an infinite enumerable set P = N always
has an infinite subset which is a decidable subset of N.

2.12. Let A and B be enumerable sets with nonempty
intersection. Show that there exist enumerable sets 4, and
B, such that A UB =4, U By, 4, NB,% g, A, 4,
B, < B.

2.13. Let P be an enumerable subset of N2. Show that
there exists a computable function f from N to N which
is defined on all z such that (x, y) € P for some y and whose
value at such an z is one of those y’s (i.e., (z, f (z)) € P
for all x on which f is defined).

2.14. Derive the fact in Exercise 2.12 as a consequence
of Exercise 2.13.

2.15. A set A of natural numbers is said to be computably
infinite if there exists an algorithm which, given =n, finds
a list of more than n distinct elements of 4. Prove that
the following properties are equivalent:

1° A is computably infinite;

2° A contains an infinite enumerable subset;

3° A contains an infinite subset which is a decidable
subset of N;

4° there exists a computable function from N to N which

88

is defined on all natural numbers and has that property
that f (n) €4 and f (n) = n for all n.

2.16*. Prove, that there exists an infinite set which is
not computably infinite.

2.17. Prove that the following function f is computable:
f (») = 1 if one can find at least » nines in a row in the
decimal expansion of x; f (n) = O otherwise. (If we replace
“at least” with “exactly” in the last sentence, then it is not
known whether or not the resulting function f is com-
putable.)

2.18*%. Is the following a decidable subset of N?: take all
pairs (m, n) of natural numbers such that nz= 0 and
m/n << e? (Here e is the base for natural logarithms.)

2.19*. Is the function which takes the natural number n
to the nth digit in the decimal expansion of ¢ a computable
function?

2.20. Show that the following conditions on a real number
z are equivalent:

1° there exists an algorithm which, given =, finds p and ¢

such that ¢5= 0 and | p/g — z | < 1/n;

2° the set {(p, q) | g5 O and p/q << z} is decidable;

3° the function which takes n to the nth digit in the

decimal expansion of z is computable.

If the conditions in Exercise 2.20 hold, then z is called a
computable real number.

2.21*. (Continuation of Exercise 2.20.) The sum, product,
or quotient of two computable real numbers is computable;
and any root of a polynomial with integer coefficients is
computable. Prove these facts.

2.22. (Continuation of Exercise 2.20.) Prove that there
exist real numbers which are not computable.

Exercises for Sec. 3

3.4. We say that an everywhere defined function f from

K% to L™ reduces the set A — K* to the set B — L* if
the conditions z € A and f (z) € B are equivalent for all

z € K® (Thus, we “reduce” the problem of whether z be-
longs to A to the problem of whether f (x) belongs to B.)
Show that if B is decidable (or enumerable) and if there is
a computable function which reduces A to B, then 4 is also
decidable (respectively, enumerable).

3.2. (Continuation of Exercise 3.1.) Show that if 4 is
undecidable (or nonenumerable) and if there is a computable

7—0974 89

function which reduces 4 to B, then B is also undecidable
(respectively, nonenumerable).

3.3. (Continuation of Exercise3.1.)Show thataset X — iN
is expressible by means of the fundamental pair (L, T)
if and only if there is a computable function which reduces
X to T.

3.4. We say that two sets 4 and B of natural numbers are
almost everywhere equal if their differences AN B and B\ 4
are finite. Prove that a set which is almost everywhere
equal to a decidable set is decidable, and that a set which

is almost everywhere equal to an enumerable set is enumer-
able.

Exercises for Sec. 4

4.4. Add a new quantifier V, meaning “for all even” to
the language of arithmetic. That is, V. Eo is true if the
closed formula Sﬁ o is true for all even n. Show that the
class of arithmetic sets does not change as a result of doing
this.

4.2. Let o, B and y be any closed formulas. Show that
the following closed formulas are true:

(@) (@ A (@—B)—B;

(b) @A BV V)< (@A B) V(@ A 9Y);
(¢) @—=>(PB—=>17) <z A B)—>7)

(d)) (e—=>v) A B—=7v) *»((a V B) =)

0 o)< («'a Y8 A . o
o > < ((0 —> —a));

D @V] ClaA |B)

4.3. Let oo be a formula having no parameters other
than E.

Show that the following closed formulas are true:

(a) V& — 3Ea;

(b) VB 32 Ja;

(¢) 13 < VE]a.

