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PREFACE

This book is intended for readers who, while mature mathe-
matically, have no knowledge of mathematical logic. We at-
tempt to introduce the reader to the most important approaches
to the subject, and, wherever possible within the limitations of
space which we have set for ourselves, to give at least a few
nontrivial results llustrating each of the important methods for
attacking logical problems. Since Lewis’ SURVEY OF SYMBOLIC
Logic and Jgrgensen’s TREATISE ON FORMAL LOGIC, both of
which are now obsolete, the only work of this nature has been
the excellent book of Church, which is not suitable for beginners
and which is not easily accessible. Thus the present book differs
from those which confine themselves to the detailed develop-

*ment of one particular system of formal logic. We have empha-~
sized instead the modern tendency of analyzing the structure of
a system as a whole We feel that too many authors in this field
have overlooked the necessity of exhibiting the power of logical
methods in non-trivial problems. Otherwise mathematical logic
is a mere shorthand for transcribing results obtamed without its
aid, not a tool for research and discovery.

Thus in the chapter on the logic of classes we have a section
on the structure and representation of Boolean algebras, which
is applied in the next chapter to the study of deductive systems.
In the third chapter we sketch the methods of Russell, Quine,
Zermelo, Curry, and Church for the construction of logies of
propositional functions. Finally, we give a brief introduction
to the general syntax of language, with applcations to unde-
cidability and incompleteness theorems.

We have attempted to make the exposition as elementary as
possible throughout Nevertheless, those who are unfamiliar
with modern algebra may find it advisable to skip the proofs
in Chapter I, Section 3, on the first reading.



In the last chapter we use the profound and beautiful ideas of
Post. We hope that one by-product of this book will be a more
widespread recognition and appreciation of his work, which
amounts to the creation of a new branch of mathematics of the
same fundamental importance as algebra and topology.

The connoisseur may find of some interest (1) the insistence
on the demonstrable properties of a formal system as a criterion
for its acceptability, (2) the simple proof of the completeness of
the theory of combinators,* (3) the simple explicit example of a
recursively unsolvable problem in elementary number theory,
(4) the first connected exposition of all the essential steps in the
proof of Church’s theorem on the recursive unsolvability of the
decision problem for the restricted function calculus.

Much of the material was presented in a course given by the
author at Lund University, Sweden, in the spring of 1948.

It is impossible for me to express adequately my debt to the
late Professor H. B. Smith for his constant kindness and gen-
erosity. I am grateful to Professors Churchman, Post, Curry,
MecKinsey, Huntington, and Stone for their friendly encour-
agement when I was beginning my mathematical career. I
cannot refrain from also thanking Professors Cohen and Nagel,
since it was a misinterpretation of a footnote in their book
which led me to abandon chemistry for mathematics twelve
years ago! I thank Dover Publications, Inc. for its unfailing
courtesy and helpfulness during the preparation of this book.
Finally, I should like to express my gratitude to my beloved
wife, Elly, for providing the stimulus and the working condi-
tions without which the book could not have been written.

October 11, 1949 PAUL C. ROSENBLOOM
Syracuse, New York

*Curry has arrived independently at essentially the same simplification
of the theory of combinators. This appeared since the above was written 1n
Synthése, Vol, VII, 1948-49, No, 6-A, p. 391-398.
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INTRODUCTION

In this book we shall study the laws of logic by mathematical
methods. This may seem unfair, since logic is used in construct-
ing mathematical proofs, and it might appear that the study of
logic should come before the study of mathematics. Such a pro-
cedure is, however, typical of science. Our actual knowledge is a
narrow band of light flanked on both sides by darkness. We
may, on the one hand, go forward and develop further the con-
sequences of known principles. Or else we may press backward
the obscurity in which the foundations of science are enveloped.
Just by using mathematical methods, i e. by working with ideo-
grams (symbols for ideas) instead of ordmary words (symbols
for sounds), we can throw new and important light on the logical
principles used in mathematics. This approach has led to more
knowledge about logic in one century than had been obtained
from the death of Aristotle up to 1847, when Boole’s master-
piece was published.

We begin with the simplest branch of the subject, the logic of
classes. After an informal introduction, in which we derive the
properties of classes by a free use of naive intuition, we formulate
that theory as a deductive science, that is, as a science in which
the assumptions are explicitly stated, and in which everything
else follows from the assumptions by means of explicitly stated
rules The assumptions are stated in terms of certain notions
which are not analyzed further and are taken as undefined. All
other concepts of the science are defined in terms of these.

We then proceed to a study of the system as a whole. That is,
instead of developing more and more consequences of the as-
sumptions, we try to find general characteristics cthe science
itself. This is typical of the modern tendency to emphasize the
structure of a science, to derive theorems about the science,
rather than to concentrate on the detailed derivation of results
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within the science. This study of the structure of the logic of
classes culminates in Chapter I, Section 3.

We then apply the same methods to the logic of propositions.
In doing this, we uncover a striking similarity between this
science and the logic of classes. It is precisely through formulat-
ing these logics as deductive sciences that we see that both are
special examples of a general theory.

The logic of propositions has been the subject of much con-
troversy among logicians and mathematicians. We discuss the
various alternative approaches which have been proposed.

We then try to construct general logical theories which are
adequate for at least a large part of mathematics. Here we run
into difficulties since the unreined use of naive intuitive reason-
ing leads to devastating paradoxes. Thus we must seek a theory
which admits as much as possible of the reasoning intuitively
accepted as valid, but includes such restrictions as to evade the
paradoxes. But a profound theorem of Goédel shows that no
logical theory of a very general type can include methods of
reasoning strong enough for the proof of its own consistency.
Indeed, in any system of logic of this general type, there are
propositions which can be proved by an argument outside the
system but which cannot be proved within the system. Thus no
formal logical system of this type, which includes all adequate
logics so far proposed, can contain all valid modes of reasoning.
All that we can hope for is stronger and stronger systems which
are adequate for more and more powerful arguments, or else
some system radically different from anything so far proposed.

In order to arrive at such results as Godel’s, it is necessary for
us to scrutinize our tools more closely. In a deductive science
the undefined terms are denoted by certain symbols, which may
be blobs of printer’s ink, speech sounds, printed marks repre-
senting the latter, etc. The propositions of this science are com-
municated by means of these signs. These signs, together with
the rules#bverging their use and combination, constitute a
language for stating relationships within the science. This is
called the object language. In an exposition of the science the
assumptions must be communicated in a language whose mean-
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ing is already assumed to be known, say English. This is called
the syntax language. We use the object language to talk within
the science and the syntax language to talk about the science.
In ordinary usage the confusion between the two leads to no
difficulty’ but when the science under consideration is logic itself
we must lean over backwards to avoid unclarity.

The primitive signs of the object language are called its alpha-
bet. Certain combinations of these signs may be assigned mean-
ings. Such combinations are often called words or sentences. If a
certain combination of signs denotes an object, then this com-
bination will be a name for that object. In speaking about the
object we use a name for it. Thus “Dewey smiled”’ is a sentence
wherein we mention the man Dewey by using his name, the
word ‘“Dewey.” When we are talking about a name or a symbol,
it is convenient to use a specimen enclosed in quotation marks
as aname of the name or symbol. Thus, *“ “Dewey”’ ”’ is a name of
“Dewey,” which is, in turn, a name of Dewey, who is a man.
Again, on p. 2, 25th line from the bottom, we are speaking about
aname of the universal class, while on the next line it is the null
class itself which is mentioned. To avoid the use of names of
names of names and the like, we shall also use such phrases as
“the letter —”’ or ‘‘the sign — as names of the symbols of
which specimens are exhibited It is often overlooked that while
we cannot put a man on the printed page and are thus forced
to use a name when writing about him, we do have greater
resources when we wish to write about symbols.

In particular, a sentence is a name of a proposition. We shall
say that the sentence expresses the proposition, and we shall
often use ‘“‘statement’’ as a synonym for ‘“‘sentence.” We shall
often use the phrase ‘“the proposition that p” to indicate the
proposition expressed by “p.” Careful attention to these matters
helps in discussing ticklish questions.

We are thus led, in chapter IV, to the mathematical analysis of
language. Whereas in the previous chapters our attention is
centered on the relationships expressed by the objost language,
in the last chapter we focus our attention on the structure of the
language apart from its meaning. The former process is some-
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times called the semantical study of language, i.e. the study of
the meanings expressed by the language, while the latter is often
called the syntactical study of the language. The methods we
use were developed especially by Post. We find in this chapter
that certain classes of languages, which include practically all
languages which have been precisely formulated, can be singled
out and possess important common properties. It is exactly the
mathematical method of abstracting from the special features of
particular languages which enables us to prove rigorously a
number of profound general truths, where metaphysicians would
argue back and forth for centuries without ever reaching a con-
clusion which could be tested.

Mathematical logic is, then, no mere shorthand for expressing
in ideograms what has already been discovered by reasoning in
ordinary language. It is, rather, a powerful and versatile tool for
solving problems which are inaccessible to other methods.

In the following we shall make references thus:

IITI2  denotes section 2 of chapter III;

T2 denotes theorem 2 of the present section;

T5.2.3 denotes theorem 3 of section 2 of chapter V;

[27]4  denotes number 4 by author 27 in Church’s Bibliog-
raphy, J. Symbolic Logic, vol. 1, no. 4;

[II135 denotes the article beginning or reviewed on page 35 of
vol. IT, J. Symbolic Logic.



Chapter 1
THE LOGIC OF CLASSES

SECTION 1 INFORMAL INTRODUCTION
FUNDAMENTAL THEOREMS

Logic is the science of the valid processes of reasoning. In
mathematical logic we investigate these processes by mathe-
matical methods. In this first chapter we shall study the simplest
branch of this science, the logic of classes.

For the moment we shall not attempt to analyze the concept
of “class.” Rather we shall take it as undefined but shall assume
that its intuitive meaning is known. By a class we shall mean any
collection of things, for example, the class of all men or the class
of red-headed baboons The members of the class may be ab-
stractions or may be in some other sense not tangible; thus the
class of positive integers and the class of jabberwockies are
perfectly good classes. We shall denote classes by small Greek
letters.

We shall say that the class « is the same as the class 8 if and
only if they have exactly the same members. Thus the class of
even primes is the same as the class whose only member is the
number 2. We shall denote the relationship “a is the same as §”
by the symbols “a = B.” The following propositions are evident:

Tl a = a;
T2. if « = B, then B = a;
T3. ¢sfa = Band B = v, then a = .

In most statements, if « = B, then “a’”’ may bé Substituted for
“8” at any point without changing the truth or falsity of the
statement.
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We shall symbolize the statement “z is a member of &’ by
top e a”

If a and g are classes, we shall denote by “a@ M B’ the class of
all objects which are members of both « and 8. Similarly, we shall
use “a\J B” for the class of all things which are either in « orin 8
or in both. Thus if « is the class of females and 8 is the class of
engineers, then a M B is the class of female engineers, and « \J 8
is the class of all objects which are either females or engineers or
both. By o’ we shall mean the class of all objects which are not
in a. The class @ — 8 = a M @, by definition, so that o — 8 is
the class of all objects which are in & but not in 8. Two special
classes are of importance, the universal class, denoted by ““17,
which is the class containing all things, and the null class, 0,
which is the class which has no members.

These symbols have been introduced so that we may con-
struct an algebra of classes. They enjoy the following properties:

T4, a N\ B =N a;

T5.aN (BN y) =(@aNB) Ny;

T6. a U B =B q;

T7.a\J(BY ) = (@UB) Ux;

T8 aNa=alJa=a;

T9. aNBYy)=(Np) Y (an);
T10. a J (BN y) = (@YU B N (a U 7);

T1l, a U & = 1;

T12. a N & = 0;

T3. aN1l=aU0 = g
Ti4. a U 1 = 1;

T15. a M 0 = 0;

T16. (&) = a;

T17. ¢/ = 1;1" = 0;

T18. («\UB) =o' NP

T19. («NB) =o' I F';

T20. a U (NP =aN(@UB) = a.

These profgsitiohs are for the most part obvious. Thus T4

says that if x isin « N B, i.e. if z is in both « and B, then z is in
B M a, and conversely. Let us check one of the more compli-
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cated properties, say T10, as an illustration. We must show that
every member of the class on the left-hand side of the equation
is also a member of the class on the right, and conversely. If
z € a\J (BN ), then etther £ € e or £ € 8 M v or both. If
z € «, then certainly x € « \U g and also z & a \U v. Hence
z € (a\JB) M (a\J 7). Alternatively,if t E 8N v, thenz € 8
and z & v. From the first, z € o« \U 8, #nd from the second,
z € a\Jy Hence z € (« U B) N (a U v). We have thus
shown thatif2 € a\U (M v),thenz & (U B) N (U 7).
The converse may be shown in a similar manner. In view of T5
and T7, we shall write « M\ 8 M v, for (« M B) N v, and
a\U B \Uxyfor (a«\UB) U v, ete.

We say that « is included in 8, or that « is a subeclass of 8,
(in symbols, « C B) if every member of « is also a member of g,
i.e. ¢ € a always implies that € . The following propositions
are easy to prove:

T21. a = Bifand only ¢f a C Band 8 C «;
T22. a CBifandonly if a N\ B = «;

T23. a C Bif and only if o \J B = B;

T24. a« C Bof and only of « — B = 0;

T25. a CBifandonlyif o’ J B =1;
T26. a C o

T27. aNBCaCalJg;

T28. 0 Ca C 1;

T29. #f « C 0, then o = 0;

T30. f 1 C «, then a = 1;

T31. if « C Band B C v, then a C v;

T32. ifa C B, thenaNy CBNyanda\Jy CB\Y7;
T33. if « C B, then 8/ C o';

T34. if a CBand « C v,then a C B M 7;
T35. ifa Cyand 8 C v, then a\J B C 7.

We have thus shown that if the operations with classes are
symbolized in the above faghion, we obtain an algebra similar
to our ordinary algebra of numbers. The »similarity becomes
more striking if we introduce the “exclusive” either—or. Let
a+ 8= (a— B)\J (8 — a), by definition;i.e. a + 8 is the class
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of all things which are in one of @ and 8 but not the other. If for
the moment we abbreviate “a M 8”7 by “aB’’, we obtain the
following propositions:

T36. of = Ba; a(By) = (aB)7;

T37. a4+ =8+ a;a+ B+7v) =(+ B +v;
T38. a(B + v) = af + av;

T39. a + 0 = a = al;

T40. ¢ + « = 0.

It is unnecessary to go back to the original meanings of the
symbols in order to prove these statements. We can instead use
the properties already stated. Thus

aB+7v)=aN((BNY)VY B N7)
(eNpgNYYIJ(@Np Ny)
oy’ \J o',
(NN (@Ny))Y ((anp) N (M)
= ((aNBN (@ Iy) Y (" YB)N (M)
(((leMmp)Na) Y (@M B) N Y))

YV ({((enNy)yNa)Y ((@any) N p))
ac’B\J afy’ \J ad’y \J of'y
0B\J aBy U0y U af’y
00U aBy U0 U afy
aBy' U of’y.

Here we have used the definition of a + B, and equations T9,
T4, T5, T19, T12, and T13 above.

By virtue of equations T36 to T40 the algebra of classes is
what mathematicians call a ring with respect to the operations
af and o 4+ 8. Indeed, this ring is a very special one because of
T8 and T40, which show that the algebra of this ring is much
simpler than our ordinary algebra since there are no exponents
or coefficients.

By virtue of T21, T22, T23, T26, T27, T31, T34, and T$5,
(or alternatively, by T4, T5, T6, T7, T8, and T20) the algebra
of classes is also what mathematicians call a lattice. This is a
very special type of lattice because of T10 to T13.

We shall not use the knowledge already accumulated concern-

]

and off + oy
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ing rings and lattices in our present work. In more advanced
work, however, these points of view are useful.

The algebra of classes is called Boolean algebra after the man
(G. Boole, Irish, 1815-1864) who first studied it intensively.

All theyformal laws of Boolean algebra can be obtained from
one general principle. We must first define the concept of a
“Boolean function’ step by step. If f(e) = v, where v is a con-
stant class, for all «, then f is a Boolean function. If f(a) = «
for all «, then f is a Boolean function, the so-called identity
function. If f is a Boolean function, and if g(a) = (f(«))’ for all
@, then g 1s a Boolean function. If f and ¢ are Boolean functions,
and if h(e) = fla) \J g(a) and k(a) = f(a) M g(a) for all «,
then h and k are Boolean functions. The class of Boolean func-
tions is the smallest class of functions satisfying these condi-
tions, i.e. it is the class of all functions which can be obtained
by starting with constants and the identity function, and apply-
ing the operations o/, @ M B, and « \U B a finite number of times.
Thus f(e) = (v N @) Y (6§ N &), where v and § are constant
classes, is a Boolean function.

The fundamental theorem of Boolean algebra is

TureorEM 41. If f is a Boolean function, then
J(@) = (fQ) N a) Y (f(0) N &)
Proof. If f(a) = v, where v is a constant, then

O Na)JFO N)=FNalJlyNd)
yN (@\Ua) (by T9)

=yN1 (by T11)
= v (by T14)
= f(a).

If f(a) = a, then
M) N a) Y (J(0) N a)

1INa)U 0N a)
aJo0 (kRy T13, T15)
« (by T13)
().
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Suppose the theorem is true for f. Let g(a) = (f(«))’ for all o
Then

(@) = ((FA) N a) Y (f(0) N\ &)’
= (f(L) N &)’ N (FO) N ) (by T18)
FQ U N FO) Y (@)) (by T19)
(FQY N F0)) Y (f(1) N (&))
U (@ N f0)) Y (& N (&))
(by T9, applied twice)
= (fQY N OV (L) Na) Y (f(0) N a)
(by T16, T12, T13)

= (O NFO)) N («Y )Y (fL) Na)

U (f(0) N &) (by T11)
= (JOY N fO)' Na) Y (f(L) N FO) M)

U () N a)J (f(0) N ') (by T4, T5, T9)
= ({O)' Na) Y (f0) N &) (by T20).

Suppose the theorem is true for f and g, and let
ha) = fla) U g(o) and k(a) = f(a) M g(a) for all . Then

ha) = (F(1) M) J (F(0) N &) U (g(1) M ) V (9(0) N &)
= (M) Y g(1)) M) U (((0) Y g(0)) N &) (by T9)

Also

k(e) = ((f(1) M a) U (F(0) N ) M ((g(1) M @)
Y (g(0) N o))
= (O Ng1) NaNa) U (f1) N g0) N a M)
U0 Ng) N N a)
U (£(0) N g(0) N o’ N o) (by TY, T4, T5)
= (((FQ) N g(1)) N @) Y ((f(0) N g(0)) N &)
(by T8, T12, T13, T15)

If f is any Boolean function, then it can be built up in a finite
number of steps from constants and the identity function by
means of the operations /, @ M B, and & U 8. Therefore, by
combining these results, we immediately obtain the theorem.

This theorep shows that in order to prove that two Boolean
functions, f and g,"are equal for all , it is sufficient to prove
that f(0) = ¢(0) and f(1) = g(1).

LI
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All these considerations can be extended to Boolean functions
of several variables. Thus if f is a Boolean function of two
variables, then

fla, 8) = (F(1, Dap) Y (f(1, 0)ap’) \J (70, 1)a'B)

U (£(0, 0)o'B").

As a corollary we obtain

fle\UB) I flamB) = fla) Y f(8),

if f is any Boolean function. For let g(a, B) = fla U 8) U
fla N B), ke, B) = fla) Y f(B) Then g(1, 1) = h(1, 1),
g(1,0) = h(1, 0), etc. Therefore, g(a, 8) = h(a, B) for all « and 6.

EXERCISES

Ex. 1. Verify T4-T40.
Ex. 2. (a). Prove T8 from T27, T34, and T21.

Ex. 3.

(b).
(e).
(d).

Prove T11 from T26 and T25.
Prove that ¢’ C «from T11, T6, and T25.
Prove T35 from T34, T33, T18, and T16.

Show that if f is any Boolean function of one variable,

then

(a).
(b).

(e).
(d).
(e).

(£).

(®)-
(b).

fle) = FA Y )N (FO) Y a).

FFO) = FO) N fA) C fla) CFOV FQ) =
FF).

f(a) = v + bdc, where v and & are constants.

If f0) N f(1) C 9 C f(0) U f(1), then the
equation f(«) = 7 has a solution. Find all solu-
tions.

If the equation f(£) = n has a unique solution for
one value of », then it has a unique solution,
namely f(n), for all values of 7.

If f(&) C f(&) whenever a C £ C & CB, then
BN f(0) C aJ f(1), and conversely.

If £ C =, then f(f(8) C f(f(m)h

If « C B and f(a) C f(B), then f(&) C f(&)
whenevera C & C & CB.
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SECTION 2 BOOLEAN ALGEBRA AS A DEDUCTIVE
SCIENCE

In the previous section we assumed that the concept of a
class and the simpler properties of this concept were ¢ntuitively
known. In the “proofs” of the propositions T1.1.1-T1.1.41
properties of classes were used which were not explicitly stated
This leaves the foundations of our previous work completely in
the dark. In the present section we shall remedy the situation by
presenting Boolean algebra as a deductive science.

By a deductive science we mean a body of propositions con-
structed in the following way We start out with a certain set of
undefined ideas which we make no attempt to analyze further,
and a set of unproved propositions stated i terms of these
undefined ideas. All other propositions in the science must be
proved using only the unproved propositions and previously
proved propositions. Similarly, all other concepts in the science
must be defined in terms of the undefined ideas and previously
defined ideas. For in any exposition of the science, i.e. 1 any
setting forth of the science in a sequence of propositions, there
must be a first proposition. If this is proved on the basis of other
propositions, then its proof depends on propositions whose truth
is not known at this time. Similarly, in any exposition there must
be undefined terms.

Furthermore, among the assumptions there must be rules
telling us how we can obtain one true proposition from others
known to be true. These we call rules of inference. These will
be perhaps of the form: “if p, g, r are true, then s is truc.” Here
D, q TS, ... are stated in terms of the concepts of the science.
The words “if,” “are,” etc., are in ordinary English and are not
part of the language of the system under construction. Otherwise
we would not know the meaning of this rule and therefore could
not apply it. This shows us that in communicating our science
we must use to some extent some language which we already
know in order to describe the rules of operating within the
science. This “embedding” language we call the syntax language;
it is used to talk about the system while the undefined terms of
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the system constitute a basis for a language which we use to
talk within the system. The language of the system is called the
object language. This is analogous to the problem of teaching a
new langurage. We describe the language in terms of a known
language before we can communicate within the new language.
Of course, it is desirable to use as simple a syntax language as
possible in order that as few unanalyzed notions as possible be
used. The undefined terms in our science will be a non-empty
class of objects C and two operations M and ’. The unproved
propositions are:

Al If e is in C, then o and o M B are uniquely determined
members of C.

A2. Ifaand Barein C,thena M B = BN a.

A3. If a, B, and vy are in C, then (a N\ B My = aMN BN 7).

A4 If o, B, and vy are in C, and o N B/ = v N v/, then

aMNB=a.
A5. If a, B, and vy are in C, and « N\ B = a, then a M B/ =
AR

A6. If a and B are in C, and o = B, then &/ = f'.
A7. If o, B,and yarein C,and a = B, thena My = BN vy and
yNa=vNE.

Here the relation ="' is taken to be part of the known syntax
language. The only properties of this relation which will be used
are T1.1.1, T1.1.2, T1.1.3, and their consequences in conjunction
with A1-A7. Hence we could alternatively take “=’’ as an
undefined term and postulate T1.1.1-T1.1.3. A relation satis-
fying the latter conditions is called an equivalence relation.

We shall show that this is a deductive science whose true
propositions are those and only those of the algebra constructed
informally in I1.

Note that since the propositions of this science are all conse-
quences of A1-A7 and the primitive terms are undefined, then
if ¢, N, and ’ are given any concrete interpretat®on in which
A1-A7 are true propositions, all their consequences are auto-
matically true in this interpretation. Thus this science is, like all
deductive sciences, abstract; that is, its concepts have no specific
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meaning, and its propositions apply whenever specific meanings
are assigned to its undefined terms in such a way that the as-
sumptions become true propositions. For example, if C is the
class whose only member is the number 1, and ’ and M are
defined by the equations 1’ = 1/ 1 = 1, then it is obvious that
A1-A7 are true with this interpretation. A less trivial example is
this: let C be the class of all positive divisors of 210, i.e. C is the
class whose members are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42,
70, 105, and 210, « M B is the least common multiple of a and g,
and o/ = 210/a. It is slightly more laborious but still easy to
verify the assumptions in this case Of course, in formulating
these assumptions we had in mind the algebra of I1, and intend
that algebra to be one concrete interpretation of our science.
Indeed, if C is the class of all classes, and « M B and o’ are inter-
preted as in 11, then A1-A7 are true.

‘We shall use throughout this section the convention that small
Greek letters denote members of C. This amounts to a hypothe-
sis not explicitly stated in the formulations of the following.
theorems.

It is convenient to begin with the following definitions:

Di.anNgNy=@@nNBNy,anNNyNs=
(@M B M y) M 4, ele.
D2. aCBforanNp = a.

We now have the following theorems:

Tl aNa=a.
Proof. a N\ &/ = a M /. Now apply A4.

T2. aNa = yNv. (T1, A5).
This justifies the definitions:

D3.0=aNd.1=0.

T3. a CBifand only if a N B’ = 0. (T2, A4, A5).

T4. a Cea.

T5. If a« C Band 8 C v, then o C 7.

Proof. faMN B =caand BNy =B, thenaNy =
@NgNy=aN(BNy)=aNp =a (A3).
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T6. a M B C a (A2, A3, T1).
T7. Ifa CBand B C a, then o = B. (A2).
T8. M0 =0. 0CB8

Proof.0 = s8N CB. (T2 T6).

T9. o' = a.
Proof. " N o' =o' N = 0. (A2, T2).

o @ C a, for any member « of C. (A4).
Hence o' C o' and o/ C o”.
sod" Cao (TH).
Sd" N o =0. (T3).
~oo Ca”. (A2, T3).
s =ad (T,
SsaNad” =0, (T2).
SoaC o, (T3).
sooa=ao. (T7).
D4. aUB = (/! NG
T10. aN B = (/ I g). (T9).
Til. a C Bifand only if B/ C o'.
Proof. If « C B, then « M 8’ = 0; hence g’ N o

0

(A2, T9), which implies that 8/ C «’. If 8/ C o, then
a” C B”, by the case just proved, and therefore

4 C ﬂ’ by T9.

T12. « C B if and only if'a\J B8 = B.

Proof. « C B if and only if 8/ C «/, which means that
B N o = g. The latter is true if and only if

ﬁ=6"= (ﬁlnal)l= (alnﬂl)l '-‘—-‘aUﬂ.

TI8. aUB=Ua (aUBUy=alU@BYr).
(A2, A3, D4, T9).

T14. a\J a = a. (T1, D4, T9).

T15. a U o’ = 1. (D4, D3).

T16. « C a U B.

Proof. @UB) = @ NB)Y' =N Co (T9, TS,

T11).
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Ti7. a\U (aNB) =aN{aUB) = a
Proof. «\J (aMB) = « (T6, T12).
aN(@Up) =a (D2, T16).

TIS. Ifa C B thena Ny C BN yanda\Jy C B\ .
Proof. If & C B, then (@ N v) N (BN v)
=aMNBNy (A2, A3, T1)
= q (D2).

The rest follows in the same way by T12.

T19. If a Cyand B8 C v, then a\J 8 C 7.

Ify Caandy C B, theny C a M B.
Proof. If y Caand y C B, theny =y MNa=yM§B, so
that y VY (@MB) =@ Na)NB=yMNB =+

The other part is proved similarly.

T20. a N (& U B) = aM B.
Proof. a M\ (& U B) =aMN (" NB)Y =aN (aMN ).

Hence (e (& UB)YNB =0 (T2, A2, A3).
CaMN @ UB) = (aN(@UB)NE
=aN (& UB NB =aNB. (A3, T17).
T2l. aMN BU y) = (M B) U (@M ).

Proof. BC B\J v,y CB\U +. (T13, T16).
CaMNBCaN@Uy),aNyCaN BU 1)

(T18).

S enNpUanNy) TaN (BUY ). (T19).

Now a M (BYU ) N\ ((a M B) U (N ¥)
=aN@EUNN@NB N @y

(D4, T9)
=aN YN (@UB)N (& Uy)
(D4, T9)
=g UyYNBYy) (T20, A2, A3)
° 50 (D4, T2).

Hence a M (8 v) C (@M B) U (a M 7).
T22. « V0 =0, a Ul =1aN1=a (T8 Ti2 T11).
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We now have everything necessary for the proof of T1.1.41,
with the slight simplhfication that the combmation f M g need
not be considered separately since it may be expressed in terms
of the operatlons \J and ' by T10. For the sake of completeness,
we give also a proof of the analogous theorem for functions of
several variables.

TrrOREM 23. If f(ay, + -+, ) 18 @ Boolean function, then

f(al) "':ak)
1 1 1
= Z Z E F, 12, e 10 e gt

11=0 23=0 15=0
Remark. Here “a’’’ means ¢ if 7 = 0 amd o' if 7 = 1;

6 m 1

2.8, meansBUB U .- UB, .
1=0
We use juxtaposition for “/\” as on p. 4.
Proof. The theorem is true for k¥ = 1. If it is true for k — 1,
"then

f(al’a2, "',ak)

1

1
=2 0 2 flow, 1 e, et - ot

22=0 k=0

But f(al ) 1¢n, ) 1”‘) = (f(lo; 1“} Tty 1”‘)0‘3)

\ (f(]-l: 1": ] l'k)all);

by T1.1.41; now an application of T21 yields the desired result.

The question arises, are the postulates A1-A7 complete in the
sense that all general formal laws in the algebra of classes which
can be formulated in terms of M and ’ can be proved from them?
The answer is given by Theorem 24 below.

We say that B is a Boolean algebra whenever B is a triple
(C, N, ") consisting of a class C and two operations M and
defined in C and satisfying A1-A7.

A quadruple (C, N, /, =) satisfying A1-A7 and T1.1.1-
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T1.1.3 will be called a Boolean algebra with respect to the equiv-
alence relation =.

Lemma 1. If B is a Boolean algebra in which C has at least
two members, then 0 1.

Proof. If 0 = 1,thena = aMN1 = aM 0 = 0, so that C has
only the single member 0.

TueEOREM 24. Let B be a Boolean algebra with at least two
elements.

Let f(ay, -+, au) and gy , -, o) be two Boolean functions
coniaining mo consiants tn their construction. If f = ¢ for all
ay , +++, o m C, then f = g is provable from A1-A7, and is
therefore true in all Boolean algebras.

Proof. By hypothesis f(a;, * -+, ) = glen, -+, o) for all
@, *++, 010 C, In particular when the o’s have the values 0 or 1
Now

-

1IN1=1 1N0=0N1=0N0=0 0=1, I'=0,

and all these equations are consequences of A1-A7. Hence if the
a’s take on the values O or 1, then f(a,, -+, o) and g(a, , - -+,
a;) have the values 0 or 1, and these values are deducible from
A1-A7. By Lemma 1, 0 3 1. Therefore if the a’s have the values
Oorl, then f(ay, -+, ) = glay, +++ , ) if and only if this
equation follows from A1-A7. By theorem 23, then, the equation
“flag , +++, o) = glas , +++ , og)” is valid for all values of
@ , **- , o in any Boolean algebra and is deducible from
Al1-A7.

CoROLLARY 24a. Let f and g be Boolean functions as in theorem
24. Suppose that for all a, , -+ - , o in C such that f(ay , - , ) =
1, the element g(ay, « -+ , o4) = 1also. Then “f(ay, -+ , &) C
g(ay , « -+, ou)”’ is provable from A1-A7, and s therefore valid in
all Boolean algeb'ras.

Proof. Leth(oy, -+ ,04) = flay, -, ) N (gles, -+, ).
. Ifa,, -, o take on only the values 0 or 1, then f(a;, - -,



15

a) =0or1,If flay, -+ , ) = 0, then h(ay, -+, &) = 0. If
f(ai, e, a) = 1,theng(ay, - -~ ) = 1L,and hey, -+, ) =
0. Hence h(ay , -++, ) = O0forall ey, -+, & in C by theorem
23, and isstherefore deducible from Al1-A7 and valid in all
Boolean algebras. The inclusion “f C ¢’ follows by T3.

We now know that all generally true equations between Bool-
ean functions are provable from our assumptions and, by theo-
rem 23, have a simple systematic procedure for proving them or
for testing their validity. Before going on to a deeper study of
Boolean algebras, we wish to make a few remarks about deduc-
tive sciences in general.

First, what is to prevent us from laying down any assumptions
we please? From a logical point of view, there is nothing but the
requirement of consistency to restrict the possible assumptions;
that is, it must be impossible to prove some proposition and also
its falsity from the postulates. The simplest way to prove that a
system of postulates is consistent is to exhibit a concrete inter-

~ pretation of the undefined terms in which all the postulates are
true. Thus we have given three concrete interpretations of
“C7, ¢, 47 in which A1-A7 hold. If a contradiction could
follow from the postulates, this contradiction would be true
of the concrete interpretation. But anything actually existing in
the real world must be self-consistent; hence the postulates
must be consistent. The last sentence might be contested by
some philosophers, notably Berkeley, but we shall not enter into
any further discussion of such questions. A more serious diffi-
culty is that the real world, so far as we know, contains only a
finite number of objects. Therefore it is impossible to give a
concrete model of a system of postulates requiring that some
class have an infinite number of members. Hilbert has proposed
another method of proving consistency whereby on the basis of
an analysis of the methods of proof in the deductive science we
show that no contradiction can arise. This method requires the
machinery of Chapter IV.

While logically we can take any consistent Set of assumptions
and construct a deductive science from them, actually our
choice of postulates is constrained by other considerations.
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Usually we have one or more concrete interpretations in mind
and we know, roughly speaking, some of the propositions which
we wish to be true in the deductive science to be constructed.
Aesthetic considerations also play an important role. We want
the postulates to be simple and the proofs based on them to be
elegant. Here science merges inseparably with art; we wish not
only to build up a body of knowledge but also to create a thing
of beauty. Finally, the principle first enunciated by E. H.
Moore—*“The existence of analogies between the central features
of various theories implies the existence of a general theory
which underhes the particular theories and unifies them with
respect to those central features”’—also serves as a valuable
guide in constructing deductive sciences.

Another desirable, though not essential, requirement of a
system of postulates is that they be independent; that is, that
none of them be deducible from the rest. If the postulates are
not independent then some of them can be omitted without
changing the totality of true propositions in the deductive.
science. For the sake of economy, then, we want the postulates
to be independent. To say that a postulate p is independent of
the others is equivalent to saying that “p is false” is consistent
with the rest. Having thus reduced the problem of independence
to that of consistency, we can use the methods described above
to prove the independence of a system of postulates. Thus, if in a
concrete interpretation of the undefined terms all of the assump-
tions except p become true propositions, then p is independent
of the others.

For example, if we define C as the set whose members are the
numbers 0, 1, and 2, and define M and ’ by the following tables:

I 0 1 2 o o
0 0 0 0 0 1
1 0 1 1 1 0
2 0 2 2 2 0

then it is easy to verify that all of A1-A7 except A2 are true.
Here we read the table for M as follows: & M B is found in the
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a® row and * column; for example 1 N2 = 1,2N 1 = 2,
2M0 = 0, etc. Since 1 M 2 5 2N 1, A2 1s false. Similarly we
can prove the other postulates independent.

The problem of the independence of a system of postulates led
to the important discoveries of non-Euclidean geometry and the
theory of relativity.

EXERCISES

Ex. 1.
Ex. 2.

Ex. 3.

Deduce the rest of T1.1.4-T1.1.40 from the postulates.
Prove that if (C, M, ’) is a Boolean algebra and if we
define U as above, then (C, \U, /) is also a Boolean
algebra. For the moment let us denote « \U 8 by
“aM™*B”, s0as to suggest the corresponding operations
in the new algebra. Let T'(a) = o for all & in C. Show
that

T() = T(a),

TlaMp) = T(a) N* T(B),

T(e) = T(B) if and only if @ = B,

and for every 8 in C there is an « such that T(a) = 8.
Hence these algebras have exactly the same structure.
This is called the law of dualsty.

Verify that all the postulates except A3 are valid in
the following model:

Mo |1]2 alad
oozt olo
12|10 12
2l1lolz 2l

. Construct a model showing the independence of A4.
. Show that the arithmetical interpretation on p. 10

works if 210 is replaced by any squage-free number »,
i.e. any number 7 such that no perfect square except 1
divides n. Does it work for any other values of n?
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SECTION 3 THE STRUCTURE AND REPRESENTA-
TION OF BOOLEAN ALGEBRAS

We now ask how completely does the deductive science con-
structed in the last scction deseribe the algebra of classes. In
other words, are there Boolean algebras essentially different
from the algebra of classes? If so, what is their relation to that
algebra?

Let us begin with the case where C has m members, where m is
finite and greater than 1. We say that « is an afom whenever
a % 0, and 8 C aimplies that 8 = 0 or 8 = «. If we think of the
relation B C « as meaning that 8 is contained in «, then an atom
is an element of C which contains no others but itself and 0

T1. If a # 0, then there 2s an atom B such that 8 C .

Proof. If « is itself an atom, then the conclusion immediately
follows. If «is not an atom, then there is an element «, such that
ar # 0, ay # «, a; C o If @, is not an atom, then there is an
element o, such that «, £ 0, @, # @, , @y C o, . Now a, 5# a,
forif @, = a, then o C a;, a; C «, and therefore @ = o, . If @y’
is not an atom, there is an element o3 such that a; 5 0, a3 # a,,
and a3 C @, . Proceeding in this way we show that there are
distinet elements a; , a, , * -+ , a such that

ar C ooy y pey C gy =0 yoo Coyy,on Ca,

and o 5 0. If o, is not an atom, then we can extend this chain
to one more element. But there are only m elements altogether
in C. Consequently after at most m — 1 steps, the chain must
stop and it must be impossible to add another element to it.
Hence if o is the last element in the chain, then o; must be an
atom contained in a.

Let R(«) denote the class of all atoms 8 such that 8 C a.
Then R(1) is the set of all atoms in C.

T2. If v is an atom, then esther v C aor y N\ a = 0.

Proof. vy () a C v. Thereforey VYo = yory N a = 0.

T3. R(a N\ B) = R(a) N\ R(B), R(«’) = R(1) — R(a) and
R(a) = RB)if and only if « = B. If ey, -+ , oy are distinct
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atoms, then R(a; \J a, \U «+ - \U &) 1s the class whose members are
PRI

Notice that here « M B is the combination defined in B, while
R(a) M R(B) is the common part of the two sets B(a) and R(B).

Proof. If y E R(a N\ B), theny CaMNB.But «a N B C a and
aM B C B, by T1.1.27. Hence v C « and v C B. Therefore
v € R(a) M R(B). Conversely, if v € R(a) N\ B(B), theny C
and v C B. Consequently v C « M 8 by T1.1.34. Hence
v € R(a M B).

If vy € R(¢) and ¥ € R(w), then v € R(e) N R(a’) =
R(a M ') = R(0). Therefore v C 0, and, by T1.1.2, v+ = 0,
which is impossible. Hence if v € R(a’), vy € R(1) — R(a).
Conversely, if y € R(1) — R(e), then v is not in R(«). Hence
yMNa=vyMNa =0by T2 so that v C o, and finally,
vy € R(d).

If R(a) = R(B) and a 5 B, then either « C B or 8 C amust be
false, say the first. Then a M B’ 5 0, so that, by T1, there is an
atom ¥y C aMN . But Rl@M B) = R(a) VY R(B') = R(e) N

"(R(1) — R(B)) = R(«) — R(B). Since v & R(«a) and not in B(B),
then R(a) # R(B), contrary to hypothesis.

Finally, o, , -+ , o4 are members of R(a, \J -+ U o). If
vyER(\J - Ua)andy # oy, * -+, v # oy, then, by T2,
YNay= -+ =yMNa=0Hencey=7vN(eyJ---Ug) =

(rNa) U - U (y N\ ) = 0, which is impossible.

By a one-to-one correspondence between two classes we mean a
relation. whereby to each member of one class corresponds a
unique member of the other and vice versa. Thus at a dance in
which there are no wallflowers, the relation between each girl
and her partner is a one-to-one correspondence between the
girls and the men. We say that two Boolean algebras B, and B,
are tsomorphic if there is a one-to-one correspondence between
the classes C; and C, such that whenever o, corresponds to «,
and B, to B, , the subscripts indicating to which algebra the ele-
ments belong, then «f corresponds to e and «, M B, corresponds
to a, M B, . If B, and B, are isomorphic, then they have exactly
the same structure. We are now in a position to prove

TuroreM 4. If B is a Boolean algebra in which C has m ele-
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ments, where m 1s finite and greater than 1, then B 1s isomorphic
to B, , the Boolean algebra of all subclasses of the class of all atoms
in C. If n is the number of atoms in C, then m = 2.

Proof. By T3, the relation between « and R(e) is a one-to-one
correspondence between C and C, , and B and B, are isomorphic.
If o, -+, a, are the atoms in C, then to each class B(a) corre-
sponds a sequence a, , * - , @, of 0’s and 1’s where ¢, = 1 or 0
according as o, is in R(«) or not. There are two possible values
for each of the a’s; therefore, there are 2" possible sequences of
a’s, and hence also 2" subclasses of RB(1).

CorOLLARY 4a. If B, and B, are Boolean algebras with the same
finite number of elements, then they are isomorphic.

Proof. If n, and n, are the numbers of atoms in B; and B,
respectively, then 2™ = 2™ sothatn, = n, = n. Let @y, +++ , an
be the distinct atoms of B, and let 8, , - -+ , 8, be those of B, .
If @ € C, then R(«) is some subclass of R(1); say that it has the
distinct members ., , + -+ , @,, . Then R(a) = R(a,, J --- U
a,,) by T4, sothat ¢« = «,, U --- U ¢, . Let T(a) = 8,, U
-+ \UB,, . Then the relation between « and T'(a) is a one-to-one
correspondence between B, and B, . By T3, R(’) = R(1,) —
R(e) = the set of all those «,’s different from «,, , -+ , a,, .
Hence T'(o/) = B8,, J «-- U B,,_, , where the 8’s are all those
B,’s which are not m R(T(x)). This shows that R(T(a')) =
R(l,) — R(T(a)) = R((T(a))), so that T(¢) = (T(a))"
Similarly we can show that 7'(e M B) = T'(a) M T'(B). Therefore
B, and B, are 1somorphiec.

In order to handle the more difficult case where C has in-
finitely many members we need the so-called Zorn’s Lemma.
The pair (4, R) consisting of a non-empty class A and a relation
R defined for the members of A is called an ordered system if
a Rband b R c always imply a R ¢. (Here “a R b’ means ‘“‘a has
the relation R to b.””) A non-empty subclass B of A is called a
linear subsystem if for every pair of distinet members, b, and b, ,
of B either b, R b, or b, R b, or both. If Bis a subclass of A and a
is a member of 4 such that b R o for all b in B, then a is said to
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be an upper bound of B. If a B bimplies b R a for all bin A, then
a is said to be a maximal element of A.

Zorn’s Lemma. An ordered system, each of whose linear sub-
systems has an upper bound, contains a maximal element.

This will be taken as an axiom in what follows. We shall
discuss Zorn’s Lemma, in greater detail later in ITI7.

Let B be an arbitrary Boolean algebra. We introduce some
concepts of modern algebra which prove to be very useful in the
deeper study of Boolean algebras. By an ideal we mean a non-
empty subclass I of C such that for all « and 8in C the element
aUBE I andforall« € I and v € C the element « M v & 1.
A proper ideal 1s one which is not identical with C. The dual
concept is the notion of a sum %deal, i.e. S is a sum ideal if and
only if S is a non-empty subclass of C such that «, 8 € S implies
that « N B € §, and o € S, v & C implies that « U v & S.
This last condition is equivalent to the condition that « & S

~and @ C B imply that 8 € S. (T1.1.23, T1.1 27). Similarly a
proper sum 1deal is a sum ideal S different from C. By a product
system we mean a subclass K of C such that o, 8 € K implies
that « M 8 € K. By a mazimal sum ideal (abbreviated MSI) we
mean a proper sum ideal which is contained in no other sum
ideal. If B is the algebra of all subclasses of a given class U, then
the simplest type of maximal sum ideal is the set of all &’s such
that x € «, for a fixed element z in U. Note that S is a proper
sum ideal if and only if Sis a sum idealand 0 € 8. Also 1 € S
whenever S is a sum ideal. In the proof of theorem 7 below, the
maximal sum ideals play a role similar to that of the atoms in
the case where C contains only a finite number of elements. The
chief difficulty is the proof of theorem 5, whose corollary corre-
sponds to T1. It will be helpful in following this analysis to
refer constantly to the corresponding points in the proof of
theorem 4.

TueoreM 5: If K 1s a product system, and 0 & K, then there is a
maximal sum tdeal S contawning K.

Proof. Let A be the class of all product systems K, such that
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K CK,and 0 € K, , and let “A, R K,” mean that K, C K, .
Then A is non-empty, for K itself is in A. Hence (4, R) is an
ordered system. If L is a linear subsystem of 4, let K* be the
class of all a’s such that there is a product system K, € L such
that ¢ € K, . We claim that A* is an upper bound of L For if
a, , a, & K*, then there are product systems, K, and K, in L
such that o, & K, and o, € K, . Since L is linear, either K, C K,
or K, C K, . 1If, for example, K, C K, , then o; , @y € K, , 80
that &, N a, € K, C K*. Thus K* is a product system. If
0 & K*, then there is a K, & L such that 0 & K, . But this is
impossible since L C A. Hence K* & A, and is therefore an
upper bound of L. Let S be a maximal element of 4. Then Sis a
product system containing K and not containing 0. We wish to
prove that S is a sum ideal, for which it now suffices to show that
faES, vy EC,thenaUy € 8. If v & C, let S, be the class
consisting of all members of S, and all elements of C of the forms
aMN (BUYUy)orally, wheree, 3 & S.If 0 & S, , then there are
elements o, 8 € Ssuch that « N\ (B\U v) = 0. Thena N 3 =,
aMN (BUYUy) N =0& 8, which is impossible. Thus0 & S, .
Clearly 8, is a product system containing S, and therefore K, so
that S, € A. Smnce S is a maximal element of 4, then S, C S. In
particular, o \JU v &€ Sforall y € S. It 1s now trivial that S1sa
MSI.

CoOROLLARY 5. If @« &€ C, a # 0, then there is a mazimal sum
ideal containing .

For the set K whose only member is « is a product system not
containing 0.

TuroreM 6. If S 15 a maximal sum ideal and o & C, then either
aESord € 8.

Proof. Suppose that « M B # 0 for all 8 € S. Let K be the
class consisting of S and all elements of the form « M 8 where
8 € 8. Then K is a product system and 0 € K. Let S, be a
maximal sum ideal contamning K. Then S C 8, , and since Sis a
maximal ideal, we must have S = S, .Buta = aN1 &E K CS,.
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On the other hand, if there is a 8 € S such that « N\ 8 = 0, then
o =pgUd €8

CoRrOLLARY 6a. If S 4s a mazimal sum ideal and « \U g € 8,
thena & SorB & 8.

Forifa € S,theno’ € §,s0that N’ = (U N € 8,
and therefore 8 = (8N ) U B E S.

Let T'() be the class of all MSI which contain «, and let C; be
the class of all classes of the form T'(a).

TrEorEM 7. The triple (Cy, N, *), where T(a)* = T(1) — T(c)
is a Boolean algebra isomorphic with B. This tsomorphism 1s
generated by the relation whereby a corresponds to T(a).

Proof. First we shall prove that T(a M 8) = T(a) N T(B). If
P& T()NT(B),thena & Pand B & P. Hencea N 3 E P, s0
that P € T(a M B). Conversely, if P & T(a M B), then
aMNBEP.SinceaNBC aandaMN B CB,then a & P and
8 € P, sothat P € T(a) N T(B).

Next we show that T(«) = T(1) — T(a) = T(a)*. Now by
what we have just proved, T(a) N T(a’) = T(0). But no MSI
contains 0; hence T'(0) is the null class and 7'(a) N T(a’) = 0.
But T(1) contains all MSI. It follows that 7'(¢/) C T(1) —
T(a) = T(a)*. Now suppose that P is a MSI which does not
contain «. Then, by Theorem 6, o’ € P, so that P &€ T(«’).
Putting all this together, we see that T(1) — T(a) C T(a'),
from which we infer that T'(e/) = T'(a)*.

All that remains is to show that the correspondence between
C and C, defined by the relation between « and T'(a) is a one-to-
one correspondence. But if o # 3, then either « M B < 0 or
BN #0,say a M B # 0. Then there is a MSI P such that
aN g & P.Thatis, PE T(aMNB) = T(a) N (T(1) — TB)=
T(a) — T(B). Therefore T(x) = T(B).

If B is a Boolean algebra, and C, is a subclass of C' which is
closed under the operations M and ’ (i.e. whenever aand g8 are in
C,,then o M Band o are in C,), then the triple B, = (C,, N, ")
is also a Boolean algebra. In such a case we say that B, is a
subalgebra of B. Then the algebra (C, , N, *) defined in Theorem



24

7 is a subalgebra of the algebra of all subclasses of T'(1), which is
the class of all maximal sum ideals of B.

CoroLLARY 7a. Every Boolean algebra s 1somorphic to a sub-
algebra of the algebra of all subclasses of some class.

Thus every Boolean algebra is isomorphic to some algebra of
classes. This to a large extent justifies the prominent place given
to Boolean algebras in the study of the logic of classes.

Under what conditions is a Boolean algebra isomorphic to the
algebra of all subclasses of some class? In order to answer this
question we must introduce a few additional concepts.

If B is a Boolean algebra and 4 is any class of elements in C,
then we say that 3 is a least upper bound, or union, of A if

(1) foralla € 4, a C B,
and 2) faCvyforalla € 4, then 8 C +.