4.4. Prove that the class of arithmetic sets remains the
same if we eliminate the symbols \/, -, <>, and 3 from

90

the language of arithmetic (the symbols], A, and V
remain).

4.5. Show that the following sets are arithmetic:

{z | z is divisible by 3},

{z | = is a power of 3},

{z | the last decimal digit in z is 7},

4.6*. Show that the set {z | z is a power of 10} is arith-
metic.

4.7. Prove that any arithmetic set is associated with some
formula which does not contain any numbers.

4.8. Prove that there exists a set which is not arithmetic.

Exercises for Sec. 5

5.1. Show that the following properties are equivalent:
(a) X is an enumerable set; (b) X is the domain of definition
of some computable function; (¢) X is the set of values of
some computable function.

5.2. Prove that for every computable function f there
exists a computable function g with the following property:
g (y) is defined if and only if y is in the set of values of f,
and in that case f (g (¥)) = y.

5.3. Prove that if f is a computable function from N
to N, then the set {z | f () = 1986} is enumerable.

5.4. Show that there does not exist a function from N?
to N which is universal for the class of all everywhere
defined functions from N to N.

5.5. Show that there does not exist a function from N2
;;qo N which is universal for the class of all functions from

to N.

5.6. Let o be a function from which no computable func-
tion can be everywhere different. Show that the set
{x | @ () = 1986} is enumerable and undecidable.

5.7. Prove that there exists a nonenumerable set with
nonenumerable complement, and that this set can be chosen
to be arithmetic.

5.8. Let F be a computable function from N? to N. We
shall call n the number of the function F, relative to F.
We shall say that the numbering given by a function F’
reduces to the numbering given by F if there exists an every-
where defined computable function 2 from N to N which
takes the F'-number of a function to the F-number of the
same function, i.e., Fp;) = Fj. Show that there exists a
function F from N2 to N such that the numbering given by

T i

£’ reduces to the numbering given by # for any function F’
from N2 to N. Show that a function with this property must
be a universal function. Such functions are called principal
universal functions.

5.9. Let F be a computable function from N2 to N.
Show that the sets {n | F, is defined on a nonempty set}
and {n | F, takes the value 1986} are enumerable.

5.10. Show that there is a computable function F from N?
to N such that the set {rn | F,, is defined on a nonempty set}
is an enumerable set with nonenumerable complement.

5.11. Show that there exists an enumerable set P — N?
whose set of lower points, i.e.,

{(z, y)| (@, y) €P and Vy' <y ({z, y') & P)},

is a nonenumerable set.

5.12. Let P be a subset of N X N. Let P, denote the
set {x €N | (n, z) € P}. Prove that if P is enumerable,
then all of the P, are enumerable. Show that there exists
an enumerable set P such that all enumerable subsets of N
occur among the P,. Such a set P is said to be universal
for the class of enumerable subsets of N.

5.13. (Continuation of Exercise 5.12.) Prove that, if P is
an enumerable set which is universal for the class of enu-
merable subsets of N, then the set {z | (x, z) ¢ P} is not
enumerable, and hence {z | (z, z) € P} is an enumerable
set with nonenumerable complement.

5.14. Prove that there does not exist a decidable subset R
of N2 such that all decidable subsets of N occur among the
cross-sections R, = {z € N | (n, z) € R}.

5.15*, Show that there exists an enumerable set of natural
numbers whose complement is infinite but does not contain
an infinite enumerable subset (i.e., the complement is not
computably infinite).

5.16. Show that there exists a decidable subset B of N
such that the set {z |3k €N (kx € R)} is not decidable.

Exercises for Appendix A

A.1. Prove that if 4 and B are not separable, then neither
A nor B is decidable.

A.2. Show that there exist three enumerable sets A, B
and C such that any two of them are disjoint but inseparable.

A.3. Prove that if A and B are enumerable subsets of N
and 4 J B = N, then AN B and B\ 4 are separable.

92

A.4. Show that there exist sets 4, B« N such that
there is no arithmetic set.which separates 4 from B.

Exercises for Appendix B

B.1. Prove that the projection of an arithmetic set on
any set of axes (in the sense explained in Sec. 2) is an arith-
metic set.

B.2. Prove that the composition of arithmetic functions
is an arithmetic function. Prove that if an arithmetic func-
tion has an inverse, then that inverse function is arithmetic.

B.3. Prove that any arithmetic function from N to N
has an everywhere defined arithmetic extension.

B.4. Prove that the class of arithmetic sets is the smallest
class which includes the sets in Example 6 of Appendix B
and which satisfies Lemmas B.1-B.4.

B.5*. We define the quantifier depth of a formula as fol-
lows: the quantifier depth of an elementary formula is 0,
the quantifier depth of a formula of the form] is equal
to the quantifier depth of a; the quantifier depth of a formula
of the form (a A B), (@ V B), (@ —> B) or (o «> B) is equal
to the maximum of the quantifier depths of o and f; and
the quantifier depth of a formula of the form 3o or VEa
is 1 greater than the quantifier depth of a. Prove that for any
natural number k& the set of true closed formulas of the lan-
guage of arithmetic whose quantifier depth is no greater
than % is an arithmetic set.

B.6*. Prove that for any numbering of the closed formulas
of the language of arithmetic and any numbering of the
class formulas the two sets {n | the nth closed formula is
true} and {(m, n, k) | k is the number of the closed formula
obtained as the result of substituting » in place of z, in
the mth class formula} cannot both be arithmetic sets.

Exercises for Appendix C

C.1. Prove that the following functions are address-
computable:

(a) 1 () = 2%

(b) f (z, y) = a¥;

(¢) f (z) = the zth prime number;

(d) f (z) = the sum of the decimal digits of x;

(e)* f (z) = the zth decimal digit of e.

C.2*, Show that the class of address-computable functions

93

from N to N would not change if we limited ourselves to
some fixed number of registers, for example, if we did not
allow any registers with numbers greater than 100 to be used
in an address program.

C.3. Show that the class of address-computable functions
would not be enlarged if we allowed commands with register
numbers given indirectly, that is, commands of the form
R (a) <- R (R (b)) and R (R (b)) < R (a). These commands
say that the number in the register whose number is the
number in register R (b) is transferred to the ath register,
and conversely.

C.4. Show that the following sets are weakly analytic:

(@) {(z, y, 2) |z = a¥};

(b) {{z, y) | « is the yth prime number}.

C.5. Prove that every weakly analytic set is analytic.
(Show this without using the theorem on arithmeticity of
weakly analytic sets.)

C.6*. Prove that for any computable numbering of the
words in 4> the numbers of the true statements of the
language of arithmetic form an analytic set.

C.7*. Show that the class of analytic sets does not change
if we eliminate the two-place functional variables from the
extended language of arithmetic.

C.8*%. Prove that if all functions are taken to be admis-
sible, then the set of true closed formulas of the extended
language of arithmetic is not analytic, but that if only the
finite functions are taken to be admissible, then the set of
true closed formulas is analytic.

C.9*%. We say that a set P = N is address-enumerable
if either it is empty or else there exist address-computable
functions g;, .., gy from N to N, defined on all of N,
such that P = {(g, (n), .., g (»)) | n € N}. Prove (with-
out using the protocol axiom) that the graph of an address-
computable function is address-enumerable.

C.10*. Prove (without using the program axiom) that
there exists an address-computable function from N2 to N
which is universal for the class of address-computable func-
tions from N to N.

Exercises for Appendix D

D.1. Suppose that L = {a, b}, and our associative cal-
culus is given by the substitutions a <> aa, b < bb. Is this
associative calculus decidable?

94

D.2. Prove that any associative calculus with a one-letter
alphabet is decidable.

D.3. Associative calculi are examples of the more general
concept of calculi. This concept is perhaps as fundamental
as the notion of an algorithm. The main difference between
a calculus and an algorithm is that a calculus permits certain
actions to be performed, whereas an algorithm prescribes
such actions. If we replace two-sided substitutions by one-
sided substitutions (which allow us to replace the left side
by the right side, but not vice versa), then formulate a rule
telling us which substitution should be formed and in what
place in the word, and finally specify when the processing
of a word will be considered to be complete, we are going
from a calculus to an algorithm. (Itisin this way that the
normal algorithms used by A. A. Markov to prove the exis-
tence of undecidable associative calculi are obtained). In
this exercise we shall consider an algorithm which is some-
what similar to this type.