Clearly, if 8 and 6 are unions of 4, then 8 = 4. For by the second
condition, 8 C 6 and § C 8 Thus 4 has at most one union, sd
that we may speak of the union of A if one exists. In that case we
shall denote it by U(A) or Usesa. If every non-empty subclass
A of C has a union, we say that B is a complete Boolean algebra.
A Boolean algebra is called distributive if for every subclass A of
C such that U(A) exists, and for every element 8 in C, we have

ﬁf\U(A)=k€}A(ﬁf\a).

We say that B 1s an atomic Boolean algebra, if for every non-zero
element « there exists an atom g8 such that 8 C «a.

TrHEOREM 8. A necessary and sufficient condstron that the Bool-
ean algebra B be isomorphac to the algebra of all subclasses of some
class is that B be complete, disiributive, and atomic. In that case B
18 2s0morphac to the algebra of all subclasses of the class of atoms
in C.

Proof. Suppose that B is 1somorphic to the algebra of all sub-
classes of some class . Let the subclass of % which corresponds
to a given element o of C be denoted by 4(e). Nowif z € U and
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{z} is the class whose only member is z, then for some 8 in C,
A(B) = {z]. We claim that 8 is an atom. For if y C 8, then
A(y) C A(B). Hence A(vy) contains at most one member, namely
z. Therefore either A(y) = 0, whereupon v = 0, or A(y) = {z},
whereupon v = 8.

If « € Cand a 5 0, then A(a) = 0. Let x € A(a), and let
B & C be such that A(8) = {zx}. Then 8is an atom and 8 C «
since A(8) C A (). Hence B is atomic.

If ¥, is any subclass of C, let D be the class of all elements =
such that + & A(«) for some o € U, . Let B be the element of C
such that A(8) = D. Thenif « € U, , then A(a) C D = 4(8),
sothat @« C 8. Also, if « C yforalla € ¥, , then A(a) C A(y)
forall ¢ in ¥, . But if x € D, there is some « in U, such that
z € A(a), and therefore + & A(y). This shows that © C A(v)
so that 8 C v. Thus we have proved that 8 is the union of ¥, , and
therefore that B is complete.

Lastly, if %, is any subclass of C' and B is any member of C,
we must show that g N U(E’Il) = Uaeu,(ﬁ N a). Let O =
240@) and ©, = Al (8 N ). Tz € A8 N UAL)
= A(8) N D, then there is an a in ¥, such that z € A(a), by the
preceding paragraph. Hence z € A(8) N A(ae) = AB M o) C
D, . Consequently g M U@[l) C \Ueen.(8M &) Conversely, if
r € D, , then there is an « in ¥, such that x € A(B N «) =
63) N A) C AB) N D. Hence Uoew(8 N a) C 8N

(%,), which completes the proof.

Now suppose that B is complete, distributive, and atomic.
Let U be the class of all atoms in C, and let A(a) be the class of
all atoms B such that 8 C «a. We shall show that the relation
between o and A () is a one-to-one correspondence between C
and the class of all subclasses of % whereby B and the algebra
of all these subclasses are isomorphic.

Furstly, we show that A(e N B) = A(e) N A(). If
v € A(a M B), then yisan atom and y C aM B, sothat y C «
and v C B. It follows that v € A(e) M A(B), and further, that
A(a N B) C A(a) N A(B). Conversely, if v € A(e) N A(B),
then v is an atom and v C @ and v C 8. Hence vy C a M B, s0
that v € A(a N B).
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Next we provethat A(a/) = A — A(a) = A()*. If v € A(a),
then v is an atom and v C &’. If ¥ € A(a) as well, then v C ¢,
so that v C a N & = 0, and therefore v = 0, which is impos-
sible. This shows that A(¢/) C A — A(a). Conversely, if
v € U — A(a), then, by T2, y N a = 0,s0 that v C o’. As a
consequence, v & A(a).

Thirdly, we show that if A(e) = A(B), then « = B, which
implies that the correspondence is one-to-one. If a % B, then
eitheraM g = 0or BN o 5 0, say & M B’ 5 0. Then there is
an atom v such that vy C a M B'. Hence v € A(a M B) =
Al) N (A — AB) = A(a) — A(B); therefore A(a) #= A(B).

Finally, we prove that if ¥, is any subclass of ¥, then there is
an element a in C such that A(a) = ¥, . Now %, is also a subclass
of C, and therefore, by the completeness of B, has a union. Let
a = U@,). We claim that A(a) = %, . Forif v € %, , then
¥ C e, so that v € A(). Conversely, if y € A(a), theny C a.
Therefore y = v N a = y N \J@) = Usea. (v N 8). Now if
B is an atom and 8 5 v, then by theorem 4, 8 N v = 0. I
follows that if v were not in ¥, , then y M B = O for all Bin ¥, ,
and therefore v = 0, which is impossible. Hence if v € A4(a),
then ¥ € ¥; . This completes the proof.

EXERCISES

Ex. 1. We say that the descending chain condition holds if
there is no infinite sequence of distinct elements a,
such that ., C a, for all n. Similarly for the ascend-
ing chain condition. Show that (a) in a Boolean algebra
either implies the other, (b) the descending chain con-
dition implies T1, (¢) the descending chain condition
implies that the number of elements in C is finite.

Ex. 2. Show that if the number of elements of C is finite, and
f is a Boolean function of one variable, then the num-
ber of solutions of the equation f(§) = #, for any 7
such that £(0) N f(1) C n C f(0) U f(1), is equal to
2*, where k is the number of atoms contained in

O + FQ).
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. Let B be the Boolean algebra of all subclasses of some

class A. What are the atoms of B?

. Let C be the class of all classes of integers. Define

“a = B to mean that @ -+ B has a finite number of
elements. Show that = is an equivalence relation, and
that (C, M, ") is a Boolean algebra with respect to =.
Prove that there are no atoms in this algebra.

. In problem 4 let “a =, 8” denote that « = 8 and that

the integer 2 is not contained in « 4 B. Show that.
(C, N, ") is also a Boolean algebra with respect to =, .
What are the atoms of this algebra, if any?

. In problem 3 show that if % is infinite, then there are

MSI different from the simple type mentioned on p. 21.
Hint: Choose a suitable product system and apply
theorem 5. Tarski and Ulam, Fundamenta Mathe-
matica, 1930, have proved that the non-trivial MSI
outnumber the trivial ones by far. No way is known for
constructing one, however, or even of proving their
existence without some such assumption as Zorn’s
lemma or the axiom of choice (II17).

. Prove that if « is an atom, then the class of all 3 such

that « C B8 is a MSL

. Let C be the class of all classes « of integers such that

either « or o’ contains only a finite number of elements.
Show that (C, N,’) is a Boolean algebra. Is it complete?

. Show that in a complete Boolean algebra if A is any

class of elements in C, then there exists a greatest lower
bound, or join, 8 of A satisfying

(1) forall ain A, 3 C o, and

(2) if y Caforalla € 4, theny C 8.



Chapter II
THE LOGIC OF PROPOSITIONS

SECTION 1 FUNDAMENTALS

In the last chapter we studied the general laws underlying the
logic of classes. The propositions with which we worked were
mostly of the form “a = 3,” where « and 8 are classes. We found
out under what conditions such propositions are true and under
what conditions one proposition of this type implies another.
Now we shall consider what laws governing the logic of proposi-
tions are independent of their inner structure.

If p and ¢ are propositions, then “p A ¢’ shall denote the
proposition that both p and ¢, and “p Vv ¢” shall denote the
proposition that either p or ¢ or both, and “~p’’ shall denote
the proposition that it is false that p. For example, let “p”
denote that Willie is silly, ““¢”’ denote that Jane is vain, and “r”’
denote that man is vile. Then “~p V (¢ A r)” denotes the
proposition that either Willie is not silly, or both Jane is vain
and man is vile, or Jane is vain, man is vile, but Willie is not
silly.

We shall tentatively think of propositions ashaving one of two
truth values, “truth” or ‘“‘falsity,” which we shall denote by ““t”
and “f.” Then the truth values of p A ¢, p V ¢, and ~p are
determined by those of p and ¢. This is indicated in the following
tables:

P l g ‘p/\q|qu| p | ~p
f t t t f
N N P
N I I 2
f f f

28
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We shall say that two propositions are equivalent if they have
the same truth value, and shall denote this relation by “p E ¢.”
The statement “p E ¢” is a sentence in the syntax language, not
in the object language.

The following may be easily verified, either directly or by
means of the above truth tables:

WD pAgEqgAp,
@pAG@ANED®AQ AT,

@B)ifp AgEp,thenp A (~g) Er A (~r), and
4)ifp A (~q)Er A (~r),thenp A ¢ E p.

Also we have

(5) if p E ¢, then ~p E ~q, and
6)ifpEgthenp ArEgArandr ApEr A q.

Thus we see that the laws of Boolean algebra also hold for the
‘logic of propositions with “A”’, “~" and “E,” in the places of
“N7 97 and =7, In fact, the symbols “#”” and “f”’ form a
two-element Boolean algebra with respect to the operations A
and ~ defined by the above tables. The algebra of propositions
is, then, essentially the same as the algebra of classes. We are
thus led to the following formulation of the logic of propositions
as a deductive science.
The undefined terms in our system are a non-empty class C,
two operations A and ~ defined on C, and a relation E defined
between the members of C. The unproved propositions are:

Al. If pand q arein C, then ~p and p A q are uniquely
determined members of C.

A2. Ifpand garein C,thenp N ¢E q¢ A p.

A3'. If p,q,andrarein C,then (0 A Q) ATEp A (g A T).

Ad. If p,q,and rarein C,and p A g E p, thenp A ~q E
r A\ ~r.

A5, If p,q, and r are in C, and p A ~q Er N ~r, then
pAqgEDp.

A6’. If p and q are in C and p E gq, then ~p E ~xq.
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A7, Ifp,q,andrarein C,andp E ¢, thenp A r E g A rand
rApEr g

A8 If pisin C, then p E p.

AY. Ifpand garein C, and p E g, then ¢ E p.

Al0. If p, g, andrarein C,and p E g, and ¢ E r, then p E r.

It is now clear that (C, A, ~, E) is a Boolean algebra with
respect to the equivalence relation E. In other words, the logic
of classes and the logic of propositions are models of the same
deductive science, namely that of Boolean algebra. All theorems
in Boolean algebra hold for both logics. Theorem 1.2 23 gives
us & criterion for determining whether a sentence of the form
“p E ¢” is or is not universally valid in the logic of propositions,
where p and q are expressed as Boolean functions of arbitrary
propositions.

There is one combination, namely “(~p) V ¢’ or
“~(p A (~q)),” which has many of the intuitive properties of
an implication relation. It is therefore called material implication
and is symbolized by “p D ¢.” There has been some controversy
over the question of whether this is a suitable interpretation of
the proposition that if p then ¢, and we shall not commit our-
selves on this question. We merely remark that for most mathe-
matical purposes this interpretation is entirely adequate. The
determination of its truth value from those of p and ¢ is shown
by the table:

p | ¢ ]qu

e e
T e
Stk S o

Thus with this interpretation a false proposition implies any
proposition snd atrue proposition is mmplied by any proposition.
The proposition p D ¢ is false if and only if p is true and ¢ is
false. Some philosophers have argued that these properties of
material implication disagree with the intuitive meaning of
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implication. Nevertheless, these properties do agree with the
interpretation of implication used in practice by mathemati-
cians.

Note carefully that while “a C B’ expresses a relation be-
tween elements in a Boolean algebra and is thus a sentence in the
syntax language, p D ¢ is an element of C, and “p D ¢’ is a
sentence in the object language.

SECTION 2 ALTERNATIVE FORMULATIONS

The formulation of the propositional logic based on A1-A10’
is entirely adequate and shows very clearly the relation between
the logic of propositions and Boolean algebra. There are, how-
ever, other approaches to the logic of propositions which are, in
some ways, more acceptable intuitively.

The first one which we shall consider has the following primi-
tive frame:

Undefined terms: a class C, a class £, a binary operation D,
*and a unary operation ~;

Unproved propositions:

Al”. If pisin , then pis in C;

A2”. If p and q are in C, then p D q s a uniquely determined
element of C,

A3”. If p is in C, then ~p 2s a uniquely determined element
of C;

A4 If p,q,andrarein C,then[p D (¢ D] DpD g D
(pDnliswm I;

A5". If pand qgare in C,thenp D (¢ D p) isin I;

A6"”. If p and g are in C, then [(~p) D (~¢)] D [¢ D pl is
n I;

A7". If pand p D q are in &, then ¢ is in <.

An ordered quadruple (C, &, D, ~) satisfying these postulates
will be called a Boolean propositional logic.

In the concrete interpretation which we have i in mind, C is
the class of propositions, T is the class of true propositions,
p D qis the proposition that if p, then g, and ~p is the proposi-
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tion that it is false that p. We shall abbreviate the statement
“pisin T’ by “Ip,” which may be read “We assert that p” or
“Tt is true that p.”” Of course, “|p” is a sentence in the syntax
language.

For brevity we shall adopt certain conventions for omitting
parentheses or replacing them by dots. The symbols D, V, A,
and ~ shall be called connectives and this shall be their order of
sengority, so that “D7” is senior to the symbols that follow it in
this list, etc. We shall write sentences in the object language
using dots as punctuation instead of parentheses. A point is a
symbol consisting of zero or more dots. We use points on the
right of unary connectives such as “~” or on either side of
binary connectives. A point to the right of a connective will be
called a right point, and one to the left will be called a left point;
the point will be said to be atiached to the connective in question.
Each point in a sentence indicates a certain part, which is itself a
sentence and would be enclosed in parentheses in the old nota-
tion. This part is called the scope of the point. The scope 1s
determined by the following rules.

I. If @ and B are points in a sentence, then « is semior to B if
and only if either

(a) « consists of more dots than 3; or

(b) @ and B have the same number of dots, but « is
attached to a connective senior to that to which
g is attached; or

(¢) « and B are the same with respect to (a) and (b)
but « lies to the right of 8.

II. The scope of any right point extends to the right until the
first (if any) left point which is senior to the given point
and all intermediate right points.

III. The same as II with “right” and “left”’ interchanged.

Thus in the sentence “p D ¢ D r’’ the points all consist of
zero dots and may be identified thus “p, D, g5 D4 r.”” Their
order of seniority from highest to lowest is 4, 3, 2, 1 (See I(c).).

[{P"n})

The scope of “3” is “p D ¢,” and the scope of “4’" 15 “r.” If we
write this sentence in the parentheses notation, we obtain
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“(p D @ D r,” where we have left out parentheses enclosing
single letters. The conclusion of A4 could now be written

“pDODgDr.DpDgD.pDrY,

but we shall often put in extra dots to make the scopes more
obvious. The purpose of language being communication, it is
more important to write legibly than to be stingy with dots. We
shall therefore prefer to write this sentence thus:

“pDgDr:D:pDq¢D p DY,

or even thus:

“p.D gD D:ipDg.DpDr

although the first form is more economical.
The conclusions of A5 and A6” may be written as follows:

“p D .q D pil,
and “~p D ~q.D gD P".
We introduce the following definitions:

Di1. up \V; qn fOT “Np D) q.n
D2. ap A qn fOT ”N.p D) Nq,”
D3. up = qn fOT up D) q. A q D) p.n

We shall take “="’ as senior to “D.”

On the basis of A1"-A7"" we can prove the following theorems.
We shall usually omit the explicit statement that the elements
mentioned in these theorems are members of C.

T1. bp D p.

Proof. 1) Fp D gD pDop. (A5}
@ FkD.agDo. (A5")
@ 1 D .2 D .Ti. (A4"")

Here step (3) indicates that the statement
Fp D gDpDp:D:ipD gDp:DpDODP
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follows from A4”, and that certain parts are identifiable with
sentences which were proved in previous steps. Two applica-
tions of A7 yield the desired result. Explicit mention of such
applications of A7 will sometimes be omitted.

T2.FqDrDpDgDpDr.

Proof. Yp D qDOr:DpDg¢D.pDr. (A4")
@FHD.gDrD@ (A5")
@ F>Dr> (M (A7)
WDHDr.DOwDgDr (A5
6 F3) D .4) D .T2 (A4")

T3. F~p D .p Dy

Proof. (1) F~¢D ~pD .p D¢ (A6")
@) F~p D .~q¢D ~p (A5")
@) H) D .2 D .T3 (T2)

T4. b~~p D p.

Proof. (1) b~~p D .~p D ~~r~p (T3)
@) F~p D ~~~p.D .~~p Dp. (A6")
@ HYD:()Di~~pD . ~~pDop (T2)
@) F~~p D ~~p Dop. (A7)
() p~~p D ~~p (T1)
(6) H4) D .(5) D .T4 (A4")

T5. fp D ~~p

Proof. (1) p~~~p D ~p (T4)
(2 FH1) D T5 (A8

T6.Fp D pDgDyg

Proof. (1) Fp D gD p Dy (T1)
@QF)D2D¢Dp.DpDgDyg (A4")
@ FD¢gDp.DpDe¢Dyg (A7)
@DFpDpDgDp (A5")
5) F8) D .(4) D T6 (T2)

T D gD gD .pOr
Proof. 1) Fp D gD pDriD:igDpDg:D:ipD
gqor (T2)
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@QFDgDr:DpDgdDpDr (A4")
B)FDpDyg (A5")
@GOHF)D:@2DpD¢gDr.D:3)D

D pDr (T2)

GYFpDgDr.D:8 DD pDr (A7)
B)FB) DB DD pDr:D:gD

pOrT (T6)

MFEBDyYDpDraDigdDpDdDr (AT

®) H7) D .(5) D T7 (T2)

T8 FpD¢g: D ygDrDpDr (T7, T2)
T9. Fp D ~¢D gD ~p

Proof. (1) F~~p D p (T4)

@) F1):DpD ~¢gD .~~p D ~q (T8)

@) FpD ~gD .~~pD ~q (A7)

(@) p~~pD ~¢.D gD ~p (A8")

(6) FB3) D .(4) D T9

T10. F~p D q¢D .~¢Dp
Til. Fp D gD .~ D ~p

The proofs of T10 and T11 are similar to that of T9 and may
be left to the reader as exercises.

Ti2.Fp AgDgA D (T9, T11, D2)

TI8. tp D gDpAg

Proof. 1) Fp D .p D ~¢ D ~q (T6)
@D ~D~.DgDpPAg (T9, D2)
@) F1) D .(2) D T13 (T8)

Ti4. lpD¢D gDpPpDp=gq (T13, D3)

Ti5. Fp A gD p

Proof. (1) F~p D .p D ~q (T3)
@D ~MD.~pPAQ (T5, D2)
@ FLHD.@QD.~pD.~pDAQ (T8)
@) b~p D .~ .pAg:D:T15 (A6")

T16. Fp A gD g (T12, T15)

TI7.lfpAg=gqgADp (T12, T14)

TIS. frDpDrDgDrDpAg
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Proof. ) Fp D gD p Ag (T13)
@ H)D.rDQ (A5")
@) D @.D T8 (A4

TIO. Fp A gAT.=DAQ AT

Proof. 1) Fp A A T.Dp (T15)
@FAgAr.DgAT (T16)
@ FeArDg (T15)
@WFE2D.BDpAgAr.Dyg (T8)
GYrp A gAT.Dy (A7)
GFHD:BG)DpAgAr.DpAg (T18)
MNFAQGATr.DpAg (T16)
®FrgArDr
@A gAr.Dur ((2), (8), T8)

1) Fp A gAT.DDPDAGQG AT ((7), (9), T18)
Similarly we prove that

AD P A QAT DDA QAT

Hence, (12) |F(10) D .(11) D T19 (T14)
T20. If Fp and Fp = g, then |q.
Proof. 1) Fp=¢.DpDyg (T15)

T20 follows from (1) and A7".
T21. Idp = q. D _Np = ~q

Proof. 1) bp =¢.D pDgq (T15)
@FpDg¢gD.~D ~p (T11)
B Fp=¢.D.~¢D ~p (1), (2), T8)
W rp=¢.D.~pD ~yq (T16, T11, T8)

G rp=g¢g.D.~p=n~g ((3), (4), T18, D3)
T22. fpDg.=pAg=p

Proof. (1) Fp A gD p (T15)
@DHPDeDpPpA¢IDD ((1), A5")
@ FTED pD¢gDpDpAg (T18)
WD DpAg=0p ((2), (3), T18, D3)

G FpAg=p.DpDpAg (T16, D3)
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B FTI6D pDpAgD pDyg (T8)
M Ag=p.DpDg ((5), (8), A7, T8)
®) F4) D .(7) D T22 (T14)
T23. F~p A ~p (T5)
T24. bp = p (T1, T13)
T25. fbp=¢q. = qg=0p (T17, D3)
T26 tp=¢D pDr=¢Dr
Proof. 1) p=¢D qDp (T16)
@DHDPDPpDrdDgDr (T8)
BFDD.@Dp=¢DpDrD .gDr (T8)
Simularly,
@Fp=¢DgDrDpDr
5 F1) D .4) D .T26 (T18)
T2l. lp=q¢D orDp=rDy (Simuilar to T26)
T8. tp=¢Dyy=r.=p=r (T26, T27, T25, T21)
T29. F~~p =p (T4, T5)
T30. Fp Dg.= .~ p A ~gq (T29, T28, T26)
T3l F~p.=p=7r A ~r
Proof. (1) F~p D pDr A ~r (T3)
@2 D r A ~rD P (T3)
@ F~DurA~Dp (A5”, (2))
@ F~pDp=rA~r ((1), (2), T18)
Gy Fp=rA~r.DpDr A ~r (T15)
B FpDrA~Di~rA~.D~p (T11)
(MFT28D pDr A ~rD ~p ((6), T7)
@ Fp=rA~r.Dp ((8), (7), T8)
D rp.=p=rA~r (T14)
T32. lp Dg.=pA ~qg=7r A ~r (T31, T30)
TB.fpAg=p.=pA ~g=1r A ~r (T32, T22)
T34. Iftp A g =p, thentp A ~q =r A ~r (T20, T33)
T35. If tp A ~qg =1 A ~r,thenfp A ¢ = p
(T25, T33, T22)
T36. fp=¢.DpAr=gqgAr (T26, T21)
T37. [—p—:—qu/\psr/\q (T27, T21)
D4. “p E ¢’ for “4p =
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It is now easy to verify that (C, A, ~, E) is a Boolean algebra
with respect to the equivalence relation E. Conversely if (C, A,
~, E) is a Boolean algebra with respect to the equivalence
relation E, and we define the class £ as the class of all members
p of C such that p E ~(p A ~p), and define “p D ¢” as
“~(p A ~g)", then (C, T, D, ~) is a Boolean propositional
logic. This shows that the two concepts are equivalent.

An alternative approach is possible in which we fix our atten-
tion not on the classes C and Z, and the properties of the opera-
tions D and ~, but on the object language in which we talk
about these entities. That is, we can set up a system of rules for
the manipulation of the signs without making any assumptions
at all about the things they denote, or indeed, without assuming
that the signs denote anything at all.

We take as our alphabet the signs (,), D, ~, and the infinite
list of ““letters” p,, P2, ps, -+ - . The latter we call propositional
variables. A finite sequence of signs, written from left to right,
will be called a string. We shall use capital Latin letters to denote
strings, i.e., as names of strings. The notion of a string is ex-
pressed in the syntax language, while the strings themselves are
in the object language.

A sentence is a string formed according to the following rules:

(1) a string consisting of a single propositional variable is a
sentence.

(2) if A and B are sentences, then (4 O B) and (~A4) are
sentences.

Here “(4 D B)’’ denotes the string consisting of ‘“‘(’’, then the
signs of 4 in order, then ‘D", then the signs of B, and finally
“)’. A string of signs in our alphabet and capital Latin letters
will always be interpreted in this way. If A and B are strings,
then S(B | p, | 4) is the string obtained by substituting B for
“p,” throughout 4.

We take the following strings as axioms:

Ala. ((p D’ @D Ps) D Upr Dp2) D (i D Pa)))-
A2a. (p1 D (p2 D p1)
A3a. (((~p1) D (~p2)) D (P2 D p1))s
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and the following ‘‘rules of inference’”:

Rla. If A and (4 D B), then B.
R2a. If Bis a sentence and A is a theorem, then S(B | p: | 4).

These axioms are to be used as an initial supply of strings, and
the theorems are the axioms themselves, and all strings obtain-
able by a finite number of applications of the rules to the axioms
or the strings already obtained. For example, the first step in the
proof of T1 now consists in observing that “(p. D p,)” is a
sentence and taking the string (p;, D (p. D p1)) for 4, and
applying R2a to obtain S((p. D ») | ». | A4), which is
“p: D ((p: D p1) D p1).”

In our previous treatment a rule of substitution, such as R2a,
was unnecessary, since if A is a sentence and a letter, say “p”,
occurs in 4, and if -4 is proved for all members p of C, then we
may replace “p” by any other name of any member of C. Thus
R2a amounts to the observation that no members of C are sin-
gled out by A1”7-A7" as having special properties expressible in

' the object language, so that anything provable from these
assumptions alone holds for all members of C. In other words,
R2a is a statement of a property of the object language, i.e. that
the only true propositions expressible in this language are gen-
erally true propositions, and has nothing to do with the proper-
ties of C.

Nevertheless, the two points of view are formally equivalent,
since the provable sentences are exactly the same in the two
theories. The difference is that previously it was assumed that
the strings had meanings, and whenever meanings are assigned
so that A1”7—-A7" are true, then all the theorems automatically
become true propositions. In the second point of view we first
develop a language by applying certain rules without any refer-
ence to any meaning of the signs. If we wish to use this language
for any purpose, then we must give rules for interpreting it. In
this particular case it is easy to give an acceptable interpretation
and to see intuitively that the interpretation is satisfactory. It is,
however, a very difficult problem to define rigorously what is
meant by an interpretation of a language, and to give criteria by
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means of which one can decide whether a proposed interpreta-
tion is acceptable. This difficulty is avoided when from the
beginning we take the signs as names for various entities.

The second formulation is still not entirely satisfactory, since
the notion of substitution is a rather complicated one. We could,
of course, define that notion and thus make it available for a
rigorous theory. But this makes it necessary to use rather heavy
machinery in the unanalyzed syntax language even for the
proofs of very simple theorems.

Of course, when we wish to prove deeper theorems about the
system, such as T1.1 41, we must use a great deal of the syntax
language 1 any case, but in the simpler parts of the theory we
should try to reduce its use to a minimum, just because its
properties are not stated explicitly. If we tried to analyze the
syntax language as well, we should have to communicate this
analysis in a language whose meaning and structure was already
assumed to be known, and so on; this would force us into a para-
dox akin to the ‘“Achilles and the Tortoise’” paradox of Lewis
Carroll ([67] 2, 3 See also “The Collected Works of Lewis
Carroll,” The Modern Library, New York).

We may solve this difficulty by incorporating these trouble-
some parts of the syntax language in the object language. While
we are at it, we may as well get rid of the infinite alphabet,
involving numerical subscripts, which occurs in the last formu-
lation. To do this, we identify the subscripts with strings in a
new sign “l,” and in order to retain the uniform convention of
writing strings in linear order, we place the 1’s on the same line
as the rest of the signs. In this way we avoid even this trivial
unanalyzed use of arithmetic in the logic of propositions.

In this way we arrive at the following formulation:

Alphabet: S, |, V, D, ~, (,), p, 1, &, =, =, |.
Axioms: Alb. Vp

A2b. p=1p
A3b, 1 =1
Adb. D =D
Abb. ~ = ~

A6b. (= (
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A7b. ) =)

A8b. H(pD (p1Dp11)) D ((p D pl) D (p Dpll)))
A9b. (p D (p1 D p))

A10b. (((~p) D (~p1)) D (p1 D p))

Rules: Rlb. VA4 — VAl

R2b. A =B,C =D — AC = BD

R3b. A=B—-B=A

R4b. A=B,B=C—-4=C

R5b. A, A = B —|B

R6b. VA — p = Al

R7b. A %« B — 41 # Bl

R8b A#B—>B#A

R9b. VA — &4

R10b. @A — &(~A)

Rllb. @4, ©B — &(4 D B)

R12b. VA, B - S(B|A | A) = B

R13b. VA, 8B, VC, A= C —-8(B|A|C)=2C

Rl14b. VA, &B,&C,&D —» S(B| 4| (C D D)) =
(SB|A|C)DASB|A|D)

R15b. VA, @B, &C — S(B | 4 | (~(C)) =
(~8(BA]C)

R16b. F4, (A D B) - }B

R17b. VA, @B, &C,FC - }FS(B | A | C)

Here again the axioms are to be taken as an initial supply of
strings. The rules are to be understood as meaning that when-
ever we already have the strings indicated to the left of the
arrow, then the string to the right is to be taken as well. The
letters A, B, C, and D denote arbitrary strings.

For example, if we start with Alb and apply R1b repeatedly,
we obtain the strings

(1) Vp, Vpl, Vpll, Vplll, --- .
We may then apply R6b to these strings and get

(2) p # pl, p # pll, p &= plll, --- .
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Application of R7b yields

3) pl ## pll, pll = plll, ---,
pl # plll, pl1l # pllil, ... .

By R9b applied to the strings in (1), we find that the initial
“V’’ may be replaced by “&”. Then R11b gives us

4) &(p1 D p), & D (p1 D p)), S(pll D (p1 D (p11 D
D)), ete.

Now we may use R17b and A9b to obtain
() FS((p1 D p) [ p1 | (p D (1 D p)))-
To save time we shall merely summarize the next inferences:

6) S((p1Dp)|pl| (@D (1D p))) = S((p1 D p) | p1|p)
D8((p1 D) | pl|(p1 D p))

(M) S((p1 Do) |pl|p) =»

8) S(@1Dp) | pl| (p1 D p) = (S((p1 D p) | p1 | p1)
D 8((p1 D p) [ p1 | p))

9) S((p1 Do) |pl]|pl) = (p1 D p)

(10) (S((p1 D p) | p1|pl) = ((p1 D p) (A6b, (9), R2b)

(1) (S((p1 D p) |21 |p1) DS((p1 Do) |pl|p) =

(1 D p) D p) ((7), (8), R2b, R4b)
(12) S(1 D p) [ pl| (@ D (p1 D p))) =

(® 2 ((p1 D p) D p) ((6), (11), R2b, Rdb)
(13) @ D ((p1 D ) D p)) ((5), (12), R5b)

Thus we see what is involved in this formulation in order to
perform the first step in the proof of T1. We have, in fact,
omitted a few steps (applications of R2b) in (10), (11), and (12).
This situation arises because we have analyzed the rules Rla
and R2a and the definition of a sentence into ‘‘atomic’ steps.
Steps (4)—(13) are what we really do in one fell swoop when we
substitute “(p1 D p)” for “pl” in A9b. This illustrates the
complexity of tHe process of substitution. In this formulation
we have reduced the use of the syntax language to a bare mini-
mum at the cost of greatly increasing the lengths of proofs. On
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the other hand, the present object language is much richer, so
that many syntactical theorems about the logic of propositions
now become theorems in this precisely formulated object lan-
guage. The advantages and disadvantages of these points of view
will be discussed later in more detail. In the last chapter (p. 157—
159) we give still another analysis of the object language of
Boolean algebra.

EXERCISES

Ex. 1. Prove (a) p1 D 22D - D .me Dq:=:p1 A p2 A

Ex.
Ex.

Ex.

Ex.

o

rApDa
(b) f~.p = ~p.
(¢) bp vV ~p.
@Fp=g¢g.V.p= ~q
@ MDg.V.¢Dop
O Fp=g.=pAqgV ~p A ~q
@k D.pANg=q¢
b FpDpVae
@ FpVveg=qVop
() FpADp=¢Dag

. Prove the independence of A4'"-A6".

Prove that if f is any Boolean function of one variable,

then bp = ¢ .D. f(p) = f(9).

(a). Prove that if f is any Boolean function of one
variable, then

Ff D p) A f(~®Dp) D f@.

(b). State and prove the analogous theorems for Bool-
ean functions of several variables.

Show how problem 4 can be used to decide whether
for a given Boolean function f, the statement

Ff(py, -+, p) is a theorem.
Show that a necessary and sufficient condition that
Ffpy, -+, 2) D gps, -+, pe) be a theorem is that

whenever Ff(p,, *+-, o) then Fg(py, + -+ , Da)-
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SECTION 3 DEDUCTIVE SYSTEMS

By making use of the concepts introduced in the study of
Boolean algebras we can clarify the foundations of the logic of
propositions and study the nature of deductive systems from a
rather general point of view. As we have remarked before, the
propositional calculus forms a Boolean algebra with the relation
E playing the role of the equality relation =. On the other hand,
if B = (C,N,’) is a Boolean algebra, and we define “p D ¢”
as Hp/ U ql’ or l‘(p m ql)lH a,nd ‘pr’l as {tpl’7} then

pD@DOP =Y @VUp) =pUpUgqg=1,

and similarly for the formulae appearing in A4’ and A6”. If &
is a sub-class of C such that A4’’—A7" are satisfied, then 1 & Z.
By T9”, p, ¢ & T implies that p N ¢ € T; furthermore

pD@U=9pUpUg=1¢€ T,

so that p € ¥, ¢ € C implies that p U ¢ € <. Thus if T is a
subclass of C satisfying A4”’-A7", then ¥ is a sum ideal. Con-
versely, if T is a sum ideal, then 1 € I so that A4'’-A6" are
automatically satisfied. Besides, if pandp D¢ =p' U q € §,
theng = ¢\U (p N (p’' Y ¢)) € L, which yields A7”. We thus
have proved

TreoreM 1. If B = (C, N, ) ¢s a Boolean algebra, and we
define “p D ¢’ as “(p M ¢)"”’ and “~p” as “p’”, then for the
subclass T of C to satisfy A4"—A7" it is necessary and sufficient
that X be a sum ideal.

We shall, in this section, revert to the notations of chapter I,
supplemented by the symbols “+’ and “2”. In many deductive
theories we wish the axioms to be categorical, that is, that the
system should be adequate to decide the truth or falsity of any
proposition which can be formulated in the system. In the frame
of A1”"—A7""wescan give this demand the strong form that for
every p & ( either |p or}p’,i.e. p € Torp’ € L. As a conse-
quence of lemma 6 we obtain
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TrEOREM 2. A necessary and sufficrent condstion that a propo-
sitzonal logic be categorical 1s that T be a maximal sum ideal.

Proof. By lemma 6, if T is a MSI, then the logic is categorical.
Conversely, if the logic is categorical and & is a sum ideal con-
taining T, and & % T, then thereisa p € & such that p & <.
Hence p’ € € C S, s0that 0 = p N p’ € &. Therefore S = C.
This shows that T is a MSL

If ¥ is any subcelass of C, then the sequence p, , - - - , p, is said
to be a proof of q from the hypotheses X if ¢ = p, and if for each 1,
1 <7 < n,either p, isin T or p, 181n ¥, or there are j, k such that
1<,k <iand p, = (p, D p.). We shall say that ¢ is a conse-
quence of X 1f there is a proof of ¢ from the hypotheses £*. We
shall denote the class of consequences of X by “¥”. Of course,
the notion of a consequence of ¥ 1s relative to the sum 1deal
initially chosen as the class of true propositions If T is taken to
be the class whose only memberis 1 (1.e. p D p for some p & C),
then ¥ becomes in a sense the class of logical consequences of ¥,
i.e. the class of all propositions which follow from ¥ under no
assumptions as to ‘“‘extralogical” truths.

TaroreM 3. If ¥ is a finite subclass of C, X = {r,, -+, 1},
then q is a consequence of X of and only if Fri Mrs M -+ - M, D g.

(We omit parentheses here with T2.2.19 as justification.)

Proof. Let p, , + - - , p. be a proof of ¢ from the hypotheses X.
Let s = r, M -+ N . . We shall prove by induction that
Fs Dp.,2 =1, .-+, n, the last case of which is the desired
assertion.

Now either |p, or p; & %. In the first case, the assertion
“s D p,” follows from A5, and in the second case, from
repeated applications of T2.2.15 and T2 2.16.

Suppose that s D p, for 1 < 7 < 1. If either |-p, or p, € %,
then the argument just used for 72 = 1 applies. If there are 3, k
suchthat 1 < 7,k <diandp. = p, Dp.,theng Do D s D

*We shall say that ¢ is a consequence of the proposition p if g is a conse-
quence of the class {p}.
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p, D .8 D p, (A4”"), so that the assertion that |-s D p, follows by
two applications of A7".

Conversely,if Fr, N7y M - -+ M, D g, then ¢is a consequence
of X. Forr,, i, Doy DNy, ry Dri Ny, ry, 1 (N 1y,
YTy D s Dy (N (N, g Dy Ny (N 1y, Ty,
AT AT TR N AN AREEN A Y A N AT YA IR A WD I3
g 15 a proof of ¢ from the hypotheses X.

CoroLLARY 3a. If ¥ is a non-empty subclass of C, then q is a
consequence of X if and only if there are elementsr, , --- , 1, of ¥
such thatFry M <+ N1, D g

For the latter condition certainly implies that ¢ is a conse-
quence of ¥. On the other hand, if p, , --- , p. is a proof of ¢
from the hypotheses X, and if », , - - - , 7, are the elements of ¥
occurring in this proof, then ¢ is a consequence of {r,, ---, r},
so that theorem 3 applies.

CoROLLARY 3b. The element q is a consequence of the null class
if and only if |g.

For then ¢ is also a consequence of ¢ D ¢, so that ¢ follows
from T2.2.1.

CoROLLARY 3c¢. The element q s a consequence of p if and only
iftp D g

This is the case ¥ = 1 of theorem 3.

Corollaries 3a and 3c constitute the so-called deduction theorem
of the Boolean propositional logic. We shall denote that ¢ 1s a
consequence of X by “X }¢”;if X = {r,, ---, n}, then we may
also write ““r; , -+« , 7, |¢”’. The use of the deduction theorem
would have simplified many of the proofs in the preceding
section.

THEOREM 4. ¥ is the smallest sum ideal contarning both X and .

Proof. If X is the null class, then ¥ = T and is certainly the
smallest sum Ideal containing ¥ and . Suppose that ¥ is not
empty. Let © be any sum ideal containing ¥ and . If ¢ € ¥,
then there are elements r, , -+- , r, € ¥ such that }r, N ---
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Nr.Dq Hencer, M - f\‘%‘E@andrl TN DgE G,
so that ¢ € &, by theorem 1. This shows tha.t every sum ideal
containing ¥ and T also contains ¥. It remains to show that ¥ is
itself a sum ideal containing both ¥ and <.

If ¢ € X or &, then ¢ itself is a proof of ¢ from the hypotheses
X. Therefore ¥ does contain ¥ and <.

If ¢, and ¢, € ¥%, then there are elements 7, , “*+ , Tm , Tmsr »

-, r,in ¥ such that

FroO oo N Dgand b N - N Dogy.
But

NN, DN - N7y, and
Fro DY oo Ny D N -+ N1y, by T2 2.15, T2.2.16.

Then ¢, Mg, €%, by T2.28 and T22.18 If g€ ¥and r & C,
then ¢ D ¢ U r (see p. 43). Consequently, if we adjoin
g D q\Jr, q\Jrtoany proof of ¢ from the hypotheses ¥, we
obtain a proof of ¢ \J r. Hence ¢\ » & %, which completes the
proof that ¥ is a sum ideal.

The following properties are easy to prove:

%,
pﬂp’} = {p,p'}=C,
g, r € C, then ¢gDr EX, if and only ifr EX U {g},

0={lf=IN{H}=t

Al
fl

l:'.,,;-—\

Here {p, q, - - -} is the class whose only members are p, ¢, -+,
and the connectives /"’ and ‘“\U” are the usual ones in the
algebra of classes.

We may say that a subclass X of C is a deductive system if it
contains all of its consequences, i.e. if ¥ C %. But, by theorem 4,
¥ C %, so that this condition is equivalent to ¥ = ¥, and this
implies that % is a sum ideal containing . Conversely, if ¥ is a
sum ideal containing T, then ¥ = %, by theorem 4. Thus the
concept of a deductive system coincides with that of a sum ideal
containing T. An equivalent condition is that thereisa 9 C C
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such that ¥ = 9). In other words, a deductive system is the set
of all consequences of some given class of propositions. To say
that a class ¥ of propositions is consistent means that there is no
proposmon ¢ such that both ¢ and q are consequences of X.
But ¢, ¢ € ¥ impliesthat 0 = ¢ N ¢’ € %, and 0 € X implies
thatr = r U0 &€ Xforallr € C.

Hence 0 € X Jf and only 1f £ = (. Thus ¥ is consistent when
and only when ¥ 1s a proper sum ideal or equivalently, when not
all propositions are consequences of X.

We see then that many of the “metalogical’” concepts arising
in the study of deductive theories are subsumed by the notions
of modern algebra. This is discussed in detail by Stone and
Tarski, who arrived at this result independently from quite
different points of view. As these authors have shown, there is a
close connection between the properties of deductive systems
and Brouwer’s “intuitionistic” logic as formalized by Heyting
(see the next section).

We are now able to throw new light on the concept of truth
value. As we have noted before, the truth values form a two-
element Boolean algebra with respect to the operations M and ’,
and may therefore be identified with the elements 0 and 1. Now
suppose we have a method of assigning truth values to all propo-
sitions in agreement with the tables of I11. That is, we have a
function v defined on the Boolean algebra of all propositions and
taking on only the values 0 and 1, and such that

o(p) = v(®', N g = vl N,

which merely states algebraically that the assignment of truth
values really does what we want it to do. Such a function is called
by algebraists a homomorphism of the given Boolean algebra B
onto the two-element Boolean algebra. Let £ be the class of
propositions with the truth value “truth’”, i.e. such that
v(p) =

It turns out that T is a MSL For if p, ¢ € I, then
v(p) = v(g) = 1, “so that vipMq) =v(p) Nulg) =1N1=1,
andpNgeg. pr EZ,qEC, thenv(pUg) =v((@N¢))=
(@' M) = ) N@)) = @) No(g) =) \J(g =
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1\U »(g) = 1 so that p U ¢is also in T. This shows that T is a
sum ideal. Bul v(p) = 1 or v»(p) = 0, and if v(p) = 0, then
v(p") = v(p)’ = 0’ = 1. Hence for every proposition p, either
p &€ T or p’ € T. Consequently T is a MSI.

Conversely, if T is a MSI, and we define v by the table:

1 ifpeS
v(p) =
0 ifp&EZ

then v is a homomorphism of the algebra of propositions onto
the two-element Boolean algebra. For either p & L or p’ € I,
and not both. In the first case v(p’) = 0 = v(p)’, and in the
second, v(p’) = 1 = v(p)’. Sumilarly we show that v(p M ¢) =
v(p) M v(g). This proves

THEOREM 5. An assignment of truth values is possible in a
Boolean propositional logic if and only +f the logic 7s categorical.

Since logics adequate for mathematics and belonging to a cer-
tain very general class cannot be categorical, by Godel’s
theorem, it follows that in general it is impossible to assign truth
values to all propositions in an adequate logic.

The concepts introduced here aid us in clearing up a number
of common misconceptions as to the nature of the Boolean prop-
ositional logic.

In some quarters it is held that in the Boolean logic there are
only two distinet propositions, 0 and 1. This is manifestly wrong
since no special assumption as to the number of elements of C
is forced on us. Even if we consider propositions p and ¢ as the
same if p & g, (algebraically, we consider the Boolean algebra of
equivalence classes), then this conclusion is not forced on us. In
fact, it is the same as saying that T is a MSI, i.e. that the logic is
categorical. As we have mentioned above, the most interesting
logics so far constructed are not categorical, and no way is known
to make them so. Even if the logic is categorieal, then we may
still make distinctions between propositions other than those
expressible in terms of truth values.
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The mistake arises from confusing the object language with
the syntax language. The following are theorems in the Boolean
logic:

Fp vV ~p,
bp=.0p =1 (Lisr D rfor a fixed r)
F~p = .p=0. (0is 1%).

M p=0.v.p=1forall pinC.
The statement that
2) Fp =0orlp = 1,forall pin C,

is true if and only if the logic is categorical. In a loose translation
into English (1) and (2) seem to mean the same, but the “or” or
“\/? of the object language is not the same as the “or” of the
syntax language. The difference is clearer if we read “I-p” as
‘4t is provable that p”’. Then (2) holds only if all sentences in
the logic are decidable in that logic, which means that ihe logic
is either so simple that only fairly trivial propositions are ex-
pressible in it, or so powerful that it transcends all logies so far
constructed.

As we shall see in the next section, the Boolean logic has been
criticized on the ground that it deals only with the truth and
falsity of propositions, and omits such properties as possibility
and necessity, the so-called modal distinctions. Of course, the
only functions of propositions expressible in the present object
language are Boolean functions, whose trivial nature is revealed
by T1.1.21. There is, however, nothing to stop us from con-
sidering non-Boolean functions of elements in a Boolean algebra,
and this gives us the possibility of studying modal logic by
merely extending the framework of Boolean logic. The introduc-
tion of non-Boolean functions is analogous to the extension of
ordinary algebra by the consideration of polynomials and even
more general functions instead of merely linear functions. A
small but‘sigﬁiﬁcant beginning in this direction has been made
by McKinsey 4nd Fatshi (e.g. [[X]96), but much still remains to
be done. w}e{’ Tk"
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EXERCISES

Ex. 1. Prove the statements on p. 47.

Ex. 2. Let ¥ be a sum ideal, and define “p = ¢’ as “lp = ¢"’.
State in words the meaning of the statement that the
proposition p is an atom in the corresponding logic. Is
it likely that in an intuitively acceptable propositional
logic there exist atoms?

Ex. 3. Let us say that one logic L, is an extension of another
one, L, , if the corresponding classes of true proposi-
tions are related by €, C <, . Prove, by T1.3.5, that
every logic has a categorical extension. Is it likely that
such an extension can be defined constructively when
the original logic is non-trivial?

SECTION 4 MANY VALUED LOGICS MODAL LOGICS
INTUITIONISM

The logic of propositions developed in the last two sections is
based on the properties of the two truth values ‘“truth’”, and
“falsity’’, which were taken as intuitively evident. Some scholars
have, however, proposed systems of logic with more than two
truth values. Various interpretations have been given for these
logics. Thus the truth values in a four valued logic might be
interpreted as ‘‘truth’”, “plausibility”, “implausibility”, and

“falsity”. B —
In the system proposed by Post, there are n truth values
which may be denoted by 1, 2,3, --+ , [ — 1], and n. Here we

write [n — 1] in brackets to indicate the n — 1st truth value
rather than the result of the arithmetical operation of subtrac-
tion.

The operations \J, M, and ’ (interpreted as “either . . . or
...”, “both...and...” and “not ...”) are defined by the tables
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Uif1j2(3-fn N1[2|3]|-n D o’
1111 1 11123 n 1 2
2111222 21121281 n 2 3
3111123/ 3 31131331 n 3 4
n—1n

nil|2]3 n njin|in|n n
n 1

Observe that n plays the same role as 0 or f in the two valued
scheme.

The properties of these operations can now be developed on
the basis of these tables. We can also set up a system of postu-
lates for the system and present it as a deductive science. Also
we can develop an algebra of classes and an abstract algebra
corresponding to this logic of propositions in the same way
that Boolean algebra corresponds to the two valued logic. These
algebras have been called Post algebras. We shall give, for ex-
ample, a set of postulates for the four valued Post algebras.

Our undefined terms are a class C, and two operations \U and

, and an undefined relation =. The postulates and first few
definitions are:

Pl. If p and q are <n C, then p \J q and p’ are uniquely de-
termined elements of C.

P2. If pand garein C,then p\J ¢ = q\U p.

P3. If p,q, and rarein C,then (p\J @) Ur = p\U (g U 7).

P4. If pisin C, then p\J p = p.

Di..pUqgUr=(pUg Ur,
pUqUnrUs=(pUqgUr) Us,ete.

D2. p° = p._p" = (p)".

D3. 1(p) = 2meo " =p\J p' U p" U p".
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D4. 2(p) = (1(®), 3(p) = (2(p))’, 4(p) = (3(P)".
P5. If pisin C, then 1(p) = (1(p))”"" = (4(p))’.
D5- (pl(p) — <pl U pll U pll/)lll.
D6. oi(p) = ((p\J 2(p))"" U p")", k=23
D7. —p = o:i(p") Y :(p") Y s(p").
D8 pMNg= —(—p\YU —9).
DI . pNgNr=pmENg Nr,
pgMNrMNs=(PNgMNr)M s, el
P6. If p, q, and r are wn C, then
pJgNnn=pmYgdNpEYn.
P7. If p and q are in C, then
eNgYUm@NdHYeNgdg)JIenNg’)=rp
P8. Ifpisin C, then p = oi(p) \J (2(p) M ¢:(p""))
U @B(p) M e(p) Y &) M e(p).
Po. If p, 0, ¢, ¢= , and gs are wn C, then
(@0 N @1(0)) Y (g N 2:(p")) Y (g2 N 2("))
U (gs N (@) = (@M e(p)) Y (g1 N oi(p"))
U (g2 M ei(p) Y (g5 M eu(p™)).

An analogue to T1.1.41 is that every “Post” function f of
one variable can be represented in the form:

f®) = (@M @)Y (@M e(@)) Y (g2 M en(p))
U (g N e (2')),

where g0 , ¢1 , ¢> , and g; are constant elements. From this it
follows that every function definable by 4-valued truth tables
is a Post function, i.e. the algebra is ‘“functionally complete.”
There 15 also a decision procedure analogous to that of T1.2.24.
The many valued logics proposed by fukasiewicz and Tarski
are not functionally complete.

A typical concrete example of a Post algebra is this. We sup-
pose that some class A is given. Then C 1s the class of all fune-
tions defined on A and with values among the integers from 1 to
n. If f and g are such functions, then

/U g is the function such that for all a in 4
(f Y g)(a) = min (f(a), g(a)),
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and f N g is the function such that for all a in 4

(f M g)(a) = max (f(a), g(a))-
Also, if f isin C, then

f’ is the function such that

fle) +1  if fla) <n
(@) =
i if f(a) = n.

It is easy to check that with this interpretation all the postulates
are verified. A Post algebra P, is a subalgebra of P if C, is a
subclass of C, and M and ’ are defined as in P. It has been
proved by Wade that every Post algebra 1s isomorphic to a
subalgebra of an algebra of the type described above. We may
think of the elements in C as properties of the elements of A4,
so that the equation f(a) = k expresses that the proposition
that the element a has the property denoted by “f”’ has the
truth value k.