This algorithm is applicable to words in the alphabet
{a, b}. It consists of the following instructions:

(1) If the word begins with a, i.e., if it has the form aP,
where P is a word, then transform it to Pb.

(2) If the word has the form baP, then transform it to
Paba.

(3) Repeat these transformations until a word of the form
aaP is obtained. At this point the algorithm ends, and the
result of the algorithm is the word P.

What happens if this algorithm is applied to the words
babaa, baaba, and abaab?

D.4. Construct an algorithm which decides the associative
calculus in the alphabet {a, b, ¢} which is given by the
following substitutions:

b < acc,
ca <> acce,
aa <,

bb -,

cCcCeC >

where the right side of the last three substitutions contains
the empty word.

9o

G. Answers and Hints for the Exercises

In this appendix we shall give answers or hints for some
of the exercises in Appendix™ F.

2.2. See Sec. 3.

2.3. If the graph of f is {{p (n), ¢ (r)) | n € N}, then
f (z) = q (the least n for which p (n) = 2).

2.4. See Lemma 6 in Sec. 3.

25. f A={f(n)|n €N} and' b € B, then B is the
image of N® under the function g defined by setting

“h, it kh=
gk =] o if kh=1(n),

b, otherwise.

2.6. See Corollary 1 of Lemma 4.

27.If A = {f (n) | n € N}, then 4 is a projection of the
set R = {{f(n), n) | n €N}

2.9. Suppose that the function f enumerates the set P.
We can obtain the desired sequence p (0), p (1), . from
the sequence f (0), f (1), .. by crossing out repetitions,
’ic.e., discarding those f (r) for which f (r) = f (k) for some

< n.

2.11. Use Exercise 2.9 to write P as {p (0), p (1), 3
choose a computable monotonically increasing function (by
discarding any terms which are less than earlier terms),
and apply 2.10.

2.12. Fix enumerations a and b of the sets 4 and B: 4
{fa(?)]i €N}, B={b(i)|i€N}. Consider the sequence
a (0), b (0), a (1), b (1), . Put the numbers which first
appear in the even places in the set 4,. Put the numbers
which first appear in the odd places in the set B;.

2.13. Fix an enumeration of P. Then the value of f at z
is the number y such that the pair (x, y) appears in the enu-
meration of P earlier than all other pairs (z, z), i.e., all
other pairs whose first element is z.

2.14. In N2 consider the set (4 X {0}) U (B X {1}),
and apply 2.13.

2.15. Use 2.11 to prove 2° = 3°.

2.16. We must construct a set / which does not contain
a single infinite enumerable subset (see 2.15). The family of
all infinite enumerable subsets is countable. Let W,, W,, ..
be all such sets. We shall construct I in steps, where in the
ith step we arrange for W; not to be a subset of I and for
to contain at least i elements. At the zeroth step we choose
an element a, in W, and agree that @, will not be in I, there-

96

by ensuring that W, d- I. At the ith step we choose an
element a; in W; which has not yet been included in I
(this can be done, since W; is infinite, and only finitely many
elements have been put in I in the course of the first i steps).
By agreeing not to put a;in/, we ensure that W; d- I. In
order to be sure that I contains at least i elements at the
ith step, we proceed as follows: we choose any i numbers
which we have not yet barred from membership in I (this
can, of course, be done, since only i + 1 numbers have
been barred from membership in 7 when we're at the ith
step). We take I to be the union of the finite sets of i numbers
chosen at the ith step.

2.17. The function f either is identically 1 or else is one
of the functions g;, where

1 for z<i,

8:(2) { 0 for z>i.
All of these functions are computable.

2.18. Yes, it is. If we compute e with increasing precision
(for example, by means of the well-known series of reci-
procal factorials), we sooner or later find out whether m/n << e
or m/n > e. (Equality is impossible, since e is irrational.)

2.19. Yes; see Exercise 2.18.

2.20. It suffices to treat the case of irrational z, since all
three conditions hold for rational =.

2.22. The set of all real numbers is uncountable, whereas
the set of all computable real numbers is countable, since
the number of computable real numbers is no greater than
the number of algorithms which compute them.

3.1. See Lemma 6 in Sec. 3.

3.2. This obviously follows from Exercise 3.1.

4.1. The formula V, z,o can be replaced by the formula
Vz, (Iz, even] > a).

4.2. Consider all eight possibilities for the truth or falsity
of the closed formulas «, B, 7.

4.4. Use the relations in Exercises 4.2 (parts (1) (j), (k))
and 4.3 (part (b)).

4.5. See Examples 1, 3, and 5 in Appendix B.

4.6. See Appendix C.

4.7. Any formula of the form (z = n) can be replaced by
an equivalent formula with no numbers. For example,
(z = 0) is equivalent to (x + x = z); (zx = 1) is equivalent
to (z-z =z) A\ |(zx + z = z); (x =2) is equivalent to

97

y((y=1)N(x=y+y) (where (y=1) is replaced
by the equivalent formula without the 1); and so on.

4.8, The family of all arithmetic sets is countable,
whereas there are uncountably many subsets of N.

5.1. See Corollary 1 of the protocol axiom. To prove that
(a) > (b), note that the set of values of an everywhere
defined function f coincides with the domain of definition
of the function g defined as follows: g (n) = (the least k for
which f (k) = n).

5.2. See Exercise 2.13.

5.3. This set is a projection of the set:

(graph of f) N (N X {1986}).

5.4. If G is an everywhere defined function from N2 to N,
then the function g defined by setting g (z) = G (z, z) + 1
cannot be one of the functions G,. Hence G is not universal.

5.6. If the set M = {zr | a () = 1986} were decidable,
then the function p defined by setting

1986, if 4 M,
f’(“")_{ 0, if zeM,

would be a computable function which is everywhere dif-
ferent from o.

5.7. Let P be an enumerable undecidable subset of N.
Then (P X {0}) U (N\P) X {1}) is the desired set.

5.8. Let G be a computable function from N?® to N which
is umversal for the class of all computable functions from
N2 to N in the following sense: any computable function
from N2 to N occurs among the functions G, defined by the
formula G, (z, y) = G (n, z, y). Consider the function F
from N? to N which is defined by setting

F (k, z) = G (€ (k), n (k), x),

where & and n are the functions in the proof of Lemma 5
in Sec. 3. This F will be the desired function.

5.9. They are projections of the set (graph of f) and the
set (graph of f) N (N X N x {1986}).

5.10. Let f be a computable function from N to N with
undecidable domain of definition. Set

F (m, n)={

f(m), if m=n,
undefined, if m #n.

5.11. Let K be an enumerable undecidable set. Then set
P = (Kx{0}) UM x {1}).

5.12. Take P to be the domain of definition of a computable
function which is universal for the class of computable func-
tions from N to N.

5.13. If Q = {z | (x, z) ¢ P} were an enumerable set,
then it would coincide with P, for some n; but this is impos-
sible, since n €Q - n ¢ P,,.

5.14. If R is a decidable subset of N2, then the set S
defined by setting S = {z | (z, z) ¢ R} is a decidable sub-
set of N which is different from all cross-sections of R.

5.15. The solution can be found in § 8.1 of Rogers’ book
(see Bibliography).

5.16. Let p (0), p (1), . .. be a listing of the elements
in the enumerable undecidable set P. Then R = {(p (i)th
prime number) *| i € N}is a set with the desired property.

A.1. If A were a decidable set, then it would be a decidable
set separating 4 from B.

A.2. Take A, B and C to be the sets {z | a (z) = 0},
{x|a(z) =1}, and {2 | @ (z) = 2}, where a isa comput-
able function from which no computable function can be
everywhere different.

A.3. Use Exercise 2.12.

A.4. A and B can be taken to be nonarithmetic sets which
are the complements of one another in N.

B.3. For an everywhere defined arithmetic extension of

the arithmetic function f, we can take the functioan defined
by setting

~ [1(n), if {(n) is defined,
fm) = ’ 0, if f(n) is undefined.

B.4. If a class of sets contains the sets in Example 6 of
Appendix B and satisfies Lemmas B.1-B.4, then it contains
the sets which are associated with formulas of the type
(t = s) and the sets which are associated with all formulas
which are constructed in the various ways from the elemen-
tary formulas, i.e., it'contains all arithmetic sets. (The proof
uses induction on the length of the formula with which
a set is associated.)