As we have mentioned before, many philosophers object to
the interpretation of “p O ¢’ as “p implies ¢”’, mainly because
of the so-called ‘‘paradoxes’ of material implication. These are
embodied, for example, in A5"" and T2.2.3 above. According to
A5", any proposition implies that Gieseking played before
Hitler, and by T2.2.3, the proposition that Schacht was not a
Nazi implies every proposition. Many philosophers (and also
some mathematicians) have insisted that “p implies ¢”’ must
have the intuitive properties of “g is deducible from p”, and
that there is no reasonable way of deducing that Columbus
discovered America from the assumption that Schacht was not
a Nazi. They say that this is because there is no inner connection
between these two propositions. This argument is usually
vaguely expressed. Many authors seem to mean that while in
the existing real world Schacht was a Nazi and Columbus dis-
covered America, a world is imaginable or possible i which
Schacht was not a Nazi, and Columbus did not discover Amer-



55

ica. For determinists like Spinoza and Mark Twain (see “The
Mysterious Stranger’’) this argument would not hold water.
In many presentations of this argument there seems to be a
confusion between this proposition and some such proposition
as that for all z and y, if z is a Nazi then y discovered America.
In others, the intended meaning seems to be that if the propo-
sition “Schacht was not a Nazi’ is added to the postulates, then
“Columbus discovered America’’ is not a theorem. That is, the
proposition “p implies ¢’ is interpreted to mecan that if p 1s
adjoined to the postulates, then ¢ is provable. This relation
between p and ¢ is, however, clearly expressed as a sentence in
the syntax language, not in the object language. Similarly, the
demand that “p implies ¢”’ mean that “p D ¢’ is “analytic”’ or
a “tautology’’ is again an interpretation of implication as a
relation in the syntax language. One may attempt to reconcile
this view with our previous one as follows. A binary operation I
in €' is to be a satisfactory “implication’” operation if p I ¢
when and only when if |p is added to the postulates, then |-¢ is
deducible as a theorem. In this sense D is a satisfactory impli-
cation operation according to the corollary 2.3 3a. We shall dis-
cuss below some of the attempts to construct logics with satis-
factory implication operations.

Another objection which has been raised to the propositional
logic developed above is that there are other relations between
propositions other than those which depend upon their truth
values. This is usually accompanied by a contention that two
classes « and 8 may consist of exactly the same members, yet
may be different because of a conceptual difference in their
connotations. For example, the class of unicorns has the same
members as the class of centaurs since both are empty, but
these classes are different because the concept of a centaur
differs from that of a unicorn. It is true that such distinctions
play no role in mathematical reasoning as it is actually used,
but it is contended that the principles of logic used in this
reasoning are inadequate and incomplete just because they
neglect these relations between classes in intension. Analogous
to these intensional relations between classes are certain ‘‘modal”
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relations between propositions, i.e. relations involving the con-
cept of possibility.

A third objection to the Boolean propositional logic goes back
to Kronecker, and has been advanced in modern times especially
by Brouwer and Weyl, and in more or less extreme form by
others, notably Lusin. This objection originates in the question
of the meaning of existence. The proponents of the point of
view under discussion hold that an object exists only if a method
is given for constructing it. Of course this depends upon the
permissible methods of construction, but once they are defined
explicitly, we have a criterion for existence. Now we may be
able to deduce a contradiction from a proposition p of the form
“for all z, x € o’ without being able to give a construction for an
z such that = € «. The “intuitionists’’ would then deny that the
proposition that there exists an x such that z € « is true, i.e.
neither p nor ~p would be true. Thus they say that the law that
Fp V ~p is invalid. Clearly a step is overlooked here. For
Fp V ~p does not have as a consequence |-p or |-~p. This con-
clusion follows only if & is a MSI, i.e. if the logic is categorical.”
The intuitionists demand that in a satisfactory logic p V ¢ be
provable if and only if either p or ¢ is provable. Hence the intui-
tionists would object to any Boolean propositional logic which
was not categorical. Gddel has proved, however, that for a large
class of Boolean propositional logics, which includes all that
have been proposed so far which are adequate for arithmetic,
that they cannot be categorical. Thus all Boolean propositional
logics of this large class fall under the ban of the intuitionists.

The motivation of the intuitionists’ criterion for existence is
that the naive application of the law [p V ~p to existential
propositions involving infinite classes is known to lead to con-
tradiction, as we shall see in the next chapter. Godel has shown
that various Boolean propositional logics which have been pro-
posed up to now and which are adequate for arithmetic, if con-
sistent, are inadequate to prove their own consistency, so that
in this sense norBoolean logic of this very general type can be
‘“safe’’ in the sense that one can prove, using the methods of
reasoning which can be formulated within the logie, that no
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contradiction can arise. The intuitionists say that a logic based
on their principles is “safe”, that the restrictions thus placed on
the naive logic which is known to lead to contradictions, are
natural, that their criteria correspond to intuitively acceptable
“natural” laws of thought, and that the restrictions which have
been proposed in the so far proposed Boolean logics in order to
avoid the known paradoxes are ad hoc, i.e. manufactured for
that specific purpose. One outstanding difficulty is the proof that
the intuitionistic logic is actually “safe”. According to another
result of Godel, if the intuitionistic arithmetic is consistent, then
so is the arithmetic based on the Boolean logie, so that the latter
is as ‘“‘safe’” as the former. On the other hand, Godel’s work shows
that every sentence in the latter can be translated into a sentence
in the intuitionist arithmetic such that either both are provable
in their respective logics or both are unprovable. Thus the intui-
tionist arithmetic is as adequate as the Boolean arithmetic.
A formulation of the intuitionistic propositional calculus as a
edeductive science has been given by Heyting. The undefined
terms are: a class C, a subclass T, three binary operations M,
U, and D, and a unary operation ~. As before, we shall use
“bp” for “p is in T”. The unproved propositions are:

Il. If pand qarein C,thenp N g, p\J ¢, p D ¢, and ~p are
unsquely determined elements of C.
12. If Fp and Fp D g, then |q.
13. If pand g are in C, thenp O .¢ D p.
4. If p,q,and rare in C, then }p O g D r. D p D¢
DpDr.
I5. If pand g are in C, thentp O g D pMNgq.
16. If p and q are in C, then }p M ¢ D p.
17. If p and q are in C, then p M ¢ D q.
18. If pand g are in C, then }p O p U q.
19. If pand g are in C, then ¢ DO p U q.
110. If p,q,andrarem C,then|p DrD g DrD .p\J g Dr.
I11. If pand qare in C, thenfp D¢ D .p ® ~g D ~p.
112. If p and q are in C, then -~p D .p D q.

It will be observed that all of these are valid in the Boolean
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propositional logic. Among the consequences are such theorems
as
tp O ~~p, b~~r~p D ~p,and F~~p\J ~p.

On the other hand, neither }p \U ~p nor F~~p D p are
theorems. Glivenko has shown that if F~A is provable in the
Boolean propositional logic, where A is a formula expressed in
that system, then |~A4 is provable in the intuitionistic logic.
Godel has demonstrated other important relations between the
Boolean and the intuitionistic logics. Gentzen has found a pro-
cedure for determining whether a formula in the intuitionistic
logic is provable from I1-112 above. The operations N, \U, D,
and ~ are independent; none of them can be defined in terms
of the others. In other respects the sentence ‘“~p’’ has many
properties in common with the formulae representing “p is
impossible’” in the godal logics discussed below. From this
point of view, the intuitionist logic may be considered as a
modal logic.

Brouwer, Weyl, and others have been engaged for many years
now in a vast program of redoing as much of classical mathe-
matics as possible from the intuitionist point of view. It results
from their labors that a surprising amount still holds, other
parts can be retained in a modified but more complicated form,
and still other parts cannot be saved at all. It must be empha-
sized that much of this work is of value and importance even
for those who admit types of reasoning which the intuitionists
reject. For an intuitionist proof that an object exists is tanta-
mount to a construction of that object by certain well defined
methods and this property may be in itself interesting and im-
portant, just as Gauss’ proof that the angle 2xr/17 can be con-
structed by means of straight edge and compass gives important
additional information about this number.

The most widely known and most extensively studied modal
logics are those proposed by Lewis. The undefined terms are a
class C, a subdass £, a binary operation M, and two unary
operations ~ and P (“Pp” is to be interpreted as ‘it is possible
that p".). We use our earlier notational conventions, and take
“~" as senior to “P”, We first introduce a definition
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DI1. “p < g’ for “~P .p N ~q”. (We take “<’’ as senior
to ‘lm”.)

In the basic logic of Lewis we may take the following as
unproved propositions:

L0. If p and q are in C, then p M q, ~p, and Pp are uniquely
determined members of C.

If p, ¢, and r are in C, then

L. lpNg<gNop.

12. bp N g < p.

3. Fp <pNo

4. bpNg.N.r. < pMN gNr.
Ls.fp<g.N.g<r.<.p<r
L. Fp N ip < q. < gq.

L7. If Fp and }-g, then Fp M q.

18. Ifp and |p < g, then |q.

19. If bp < g, then FPp < Pgq.
L10. If bp < g, then ~q < ~np.
Lil. Ifbp < g, thenkp N r < gMNr.

In Lewis’ formulation L9, L10, and L11 are replaced by the
more complicated assumption Ex. 3(i) below, and Ex. 3 (¢)
and Ex. 3 (g) are also taken as postulates. His postulate

B9. There are p and qin C suchthat-P .p M q NP .pM\ ~q
serves to distinguish his system from the Boolean propositional
logic.

His purpose is “to develop a calculus based on a meaning of
4mplies’ such that ‘p implies ¢’ will be synonymeus with
‘g is deductible from p’.”” A further object is to avoid the
“paradoxes” of material implication. Among the consequences
of LO-L11 are, however,

F~Pp. < p<yg,
and F~P ~p. < g <D,

so that analogues to these ‘“paradoxes” reappear in Lewis’
system. It seems, then, that the claim of having avoided these
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paradoxes is not justified by the formal system itself, but rather
by the interpretation assigned to it. As far as the first more
serious purpose is concerned, no one has, until recently, pub-
lished any theorem of the type of the deduction theorem for
Lewis’ system, and this is essential for the achievement of that
purpose. In a recent paper Miss Barcan discusses theorems of
this type for logics of propositions (and also of propositional
functions) based on Lawis’ “strict” implication. She shows that
if p and ¢ are in C, then “FPp > Pgq” is deducible from
“bp < ¢, but that “Ip < ¢ .<.Pp < Pg” is not deducible
from L0-L11. If, however, the postulate

B12. If p isin C, then FPPp < Pp

is added, then the deduction theorem holds in the weakened
form:

If ~P~p,, -+, ~P~p|q, then
f~P ~p < .~P ~p, < v+ < ,~P ~p, < q.

The contention that, from the standpoint of the interpretation
as deducibility, “strict”’ implication is a more satisfactory im-
plication operation than material implication is consequently
untenable until a system based on the former is constructed in
which the deduction theorem is proved, while in the analogous
system in terms of material implication the deduction theorem
fails.*

The system L0-L11 is far from categorical, for even such a
simple statement as “-PPp < Pp” is not decidable on the basis
of the postulates. Lewis and others have proposed various addi-
tional postulates to complete the system, but no compelling
reasons have yet been advanced to decide upon one of these in
preference to others.

Two Boolea?n mterpretations of Lewis’ system have been

-]

*Since the above was written, Curry’s monograph, 4 Theory of Formal
Deducibulity, Notre Dame Mathematical Lectures No. 6, 1950, has ap-
peared. This book throws new light on the connection between Lews’
gystem and the theory of deductive systems.
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proposed, ie. constructions within the Boolean logic yielding
systems satisfying L0-L11. Henle has shown, for example, that
if B= (C,E,N, ~)isaBoolean logic and C has more than two
elements, and if Pp is defined as 1 for p % 0 and as 0 for p = 0,
then L0O-L11 are satisfied. Another construction has been given
by Fitch, and is presented here in a modified form. Let 4 be a
finite set and B be a Boolean logic. Consider the class § of all
functions f on A to C (i.e. the functions defined on 4 with values
in C). The family § of all such functions forms a Boolean logic
with the definitions

<, is the class of all f € § such that f(a) € Tforalla & 4,

f M g is the function such that (f M g¢)(a) = fla) N g(a)
foralla € A4,

~f is the function such that (~f)(a) = ~f(a)forallea € 4,

Pf is the function such that (Pf)(a) = f(b,) Y --- U f(by)
where b, , - - - , b, are the distinct elements of 4, and a is
an arbitrary element of 4.

We can easily check that (§, T, , N, ~, P) satisfies LO-L11if 4
contains at least two elements. In both of these constructions
certain relations hold which are not consequences of the postu-
lates, e.g. FPPp < Pp for all p in C.

Another interesting approach to modal logic is due to H. B.
Smith. Unfortunately, due to Smith’s defects as an expositor,
the main features of his system have remained obscure and mis-
understood. In order to explain his point of view we shall need
some definitions. By a modal function of p we shall mean a func-
tion constructed from the variable ‘“p” and the operations M,
~, and P. By a simple modal function of p we shall mean such a
function constructed using only the operations ~ and P. An
affirmative modal function of p is a simple modal function in
whose construction the operation ~ enters an even number of
times. Thus P (p N\ PP ~p), ~PPp, and ~P~Pp are re-
spectively modal, simple modal, and affirmatiwe modal functions
of p. Two modal functions are identical if and only if their
equivalence follows using only the laws
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(D b~~p=p (“z2=y"means“c<y.N.y<z")
(2) If fp = ¢, then | ~p = ~qand |F-Pp = Pq.

Now Smith places two demands on a system of modal logic, to
wit, (A) if M, and M, are affirmative modal functions of p, then
either LM, (p) < M,(p) for all p in C or FM,(p) < M,(p) for all
pin C; (B) if M, and M, are simple modal functions of p, then
FM,(p) = M,(p) for all p in C if and only if M, and M, are
identical. We shall not be able to enter into a discussion here of
the philosophical background behind these requirements. We
shall merely note that (A) is a requirement that the affirmative
modalities be linearly ordered (see p. 20), while (B) is a require-
ment that modal distinctions be preserved. This view may be
justified by the fact that the logic of ordinary discourse is too
vague for us to identify, say, the proposition that it is necessarily
possible that p with the proposition that p. It is very natural to
ask whether a linear ordering of the affirmative modal functions
is compatible with a maintenance of all modal distinctions, or
whether (B) forces a complicated “ramified” theory of modality
upon us. Smith shows that (A) and (B) are incompatible with
Lewis’ L5, the law of the “transitivity’’ of implication, and pro-
poses that this be replaced by L5': if bp < g and ¢ < r, then
Fp < r. The use of reasoning in actual practice is too vague to
distinguish between these two forms of the intuitive law of
transitivity. In any actual case L5’ would be as effective as L5.
Smith finds that 1.9 is also incompatible with (A) and (B). Lewis,
himself, has indicated some hesitation about adopting L9. Smith
assumes

Fp < Pp,

tp < ~P~Pp,

Fp < ~PP ~Pp, ete.

and shows that (A) follows from this infinite list of postulates.
He¢ gives, similarly, a series of postulates which yield (B). He
then turns to jhe consideration of modal functions of two vari-
ables. The theorein in Lewis’ system that

FP (p\J q) = (Pp) Y (Pg)
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turns out to be incompatible with (B), and is therefore rejected
by Smith. On the other hand,

if kp M ~q =0, then |-p < ¢ and therefore P (p\J ¢) = Py,
if -~p M g =0, then |-P (p U ¢) = Pp,
andif F~pMN ~¢g=0,then FP(p U q) = 1.

Thus in order to secure a completeness property analogous to
(A) for modal functions of two variables it suffices to assume a
law of the form:

if not Fp M ~q = 0 and not ~p M ¢ = 0 and not
F~p N ~g=0,then P (p U g) = ____,

where _ _ _ _ indicates a certain combination of simple modal
functions of p and ¢. For such a law to be effectively usable we
must adjoin to the postulates what Carnap calls rules of refuta-
tion, so that we may be able to prove that various sentences are
not asserted. Smith and his pupils have made various sugges-
tions as 1o the form of such an “expansion formula”, and have
from them deduced results analogous to (A) for modal functions
of two variables. So far, however, no one has given a consistency
proof of such a logic which is compatible with (B). It is an inter-
esting problem to determine whether there exist consistent logics
satisfying (B) and possessing a completeness property analogous
to (A).

Other authors have proposed systems of modal logic. Prac-
tically all of these agree on making the logic Boolean with re-
spect to C, T, M, and ~, but from there on the various pro-
posals diverge. The laws:

if Fp = ¢, then F-Pp = Pg, and |-~p = ~yq, and
Fp < Ppforallpin C,

are also common to most of these systems. It would be of some
value to make a systematic study of the structures of all such
systems and to determine what additional laws would yield sys-
tems satisfying certain simple and natural requirements. The
only work in this direction so far published is that of Tarski and
McKinsey.
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Of those who have criticized the Boolean logic of propositions,
only the intuitionists have carried out to any satisfactory extent
the constructive part of the critique, that is, to show that a
system can be constructed on the basis of the critique which is
at least adequate for some considerable portion of mathematics.
The work of Miss Barcan can be considered as the first step in the
direction of a similar development for strict implication. Rosser
and Turquette made some beginnings for the n-valued logics.
Such work remains to be done for such systems as Smith’s.* It
must be emphasized that in very few of these cases have the
critics shown that the systems they have constructed do not
have the features criticized as undesirable in the Boolean logics,
nor that they actually possess the properties advocated as desir-
able at the same time that the corresponding Boolean logics do
not possess them. Others who have discussed Boolean logics
critically have claimed that certain properties are undesirable
without even attempting to give alternative systems demon-
strably not having these properties. In many other cases the
discussions are carried out in the vague intuitive logic, in which
the essential distinctions are blurred, and it becomes difficult to
pin the authors down and determine just what they want and
just what they don’t want.

‘We here suggest the criterion of “put up or shut up” as an aid
in evaluating discussions of logic. If one advocates that certain
features are desirable in a formal logic, then one should exhibit
a system which demonstrably possesses those properties. 1f
possible, one should show that the system is adequate at least
for arithmetic. If one criticizes certain features in a system of
logic, then one should exhibit a reasonably adequate system
which demonstrably does not possess those properties. Of course,
when such a theorem as Gédel’s indicates that the desired proof

*If a system of modal logic were so completed as to be adequate for
mathemaitics, the resulting theory would be rich in relations which have no
analogues in classical mathematics. Thus to any class « there would corre-
spond a class Pa = the class of all z such that P(z € «). Whether such an
enrichment of the classical mathematics would actually be fruitful remains
to be seen.
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may not exist, then the criterion may be relaxed. A vague in-
formal discussion may be valuable as a guide for future work,
but must be regarded as at most a preliminary sketch until the
theses have been stated in terms of a precisely formulated object
language which 1s proved to have the desired qualities. Unless
such criteria are strictly applied, discussions of logic and the
foundations of mathematics are in danger of degenerating into
the type of philosophic controversy where one never knows
exactly what the problem is, and one never knows surely when
the problem is solved.

EXERCISES

Ex. 1. Prove the following from the postulates on p. 562:

(&). pNg=gNp.

(b). 1(p) = 1(a), 2(p) = 2(9), 3(p) = 3(2),
4(p) = 4(g). (Hence we may define 1 = 1(p),
ete.).

(). pUl=1Up=

@d. pYVpNg =p

. N Yy =p,

®. »Np=—(—p =

(8. pN1= 1f\p=p

Q). pNgNrH=m@NgYNTr.

®. pN@E@YUD=m@NgY@Nn.

@. """ =p.
(k). pNg=pifandonlyif p\J g = ¢.
@. @2 =4

(m). ¢1(2) = &:(8) = ¢:(4) = 4.

@). 1 =1 U4

(0). —4=1,4=—1.

(). pU4=4Up=p.

Q. pN4=4Np=4.

(1‘). (1) = 1.

(s). 2U8=2U4=2

(). (1) = 2, p5(1) = 3.

). @@ = (1) = ¢(2) = ¢:(3) = ea(4) = 4.

1l
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. pYg=—(—pN —9).
W). e Y (@) Y ei(p”) Y ei(p”) = 1.
(x). If fis a Post function of one variable, then
F®@) = FA) N eu(p) Y (F(2) Neu(p™)) Y (F3) N
o1(p)) U (f(4) N ¢,(p")). State and prove the analo-
gous theorem for functions of several variables.
(y). If fis any Post function of one variable, then
feYgVYfilpNg = flp)\V f(o,
and f(p \J @) N flp N g) = f(p) N f(g)-
(@). eulpVY 9 = e1(®) Y ei(9).
In connection with (x), (y), and (z), state an appropri-
ate definition of “Post function.”
Ex. 2. Prove the following from the postulates on p. 57:
@). Fp D p.
®). FpNp Do
(). FpDpNo.
@). FpYpDop.
(). FpDpVUp.
. FoNpDe.Dg
@ F¢Dr.DpDg¢gDpDr
M). frO>p.D.rDg.D.rDpNy.
@. FpNgDgNp.
@ FpDg.N.¢gDr:D:pDr.
&k FpDgDr:D:ipNgDr.

M. FpNgDr.D.pD gD
m).FpDpDg¢Da.

@. FpDgD .~¢D ~p

0. FpDgDdDpNrDgNr

. tpD¢gD pYUrdDgUr

@. Fp 2D ~¢D .gD ~p.

@®. F~p N ~p.

8). F~pUgqg.D.~pN ~q.

®). F~»N\ ~¢g.D. ~pUaq

). F~pNg.D.p D ~q.

™. FpD ~¢.D. ~pNay.

W). f~pU ~¢ . D. ~p Ny

®. FpNgU.pNr.D.pN qUnr



).
(z).

(aa).
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FoN\ gUr D.pNgU.pNr.
F~pNg.N.p\U ~p:D: ~pU ~q.
F~~p U ~p.

3. Prove the following from the postulates on p. 59.

(a).
(b).
(e).
(d).
(e)-
®.
().

(h).

@).

M-
k).
®.
(m).
().
(0).
®-
(@-
().
().
(t).
(w).

).
(W).
(x).
-
(2).

(aa).

Fp N p < p.
o <p
FP .p N gq. < Pp.
F~P p N ~p.
F~~p <p.
Iffp < g thenfprNp <rNg
Fp< ~~p.
Define “p = ¢” as “bp < ¢ .N. g < p.”’
State an appropriate definition of the concept of
a Lewis function, analogous to that of a Boolean
function.
If p = g and f is a Lewis function, then
I = /(@
IfpNg=p, thenlp < gq.
Iffp < g, theno M g = p.

= ~~p.
p<gqg.=.~q< ~p.
pNg<r.=.pMN ~r < ~q.
Fp N ~g . <. ~p <q.
pM\p=p
Fp < Pp.
F~gp N ~p.
F~Pp .<.p <gq.
F~P ~p .<.q¢ < p.
Ifp < gand}r < s, thenfp N r < gM s
Define “p = ¢’ as “p < ¢.N.g <p".
F~Pp N, ~Pqg .<.p =4q.
lp < ¢ifand only if p M ~g = r M\ ~r.
(C, N, ~, =) is a Boolean algebra.
pNr<gNr.=.~P.pNrMn ~q
bp <g.<.pNr<gNr. ~
If F~P~p, then g < p Mg
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Ex. 4.

Ex. 5.

Let C be the class of all integers which divide 216, i.e.
C=1{1,234,6 89,12, 18, 24, 27, 36, 54, 72, 108,
216}. Let “a /M B’ denote the greatest common divisor
of & and 8, and let

(6a if neither 8 nor 27 divides «,
, _ }3/8a if 8 divides « but not 27,
" 12/27 «  if 27 divides « but not 8,
1 if @ = 216.

Verify that (C, M, ) is a four-valued Post algebra.

Let C be the class of all divisors of 30, and let & =
{1, 2}. Let @ M B be the least common multiple of «
and B, let &/ = 30/a, and let Pa = 1 except in the
cases a = 6, 15, and 30, when Pa = 3, 5, and 15,
respectively. Verify that postulates LO-L11 are satis-
fied but that 3 < 6 .<.P3 < P6isnot in T. Explain
the significance of this result.

o



Chapter II1

THE LOGIC OF
PROPOSITIONAL FUNCTIONS

SECTION 1 INFORMAL INTRODUCTION

Heretofore we have constructed logical systems which for-
malize reasoning on classes and on propositions as wholes. We
shall now attempt to construct systems dealing with those gen-
eral forms of reasoning which depend upon the inner structure
of propositions. In this section we shall proceed informally on
the basis of naive intuition in order to give the general ideas and
also in order to exhibit the difficulties into which this naive intui-
tion leads us.

The fundamental idea is that of a propositional function. In
mathematics a function is a relation R whereby to each object
there is at most one object i such that x has the relation R to y.
Thus the relation holding between z and y if and only if = and y
are numbers and y = 2° is a function. The object y is called the
value of the function for the argument z and is denoted by
“R(z)”, or if there is no danger of ambiguity, by “Rz”. The
class of all #’s such that Rz exists, i.e. there exists a y such that z
has the relation R to y, is called the domasn of the function R,
and the class of values y is called the range of R. By a proposi-
tional function we mean a function whose values are propositions.
A propositional function is denoted by a sentential function, and
a sentential function is usually denoted by a sentence-form such
as “z is a man”’. This is not a sentence itself, but if a name of an
object is substituted for “z”, we obtain a sentence, which de-
notes a proposition, of course, this proposition may be erther true
or false. For example, if we substitute “Dewey” for “z” (1 e. we
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substitute a name of a certain object, namely, the man Dewey),
we obtain the sentence ‘“Dewey is a man”’, which expresses the
true proposition that Dewey is a man. If we substitute “Pitts-
burgh’’ for “z”’, we obtain a sentence expressing the false propo-
sition that Pittsburgh is a man. We shall say that a sentence-
form expresses a propositional function; for example, the sen-
tence-form ‘‘x is a man” expresses the propositional function
that z is a man. The letter « will be called a variable occurring in
this sentence-form. If names are substituted for the variablesin a
sentence-form, we obtain a sentence expressing a proposition,
which is the corresponding value of the propositional function
denoted by the sentence form. These distinctions may seem
pedantic, but they are actually needed in order to avoid some of
the common confusions in the treatment of propositional func-
tions.

We shall denote properties by capital Latin letters. If 4 is a
property, then the sentence-form ‘“Az’’ shall denote the proposi-
tional function that z has the property A. Thusif “a’’ is a name,
then Ao« is a proposition, and the sentence ‘Ao’ is its name.
For example, if 4 is the property of being a man, then ADewey
is the proposition that Dewey is a man, and ‘“ADewey”’ is a
sentence expressing this proposition. If ““. .. 2 ...” is a sentence
form, then “(z)(. ..z ...)” shall denote the proposition that for
allz,...z...,and “(J2)(...z...)" shall denote the proposi-
tion that there is an x such that ...z .... If 4 is the property of
being a man, then (z)(4z) is the false proposition that for all z,
z is aman, and ( 3 z)(4x) is the true proposition that there is an
z such that z is a man; in brief, “(z)(4x)”’ says that everything
is a man, while “(3Jz)(4z)” says that there are men. The
symbol “(z)”’ is called the universal quantifier on the variable
“x” and “(Jx)” is called the existential quaniifier on that
variable.

If“ ..z...” is a sentence-form, then “z S(...x...)” shall
denote the class of all #’s such that . ..z . ... Hence in the above
example r D (Az) is the class of men. The universe may be
defined as ¢ © (z = z), and the null class as ¢ D (~(z = x)).

We should expect that
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1]

ez (..xz...)

is always a true proposition. We should also like to use classes as
arguments, and thus to be able to make general statements about
classes, classes of classes, etc. For example, we may define the
class whose only member is a by

a) =z D (z = a),
and the integer 1 by
1 =a 3 ({(J2) .= z)).

La. .

This definition turns out to be satisfactory from many points of
view. We then have the true proposition that

@@ :.aE1AZEaAYE a:D:ix=y.

This means, in ordinary language, that forall o, z, and y, if @ is a
unit class, i.e. « = 1(z) for some z, and if z and y are members of
@, then « is the same as y. We may define the ordered pair of z
and y thus:

@ y) = @) Y () Y (),

that is (x, y) is the class whose members are the classes «(z) and
u(x) U (y). It is easy to see that

Z,y) =U,v):i=:x=uAy=o

The trouble is that this naive point of view leads to contra-
diction. Consider the class of all men It is itself not a man. On
the other hand, the class of all classes is itself a class. This sug-
gests the study of « D (~(a € a)), i.e. the class of all classes
which are not members of themselves. Let us
by “p”, so that

p=a> (~a€&a)
ie. Ha) @ € p .=, ~(a € ).

We raise the question, is p a member of p or not? We have

FeEp.=. ~(p € p),
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in words, if p is a member of p, then p is not a member of p, and
conversely. This is, of course, a contradiction by Chapter II,
section 2, Ex. 1(b). This paradox, due to Russell in the present
modern form, shows that the naive application of the ideas out-
lined here leads to contradiction This contradiction arises from
a straightforward application of principles which are ordinarily
accepted as intuitively correct Furthermore, reasoning very
similar to this is commonly used in important mathematical
proofs.

We see, then, that in order to obtain a consistent logic it is
essential to make certain restrictions and to forbid certain argu-
ments which naive intuition permits. Most of the modern work
on logic has been directed toward the construction and the study
of formal systems which avoid these paradoxes. These systems
differ considerably in the restrictions on intuitive logic which
they introduce, and much controversy has arisen as to which of
them is most acceptable on intuitive, philosophical, or mathe-
matical grounds. Some of these systems are adequate for mathe-
matics or a large portion thereof, but these have not been proved
congsistent, and in view of an important theorem of Godel, are
not likely to be proved consistent by methods which are univer-
sally acceptable. Furthermore, no such system can be categor-
ical, according to another theorem of Gédel. By using a method
based on transfinite induction Gentzen has proved the consis-
tency of a system which is adequate for arithmetic, but the
reasoning of Gentzen cannot be expressed in the object language
itself. As A. Weil has said, God exists since mathematics is con-
sistent, and the Devil exists since we cannot prove it. The con-
sistency proofs of Gentzen and others for systems adequate for
large parts of mathematics, even though they are based on
methods which are under fire, for example, by the intuitionists,
are convincing to the extent that no one seems to try seriously
to construct counterexamples to results proved in this way. The
margin between what can actually be proved by constructive
methods and whit is required for a proof of the consistency of
arithmetic is, according to the work of Gentzen himself, Bernays,
and Goodstein, very narrow but yet essential. We may say that
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they have confined the Devil to a dwelling place of almost van-
ishing, but still not negligible, dimensions.

A number of systems have been constructed which are ade-
quate for much of arithmetic and other branches of mathe-
matics, and Church has proved one of these to be consistent.
Some advocates of these systems demand that those parts of
mathematics which cannot be developed by their methods be
abandoned. Brouwer and his disciples have been attempting the
reconstruction of mathematics in the effort to develop as much
as possible by intuitionist methods. Nevertheless, many of the
important properties of real numbers which are used in everyday
mathematical practice cannot be developed on such a basis, and
their intuitionist analogues are probably too complicated to be
considered as adequate substitutes. On the other hand, the
work of Godel, Kleene, and Nelson on intuitionist arithmetic
provides a certain justification for that point of view and makes
it seem less dogmatic and more plausible. The result of Godel
that every formula provable in the arithmetic based on a
Boolean propositional logic can be translated into one provable
in the arithmetic based on intuitionist propositional logic, shows
that as far as arithmetic goes, the intuitionist logic is as powerful
as the classical one, and also that if the intuitionist arithmetic is
consistent, then so is the classical arithmetic. We repeat that
the work of the intuitionists is valuable even for those who do
not accept their philosophy, since a constructive proof often
carries with it important additional information which is not
yielded by a non-constructive proof.

EXERCISES

Ex. 1. Interpret, in ordinary language, the following strings
of symbols:
(@). a3 (a CH).
®. 2D (Ja) .2Ea AN aE& i)
. 23 ((0) .aEADz E o).
). @@ :aEJFABEF.DaNBE I
(. yEB:=:(F2)(Iy v =&y Az E€a A

yE a
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). @wayEr:=:(3y).{&, ) €Ea Ay, 2) €8
Ex. 2. Give strings of symbols translating the following
English phrases and sentences:
(a). The class « is included in the class 8. (p. 3)
(b). The class « is the same as the class 8.
(¢). The common part of @ and 8.
(d). The union of @ and 8.
(e). The class of ’s which are in « but not in 8.
(). & is an ideal in the algebra of classes
(g). K is a product system in the algebra of classes.
(h). «is a class containing exactly two members.
(i). e« is a non-empty class containing at most three
members.
(). « is the class of all ordered pairs (z, y), where
z isin B and y is in «.
(k). The class of all classes 8 which contain «.
Fx. 3. Show that the “class” ¢ = «a 2 (B) .~. ¢ EB A
B8 & a) leads to a contradiction.

SECTION 2 THE FUNCTIONAL LOGIC OF THE
FIRST ORDER

We shall first set up the simplest of all functional logics, the
first order logic of monadic functions. Our primitive notions are
four classes of objects P, T, §, , and &, two unary operations ~
and ][], and two binary operations D and application, denoted
by juxtaposition. The desired interpretation is:

B is the class of propositions;

z is the class of true propositions;
T is the class of properties;

& is the class of individuals;

p D ¢ is the proposition that if p, then g¢;

~p is the proposition that it is false that p;

Aa  is the proposition that « has the property 4;
1A is the preposition that for all @, Aa.

We shall retain our carlier conventions as to the use of paren-
theses and dots, and we use the definitions and notations of I12.
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As a mnemonic device we shall use small Latin letters except

7’ “J” (lk” llm”, “n” 4( ” Hy” and (l 1 to denote elements of
‘B , cap1tal Latm letters to deno’ce elements of {§, , and small Greek
letters to denote elements of &. The letters z, ¥, and 2z, with or
without subscripts, are reserved for a special use as described
below.

Our postulates are as follows:

A1”-A7" as on p. 31.

Fil. f Aisin §, and aisin &, then A« and [ 4 are uniquely
determined elements of P.

F2. If Aisin §, and |4« for all o in &, then F[ [4.

By a senlence-form in z we mean a string of signs built up
from “z’’, names of elements of P, §, , and &, and the names
“2” and “~"" of the fundamental operations in P, and paren-
theses by means of a finite number of applications of the follow-
ing rules:

(a). If A isin §, , then “(Azx)” is a sentence-form in z.

(b). If p is in B, then “p” is a sentence-form in z.

(c). If A and B are sentence-forms in z, then “(4 D B)” and
“(~A)” are sentence-forms in z.

In (c) the signs “(4 D B)” and “(~A)” are to be understood
as the strings obtained by putting for “A’’ and “B”’ the strings
which those letters denote. To remind the reader of the letter
used in these constructions we shall use symbols such as “U(z)”’
to denote sentence-forms in z. As we have remarked before,
sentence-forms express propositional functions. We define in a
similar manner the notion of sentence-form in any other letter.
We shall, however, reserve the letters z, ¥, and 2, with or without
subscripts, for this use.

We define the value of a sentence-form (z) for the argument
a, where o is a member of &, by the following rules:

(@). If Aisin §, , and A(x) is “(4x)”, then 2I(a) is Aa.

(b) If pisin P, and A(z) is “p”, then A(e) is'p.

(). If A(z) is “(B(x) D @(:c))” where B(x) and €(x) are
sentence-forms in z, then A(a) is B(e) O C(a).
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(d). If Alz) is “(~B(x))”’, where B(x) is a sentence-form in z,
the UA(a) is ~B(a).

It follows from A2”, A3, and F,1, that if ¢ is in § and A(x)
is a sentence-form in z, then A(ax) is a uniquely determined
element of .

F.3. If A(z) is a sentence-form in z, then there is a unique
element A in §, such that FAa .=, A(a)forall ¢in .

A sentence-form expresses a propositional function, and F,3
assures us that every propositional function determines a prop-
erty A such that the proposition that A« is always equivalent
to the value of the propositional function for the argument a.
Of course, F,3 is to be understood as applying to sentence-forms
in any letter.

We shall denote this uniquely determined property by £ (x).

D1. “(x)¥(x)” for “] [4%(x)”.
Note that if p is in P, the “p” is a formula in z, and
FEp)a = p for all @ in &,
by condition (b) in the definition of “A(a)”.
Fi4. Ifpisin Pand A isin &, , then
Hz)@ D 42) .D.p DITA.

Fi5. f Aisin §; and aisin S, then F[ [4 D Aa.
F.6. B and & are non-empty.

In this formulation of the first order logic of monadic func-
tions the letter z in the syntax language plays the role of a vari-
able with values in &, i.e. for which names of members of &
may be substituted. It is also possible to give a formulation in
which the variables are part of the object language; this carries
with it simplifications of some parts of the theory and complica-
tions of other parts.

In the expressions “£(x)” and “(z)A(z)” the letter = is a
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dummy symbol, that is, il has nothing to do with the particular
elements of §§; and P here denoted. For this reason, in expres-
sions of this type “a’” is called an apparent variable or a bound
variable. Such apparent variables are very convenient to work
with, but the concepts of “variable’” and “apparent variable”
are quite difficult to analyze precisely; the detailed discussion of
these notions is consequently deferred to a later section.

We can eliminate the complicated notions of “apparent
variable” and sentence-form by a very simple device, at the
cost of several extra postulates and primitives. The extra primi-
tives and postulates amount to a real economy since they are
equivalent to the assumption of F,3 for three very special sen-
tence forms. The idea is that £p is the “constant’” propositional
function whose value is the proposition p for any argument e,
and similarly £(~Ax) and £(Az A Bz) are the properties which
correspond to A’ and A N B in the algebra of classes. An exami-
nation of the definition of “sentence-form in #” shows that these

' suffice for the construction of the properties corresponding to
arbitrary sentence-forms.

We are thus led to adjoin two new primitive unary operations
K, ’, and a binary operation M, and the following postulates,
replacing F,3 and F,4, to the primitive frame:

F.7 If pisin B, then Kp is a uniquely determined element
of §, .
F.8. If A and B arein §, , then A" and A M B are uniquely
determined elements of F -
F.9. If pisin P, and a’is in &, then FKpa = p.
F.10. f Aisin §, and o is in &, then FA'a = ~Aa.
F.11. If A and B are in §, and « is in &, then F(4 N B)a
= Aa A Ba.
F,12. IfpisinPand A isin §, , then FKp C A .D.p D[ ]A.
D2. “A C B” for “[((A N B")")".

We could have achieved greater elegance had we worked with
the combination “(4 M B’)"” instead of “\”’, or had we formu-
lated the propositional logic in terms of “~’" and “A”’. Postu-
late F,12 could be replaced by
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F12. If pisin P and 4 isin §, , then F[ [(Kp N 4)
D.p A A

We chose the present form to facilitate comparison with the
postulates F,1-F,5 and with some logics introduced later

It is now only an exercise for the reader to prove F,3 and F,4
from A1"-A7", F\1, F,2, F,5-F,12. We leave the rest of this
alternative development for him to work out for himself.

We return now to the postulates A1”-A7", F,1-F,5, and their
consequences. We shall denote the statement in the syntax lan-
guage that 4 and B are the same element of §, by “4 = B”,

T1. If FAa = Ba for all @ in &, then A = B.

Proof. “(Bz)” is a sentence form in z. Hence, by F,3, there is
a unique element C in §, such that

FCa = Ba

for all @ in &, But A and B are such elements, so that they must,
be the same.

CoROLLARY la. If A s tn §, , then A = £(Ax).

CoroLvrary 1b. If U(zx) ©s a sentence-form in x, and A(y) s the
result of substituting *‘y”’ for ‘2’ in U(x), then £A(x) = FAW)
and |-(z) A@) = () A).

This follows from F,3, T2.2.28, and T1.

CoroLLARY le. If A(x) and B(x) are sentence forms in z, and
FA(e) = B(a) for all @ in J, then £A(z) = £B(x).

Corollary 1b justifies our assertion that ‘“z” is a dummy
symbol in “£A(x)”’ and “(z) A(z)”.

T2. If A(z) is a sentence-form in x and « s in S, then

Fa)A(z) .D. Ae). (F,5, F\3).
T3. If A(x) s a sentence-form in z and FA(a) for all a in S,
F(x) A(w).

T4. The set of postulates A1""-A7", F,1-F,0 is consistent.

Proof. Let P be the two-element Boolean algebra with ~ and
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D defined as in IT1, identifying ¢ with 1 and f with 0, let §,
contain two elements V and A, and & contain only one element
a; let application and ]| be defined by the tables

A lAa’HA

v
A

1
0

1
0

Then the postulates are obviously satisfied. For the verification
of F,3, note that if A(x) is an arbitrary sentence-form, then
A(a) = 0 or A(e) = 1, so that

FA(@) = Ae or FU(a) = Va

in the respective cases.
Essentially, our proof of consistency is the verification that
the postulates hold in a universe of one individual.

D3. “(F2)UA(z)” for “~(z). ~A)”, i.e. “(Fz)U(x)”’ is
an abbreviation for “~] [#(~%(z))”, where () is a
sentence-form in x. The letter “z” is, of course, a
dummy symbol in “(Jz)%(x)”. If 4 isin §, and «

isin &, then F4Aa. D .(Jz)Ax.

More generally, if (z) is a sentence-form in z and « is in &,
then
FA@) .D. (Fz)A=).

Proof. Hz) .~A(x) :D: ~A(a). (T2). Now apply T2.2.9,
A7, and D2.

T6. If A(x) is a sentence-form in x, then
F@) A@) .D. (I2)AR@).

Proof. Let « be in & (F,6). Then T2 and T5 yield the con-
clusion.

Note that we needed in T6 the assumption that there are
individuals. In some formulations where the notion of “variable”
is used rather freely, T6 is proved without this assumption, but
the deduction, while formally correct, smacks of sleight of hand.
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One may doubt that a formal system in which such a deduction
is valid is a correct representation of our admittedly vague
intuitive ideas of what constitutes a valid inference.

T7. If A(x) and B(x) are sentence-forms in x, then
Hz) . A(z) D B(=) :D: () A@) .D (2)B().

Proof. Let o be in &. Take (z) .A(x) DO B(z) and (z) A(x) as
hypotheses. Then
@) A=) .DO Aa), (T2)
() A(=),

A(a),

() Az) D B(=z) :D: Ale) D B(a), (T2)
A(e) D B(a),
and B(e)

constitute a proof of B(a) from the hypotheses. By the deduc-
tion theorem (T2.3 3a),

(1) Ha) ™A@) D B(=) :D: (@) Ux) . D Bla).

By T3,
2) Ha) :. (@) AR) D Bz) :D: () A@) .D B(=).

The conclusion follows by two applications of F,4 and A7”.
Note that in (1) and (2), (z) .A(z) D B(z) and (z) A(x) are

elements of PB. The inference is perhaps more obvious if we de-
note these elements by “p’’ and “g”, respectively, thus:

Fp D.g¢ D B(a),
F@) 2 D. ¢ D B(x), ete.

The quantifiers have ‘killed” the variable z, so that being
““dead”, it has no significance in the rest of the argument.

Cororrary 7a. H@) A(x) DO Blx) :D: (Jz)A®) D
(3 2)B().

T8. If p 1s i P, and A(x) 18 a sentence-form tn x, then

Fa) A@) Dp:D: (I2)UA@) .D.p



81
Proof. Let o be in &, and take (z) .U(x) D p and ~p as
hypotheses. Then
(z) A=) D p,
(z) . Az) Dp:D: Ala) D p, (T2)
QI(OZ) D P,
Ala) Dp . D. ~p D ~UAa), (T2.2.11)
~p D ~A(a),
~Pp,
~Y(a)
is a proof of ~%(«) from the hypotheses. Then
Fz) A=) D p:D: ~p D ~UAe)

for all « in & Now T3, two applications F,4, T2.2.2, A6"”, and
A7”, and finally D3 yield the conclusion.

T9. Hz) A(x) = B=) :D: (2)A(z) = .(2)B(2).

Proof. If @ is in &, then by D2.2.3 and T2.2.15, % ()
= B(a) D .A(ae) D B(e). Hence, by T3 Hz) :AR) = B(x)
DL Alx) DO B(z). Now T7 and A7 yield FHz) UA(z) = B2)
D () JA(x) DO B(x), and the same theorems together with
T2.2.2 give

Fz) \UA@) = B@) :D: @AR) .D. (@)B(=).

If in the first step we use T2.2.16, then by the same reasoning
we arrive at

Fz) .A@) = B(=) :D: (@)B(x) .D. (@) A2),
and the conclusion now follows from T2.2.24, A7", and D2.2.3.
T10. F(z) . A(x) = B(z) :D: (F2)A(x) .=. (F2)B(x).

Proof. If aisin &, then [ U(a) = Ble) .D. ~A(a) = ~B(a)
(T2.2.21). The conclusion follows by F,2, T7, A7, and T2.2.21
again.

Til Fp D @A) :=: (2) .p DO Ax).
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Proof. F(z) .p D U(z) :D:p D ()U(z) (Fi4,let A = £ U(x))).
Here we use the fact that

Fr D Aa.=.p D A

for all @ in &, and T3 1d. Let a be in &, and take p D (z)A(z)
and p as hypotheses. Then

D,
P D (2)Az),
() A(x),
@A) .D. Aw), (T2)
and A(a)

are a proof of (a) from the hypotheses. Hence
Fp D @)¥Ak) .D.p D Aa).

Now F,2, F,4, and A7" yield the other half of the equivalence,
and T2.2.14 and A7” complete the proof.
The proofs of the following are left as exercises for the reader?

Ti12. H(J2)A(z) .D.p :=: (z) .Ax) D ».

T13. ) .A@) A p :=: (z)Alz) .A. D.

T14. Fz) A(z) V p :=: @)A{) .V.p.

T15. F(3z) .A(x) A p:=: (F2)UAz) .A. D

T16. F(3z) .A(x) V p :=:(Jz) .AR) .V .p.

T17. Hz)A(x) .D.p :=:(J2z) .Ax) D p.

Ti18. bp D (F2)UAR) :=: (F2) .p D Alx).

T19. ) . Ax) V Bx) :D: (@) A=) .V. (Tz)B(x).
T20. F(z) :A(x) A B@) .:=:. (@)UA(x) .A. (©)B=).

('l

In order to construct a logic for polyadic propositional func-
tions, that is, intuitively, functions of several variables with
propositions as values, we must introduce some new primitives.
We proceed with the following intuitive idea in mind. The diadie
function that z is bigger than y may be thought of as a function
of the one indiridual variable 2 whose value, corresponding to
an argument o, is a monadic function of y. Thus ‘2 is bigger
than 3’ and “‘Spain is bigger than "’ express monadic proposi-
tional functions and are regarded as the values of the previous
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function for the arguments 2 and Spain, respectively. If A% is a
diadic propositional function and « is an individual, then 4%« is
to be the monadic propositional function obtained as a value
when the first argument of 47 is . Thus 4%« will be a member
of &, and A’aB will be a proposition, i.e. a member of B. We
might have written instead (4°x)g, but the use of simple juxta-
position to denote the application of a function to an individual
will not lead to any ambiguity. We shall also need an extension
of the universal quantifier. To this end we regard [] as an
operation which transforms diadic functions into monadic func-
tions, triadic functions into diadic functions, and so on, in
accordance with the rules

FJI4%a (x)A’za,
F[]4%eB = (z)4%2aB, ete.

(Here A" is an n-adic function.) Thus if “A4®zy’’ is the sentence-
form “z is bigger than y”’, then “([ [4*)o’’ will denote “for all z,
z is bigger than o’’. We now proceed to a precise formulation of
these ideas.

We take as primitive notions classes B, T, &, F1, 82, -+
§., -+, unary operations ~ and ] |, and binary operations D
and application, the latter denoted by juxtaposition. Here P,
T, S, §1, ~ and D are to be interpreted as before, and for each
n, §, is to be conceived as the class of n-adic propositional func-
tions. We shall use capital Latin letters with the superseript “n’
to denote members of §, , and shall otherwise continue to use the
notational conventions previously explained. By a sentence-

i

form in x, , 2, , - -+ , 2 we shall mean a string of signs built up
from the letters x, , - - - , 2 , names of elements of P, I, F1, -+,
Fa, -+ , and of the primitive operations, and parentheses, in
accordance with the following rules:
if A"isin §, , then A" - - - is a sentenceform inx, , - - - , =,
where “---” denotes a string of n signs, each of which is
“z.” for some 7 or a name of an element of J;
if p is in P, then “p” is a sentenceform in z; , -+ - , T ;

if B and € are sentence-formsinz, , - -+, %, then “(B DO €)”
and “(~%B)”’ are sentence-formsinz, , +-+ , T .
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A sign such as “%U(z, , - - , z.)” shall denote a sentence-form

ing,,--,z.I1f Ay, - -+, 2) isasentence-forminz, , - - - , s,
then “¥(ey , -+ , a)” shall denote the result of substituting
“o, for “z,”, 4 =1, .-+ , k, and is a name of a uniquely de-

termined member of PB. (See p. 75 for an explicit definition in the
case of one letter.)
QOur postulates are as follows:

A1”-A7" and F,1-F.6 as before.
F1. If A" is in §, and o is in S, then A"« and [ [A™ are
uniquely determined elements of F,,_, .

F2 IfA"isinF,and oz, -+ , o, are in S, then
Fl1d%a, -+ o, = (@)A%20, - .
F.3. If Uz, , + -+, x,) 15 a sentence-formin z, , -+ , 2, , then

there is a unique element A™ in §, such that FA @, + - a,
= Ny, - ,a)foralley, -+ ,a,tn 3.

D4. If Az, , + -+ , x,) 18 @ senience-form in &, , +++ , &, , then
we shall denote the element A™ of §. whose existence and
uniqueness s postulated in F.3 by &, &, -+ £,%(z, ,
cee T,

Thus

l‘ﬁl e fﬂ 2[(xl: e )xn)al O, = 2[(6!1, e Jan)
forall @y, -, a,in &.

Ds5. (xl)?l(xl y "ty xn) =
Tty - 2@, -, 2))2s - 2,

Note that the uniqueness guaranteed in F,3 assures us that
z,”, «-+ , and “z,’ are dummy symbols in “%;, --- £,UA(z, ,
s, z,), e

jil e :ﬁnﬂ(xly ot 1xn) = ?71 e ?jng[(yly e :yn)
and similarly for any other string of n distinct letters. The order
of the letters in the prefix is, however, essential, for

l‘ii'lfﬁz%[(ﬂh ) Zo)aga, = (e , az):

14

while
l"ﬁzflﬂ(xl )y T)onay = Wy , o).
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In D5 note that £, --- £,U(x,, -++ , z,) is in F, , so that

T2, ++- 2.9, , -+, ) isin F_y , and “z,”, --- , “2,” are
dummy symbols in this string, and therefore

(COVRICIPIERIE

is a sentence-form in z, , - - - , 2, . We can, then, apply the quan-
tification operation to the latter string and obtain

(352)(131) 2I(xl sy La sy * 0, mn); ete.
T21. [J4" = 4, - -+ £.((x)A 22, - - - ).
Proof. Forall ay, +++ , ,in &, we have

HI4"a, - a,

(x)Azi0s -+ an
2y oo E((@)A"TiT -0 Tt an,

([

and the theorem follows from the uniqueness asserted in F,3.
T22. H=)(y) Az, y) = .(v) (@) Az, v).

Proof. Let A® = £)%(z, y), B* = 9£%(z, y). Then (z)A(z, ¥)
= ([14%y, and @)@ Az, v) = J1(I4%, and similarly
() () Uz, y) =[ [T IB?). Now take (z)(y) A(z, y) as hypothesis,
and let ¢, 8 be in &. Then

[1d18%,

110 1B% D (1B,
(1B«

(I [B»a D B*8a, (F.2)
Bzﬁa}

B?8a D U(e, B),

2[(“; 13))

QI(“; B) D) Azaﬁf

Alop

form a proof of A%a8 from the hypothesis. Hence F[ [(J1B?) g
A%aB. Since this holds for all in &, then F[ [(T1B* D ([ [4%85,
by F,2, Fi4, and A7”. Applying these postulates again, we

obtain
HIIAIIBY) o T1dT14%.
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By symmetry, F[ [(I14% D TT(IIB* and consequently the
theorem holds by T2.2.14 and A7".

COROLLARY 22a. If4,, -+ 1,125 any permutation of the infegers
17 e, N, then !—(xn) e (QJM)QI(.’C, ) Tty -’L'n) = (x1) s (23,,)
M(zy, » -, o)

Dé. (xls "',3.’?,.)2{(371,"',25") =

(@) -+ @)Uy -0, 20)
D7. Fz, -, z)W(zy, -0, 1) =
(Fz) -+ (Fz)U@y, -+, T0)
T24. If 4y, --- , 1, 98 @ permutation of 1, -+ - , n, then
l_(axn y 70 :xtn)%@:l g ’xn) =
(axly an)%)xl: 751:11)-

A good deal of mathematics can be built up on the basis of the
postulates of this section. For example, much of arithmetic can
be developed if we adjoin to those already given the following
primitives and postulates:

primitive interpretation
N' (“N‘e’’ shall mean “a is a positive integer’)
S? (“S*apB” shall mean “B = « + 17)
E? (“E’af” shall mean “a = )
1 (the integer one)
PO. N'isin,, and S*, E* are in §, , and 1 isin 3.
PL. N1

P2. Fz,y) : N'z A Sy .D. N'y.

P3. H(z, y, 2) : S*zy A S22z .D. E’ye.

P4. H(z). N'z D (Jy)Sxy.

P5. F(z) ~S*zl.

P6. Hz, v, 2) : S’zz A S*yz .D. E’xy.

P7. F(z)E’zz.

P8. Hz, y) .E’ry = E’yx.

P9. [z, v, 2) :E*xy A E’yz .D. E’zz.
P10. If A'is 1 1, then F(z, ) : B’zy .D. A'z = A'y.
Pl11. If A’ isin §, , then FA'L A . (z, y):. Az A S’zy :D:

A‘y TIITRE)) Nz D A'z.
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In words, Pl says that 1 is a positive integer, P2 that the
successor of an integer is an integer, P3 that an integer can have
at most one successor, P4 that every integer has at least one
successor, P5 that 1 has no predecessor, P6 that integers with
the same successor are the same, P7-P10 are the usual properties
of equality, and P11 is the postulate of mathematical induction.
P1-P5 and P11 are essentially Peano’s postulates for arithmetic.

The main defect of the logic just constructed is illustrated by
P10 and P11. A statement about all members of §, can be made
in the syntax language but not in the object language. We have
no machinery for applying quantifiers to letters representing
elements of §, . We can, of course, introduce a new primitive
class §, ., and postulates of the type:

IfA'isin§,,and T'isin §, ., , then T4 isin B, [ [T is in P.
IfA'isin §, ,and Tisin §,,,, then F[ [T D 14’ ete.

Then we should also need to deal with sentence-forms in vari-
.ables representing elements of §,, +-- , Fn, -+, and also §F, ; ;
we should wish to apply quantifiers to letters representing ele-
ments of §,,; , and similarly for ¥, , ete. The manifold complica-
tions of such a system, not to speak of its inelegance, forces us to
look for a better system. We shall discuss two ways of overcom-
ing these difficulties. The first depends upon the construction of
a very expressive object language without regard to any inter-
pretation. We distinguish between various types of strings of
symbols, and give rules for operation on these strings. It is only
later that we interpret these strings as names of objects.

In the second approach, we note that F,3 can be replaced by
simpler assumptions at the cost of multiplying the primitive
notions. For example, we may adjoin the operator K and two
others C'and W to the primitives, and such postulates as

FK. IfA" ' isinGerand o, , -+ , an arein S, then KA™™
28 a uniquely determined element of §, and
FKA 'agay ++» ap = A"y + -+, -

FC. IfA"isinFoand ay, -+ , aarein S, then CA™ is a
uniquely determined element of §. and
FCA a0z -+ @, = A apaiatg »++ oy«
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FW. IfA™ dsinGuand ay , « -+, anare in 3, then WA™ is
a uniquely determaned element of . and
'_IV*'/inHalaz Tt Ay = AnHOuOhOlz Oy

In section 1114 we shall make an independent systematic study
of such operators and shall show how they may be employed in
constructing systems of logic.

EXERCISES

Ex. 1. Prove the following from A1”-A7"”, F,1-F,6
(a). If pisin B, then bp = (z)p.
(). F(3z) A=) D B(z) :=: (x)A(z) .D.
(32)B().
(€). F(Ix)UAlx) .D. @)B(E) :D: (z) .Ax) D B(2).
Ex. 2. Prove the following from A1”-A7”, F,1-F,6, F1-F3.
(). F@)(@) .A@) A B) :=: (@) A@) .A. )B®).
(b). F)¥) Az, y) .D. (x) Bx) D (Iy)C(z,y) :=:
(39)(IPEI(Fw) .~UAz,y) V ~B() V
C(z, u).
(©). F@)@AR,y) .D. (=) B=) D (I C(x,y) :=:
@(3y)(I2) .~Ay, 2) V ~B(x) V E(z, 2).
@). @) ~UAz, z) :A: (@) @) () Az, y) A Uy, 2)D
Az, 2) :A: @) (YA, ) = @)@ () (Tw) :
~A(z, z) N, ~U(z, y) V ~A(y, 2) V Az, 2)
N Az, w).
(e). k(@) ~UAlx,2) :A: (@)Y () . UAlz,y) A Aly,2)D
A(z, 2) :D:. (2)(y) Ulz, y) D ~Ay, 2).
®. 2-8((3)96) A(x) .DO. @)B(z) :=: (@)@ .A@) D
y).
Ex. 3. Prove F,3 and ¥4 from A1"-A7", F\1, F,2, F,5-F,12.
Ex. 4. Define the notion of a sentence-form in z, , -+, 2,
Xi: e yXIlcsz§7 ot sXZz: e )X;n) toe ;X)Tm'
By a prenex sentence form in X3, --- , X3, -,
Xr, .-+, Xy, , wemean one of the form “(Qz,) ---
(ka) ﬁ(:& ) " Tk X§ » Ty Xl'cnm)ny where “(QIE,)”
is either “(z,)” or “( 3z,)” and ¥ is a sentence-form
with no quantifiers. Prove that every sentence-form

S
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with only bound variables is equivalent to a prenex
sentence-form. (See Ex. 2(b, ¢, e) above.)

Ex. 5. (a).

(b).

(c).

(b).

(e).

Ex. 7. (a).

Prove that if %(X;, ---, X}) is a sentence-form
in X}, ---, X} with only bound variables, then
9 is equivalent to a Boolean function € of the
following 2* sentence-forms:

(3z) Bi@) V -+ V Bi(2),

where 3, (z) is either Xz or ~X .

Prove that if € is not a theorem in the Boolean
propositional logic, then there is a model of
A1”-A7", F,1-F,5, in which & has 2° members
and in which € is invalid.

Prove that if A(X;, ---, X}) is a sentence-form
in the first order logic of monadic functions, then
either

(1) “if A}, ---,Ararein §, , then FA(4], ---,
Alls)"

is a theorem, or there is a finite model (i.e. where
& contains only a finite number of elements) in
which (1) is invalid.

. Prove that if & is finite, then for all A® in §,

@) F~u (@) ~A%zz A @) A’y A
Azyz D A%z A (=)( Ely)Azwy-

Prove that if arithmetic is consistent, then (2) is
not a consequence of Al-A7”, F,1-F,6, F.1-
F.3. (Hint: take & to be the class of positive
integers and interpret “A*ry” as “z is less than
yn.)
A formula in the first order logic of monadic
functions is either universally valid and provable,
or is refutable in some finite model. This is not
true in the logic of polyadic functions.
If Az, Xi, +-- , X1 is a sentence-form in z,
Y, -+, Xi,and if A7, --- , Ajarein §; , then
there are elements p, , - -+ , D, in B and Boolean
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Ex. 8.

functions B,(x) ,- -+ , Balx) , of Aiz, -+, Az

such that

@) F@) ~.B.(x) A B, (@) 4,5 =1, ,n;i 5 ),

and Fq(a, 4}, +-- , 4)) .=. 01 A Bi(a) .V.
D2 A Byle) V. V.p A Ba(e).

(b). If A(x,y, X7, ---, X}) is a sentence~form in z, y,
X, -, X:,andif A}, ---, A} arein §,, then
there are elements p,, ,¢,j =1, --- ,n,in B and
Boolean functions B,(z) , -+ , B.(x) as in 7(a)
such that (3) holds and
FU(e, B, A1, -++ 5 4D .=.pu A Bi(@) A
%1(ﬁ) NVL D A %1(“) A %2(5) A
Dan A Bu(@) A Ba(B)-

Let & be the class of real numbers, which we may

interpret geometrically as points on a line. To every

element A' of {, there corresponds the class of all
points z such that A'z. Similarly, to every element 4°
of &, there corresponds the class of all points (z, ) in-
the plane such that A’zy. Now take §; to be the class
of all monadic properties of the form “£(a < z)” or

“#(x < a)”, i.e. the class of all half-lines, together with

all others obtainable from these by the use of the

postulates A1""-A7", F,1-F,6.

(a). Prove that a property A'is in §, if and only if it
corresponds to the sum of a finite number of
disjoint intervals. (An interval is taken in the
widest sense, i.e. with or without either or both
endpoints, and it may degenerdate to a single
point, or it may be a half-line or the whole line
in extreme cases.)

(b). Prove that if A(z, y) is a sentence-form in z, ¥,
the corresponding class of points (z, y) in the
plane such that %(z, y) is an “elementary figure”,
i.e. a sum of a finite number of disjoint rectangles,
quarter-planes, half-planes, etc., with sides paral-
lel to the axes.

(¢). Conversely, to every elementary figure in the
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plane there corresponds such a sentence-form
Az, y).

Thus the class of polyadic propositional
functions definable in terms of monadic functions
alone is extremely restricted. On the other hand,
essentially all of mathematics can be expressed in
terms of diadic functions. (See Lowenheim [171]9,
Kalmér [384]5, 6, 8.)

SECTION 3 SOME VERY EXPRESSIVE LANGUAGES

We shall now describe several languages which have been
proposed and shall show how the difficulties of the last section
can be eliminated. In section 5 we shall show how these lan-
guages are adequate for expressing much of mathematics. The
problem of defining precisely what is meant by an interpretation
of a language is not yet completely solved. For the present we
shall content ourselves with intuitive interpretations which are
at best vague.

We shall first construct the ‘“pure” functional calculus of the
first order. In general we shall follow the exposition of Church
[X]19, with certain modifications to avoid an alphabet of infi-
nitely many signs. Our alphabet consists of the signs 0, 1, a, f,
(), D, and ~. By a siring we shall mean a finite sequence of
these signs. Sometimes we shall exhibit strings explicitly; more
often we shall use special symbols as abbreviations for certain
strings. In any context such a symbol may, of course, be re-
placed by the string which it abbreviates. We shall use capital
Latin letters as names of strings. Two strings are said to be the
same if they have the same length [, i.e. the number of signs in
each is the same, and if for each &, 1 < k < I, the k-th sign of
each is the same. If 4 and B are strings then ‘4B’ shall denote
the string consisting of A followed by B. We shall introduce
abbreviations thus:

.-+ for 4,

where it is to be understood that - - - is an abbreviation for the
string 4.
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D1. A string in the signsa, , - - - , & is a non-null string each of
whose signs is one of “a,”, - -, “@’’. The class of such
strings is denoted by &(a, , - -+ , ). This definition
will apply to all languages here constructed.

D2. An sndividual is a string of the form “aA”, where A is a
&(0).

D3. If nis a &(1), then a function of degree n is a string of the
form “fnA”, where 4 is a &(0).

We identify the strings in 1 with the positive integers for the
sake of the exposition. This could be avoided at the cost of com-
plicating the following definitions.

D4. A sentence is a string formed according to the following
rules:

(a). If F is a function of degreen and z, , --- , z, are

individuals, then Fz,2, - -+ 2, is a sentence.
(b). If p and q are sentences, then ~p and (p D ¢) are
sentences.

(c). If pis a sentence and z is an individual, then (z)p
is a sentence.

In the intuitive interpretation the “individuals” will be either
names of individuals in the ordinary sense or variables ranging
over the class of individuals. We use the term “individual” here
instead of the more suggestive term ‘‘individual variable’” for the
sake of brevity. Actually our language is so framed that the only
true sentences are generally true sentences, i.e. those which are
valid for all individuals. A function of degree n will express a
propositional function of » individuals such as . . . gives ... to
... If this is denoted by “F” and b, ¢, and d are individuals,
then the sentence “Fbed” shall express the proposition that b
gives ¢ to d. If p is a sentence, then the sentence ““(x)p’’ shall
express the proposition that for all individuals z, p. We shall
often denote individuals by “z’, “y”, “¢”’, --- , sentences by
“p”, “q”, -, and functions of degrees n by “F,”, “G,”, -+ .

It will be convenient to make use of the “null” string, denoted
by “A”, consisting of no signs at all. Thus A4 and 4 A shall
be the same as A for any string A.
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D5. (A,, ---, A,) is a partition of B if B is A4, -+ A, .
D6. A is part of B if there are strings C and D (either of
which may be null) such that B is CAD.
If Cis null, then 4 is called a head of B.
If D is null, then A is called a fasl of B.
D7. If z is an individual, and (C, z, D) is a partition of B,
and “0” is not a head of D, then (C, z, D) is called
an occurrence of z in B.
D8. If z is an individual and (C, z, D) is an occurrence of
z in B, and if there exists a sentence p and strings C,
and D, such that C,2D, is (z)p and C, is a tail of C
and D, is a head of D, then (C, z, D) is called bound.
Otherwise (C, z, D) is called free.
D9. Ifz,, -, z,are distinct individuals and p is a sentence,
and if (C, , z,,, Cox., -+« Cisr), -, (Ciz,, +-+ Ck,
Z., , Cis1) are all the free occurrences of these indi-
viduals in p, then Sb{z,, -+, z,, 2} (W1, -+, ¥n) IS
the string Cyy,,Cs - -+ Ciy.,Ch+: - This latter string is
thus the result of substituting “y.” for “z,” (z = 1,
-, n) in all free occurrences of the z’s in p.

D10. (Jz)p for ~(z) ~p.

D11. p D, gfor (z)(p D ¢)-
Di12. p D.,, g for (@)®) (@ D ¢)-
D13. p =, ¢ for (z)(p = q).
Di4. p =., gfor @) () (p = 9.

In D13 and D14 and throughout this section we shall use the
definitions and conventions of I12.

We shall now define a subclass of sentences called frue sen-
tences and shall denote the proposition that p is a true sentence
by {(I__p”.

D15. A sentence s is said to be true (i.e. |-s) if and only if its

being so follows from the following rules:

FI. Ifbpand FHp D ¢), then fq.

FII. If }p, then (z)p, where z is any individual.

FITL. If p, ¢, and r are sentences, then

FpDgDr.DpDgDpDr.
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FIV. If p and ¢ are sentences, then Fp D. ¢ D p.

FV. If p and ¢ are sentences, then F~p D ~¢ D .¢ D p.

FVI. If p and ¢ are sentences and z is an individual with no
free occurrences in p, then

Fp D.¢.D.p D (x)g.

FVIL. If pis a sentence and z and y are individuals, and there
are no strings C, C, , D, D, such that (C, z, D) is a
free occurrence of z in p, C, is a tail of C, D, is a head
of D, and C,2D, is (y)q for some sentence g, then

Haz)p D Sb{z, p} ().

In D15 the phase “follows from ---”’ is not clearly defined.
We remedy this in

D16. The sequence p, , - - -, p, of sentences is called a proof of
g if p,is ¢ and for each 4, 1 < 7 < n, either
(a). p. has one of the forms described in FIII-FVII,
or
(b). there are j and k < ¢ such that p; is (p, D p.), or
(c). thereis aj < 7 such that p, is (x)p, , where z is
an individual.

A sentence ¢ is said to be true if there is a proof of ¢. The
language whose construction is embodied in the preceding defini-
tions will be called L, .

It is now easy to show that L, is essentially equivalent to the
object language of the previous section. It is slightly weaker be-
cause of the absence of any analogue to F,3 (p. 84). This postu-
late, introduced partly for the sake of the theory of quantifica-
tion as developed there, says that §, is complete with respect to
elementary propositions, i.e. that any sentence-form inz, , - - -,
z, corresponds to an element of §,, so that relations may be
defined impredicatively. Otherwise the deductive power of these
two systems is the same. The main difference is that previously
we had an object” language which communicated something,
namely certain properties and relations involving the elements
of B, T, I, ete. The center of interest was just the properties of
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and relations between the elements of these classes, and the
object language was merely a convenient tool for expressing
these matters. In the exposition the syntax of the object lan-
guage was an automatic affair since we gave rules for determin-
ing what a given string denotes (e.g. F,1) and these enable us to
decide whether a string is meaningful or not. There is no ob-
scurity in the problem of interpretation, for if we are given cer-
tain classes of objects, P, T, &, F , etc., and operations ~, D,
I, ete. defined upon them, then the question of whether these
constitute an example of the deductive science there considered
simply requires an examination of these classes and operations,
and a verification of the postulates. If the classes B, T, &, T1 ,
.-+, 8. and the operations are given concretely, then this
verification of the postulates involving only these classes is a
matter of direct observation. On the other hand, in this section
we have constructed an object language without any reference
at all to the denotations of the signs and strings. Our rules for
the classification of strings as individuals, functions, and sen-
tences, and true sentences may be considered merely as rules for
a game played with these signs. The problem of consistency may
be thought of as the problem of whether the game is loaded
against us or fair, i.e. whether every sentence is true or not. The
game is interesting insofar as the proposed intuitive interpreta-
tion is acceptable, i.e. as our mental habits agree with the rules
of the game when the signs and strings are interpreted in that
way. This is unsatisfactory mathematically since there is no
effective way of determining exactly what our mental habits,
i.e. yours and mine and the other fellow’s, are, and of communi-
cating them with complete precision to others, or even to our-
selves. (In the latter respect the situation is analogous to that of
the indeterminancy principle in quantum mechanics; the very
act of observing our own thought processes changes the phe-
nomena observed.) Thus the most interesting and important
interpretation of our object language is unfortunately one whose
acceptability we cannot test, and therefore.s unavailable to us
in a rigorous theory. In this way the problem of defining the
notion of an interpretation of a language becomes of funda-
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mental importance when a language is constructed syntactically,
i.e. without any reference to what its strings denote. This has
been neglected by a number of otherwise competent authors
who construct languages (or as they sometimes call them,
calculi) independently of an interpretation and content them-
selves with giving untestable intuitive interpretations. Such
practices have given rise to the view that mathematics consists
of a game played with meaningless signs according to certain
prescribed rules, and to the charge that this way of approaching
logic and mathematics is not mathematics at all since the latter
is not such a conventional game. It must be said that many
writers who attack mathematical logic on this basis insist on
some mystical virtues of ordinary language as compared to a
precisely constructed language of the sort under consideration,
and forget that words are also symbols, and that ordinary lan-
guage merely differs from these other symbolic languages in that
its rules of syntax are very complicated and never stated pre-
cisely and explicitly., (It is true that there are countries like
France and Sweden which have official agencies, their academies,
which formulate canons of correct usage, but an examination of
these formulations and a comparison with those of logicians
show that the last statement holds without exception.)

‘We observe, however, that the study of an object language for
its own sake without reference to an interpretation is often fruit-
ful and has led to results of fundamental importance. We
shall, ourselves, make use of this procedure. But we emphasize
that a language must have an interpretation in order for it to
serve as a language, namely as a tool for communication, and
that those who neglect this, and those who dogmatically insist
that the study of a language independently of its meaning is the
only rigorous procedure, are wrong. This statement is itself
somewhat dogmatic; it is difficult not to be dogmatic when one
feels strongly about something.

The language L, is adequate for much of mathematics but
suffers as indicated at the end of the preceding section, from the
defect of lacking an apparatus for applying quantifiers to func-
tions. We shall now consider some proposed remedies of this
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situation. A device due to Wiener, and later simplified by Kura-
towski, enables us to develop the theory of polyadic functions
from that of monadic functions, or alternatively from the theory
of classes. We shall adopt this procedure. In this section we shall
restrict ourselves to the construction of various languages and
shall discuss in section 5 their adequacy for mathematics.

We shall first construct a language L. due originally to Rus-
sell and Whitehead, simplified by the aid of the device of Wiener
and Kuratowski, and formulated in a precise manner by Tarski.
The following exposition is due essentially to Quine. Our alpha-
bet consists of the signs (, ), €, ~, D, a, b, and ».

D17. A variable of type n, where n is a &(b), is a string of the
form ‘“wnd” where 4 is a S(a).
D18. A senience is a string built up according to the following
rules:
(a) If z is a variable of type » and y is a variable of
type nb, then (z € y) is a sentence.
(b) If p and ¢ are sentences, then ~p and (p D ¢) are
sentences.
(¢) Ifpisasentenceand z isa variable (of any type),
then (z)p is a sentence.

A string is a sentence if and only if its being so follows from
these rules.

In the intuitive interpretation a variable of type b will be an
individual variable, a variable of type bb will denote a variable
whose values are classes of individuals, a variable of type bbb will
denote a variable whose values are classes of classes of individ-
uals, ete. Other strings will be assigned interpretations in a man-
ner analogous to that of the previous language (see p. 92). The
paradoxes will be avoided since strings of the form “(z € z)”
are not sentences, by condition (a) in D18, and hence the rules
for the construction of true sentences do not apply to them.

Definitions D5-D14 are taken over with the change that
“individual’ is to be replaced by ‘‘variable® in D7-D9.

D19. (z C.y) for (2)((z € ) D (z € v)).
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If zis a variable of type n and z and y are variables of type nb,
then (z C.y) is a sentence. Of course, z will turn out to be a dum-
my symbol in D19.

D20. A sentence s is said to be frue (i.e. |-s) if and only if its
being so follows from the following rules:

FI-FVII with “individual” replaced by “variable”. In FVII

add to the hypothesis that y is a variable of the same type as z.

FVIIL If zis a variable of type n, and z and y are variables of
type nb, and w is a variable of type nbb, then

Fl@(Ger)=6E€y)D(z€w D [y EwW)).

FIX. If pis a sentence containing no free occurrence of the
variable z, and y is a variable of type n, and z is a
variable of type nb, then

F(I2)W)(y € ) = p).

FIX is a form of the “Axiom of reducibility”’ of Whitehead
and Russell, stated in a simple and precise manner. Intuitively,
it guarantees the existence of the class of all y’s such that p, in
other words it justifies the definition of a class by abstraction
from a propositional function. FVIII says, intuitively, that if
the classes x and y have the same members, then y is a member
of any class containing . Since, by FIX, every property defines
a class, it follows that y has every property which z has, so that
z and y are identical in the intuitive meaning of the word.

Although the system L, is already adequate for practically all
of mathematics, it is convenient to introduce an abstraction
operator. In order to maintain our convention of writing strings
in linear order, we shall denote this by “z 3 instead of “4” as
before. Thus we adjoin to the alphabet the sign S and make the
following modifications of the previous definitions, and replace
D18 and D20 by D21 and D22.

D21. We define :‘term” and “sentence” simultaneously:

(). If = is a variable of type n, then z is a term of

type n.
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(b). If z and y are terms of type n and nbrespectively,
then (z € y) is a sentence.

(e). (b) and (c) as in D18.

(d). If p is a sentence and z is a variable of type n,
then 2 5 p is a term of type nb.

A string is a term or a sentence respectively, if and only if its
being so follows from these rules. In D8 the occurrence (C, z, D)
in B will also be called bound if C,zD, isz 3 p.

D22. The definition of a true sentence is the same as in D20
except for the following changes.
(a). In FVII y may be an arbitrary term of the same
type as z. If y is a variable, then after the phrase
“CizD, is (y)g” add “ory D ¢”.
(b). Add the rules
FX. If pis a sentence, and z and y are variables of type =,
and z is a variable of type nb which has no free occur-
rence in p, then
FvEzDp.a=:.(32):yEz.A. (@)((zE2) =p).
FXI. If pis a sentence, and z is a variable of type nb, and y is
a variable of type nbdb, and z is a variable of type 7,
and there is no occurrence of z in p, then

Fe 2pE€Ey.:=:.(32):2€ 9y .A. (@) ((x E2) =p).

The language obtained from L, by means of D21 and D22
will be called Lj .

We use here and shall continue to use dots for parentheses
according to the conventions explained before. It can easily be
shown (see Hailperin ([IX]1)) that we can set up a correspon-
dence whereby to each sentence p in Lj there corresponds a
uniquely determined sentence ¢ in L, such that

(D). tp=¢inL;,

(2). bpin L}, if and only if |-¢ in L, ,

(3). if p is a sentence in L, , then |-p in Lj if and only if |-p in
L, . This shows that the system Lj is essentially equivalent to
L, . L} is what we call in the next chapter a conservative exten-
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sion of L, . It is, however, technically easier to manage. The
following applies to either system, but for the sake of technical
convenience L} will be the one actually used.

In Principia Mathematica Whitehead and Russell showed in
great detail how practically all of mathematics can be developed
within a system of which L} is a simplified version. On the other
hand, Tarski has pointed out that this simplified version is
already adequate for Principia Mathematica. Thus the present
language is adequate for practically all mathematical reasoning.
All we lack is a consistency proof. But by Godel’s theorem, if the
system is consistent, then any consistency proof must involve
methods of reasoning which cannot be formulated in the system.
To this extent a proof of consistency seems hopeless. This cannot
be considered as a reason for rejecting the system since Godel’s
theorem applies to every adequate system so far proposed. It
means, however, that the system can be accepted only as a
working hypothesis as long as no contradiction is discovered in
it. From this point of view this system is one of the best which
have been constructed up to now.

While the language Lj satisfies reasonable demands of ade-
quacy, it has certain technical defects which cause many to
consider it unsatisfactory. To illustrate this let us try to define
the universal class (the “1” of Chapter I). The simplest way is to
choose a sentence p which is universally true, i.e. such that
F(z)p, and to define the universal class as the class of all 2 such
that p, i.e. as £ 3 p. Thus we are led to the following definition:

Viorz D W=z E€y) D (= €y)).

But if the definiens is to be a term, and z is a variable of type n,
then y must be a variable of type nb. Consequently V is a term
of type nb. The particular choice of the variables z and y is
immaterial since they can easily be shown to be dummy symbols.
It is now easy to prove that |-(z € V) for every term z of type n.
If z is not a term of type n, then (x € V) is not even a sentence.

Hence V denotes the class of all terms of type n, and for the sake
of precision we must indicate this, and modlfy the definition in
the following way:
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Vioforz 2 W)z € y) D (= € ),

where z is a variable of type » and y is a variable of type nb. We
have, then, not a single universal class, but infinitely many, one
for each type. The same phenomenon arises in connection with
all other mathematical concepts. There is an integer 3 for each
type, an arithmetic for each type, and so on. To each true sen-
tence involving terms of one type there corresponds an exactly
analogous true sentence in each higher type. We have an infinite
reduplication of logical principals on the various type levels. To
put it in another way, we can in the object language Lj express
propositions about all classes of individuals, or about all classes
of classes of individuals, ete., but we cannot express propositions
about all classes, for example.

Whitehead and Russell get around this difficulty by their con-
vention of typical ambiguity. In the theorems and proofs they
do not indicate the types of the terms which occur except in the
rare cases where the neglect of the type distinctions would cause
trouble. It is tacitly assumed that the variables are always
chosen in such a way that the rules of D21 are observed.

Another objection which has been raised is that the theory of
types is artificial. It is contended that such statements as “the
class of all classes is a class’’ or ‘‘the class of all men is a man”
ought to be considered as meaningful, and should therefore be
reckoned as sentences. Hence it is concluded that a theory such
as the theory of types, wherein it is impossible to express such
propositions, does not jibe with our intuitions. There are, how-
ever, also very plausible philosophical arguments to the effect
that the type restrictions are natural We shall not, however,
digress at this point and enter into the dangerous quicksand of
philosophical controversy.

Some authors have dismissed the theory of types as an ad hoc
device, i.e. one invented for the sole purpose of avoiding the
paradoxes. Historically this is surely the case, but is not in itself
a serious objection. For in attacking a problem we often hit upon
a device that works, and then discover, upon feflection, that the
device was an obvious and natural one after all.

Quine ([II]86) has proposed a system which eliminates the
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technical difficulties involved in the theory of types without lead-
ing to any known contradiction. We shall call the language now
under construction L, . The alphabet shall be the same asin L} .
The definitions up to D21, including the new version of D8, are
retained except that all phrases of the form “‘of type n”’ in D17
and D21 are omitted. The same applies to D22 except for FVII
and FIX. FVII is taken as in L, rather than L] so that the sub-
stitution of a term of the form ‘“z 3 r” for “‘y” is not directly
possible. In order to explain how FIX is to be altered we must
introduce the important concept of stratification.

D23. If (C, ¢, D) is a partition of p and (C,, z, D,) is an occur-
rence of the variable z in ¢, then (CC, , z, D\D) is
called the (C, g, D)-extension of (C, , z, D).

D24, If p is a sentence and [, , -+ , &,] is a division of the
occurrences of the variables in p into a finite number
of disjoint classes, then [&; , -+, &] will be called a
stratification of p if and only if the following condi-
tions are satisfied:

(a).

(b).

(e).
(d).

(e).

If z is a variable, ¢ is a sentence, and (C, ¢, D) is
a partition of p, then all (C, g, D)-extensions of
free occurrences of z in ¢ belong to the same
class.

If there are free occurrences of the variable z in
the sentence ¢, and (C, (z)g, D) is a partition of
p, then (C(, z,) ¢D) belongs to the same class as
the (C, (z)q, D)-extensions of all free oceurrences
of z in ¢.

The analogue of (b) with “z O ¢” instead of
“(:E) qn'

If (C, (x € y), D) is a partition of p, and z and y
are variables, and if (C(, z, €Ey)D) isin &, , then
1<{7<nand (Clzx &€, y,)D)isin &,,, .

The analogues of (d) with “(z € y D ¢)”,
“@orey’and ‘@ Drecy D7 re
spectively, instead of “(z € y)”’. In the respec-
tive conclusions the class of the corresponding
occurrence of ¥ is &;, €,,,, and .., .
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Note that the class of (C(, z,)¢D) according to (b) need not be
the same as that of other occurrences of z in p of the form
“(Cy(, x,)gD,)” or of free occurrences of z in p.

If an occurrence of a variable in p belongs to &, , we shall say
that its level is ¢ (in this stratification).

D25. The sentence p will be called stratified if and only if
there is a stratification of p.

We can now explain the desired modification of FIX:

FIX'. If p is a stratified sentence containing no free occur-
rence of the variable z, and y is a variable, then

FHI2)W)((y € 2) = p).

This makes it possible to substitute for “y” in FVII a term of
the form ‘2 D r”” whenever r is stratified.

The system L, just constructed could have been slightly sim-
plified in that we no longer need the sign “b’’ in the alphabet
since its only use in L] was in providing the distinctions of type.
We have not done this in order to make the transition from L}
to L; slightly easier. The former procedure would, of course, be
preferable in an independent construction of L; .

The infinite reduplication of logical principles in L} now dis-
appears. For example, we can define the universe V as follows:

Viorz D (x €y) D, Ey)),

where y is any variable different from . The sentence
“ey D,z ey’ or “(yY)((z € y) D (z € y)” in its unab-
breviated form, is stratified by taking £, as the class of all
occurrences of z and &, as the class of all occurrences of y.

By FIX’, we have

HId)(cEz.=.2€y D,z E€Yy),

which provides a justification for the definition of V.
If z is a variable, then ~(z € z) is a sentence in L, in
contrast to L3 . It is, however, impossible to prove by FIX’ that

1 F(I2)@)(z € 2z .=. ~(z € 1)),
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so that Russell’s paradox is avoided. Postulate FX yields only

2 k€y>D~wEwW
=1 (32 €z . A. D E 2 = ~yEY),

which no longer leads to contradiction by the substitution of
“y D ~(y E y)” for “o” by FII, FVII, and FI. If we had
omitted the condition that p be stratified in FIX', then (1)
would be a true sentence.

Now
FHo)(z €z .=. ~(xE2):D:1z2E€E2.=. ~(2E2)
by FVIL
But [~z Ez.=. ~( E2) (Ex. 2.2.1b).
Hence f~(z)(z €z .=. ~(z € 1)) (T2.2.11, FI),
so that F(z) ~(@)(z €z .=. ~(z € 7)) (FII),

and consequently F~(32)(z)(z € z .=. ~(z € 7))
(D10, T2.2.5, FI),
which contradicts (1).
The same reasoning applied to (2) would yield only

Fz) ~z €y D~ ),

which simply says that y © ~(y € y) is the null class.

Rosser ([IV]15) reports the results of his unsuccessful at-
tempts to find an inconsistency in L; . This language is probably
the most flexible language so far proposed which leads to no
known contradiction. We shall in the next section discuss the
work of Curry which indicates that he may have found a still
more flexible system which is demonstrably consistent.

The language L; avoids almost all the objections which have
been advanced to the theory of types. The condition of stratifi-
cation may, of course, be criticized as artificial. It is, however,
the weakest restriction on our intuitive reasoning so far pro-
posed which is not known to lead to contradiction. One weaken-
ing of the stratification restriction in Ls; which Quine proposed
later ([V]163) wagshown by Lyndon and Rosser ([VII]1) to lead
to the Burali-Forti paradox. Hailperin ([IX]1) has shown that
FIX’ may be replaced by a finite number of similar postulates
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involving only special forms of “p’” instead of a general stoatified
sentence. A more serious defect of L, is that there are certain
simple and natural arguments which are correct intuitively and
which can be translated into L;, but whose validity is not
provable in L; . These arguments are so plausible that we should
probably condemn L; as a formalization of logic if the stronger
system obtained by postulating the validity of these arguments
is inconsistent. Rosser ([IV]15) did not succeed in finding an
inconsistency in this stronger system. By Godel’s theorem, we
could not hope to incorporate all consistent and intuitively valid
methods of reasoning into the system.

Other systems have been proposed which avoid the known
paradoxes in a somewhat different way. The first of these was
proposed by Zermelo ([125]3), and later formulated more pre-
cisely by Skolem ([247]5). As we have seen, the origin of the
paradoxes is the intuitive process of constructing the class of all
2’s which have a certain property. Quine’s improvement over
Russell’s solution of the problem is to restrict cneself to proper-
ties expressed by stratified sentences. Zermelo’s idea is that it is
unreasonable to demand that one gather together from the
whole universe those objects which have a given property. He
considers it reasonable to pick out from an already known class
the objects which have the given property. This leads to the
replacement of FIX’ by

FIX”. If z, y, and z are distinct variables and p is a sentence
containing no free occurrence of z, then

HIin)y)(y Ez:=:y €2 A D).

The resulting language will be called L, . Zermelo adds certain
postulates providing for the existence of classes constructed
from given classes according to some simple rules. For example,
the following guarantees the existence of the class of all sub-
classes of a given class:

FXII. If z, y, 2, and u are distinet variablts, then
FHIay €z .=y Cu).
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Quine ([I]45) has shown, however, that L, without such addi-
tional postulates as FXII (and with a slight alteration of FVIII)
is already adequate for standard methematics as measured, for
example, by L} . He does this by constructing within L, a model
of L} . With Zermelo’s additional postulates the system becomes
almost as manageable technically as L, .

An interesting alternative has been suggested by Quine
([VI]135). As L, stands without FXII and the like, we are not
only unable to prove the existence of a class corresponding to an
arbitrarily given property, but we are also unable to prove that
an arbitrarily given object is a member of some class. We may,
then, weaken the restrictions on those properties which define
classes and impose instead restrictions on which objects may be
members of classes. In this way we can eliminate Russell’s para-
dox not by denying the existence of the class of z’s such that

~(z &€ z), but by denying that this class can be a member of any
class, in particular itself. Formally this can be done by adding to
L, the postulate

FXIII. If z, y, and z are distinet variables, then
FIy@@ Ey.=. (32)(= € 2)).

This guarantees the existence of a class which contains every-
thing which is a member of something. This class plays the role
of Vin L . It is easy to show that FXIII and FIX" together are
equivalent to

FIX''. If z, y, and z are distinct variables, and p is a sentence
containing no free occurrence of x, then

H32) W) €z :=: (32 € 2) .A. D).

Let us call an object an element if it is a member of some class.
Then FIX'” guarantees the existence of the class of all elements
which have a given property. It now becomes desirable to add
postulates whicheguarantee that certain entities are elements.
In other words, we may supplement L, either with postulates of
class existence or of elementhood. Both yield plausible systems.
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It is still too early to decide which of these is the most con-

venient.

We call attention to the detailed development by Bernays
([11]65) of a system which is essentially the same as L, with
FIX" replaced by FIX"’ with an additional restriction on p,
and with supplementary postulates of class existence. He shows
how classical mathematical analysis can be developed on this
basis. In his epoch making memoir on the continuum hypothesis
Godel ([VI]112) made use of this system.

EXERCISES

Ex. 1.

Ex. 2.

Ex. 3.
Ex. 4.

Ex. 5.

Interpret in English the following sentences in L, :

(a). ((a0)f10a0 D £10a00).

(®). ((@0)f10a0 DO ~(a0) ~f10a0).

(). ((a0)(a00)f110a0a00 O (a00)(a0)f110a0a00).

(d). (a0)(f110a0a00 O ~f110a0a0).

(e). ~(a0)(a00)(f110a0a00 D f1100a00a0).

0. ((@0)(f10a0 D f100a0) O (f10a0 DO f100a0)).

Identify the occurrences of the individuals in the

above sentences. Which are free and which are bound?

Translate the sentences of Ex. 1, 2, p. 88, into L, .

Define the notion of consequence (see p. 45 in L,).

Show that ¢ is a consequence of the sentences ry, -+ -,

r.if and only if Fry, A7, A --+ AT, D g, wherer, is

(®) *++ @m)reand z,, «-- , 2, are all the individuals

which oceur free in ;.

Interpret the following strings in L, and L} :

(a). ((vba)((vba E vbba) D (vba & wvbbaa)) D
((vba)((vba & vbbaa) O (vba & vbbaaa)) D
(vba) (vba € vbba) D (vba E vbbaaa)))).

(b). ((vba)(vba € vbba) D (vbaa & vbba)).

(¢). ( Jvbba)(vba)((vba € vbba) = ~(vba & vbbaa)).

(d). vba D ( Jvbba)((vba & vbba) A (vbba & vbbba)).

(e). ((wba € vba D (vbba)((vba & vbba) D (vba €
vbba))) = ( 3 vbba)((vba & vbba) A (vba)((vba €
vbba) = (vbba)((vba € vbba) O (vba & vbba))))).

(f). vbbaa D (vba)((vba E vbba) = (vba & vbbaa)).
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Ex. 6.

Ex. 7.

Ex. 8.

Ex. 9.

Give suitable definitions in L! for the following con-
cepts:

(a). The null class of type bb.

(b). The union of @ and B, where « and 8 are terms of

type bbb.

(c). The join of « and B, where « and 8 are terms of
type bb.

(d). The common part of all members of a class of
type bbb.

(e). The class of all ideals in the Boolean algebra of
all terms of the type bb.

Translate the following English sentences into L; .

(a). Every member of « is a member of 8.

(b). zisin «if and only if z isin 8 but not in .

(¢). Forallz,y, and z if zand y are in o, then z isin 2
if and only if ¥ is in 2.

(d). Bhas a member in common with each member of
&,

(e). Forall z and 9, if z and y are in «, then z and y
have no common members.

(f). There is a class o containing all members of
members of 8.

(2). The members of « are linearly ordered with re-
spect to inclusion. (See p. 20)

(h). There is a member of 8 which is included in all
members of «.

Tell which of the following sentences are stratified, and

give stratifications of those which are:

(a). ~(vba) ~(vba € vbaa)

(b). ~(vba & vba)

(e). ( Jvba)((vbaaa)((vba E vbaaa) D (vbba & vbaaa))
D (vba € vbba))

(d). ~(vbaa)((vba & vbaa) D ~(vbaa € vbaaa))

(a). Prove FIX'” from FIX' and FXIII.

(b). Prove FIX' and FXIII from FIX'",
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SECTION 4 COMBINATORY LOGICS

We have already emphasized (p. 95) the striking contrast
between the systems just described and the logical systems
treated before. The root of the difficulty of interpretation lies in
the use of variables and in the process of substitution. In ordi-
nary mathematical usage a variable is not the name of an entity
but rather a letter used in building up “word-forms’” or “sen-
tence-forms’’ such that when the name of an entity in an appro-
priate category is substituted for the variable, a word or a sen-
tence, i.e. a name of something, results. Thus “z + 1 = 1 + 2"’
is not a sentence, and does not express a proposition, but if the
name of an integer, say “3”, is substituted for “z’’, a sentence,
expressing in this case a true proposition, results. It makes sense
to substitute “Dewey’’ for “z’”’ in “z is disappointed”, but it is
nonsense to substitute the man Dewey for “2”” in the ‘“proposi-
tion” that z is disappointed. The use of variables is convenient
because of the rule of substitution, which is expressed in L; by
FII and FVII, whereby we may substitute, in a sentence-form
whose values express true propositions, word-forms for the vari-
ables occurring free, and the result is again a sentence-form
whose values express true propositions. The precise definition of
the process of substitution, and the correct statement and justi-
fication of the rule, are nasty enough when the variables repre-
sent entities of only one category, as in sections 112, ITI2, and
I1I3. It becomes much worse when we have several categories of
entities, as would be the case in III2 if we had considered also
sentence-forms in variables representing elements of §, as well
as §. The situation becomes almost intolerably complex when
we must allow for bound or apparent variables, for which sub-
stitution must be forbidden. Thus the statements of this rule in
such standard works as Hilbert-Ackermann ([365]1), ([III}83),
Hilbert-Bernays ([507]1), Quine ([458]5), Gddel ([418]14) are all
incorrect; for a correct statement see Church ([359]9), ([X]19).
From our analysis of the process of substitution in the very
simple language of 112 we see that it is essentially a complicated
matter, and no real short-cut is to be expected.
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Also from another point of view the use of variables, though
convenient, seems unnatural For in a sentence like

“for all integers z, z + 1 = 1 4+ 2,

the variable “r” has nothing at all to do with the assertion. The
sentence is really about the constants +, 1, =, and the class of
integers. The letter “‘z’”” is used merely as a tool in communicat-
ing a certain proposition, but only apparently appears in it. In
the language L; it would be expressed by the sentence

(zm)zEN D.2+1=1+2),

where N is the class of integers, and the fact that “z”’ doesn’t
really enter into the meaning of this proposition is shown by the
analogue in L; of T3.2.1b, whereby “z” is a dummy symbol. In
the system of section ITI2 this proposition is expressed without
variables thus:

14,

where A’ is the element of §, such that
FA'a :=: N'a .D.E(a + 1)(1 + @), forall ain &,

assuming that addition has already been defined. We know,
however, that this formalism is inadequate from the remarks on
p. 87. It thus appears that the notion of a variable is a lin-
guistic, rather than a logical, concept, and similarly, that a rule
of substitution is a linguistic, rather than a logical, law, amount-
ing to the observation that in certain languages only generally
true propositions can be deduced, so that what is provable about
one object of a certain category is provable about all. This view
is substantiated by Lindenbaum and Tarski ([I]115).

This raises the question: can a system of logic be constructed
in which the signs of the object language have denotations, which
is adequate for at least a large part of mathematics, and which
deals only with constants? Can we make the system adequate
for all the ordinary uses of variables and the process of sub-
stitution, so that the convenience of variables as tools in com-
munication is not lost? This problem has been solved by Curry,
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partly on the basis of previous work by Schénfinkel, and simpli-
fications of Curry’s work have been made by Rosser and Curry
himself. Xleene and Rosser have shown the close connection
between Curry’s theory and that developed independently by
Church. They also found a serious inconsistency in the systems
originally proposed by Curry and Church.

We shall attempt here to give an idea of the work of these
authors, but for lack of space we shall be forced to limit our-
selves to a brief, and perhaps inadequate, sketch. Our first task
is to set up an independent theory of operators, the so-called
“combinators”, of the sort introduced on p. 87.

We start with a primitive frame consisting of a class € of

objects called entities, two special entities A and K, a binary
operation | called application, and a binary relation = between
entities. If a and b are entities then ‘“|ab” shall denote the appli-
cation of a to b. We may conceive of the entities as operators or
functions, and |ab as the result of operating on b with a.
« By writing the stroke before the names of the entities com-
bined by means of the indicated operation we avoid the need of
parentheses, and also simplify considerably the syntax of the
object language. We define the rank of a string of names of
entities and strokes as the number of strokes minus the number
of letters, i.e. names of entities. A string is a word, i.e. a name
of an entity, if and only if its rank is —1 and the rank of each
proper head (a head which is not the whole string) is non-
negative. To each sign in a word there corresponds a unique part
which is a word beginning with that sign. These syntactical
theorems will be proved for more general languages in the next
chapter (Theorem 4.1.1.)

For example, the string ||4|K|AAK is a word. The word
begmning with the third stroke is ““|K|4A4”. If we had denoted
the fundamental operation by “a|b”’ and used parentheses, then
this word would have been written “‘(4|(K|(4]4)))|K”. After a
little practice in the use of the above criteria this notation is
much simpler to read than the ordinary parentheses notation,
especially when the formulae are rather complicated. For con-
venience and economy, we shall omit writing the strokes on the
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extreme left of a word occurring alone. Thus this word will be
written “4|K|AAK”; by the use of the above criteria we see
that two strokes must be written to the left in order to obtain a
string of rank —1, and therefore an unabbreviated word in the
“official’”’ notation.

The assumptions are-

R. If @ and b are in G, then |ab is a uniquely determined
member of C.

El. Ifaisin G, then a = a.

E2. If a = b, then b = a.

E3. Ifa =band b = ¢, thena = c.

F4. If a = b and ¢ = d, then |ac = [bd.

E5. Ifaand barein G, and jac = |[beforallcin €, thena = b

This means that ¢ and b are the same operator if and only if
they always yield the same result when applied to an arbitrary
entity ¢. E5 may be called a postulate of “extensionality’” in
analogy to FVIII (p. 98).

C0. A and K are in €.
Cl. If a, b, and c are in G, then Aabc = aclbe.
C2. If a and b are in €, then Kab = a.

Thus K is a ‘“‘constancy’’ operator, generalizing the notion
introduced in F,,K (p. 87). The entity |Ka is an operator which,
when applied to an arbitrary entity b, yields the constant result
a. The entity A is a certain “substitution” operator. If a is an
operator which, when applied to arbitrary integers m and n,
yields the integer 2m® + n -+ 1 while b is an operator which,
when applied to an arbitrary integer n, yields n°, then Aab is an
operator which, when applied to an arbitrary integer n, yields
the integer 2n® -+ n® + 1. If f is a function of two variables and
¢ is a function of one variable, then A fg is the function ~ whose
value, for an arbitrary argument ¢, would be expressed in the
usual notation by h(c) = f(c, g(c)).

The following definitions are very useful:

D1. “I” for “AKK”
D2. “B” for “AIKAK”.



113

D3. “W” for “AA|AK”.
D4. “D” for “BB”.

D5. “C” for “A|DA|KK".
D6. “T for “CI".

The following elementary theorems exhibit the nature of these
operators, and illustrate the use of these postulates In the fol-
lowing, the small Latin letters a, b, ¢, d, and e denote arbitrary
members of €.

TI.

T2.

T3.

T4.

T5.

T6.

T7.

Ia = a.

Proof. Ia = AKKa = Ka|Ka = a. (D1, C1, C2)

Ba = A|Ka.

Proof. Ba = A|KAKa = KAalKa = A|Ka.

Babe = albe.

Proof. Babe = A|Kabc = Kaclbc = albc.

Wab = abb.

Proof. Wat = AA|AKab = Aal|AKab = ab}||AKab
= ab||Kblab = abbd.

Dabcd = ablcd.

Proof. Dabed = BBabed = Blabed = abled.

Cabc = acb.

Proof. Cabc = A|DA|KKabc = DAa||KKabe
= DAaKbc = Aa|Kbc = ac||Kbc = ach.

Tab = ba.
Proof. Tab = CIab = Iba = ba.

Thus 7 is the identity operator, which leaves each entity un-
changed. If f and g are functions of one variable, then Bfg is the
function whose value, for an arbitrary argument ¢, is expressed
in the usual notation by f(g(c)). If f is a function of two variables,
then Cf is the function k whose value, for arbitrary arguments
b and ¢, is expressed by h(b, ¢) = f(c, b), and W Is the function ¢
such that ¢(c) = f(c, ¢), for an arbitrary argument c. See also

p. 87.



114

T8. A|Kal = a.
Proof. If bisin €, then A|Kalb = Kab|Ib = a|Ib = ab.
Since b is an arbitrary element of &, the theorem
follows by E5.

CoroLrary T8a. AB|KI = I.
Proof. AB|KIa = Ba||KIa = Bal = A|Kal = a = Ia.
Again we apply E5 to obtain the desired result.

T9. A||A|KKab = a.
Proof. If ¢ is in G, then A||A|KKabe = A|KKac|be
= KKc|aclbc = Klaclbe = ac. (Es).

Cororrary T9a. BA|BK = K.
Proof. BA|BKab = A||BKab = A||A|[KKab = a
= Kab. (E5).

T10. A|Ka|Kb = K|ab.
Proof. A|Ka|Kbc = Kac||Kbc = ab = Klabe.  (E5).

T11. A|DB|KK = B|BKI.
Proof. A|DB|KKab = DBa|[KKab = DBaKb
= Ba|Kb = A|KalKb.
B|BKIab = BK|Iab = BKab = K|ab.  (E5).

T12. A||Aac||Abe = A||A||BAabe.
Proof. Al|Aac||Abed = Aacd]||Abed = ad]cd||bd]ed.
AlA||BAdbed = A||BAabdled = BAadlbd|ed
= Alad|bd|ed. (C1, E5).

T13. A|D||BA||B|BAA|KA = B|BA||WI|BA.

Proof. A|D||BA||B|BAA|KAabe
D||BA||B|BAAa||K Aabe
D||BA||B|BAAaAbc = BA||B|BAAa|Abe
A|l|B|BAAalAbe = A||BA|AalAbe
BA|Aac||Abc = A||Aac||Abe.
B|BA||WI|BAdbc = BA|||WI|BAabe
= A|[[|WI|BAabe = A||||I|BA|BAabe
= A||||BA|BAabc = A|A||BAabc. (E5).

I

I
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These theorems all have very simple meanings, namely that
two operators always have the same effect. Thus T13 says that
we can construct the entity ad|cd||bd|cd from four arbitrarily
given ones, a, b, ¢, and d, in two ways, either by forming Aacd
and Abcd, applying Cl1, and combining, or by applying the
operator A to the entities ad, bd, and cd.

We shall show later that T8a, T9a, T11, and T13 are suffi-
cient for the whole theory in that two words in “4”’ and “K”’
can be proved equal from R, E1-5, C0-2 if and only if they
can be proved equal from R, E1-4, C0-2 and these equations.
This is important in the “metatheory”, i.e. the theory of the
structure of the system, since the hypothesis of E5 requires in-
finitely many premises, so that it is a simplification to replace
E5 by a finite number of equations. On the other hand, the proofs
are much simpler on the present basis.

Curry took B, C, W, and K as primitive notions and gave
another system of postulates in terms of these operations. Rosser
gave a set of postulates for a weaker system without a constancy
operator, and Fitch studied a still weaker one without a W
operator. We give below Curry’s ‘‘combinatory axioms” and
indicate how they are proved by showing the steps where E5 is
applied. The details may be left to the reader as an exercise.

T14. BI = 1.
Proof. BIab = ab = Iab.

T15. C||BB||BBBB = B|BBB.
Proof. C||BB||BBBBabed = albled = B|BBBabcd.

T16. C||BB||BBBC = B|BC||BBB.
Proof. C||BB||BBBCabed = al|bdc = B|BC||BBBabcd.

T17. C||BBBW = B|BW/||BBB.
Proof. C||BBBWabc = allbcc = B|BW||BBBabc.

T18. C||BBBK = B|BKI.
Proof. C||BBBKabc = ab = B|BKIgbc.

T19. CBI = I.
Proof. CBIab = ab = Iab.
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T20. B||B|BCC|BB = BEC.
Proof. B||B|BCC|BBabed = adlbc = BBCabcd.

T21. B|B||B||B|BWW|BC|B|BBB = BBW.
Proof. B|B||B||B|BWW|BC|B|BBBabc¢ = albd|bd
= BBWabe.

T22. BBK = BKK.
Proof. BBKabc = a = BKKabc.

T23. BCC = I.
Proof. BCCabe = abc = Iabc.

T24. B||B|BCC|BC = B||BC|BCC.
Proof. B||B|BCC|BCabcd = adcb = B||BC|BCCabcd.

T25. B||B|BWC|BC = BCW.
Proof. B||B|BWC|BCabc = acch = BCWabc.

T26. BCK = BK.
Proof. BCKabe = ab = BKabc.

T27. BWC = W.
Proof. BWCab = abb = Wab.

T28. BW|BW = BWW.
Proof. BW|BWab = abbb = BWWab.

T29. BWK = 1.
Proof. BWKab = ab = Iab.

We shall now prove that our system is functionally complete.
In order to do this we shall need some syntactical concepts. We
adjoin to the object language an infinite list of letters z, y, 2, z, ,
Y1,21 5% ,Ya, %, - , which shall be called variables. We define
a word as a string built up from names of entities, variables, and
the strokes, according to the following rules:

(a). If U is a variable or a name of an entity, then ¥ is a
word. i

(b). If A and B are words, then |AB is a word. Here “|AB”’
denotes the string consisting of ““|”, followed by the signs of ¥,
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followed by the signs of 8. By a word in the variables z, , z., ,
-+, 1, we mean a word in which these, or some of these, are the
only variables; thus “z”’ does not necessarily occur in a word in z.
We shall denote a word in 2, , -+ , . by some such symbol as
“Uxy, +++ , )" If Y(x) is a word in x and “a’ is a name of an
entity, then “%(a)”’ shall denote the result of substituting “a”
for “z” in U(z), and similarly for words in several variables or
for substitution of words for the variables occurring in another
word. If no variables other than “z’” oceur in % (x), then U(a) isa
name of a uniquely determined entity. Thus if A(z, y) is “|z|yz”
then A(J4AK, B) is “||AK|BJAK”, so that A(JAK, B) is the
name of a definite entity, while A(|4K, 2) is “||AK|:|AK”
which is merely another word. We shall use such symbols as
“A(a)” to denote the entities of which they are the names.

We aim to prove that if H(z) is a word in z, then there is a
uniquely determined entity F such that Fa = U(a) for all
entities a. T'o do this we introduce a new sign, “\”’, and establish
a correspondence between words and entities by means of the
following rules:

(a). If Y(x) is a name of an entity, then Az (z) is |KA(z).
(b). If A(x) is “z”, then Az () is I.
(e). If Ax) is |B(z)E(x), then AzA(x) is ||[AN2B(x)AzC ().

For example,

Ne||A|KzI = ||ANz|A|Kahel = ||A||ANzANz|Kz|K]
= ||A||A|KA||ANxK\zz|KI = ||A||A|KA||A|KKI|KI.

For ease in reading, we mention that ‘Az (x)”’, where A(z) is a
word in z, is also a word. If we define the rank of “A”’ as +1 and
that of a variable as —1, then the previous criterion that a string
be a word still applies, with the restriction that ‘“A” must always
be immediately followed by a variable. Note that if a is an
arbitrary entity, then

hz||d|Kzla = |||A||A|KA||A|KKI|KIa
= A|KA||A|KKIa||[KIa = KAal||A|KKIal
= A|||KKa|lal = A|Kal,
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so that in this case Az||A|Kz/ is the entity F such that
Fa = A|Kal for all a in . We shall now prove this in general.
Until further notice we shall not use ES5, but shall instead rely
on T8a, T9a, T11, T13 and the other assumptions.

T30. MzUA(z)a = Ala).
Proof. If YU(z) is a name of an entity, then
NzU(z)a = ||KAEZ)a = Alz) = A(a).

If Az) is “z”, then PxUA(z)a = |[Ia = a = H(a). If Az) is
|B(x)&(z), and the theorem is true for all words shorter than
A(z), then

AzA(z)a = |||ANzB(z)AzC(z)a = |[A2B(z)a[rzC(z)a
= [8(a)€(a) = Aa).

We now supplement the above definition of “Az” by the
following rule:

(d). If ¥ is a variable different from “z”, then Az¥ is |K,
and we assume E0-4, C0-2, T8a, T9a, T11, and T13 for arbi-
trary strings. In this way, if ¥ is a word in any number of varia-
bles, then Az is a word in which z no longer occurs. T30 still
holds, with the remark that “(a)”’ means the result of substi-
tuting “a@” for “z’’ in YU, leaving the other variables untouched.
In this way we can construct words like ‘“Nedy¥d(x, )",
“AayrzU(z, v, 2)7, ete.

T30a. |AzAyd(z, y)ab = A(a, b); |[AxAyre¥(z, ¥, 2)abe =
A(a, b, ¢), ete.

For example,

Axnyllzyy = Mal|Adyleyhyy = Az||A||ANyadyyl

= \o||A||A|KzII = ||ANz|A||A|KxDNa]

= ||A||ANzANz||4|Kel|K] = ||A||A|KA||ANg|A|Kore]| KT
[|4]|4|KA||A|| ANz ANz K2|KT|KT

|4]|4|KA||4]|A|KA|| ANeK Nz KT K]

|[A||A|KA||A||A|KA||A|KKI|KI|KI.

Of course, this entity is equal to W.

I
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It is useful to note that T8 follows from T8a, T9 follows from
T9a, T10 follows from T11, and T12 follows from T13, as is seen
from the above proofs.

T31.

T32.

T33.

T34.

T35.

T36.

If “a”’ does not occur in the word ¥, then Az = |K .
Proof. If ¥ is a single sign, then the conclusion follows
from parts (a) and (d) of the definition of “AzA”.
If A is |BE, and the theorem is true for all words
shorter than ¥, then
A = Mz|BE = [|[AMzBa2€ = A|KB|KE
= K|8BE, by T10.

If “x” does not occur in the word U, then Az|Uz = .
Proof. \z|¥z = [|ANz¥\zz = A|KUAI = ¥, by TS.

If U, B, and € are words, then \z|||A ABE = Az||AC|B.C
Proof. \z|||AUBC = ||AXz||4A YBA2C
= A|| ANz]A \aBraE = A || A || ANz ANz AMNaBAZE
= A||A||A|KANz ANz BAzC
= A||ANeM\2C|| ANzBAE, by T12,
and Az|| AC|BEC = ||ANz| ACNz|BE
= A||ANs MG ANBAG.

If A and B are words, then \z||KAB = Az .
Proof. \z||KUAB = [|[ANz|KWNeB = A||ANzKAzUNxB
= A||4|KK zW\zB = Az, by T9.

If xz = 22D and A2€ = N\zD, then Az|AC = Az|BD.
Proof. Az|UAC = ArzM\z€ = AXzBA2D = Az|BD.

If A and B are words, and “A = B follows from R,
E1+4, C0-2, T8a, T9a, T11, and T13, then so does
‘“AzU = AzB.

Proof. Each of T8a, - - - , T13 is of the form “%, = 8,7,

where z does not occur in U; or B, . Then
Az, = KU, = KB, = A28, (T31). Thus the
desired conclusion holds for these four equations.
Now if “%’’ and “QB” are arbitrary words, and if,
in the proof that % = B, we replace each appli-
cation of E4 by T35, of C1 by T33, of C2 by T34,
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and of T8a, --- , T13, by the corresponding
equation of the form ‘Az, = AzB,”, then we
obtain a proof that Az = \zB.

CororLary 36a. If “UA” and “B'" are words, and if “2’’ does
not occur in either, and if “|%x = |Bz” follows from R,
-+, T13, then so does “¥Y = Y".

For A = Az¥z = M|Bzx = B, by T32 and T36.

These last two results show that E5 may be replaced by T8a,
.-+, T13 without any change in the theorems.

It is instructive o work out the proof of BI = I by this
method. In the above proof we first showed that Blab = ab =
Iab for arbitrary entities a and b, and then applied E5 twice.
Now we parallel the proof in accordance with T36. The follow-
ing steps should be compared with the original proof, beginning
with BI = A|KI.

We first prove that A|KIz = z by applying the method of
T36 to the proof that A|KIzy = Izy. We note that A|KIx =
M| |zy = Ml||AKK|xy by T32, which suggests the following
steps:

A|KIz = AK||[AKKz = A||A|K|AK|KKzx (T10)

= A||A||A|KA|KK|KKz (T10)
= A||A|KKz||4|KKz (T12)
=z (T9)

We now apply the method of T86 to this proof to obtain the
result that A|KI = I, remembering that Mz||4|KIz = A|KI,
by T32. Thus

AKI = A|K|AKIT (T8)
= A|K|A|K||AKKI = A|K|A||A|K|AK|KK]I (T10)
= A|K|A||A||A|KA|RK|KKI (T10)
= A|K||A||A|KA|A|KK|AIKKIT (T13)
= A|K||AK|A|KKI (T9a)
= A||A||A|KA|KK|K|A|KK] (T10)
= A||A|KKI||AK|AIKKI (T12)
=7 (T9).
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Of course, once we have found a proof by a direct application of
T36, we may often construct a much simpler one, but in any case
T36 shows one universally applicable method of dispensing
with E5. We now return to the free use of E5.

We can construct a sequence of entities which have a remark-
able analogy to the (non-negative) integers, and may, for our
present purposes, be identified with them. The idea behind this
correspondence is that the integer n may be considered as an op-
erator which, when applied to any other operator a, yields the
n-th iterate of a. Thus |na is the operator which, when applied to
an arbitrary entity b, yields the same result as a applied n times
to b. For example,

2ab = alab,  3ab = alajab,  etc.

In particular, 1a must be the same as a; it is convenient to con-
sider Oa as the “operation’ of not applying any operator, so that
it leaves every entity b unchanged. This leads to the equations

Oab = b
lab = ab.
By E5, we have the following equations:

0 = AA\yy = Azl = KI,
1 = \\ylzy = I,
= A\z\y|z|zy = ABI,
3 = Az\y|z||2zy = A||BAK?2, ete.

In general, the successer of n (1.e. n + 1), denoted by “Sn”’, may
be identified as the operator such that

Snab = a||nab,

i.e. Sna consists in applying a n times and then applying a to the
result. This leads us to the definition
S = AxhyAzly|jzyz = A||BAK.

It is easy to check that 1 = S0, 2 = S1, 3 = 82, etc. We may
now define 90, the class of non-negative integers, as the common
part of all classes 9t such that O is in I and if » is in 9%, then Sn
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is in M. We intend N to be the class of all entities obtained by
operating with S on 0 a finite number of times, but must employ
some dodge to avoid the vicious circle of using the concept of
number in the definition of M.

The elementary arithmetic operations are easy to define.
Thus the m-th iterate of the n-th iterate of the operator ¢ is
the (m X n)-th iterate of a, i.e.

(m X n)a = m|na = Bmna,
so that
m X n = Bmn.

Similarly, the m~th iterate of a applied after the n-th iterate of a
yields the (m + n)-th iterate of q, i.e.

(m 4+ n)ab = mal||nab,

so that
(m 4+ n) = Azyl||mz|jnzy = A||BBmn = A|Dmn.

Finally,

n’a = (n X n)a = njna = 2na,
naa = (n X n’)a = nlnza = n“2na = 3na, etC.,

which leads to the simple definition
n" = mn.

The entity mn occurring here is not to be confused with (m X =),
which is ||Bmn.

We might also define an operator + such that +ab = (a + b)
for all entities ¢ and b, i.e.

+ = My(z + 4) = \ody||4]|BBzy = A|KA|BB = BAD.

Then parentheses would be unnecessary, and + would be an
entity itself. The corresponding entity for multiplication is B,
and for exponentiation is 7. An alternative definition of addition
is discussed in the exercises below.

We can now derive most of the important properties of inte-
gers. With the definitions just given, some of these properties
hold for all entities. We give some examples.
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T37. Ifa, b, and care in G, then (a X b) X ¢ =a X (b X o).
Proof. Let d be an arbitrary entity. Then
((a X b) X c¢)d = B||Babcd = Babled = alblcd,
while
(@ X (b X ¢))d = Bal|Bbed = al||Bbcd = alblcd.
The conclusion follows by E5.

T38. Ifa, b, and carein G, then (a +b) + ¢ = a + (b + o).
Proof. Let d and e be arbitrary entities. Then
((a + b) + c)de = (a + b)d|lede = ad||bd]|cde,
while
(@ + (b + ¢))de = adl||[(b + c)de = ad||bd||cde.
Now apply E5.

These theorems hold for all entities. The next one is more
characteristic of the members of Jt.

T39. If nisin N,then Sn =n+ 1 =14 n.
Proof. We note that Sa = 1 + a for all entities a, for if
b and ¢ are arbitrary entities then
Sabe = bllabe = 1b|labe = (1 + a)be.
Let I be the class of all entities a such that
Se = a 4+ 1. Then 0 is in IN. For
80 = 1, and (0 + 1)ab = Oc||lab = Iab = lab,
so that SO0 = 0 + 1 = 1. If a is in IN, then
Sa = a + 1, so that
S8@Sa) =1+ (Sa) =14+ (a+1) =1+ a)+1
= (Sa) + 1,
which shows that Sa is in 9. Hence all members of 9 are in N,
which proves the theorem.

Church has developed a system of logic with an apparently
completely different approach. We take as primitive an infinite
list of signs z, , @, , -+ , called variables, the stroke, and the
symbol A. By a word we mean a string formed according to the
following rules:

(a) If % is a variable, then ¥ is a word.
(b) If % and B are words, then |AB is a word.
(¢) If U is a word and “z” is a variable, then Az ¥ is a word.
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All occurrences of a variable “z” in parts of a word ¥ of the
form ‘“Az¥,”, where %, is a word, are called bound; all other
occurrences of “z”” in ¥ are called free. The precise definitions of
occurrence, part, bound, and free occurrence, as given in III3,
D17-19, are to be modified in the obvious way to apply to the
present object language. A word in the variables z, , --- , 2, is
one in which no other variable occurs free; all of these variables
do not necessarily occur in the word. As before, we shall denote
awordinz, , ---, z, by some such symbol as “U(z, , --- , z)"".
If A(z) isa word in z, and B is a word, then “U(B)”’ shall denote
the result of substituting “®” for “z” in all free occurrences of
“z” in Y(z), and similarly if ¥ is a word in several variables.

A relation — (read “produces’”) between words is defined by
the following rules:

I. If ¥ is a word, and “z’’ is a variable which does not occur
free in 9, while “y” does not occur at all in ¥, and if B is the
result of substituting “y” for “z” throughout ¥, then ¥ — B.

II. If Az, , -+, x) is a word in the variables z, , --- , 7 ,
and 8 is a word, then Az, A(z,, -+ , 2)B — AB, 2o, -+ , ).

III. Under the hypotheses of II, A(B, 2z, , -+ , z,) —
I)‘xlﬁ(xl y " xk)%-

IV.If A — B, C is a word, and “2” is a variable, then
|UAC — [BE, |CA — |EB, and \zA — AzB.

V. If the variable “z” does not occur in the word 9, then
Az|Az — A and A — Az|Uz.

If % and B are words, then ¥ is said to be convertible to %,
denoted by “ conv 9B”, if and only if there is a sequence of
words o, , ---, U, such that Ais A, , Bis A, , and A, — U, .,
=1 --,n—1).

We can define 4 and K as the following words:

“A” for ‘“ANeyhzl|azlyz’,
and “K” for ‘N\ax\yz’.

It is a remarkable fact, first proved for an analogous system
by Rosser, that if %A(z, , z,) and B(z, , 2,) are words in z, and x, s
and do not contain the symbol “A”’, then %(4, K) conv B4, K)
if and only if “(4, K) = B(4, K)” can be proved from our
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assumptions. The proof is fairly easy on the basis of T36 and
T36a.

We shall illustrate this system by proving a few elementary
results on the basis of the definitions

I for Xzxz,
B for Az\yAzlz|yz,
and C for Azhyhz||zey.

T40. AKK conv I.
Proof. AKK conv Ax\y)z||zz|yzKK conv Az||Kz|Kz.
But ||[Kz|Kz conv ||[\zh\yzz|Kz conv z, so that
2\z||Kz|Kz conv Azz conv Azz conv I.

T41. BI conv 1.
Proof. BI conv [\z\y)zlz|yzl conv Aydz|Ilyz. But
|Ilyz conv |Azz|yz conv |yz, so that
\yAz|I|yz conv Ayhz|yz conv Ayy conv Axz conv I.

T42. A|Kz|Ky conv K|zy.
Proof. A|Kz|Ky conv Mz|||Kzz||Kyz conv \zlzy conv
Mzujry. But Mudzw conv Azhyz conv K, by
rule I. Hence, by rule IV, |[\ulzujzy conv K|zy.

These examples should suffice to illustrate the technique of
conversion.

The theorem of Rosser, cited above, shows the essential equi-
valence of the theories of Curry and Church. Church and Rosser
have also proved a consistency theorem which shows that such
words as A and K are not convertible into each other. By the
equivalence theorem, it follows that the system of Curry is also
consistent.

On the basis of these results Church constructed, by the ad-
junction of another primitive notion, a system of logic whose
consistency could be proved and which, though inadequate for
extant mathematics, is undoubtedly adequate for all mathe-

matics acceptable to the intuitionists. The system of Church
escapes Godel’s theorem that logics are, in general, inadequate
for the proof of their own consistency just through its inadequacy
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in another direction, namely that no universal quantifier exists
in his system. There exist, indeed, better and better approxima-
tions to a universal quantifier, but it is impossible to express a
proposition of the form “for all z, ---”’ within his object lan-
guage. On the other hand, Curry has made certain suggestions,
whose detailed development has not yet been published, but
which promise to be more adequate for mathematics as actually
practiced. We can only give the merest sketch of these ideas in
this volume.

We take now as primitive notions a class € of objects called
entities, certain special entities 4, K, @, I, D, and P, a binary
operation |, called application, and a subclass T of entities,
called frue. As before, we shall denote that a is in T by “}-a”.
The entity Q is to be an operator such that for any entities @ and
b, ||Qab is the proposition that a equals b. The entity P is an
operator such that |Pa is the proposition that a is a proposition.
The operator D is such that if ¢ and b are propositions, then
[|Dab is the proposition that if a, then b. A class is to be an
entity @ such that for certain entities b, |ab is the proposition
that b is a member of a, expressed in our former languages by
“b € o”. Finally, if a is a class, then ] [a is the proposition that
for all z, |azx.

In stating the assumptions and definitions it will be conven-
ient to use words and the symbol A as before. The symbol A can
be eliminated by the definition on p. 117.

D7. “a = b” for “}||Qab”.

R, D1-6, E14, C1-2, T8a, T9a, T11, T13, as before.
C0'. A, K,Q,]], D, and P arein G.

D8. “a, ---, blc” means that if |-a, - - - , and |, then |-c.
C3. a,||Qab}b.

D9. “E” for “|WQ".

L1. []A, Eb, Hab.

12. aHPa.

13. Pa, Pb}|P||D ab.

D10. “P,” for “||BP[]".

Di11. “f” for “|[[|QA”.
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Q1. H[I|IBIT||B|BPQ.
Q2. HI|[BP.Q.
F1. a,||D ab}b.
F2. Ifab for all b in G, then H]]a.
F3. Pa, Pb, PcH|D||D ab]|D||D be||D ac.
F4. Pa, Pb|H|D||D||D abaa.
F5. Pa, PbH||D a||Dba.
F6. Pal|D fa.
Di12. “~" for “Nz||D zf” (ie. |[|C D J).
D13. “E” for ‘“Nany|[Iz|| Dl2z|y2” (re. B|BI]||BA|B D).
F7. PwuHI DD ]alez Ge. HIT|IBIDI Taa).
F8. Pa, Pb H|D||E|Kab||D a|] ]b.

In the old notation the postulates F3—6 have the forms

F3. Ifa,b,andcarein B,thenfa Db.D b DcD .aDe.
F4. Ifcandbarein B, thenta Db Da D a.

F5. Ifaandbarein P, thenfa D b Da

F6. If aisin B, then Ff D a.

Now f is the proposition that every entity is equal to 4, so
that f may be taken as a typical false proposition. It can easily
be shown that F1, L3, F3-F6 are an adequate set of postulates
for a Boolean propositional logic. The assumptions L1, F2, F7
and F8 complete the assumptions for the logic of propositional
functions as given in L, (II13). Assumptions Q1 and Q2 say that
Qab and [ ]|Qa are propositions for all entities a and b. L2 says
that every true entity is a proposition. C3 says that if a = b
and a is a proposition, then so is b. Some of the above postulates
are superfluous, and @ may be defined satisfactorily in terms of
the other primitives, but we shall not attempt to gain the utmost
economy. We have taken “P,” to mean the class of classes, i.e. a
is a class if and only if [ Ja is a proposition.

A large part of mathematics can be derived from these
assumptions, especially if we adjoin some postulates concerning
class formation. There is reason to believe that these postulates
are consistent, although a proof would be rather difficult.

In the original formulations of Curry and Church they postu-



128

lated the properties of implication and quantification in full
generality, i.e. for all entities, with no restriction that these
entities be propositions, classes, etc. As might be expected, these
systems turned out 1.0 be inconsistent. Kleene and Rosser showed
that Richard’s paradox (sce I1II6) arose in these systems. Later
Curry showed that in any system which is functionally complete
in the sense of T30, and in which certain laws of the proposi-
tional logic hold for arbitrary entities, Russell’s paradox arises.
We may formulate this result in the following manner,

T43. If, besudes the above postulates, we assume that | D aa and
(1D al|D ab H|D ab for all a and b in €, then |-d for all
din G.
Proof. We first construct an element a in € such that
a=||Dad. Let N = ||C Dd, R = |W|BN, and
a = |RR. Thus we have

Nb=CDdb= Dbdioraldin
Re = W|BNc¢ = BNce = Nlce for all ¢ in G,

so that
a=RR = N|RR = Na = D ad.

Intuitively, if d 1s a false proposition, then “Nb”
expresses the falsity of b, and if ¢ is a class, then
Rec is the proposition that ¢ is not a member of c.
Thus R is precisely the class which appears in
Russell’s paradox. We now obtain successively

HID aa, HID al|D ad, H|D ad, a, and |,
by C3 and F1.

Thus under the conditions of T43 every entity is asserted,
which means that the system is inconsistent.

Curry proposes to avoid the difficulty by distinguishing a
certain subelass € of €, called the class of canonical entities, and
by assuming such"laws as F3-F6 only for members of €. The
canonical entities may be thought of as generalizations of the
notions of proposition and class. For certain systems of this
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type, which appear to be adequate for mathematics, Curry has
announced the possession of a proof of consistency. It is to be
hoped that he will publish the details of this work in the near
future.

He has pointed out that much of the formal development can
be simplified if one takes as a primitive the entity

F = \r\y)z|| Ex|| Byz.

If a and b are classes and ¢ is an arbitrary operator, then Fabc
is the proposition that if r is an arbitrary element of a, then |cz
is in b, so that ¢ is a function on @ to b. In terms of F we may
define 5, [, and D by the equations

E = z\y||Fzyl = A||BAF|K|KI,

—— Pt

==y

and D = Aa\y||E|Kz|Ky = A||A|KB||BEK|KK.

It may be noted that combinatory logics analyze the processes
of reasoning into such ‘“‘atomic” steps that the preliminary
development needed in order to arrive at ‘‘real mathematics”
is longer than with other approaches, but the single steps make
much smaller demands on our intuition than is the case in other
systems.

EXERCISES

Ex. 1. If “||[4+ 2y” denates z + y, “||Pzy” denotes zy, and
“|—z” denotes —z, where x and y are numbers and

these are the usual algebraic operations, then interpret
the following operators:

(a). B + |[WP.
(b). A + ||BP| — 2.
(c). AP|WP.

(d). C||BB||BB ++.
(e). C||BB||BB + P.

Ex. 2. Using the notations of Ex. 1, cpnstruct operators
which, when applied to arbitrary numbers, yield the
following results:
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(a). =+ o~
). z — y.
(¢). 2z — =
d). zy + ==
(). &+ v+ 2.
Ex. 3. Eliminate “N”’ from the following words:
(a). [ = AzdyAz||e|Kyz.

(b). a = Azl]|[|S]|=0]z0.

(€). » = Azlllza]KO1.

(d). B = aodyraaw||||[|Kzlylpww|z|pw.
(e). © = Xz||W|Bz|W|Bz.

). R = aa\y|o||8zy.

(8). » = ONzAyNzl||[2]lxy|Selyz.

(b). A = xahyl|[py||B|uzS||p=0.

(@) ATAZy -+ A2 |- < [2as - 7

(). Axryrz||Wlyz|zx.

(k). Aany| --- |zyy --- y, with n ¢'s.

(m). ATAx;y -+ * AZZo -

(@), ATy - AT, | oo |Tomay v Tey
Ex. 4. Prove the following in three ways, from R, El1-5,

C0-2, using T8a, T9a, T11, and T13 instead of E5,

and from I-V, p. 124:

(a). Blab = A||BalKb.

(b). AK = KI.

(c). Al|A||BBabc = Aal|Abe.

(d). A||BWab = A||Aabb.

(e). ADa = D||AIa.

(f). B0 = KO.

(g). A||BBa0 = a.

(h). A||[BDab = D||Aab.

(. Al||A||A]|BDabed = A||Aab||Acd.

(). A||A||BCabe = A||Aach.

(k). A||BTab = Aba.

(1. BCCab = ab.

(m). B||Babc = Bal|Bbc.

(®). B|Ka = K|Ka.

(0). BBK = BKK.
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(p). B||Bab = B|Ba|Bb.

(q). C||BBBK = BK.

(r). W||B|Bab = Ba|Wb.

(s). BA|A||BBa = B|B|4aA.

Using the notations of Ex. 3(a, --- , h), prove the
following:

(a). [ab0 = a.

(b). [ab|Sn = b.

(¢). If nisin N, then na/K00 = n.
(d). p0 = 0.

(e). If nisin N, then p|Sn = n.

(f). ©a = al6a.

(g). Bagf0 = a.

(h). If n is in N, then Bagf|Sn = gn|fn.

.

@)-
(k).
.
(m).
().

(o).
®-
(@)-

().
(s).

®.

If f = Rag, then f = Bagf, and

fO = aq,

fI8n = gn|fn, for all n in N.
pan = [n||ua|Sn|an.
If a0 = 0, then pa0 = 0.
If a0 is in N but different from 0, then ua0 = pal.
If an = 0, then pan = n.
If an is in N but different from 0, then pan =
palSn.
If there is an » in N such that an = 0, then pa0 is
the smallest such integer.
If there is an integer n > m such that an = 0,
then pam is the smallest one.
Aal = pal.
Aa|S|Sn = pa|S||AalSn.
If the equation am = 0 has at least n solutions
in non-negative integers, then Aan is the n-th
solution in order of magnitude.
00 =1, Sn0 = 0.

Using the results of Ex. 5, give definitions of entities
satisfying the following conditions where m, n, ete. are
in N:

(a).

~mn=0ifm<n =mn=m—nifm>n
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(b). Mmn = max (m, n).

(c). Mmn = min (m, n).

(d). amn = 1form = n, Amn = 0 form 5 n.

(e). 10 =1, YSn = B|Sn'n. (n factoral).

. <mn=0ifm>n <mn=1ifm<<n.

(g). +mn = the integral part of the fraction m/n
where n # 0.

(h). pmn = the remainder on division of m by n,
where n £ 0.

(1). émn = 1if mis divisible by =, 0 if m is not divis-
ible by »

(3. =n = 1if n is a pritne number, 0 if n is not a
prime number.

(k). wm = the n-th prime number.

(1). ¢n = the integral part of v/n.

(m). ¥n = 1if n is a perfect square, ¥n = 0if nisnot
a perfect square.

(n). vn = the number of divisors of n.

(0). on = the sum of the divisors of n.

(p). ¢@nxy = the smallest of the numbers
lz* — y* — 27", as z ranges through the values
1,2 ---.

(@). ¢.nz = the smallest of the numbers ¢,nry for
y=12 -,z

(r). @sn = the smallest 2 > 1 such that the equation
z" = y" 4 2" has a solution in positive integers
y and ¢z, if such exist.

(s). s = the smallest integer n > 3 such that the
equation z* = y" 4 2" has a solution in positive
integers z, y, z, if such n’s exist.

(t). yn = the smallest of the numbers (rm) + (r(n +

n—m)) form =23, --- ,n.
(u). v, = the first n > 2 such that yn > 4, if such
exist.

). vsn, = the number of integers m such that
2 <m < nand ym > 4.
W), ~0=1, ~1=0.
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(x). V0O =0, VOl = V10 = V1l = 1.
(¥). A00 = AODL = AI0 =0, All =
(z). D00 = D0l =Dll=1 DI0=0.

[y

SECTION 5 THE DEVELOPMENT OF MATHE-
MATICS WITHIN AN OBJECT LANGUAGE

We shall now sketch the formalization of mathematics within
a language of the sort constructed in section 3. To fix the ideas,
everything will be carried out in L , although similar develop-
ments are possible for the others except L, . We shall make free
use of the results of section 2, all of which can be derived in L; ,
with trivial modifications in the statements and notations.

It will be useful, however, to state and prove some of the
results again for L; . We shall adopt the mnemonic device of
U.Slng ‘lu”’ t{ 1 {lx”’ ((y?7 ‘K 2 for Varlables “p” ((qL' ‘L 2 a’nd
“s” for sentences, and “o”, “g”, “y”, ete. for terms.

It will be convenient to begin W1th the following definitions:

D1. A string of the form “(z)p” or “z = p”, where p is a
sentence is called z-bound.

D2. The (n + 1)-tuple (z;, --- , ., p), where the z’s are
variables and p is a sentence, is said to be adjusted to
(an, **+, o if fornoi, 1 <4 < m,is there a variable y
with a free occurrence in «, such that there is a y-bound
part C of p and a free occurrence of z, in C.

The importance of (x, , -+- , %, , p) being adjusted to
(@, -+ - , @) is that when we form Sb{z, , -+ , %, P}, -+,
a,) we do not wish free occurrences of variables in the a’s to
become bound after the substitution. In this terminology FVII
can be stated more simply:

FVIL If p is a sentence and & and y are variables, and if
(x, p) is adjusted to y, then .
Fx)p .D. Sbiz, p}(®).
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We can now prove some useful analogues in L; to T3.2.1b and
T3.2.1c.

T1. If (z, p) s adjusted to y, and g is Sb{z, p} (y) and y does not
occur free in p, then F(z)p .=. (¥)g.
Proof. By FVIL, Hz)p .D. ¢q.

By FII, Hz)p .D,.q.
Hence Fx)p.D. ®qe. (FVI, FI).
By D2, (y, ¢) is adjusted to z, and p is Sb{y, ¢} (z),
and z does not occur free in ¢g. By symmetry, we
have

Fwg .D. @)p.
The conclusion follows by T2.2.14 and FI.

[P 2]

This shows that “z” is a dummy symbol in “(z)p”, ie. “z
may be replaced throughout by any other variable y, which does
not oceur free in p and such that (z, p) is adjusted to y, and the
result will be equivalent to (z)p. Thus in a definition where a
variable bound by a universal quantifier appears in the defi-
niens, it may be replaced by any other variable satisfying these
conditions without affecting the notion defined, and therefore
does not have to be indicated explicitly in the notation for that
notion. These remarks will be used from now on without explicit
mention. For example, D3.19 may be written as follows:

D3. (@ CB) for )z E€ a) D (z € Y)),

and ‘‘z”” may be replaced by any variable which does not occur
in a or 8 without affecting the result as far as equivalence is
concerned.

We now define identity as follows:

Di. (a=p8) for € a=,2z€Ep).

In such definitions as D3 and D4 it is simplest to adopt the
convention that z is chosen as a variable which does not occur
in « or 8, and analogously in all similar cases.

T2. If p, q, x, and y are as in T1, then }x D p = y D q.
Proof. Hz)zEu.=.p) = y)[y Eu.=.q). (T1).
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Hence H(Ju) : 2 € u A ()z € u .=. p)
a=: (Ju) :z€u A Wy € v .=.9 by
T2.2.37, FII, T3.2.11, and FI. The conclusion
follows by FX, T2.2.28, FII, and D4.

The comments to T1 apply also to T2. We shall use these
observations from now on without explicit mention.
Postulate FVIII may be written in the following form:

FVIIL. e =y D.2€Eu Dy E u.

The following theorems are almost trivial.

T3.
T4.
T5.
T6.
T7.

T8.

By

Fa)®)(@):.

Hz).z = 2.
Fa) @) (@):.

F@)@) :z =y .=.y ==
=y Ay=2z:0:2 =z
F@o)@)@):.z=y:Diz€2z.=.yE 2
=y:D:iz2Ex.=.2Ey.
=,¢.D0.@2p) =39

repeated application of T6-T8 we can show that if

bz = y, the “2” may be replaced by ‘“y” in any free occurrence
of “z” without changing the result Wlth respect to equivalence
or identity, according as the substitution is performed on a
sentence or a term. In fact, if p and ¢ are sentences so related,
and o and B are terms so related, then

fe =y .D.p=g
and fz=y.D.a=4

This is the principle of substitution of equals for equals.
Tt is convenient to introduce the null class:

D5. A for z D ~(z = 2).

T9. Hx)

~ (x € A).
Proof. ty E A .:=:.(J2):y E2z A
@)(x E2z= ~(@x = 1x)). (FX).
Fa)x €2 = ~@ = 2)
D.y€Ez=~Fy =y (FVII)

D.~y €2 (T3, T2.2.21, T2.2.15,
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T2.2.7), and therefore

F~(ly € 9 A @@ € 2 = ~(@ = 2).

(D2.2.2, T2.2.5, T2.2.12). Hence

Fo) ~ (€2 A @z €z = ~( = 2)
(FII), and

F~(32) :y €2 A @) €2 = ~(@ = 7))
(D10, T2.2.5), so that

F~@y € A). (T2.2.21, FI).

The notation of the second and third steps of this proof indicates
that the conclusion of step (2) implies the conclusion of step (3),
5o that, by T2.2.8, the hypothesis of step (2) also implies the
conclusion of step (3).
T10. If p, q, z, and y are as in T'1, and z 18 a variable which does
not occur in either p or g, then

Hiax)(cE€Ez=p):D:yExzDp.=.q

This shows that if the property expressed by p corre-
sponds to a class, then x S p s that class.

Proof. Fz)(z €Ez=p) :D:yE 2z =¢q (FVIID)
D1y €z A (@)= Ez=0p)

=.q (Ex. 2.2.1g).

Hence FH(32)@)(zx €E 2z =p) :D:y S 2 Dp

= (J2)q (FII, T3.3.11).

Now it is trivial that F( J2)q .=. ¢, for

Fe)(g D9 :D: (I8¢ .D. ¢ (T3.39),
and )¢ D 9) :D: 9D (&)g (FVI),
:D:q D (J2)q (T3.3.7).

Now apply T2.2.1 and FII.
CororLarY T10a. F2)(z €2 =p) .D.z2 = (z D p).

T11. If z, y, 2, p, and q are as in T10, then
FyE€z2p:D:ig A (F9)(2)(=z €2 .=. p).
Proof. fy €2 D p :D:. (J2) .y E 2
A @@EEz.=,p): (FX).
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Butly Ez A @)z Ez = p)

iy Ez N yYEz=q (FVII)
. q. (Ex. 2.2 1j)

AlsoH(32) iy Ez A )& E2z .= p)

gD (A2) (@) (z E 2 = p).
(T2 2.18, T3.2.82).

The conclusion is now obvious.

CoroLLARY Tlla. F~(32) @)z E 2z .=.p)
D. @y ~y&Ez 3 p).
F~(32)@)(z €2 .=.p)
D.z2Dp = A
Proof. The first part is an obvious consequence of the
theorem. To prove the rest, we note that
F~yEzDp):Diy€edp=.~y=y)
(FX)
=y & A (T9).

Thus if the property expressed by p does not correspond to a
class, then D p is the null class. Hence if ¢ 3 p has any mem-
bers at all, then it is the class of all z such that p. In particular,
if p is stratified, then it automatically corresponds to a class,
by FIX (and therefore y € z 3 pif and only if g, by T10), and
z D p is this class.

We can now define the operations of Boolean algebra:

D6. Viorz D (z = ).

D7. aUBforz D (x EaVr&Hp.
D8. aNBforz D@ EaAzEBp.
DY. o forz D ~(z € a).

It is easy to show that classes form a Boolean algebra with
respect to these operations, so that all the results of Chapter I
hold in L, .

We shall now explain the Wiener-Kuratowski method of
developing the theory of polyadic propositional functions from
the theory of classes. To fix the ideas let us consider diadic
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functions, or what comes to the same thing, binary relations.
Suppose that we are able to define a notion of ordered pair so
that

(1) |—(x,y)=(u,v):E:x=uAy=v;

i.e. two ordered pairs are the same if and only if they consist
of the same elements in the same order. Then to each relation R
we can associate the class of all ordered pairs (z, ¥) such that
zRy:

z=u> ((3z,y) : 2Ry A u = (2, y)).

In this way each relation corresponds to a uniquely determined
class of ordered pairs, and conversely if z is a class of ordered
pairs, then the sentence “(z, y) & 2" expresses a relation be-
tween z and y. It is then a natural step to define a relation as a
class of ordered pairs. For this we need only a definition of
“ordered pair’’. This will be accomplished as soon as we have
constructed a notion ‘“{x, y)”’ satisfying (1). Its exact nature is
immaterial for mathematical purposes. This leads us to

D10. () fory D (¢ = y).
Dil. {e, 8) for (1(wx)) U «((tr) \J (18)).

Thus w is the “unit class” of z, the class whose only member
is z. And (z, y) is the class whose only members are « and
w \J . It is now easy to prove (1). We can therefore define the
relation expressed by a given sentence:

D12. zy D pforz D ((Iz, y)z = {z, y) A\ D), where zis a
variable not occurring in p.

It is easy to see that if p is stratified and if the free occur-
rences of « and y in p (if there be any at all) have the same level
in the stratification, then “(3z,y) :2 = (z,y) A p’ is stratified,
so that

@ HINEEEu.c=x (35,9) 12 = @,9) A D).

If (2) does not hold, then (zy 3 p) = A. Itis also easy to prove
the following analogue of T'10.
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T12. If (x,y, p) ts adjusted to (z,,y), and if ¢ =
Sb{z,y, p} (1, ) and if netther x, nor y, occurs free in
D, then F@)(z € u .i=:. (2, %) : 2 = (2, 9) A D)
DU =zy D p.
We shall usually use capital Latin letters R, S, T, etc., for
relations.

Di2. “(aRB)” for “({a, B) € R).”
The converse of the relation R is defined thus:
D13. B for zy D (yRx).

Many important concepts can be defined in terms of relations.
Thus a function is a relation R such that to each z there is at
most one y such that 2Ry. The z’s for which there isa g form the
domain of the function. To each z in the domain of the function
there is a unique y such that xRy. This y is the value of the func-
tion for the argument z. In the language L; we have

Di4. Rl =R > (¢ € R .D.. (3z,9) 2 = (z,9)).

Di15. Fet = R3S (RERel .:A:. 2Ry A 2Rz:D,.,.,.: ¥y = 2).

D16. Cor = R D (R € Fet A R € Fet).

Thus a relation is a class of ordered pairs. A function is a
relation R such that if 2Ry and zRz, then y = z. And a corre-
spondence is what we usually call a one-to-one correspondence.

An example is the relation between a man x and his partner y at
a dance in which there are no wallflowers.

D17. D(R) = = D ((I¥)zRy).
D18. A(R) = D(R).

If R is a function, then D(R) is its domain and A(R) is its
range, i.e. the class of values taken on by the function. We shall
often denote functions by the letters f, g, k, ¢, ¥, F, G, H, ete.

D19. f(e) = 2z D ((y) :afy A 2 E y).

The notation here will be used principally in the case where



140

f is a function. Then if « € D(f), there is only one y, anyway,
such that afy. In the cases of interest to us, ¥ will be a class, and
will therefore be determined by its members. In this case f(a)
will hasve the same members, so that |-f(e) = y. In other cases
f(e) also has an interesting interpretation, but we shall not
digress now to discuss it.

It is more to the point to meditate on the proverbial process
of counting noses. In order to understand more clearly the
philosophy behind nose counting let

R = 2y D (zisanose of ¥y .A. 7 is human and not a freak).

Then R is a correspondence, since no nose belongs to different
humans, and a human non-freak has exactly one nose. From this
we conclude that we can determine the number of members in a
class of normal humans by counting their noses. If “Ne(a)”
denotes the number of members of o, then

Ne(a) = Ne(z © ((Jy) 2Ry A ¥y € a))

for any class « of normal humans. This leads us to a better idea
of the notion of number. For we can now determine when two
classes have the same number of members without counting
them, simply by looking for a correspondence between their
members. Two classes for which there exists such a correspon-
dence will be called stmilar.

D20. sm =2y S ((FR):R& Cor AD(R) =z A A(R) =y).

Thus “z sm 3" will mean that there is a correspondence between
the members of z and the members of ¥ whereby to each z in z
there corresponds a unique « in y and conversely. As nose count-
ing teaches us, such a correspondence exists if and only if 2 and
y have the same number of members.

We have thus been able to define the relation holding between
two classes which have the same number of members, without
using in the definition the concept of number. This was ac-
complished in a ynanner which may at first sight seem round-
about, but which really analyzes the concept of the equality of
numbers into simpler notions. The process of counting can be



141

explained now as follows. We have a standard class consisting
of the words ‘““one”, “two”, ete. To determine the number of
members of an arbitrary class a we pair off the members of «
with these words until the class « is exhausted. The last number-
word used in constructing this correspondence is the name of
the number of members of a.

Clearly we may use any class as a standard provided only
that it has enough members for our purposes and that its mem-
bers can be distinguished from each other. In particular, in our
language Ls; we can construct many classes which could serve
equally well as standard. Its members (or rather the corre-
sponding strings in L;) may be used as number-names just as
“one”, “two”, - -, in ordinary discourse. One simple method is
the following:

D21. Ne(e) for z D (e sm z).
D22. Neforz © ((Jy) .x = Ne(y)).

Thus we define the number of members of « as the class of all
classes similar to «, and a (cardinal) number as any z which is
the number of members of some class . These definitions yield
concepts which are very easy to work with in the language L; .

We now show how the finile numbers may be distinguished
from the rest. One of the characteristic properties of the finite
numbers, or as we may also call them, the (non-negative) inte-
gers, is that expressed by the principle of mathematical induc-
tion. It turns out that this is very convenient to use as the
definition of the class of integers. For this we need the special
integers 0 and 1 and the concept of addition. (We could also
define the successor of an integer directly, but it is more natural
to proceed in the following way).

D23. 0 for Ne(A).

D24. 1forz S ((Fy) 2 = w).

D25. u +vforxz 2 ((Jy,2) : Ne(y) = v .A.Nc(e) = v
AyNez=A A.zsm (y\Uz).

D26. Finforr D 0 €y A.z€EYD. z+1)Ey
DT EY).
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Thus 0 is the number of members of the null class, and 1 is the
number of members of wx for any «. If u and v are cardinal
numbers, and y and z are classes with no common members such
that ¥ has © members and z has » members, then 4 4+ v is the
number of members of ¥ \U 2. A number z is finite if and only if
it belongs to every class y which contains 0 and which contains
z + 1 whenever it contains z.

We can now describe one of the intuitively valid arguments
which cannot be formalized in L, . It may very well happen that

(1) 18b{z, p}(0), FSbiz, p(1), -Sblz, p}(L + 1),
are all provable without
@) le € Fin D. p
being provable in L; . For example,

FO = A, FL s A, F14+ 15 A,
are all provable in L, , hut there is no known proof that
3) Fr € Fin D, x & A,

and it is very unlikely that (3) is provable at all in L, . In other
words, we may be able to prove that each particular integer has
a certain property, and yet be unable to prove the sentence ex-
pressing the proposition that all integers have this property.

Rosser has proposed to adjoin to L, the rule FQ. If p s a sen-
tence and #f -Sb{x, p}(0), HSb{z, p}(1), FSb{z, p}(1 + 1), -,
then -x € Fin D, p. If there should be an inconsistency in the
language L, thus obtained, then we should probably reject L as
unacceptable intuitively. In the paper previously cited Rosser
reports on his vain attempts to prove L, inconsistent.

We have now shown how many basic mathematical concepts
can be defined in L, , and have indicated briefly how the’r most
important properties may be proved. Of course, our treatment
was, of necessity, very sketchy. We have contented ourselves
with these brief indications partly because of limitations of space,
but mainly because we wish to emphasize the main tendency of
modern work on logic, namely the study of the structure of a
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logical system as a whole, rather than the detailed development
within the system. The latter is, nevertheless, necessary and
important when one is either interested in the adequacy of the
system or in the applications of the system.

EXERCISES

Ex. 1. Prove the following:

(a).

(d).
(e).
(d).
(e)-
®.
().
(h).
().
@)-
k).
.

(m).

(n).
(o).

(P)-
(q)-
(r).
(s).

F~(F@z €z = (y) ~(z€y) A

(y € 2))).

FaN B =8N
FaeNgNy=an BN7).

FaNpg =A=aCB
FaNB=a=aCB8B

FaN o = A.

T3-T8 above.

Hz,y) = (w,v) . =.2=uAy=no
leEwAyEwDdDr=y.

te =y > (y € 2).

FR = R.
F=z2WyEaDdDzEY N2E a.D.
B C =
FR)z€EaDBC2)DBCeDWyEadD
T € y).

Fv =22 (I EanzEy A

zE a.D.2Cx.

FReEaD2z2Cy) D

D (I Ea Az EyY) Cr.

FaM B = AD Ne(a\JB) = Ne(e) + Ne(B).
Lo = A.

F1 = A.

Fn & Ne A n= A Ans=Nc(V).D.

n 4+ 1 5 A.

Ex. 2. Give suitable definitions for the following:

(a).

The product of two cardinal numbers. (Hint:
how many ordered pairs (z, y) are there with
rE candy €67
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(b). The class of functions with a given domain and a
given range.

(¢). The relation “less than’ between cardinal num-
bers.

(d). The class of equivalence relations.

(e). The class of transitive relations.

(f). The class of even integers.

(g). The relation between « and R which holds if and
only if (a, R) is an ordered system.

(h). The class of sum ideals in the algebra of classes

SECTION 6 THE PARADOXES

The restrictions on intuitive reasoning which are embodied in
the languages constructed in section 3 were introduced in order
to avoid the paradoxes into which our naive intuition leads us.
The simplest of these paradoxes, namely Russell’s, has already
been discussed. We shall now describe some of the others.

One of the oldest is the so-called Epimenides paradox. Epi-
menides, the Cretan, said, “All Cretans always lie.”” It is sup-
posed to be known that all other statements by Cretans are lies.
Now if this statement is true, then the Cretan Epimenides spoke
the truth for once, and Cretans do not always lie, so that the
statement is really false. If, on the other hand, this statement is
false, then all statements made by Cretans are false, so that
Epimenides was speaking the truth, after all.

A simpler, but less picturesque, form of this paradox is

“The sentence quoted on this line is false.”

This sentence is so framed as to refer to itself. That is, the phrase
“the sentence quoted on this line” is a name of the whole sen-
tence Now if it is true, then it is false, and conversely.

It is not obvious how this can be formulated in any of the
languages constructed here. What is needed is a sentence P of
the form “~gq"” where “¢”” is also a name of p. In combinatory
logic such a phenémenon seems possible if we adjoin a negation
operator ~. For if p is W|B ~ |W|B~, then we have

p=B~
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The way out of the difficulty is to deny that “p” is a sentence,
ie. that p is a proposition. As we have mentioned before, in
Curry’s original system he postulated the properties of implica~-
tion for all entities without restriction, so that the paradox did
arise in his system. In such a language as L; we can formulate
something similar to this paradox, using a method due to Godel.
We can construct a sentence p whose intuitive meaning is
“~p is provable in L;". If L, is consistent, then the reasoning of
this paradox shows that neither Fp nor F~p in L; . Thus the
Epimenides paradox shows that if L is consistent, then there is
an undecidable sentence in L, , so that L is not categorical. The
same argument holds for a large class of languages adequate for
arithmetic.

The theory of types, as originally formulated by Russell,
explains this paradox in another way. In his original version
types were assigned to sentences as well as terms. A proposition
about a sentence of one type is itself expressed by a sentence of
the next higher type. Since every sentence has a definite type,
the sentence ““ “p” is a false sentence” is a sentence of the next
higher type than “p’’ and therefore “p’’ cannot be a name of the
proposition here expressed. Hence a sentence of the form “I am
now making a false statement of type n”’ is itself a false sentence
of type n 4 1, since no statement of type n is being asserted.

We have already discussed Russell’s paradox. We only men-
tion here that an essentially similar, but correct, argument is
used by Cantor to prove that the class of subclasses of a given
class « has more members than the class of all subclasses of a of
the form “wx”’, where £ & «. Intuitively, the number of such
subclasses is equal to the number of members of «. Propositions
analogous to this can be proved in systems of the Zermelo type.
In L; and similar systems a sentence expressing intuitively that
R is the relation between z and y such that 2Ry = z € y isnot
stratified, and does not define a relation by FIX.

Richard’s paradox arises on considering the names of the
integers in the English language. ‘“The least integer not name-
able in English in less than thirteen words” is itself the name of
a definite integer, and is a name consisting of twelve words. In
consistent languages which are adequate for arithmetic one can
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formulate sentences whose intuitive meaning is just this. This
leads, however, not to contradiction but to a theorem of the
Godel type on undecidable sentences. In the systems originally
proposed by Church and Curry the freedom of expression was so
great that it allowed a paradox analogous to Richard’s.

The paradox of Burali-Forti concerns ordinal numbers, and is
beyond the scope of this book.

We observe that when a logical system has too weak restric-
tions on the means of expression or proof, there is always danger
that the paradoxes of intuitive reasoning may creep in. On the
other hand, the reasoning in each of these paradoxes contains a
kernel of truth, and when performed within the frame of a suit-
able and precisely formulated language, leads to results of
fundamental importance.

EXERCISES

Ex. 1. Prove in Ly that F~( 32)(y)(yRr = ~(yRy)). Re-
late this to Russell’s paradox.

Ex. 2. Show that naive intuition leads to a paradoxical situa-
tion on consideration of the relation R which holds
between the relations S and T when and only when S
does not have the relation S to 7. How is this paradox
avoided in L, and in L; ? Show how this paradox could
be formulated in combinatory logic if a negation op-
erator is adjoined.

SECTION 7 THE AXIOM OF CHOICE

Zermelo, in 1904, proposed as an axiom a principle which has
led to one of the most hotly contested controversies in the his-
tory of mathematics. Let 8 be a class of mutually disjoint non-
empty classes. Zermelo postulates that there exists a class y such
that for each « in g, the class @ M y has exactly one member.
This says, intuititely, that the class v chooses one element out
of each member « of the class 8. We remark that Zermelo was, to
some extent, anticipated by Peano in 1890 and Levi in 1902.



147

This principle had been used implicitly before Zermelo and has
often been used without explicit mention since. Many objections
to it have been raised by distinguished mathematicians and
philosophers. The difficulty is that the existence of a class v is
postulated without any method for constructing such a class.
There are many who deny that an object can meaningfully be
said to exist unless a method is given for constructing it.

The underlying reasons for the controversy seem to be psycho-
logical rather than logical. Those who accept the axiom of
choice are, in general, pragmatists or idealists (in the technical
philosophical sense). The former accept it because it works, i.e.
because we can draw so many useful and interesting conse-
quences from it, and also because many of these consequences
are obtainable without it. The idealists accept it because they
are willing to conceive of something as existing even though they
can’t lay their hands on it or see it or otherwise ascertain just
what it is. Sometimes the idealist approach smacks of theology
and metaphysics.

Those who oppose the axiom of choice are usually empiricists
or realists or members of some offshoot of these schools. They
are like the man from Texas, who doesn’t believe that some-
thing exists unless you put it in his hand. Obviously the intui-
tionists are strong opponents of the axiom of choice. Often these
opponents profess not to understand the very meaning of exis-
tence without explicit construction.

Formerly the argument has often been voiced that there was
danger of arriving at a contradiction by means of the axiom of
choice. Since, however, Fraenkel has shown that if such lan-
guages as L, , L; , and L, are consistent, then they remain con-
sistent if either the axiom of choice or its negatior: is postulated,
such arguments have lost their plausibility. It is to be observed
that the axiom of choice is convincing at least to the extent that
its opponents do not try to find counter-examples to results
proved with its help. Nevertheless, some of its consequences are
so amazing that they seem automatically to arouse distrust.

There are some who feel that Fraenkel’s result is irrelevant.
They say, “So what! It may very well happen that a given
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proposition doesn't lead to contradiction in spite of its being
false. The axiom of choice is true or false in an absolute sense and
this may be determined by examining the real world (or some-
times, the absolute laws of logic).” (This argument has some
weight since, as is shown in Chapter IV, we may adjoin, without
destroying consistency, to a language of a very general type a
postulate which we can prove to be false by an argument out-
side the system. See also Godel [XIII]116). As we have seen be-
fore, the very existence of controversies over the foundations of
logic shows that our intuitions differ greatly from person to
person, and make it extremely doubtful that there are any abso-
lute laws of thought.

It may be useful to list here some of the most interesting
propositions equivalent to the axiom of choice (see the comments
which follow): (We use here L; as a shorthand for ordinary

language.)
(1) There exists a function f such that
FH@ Ea.=. (@) 2 € a

(2) If Bis a class of non-empty classes, then there is a function
f whose domain is 8 such that Ff(e) € aforall e € 8.
(3) If @ is a non-empty class, then there is a relation R such

that

(@). ¢ € a .D.. ~(zRz).

(b). zRy A yRz :D,.,..: 2Rz

©.z,y&Ea.D,,.2Ry Vz=1yV yRa.

d.yCaAvrvs=A. D, (I2) iz Ey AL
yEYy D,z =y V zRy.

(4). If @ and B are arbitrary classes, then either « is similar to
a subclass of 8 or 8 is similar to a subclass of a. (p. 140, D3.5.20).

(6). If ais a class, and ~(Ne¢(a) € Fin), and if 8 is the class
of all ordered pairs (z, ) where z € a A y € a, then 8 is
similar to e.

(6). If R is a relation satisfying (3b) above, and if to every
rclalation S satisfying (3b) and (3¢) with @ = D(S) \U A(S) and
also
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(e). F Sy D.. xRy
there is an z such that | y.Sz D, ,2Sz, then there is a u such that

Fu &€ D(R) U A(R).A uRx D,zRu
(7). Let 8 be a class of classes such that
FzEB.:=,:.y Cx A Ne(y) € Fin. D,y EB.

Then if v is any class, one of whose subclasses belongs to 8
there is a subclass § of v such that § € g and such that 6 Cz C
Y .Ax € B: Daix = 4.

Proposition (1) means that there is a function f which to each
class « assigns an object f(«) such that f(a) € « if and only if
everything is in . We may think of f(«) as a test case so that
we can find out whether @ = V simply by testing whether f(«)
is in «. For example, some political observers, mostly Repub-
licans, consider Mr. Truman such a test case when it comes to
understanding political questions. Thus, according to these
observers, if Truman can understand a given political question,
then anyone can. The axiom of choice implies that we can always
find a test case.

Proposition (2) says that given any class 8 of non-empty
classes, then there is a function f which picks a member out of
each member « of 3.

Conditions 3a-3¢ mean that the members of a are ordered by
the relation R in a series. This becomes clearer if we think of
“xRy’ as meaning ‘‘x precedes y”. Condition (3d) signifies that
every non-empty subclass v of « has a first member in this
ordering. If 3a-3d are satisfied then we usually say that the
class « is well ordered by R. The axiom of choice implies that
every class can be well ordered.

If « and B are classes and « is similar to a subclass of 8, then
we should say that Nc¢(a) < Ne(B). According to proposition (4),
and therefore according to the axiom of choice, any two cardinal
numbers are comparable in size. This can, of course, be proved
without the axiom of choice in the case of finjte cardinals.

If « is a finite class, then the number of ordered pairs of the
form (r, y), where z and + are in «, is equal to n’, where
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n = Ne(a). If « is an arbitrary class and p = Ne(a), it is natural
to define u* as the number of these ordered pairs (z, %), where
rand y are in o. The axiom of choice is equivalent to proposition
(3), which states that if u is not finite, then 1= u. If ais the
class of positive integers, then the similarity can be proved by
constructling the required correspondence explicitly. If E is the
relation such that

(m—}—n—-2)2(m+n—1)+ m,

FR{m, n} if and only if &k =
then R is a correspondence between « and the class of ordered
pairs of positive integers; the pairs corresponding to 1, 2, 3, 4, 5,
--- are

<1: 1): (17 2)7 <2: 1): (1: 3)1' (27 2)7 Tt

respectively.

Proposition (6) is what we called Zorn’s lemma on p. 21.
(It was actually discovered independently by R. L. Moore and
Kuratowski in 1923. Zorn rediscovered it in 1935, and shortly
after Teichmiller did it again. The name “Zorn’s lemma’ was
apparently coined by Bourbaki in ignorance of the literature,
but became current because of the important applications which
Bourbaki made of this result).

A class 8 of classes is said to be of finzie character when a class z
belongs to 8 if and only if every finite subclass of = belongs to 8.
By proposition (7), if 8 is of finite character, then every class v,
one of whose subclasses belongs to 8, contains a maximal sub-
class ¢ belonging to B, i.e. no other subclass of v contains § and
belongs to 8.

In many applications, propositions (3), (6), and (7) are more
directly useful than the axiom of choice itself.

Among the more astounding consequences of the axiom of
choice is the theorem of Banach and Tarski (later refined by
Robinson) that a sphere of radius 1 can be decomposed into 5
parts which can be put together again in such a way as to form
two spheres of radius 1.

The axiom of choice is often used so casually that one often
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does not realize how much it pervades the most common reason-
ing processes in mathematical analysis. Whenever, in speaking
of an infinite class @, we say, “Let 2, , z,, 25, - - - be a sequence
of distinet members of &’’, we are using the axiom of choice in
the form of proposition (2). For let 8 be the class of non-empty
subeclasses of &, and let f be a function whose existence is asserted
in (2). Then z, , 2, , - -+ are obtained by the construction

z, = fla), r. = fla — @), zs = fla — @, — w,), etc.,

and the assumption that « is infinite implies that the process
doesn’t stop. The assumption that we can choose a sequence of
distinct members of « is equivalent to the existence of such a
function f.

It is for this reason, that the axiom of choice is so useful, and
simplifies so much of mathematics, that opponents of this axiom,
when not writing about the foundations of mathematics, often
make free use of it.

It seems surprising, after all this controversy, that there has
been no systematic study of the consequences of denying the
axiom of choice, beyond some work on the consistency and inde-
pendence of different forms of it. The only work in this direc-
tion, so far as we know, is a paper of Church [359]1. When one
considers some of the complications in mathematical analysis if
this axiom is not assumed, one may well expect consequences of
its denial as paradoxical as the Banach-Tarski theorem. Denjoy
[XIII] 144 gives some indications in this direction.

EXERCISES

Ex. 1. State the axiom of choice and the propositions (1)—(7)
in the languages L, and L; .

Ex. 2. Prove that (1) is equivalent to the axiom of choice.

Ex. 3. Prove the axiom of choice from Zorn’s lemma. (Hint:
consider the class T' of all classes y such that
¥ M a # A for all « in 8. Let «,Rvy, mean that

v2: Cm )



Chapter IV

THE GENERAL SYNTAX
OF LANGUAGE

SECTION 1 BASIC CONCEPTS SIMPLE LANGUAGES

We have, up to now, studied logic mostly as a deductive
science, although we have indicated in II2 and III3 how one
might approach logic by considering a language and its formal
rules apart from any interpretation. As we have pointed out on
p. 95, the second approach does not tell the whole story, but is
a valuable tool just the same, which should be neither overesti-
mated nor underestimated. In this chapter we shall attempt to
describe some of the methods and results of this syntactical
study of language. As we shall see, the deepest of these results
could hardly have been obtained without syntactical methods.

A language consists of certain signs, and certain strings of
these signs. Its syntax consists of rules for classifying and trans-
forming these strings. The alphabet of a language consists of
cert.ain basic signs, usually in finite number. By a siring we mean
a finite sequence of signs. A string is exhibited by writing its
signs in linear order from left to right. We shall denote strings
by small Greek letters. If « and 8 are strings, then “«f” shall
denote the string consisting of the signs of 8 written in order
after the signs of «. Two strings are said to be the same if they
have the same length, and the same signs in corresponding
places. We recall D3.3.1. The length of a string is, of course, the
number of sigos in it, repetitions counted. We shall denote the
length of ¢ by “l(a)”.

The syntax of a language can be very simple or very com-
plicated. We might define the English language as follows. The
alphabet consists of the letters “a”, “b”, --- , “2”, the usual
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punctuation marks, and a sign for the space between two con-
secutive words. A word is any string listed as a word in the
Oxford English Dictionary. A sentence is any string which is
formed according to the rules in some standard book of English
grammar. We may alternatively construct the English language
by taking as the alphabet the strings of letters already classified
as words, together with the punctuation marks. Then a sentence
is a string in this alphabet formed according to standard rules of
sentence formation. We may then regard English sentences as
“words” in this alphabet and the rules of formation of English
sentences as rules of word formation (i.e. spelling) in this alpha-
bet. This procedure of using the strings in one alphabet, or
names of these strings, as letters in another alphabet, is very
useful. As in all natural languages, including Esperanto, the
rules of word and sentence formation in English are so compli-
cated and full of irregularities and exceptions that it is almost
impossible to get a general view of the structure of the language,
and to make generally valid statements about the language. It is
for this reason that mathematicians and logicians prefer to work
with languages like L; with very simple and regular structures.

Among the languages suitable for mathematical purposes
there are some whose rules are especially simple. The signs of the
alphabet are classified as letters and connectives, and each con-
nective has a certain degree, denoted by a positive integer. The
main rule of word formation is:

WI1. If « is a connective of degree n, and 8, , --- , B8, are
words, then of, - 8, is a word.

By formulating the rule so that a connective is written in
front of the words which it connects we avoid the need of paren-
theses to indicate grouping.

Thus the language of I12 can be formulated as follows. The
alphabet consists of the letters p and 1, the connective ~ of
degree 1, and the connective D of degree 2. Besides rule W1 we
have the rules:

Al. “p”’ is a word.
A2, Ify is a string in 1, then pv is a word.
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Thus “~pl” and “D pplll” are words. Then we have some
rules classifying certain words as ‘‘true”. For example,
“D p D plp” is a true word (A12'). A slightly different but
equivalent and syntactically more convenient formulation is
obtained by taking as the alphabet the connectives ~ and D
as above, and the letters p, p,, pu , - - - , Where “‘p,” is a name of
the string pr, and v is a string in 1. Then the rules are W1 abave

and
W2. A string consisting of a single letter is a word.

As we shall see, the syntax of languages governed by rules W1
and W2 is especially simple.

We can formulate a part of arithmetic as a language in this
sense. Our alphabet consists of the letter 1, the connective — of
degree 1, and the connective + of degree 2. We take rules W1
and W2 as rules of word formation. Thus “—-+4+1411" is a
word, and denotes what we usually would mean by “—3". We
can classify a word as true if the integer denoted by it is zero.
E.g. “4+1—1" would be true. With this intuitive idea as a basis
we can easily set up a system of rules of inference, and thus
obtain a suitable language for arithmetic.

Before we go on to a discussion of the rules for sentence forma-
tion, and the classification of words or sentences as true, we wish
to give a general theorem on word formation. We shall say that a
language L is simple if its alphabet consists only of letters and
connectives, and if W1 and W2 are the rules of word formation
in L. We define the rank of a string as follows:

DI1. (a). If ¢ is a letter, then p(o) = —1.
(b). If ¢ is a connective of degree n, then p(¢) = n — 1.
(¢). Ifois 0100, and I(oz) = 1, then p(o) = p(ey) + p(o3).
(d). If ¢ is the null string, then p(¢) = 0.

Thus if ¢ is “a,a, - - - @,”, and “a,” is a letter or a connective for

eachi(s = 1, --- , k), then p(0) = p(a;) + p(@) + -+ + p(as).
We recall D3.3.5and D3.3.6.

TrEOREM 1. If L 45 a simple language, and o 4s a string in L,
then o is a word in L if and only if
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(1). pla) = —1.
(2). If o, 1s any head of o, and o, ¥ o, then p(e,) > 0.

We divide the proof of this theorem into four parts.

T2. Under the hypothestis of T1, if o is a word in L, then (1) and
(2) hold.

Proof. If I(¢) = 1, then the lemma is true by W2. If T2is
true for strings of length less than k, (¢ > 1), and
if I(¢) = Kk, then, by W1, cis B, - - - B, Wwhere ¢isa
connective of degree n and 8, , - -- , 3, are words.
For convenience we denote a by “B,°. Let
IB) =1,0 <1< n Now

plo) = p(Bo) + p(8) + -+ + p(62)
=n—1+4 (=D + -+ (=D
....1’

so that (1) holds. If ¢, is a head of ¢, and o, 5 o,
then there is a unique integer 3, 0 < 7 < n, such
that

I+ "'+l1 Sl(o’l) <+ "‘+lz+|~

Then there is a string o, , possibly null, such that
o118 By - - - B,05 . If o, is not null, then it is a head
of B,.. and different from B,., . Hence, in any
case, p(a,) > 0, by T2 applied to 8,4+, . Therefore

ploy) = p(Bo) + --+ + p(8) + p(02)
>n =1+ (=) + -+ (=) +0
=n—1—7
>0,

which proves (2).

T3. If o is a string in L satisfying (1) and 7 ¢s not null, then ot
does not satisfy (2).

For ¢ is a head of o7 and p(s) = —1, so that (2) does not hold
for o7.
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T4. Under the hypotheses of T1, if o is a string salisfying (1)

and (2), and ¢ = 0104, a2 not null, then there is a unique
string = such that = satisfies (1) and (2) and 1s a head

Of Gy .
Proof. There cannot be more than one such string 7, by

T3. Now
p(o2) = ple) — ple) = —1 = p(or) < 0.

Let 7 be the head of ¢, of minimum length with negative rank.
If 7, is any head of = different from 7, then p(r;) > 0. Let “a,”
be the last sign of 7, and let 7 = 7,a, . Then

0 > p(r) = p(r) + pla,) = p(a,).

Hence “a,” must be a letter, and p(a,) = —1, and therefore
0 < p(7) < 1, s0 that p(rs) = 0, p(7) = —1.

T5. Under the hypotheses of T1, if ¢ ¢s a string satisfying (1)

and (2), then o s a word.
Preof. If (o) = 1,thelemmais true by Dla. Suppose that

T5 is true for all strings of length less than %,
k > 1, and that {(¢) = k. If “a,” is the first sign
of o, then p(a,) > 0, by (2). Hence “a,” is a con-
nective of degree n = 1 4 p(a;). Let o be
“a,a, - - - @ . There is a unique string 8, such that
B: is a head of “a, - -+ @, and satisfies (1) and (2).
Hence g, is & word. Suppose the words 8, , - -+ , 8,
have already been defined, 1 < j < n, such that
a8, -+ - B,isahead of ¢, sothat cisa,8, - - - B0, .
Since p(a:8;, -+ B,) =n —1—352> 0,0, isnot
null. Then there is a unique head g, ;; of o, satis-
fying (1) and (2). By T5 for strings of length less
than &, 8,., is a word. Thus we can find words
Bi, *++, B, such that a,8, - -+ 8, is a head of o.
This string is a word by W1, and consequently
satisfies (1) and (2), by T'2. Hence ¢ is a,8; - -+ 8.
by T3.
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The criterion of spelling embodied in T1 explains why the
syntax of simple languages is simple.

An examination of the rules of sentence formation and the
rules of classification of sentences as true in the languages
hitherto considered and a comparison with the rules of word
formation in these languages reveals such a striking analogy
that we are led to seek a theory which unifies these rules with
respect to their common features. This may be done by means
of Post’s concept of production.

EXERCISES

Ex. 1. Formulate the object language of a Boolean algebra
with the operations M and N (Na = ') as a simple
language. State the postulates in the new notation
without parentheses.

Ex. 2. Set up a system of postulates for the elementary
arithmetic of integers, positive, negative, and 0, using
the idea on p. 154.

Ex. 3. Prove that if L is a simple language, then a string ¢ in
L is a word if and only if p(¢) = —1 and the rank of
every tail of ¢ is negative.

SECTION 2 PRODUCTION, CANONICAL LANGUAGES,
EXTENSION, AND DEFINITION

Let us examine the language of II2 from a slightly different
point of view. The alphabet consists of the letters p, 1, P11, - -+,
the connective ~ of degree 1, and the connective D of degree 2.
The rules of word formation are W1 and W2. The rule of sen-
tence formation is simply that all words are sentences and con-
versely. The rules of truth are stated by means of the symbol
“- which indicates that the string which follows is to be
classified as true:

Al”. If }-a, then « is a sentence.
A4”. If , B, v are sentences, then F DD a D By DD af D ay.
A5". If o, B are sentences, then -D a D Ba.
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A6”. If o, B are sentences, then FD D ~a ~8 D Ba.
A7, If Fa and }D ep, then 8.

The whole system can be formulated in a more suggestive
way if we adjoin to the alphabet the signs B and F. Here
“9R4" is to be interpreted as meaning that ¢ is a word. Since we
identify words and sentences in this language, we do not need to
formulate explicitly any rules for sentence formation. The lan-
guage now appears in the following form:

P17, fa — Be.

P27, Wa, W — W D op.

P3’. Wa — B ~a.

P4’ Ba, B, By - FDD aD By DD af D ay.
P5". Ba, BB — D a D pa.

P6”. Ba, BB — DD ~a ~B D Pa.

P7. bo, FD af — |B.

Po”. BWp, %pl ’ 232711 y T

We may think of PO’ as an initial supply of strings, and rules
P1""-P7" as instructions for producing new strings from strings
which we already have. The rules are understood in the sense
that if e, 8, v, etc. are arbitrary strings such that the strings
appearing to the left of the arrow in any rule are in our stock,
then we may add the string to the right of the arrow to that
stock.

We call P1"-P7"” productions and the strings in P0O” the
axtoms, and an axiom or a string obtainable from the axioms by
repeated applications of the productions is called a theorem.
(Note that P1” might have been omitted.)

In this formulation we had an infinite alphabet and infinitely
many axioms. We can, as indicated before, reformulate the lan-
guage so that there are only a finite number of axioms and a
finite alphabet. We take the alphabet to consist of the signs
p,1,D, ~, W, |, and & “Q” may be thought of as denoting the
class of letters. The productions are P1~P7"" as above and

P8, Sa — Lal,
PY”. Sa — LBa,
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and the only axiom is
PO. 2p

It is not obvious, at first sight, how one would formulate the
first system of combinatory logic given in III3 m the present
manner because there are infinitely many premises in E5
(p. 112) We can, however, approach the system in a different
way. If ¢ and b are formulae in A, K, and a finite number of
variables and z is a variable which does not occur in either a or b,
then E5 is used only where the inference from ax = bz toa = b
would be allowed. This idea leads us to the desired formulation.

Our alphabet consists of thesigns 4, K, |, z, a, M, &, Y, § and
= The productions are:

Pl. Ra — Reaa.

P2. o — BWe.

P3. We, BB — BW|ap.

Pi. Ba— a = a.

P5.a =8—8=c

Pb.a = B8=v—a=r.
Pl.a=pv= 08— |ay = |B4

P8. FaB, B, Uax — FaaBa.

P9. Fap, BB, Ao — FaaB.
P10. Fap, Favy, BB, Wy, Ua — Fa|By.
P1l. FaB, Fav, W, Wy, |braa = |yzaa, e — B = v
P12. Wa, BB, Wy — |||4aBy = ||ay|By
P13. Be, BB — ||KoBf = a.
P14. Yo — Naa.

The axioms are:
P0. Lxa, Foxa, A, WK, Fad, FaK, Aa.

The interpretation is that the “letters” are “za”, “zaa
+«+ , (P1), and that 4, K, and all letters are words. If « is a
string in a, then a word g is of type a (i.e. FaB) if and only if it is
bultup from 4, K, and letters involving at rgpost the same num-
ber of @’s asin «. P11, which corresponds to E5, says that if 8 and
v are such words then we may infer 8 = v from |fzaa = |yzaa.

»
b
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But zaa is a letter which does not occur in either 8 or y. We have
used the sign a to distinguish between the letters of the language
instead of “1” as before, since in the development of the system
on the basis of P0-14, we should like to be able to use “1” ag in
II13.

We could have eliminated T and taken “ e’ as an abbrevia-
tion for “a = «. This makes possible certain economies in the
system.

Another way of looking at these languages is to consider the
productions as instructions to a moron, who can scan a string
and recognize 1t as being of a certain form, for producing
theorems starting from the axioms. The happy moron can, by
merely following the instructions, generate as many theorems as
he pleases, and never feels the need for any intelligence in the
process. He might just as well be a robot or a machine. Now a
mathematician proceeds in a somewhat difterent way. He is not
satisfied with this mechanical method of producing all theorems.
He takes, rather, a string which has some interest for him, and
by applying his mngenuity tries to produce it from the axioms or
to show that it cannot be so produced. If the string is a theorem,
then the moron will produce it sooner or later, but on the way he
will produce a lot of irrelevant matter which has nothing to do
with the problem. If the string is not a theorem, then the moron
will never find it out by means of his purely mechanical method
of generating all the theorems, for he will never be sure that he
cannot produce it by working longer.

The decision problem for the language is that of determining
whether a given string is a theorem or not. For the language of
P0’, P1"-P9"” the solution is essentially given by T1.2.3 and
T4.1.1. For as we see from the statements of P1-P9”, every
theorem is of the form fa, Wa, or La. By PO’ and P8 Qa is a
theorem if and only if & consists of “p”” alone or “p’’ followed by
a string of 1’s. Theorem T4.1.1 takes care of all theorems of the
form TWea. Theorem 1.2.3 together with the definition of ‘-
given on p. 38 tells us how to decide whether |-« is a theorem.

Note that this decision process can also be carried out by the
happy moron. It can also be set up in the form of a set of pro-



161

ductions and axioms, so that he could apply it and always
arrive at the decision. We need only to adjoin new signs F (for
“false”) and T (for “true’”) and give rules for producing the
string To whenever « is a theorem and Fa whenever « is not a
theorem. The criteria just outlined show us what instructions
must be given to the moron in order that he may carry out this
decision process. Thus all intelligence and ingenuity is eliminated
from this language. There is no blemish on the moron’s happi-
ness, for he can solve any problem stated within the language.
A rule for producing Fa in cases where « is a string in the original
alphabet which is not a theorem is called by Carnap [VIII]36 a
rule of refutation In the present language we can give a complete
‘set of rules of refutation.

The situation is different for PO-P14. According to a theorem
of Church, if we adjoin the signs 7" and F as before, then it is
impossible to add a set of productions and axioms to P0-P14,
in such a way that T« is a theorem if and only if « is a theorem
in the original system, and Fa is a theorem if and only if « is
not a theorem in the original system. This is already impossible
if one restricts oneself to strings of the form 8 = «, where 8 and v
are words formed from “A4”, “K”, and “|”” alone. Thus there is
no mechanical process for solving all problems stated in this
language. Intelligence and ingenuity cannot be dispensed with
i this or any other language adequate for arithmetic. For any
given string «, one may perhaps, by exercising ingenuity,
be able to decide whether it is a theorem or not, but there is no
general procedure for this purpose which could be applied by a
moron or a machine,

Church’s theorem has sometimes been interpreted pessimis-
tically as a proof that there are absolutely unsolvable problems.
It 1sindeed a fundamental discovery on the limitations of human
ingenuity that no machine can be invented which will solve all
problems stated in the simple language of PO-P14. But opti-
mistically speaking, it is a rigorous proof that brains are indis-
pensable, and that should be comforting to anyone who hopes
that he can solve problems which a moron cannot.

The languages considered in this section illustrate the general
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class introduced by Post. We consider a language with a finite
alphabet ¥ consisting of signs a, , -+ - , @. - By a production we
mean an operation whereby the strings

0110,,,012Q,,;, **° Oin, »
0210,,,0020,, *°° T2y
O
O3 Qs 02y, Tieny
produce the string
2 010,050, "0 0,

Here the ¢'s are given strings in 9, some of them possibly being
null, and the numbers 2, , *** , %,m-1,J1, *** , Jr—1 2Te chosen
from the integers 1, - - - , M, for some M. The rule means that if
@ , +*+ , ey are arbitrary strings, even possibly null, then the
strings in (1) yield the string (2). The strings (1) are called the
data of the production, and (2) is called the product. We make
the restriction that each o which occurs in the product must
occur in at least one datum, and that each datum and the
product contain at least one a. We further assume that the
product is not null, no matter how the «’s are chosen. This
amounts to assuming that at least one of 7, , - - - , o, is not null.

A canonical language is a language L with a finite alphabet, a
finite number of productions, and a finite number of axioms.
Every precise language which has ever been constructed, except
for those containing rules of the type of FQ on p. 142, can be
formulated as a canonical language. Of course, the canonical
forms of such languages as L, and L; are rather complex, but
this is to be expected since these languages are themselves quite
complicated. The point is that by abstracting from the special
features of a particular language and studying canonical lan-
guages in general we can obtain results which apply to all lan-
guages which can be put in canonical form, and this includes
practically all lamguages which are useful in mathematics and
logic. We shall consider only canonical languages from now on.

With this tool at our disposal we can explain simply and
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elegantly many important mathematical and logiecal notions.
One might also expect that many concepts in linguistics which
have resisted all attempts up to now at clear and general formu-
lation may now be treated with the same lucidity and rigor
which has made mathematics a model for other sciences. The
wealth of detail and the manifold irregularities of natural lan-
guages have often obfuscated the simple general principles
underlying linguistic phenomena.

We wish to emphasize that canonical languages seem to be the
most general languages in which the rules of word and sentence
formation and the rules of inference are constructive, i.e. in
which one can determine in a finite number of steps whether a
given chain of strings constitutes a valid proof. Church’s theorem
may be considered as a proof that a certain problem cannot be
solved by constructive methods. If, as some believe, these are
the only methods available to man, then that theorem brings out
a profound limitation to what man can accomplish. As we have
pointed out, this limitation is essentially that he cannot elimi-
nate the necessity of using his intelligence, no matter how
cleverly he tries.

The o’s occurring in the statement of a production will be
called its string variables. A string = will be called an smmediate
consequence of the strings r, , --- , n by a given production P
if strings can be substituted for the string variables in P in such
a way that the data become 7, , +-- , 7 and the product is 7.
A sequence of strings 7, , - - - , 7, is called a proof by Py, -+ -, P,
from the hypotheses H, where H is a class of strings, if each =,
is either in H or an axiom or an immediate consequence of some
preceding 7’s by one of the productions P, , ---, P, . A string 7
is a consequence of H by P, , --- , P, if there is a proof by
P,, ..+, P from the hypotheses H in which r is the last string.
A string 7 is a theorem if it is a consequence of the axioms.

It should be noted that a moron will prove any theorem if he
lives and works long enough, and he can check any proposed
sequence of strings to determine whether it i isa proof, but unless
the decision problem for the language in questlon is solvable, he
will, in general, be unable to discover a proof for a given string,
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even if it is a theorem. That requires intelligence directed toward
a goal; mere patience does not suffice.

The language L' is called an exfension of L if (1) the alphabet
U of L is contained in the alphabet %’ of L/, and (2) each theo-
rem in L is a theorem in L. The simplest case is where ¥ is con-
tained in 9, each production of L is a production of L’, and each
axiom of L is an axiom of L'. In that case L’ will be called a
direct extension of L If L and L’ are extensions of each other,
then they will be said to be equivalent.

The notion of variable can now be explained. A variable over L
is simply a sign in an extension of L which is not in the original
alphabet. This is a generalization of the concept of variable (or
indeterminate) as it is used in modern algebra. The letter z used
in defining the concept “formula in 2" in ITI2 and II14 is em-
ployed as a variable in the present sense

In the languages L, and L, and some similar languages which
we have studied the notion of ‘‘variable” was modified by
means of a technical device in order to have infinitely many
variables at our disposal and still have a finite alphabet. It is not
easy to see how the concept could be redefined generally so as to
take care of such a situation.

An extension L’ of a language L is said to be conservative if a
string 7 in the alphabet of L is a theorem in L’ if and only if it is
a theorem in L. Thus a conservative extension of L is one in
which the class of theorems expressible in the alphabet of L is
left unchanged.

A class € of strings in the alphabet ¥ of the language L is said
to be canonical if there is a conservative extension L’ of L and a
string o such that o is in G if and only if « is a string in % and
oa is a theorem in L'. We may consider a canonical class as one
whose members may be enumerated by a constructive process.
For if we construct a machine which generates the theorems of
L' and prints « on a special tape every time a theorem of the
form “sa” is produced, then the machine will list the members
of € step by step, and each one will appear on the list sooner or
later. In particular, *the class of theorems in a canonical language
is canonical, for we may take « to be the null string and L’ to be
L itself.
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The class of all strings in the alphabet U of L is also canonical
We may adjoin to ¥ two new signs, say “&” and “ZT”. To each
production P in L, with the data =, , --- , m , and product =,
we take as the corresponding production in the extension

Lmry, -+, Sm — L.

We adjoin also the productions

Ta,a — a,«, t=1 - ,mn,

@a, @,3"")@6([)’,
and take as axioms &a,,7 =1, --- ,n,and Lo, ,2=1, --- , m,
wherea, ,7 = 1, ---,n,arethesignsof %,and ¢, ,2 = 1,--- , m,

are the axioms of L. Then we have a conservative extension of L
in which &« is a theorem if and only if « is a string in .

A moron can make a list of the members of a canonical class €
by mechanically applying the productions of L’ and picking out
the theorems beginning with a certain fixed string . He will,
however, be unable to decide, in general, whether a given string
a will appear on his list if he works long enough. A class € for
which this decision problem is solvable by a moron will be called
solvable. More precisely, the class € will be said to be solvable if
there is a conservative extension L’ of L and there are two dis-
tinet strings o, and o, such that for any string « in the alphabet
of L the string ¢, is a theorem in L’ if and only if « isin €, and
opce is a theorem in L' if and only if « is not in €. The decision
problem for a language is solvable constructively if and only if
the class of theorems is solvable.

The following language N is adequate for a part of arithmetic.
The alphabet consists of the signs 1 and =. The only production
is

Nl.a=8—0al = 81,

and the only axiom is NO.“1 = 1”. The decision problem is
solvable. For we may adjoin new letters F (for “false’”) and
S (for “string’) to the alphabet, and the profuctions

N2. a=oa,8=8—Fa= ap,
N3. a=oao,v=7v—> Fay = q,
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N4 @ = a — Fo,

N5, o = a — Se,

N6. Se, S8 — Sag,

N7. Sa — F = ¢,

N8. Sa -» Fa =,

N9. Sa, 83, Sy = Fa =8 = v,

and the axioms
N10. S, and S =.

These productions show that if @ is a string in 1, then ¢ = aisa
theorem and that no other strings are theorerrs. More explicitly:
N2 and N3 show that no equation with more 1’s on one side
than on the other is a theorem; N4 shows that a string of 1’s
alone is no theorem; N7-N9 show that only equations can be
theorems. A string 7 in N is a theorem if and only if it is a theo-
rem in the new language. It is not a theorem in N if and only if
Fr is a theorem in the new language.

We can now explain the process of definition. The simplest
type of definition is that in which a new sign is taken as an ab-
breviation for a given string o in the alphabet of the language.
This amounts to adjoining the new sign, say “‘s”, to the alphabet,
and the productions

Ps(1). asB — aoB
Ps(2). asB — asp

to the list of productions in L. In other words we extend L in
such a way that in every context “s” and o are interchangeable.
This extension is conservative, and to each string in the exten-
sion there corresponds a string in L such that each is a conse-
quence of the other.

More often a new sign is defined in context. That is, certain
strings containing the new sign are taken as abbreviations of
strings in L. For this to constitute a definition in the usual sense
of the word, the extension of L thus constructed must be con-
servative, i.e. no new theorems in the old alphabet are provable.
Also, there must be a condition of translatability, i.e. that at



167

least to every meaningful string in the extension there corre-
sponds a string in L such that each is a consequence of the other.
In order to formulate this condition in a general manner, we
must suppose that certain classes of strings are distinguished as
meaningful.

Thus in the above language N we may define a sentence as a
string of the form @ = B where « and 8 are numerals, and a
numeral is a string of 1’s. Formally, this may be done by adjoin-
ing the letters ! and & and the productions:

N11l. ¢ = a — Na.
Ni12. Nt > a = a.
Ni13. %, NB — Sa = L.

It is convenient to adjoin also the productions

N4 a =8 —8=a
Ni5. a=8,8=v —a=1.
Ni16. a = B,y = 6§ = ay = §4.

We shall use “N”’ from now on to denote the language of NO-
N1s.

We may then define addition by adjoining the signs (,), and
-+, and the production

N17. N, NB — (¢ + B) = af.

The language N’ thus obtained is a conservative extension of N
since N14-N16 are trivially valid in N, for the only equations
which are theorems in N are of the form “a = &”. To every
string v’ in N’ such that &y’ is a theorem there corresponds a
string ¥ in N such that &y is also a theorem (in N’) and each of
v and v’ is a consequence of the other (in N’). This assures the
translatability of every sentence in N’ into an equivalent sen-
tence in N. We do not need to be able to translate such strings
as u+((1) =7,

A more complicated type of definition is definition by recur-
ston, sometimes called definition by induction. Here the new
sign is defined in some simple contexts, and then rules are given
for translating an occurrence of it in a more complicated context
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in terms of one or more occurrences in simpler contexts. Thus we
may define multiplication in N as follows:

Ni18. a = (@ X 1) = a.
N19. Ne, N3 = (@ X B1) = (e X B) + ).

This amounts to adjoining the sign X and the productions N18
and N19. Thus we do not equate (e X B) directly to a string in
which “X” does not occur, but we give productions whereby
any sentence in the new language N’/ may be translated into an
equrvalent sentence in N'.

For example the sentence

“((111 X 11) + 1) = (1111 4 11)”
in N is equivalent to the sentence
“(111111 + 1) = (1111 4 11)”

in N (i.e. each is a consequence of the other), and in fact, both
are equivalent to the false sentence

“1111111 = 1111117
in N.

Still more complicated is the type of definition where several
new signs are defined simultaneously. An example of this is
D3.3.21, where “term’ and ‘‘sentence’ are so defined.

We are thus led to the following definition of “‘aefinition’.
If L’ is an extension of L, and & is a canonical class of strings in
L/, and w is a sign in the alphabet A’ of L’ but not in the alphabet
I of L (i.e. wis a variable in L’ over L), then w is defined in L’
relative to L and & if and only if L’ is a conservative extension
of L, and to every string v’ in the class € and in the alphabet
A U {w}, there corresponds a string v, in L and in the class &,
such that each is a consequence of the other in L’. Thus the sign
w is defined, essentially, if the definition doesn’t change the class
of theorems, and if it can be eliminated from any sentence.

In particular, a function ¢ on the class of positive integers is
recursive if there is an extension N, of N and a sign *“f”’ defined
in N, relative to N and & such that

fl@) = g(e)
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is a theorem for each « such that R is a theorem. We may define
the notion of a recursive function of several variables in a similar

manner.

The above discussion shows how we can analyze rigorously
a number of concepts for the whole family of canonical lan-
guages, where most previous treatments are either vague or
refer to some special language. In the next section we shall de-
rive some non-trivial properties common to all canonical lan-

guages.

EXERCISES

Ex. 1.

Ex. 2.

Ex. 3.

Ex. 4.

Ex. 5.

Ex. 6.

Formulate the postulates for Boolean algebra in Chap-
ter I, section 2, as a canonical language.

Formulate that language using a rule of substitution
as on pp. 40—41.

Adjoin to the alphabet of the language on pp. 40-11
the signs 0 and F, and adjoin the following axioms and
productions:

Allb. &0.

Al12b. FO.

R18b. €4 — (4 D 0) = (~4).

R19b. &4 — (0 D A) = (~0).

R20b. &4 — (4 D (~0)) = (~0)

R21b. G4 — ((~0) D 4) = A.

R22b. FA,A = B - FB.

R23b. VA, &B, FS(0|A|B) — FB.

R24b. VA, &B, F((~0)|A|B) — FB.

Prove that if @4 1s a theorem, then |-4 15 not a theorem
if and only if FA is a theorem. Hence the class of true
sentences, i.e. the strings A such that |-4, is solvable.
Prove that the class of words, i.e. the strings « such
that We is a theorem, in the language on p. 159 1s
solvable.

Prove that the language L (ChapterslII, section 3) is
a conservative extension of L, .

Discuss the analogy between the notion of a variable
as explained above, and that of a transcendental
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extension of a field, and the analogy between the
notion of a definition and that of an algebraic exten-
sion of a field. (For readers acquainted with algebra.)
Ex. 7. Give extensions of N’ in which the following are

defined :
(a). .
(b). «al.
(e). a <B.

d). « =8 (if 8 < a@).
(e). « divides B.
(f). the greatest common divisor of & and 8.
(g). the number of divisors of e.
(h). «a is a prime number.
(i). the o-th prime number.
Ex. 8. Show that the following classes of integers are canon-
ical:
(a). the even integers
(b). the perfect squares
(c¢). the non-squares
(d). the prime numbers

SECTION 3 NORMAL LANGUAGES THEOREMS OF
POST AND GODEL

A very special kind of canonical language is one in which the
productions all have the simple form

(1) o1 — a0, (o, , o2 given strings)

and there is only one axiom. A production of the form (1) is
called normal, and a language, with one axiom, whose produc-
tions are all normal, is called a normal language. Post proved the
remarkable

TreoREM 1. Every canonical language has a conservative normal
extension.

As a result, every canonical class of strings can be generated in
a normal language, and a .class is solvable if and only if it is
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binormal, i.e. both it and its complement can be generated in a
normal language. This makes it possible for us to focus our
attention on normal languages without any loss of generality.

The proof, though completely elementary, is rather long, and
cannot be given here. We shall, however, make free use of this
theorem in our discussions.

We remark, also, that it is sufficient to consider languages
with only two signs. For if “a,”’, --- , “a,” are the signs of a
language L, then we may construct a new language in the signs
a and b, and make the strings aba, abba, - - - , ab- - -ba correspond
to the signs of our original language. This is essentially how we
avoided infinite alphabets. This shows that a canonical class of
strings in 1 can be obtained as the class of all strings in 1
which are theorems in a certain normal language with “1”’ in its
alphabet. For there is a language L, whose alphabet contains
“1”, and a string ¢ in L such that G is the class of all strings o
in 1 such that se is a theorem in L.

We adjoin two new signs, say “0%”’ and “‘d”, to the alphabet
of L. If

MLy o0 , T —>T
is a production in L, then we replace it by
dmd, -+ , dmd — drd.

If « is an axiom of L, then we replace it by drd. This process we
call sealing the language L with the sign d. It is very useful in
constructing extensions of languages, since it hermetically seals
off processes in L from the new processes which we wish to
introduce.

We take the following new productions:

Na — Nla,
dolad, Nla — la,

and the following new axiom: 9%1. Then every theorem in the
new language L’ is either of the form “drd”’, wkere 7 is a theorem
of L, or “Ne’’, where « is a string in 1, or is a member of the
class €, and furthermore, every member of the class € is a theo-
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rem. Thus C is the class of all theorems of L’ which are strings
in 1. By Post’s theorem, there is a conservative normal extension
L' of I’, and consequently C is the class of all theorems of L”
which are strings in 1.

Let “17, “a,”, --- , “a,” be the signs in the alphabet of L.
We introduce a new sign b, and replace “a,” by “bl---1b",
with¢1’s, (z = 1, - - -, n). If we perform this replacement in all
the productions and the one axiom of L”, we obtain a normal
language L'" with the two-sign alphabet {1, b} such that € is
precisely the class of theorems of L which are strings in 1. We
have thus proved

TueoreM 2. § 45 a canonscal class of strings wn 1 of and only if
there is a normal language L with the alphabet {1, b} such that a
string « 2n 1 25 a theorem in L when and only when « 1s in G.

If L is a normal language, and ¢, — a7, (2 = 1, --- , n) are
its productions, and = is its axiom, then the string rades,cr,d - - -
do.ct.d, where “a”, “c”’, and “d” are fixed signs not in the al-
phabet of L, will be called its basts. Thus we have a means of
representing each normal language with a given alphabet 9 by
means of a single string. The string in ¥ preceding ““a’ is the sole
axiom of the corresponding language, a string in ¥ flanked by
“d” and ‘““¢” in that order is the head of the datum of a produc-
tion of the language, and the string between ““c’’ and the next
“d” is the tail of the corresponding product. A basis of a normal
language with the alphabet ¥ will simply be called a basis
over 9.

The class of all bases over a given alphabet ¥ is canonical.

Forlet Abe {b,, ---,b,} and let “A”, “B” “S” “q”, “c” and
“d” be signs not in Y. We take the following productions

Sa — Aq,

Aa, S8 — Sap,

Sa, AB, Sy — Baadfeyd,
Ba, AB, Sy — Bafeyd,

fmd the axi(‘)ms: A,8b,,(=1,---,n). Then A« is a theorem
if and only if « is a string in ¥, Se is a theorem if and only if &
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is a non-null string in ¥, B« is a theorem if and only if « is a
basis over . This language we shall call B, and its alphabet U, .
Let “p” be a sign not in ¥, . By a senience we shall mean a string
of the form “apB”’ where « is a basis over 2 and g is a string in
9. We may think of this sentence as expressing the proposition
that g is a theorem in the language whose basis is a. We shall say
that the sentence is #rue if the corresponding proposition is true,
and false if the corresponding proposition is false.

T3. The class of true sentences is canonical.
Proof. Let “I” be a sign not in ¥, . We adjoin the follow-
ing productions to B, :
BraB — l_ﬂ' aBpm,
BadecrdB, Aa, St, Ay, Fadsecrdfpoy —
FadocrdBpyr.

Then a string « is a true sentence if and only if |-« is a theorem in
the language B, just constructed. The alphabet ¥, of B, consists
of the signs |-, p, and those of ¥, .

The above remarks mecan that given the alphabet ¥, our
happy moron can write down step by step all bases over ¥ and
produce the corresponding true sentences one by one. This is to
be expected, since these acts can be performed purely mechan-
ically. We should expect, however, that there is no mechanical
procedure for deciding whether a given sentence is true or false,
for non-trivial parts of mathematics can be formulated as canon-
ical, and therefore as normal, languages, and it is reasonable to
suppose that non-trivial problems require brains. This hunch
can be stated and proved rigorously:

TerOREM 4. The class of false sentences is not canonical, 1f A
contains at least two signs.

Proof. If the class of false sentences is canonical, then there
is a conservative extension B3 and a string ¢ in the alphabet of
B4 such that « is a false sentence if and only if « is a string in o,
and o« is a theorem in B} . By sealing B; awith a new sign
and by using a device like that of p. 171, we can construct a
language B such that « is a false sentence if and only if o is a
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string in %, and a theorem of B, . Also, we may suppose, without
loss of generality, that “1”” and “b”’ are signs in 2.

The idea 1s to set up a one-to-one correspondence I between
strings in @, b, ¢, d, and 1, and positive integers n, which may be
thought of as a *‘name’ relation, i e. the proposition that « has
the relation B to » (denoted by “aRn”) can be interpreted as
meaning that n is a name of the string «. Let € be the class of
integers n such that 8Rn, where 8 is a basis over ¥ and nisnot a
theorem in the language corresponding to 8. Then Bpn will be a
false sentence whenever gRn and n is in €. But if the class of
false sentences is canonical, then the class € is also canonical.
By theorem 2, there is a normal language L with the alphabet
{1, b} such that € is precisely the class of theorems of L which
are strings in 1. Let B, be the basis of L Consequently Sopn is a
true sentence if and only if # is in €. That is to say, if g(8) de-
notes the integer n such that SRn, then for any basis 8 over
{1, b}, Bopg(B) is a true sentence if and only if Bpg(B) is a false
sentence. In particular, 8,pg(B.) is 2 true sentence if and only if
it is a false sentence, which is a contradiction. It remains only
to carry outl this plan of proof in detail.

Ilet He”’ ul’,’ (‘A 17), HA2!I, (s%)!’ NR?’, K{=’7’ (‘(77’ (l)”’ l(+}?,
“x” and “€” be signs not in ¥ , the alphabet of B; . We con-
struct a new language B, as follows. Its alphabet %, shall consist
of U, together with the above mentioned new signs. We seal B,
with the sign e, as on p. 171, so that « is a theorem in 9B, if and
only if ece is a theorem in B, . We take also the axioms

A1, Aa, Asb, Ay, Aid, A, , (¢=1,--- s n):
A,A, A,B, Asa, Ay, Ayd, Aot Aop, A,S,

and the productions

Aja, A8 — 4,08,
Aza, Azﬁ d Azaﬁ.
Thus 4« is a theorem if and only if & is a string in {1, @, b, ¢, d}
and A,e is a theprem if and only if « is a string in %, .
We take the axiom
1=1
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and the productions N11, N12, N14-N19 of the last section,
which provides us with as much arithmetic as we need for the
present proof.

The relation between a string in {1, a, b, ¢, d} and its length is
characterized by the following axioms and production:

111, all, bl1, l1, di1;
alB, 18, Ao, Ayy, MB, M6 — avIBs.

It is now easy to define the desired name-relation EB. We wish
to use ‘‘1” as the name of itself, and 27, “3”, “4”, and “5”’ as
the names of “a”, “b”, “c”’, and ““d”, respectively, and if « is any
string in {1, a, b, ¢, d}, then its name shall be the integer repre-
sented in the ordinary decimal notation by the string in {1, 2, 3,
4, 5} obtained by replacing in « the signs 1, @, b, ¢, and d by
their names. Thus the name of the string abcldb shall be the
integer 234153, i.e. in unabbreviated form,

(2 X (10)°) 4+ (8 X (10)") 4+ (4 X (10)*) + (1 X (10)*)
+ (5 X (10)) + 3.

This relation may be defined within our language by the axioms
1R1, aR11, bR111, cR1111, dR11111,
and the productions

Aia, AiB, aRy, BRu, BI1 — aBR((» X T) + w),
A,a, aRu, p = v — aRv.

(Here “T”’ is an abbreviation of the string 1111111111, which
denotes the integer 10.)

The above discussion shows that to each string « in
{1, a, b, ¢, d} there corresponds a unique string » in 1 such that
aRv is a theorem, and that to different o’s correspond different
v's.

We are now ready to construct the class € which packs the
wallop in this proof. We adjoin the production

efpve, BRy — Gy.
This completes the definition of the language B .
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Now Gy is a theorem in 9B, if and only if there is a 8 such that
BRy and eBpve are theorems in B, . But ¢Bpre is a theorem if and
only if 3 is a basis over U and » is not a theorem in the language
whose basis is 8. Furthermore SRy is a theorem if and only if 8 is
astring in {1, a, b, ¢, d} and » is its uniquely determined ‘“name?’.
Hence Gy is a theorem in B, if and only if » is the name of a
basis 8 over {1, b} and is not a theorem in the language corre-
sponding to 8.

The class of »'s such that €» is a theorem in 8B, is canonical,
and consequently, by theorem 2, there is a normal language L
with the alphabet {1, b} such that € is precisely the class of
theorems in L which are strings in 1. Let 8, be the basis of L.
Then [Bopv is a theorem in B, if and only if € is a theorem in
B, . Thus if g(B) is the unique » such that SRy is a theorem in
B, , then for any basis g over {1, b} we have that }8,pg(8) is a
theorem in B, if and only if €g¢(B) is a theorem in B, , which is
true if and only if F8pg(B) is not a theorem in B, . In particular
FBopg(Bo) is a theorem in B, if and only if it is not a theorem in
B, , which is a contradiction.

CoroLLARY 4a. If § ¢s any canonical class of false sentences,
then there is a false sentence not contained in K.

We remark that the proof of the theorem shows how to con-
struct explicitly such a false sentence.

CoroLLARY 4b. Let B be any canonical language adequate
for the expression of 8, and for the expression of the notions of
“true’” and ““false” sentence. Suppose that B is consistent in the
sense that no sentence of B, can be proved in B to be both true
and false. Then there is a false sentence whose falsity is not
provable in 8.

This corollary is formulated vaguely, but it would take too
long a digression to state it in more precise terms. It will suffice
to remark that L, , L, , Ly , and L, are adequate in the above
sense, and can bs put in canonical form. (See the appendix.)
It follows that if these languages are consistent, then they are
not categorical, and furthermore, that their decision problems
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are unsolvable by constructive methods. For L, this is an im-
portant theorem of Church, which was originally proved by a
somewhat different method.

Proof. Let f be a function such that for each « in language B
f(e) is a string in B which expresses the proposition that « is a
false sentence of B, . Seal B by a new sign *‘¢”’ and adjoin a new
sign, say “F”, to the alphabet, and the production

ef(a)e — Fa.

Since 9 is adequate for B, and the notions of “true’” and “false”
sentence, then every true sentence in B, is provably true in 8.
Since B is consistent, no true sentence in B, is provably false
in 8. Then Fu is a theorem in the language just constructed if
and only if « is a false sentence in B, whose falsity is provable in
B. Clearly the class of all such o’s is canonical, and therefore
cannot contain all false sentences.

If B contains a notion of negation, then for a false sentence «
such that f(e) is not a theorem in B neither f(a) nor its negation
can be theorems in B. Note that the negation of f(«) is a state-
ment in the language B which we, observing B from the outside,
can prove to be true, but which cannot be proved within B.
Thus any consistent language ¥ satisfying the above conditions
will contain undecidable propositions, and there will be true
propositions expressible but not provable in 5.

Thus the decision problem for the language B, is not solvable
in any canonical language adequate for the statement of that
problem. The problem of inventing a machine for solving the
decision problem of 8B, is absolutely unsolvable. The language B,
is a specific one with an alphabet of » + 8 signs, 6 productions,
and n - 1 axioms, where n is the number of signs in . For the
sake of definiteness we set down the primitive frame of B, for
the special case n = 2.

Alphabet: 1, a, b, ¢, d, 4, B, S, |, p.
Axioms: 4, 81, Sb.
Productions: Sa — Aa.

Aa, 88 — SaB.
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Sa, AB, Sy — BaadBeyd.

Ba, AB, Sy — BaBecyd.

BaaB — faafpa.

Av, Ao, S7, BadocrdB, FadectdBpoy —
FadoerdBpyr.

We can “arithmetize’”’ B, by taking as the alphabet the digits
1,2,3, --+,9,0, corresponding in order to the above signs, and
making this replacement throughout the primitive frame of 8, ,
thus:

Alphabet: 1, 2,3,4,5,6,7,8,9,0.
Axioms: 6, 81, 83.
Productions: 8a — 6e.
6c, 838 — 8ap.
8a, 68, 8y — 7a2584v5.
Ta, 68, 8y — TaB4y5.
7028 — 9a260a.
Gy, 60, 87, Tabo4 758, 9abadr5800y —
9aba4 7560y T.

The productions represent simple arithmetic operations, which
could be defined in elementary arithmetic. For example, the
first production corresponds to the function f defined by

n — (2 X 10", if there is a k such that 8 X 10* <
f(n) = n <9 X 10%
6 otherwise.

Similarly, to each of the other productions there corresponds a
certain elementary arithmetic operation which, if the integers
operated upon have certain forms, yields a certain result, and
otherwise yields the number 6. Then the decision problem of B,
becomes the problem of determining for any given integer n
whether it can be obtained from the integers 6, 81, and 83 by a
finite number of applications of six elementary arithmetic opera-
tions. The problem can also be transformed into one of the fol-
lowing type: for a certain elementary arithmetic function f,
to determine for which integers n the equation f(z) = 7 has an



179

integral solution. (See Skolem [XT]26. Thus any canonical lan-
guage which is consistent and adequate for arithmetic will
contain undecidable sentences expressing elementary arithmetic
propositions. There will even be such sentences which we can
prove to be true by an argument in the syntax language.

If we like, we may take an alphabet of two signs {1, b} and
replace the signs of the above alphabet by bl1b, b11b, --- ,
b1111111111b, respectively. We thus obtain a very simple lan-
guage in two signs whose decision problem is unsolvable by any
machine.

The proof of theorem 4 has a very simple meaning. We may
think of a basis as a statement, namely the joint statement of
all the theorems in the corresponding language, and the integer
u, such that SRu is a theorem, as a name of that statement. The
sentence Bpr may be interpreted as an expression of the propo-
sition that the statement B asserts that the statement whose
name is » is true. The class € is the class of names of statements
which do not assert their own truth. If the class of false state-
ments were canonical, then there would be a statement B,
asserting the truth of all statements and only those statements
which do not assert their own truth. The contradiction is simply
that if 8, asserts its own truth, then its name isnot in €, so that
Bo does not assert its own truth; and if 3, does not assert its own
truth, then its name is in €, so that 8, does assert its own truth.
Thus B, is exactly the kind of statement which is made in the
Epimenides paradox. The theorem says that a canonical lan-
guage which gave an exhaustive definition of falsity and which
had machinery for expressing names would give rise to this
paradox.

These results, anticipated by Post and Finsler, and published
with rigorous proofs for the first time by Gédel, show that no
consistent canonical language can be adequate for the expression
of mathematics and at the same time be capable of proving all
true propositions in elementary number theory.

The undecidable proposition which was congtructed by Godel
is one whose intuitive meaning is that B is consistent. Thus
Godel’s proof shows that no consistent canonical language can
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be adequate for arithmetic and also adequate for the proof of
its own consistency. This holds, in particular, for such languages
as L, , Lz ,and L. .

Ths situation has given rise to a great deal of pessimism, since
it seems to indicate that the consistency of arithmetic cannot be
proved by constructive methods One might hope, however, to
build a language which is not constructively given as a whole,
but such that there is a constructive method for determining
whether a given chain of sentences is a proof. For a consistency
proof all that would be needed would be to show that any con-
structively given part of the language is consistent. The methods
used in this proof would be inexpressible in this part, but would
be expressible in a certain larger pars of the language. Whether
such a program could be realized is a question for the future.
As the matter stands today we must close this book sitting
squarely and painfully on the horns of the dilemma: the only
known adequate languages are incomplete and not provably
consistent by the modes of reasoning which they express, and
the only safe (i.e. provably consistent) ones are inadequate.

EXERCISES

Ex. 1. Show that if C, and C, are canonical classes of strings
in 1, then so are C; \J Cy and C; N C, .

Ex. 2. Show that the solvable classes of strings in 1 form a
Boolean algebra.

Ex. 3. (a). Show that if f is a recursive function of one
variable and if f(n;) < f(n,) whenever n, < n,,
then the set of values taken on by f is solvable.

(b). If f is any recursive function, then its range is
canonical.

Ex. 4. (a). Prove that the class U of bases of normal lan-
guages in a given alphabet {1, b, , --- , b,} in
which ““1” is a theorem is canonical.

(b). If ar is the basis of a normal language L in the
alphabet {1, b, , --- , b,} and a, is a string in 1,
a # 1, let “2” be a sign not in the given alpha-
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bet. In each of the productions and axioms of L
replace “1” by “21” and “b,” by “2b,”, ¢ = 1,
-, n. Adjoin the following productions, where

k is the length of a :

2121 --- 20 = a2 (kK 2’s in datum),

120 — al.
Prove that “1” is a theorem in this new language
if and only if a, is a theorem in L.
Prove that the class of normal languages in
{1,a,, -+, a} in which “1” is not a theorem is
not canonical.



APPENDIX 1| CANONICAL FORMS OF

L,, L}, anD L,
L,
A]pha‘bEt: o) 17 a’f’ (’ )! D’ N’ I’ F’ ‘gl @’ =7 !7 }_’ #’ 0! ﬂ’
Z, U.

Axioms: Al. Zo.

A2. Ul.

A3. 0 = o.

Ad. 1 = 1.

A5, a = a.

A6. f = 1.

A7. (= (.

A8. ) = ).

A9. D =D

Al0. ~ = ~
Productions: Pl. Za — Zao.

P2. Uax — Ual.

P3. Za — Iaa.

Pi. Uq, Z8 — Fafap.

P5. Flfa, IB — Sfap.

P6. Ua, FalfB, Iy — FafBy.

P7. Ga — S~a.

P8. ©a, 8 — S(a D B).

P9. &, I8 — &(B)a.
P10. Fe, Ha D 8) — 8.
P11. }a, I8 — F(B)a.
P12. @, &8, Sy = (@D B D )

D{aDB) D (@Dy)).

P13 @a, &8 —}(a D (8 D a)).
P14. Ga, B8 = H(~a D ~B) D (8D a)).
Fl5,a=8—-8=a.

Pl6. a=8,8=7v—a=n1.

182



Interpretation:

P17.
Pi8.
P19.
P20.
P21.
P22.
P23.
P24,
P25.
P26.
p27.
Pas.
P29.
P30.
P31.
P32.
P33.
P34.
P35.
P36.
P37.
P3s8.
P39g.

P40.
P41,

P42,

P43.
P44,

P45.
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a=f8v=06—ay = 4

a® B -+8% a

a=pB#v—a#-y.

a =8 v# §— ay # 36

a B,y =0 ay = 30

Za — a # aa.

Ia — ala.

ITa, I3, a % 3 — affs.

Ua, Z8, Iv — v8/fap.

la, Ffy — o fve.

Lo, IB, Fv[6, afifd, a 5% 8 — aff 3.

Lo, IB, Fyf85, a0f5 — a0f 8.

Ia, &8, a08 — a0 ~p.

Lo, &8, afif — ol ~8.

Ia, &8, &y, a8 — a0(B D 7).

Ia, @8, &y, aly — a0(3 D 7).

Ia, &8, ©v, a3, affy — of(B D 7).

Ia, B8 — off()B.

Ia, I8, &y, a0y, a # B — a0(8).

Ia, I8, &y, oy — of(B)~.

IO(, Iﬁ: ﬁﬂ‘Y - 5(043(7) = 7.

Ia, Ig — S8(c|f|B) = .

Iay I:B: I'Y: Fﬁfg' - S(alﬁlff’Y) =
S(alBl/£)8(«lBlv)-

Ia, I, @y — 8(a|B|~v) = ~S(alBly).

Ia, IB, ©&v, &5 — S(alBl(y D §)) =
(S(alBly) D S(a|8]8)).

Ta, IB, Iy, &%, a 7 v, 8 # v —
S(alB(v)8) = (7)S(«|6]8).

a =B a—|p.

Ia, &8, Sy, B — F()(B D7) D
B D (a)7)-

I, I, @y — H(B)y D S(alBlr))-

. . « &
“Ja’ means ‘“‘« is an individual”.
“FafB” means “f8 is a function of degree o’.
“Sa’’ means “a is a sentence’’.
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“S(a|Bly)” means “the result of substituting o
for g in 7.”
“a0B”’ means “a occurs free in 8.
“aff3”’ means “a does not occur free in g’
“Za" means “o 18 a string in o”.
“Ua” means “« is a string in 17,

L;
a9

Alphﬂ‘bet': (; ); s, 3, ~, 2, @ b: v, V) @7 T: A: V; =,0,
#, ﬂ, S: ly =, 3, /\,’_'

Axioms: Al. Aa.
A2.
A3.
A4,
A5.
A6.
A7.
AS.
A9.

A10.
All.

b.

Uumy—
[ IR
U,wm’

iy

e o' o
wq
S o

Productions: Pl. Ao — Aaa.
P2. Ba — Bab.
P3. 4o, Bg — Vpvga.
P4. Vo — Towg.
P5. TawB, Tabvy, Ba — S8 € vy).
P6. @a, VBvy, B6 — Ty D «.
P7. €u - S ~a.
P8. ©a, 8 — S(a D B).
P9. Ga, VBvy, B8 — S(vy)a.
P10. Asin L, .
P11. |-a; I’B’“'Y; Bﬂ - Hv‘Y)Ot
P'12—P21. Asin L, .
P22. Aa — a 5 qa.
P23. Ba — b = ba.
P24. Ae, AB, By, Bs, a 5% 8 — ay # Bé.



P25.
P26.

P27
P28

P29.
P30.
P31.
P32.
P33.
P34.
P35.
P36.
P37.
P38.
P39.
P40.
P41.
P42.
P43.
P44.
P45.
P46.

P47.
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Aa, AB, By, Bs, v % § — ay = B34.

Ba, BB, Vavy, T80 D ¢ — vy = v6 D ¢{.

Ba, VavB — v80v8.

Bea, BB, Vavy, 106, vy % v6 — vyfvd

Ba, Bs, Tarp, Tabery, Vévg, vi0vB —
v{0@B € vy).

Ba, B8, Tavp, Tabvy, Véve, »iOry —
v50(w3 € vy).

Ba, Bé, TawgB, Tabvy, Vére, vides,
vioy — viPB € vy)

Sa, Vpvy, BB, vy0a — vy0 ~e.

Sa, VBvy, BB, vyfa — vyd ~a.

Sa, BB, Vyvs, By, v60a — v80(x D B).

Sa, &6, Vyvs, By, 0608 — vé0(a D B8)

Sa, &8, Vyvé, By, viba, vifs —
vof(a D B).

Sa, VBvy, B8 — vy8(vy)a.

Sa, VBvy, BB — vyfvry D .

Sa, VBvy, Vovr, BB, Bs, vy # v{, vy0a —
vy0(vf)a.

Sa, Vpvy, Vévg, BB, Bs, vy # vf, vyfa —
vyB(v$) e

Sa, VBvvy, Vivg, BB, Bs, vy # v¢, vy0a —
ryO0v¢ 3 a.

Sa, VBvy, Vovt, BB, Bs, vy # vt, vyfa —
vyfi D o

TawB, Vyvd, Ba, By, véf; —
SBlvsls) = ¢.

TowB, Vyvé, Ba, By — S(xBlvé|vs) = vB.

TowB, Tyvs, Tvybvy, Vywé, Ba, By, By —
S@Bvo|(vs € vf)) = (SEBlelvs) €
SBlv6lvr)).

T8, Vyvs, S¢, Ba, By — SwBlvs| ~t) =
~8(vBlv3l0)).

TowB, Vyvs, &, ©n, Bex, By —
S@les|(s D =) = Sw@BslE) D
S(vBlvs|n)).
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Interpretation:

P48. TawB, Vyvs, ©¢, Vb, Ba, By, Bn, vé #
v8, 08 = v0 — S@BS|(v8)¢) =
(@8)S(®Bl3|¢).

P49. Data of P48 — S@BJvéjvs D ) =
v8 D S@BJwsl¢).

P50. @ = B, Fa — 8.

P51. VB, Ba, &y, &3, 8y —

H@B)(y D 8) D (v D (@8)d)).

P52. VawB, Tovy, ©4, Ba —

H(@B8)8 D S(vv}vB|8)).

P53. Ga, ©8 — S(a A B).

P54. Ga, €8 — F((a A B) D ~(a D ~p)).

P55. Ga, &8 — F(~(a D ~B) D (a A B)).

P56. Sea, &8 — S(a = B).

P57. ©a, B8 =@ =8) D (e DB) A
B D a))).

P58. ©a, €8 — H((@ D B) A (8D @) D
(a = B)).

P59. Ga, VBvy, B8 — &( Jvy)ea.

P60. Sa, VBvy, B8 = F{( Ivy)a = ~(vy) ~a).

P61. Vawi, Vabvg, Vabuy, Vabbvg, Ba —
F@) (s € v8) = (¢ € v1)) D
(vt € v6) D (vm € v9))).

P62. ©a, VBvy, VBbuE, BB, vifa —

F( 328 (om)((om € v8) = a).

P63. ©a, BB, VBvE, VBvy, VBbug, vifa —
Fn € 98 2 o) = (F5)((on € v8) A
&) ((v& € v¢) = a))).

P64. &a, BB, VBvE, VBbot, VEbbuy, vifa —
H@E D a€ o) = (Fu0)(@F € 1) A
&) ((v& € vn) = a))).

“Aa’” means “a is a string in o”’.

“Ba’’ means “a is a string in b”,

“VauB’ means “vB is a variable of type o’.

“TopB” means “vB is a term of type «, if  is a
string in b”.

The other signs are interpreted as before.
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Alphabet:

Axioms:

Productions:

Pi.

P2

P3.
P4.
P5.
P6-P7. P7-P8 of Lj .
P8. &a, VB — &(B)a.
P9. P10 of L; .
P10. }a, VB — F(B)a.
P11-P21. P12-P22 of Lj .
P22.
P23.
P24.
P2s.
P26.
P27.
P28.
P29.
P30.
P31.
P32.

P33.
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7a’u’}—7 V)@Y T’ A) =’OD ¢!

—M
[l

bl
>V

\//\m
R

U wm
l|||lii|.
SUum

S o

((vaaa)((vaaa € va) = (vaca € vaa)) O
((vaaaaa € va) D ((va € vaaca) D
(vaa € vaaaa)))).

Ao — Aaa.

Ao — Vya.

Va — Ta.

Te, T8 — S(a € B).
Sea, VB — T8 D a.

T e

Vo, TB Dy a8 7.

Va — ala.

Va, VB, a # B — afip.

Ta, T8, Vv, ¥0a — v0(a € B).

TCL/, Tﬂ’ V'Y) 708 — '70(‘-'! € B).

TOl, TB: V77 ')’ﬁa: 'Ygﬂ - 'Yg(a & B).
Sa, VB, B0 — B0 ~a.

Ga, VB, fla — BP ~a.

Sa, B8, Vv, v0a — v0ba D B).
Sa, &8, Vv, 08 — v0(a D B).
Sa, &8, Vv, vha, ¥88 — vh(e D B).
Sa, VB — BO(B)er.
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P34. &a, VB, Vv, B0, B 5% v — BO(Y)ex.

P35. ©a, VB, Vv, fa, B # v — BI(v)a.

P36. ©a, VB — B8 D a.

P37. Data of P34 — B0y D e

P38. Data of P35 — By D a.

P39. Ta, VB, By — S(ally) = 7.

P40. Te, VB — 8(al8]8) = .

P4l. Ta, VB, Ty, Té — S(a|B|(y € 9)) =
(S(alBly) € S(alB|9))-

P42. Ta, VB, Sy — S(alfl~v) = ~8(«lBl7)-

P43. Ta, VB, &y, &5 — S(alf|(v D 9)) =
(S(alBly) D S(alBl8))-

P44. To, VB, Vv, B8, a #Z v, B # v —
S(a8|(v)8) = (v)S(«lBld).

P45. Ta, VB, Vv, S8, a = v, B # v —
S(alfly D 8 = v D 8(|8]5)-

P46. « = B, fa — | 8.

P47. Ga, &8, Vv, va — H(¥)(@ D B D
(@D (7M)B)-

P48. Ta, VB, &y — H(B)v D S(elBlr))-

P49-P54. P53-P58 of Lj .

P55. ©a, VB — &( I8)e.

P56. ©a, V8 — H( IB)a = ~(B) ~a).

P57. ©a, VB, Vy, V6,8 %= v, 8 % 8, v % 6,
Ba — H(IBM((y € B) =
(v € &) A ).

P58. Ga, VB, Vv, V3, 0o, v % 6, 8 %= § —
Hiy €82 a) = (30)((ly € 8) A
B)((B € 8) = a)))-

P59. @a) Vﬁ, V’Y: VB’ 5”“; v # 6B 8§ —
HBDa€y) = (305 €v) A
BB € ) = ).

Interpretation: “Ve'’ means “a is a variable”.

“Ta” means “o is a term”.
The rest as before.

In order to put L, into canonical form it would be simplest to
use Hailperin’s formulation [IX]1.
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APPENDIX 2 ALGEBRAIC APPROACH TO LANGUAGE.
CHURCH’S THEOREM

Just as the notion of a logic of classes or propositions (and
presumably of logic, in general) can be framed as a deductive
science, so can the concept of language be profitably studied
from that point of view. If we consider strings, including the
null string, in a given alphabet, and their behavior with respect
to the operation of concatenatzon (the formation of o from « and
B), then we are led to the study of a special type of algebra. We
shall now formulate this notion as a deductive science.

Undefined terms. A class C, a binary operation, denoted by
juxtaposition or a dot, and a binary relation =.

Postulates.

Pil. Ifaisin C, then a = a.
P2. If ¢ = b, then b = a.
P3. Ifa=>bandb = ¢, thena = c.
P4. Ifa = bandc = dand a, b, ¢, d are in C, then ac = bd.
P5. If a and b arc in C, then ab is a uniquely determined
element of C.
P6. If a, b, and ¢ are in C, then (ab)c = a(bec).
P7. If a, b, and ¢ are in C, and ab = ac, then b = c.
P8. If a, b, and c are in C, and ba = ca, then b = c.
P9. If a, b, c and d are in C, and ab = cd, then either there
is an z in C such that ax = ¢ dr such that cz = a.
D1. A undt is an element z of C such that zz = =z.
D2. A prime is an element p of ' which is not a unit, and
such that if zy = p, then either z or y is a unit.
P10. There is a unit in C.
P11. If aisin C and is not a unit then there are primes p and
¢ and elements = and y in C such that a = pr = yg.

We shall call a triple (C, ., =) satisfying these postulates a
script. A language is a script together with certain relations
which define a syntaz. The alphabet is simply the class of primes,
which play the role of the primitive signs. In order to charac-
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terize the usual types of language it is convenient to introduce
some other algebraic notions.

D3. ais a part of b (in symbols “a € b”) if there are elements
z and y in C such that zay = b. We say that a is a
proper part of b (in symbols “@ C b”) if ¢ C b and
a #= b.

D4. The descending chain condition is said to hold in C if there
is no infinite sequence {a,} of elements of C such that
8,41 C a, for all n.

It is easy to show that the descending chain condition holds if
and only if each element of C has a factorization into a “prod-
uct” of a finite number of primes. Such a factorization, if
possible, is unique, both as to the prime factors and their order.
Thus in a script with descending chain condition, every element
can be spelled uniquely in terms of the alphabet. For our present
purposes, however, it is unnecessary to assume this condition.

We can formulate the notion of a script within L, . Let “M”’
denote the string “f1110”, “C” denote the string “f10”, and
“E"” denote the string “f110”, so that C, E, and M are functions
of degree 1, 11, and 111, respectively. We may interpret “Cz’’ as
meaning that z is in C, “Ezy”’ as meaning that + = y, and
“Mzyz” as meaning that z = zy. The postulates are now ex-
pressed in L, as follows: (We supplement the language L, by the
usual definitions of “A”, “V”, “=", and “ 3" and adopt the
use of dots for brackets, and denote the strings ““a0”, “a00”, - - -
by ualn’ “02”, e )

Pl1. (a))(Cay D Em,a,).

P2. (a))(a,)(Fa,a, O Eama,).

P3. (a.)(a.)(as)(Ea,a, A Ea,a; D Ea,ay).

P4, (a:)(az)(as)(as)(as)(as)(Cay A Ca, A Cas A Cay A
Eaa, A\ Easa, N\ Maazas A Maya,.05 D Easas).

P5a. (a1)(az)(as)(Ca, A Cay A Mayasa; D Cas).

P5b. (a.)(a:)(Fas)(Cay, A Ca, D Ma,asas).

Pse. (a1)(a2)(as)(as)(Ca, A Ca, A Ma,asas A Maaya, D
Eaya,).
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Pé. (al)(az)(a:s)(04)(05)@5)(0&1 A Ca, A Ca; A Ma,a.aq A
Masasas A Maya,0s D Ma,aqas).

P7. (a)(@.)(as)(as)(Ca; A Ca, A Caz; A Ma,asa, A
Ma,asa, D Ea.as).

P8. (a,)(a.)(as)(as)(Ca; A Cay, A Cas A Masa,as A
Maza,a, D Ea,a;).

P9. (@) (as)(as)(as)(as)( Jas)(Cay, A Cas A Cas A Cay A
Ma,a.05 A\ Masa,as D . Cag A Ma,asa; V Hazaa,).

We use “U” to denote the string “f1000” and “P” to denote
the string “f10000”.

D1. (a))(Ua, = Ma,a,a,).

D2. (a))(Pa, .=. Ca; A ~Ua;, A .(a,)(a:)(Ma,a:a, A
Ca, A Cas D Ua, V Uay)).

P10. (Ja)(Ua, A Cay).

P11. (a))( @) (Fas)(Jas)(Fas)(Cay A ~Ua;, D Pa, A
Pa, A Ca; A Cas N Ma,aa, A Masaa,).

Let “p”’ denote the sentence “P1 A P2 A --- A P9 ADLA
D2 A P10 A P11”. We shall now adjoin some further compo-
pents in order to express the language B, (p. 177). Let “A,”,
“A,7, ---, YAy, and “T” denote the strings “f10000”,
“£100000”, - -+, “f1000 - -- 0”, where the last has 14 0’s.

“Aox” shall mean “zis “1” 7,
“A,x"” shall mean “zis “a’” ”,

“4 42"’ shall mean “zis “S” 7,
“Tg” shall mean “z is a theorem”.
Bla. (a,)(4.a, D Pay). (=0,---,9).
Blb. (a))(a)(d.a; A A,a: D Eayaz). (2 =10,---,9).
Ble. (a)(Pa; D Aoty V Asa, V -+ V Agay).
Bld. (a)(a)(d.a; A 4,0, D ~Ea,a,).
(@3 =0,-,9;% ).
B2. (a)(4sa: O Tay). ®
B3. (a1)(a:)(as)(Asar A Aoaz A Ma,a,0, D Tas).
B4, (a1)(a2)(a:)(Aeay A Asa; A Ma 0,0, O Tas).
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B5.  (a))(a.)(as) (as)(as) (as)(a:)(as) (A5t A Cas A Ma,aza5 A
Tas A Aqas A Cas A Masas0s A Tas A Ma.a.a; A
Maqasas D Tas).

B6. (a))(@.)(as)(as)(as)(dea; A Cay A Mawaas N Tas A
Asa0 A Maga,as O Tas).

B7. (a)) -+ (a0)(Aea; A Cay A Mawasas A Taz N\ 4sas A
Cas A Masasas A Tas A Carz A Ma,a,a5 A Tas A
Asas A Magasa0 A A1 A Ma061,0:2 A Asays A
Ma 0120, A Magasas N Asaig A Mas06a; A
Maya:a,5 A Maysais0: O Taso).

Here Bla~B1d express that the signs 1, - - - , S form the alpha-
bet of the seript C. B2-B4 express the axioms of B, . B5-B7
express the first three productions of B, . In a similar manner we
can write down three more sentences, B8, B9, B10, expressing
the last three productions of 8B, . Let “¢”’ denote the sentence
Bla A Blb A --- A BI10. The equation z = a,, -+ a,, , where
for each j, a,, is in the alphabet of B, , can be expressed in I,
thus:

( E| al)( Haz) ot ( 3 a2k—2)(Ana1 VANRESIVAN Alka’k A MalaZah+l
A Mak+1a3(11.+2 A A llfaz,,_zakz),

which we shall denote by “J,z”, where « is the corresponding
string in B, . Then the proposition that the string « is a theorem
in B, is expressed by the sentence

P A Q.0 (1) al1 D Tagey),
which we can denote by “&(e)”. Then
FS(a)

is provable in L, if and only if « is a theorem in 9B, . Since the
class of non-theorems in %, is not canonical, it is impossible to
give a mechanical procedure for deciding which of the sentences
&(e) is provable én L, . This proves Church’s theorem that the
decision problem for L, is unsolvable by any mechanical pro-
cedure.
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By the procedure of Kalmar and Suranyi [IV]1, to each sen-
tence &(a) we can construct a sentence of the form

1) (Fa)(@:)(Jas)(as) - - (a)Si(a),

where &,(a) is a Boolean function of sentences of the form
“f110a,a,”, and such that |F&S(«) is a theorem of L, if and only if
the corresponding sentence of the form (1) is provable in L, .
Thus the decision problem of L, , even for sentences of the com-
paratively simple form (1), is unsolvable by any mechanical
procedure.



BIBLIOGRAPHICAL AND OTHER REMARKS

I1. The first to attempt to formulate logic as a deductive science
with a precisely constructed object language was made by
Leibniz [1]. His work, though not very successful, was an im-
portant stimulus to others. The first systematic and compara-
tively successful treatment of logic from this point of view is
Boole [19]1. Boole used + (p. 3) as a basic operation, but
assigned a meaning to « + B only if « M 8 = 0. For treatments
of Boolean algebra with 4+ as basic see Stone [499]3, Bernstein
[1168, Newman [VII]123.

The identity fla \J 8) \J fla N B) = f(a) U f(B) holds in
general Post algebras. (See p. 52). The general proof is similar.
This answers a question of MacLane [VII]124.

I2. The postulates used here are due to Byrne [XI]85. Others
have been given by Huntington [122]1, 3, Sheffer [196]2, Bern-
stein [239]1, 2, 24, Whiteman [II]91, Hoberman and McKinsey
[II]172. The last authors use T'1.1.41 as the sole ‘“formal” law.
See, however, Church’s review [II]172. Church’s criticisms can
be met, at the expense of some extra primitives and postulates,
by means of a very simple device.

The notion of a deductive science was first brought to the
attention of a large public by Hilbert in his work on the Founda-
tions of Geometry. (English translation, 1902, Open Court Pub-
lishing Co., IlL.). The germ of the idea, as applied to particular
sciences goes back at least as far as algebraists like Peacock,
Galois, and Hamilton, and geometers like Gergonne, and was
further developed in particular applications by many mathe-
maticians such as Pasch, B. O. Pierce, Peano, and Dedekind
An excellent discugsion, with emphasis on the corresponding
object languages, will be found in Curry [VI]100.

A great deal of nonsense has been written even by otherwise
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competent authors, on the relation between Boolean algebra and
the Aristotelian logic of classes. The fact is that the latter is con-
sistent and can be formulated as a perfectly good deductive
science; see e.g. Curry [I]114. Many writers interpret Aristotle’s
“all o’s are §’s” by “a C B’ and his “some o’s are §’s” by
“a M B % 07 for arbitrary elements in a Boolean algebra, and
then find that some of Aristotle’s valid moods do not hold. This,
they say, shows that his logic is fallacious. There is, however,
no reason why this particular interpretation must be accepted as
the only one; rather, the consistency of Aristotle’s system and
the failure of this interpretation show that this one cannot be
accepted. An acceptable Boolean interpretation has been given
by Smith [259]8, 24. (See also Miller [IV]121.) A simplification
of his interpretation would be to consider the class C; of all
elements of C except 0 and 1, and to interpret Aristotle’s
“categorical forms” as above. The whole of Aristotle’s dogic of
classes holds for the elements of C; . It would be easy to set up
a deductive science adequate for the theory of classes on the
Aristotelian basis. (The logic of Aristotle is, in itself, not quite
adequate for the treatment of such operations as M.) The ad-
vantage of Boolean algebra is its simplicity and just its alge-
braic form. It is interesting to contrast the theory of Quine
[1]45 (no null class), that of Zermelo (L, in III8) (no universal
class), and that of Aristotle (neither null class nor universal
class). In the von Neumann-Bernays version of Zermelo’s system
(von Neumann [299]2, 5, Bernays [I]65, Godel [VI]112) there
is, indeed, a universal class, but there is a distinction between
classes and sets, and the universal class is not a set. (See Quine

[V]163, p. 165.)

13. An account of finite Boolean algebras, with references, is
given by Bernstein [239]25. The structure and representation of
Boolean algebras was first investigated by Stone [I]118 and
Tarski [285]18, [I]71, independently and from quite different,
but equivalent, points of view. In this section Stone’s approach
dominates, while in II3 we give an account®of some of Tarski’s
ideas. Many of the results of this section have been generalized

by Birkhoff and others to lattices.
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Theorem 7 was first proved by Stone [I]118. The proof here
is adapted from Frink [VII]|39.

We should like to call attention to the very interesting prob-
lems which arise when one attempts to set up the logic of
relations as a deductive science. See Tarski [VI]73, McKinsey
[V]85, Everett and Ulam [XI]85. There is also some recent
unpublished work of Lyndon.

I11. The observation that the logic of classes and the logic of
propositions are different models of the same deductive science
is due to Boole.

The first systematic treatment of the logic of propositions
by means of truth tables (i.e. tables for the determinations of
the truth values of Boolean funetions of propositions) was given
by Post [280]1. This method was anticipated by Schroder [42]10,
among others.

The distinction between the syntax and the object languages
mentioned on p. 31 is sometimes overlooked, even by competent
authors. This has led, now and then, to flagrant errors. (See

p- 50).
I12. The postulate set A1”7—A7" is Lukasiewicz’ modification
of Frege’s set (see Church [X]19).

There is a widespread superstition that formulations of the
logic of propositions must be of the type A1"—A7”, that systems
of the type A1’-A10’ are appropriate, say, for algebras and
other deductive sciences, but that the logic of propositions is
unique in that such systems are inappropriate for it. The
mystical virtues of using an undefined class (or “predicate’”) T
rather than an undefined relation E have been dogmatically
asserted without any cogent explanation. The rite of writing
“L” before a sentence instead of ““is in I’ after a sentence
has also been attended with almost religious awe.

Assumptions of the type of A2” and A3’ are called rules of
closure. Often a distinction is made between assumptions of the
type of A4""-A6" (called “formal laws”) and those of the type
of A7"” (called rules of inference). The distinction 1s rather
tenuous. In an exact analysis of the object language, as on
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p. 158-159, no obvious general difference appears, unless one
regards it as a serious logical matter that the premises of one
rule state that certain elements belong to the class C and the
premises of another state that certain elements belong to the
class . Sometimes the situation is disguised by putting assump-
tions of the type of A2 and A3’ in the form of preliminary
remarks and then omitting an explicit statement of the premises
in A4”-A6”. Then these rules are called “axiom schemes”, with
the convention that the letters “p”, “¢”, and “r’’ may be re-
placed by names of arbitrary elements of C. The procedure may
again be given mystical connotations by the ceremony of using
German letters as names of names of arbitrary elements of C.

The use of dots as brackets was introduced by Peano [71]1, 21.
The simplification used here is due to Curry [II]26. See also
Turing [VII]146.

The set Ala—A3a, Rla, R2a, is taken from Church [X]19.

The set Alb—A10b, R1b-R17D, is a canonical form of Ala-
A2a, Rla, R2a, in the sense of Post [VIII]50. See also IV2. In
such a formulation the role of intuition is reduced to the pre-
liminary instructions and the act of recognizing specific strings
as being in the forms of the data in a given rule.

A different method of incorporating the operation of substitu-
tion in a more general object language has been given by
Chwistek and Hetper [ITI]1. In [III]120, the reviewer confuses
the interpretation of substitution in the syntax language with
its meaning as determined by the formal properties within the
object language. This error is also committed in [II]170.

II3. The methods of this section and most of the material
come from Tarski [285]18, [I]71, supplemented by the ideas of
Stone. Concepts of consistency and categoricity essentially
equivalent to those discussed here were already introduced by
Post [280]1. Related concepts may be found in Carnap [IV]82,
[VIII]36, [VIII]81.

A number of notions used by Wittgenstein [281]1, 2 and
Carnap are very neatly explained by the algebraic approach.
For example, the concept of a state-description arises naturally
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from the device used by Tarski [285]17 and Stone [I1I]47 for the
construction of atoms in a complete distributive Boolean
algebra.

The notion of truth value may be regarded as a special
case of that of probability, which is, in turn, essentially equiv-
alent to that of measure. (See Kolmogoroff, Grundbegriffe der
Wahrschemnlichkeitsrechnung, Berlin, 1933, Cramér, Methods of
Mathematical Statistics, Princeton, 1946, Reichenbach [439]4,
Koopman [V]153, [VI]34, [VI]163, Kleene and Evans [IV]120.)
In most of the precise treatments of probability the concept is
defined on an algebra of classes. Since propositions also form
a Boolean algebra, it should be easy and desirable to treat
directly the notion of the probability of a proposition.

II4. The fundamental papers on many valued logics are Post
[280]1, f.ukasiewicz [186]4, Lukasiewicz and Tarski [407]1
Further discussion of Post algebras may be found in Webb
[582]1, [1]42, [111]52, and Wade [X]108. A set of postulates and a
development as a deductive science occurs in [VII]124. A method
for carrying this out is also indicated by Post, op. cit.

Rosser and Turquette [X]61 have presented as deductive
sciences many valued logics which are not necessarily func-
tionally complete. Other treatments are given by Wajsberg
[437]1, Slupecki [II]46, [XT]92, [X1]128, Bochvar [IV]98, [V]119,
[XT]129, and Frink [I1I]117. For a treatment of quantification
in many valued logic see Rosser and Turquette [XIII]117.

In connection with the “paradoxes” of material implication,
Russell was once challenged to deduce that 2 = 1 from the
proposition that Russell is the Pope. His proof was “If I am
the Pope, then the Pope and I are one. Since I am not the Pope,
then the Pope and I are two. Hence 2 = 1.”

More detailed discussion of material implication and dedueci-
bility will be found in Lewis [215]9, Lewis and Langford [456]1,
Nelson [411]1, 2, Bennett and Baylis [526]1, [IV]94.

The relations between the intension and extension of classes
are discussed by Carhap [XIIII]237, Quine [VIII]45, Church
[VI162, [V]163, [VII]100, [VIII}45, Russell [VI]29. The older
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work of Frege [49]5, 8, 10, 16 and Russell [111]9 is of great
importance in this connection.

Expositions of intuitionistic points of view are given by
Brouwer [155]7, 10, 20, Weyl [192]2, 9, [X1]103, Heyting [385]2,
3, 10, Dresden [308]1, 3, Lusin [403 1/2]. Interesting interpreta-
tions are given by Kolmogorov [314]2, Godel [418]11, 12. The
postulates given here are those of Gentzen [442]2. See also the
papers of Heyting, Gédel, Glivenko [381]1, 2, McKinsey [IV]155,
Wajsberg [I1I]169. Fundamentally important contributions to
intuitionistic logic have recently been made by Kleene [X]109
and Nelson [XII]93. Examples of proofs of a classical theorem
by intuitionistic methods can be found in the American Mathe-
matical Monthly, vol. LII, 1945, p. 562, and the papers cited
there.

Huntington [IT]91 has given a detailed account of Lewis’
system, exhibiting clearly its relations to the Boolean logic.
Other papers on connected problems are Becker [351]7, Church-
man [III]77, Vredenduin [IV]73, Parry [IV]1387, McKinsey
[V]110, [VI]177, McKinsey and Tarski [XIII]1, Dugundji [V]150.
An important interpretation of Lewis’ system has been given
by McKinsey [X]83 See also Fitch [XIII]38.

Miss Barcan, [XI]1, 115, [XII]12, has made the first attempt
to develop modal logic beyond the propositional logic. Another
approach (not yet fully worked out) is due to Carnap [IX]33,
[XIIII]237. Some of the difficulties of interpreting such systems
are also discussed by Quine [XII]43, Smullyan [XII]139,
[XTII]31, and the reviews by Church mentioned above.

Note that the version given here of Fitch’s model of Lewis’
system is essentially the same as taking the system F, of 1112
and defining PA, for any A in §, , as the element B in §, such
that

FBa = (3y)(4y)

for all ¢ in &. If & has a finite number of elements, then this
coincides with the construction on p. 61.

For expositions of Smith’s ideas see Smith [259]27, [11]43,
Churchman [VIII]53. Mrs. H. C. Doob and the author have,
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in an unpublished paper, presented Smith’s system as a deduc-
tive science.

The investigations of Tarski and McKinsey are contained in
[VI117, [IV]26, [IX]96, [XI[33, [XIII]1.

The importance of discussing logical questions on the basis
of precisely constructed object languages is very aptly empha-
sized by Church [V]78.

III1. For an excellent and not too technical exposition of
Godel’s and Church’s theorems see Rosser [IV]53. More detailed
accounts of these and related matters appear in Godel [418]3,
14, Gentzen [I]75, [IV]32, [IX]70, Hilbert-Bernays [507]1, [V]16,
Goodstein [1X]33, [X11]123, Rosser [1]87, [II]129.

III2. A similar approach to the functional logic has been given
by Notcutt [503]2.

Formulations of the corresponding object languages are to
be found in Hilbert-Ackermann [365]1, Hilbert-Bernays, op. cit.,
Church [X]19.

The infinite list of postulates can be avoided in several ways.
For example, by the aid of devices due to Skolem [II]86,
Kalmér [I148, [I11])86, [IV]1, one can formulate the first order
theory of polyadic functions in terms of the diadic functional
logic. Or else one can combine the notions of this section with
those of combinatory logic, as has been hinted at on p. 87.

I1I3. It is possible to give a general theory of logics based
on Boolean algebra and of their description by languages of the
type discussed in this section. This involves a combination of the
methods of I3, 1I3, and the last chapter of this book. Such a
theory gives a rigorous treatment of the name-relation, logical
truth, extension, and intension, thus making precise the some-
what heuristic, but suggestive discussions of Carnap [VIII]36,
[VIII]81, [XIIII]237. We hope to publish the detailed develop-
ment in the near future.

A fundamentally important attack on the problem of defining
an interpretation of a language has been published by Kemeny
[XIII]16. Although his solution cannot be considered completely
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satisfactory, it is a valuable point of departure for future work.

It would be easy to modify L, so that it would contain also
names of individual constants, propositional constants, and
function constants of all degrees.

The question as to whether it is legitimate to regard classes
and propositions, and other “abstract” entities, as existent in
some sense, so that signs purporting to be names of these entities
really denote “something”, goes back at least to Plato, and has
been raised again, in a particularly sharp form, by Goodman and
Quine [XII]J106. One can, however, consider these entities as
“existing in space-time” by identifying them, for example, with
certain chemical reactions in men’s brains. This is not the only
possible interpretation, but the existence of at least one such
interpretation shows that we can work with these entities with-
out assuming any metaphysics like Platonic idealism.

The masterpiece of Whitehead and Russell [194]1-7 has been
the direct or indirect inspiration of most work on mathematical
logic in the last 40 years, even when it is openly condemned or
not mentioned explicitly. Some of the steps preliminary to that
giant undertaking were influenced by the work of Frege and
Peano cited above. One can see its influence very clearly by
comparing it, chapter for chapter, with such works as Lewis and
Langford [456]1, Quine [458]5, [V]163, Church [X]19, Hilbert-
Bernays [507]1. The later parts of the first volume and most of
the other two volumes have been unjustly neglected; a number
of modern developments in algebra and topology are anticipated
and their fundamentals treated quite fully. In charity we donot
mention by name some illustrious authors who have exhibited
their ignorance of the literature by not citing Principia Mathe-
matica.

The devices of Wiener and Kuratowski appeared in Wiener
[238]1, Kuratowski [433]0.1. Quine [X]95 gives a more compli-
cated device, which applies only to special systems but has
certain technical advantages.

The present formulation of L, is due to Tarski [285]13. The
version given here is borrowed from Quine [I1]45. Another version
will be found in Church [X]19. An elegant formulation of the
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general theory of types without the Wiener-Kuratowski device,
has been given by Church [V]56. Other approaches to the theory
of types are given by Quine [III]125, Newman [IX]50, Turing
[XTII]80.

FIX is not called an “axiom of reducibility” by Quine, but
it plays the same role as that axiom in Principia Mathematica.
It avoids many of the philosophical objections to the axiom of
reducibility as originally formulated.

L! is what we call in Chapter IV a conservative extension of
L, . The analogues of Hailperin’s theorems show that FX and
FXI constitute a definition of “3”".

Other formulations of Zermelo’s system have been given by
von Neumann [299]2, 5 and Ackermann [III]85.

II14. The basic works on combinatory logic are Schénfinkel
[304]1, Curry [396]1, 2, 3, 5, 7, Rosser [546]1. In the latter paper
a proof of the equivalence with Church’s system of A-conversion
is given. The basic papers on Church’s system are Church
[359]4, 6, 8, Kleene [497]1, 2. Excellent expositions of these and
related matters may be found in Church [VI]171, Curry [VII}49,
and Feys [XII]27. The fundamental rules of combinatory logic
have been simplified by Curry [VI]41, 54, and Rosser [VII]18.
(Curry has noted an error in the latter in Mathematical Re-
views.) A forthcoming book by Curry and Feys will undoubtedly
be an important contribution to the literature. We note also
the interesting papers of Fitch [I]92, [VII]105, [I1X]57, [IX]89.

The device of writing the name of an operation before the
names of the operands in order to avoid parentheses is due to
Fukasiewicz. The analogous syntactical criteria for word forma-
tion in languages using parentheses are given by Kleene [497]1,
and Church [VI]171.

The system given here is equivalent to Curry’s system of
combinatory logic with the postulate BI = I. (There is a mis-
print in the statement of Ax.BW (our T21) on p. 521 of Curry
[396]2, but the sjatement, in abbreviated form, on p. 534 is
correct.) The equivalence of this system to the system of A\-con-
version defined on p. 123-124 is given by Rosser [VII]18. The
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system without rule V on p. 124 is called by Church A-K-con-
version, and the one with rules I-IV and the restriction in the
rule of word formation that “z” occur free in ¥ for Az¥ to be
a word is called A-conversion. In the papers of Rosser postulates
are also given for these systems. In fact, Rosser gives a general
method for setting up postulates for combinatory logics and
proving their completeness. Our version is a slight modification
of Rosser’s.

The theory of positive integers in combinatory logic is due
to Church [359]4, 6 and Kleene [497]2.

Curry proved a consistency theorem for combinatory logic in
[396]2. This was strengthened and generalized by Church and
Rosser [I]74 and Church [359]8. (See also Church [VI]171).
Curry [VI]54 has indicated some simplifications in the proof.

The development of the theory of quantification in Church’s
calculus of A-é-conversion is published only in his rather in-
accessible lecture notes [I1]39.

The paradox of Kleene and Rosser appeared in [545]1. Its
underlying meaning is clarified by Church [359]7 and Curry
[XI]136. The derivation of Russell’s paradox is taken from Curry
[VII]115.

Curry’s suggested remedies and announced consistency proofs
appear in Curry [VII]41, [VIII]52. We hope that the above
mentioned book of Curry and Feys will give full details on these
questions.

His discussion of functionality and its use as a primitive
notion were published in [396]7, [I]165, [VII]49, and [VIII]52.

III5. The fundamental ideas of this section are due to Frege
[49]1, 5, 10, 16 and Peano [71]2, 7, 14, 21, 45. These ideas were
amplified, extended and otherwise further developed by Russell
[11114, 6 and Whitehead [99]3, 5. A detailed systematic exposi-
tion is given by Whitehead and Russell [194]1, 2, 3, from which
most of the definitions in this chapter are borrowed. A somewhat
non-technical and enjoyably readable acceunt is given by
Russell [111]26. We mention also the excellent exposition of
Jgrgensen [424]1. Modern treatments with many technical im-
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provements have been given by Quine [458]5, [V]163, [XII]56.

The fact that a relation can be defined as a class of ordered
pairs does not mean, as some dogmatically assert, that a relation
must be defined as a class of ordered pairs. It is possible to
develop these theories independently, as in Principia Mathe-
matica, or to take either as primitive and to define the other.
For example, in Bernays [I1]65 a mixed procedure is used. In the
systems of Curry, Church, and Robinson [II]29, the notion of
function (a special kind of relation)is taken as basic. It is also
possible to take the general notion of relation as fundamental,
and to adapt the ideas of Tarski [VI]73 to construct a logic in
which classes are defined in terms of relations. It is very risky,
in general, to make dogmatic assertions, especially when they
can be disproved. When, as we show so often in this book, there
are many different methods for obtaining certain results, it is
stupid to insist that there is only one correct method.

" If a language adequate for elementary number theory remains
consistent when a rule of the type of FQ is adjoined, then the
language is said to be w-consistent. This concept was introduced
by Godel [418]3. He and Tarski [285]13 have given examples
of consistent languages which are not w-consistent. Rosser
[T1]129 has investigated the completeness of logics which contain
rules of the type of FQ.

ITI6. Excellent and not very technical expositions of Godel’s
and related theorems have been given by Rosser [IV]53 and
Skolem, [XTII]169 (in Norwegian). In Godel’s original proof that
such languages as L; are not categorical w-consistency was
assumed, but Rosser [I]87 showed how that assumption could be
eliminated.

Kleene [II]38 has shown how Richard’s paradox leads to
theorems of the Gddel type. (See also Church [359]7, Curry
[XT]136, and Rosser [IV]53.

For Burali-Forti’s paradox see Whitehead and Russell [194]1,
Rosser [VII]1.

II17. Zermelo’s fundamental paper [125]1 is concerned with the
proof of (3) from the axiom of choice. Peano [71]4 observed,
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apparently for the first time, that a distinet assumption was
involved, but dismissed the axiom as obviously false. Levi
(Rend. del R. Ist. Lomb. 1902) pointed out the need for such an
assumption in order to prove that every infinite class has a
denumerable subclass.

It should be mentioned that there are several non-equivalent
weaker forms of the axiom of choice, some of which have
been declared acceptable by scholars who oppose the general
assumption. One would think, however, that once we admit such
non-constructive principles, we might as well go the whole way.
The implication and independence relations between these prop-
ositions have been investigated by Fraenkel [269]2, 20, 27, [II]1,
Lindenbaum and Mostowski [IV]30, Mostowski [IV]129, [XIII]
45, Szmielew [XIII]224. An excellent summary of propositions
equivalent to the axiom of choice and its consequences is given
by Sierpinski [VII]35.

Fraenkel’s independence proof is given in {269]2. A much
stronger consistency proof is published by Godel in his im-
portant [VI]112.

A detailed discussion of Zorn’s lemma and related principles
is given by Tukey, Convergence and Uniformity in Topology,
Princeton, 1940. The original papers on this principle are R. L.
Moore, Foundations of Point Set Theory, Am. Math. Soc.
Colloquium Publications, 1932, p. 84, Kuratowski, Fundamenta
Math., v. 3, 1922, Zorn [IX]56, Teichmiiller [V1]65, and Wallace
[I1X]55.

The theorem of Banach and Tarski appeared in Fund. Math.,
vol. 6, p. 244. See also Robinson, Fund. Math., vol. 34, p. 246.

IV1. Lukasiewicz apparently devised the notation on which the
concept of a simple language is based. For the case of binary
connectives Theorem 4.1.1 was proved by Menger [370]5. (It was
also obtained independently by Adjukiewicz, according to a note
in one of Lukasiewicz’ papers.) The general theorem was proved
by Schroter [IX]69, and rediscovered by Gerneth [XIIT]224.
P. Hall has, in recent unpublished work, developed a new ap-
proach to the fundamental problems of algebra, which should
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have important applications to the theory of language. He has
also rediscovered Schroter’s theorem.

IV2. The basic concepts of this chapter were introduced by
Post [VIII]50.

The theorem of Church appeared in [I]73. Simpler proofs
were given by Kleene [II]38, Skolem [IX]21, Kalmir [IX]24,
Post [X]18.

The general theory of canonical classes has been developed
by Post in his profound and beautiful paper [X]18.

While the idea of recursive definitions goes back at least to
Peano [71]2, the first study of “recursive’” arithmetic, i.e.
arithmetic based on recursive definitions alone, is due to Skolem
[247]4. A formalization of this theory as an independent science
has been given by Curry [VII}42. The notion of recursive
function (in a special case) was first brought to the attention
of the mathematical public by Godel [418]3. The general defini-
tion is due to Godel and Herbrand, but was first published and
studied by Kleene [II]38. Other important work was done by
Peter [466]1-4, Robinson [XIIIJ113, and especially Skolem
[XI]26, and an excellent exposition of many of these results
will be found in Hilbert-Bernays [507]1, [V]16.

Precise definitions of the concept of “effectively computable’”
functions have been given by Church [I173, Post [I]103, and
Turing [II]153. These definitions are easily proved equivalent
to the one given here, which is essentially an adaptation of the
definition in Kleene [II1]38 to the ideas of Post [X]18. It must
be said that we have really begun to understand the significance
of recursiveness only after this paper of Post. Many of his
results were rediscovered by Mostowski [XIII]11°?, who was
unfortunately cut off from journals during the war.

The role of eliminability in the notion of definition was,
perhaps, first noted by Russell {111]9, in a different connection.
(There is, however, a famous maxim of Pascal!) It is emphasized
very clearly by Hjlbert-Bernays, op. cit. The importance of
conservativeness was brought oult by Lefniewski [202]11, 13,
[V]83, 84. There is an interesting analogy between our criterion
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for definition and Church’s eriterion for meaningfulness. (See
Church [VI]171).

IV3. Normal languages were introduced by Post [VIII]50,
where Theorem 4.3.1 appears.

The theorems and proofs of this section are taken either
directly, or with slight adaptations, from Post [X]18.

A fairly general definition of the adequacy of a language
for arithmetic is given by Kleene [II]38, p. 740. It is rather
clear how this definition would have to be modified to take care
of the language 9B, .

The proofs that L, , L , and L, can be put into canonical
form are given in Appendix 1. The proof that L, is adequate
for the expression of 9B, is given in Appendix 2, using some ideas
of Markov [XIII]52, 53, 170.

In an important series of papers, Post [X]18, [X11]55, [XI1]90,
and Markov [XTII]52, 53, 170 have shown that several sig-
nificant mathematical problems cannot be solved by mechanical
methods.

The language B, is a kind of “universal’”’ language since every
canonical language has a conservative normal extension and the
latter can always be translated into a two-sign alphabet. Its
basis is represented by a certain string 8 such that Bg is a
theorem in B, , and its theorems correspond to the true sentences
of the form Bpy. Thus B, is already adequate for practically all
of mathematics. Every mathematical problem which can be
formulated in some canonical language, say L; , is equivalent
to the question of whether a particular string of the form | 8pv
is a theorem in B, . Thus B, is & minimum calculus in the sense
of Fitch [IX]89. There is an obvious analogy between the uni-
versal language B, and the universal machine of Turing [II]42.

We remark that some authors have used the word ‘luck” for
what we call brains or ingenuity. With that interpretation, the
history of science shows that the ones who have the luck are, in
general, the ones who deserve it. \

Wiener, in his recent book, Cybernetics, Wiley and Hermann,
1948, has given a beautiful mathematical model of the brain.
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This is a fundamental advance and must be considered as the
first significant breach of the frontier between mathematics and
psychology. It seems, however, that his definition must be sup-
plemented in an essential way, since one can probably prove
rigorously that a machine can solve any problem which a brain,
according to Wiener’s model, can solve. We may consider in-
telligence as the capacity for introspection, the faculty of
thinking about one’s own methods of reasoning and what they
can accomplish. In mathematical terms this means the capacity
of using a syntax language for reasoning about an object
language. It is 1n this way that a brain can make use of such
rules as FQ in III5. It seems altogether feasible to incorporate
this 1dea into a mathematical definition of a brain and to prove
that a brain can solve some problems which a machine cannot.
Theorem 4.3.4 shows that certain problems cannot be solved
by machines, i.e. that brains are necessary. A result of the kind
just suggested would establish rigorously that brains are useful.
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Galton, Riemann? How can these techmiques be applied by others? One of the world’s
feading mathematicians discusses these and other questions xin + 145pp 53 x 8
T107 Paperbound $1.25
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THE NATURE OF PHYSICAL THEORY, P. W. Bridgman. How modern physics looks to a highly
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properties of centre of mass of material system, work, energy, gravitation, etc Written
with all Maxwell's original insights and clarity Notes by E Larmor 17 diagrams 178pp
5% x 8 $188 Paperbound $1.25
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8317 Paperbound $175
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T390 Paperbound $2.00
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with men, women, chidren performing thousands of operations, show sequence, general
operations, closeups, details of machinery lllustrates such important, interesting trades,
industries as sowing, harvesting, beekeeping, tobacco processing, fishing, arts of war,
mining, smelting, casting iron, extracting mercury, making gunpowder, cannons, bells,
shoeing horses, tanming, papermaking, printing, dying, over 45 more categortes Professor
Gillispie of Princeton supplies full commentary on all plates, identifies operations, tools,
processes, etc Matenial 1s presented in lvely, lucid fashion Of great interest to all
studying history of science, technology Heavy library cloth 920pp 9 x 12

T421 2 volume set $1850

DE MAGNETE, Wiliam Gilbert. Classic work on magnetism, founded new science Gilbert
was first to use word “electricity,” to recognize mass as distinct from weight, to discover
effect of heat on magnetic bodies, invented an electroscope, differentiated between static
electricity and magnetism, conceived of earth as magnet This Lively work, by first great
experimental scienfist, 1s not only a valuable historical landmark, but a delightfully easy
to follow record of a searching, ingentous mind Translated by P F Mottelay 25 page
biographical memoir 90 figures lix + 368pp 5% x 8 8470 Paperbound $2.00

HISTORY OF MATHEMATICS, D. E. Smith. Most comprehensive, non-technical history of math
\n Enghlish Discusses hves and works of over a thousand major, minor figures, with foot-
notes giving technical information outside book’s scheme, and indicating disputed matters.
Vol | A chronological examination, from primitive concepts through Egypt, Babylonia,
Greece, the Orient, Rome, the Middie Ages, The Renaissance, and to 1900 Vol 11 The
development of 1deas n specific fields and problems, up through elementary calculus

“Marks an epoch . will modify the entire teaching of the history of science,” George
Sarton 2 volumes, total of 510 illustrations, 1355pp 53 x 8 Set boxed in attractive
container T429, 430 Paperbound, the set $5.00

THE PHILOSOPHY OF SPACE AND TIME, H Reichenbach An imporiant landmark 1n develop-
ment of empiricist conception of geometry, covermng foundations of geometry, time theory,
consequences of Einstein's relatvity, including relations between theory and observations,
coordinate definitions, relations between topological and metrical properties of space;
psychological problem of visual inturtion of non-Euchidean structures, many more topics
important to modern science and philosophy Majority of 1deas require only knowledge of
\ntermediate math “Still the best book in the field,”” Rudolf Carnap Introduction by
R Carnap 49 figures xvin -+ 296pp 5% X 8 S443 Paperbound $2.00



CATALOGUE OF

FOUNDATIONS OF SCIENCE: THE PHILOSOPHY OF THEORY AND EXPERIMENT, N Camphell
A critiqgue of the most fundamental concepts of science, particularly physics Examines why
certain proposttions are accepted without question, demarcates science from philosophy,
etc Part | analyzes presuppositions of scientific thought existence of material world,
nature of laws, probability, etc, part 2 covers nature of experiment and appiications of
mathematics conditions for measurement, relations between numerical laws and theories,
error, etc. An appendix covers problems arising from relativity, force, motion, space,
time A classic mn its field “A real grasp of what science 1s,” Higher Educational Journal
xiut -+ 565pp 558 X 838 S$372 Paperbound $2 95

THE STUDY OF THE HISTORY OF MATHEMATICS and THE STUDY OF THE HISTORY OF SCIENCE,
G. Sarton. Excellent introductions, orientation, for beginning or mature worker Describes
duty of mathematical historian, imcessant efforts and genius of previous generations Ex-
plains how today’s discipline differs from previous methods 200 item bibliography with
critical evaluations, best available biographies of modern mathematicians, best treatises
on historical methods 1s especially valuable. 10 illustrations 2 volumes bound as one
113pp -+ 75pp. 536 x 8 T240 Paperbound $1 25

MATHEMATICAL PUZZLES

MATHEMATICAL PUZZLES OF SAM LOYD, selected and edited by Martin Gardner. 117 choice
puzzles by greatest American puzzle creator and innovator, from his famous ‘‘Cyclopedia
of Puzzles " All umique style, historical flavor of originals Based on arithmetic, algebra,
probability, game theory, route tracing, topology, shding block, operations research, geo-
metrical dissection Includes famous ‘‘14-15"" puzzie which was national craze, ‘“Horse of
a Different Color’” which sold millions of copies 120 hine drawings, diagrams Solutions
xx + 167pp 5% x 8 T498 Paperbound $1 00

SYMBOLIC LOGIC and THE GAME OF LOGIC, Lewis Carroll. “‘Symbolic Logic’” 1s not concerned
with modern symbolic logic, but is instead a collection of over 380 problems posed with
charm and imagination, using the syllogism, and a fascinating diagrammatic method of
drawing conclusions In “The Game of Logic” Carroll’'s whimsical imagination devises a
logical game played with 2 diagrams and counters (included) to manipulate hundreds of
tricky syllogisms The final section, “Hit or Miss” 1s a lagmappe of 101 additional puzzies
in the dehghtful Carroll manner. Until this reprint edition, both of these books were rarnties
costing up to $15 each Symbolic Logic Index xxxi + 199pp The Game of Logic 96pp.
2 vols bound as one 53 x 8 T492 Paperbound $1.50

PILLOW PROBLEMS and A TANGLED TALE, Lewis Carroll One of the rarest of all Carroli’s
works, “Pillow Problems’ contains 72 original math puzzles, all typically ingenious Particu-
larly fascinating are Carroll’s answers which remain exactly as he thought them out,
reflecting mis actual mental process The problems in “A Tangled Tale” are n story form,
originally appearing as a monthly magazine senal Carroll not only gives the solutions, but
uses answers sent in by readers to discuss wrong approaches and misleading paths, and
grades them for insight Both of these books were rarities until this edition, “Pillow
Problems’ costing up to $25, and ““A Tangled Tale” $15 Pillow Problems Preface and
Introduction by Lewis Carroll xx <+ 109pp. A Tangled Tale 6 illustrations 152pp. Two vols
bound as one 53 x 8. T493 Paperbound $1.50

NEW WORD PUZZLES, G L Kaufman. 100 brand new challenging puzzles on words, com-
binations, never before published Most are new types invented by author, for beginners
and experts both Squares of letters follow chess moves to bwld words, symmetrical
designs made of synonyms, rhymed crostics, double word squares, syllable puzzies where
you fill in missing syllables instead of missing letter, many other types, all new Solutions
“Excellent,” Recreation 100 puzzies 196 figures wvi + 122pp 53 x 8

T344 Paperbound $100

MATHEMATICAL EXCURSIONS, H. A. Merrill Fun, recreation, insights into elementary prob-
lem solving. Math expert guides you on by-paths not generally travelled in elementary math
courses—divide by inspection, Russian peasant multipiication, memory systems for pi, odd,
even magic squares, dyadic systems, square roots by geometry, Tchebichev's machine,
dozens more Solutions to more difficult ones. “Brain stirring stuff a classic,” Genie
50 1illustrations 145pp. 53 x 8 T350 Paperbound $1 00

THE BOOK OF MODERN PUZZLES, G. L. Kaufman. Over 150 puzzles, absolutely all new mate-
rial based on same appeal as crosswords, deduction puzzies, but with different principles,
techniques 2-minute teasers, word labyrinths, design, pattern, logic, observation puzzles,
puzzles testing ability to apply general knowledge to pecultar situations, many others
Solutions. 116 illustratiens. 192pp 53 x 8. T143 Paperbound $1.00

MATHEMAGIC, MAGIC PUZZLES, AND GAMES WITH NUMBERS, R V Heath. Over 60 puzzles,
stunts, on properties of numbers., Easy techniques for multiplying large numbers mentally,
identifying unknown numbers, finding date of any day in any year Includes The Lost Digit,
3 Acrobats, Psychic Bridge, magic squares, trjangles, cubes, others not easily found else-
where Edited by J S§ Meyer 76 illustrations 128pp 53% x 8 T110 Paperbound $1 00
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PUZZLE QUIZ AND STUNT FUN, J Meyer. 238 high-prionty puzzies, stunts, tricks—

puzzies like The Clever Carpenter, Atom Bomb, Please Help pAhce,'mystenés, deducg‘ggg
like The Bridge of Sighs, Secret Code, observation puzzlers like The American Flag, Playing
Cards, Telephone Dial, over 200 others with magic squares, tongue iwisters, puns, ana-
grams. Solutions Revised, enlarged edition of *Fun-To-Do.” Over 100 iflustrations 238
puzzles, stunts, tricks. 256pp. 53 x 8 T337 Paperbound $1.00

101 PUZZLES IN THOUGHT AND LOGIC, C. R. Wyle, Jr. For readers who enjoy challenge
stimulation of logical puzzles without specialized math or scientific knowlec’ig);. Prchle§1§
entirely new, range from relatively easy to brainteasers for hours of subtle entertainment
Detective puzzles, find the lying fisherman, how a blind man identifies color by logic, many
more Easy-to-understand introduction to logic of puzzie solving and general scientific
method 128pp 53 x 8 T367 Paperbound $1.00

CRYPTANALYSIS, H. F. Gaines. Standard elementary, intermediate text for serious students.
Not just old material, but much not generally known, except to experts Concealment,
Transposition, Substitution ciphers, Vigenere, Kasiski, Playfair, multafid, dozens of other
techniques Formerly ‘“Elementary Cryptanalysis ”’ Appendix with sequence charts, letter
frequencies in Enghsh, 5 other languages, Enghsh word frequencies Bibliography 167
codes. New to this edition solutions to codes. vi -+ 230pp. 53% x 83s

T97 Paperbound $1.95

CRYPTOGRAPY, L. D. Smith. Excellent elementary introduction to enciphering, deciphering
secret writing Explains transposition, substitution ciphers, codes, solutions, geometrical
patterns, route transcription, columnar transposition, other methods Mixed cipher systems,
single, polyalphabetical substitutions, mechamical devices, Vigenere, etc Enciphering Jap-
anese, explanation of Bacoman biliteral cipher, frequency tables Over 150 problems Bib-
hography Index. 164pp 53 x 8. T247 Paperbound $1.00

MATHEMATICS, MAGIC AND MYSTERY, M. Gardner. Card tricks, metal mathematics, stage
mind-reading, other “magic’”’ explained as applications of probability, sets, number theory,
etc Creative examination of laws, applications Scores of new tricks, insights 115 sections
on cards, dice, coins, vanishing tricks, many others No sleight of hand—math guarantees
success “Could hardly get more entertainment . easy to follow,”” Mathematics Teacher.
115 illustrations. xu + 174pp. 538 x 8 T335 Paperbound $100

AMUSEMENTS IN MATHEMATICS, H E Dudeney. Foremost British originator of math puzzles,
always witty, intriguing, paradoxical in this classic. One of largest collections More than
430 puzzles, problems, paradoxes. Mazes, games, problems on number manipulations,
unicursal, other route problems, puzzles on measuring, weighing, packing, age, kinship,
chessboards, joiners’, crossing river, plane figure dissection, many others Solutions More
than 450 illustrations vin + 258pp 53 x 8 T473 Paperbound $1.25

THE CANTERBURY PUZZLES H. E. Dudeney. Chaucer's pilgrims set one another problems in
story form Also Adventures of the Puzzle Club, the Strange Escape of the King's lJester,
the “Monks of Riddlewell, the Squire's Christmas Puzzle Party, others Al puzzles are
original, based on dissecting plane figures, arithmetic, algebra, elementary calculus, other
branches of mathematics, and purely logical ingenuity. *“‘The himit of ingenuity and n-
tricacy,” The Observer. Over 110 puzzies, full solutions 150 vlustrations vin 4+ 225 pp
5% x 8. T474 Paperbound $1.25

MATHEMATICAL PUZZLES FOR BEGINNERS AND ENTHUSIASTS, G. Mott-Sruth. 188 puzzles to
test mental agility Inference, interpretation, algebra, dissection of plane figures, geometry,
properties of numbers, decimation, permutations, probability, all are in these delightfui
problems Includes the Odic Force, How to Draw an Ell:pse, Spider's Cousin, more than 180
others Detailed solutions. Appendix with square roots, triangular numbers, primes, etc
135 illustrations. 2nd revised edition 248pp 5% x 8 T198 Paperbound $1.00

MATHEMATICAL RECREATIONS, M. Kraitchik Some 250 puzzles, problems, demonstrations of
recreation mathematics on relatively advanced level Unusual historical problems from
Greek, Medieval, Arabic, Hindu sources, modern problems on ‘‘mathematics without num-
bers,” geometry, topology, arithmetic, etc Pastimes derived from figurative, Mersenne,
Fermat numbers fairy chess, latruncles reversi, etc Full solutions Excellent insights
into special fields of math = “Strongly recommended to all who are interested in the

r side of mathematics,” Mathematical Gaz 181 ilustrations. 330pp 5% x 8
hente ¢ T163 Paperbound $1.78

FICTION

«
FLATLAND, E. A. Abhott. A perennially popular science-fiction classic about hfe in a 2-
dimensional world, and the impingement of higher dimensions Political, satiric, humorous,
moral overtones This land where women are straight hines and the lowest and most dan-
gerous classes are isosceles triangles with 3° vertices conveys brilhantly a feeling for
many concepts of modern science 7th edition. New introduction by Banesh Hoffmann 128pp.
538 X 8. T1 Paperbound $1.00
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SEVEN SCIENCE FICTION NOVELS OF H. 6. WELLS. Complete texts, unabridged, of seven of
Wells’ greatest novels The War of the Worlds, The Invisible Man, The Island of Dr Moreau,
The Food of the Gods, First Men in the Moon, In the Days of the Comet, The Time Machine.
Still considered by many experts to be the best science-fiction ever written, they"wnl offer
amusements and instruction to the scientific minded reader “The great master,” Sky and
Telescope. 1051pp 53 x 8 T264 Clothbound $3 95

28 SCIENCE FICTION STORIES OF H. 6. WELLS. Unabridged! This enormous ommbus contains
2 full length novels—Men Like Gods, Star Begotten—plus 26 short stories of space, time,
invention, biology, etc The Crystal Egg, The Country of the Blind, Empire of the Ants,
The Man Who Could Work Miracles, Aepyornis lIsland, A Story of the Days to Come, and
20 others “A master . . . not surpassed by . . . writers of today,” The Enghsh Journal,
915pp 538 x 8 T265 Clothbound $3 85

FIVE ADVENTURE NOVELS OF H RIDER HAGGARD. All the mystery and adventure of darkest
Africa captured accurately by a man who lived among Zulus for years, who knew African
ethnology, folkways as did few of his contemporaries They have been regarded as examples
of the very best high adventure by such critics as Orwell, Andrew Lang, Kipling Contents
She, King Solomon’s Mines, Allan Quatermain, Allan’s Wife, Maiwa’'s Revenge ‘‘Could spin
a yarn so full of suspense and color that you couldn’t put the story down,” Sat Review
821pp. 53 x 8 T108 Clothbound $3.95

CHESS AND CHECKERS

LEARN CHESS FROM THE MASTERS, Fred Reinfeld. Easiest, most instructive way to im-
prove your game—play 10 games against such masters as Marshall, Znosko-Borovsky, Bron-
stein, Najdorf, etc, with each move graded by easy system Includes ratings for alternate
moves possible Games selected for interest, clanity, easily isolated principles Covers
Ruy Lopez, Dutch Defense, Vienna Game openings; subtle, intricate middle game variations,
all-important end game Full annotations Formerly “‘Chess by Yourself ” 91 diagrams wviu
+ 144pp 53 x 8. T362 Paperbound $1 00

REINFELD ON THE END GAME IN CHESS, Fred Reinfeld. Analyzes 62 end games by Alekhine,
Flohr, Tarrasch, Morphy, Capablanca, Rubinstein, Lasker, Reshevsky, other masters Only
1st rate book with extensive coverage of error—tell exactly what i1s wrong with each move
you might have made. Centers around transitions from middie play to end play King and
pawn, minor pieces, queen endings, blockage, weak, passed pawns, etc ‘‘Excellent a
boon,” Chess Life Formerly “Practical End Play " 62 figures vi + 177pp. 5% x 8
T417 Paperbound $1.25

HYPERMODERN CHESS as developed in the games of its greatest exponent, ARON NIMZO-
VICH, edited by Fred Reinfeld An intensely original player, analyst, Nimzovich’'s approaches
startled, often angered the chess world This volume, designed for the average player,
shows how his iconoclastic methods won him victories over Alekhine, Lasker, Marshall,
Rubinstein, Spielmann, others, and infused new Ilife into the game Use his methods to
startle opponents, invigorate play ‘“Annotations and introductions to each game are
excellent,” Times (London) 180 diagrams wvin + 220pp 53 x 8 T448 Paperbound $1.35

THE ADVENTURE OF CHESS, Edward Lasker. Lively reader, by one of America’s finest chess
masters, including history of chess, from ancient Indian 4-handed game of Chaturanga
to great players of today, such delights and oddities as Maelzel's chess-playing automaton
that beat Napoleon 3 times, etc One of most valuable features i1s author’s personal recollec-
tions of men he has played against—Nimzovich, Emanuel Lasker, Capablanca, Alekhine,
etc Discussion of chess-playing machines (newly revised) 5 page chess primer 11 illus-
trations 53 diagrams 296pp 5% x 8 S510 Paperbound $1.45

THE ART OF CHESS, James Mason. Unabridged reprinting of latest revised edition of most
famous general study ever written Mason, early 20th century master, teaches beginning,
intermediate player over 90 openings, middle game, end game, to see more moves ahead,
to plan purposefully, attack, sacrifice, defend, exchange, govern general strategy ‘‘Classic

one of the clearest and best developed studies,’” Publishers Weekly Also included, a
complete supplement by F Reinfeld, “How Do You Play Chess?”, invaluable to beginners
for 1ts fively question-and-answer method 448 diagrams 1947 Reinfeld-Bernstein text
Bibliography. xvi + 340pp 53 x 8 T463 Paperbound $1.85

MORPHY’'S GAMES OF CHESS, edited by P W Sergeant. Put boldness into your game by
flowing brilliant, forceful Tnoves of the greatest chess player of all time 300 of Morphy's
best games, carefully annotated to reveal principles 54 classics against masters like
Anderssen, Harrwitz, Bird, Paulsen, and others 52 games at odds, 54 blindfold games, plus
over 100 others Follow his interpretation of Dutch Defense, Evans Gambit, Giuoco Piano,
Ruy Lopez, many more Unabridged reissue of latest revised edition New (ntroduction by
F "Reinfeld Annotations, introduction by Sergeant 235 diagrams x + 352pp 5% x 8

T386 Paperbound $1.75
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WIN AT CHECKERS, M. Hopper (Formerly ‘‘Checkers ") Former World’s Unrestricted Checker
Champion discusses principles of game, expert’s shots, traps, problems for beginner, stand-
ard openings, locating best move, end game, opening ‘“blitzkrieg” moves to draw when
behind, etc Over 100 detailed questions, answers anticipate probiems Appendix 75 prob-
lems with solutions, diagrams 79 figures x1 + 107pp. 5% x 8 T363 Paperbound $1.00

HOW TO FORCE CHECKMATE, Fred Remnfeld If you have trouble fimshing off your opponent
here 1s a collection of lightning strokes and combinations from actugal toa'mamef\tp piay'
Starts with 1-move checkmates, works up to 3-move mates Develops ability to lock ahead,
gain new insights into combinations, complex or deceptive positions, ways to estimate weak-
nesses, strengths of you and your opponent *A good deal of amusement and instruction,”
Times, )(,London) 300 diagrams Solutions to all positions Formerly ‘Challenge to Chess
Players.”” 111pp 53 x 8 T417 Paperbound $125

A TREASURY OF CHESS LORE, edited by Fred Remfeld Dehightful collection of anecdotes,
short stories, aphorisms by, about masters, poems, accounts of games tournaments, photo-
graphs, hundreds of humorous, pithy, satirical, wise, historical episodes, comments, word
portraits Fascinating ‘“‘must” for chess players, revealing and perhaps seductive to those
who wonder what their friends see in game 49 photographs (14 full page plates) 12
diagrams xi + 306pp 5% x 8 T458 Paperbound $1.75

WIN AT CHESS, Fred Reinfeld. 300 practical chess situations, to sharpen your eye, test skill
against masters Start with simple examples, progress at own pace to compiexities This
selected series of crucial moments in chess will stimulate imagination, develop stronger,
more versatile game Simple grading system enables you to judge progress ‘‘Extensive use
of diagrams i1s a great attraction,”” Chess 300 diagrams Notes, solutions to every situation
Formerly *‘Chess Quiz” vi + 120pp 53 x 8 T433 Paperbound $1.00

MATHEMATICS:
ELEMENTARY TO INTERMEDIATE

HOW TO CALCULATE QUICKLY, H. Sticker Tried and true method to help mathematics of
everyday life Awakens ‘‘number sense’’—ability to see relationships between numbers as
whole quantities. A serious course of over 8000 problems and their soiutions through
techniques not taught in schools left-to-right multiplications, new fast division, etc 10
minutes a day will double or triple calculation speed Excellent for scientist at home in
higher math, but dissatisfied with speed and accuracy in lower math. 256pp. 5 x 714
Paperbound $1.00

FAMOUS PROBLEMS OF ELEMENTARY GEOMETRY, Felix Klem. Expanded version of 1894
Easter lectures at Gottingen 3 problems of classical geometry squaring the circle, trisect-
ing angle, doubling cube, considered with full modern mplications transcendental num-
bers, p1, etc ‘“A modern classic no knowledge of higher mathematics s required,”
Scientia. Notes by R Archibald 16 figures x1 + 92pp 5% x 8. T298 Paperbound $1.00

HIGHER MATHEMATICS FOR STUDENTS OF CHEMISTRY AND PHYSICS, J. W Mellor. Practical,
not abstract, building problems out of famihiar laboratory material Covers differential cal-
culus, coordinate, analytical geometry, functions, integral calculus, mfinite series, numerical
equations, differential “equations, Fourier's theorem probabihty, theory of errors, calculus
of vaniations, determinants ‘‘If the reader is not famihar with this book, 1t will repay
him to examine it,”’ Chem and Engineering News 800 problems 189 figures xxi -+ 641pp
5% x 8. $183 Paperbound $2.25

TRIGONOMETRY REFRESHER FOR TECHNICAL MEN, A. A. Klaf. 913 detailed questions, answers
cover most important aspects of plane, spherical trigonometry—particularly useful in clearing
up difficulties in special areas Part | plane trig, angles, quadrants, functions, graphical repre-
sentation, interpolation, equations, logs, solution of triangle, use of shde rule, etc. Next
188 pages discuss applications to navigation, surveying, elasticity, architecture, other
special fields Part 3 spherical trig, applications to terrestrial, astronomical problems
Methods of time-saving, simphification of principal angles, make book most useful. 913
questions answered 1738 problems, answers to odd numbers. 494 figures 24 pages of for-
mulas, functions. x + 629pp 5% x 8 T371 Paperbound $2.00

CALCULUS REFRESHER FOR TECHNICAL MEN, A. A Klaf. 756 questions examine most im-
portant aspects of integral, differential calculus Part | simple Jifferential calculus, con-
stants, variables, functions, increments, logs, curves, etc Part 2 fundamental ideas of
\ntegrations, inspection, substitution, areas, volumes, mean value, double, triple integration,
etc Practical aspects stressed. 50 pages illustrate applications to specific problems of cwil,
nautical engineering, electricity, stress, stramn, elasticity, similar fields 756 questions
answered 566 problems, mostly answered 36pp. of useful constants, formulas v -+ 431pp
3 x 8. T370 Paperbound $2 Q0
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MONGGRAPHS ON TOPICS OF MODERN MATHEMATICS, edited by J. W. A. Young. Advanced
mathematics for persons who have forgotten, or not gone beyond, high school algebra
9 monographs on foundation of geometry, modern pure geometry, non-Euchidean geometry,
fundamental propositions of algebra, algebraic equations, functions, calculus, theory of
numbers, etc Each monograph gives proofs of important results, and descriptions of lead-
ing methods, to provide wide coverage “Of high ment,” Scientific American New intro-

duction by Prof. M Kline, N.Y Unmv. 100 diagrams xvi + 416pp 6Y8 x 9V
$289 Paperbound $2 00

MATHEMATICS IN ACTION, 0. G. Sutton. Excellent muddle level application of mathematics
to study of universe, demonstrates how math s applied to ballistics, theory of computing
machines, waves, wave-like phenomena, theory of flud flow, meteorological problems,
statistics, flight, similar phenomena No knowledge of advanced math required Differential
equations, Fourier series, group concepts, Eigenfunctions, Planck’s constant, airfoil theory,
and similar topics explained so clearly in everyday language that almost anyone can derive
benefit from reading tms even if much of high-school math s forgotten 2nd edition 88
figures. vin -+ 236pp. 53 x 8 T450 Clothbound $3.50

ELEMENTARY MATHEMATICS FROM AN ADVANCED STANDPOINT, Fehx Klem Classic text,
an outgrowth of Klein’s famous integration and survey course at Gottingen Using one field
to interpret, adjust another, it covers basic topics n each area, with extensive analysis
Especially valuable in areas of modern mathematics ‘‘A great mathematician, inspirtng
teacher, . deep insight,’ Bul, Amer Math Soc.

Vol. I. ARITHMETIC, ALGEBRA, ANALYSIS. Introduces concept of function immediately, en-
tivens discussion with graphical, geometric methods. Partial contents natural numbers,
special properties, complex numbers Real equations with real unknowns, complex quan-
tities Logarithmic, exponential functions, nfinitesimal calculus Transcendence of e and pi,
theory of assemblages Index 125 figures 1x + 274pp 53 x 8 S$151 Paperbound $1.75

Vol. Il. GEOMETRY. Comprehensive view, accompanies space perception inherent in geom-
etry with analytic formulas which facilitate precise formulation Partial contents Simplest
geometric manifold, line segments, Grassman determinant principles, classication of con-
tigurations of space Geometric transformations affine, projective, higher point transforma-
tions, theory of the imaginary. Systematic discussion of geometry and its foundations 141
lustrations 1x + 214pp 5% x 8. $151 Paperbound $1.75

A TREATISE ON PLANE AND ADVANCED TRIGONOMETRY, E. W. Hobson. Extraordinarily wide
coverage, going beyond usual college level, one of few works covering advanced trig in
full detail. By a great expositor with unerring anticipation of potentially difficult points
Includes circular functions, expansion of functions of multiple angle, trig tables, relations
between sides, angles of triangles, complex numbers, etc Many probiems tuily solved
“The best work on the subject,”” Nature Formerly entitled “A Treatise on Plane Trigonom-
etry "’ 689 examples 66 figures xvi + 383pp. 538 x 8 S$353 Paperbound $1.95

NON-EUCLIDEAN GEOMETRY, Roberto Bonola. The standard coverage of non-Euclidean geom-
etry Examines from both a historical and mathematical point of view geometries which
have arisen from a study of Euchid’s 5th postulate on parallel lines Aiso included are
complete texts, translated, of Bolyar’s “Theory of Absolute Space,” Lobachevsky's ‘‘Theory
of Paralleis " 180 diagrams 431pp 5% x 8 S27 Paperbound $1 95

GEOMETRY OF FOUR DIMENSIONS, H. P. Manming. Unique in English as a clear, concise intro-
duction. Treatment 1s synthetic, mostly Euchidean, though in hyperplanes and hyperspheres
at infinity, non-Euchdean geometry is used Historical introduction Foundations of 4-dimen-
sional geometry. Perpendicularity, simple angles Angles of planes, higher order Symmetry,
order, motion, hyperpvramids, hypercones, hyperspheres, figures with parallel elements,
volume, hypervolume in space, regular polyhedroids Glossary. 78 figures ix 4+ 348pp
¥ x 8. §182 Paperbound $195

MATHEMATICS: INTERMEDIATE TO ADVANCED

GEOMETRY (EUCLIDEAN AND NON-EUCLIDEAN)

THE GEOMETRY OF RENE DESCARTES With this book, Descartes foundéd analytical geometry
Original French text, with Descartes’s own diagrams, and excellent Smith-Latham transla-
tion Contains Problems the Construction of Which Requires only Straight Lines and Circles,
On the Nature of Curved Lines, On the Construction of Solid or Supersolid Problems. Dia-
grams 258pp. 5% x 8. S68 Paperbound $1.50
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THE WORKS OF ARCHIMEDES, edited by T L. Heath. All the known works of the great Greek
mathematician, including the recently discovered Method of Archimedes Contains On
Sphere and Cylinder, Measurement of a Circle, Spirals, Conoids, Spheroids, etc Defimitive
edition of greatest mathematical intellect of ancient world. 186 page study by Heath dis-
cusses Archimedes and history of Greek mathematics 563pp 53& x 8 S9 Paperbound $2.00

COLLECTED WORKS OF BERNARD RIEMANN. Imporiant sourcebook, first to contain complete
text of 1892 ‘““Werke” and the 1902 supplement, unabridged 31 monographs, 3 complete
lecture courses, 15 miscellaneous papers which have been of enormous importance
relativity, topology, theory of complex varnables, other areas of mathematics Edited by
R Dedekind, H. Weber, M Noether, W Wirtinger German text, English introduction by
Hans Lewy 690pp 53 x 8 S226 Paperbound $2.85

THE THIRTEEN BOOKS OF EUCLID’S ELEMENTS, edited by Sir Thomas Heath. Definitive edition
of one of very greatest classics of Western world Complete transiation of Heiberg text,
plus spurious Book XIV 150 page introduction on Greek, Medieval mathematics, Euchd,
texts, commentators, etc Elaborate critical apparatus parallels text, analyzing each defim-
tion, postulate, proposition, covering textual matters, refutations, supports, extrapoiations,
etc This 1s the full Euclid Unabridged reproduction of Cambridge U 2nd edition 3 vol-
umes. 995 figures 1426pp 538 x 8. $88, 89, 90, 3 volume set, paperbound $6.00

AN INTRODUCTION TO GEOMETRY OF N DIMENSIONS, D. M Y Sommerville Presupposes no
previous knowledge of field Only book in English devoted exclusively to higher dimensional
geometry Discusses fundamental ideas of incidence, parallehsm, perpendicularity, angies
between linear space, enumerative geometry, analytical geometry from projective and metric
views, polytopes, elementary ideas in analysis situs, content of hyperspacial figures 60
diagrams 196pp 53 x 8 S494 Paperbound $1 50

ELEMENTS OF NON-EUCLIDEAN GEOMETRY, D M Y Sommerville Unique in proceeding step-
by-step Requires only good knowledge of high-school geometry and algebra, to grasp ele-
mentary hyperbolic, elliptic, analytic non-Euclidean Geometries, space curvature and its
implications, radical axes, homopethic centres and systems of circles, parataxy and parallel-
1sm, Gauss’ proof of defect area theorem, much more, with exceptional clanity 126 prob-
lems at chapter ends 133 figures xvi + 274pp 5% x 8 S460 Paperbound $1.50

THE FOUNDATIONS OF EUCLIDEAN GEOMETRY, H G Forder First connected, rigorous ac-
count in hight of modern analysis, establishing propositions without recourse to empiricism,
without multiplying hypotheses Based on tools of 19th and 20th century mathematicians,
who made it possible to remedy gaps and complexities, recognize problems not earher
discerned Begins with mportant relationship of number systems in geometrical figures
Considers classes, relations, hinear order, natural numbers, axioms for magnitudes, groups,
quasi-fields, fields, non-Archimedian systems, the axiom system (at length), particular axioms
(two chapters on the Parallel Axioms), constructions, congruence, similarity, etc Lists
axioms employed, constructions, symbols in frequent use 295pp 53 x 8

S481 Paperbound $2.00

CALCULUS, FUNCTION THEORY (REAL AND COMPLEX),
FOURIER THEORY

FIVE VOLUME ‘“THEORY OF FUNCTIONS’ SET BY KONRAD KNOPP Provides complete, readily
followed account of theory of functions Proofs given concisely, yet without sacrifice of
completeness or rigor These volumes used as texts by such umwversities as M [T, Chicago,
NY City College, many others ‘“Excellent introduction . remarkably readable, concise,
clear, rigorous,” J of the American Statistical Association

ELEMENTS OF THE THEORY OF FUNCTIONS, Konrad Knopp Provides background for further
volumes 1n this set, or texts on similar level Partial contents Foundations, system of com-
plex numbers and Gaussian plane of numbers, Riemann sphere of numbers, mapping by
linear functions, normal forms, the logarithm, cyclometric functions, binomial series “No}
only for the young student, but also for the student who knows all about what is n 1t
Mathematical Journal 140pp 5% x 8 S154 Paperbound $1.35

THEORY OF FUNCTIONS, PART |, Konrad Knopp. With volume 11, provides coverage of basic
concepts and theorems Partial contents numbers and points, functions of a complex
variable, integral of a continuous function, Cauchy’s ntergral theorem, Cauchy’s integral
formulae, series with variable terms, expansion and analytic function in a power series,
analytic continuation and complete defimition of analytic "'nctmns., Laurent expansion, types
of singularities vii + 146pp 5% x 8 3156 Paperbound $1 35

ORY OF FUNCTIONS, PART Il, Konrad Knopp. Application and further development of
zgrl;:eral theory, special topics Single valued functions, entire, Weierstrass Meromorphic
functions: Mittag-Leffler Periodic functions. Multiple valued functions Riemann surfaces

figurations, Riemann surface x + 150pp 538 x 8
Algebraic functions Analytical configur: 1o o $1.35
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PROBLEM BOOK IN THE THEQRY OF FUNCTIONS, VOLUME 1, Konrad Knopp. Problems in ele-
mentary theory, for use with Knopp’s ““Theory of Functions,” or any other text Arranged
according to increasing difficulty Fundamental concepts, sequences of numbers and infinite
series, complex variable, integral theorems, development in series, conformal mapping
Answers wviit + 126pp 535 x 8 S 158 Paperbound $1 35

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME Il, Konrad Knopp Advanced theory
of functions, to be used with Knopp’s “Theory of Functions,” or comparable text Singular-
ities, entire and meromorphic functions, periodic, analytic, continuation, multiple-valued
functions, Riemann surfaces, conformal mapping Includes section of elementary problems
* The d«fhculft task of selecting M Mgfrgibles%sc “i\St thhmlggepregg/h ofgthe beginner 1s
h S hished,” nswers p 8 X

ere masterfully accomphished,” A 858 Paperbound $135

ADVANCED CALCULUS, E B Wison Shtil recognized as one of most comprehensive, useful
texts Immense amount of well-represented, fundamental material, including chapters on
vector functions, ordinary differential equations, special functions, calculus of variations,
etc, which are excellent introductions to these areas Requires only one year of calculus
Over 1300 exercises cover both pure math and applications to engineering and physical
problems Ideal reference, refresher 54 page introductory review 1x + 566pp 538 x 8

S$504 Paperbound $2 45

LECTURES ON THE THEORY OF ELLIPTIC FUNCTIONS, H. Hancock Reissue of only book m
English with so extensive a coverage, especially of Abel, Jacobi, Legendre, Weerstrass,
Hermite, Liouville, and Riemann Unusual fuliness of treatment, plus applications as well as
theory n discussing umverse of elliptic integrals, originating i works of Abel and
Jacobr Use 1s made of Riemann to provide most general theory 40-page table of formulas
76 figures xxim + 498pp 538 x 8 S483 Paperbound $2 55

THEORY OF FUNCTIONALS AND OF INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS, Vite
Volterra. Unabridged republication of only English translation, General theory of functions
depending on continuous set of values of another function Based on author’s concept of
transition from finite number of variables to a continually infinite number Inciudes much
material on calculus of variations Begins with fundamentals, examines generalization of
analytic functions, functional derivative equations, applications, other directions of theory,
etc New introduction by G C Evans Biography, criticism of Volterra’s work by E Whit-
taker xxxx + 226pp 53 X 8. 8502 Paperbound $1.75

AN INTRODUCTION TO FOURIER METHODS AND THE LAPLACE TRANSFOGRMATION, Philip
Franklin Concentrates on essentials, gives broad view, suitable for most applications Re-
quires only knowledge of calculus Covers complex qualities with methods of computing ele-
mentary functions for complex values of argument and finding approximations by charts,
Fourier series, harmonic anaylsis, much more Methods are related to physical problems
of heat flow, vibrations, electrical transmission, electromagnetic radiation, etc 828 prob-
lems, answers Formerly entitled ““Fourier Methods ™ x + 289pp 53 x 8

S452 Paperbound $1.75

THE ANALYTICAL THEORY OF HEAT, Joseph Fourier. This book, which revolutionized mathe-
matical physics, has been used by generations of mathematicians and physicists interested
in heat or application of Fourier integral Covers cause and reflection of rays of heat,
radiant heating, heating of closed spaces, use of trigonometric series in theory of heat,
Fourter integral, etc Translated by Alexander Freeman 20 figures xxi -+ 466pp 53 x 8

S93 Paperbound $2.00

ELLIPTIC INTEGRALS, H. Hancock. Invaluable in work involving differential equations with
cubics, quatrics under root sign, where elementary calculus methods are inadequate Prac-
tical solutions to problems in mathematics, engineering, physics, differential equations re-
quiring ntegration of Lamé’s, Briot’s, or Bouquet's equations, determination of arc of
ellipse, hyperbola, lemiscate, solutions of problems in elastics, motion of a projectile under
resistance varying as the cube of the velocity, pendulums, more Exposition in accordance
with Legendre-Jacobi theory Rigorous discussion of Legendre transformations 20 figures
5 place table 104pp 536 x 8 8484 Paperbound $1 25

THE TAYLOR SERIES, AN INTRODUCTION TO THE' THEORY OF FUNCTIONS OF A COMPLEX
VARIABLE, P Dienes. Uses Taylor series to approach theory of functions, using ordinary
calculus only, except in last 2 chapters. Starts with introduction to real variable and com-
plex algebra, derwves properties of infinite series, complex differentiation, integration, etc
Covers brumiform mapping, overconvergence and gap theorems, Taylor series on its circle
of convergence, etc Unabridged corrected reissue of first edition 186 examples, many
fully worked out 67 figures xun -+ 555pp 53 x 8 $391 Paperbound $2 75

LINEAR INTEGRAL EQUATIONS, W V. Lovitt. Systematic survey of general theory, with some
application to differential equations, calculus of variations, problems of math, physics
Incfudes integral equation of 2nd kind by successive substitutions, Fredholm's equation
as ratio of 2 integral series in lambda, applications of the Fredholm theory, Hilbert-Schmidt
theory of symmetric kernels, application, etc. Neumann, Dirichlet, vibratory problems.
1x + 253pp 538 x 8 S175 Clothbound $3.50

S176 Paperbound $1.60
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DICTIONARY OF CONFORMAL REPRESENTATIONS, H. Koher. Developed by British Admiralty to
solve Laplace’s equation in 2 dimensions Scores of geometnt:alp forms and transformat):ons
for electrical engineers, Joukowski aerofoil for aerodynamics, Schwartz-Christoffel trans-
formations for hydro-dynamics, transcendental functions Contents classified according to
analytical functions describing transformations with corresponding regions Glossary Topo-
logical index 447 diagrams. 6Y x 9% S160 Paperbound $2.00

ELEMENTS OF THE THEORY OF REAL FUNCTIONS, J. E Littlewood. Based on lectures at
Trimity College, Cambridge, this book has proved extremely successful in introducing graduate
students to modern theory of functions Offers full and concise coverage of classes and
cardinal numbers, well ordered series, other types of series, and elements of the theory
of sets of points 3rd revised edition v + 71pp 53 x 8 S171 Clothbound $2.85

S172 Paperbound $1.25

INFINITE SEQUENCES AND SERIES, Konrad Knopp. 1st publication i any language Excellent
introduction to 2 topics of modern mathematics, designed to giwve student background to
penetrate further alone Sequences and sets, real and complex numbers, etc Functions of
a real and complex variable Sequences and series Infinite series Convergent power series
Expansion of elementary functions Numerical evaluation of series v -+ 186pp 53 x 8

S152 Clothbound $3.50

S153 Paperbound $1.75

THE THEORY AND FUNCTIONS OF A REAL VARIABLE AND THE THEORY OF FOURIER'S SERIES,
E. W Hobson. One of the best introductions to set theory and various aspects of functions
and Fourier's series Requires only a good background in calcutus Exhaustive foverage of
metric and descriptive properties of sets of pounts, transfimite numbers and order types,
functions of a real variable; the Riemann and Lebesgue integrals, sequences and series
of numbers, power-series, functions representable by series sequences of continuous func-
tions, trigonometrical series, representation of functions by