B.5. Prove this by induction on k. If £ = 0, the assertion
follows because our set is decidable. The induction step
from k& to k + 1 proceeds as follows. Let By be the set of
true statements having quantifier depth at most k. Let
Apy, and E, ., be the sets of true statements of quantifier

99

depth at most k + 1 which begin with the quantifiers V
and 3, respectively. Use arithmeticity of B, to prove that
Ap4qy and Epy; are arithmetic. Then prove that By, is
arithmetic. Note that as & increases the quantifier depth
of the formula with which B, is associated also increases.
It can be shown that this is unavoidable, i.e., the quantifier
depth of any formula with which the B} is associated must
increase without bound as & increases.
B.6. Use the argument at the end of Appendix B.
C.1. (a) Here is the required program:
1 R(1) < O
R(2) <
(3) <
(4) « 1
F R(1) = R(0) GO TO 9 ELSE GO TO 6
(1) < R(1) + R(4)
(2) < R(2)-R(3)
TO 5

9 R(0) < R(2)

10 STOP

(c) The general plan for constructing the required address
program is given by the following flow-chart:

2
3
4
S
6
7
8

QW FHNT
)

R()«<2, R(2 <0

NP

} I
Is R (1) prime? " | RO<«R@)+1
‘l yes
R(2) =R (0) Y | RO<«R@
| l
} }
R(2) <R (2)+1 STOP
R()<R(1)+1

One can check whether R(1) is prime, for example, by run-
ning through all numbers less than R(1) and determining
whether R(1) is divisible by any of them.

100

(e) Use the reciprocal factorial series for e.

C.2. A finite sequence of natural numbers can be repre-
sented by a single number. Thus, the operation of an address
machine with infinitely many registers can be modelled
on a machine with only 100 registers, if one of the registers
stores the entire memory of the first machine (represented as
a single number) and the other 99 registers are used for the
various computations needed to go from one machine to the
other (such as coding the memory of the first machine by a
single number, decoding that number, etc.).

C.3. Using a technique similar to that in the hint for
Exercise C.2, we can easily model indirect addressing.

C.4. Use Exercise C.1 and the arithmeticity of address-
computable functions.

C.5. The formula (for all finite v) & can be replaced by

(for all v) ([v finite] — o),
where [v finite] can be written as follows:
Az, Vaz, (v(z, + z4) = 0).
C.6. We have the equivalence:

(the closed formula with <> (there exists, a function
number 7 is true) which ass;gné;;he value T
or F to apy.closed formula
of arithmetic, which has
the properties indicated-in
the definition of truth and
which assigns the value T
to the nth closed formula).

C.7. Our computable function, which gives a one-to-one
correspondence between N? and N, is arithmetic. We can
use this function to reduce two-place functions to one-place
functions.

C.8. Use an argument analogous to the proof of Tarski's
theorem. The second part of the problem is similar to Exer-
cise C.6.

C.9. Let all address programs be represented (coded)
by natural numbers. Prove that, with a natural choice of
such a coding, the function F from N* to N which is given
by setting F (n, z, y, k) = (the number in the yth register
after the Zth step of the address program with code n when
applied to input z) is address-computable. (This function
is obviously computable.)

104

€.10. See the hint for Exercise C.9.

D.1. This calculus is decidable. Here is an algorithm
which decides it. Suppose we are given words P and Q. In
order to determine whether or not they are equivalent,
replace all groups of repeating a’s by a single ¢, and all
groups of repeating b's by a single b. (For example, the word
aaababbaa is transformed to ababa.) If the same word results
for Q as for P, then they are equivalent; otherwise, they are
not equivalent.

D.2. Suppose that the calculus has the form

Ny <> gM1
a a™t,

qns a’"t,

anh - amh,

with m; = n; for all i; let k; denote | m; — n; |; and let p
be the smallest number among all the m; and n;. Then no
word of length less than p is equivalent to another word
(since none of the substitutions can be applied to such
a word), and the words of length m and n (where m, n == p)
are equivalent to one another if and only if m — n is divisible
by g.cd. (hy, . ., hy).

D.3. Th¥ word babaa is transformed to baaba (the algo-
rithm produces a-result); the word abaab is processed to the
word bbabab, and then the algorithm cannot be applied
(the algorithm stops without producing a result); the word
baaba is transformed as follows:

baaba — abaaba — baabab — abababa — bababab
— babababa —

This process continues on indefinitely without stopping
because the word ba . ba (with ba repeated r times) is
transformed to the word aba . aba (n times), which is
then transformed to ba ba (2rn times).

D.4. Every word in this calculus is equivalent to one of
the words a, ac, acc, accc, the empty word, c, cc, or ccc (we
shall call these eight words reduced words). We canuse
the substitution b <> acc to remove all b’s, then use the
substitution ca <> accc to move all a’s to the left of all ¢’s.
We can now use the substitution of the empty word for
aa or cccc to ensure that there are at most 1 occurrence of
a and at most 3 occurrences of c.

We now prove that none of the reduced words are equiv-

102

alent to one another. We do this by letting every word cor-
respond to a certain transformation of the square (i.e.,
a certain permutation of the vertices of the square). Namely,
we let the word ¢ correspond to a 90° rotation, we let the
word a correspond to reflection about the center line parallel
to one of the sides, and we let the word & correspond to
reflection about the center line parallel to the other pair of
sides. We let a word obtained by joining two words P
and Q correspond to the composition of the two transforma-
tions of the square corresponding to P and @ (in that
order). It is not hard to verify that equivalent words corre-
spond to the same transformation, and that the reduced
words all correspond to different transformations. Hence,
the reduced words are all inequivalent to each other.
The following algorithm decides this calculus. To deter-
mine whether or not two words P and Q are equivalent,
first replace each by an equivalent reduced word, and then
compare the two reduced words. If they are the same, then P
and Q are equivalent; if not, then P and Q are inequivalent.

1.
2.
3.
4.
5.
6.
7.
8.

Bibliography

P. J. Cohen, Set Theory and the Continuum Hypothesis, W. A. Benja-
min, New York-Amsterdam, 1966.

H. Freudenthal, The Language of Logic, Elsevier Pub. Co., Am-
sterdam-London-New York, 1966.

S. C. Kleene, I'ntroduction to Metamathematics, North-Holland Pub.
Co., Amsterdam, 1952.

S. C. Kleene, Mathematical Logic, Wiley, New York, 1967.
R. C. Lyndon, Notes on Logic, D. Van Nostrand Co., Princeton-
Toronto-New York-London, 1966.

Yu. I. Manin, A4 Course in Mathematical Logic, Springer-Verlag,
New York-Berlin-Heidelberg, 1977.

E. Mendelson, Introduction to Mathematical Logic, D. Van Nost-
rand Co., Princeton-Toronto-New York-London, 1964.

H. Rogers, Ir., Theory of Recursive Functions and Effective Com-
putability, McGraw-Hill Book Co., New York-Toronto-London-
Sydney, 1967.

Few discoveries have had as much impact on our perception of
human thought as Godel’s proof in 1930 that any logical system,
such as the usual rules of arithmetic, must inevitably be incomplete,
1.e., must contain statements which are true but can never be proved.
Professor Uspensky’s book makes both the precise statement and
also a proof of Godel’s startling theorem understandable to someone
without any advanced mathematical training, such as a college stu-
dent or even an ambitious high school student. Also, Uspensky in-
troduces a new method of proving the theorem, based on the theory
of algorithms which is taking on increasing importance in modern
mathematics because of its connection with computers. This book is
recommended for students of mathematics, computer science, and
philosophy, and for the scientific layman interested in logical prob-
lems of deductive thought.

Mir Publishers

Moscow

	Front Cover
	Contents
	Preface
	1. Statement of the Problem
	2. Basic Concepts from the Theory of Algorithms and their Applications
	3. The Simplest Incompleteness Criteria
	4. The Language of Arithmetic
	5. Threee Axioms for the Theory of Algorithms
	Appendix A. The Syntactic and Semantic Formulations of the Incompleteness Theorem
	Appendix B. Arithmetic Sets and Tarski's Theorem on the Nonarithmeticity of the Set of True Formulas and the Language of Arithmetic
	Appendix C. The Language of Address Programs the Extended Language of Arithmetic and the Arithmeticity Axiom
	Appendix D. Languages Connected with Associative Calculi
	Appendix E. Historical Remarks
	Appendix F. Exercises
	Appendix G. Answers and Hints for the Exercises
	Bibliography
	Back Cover

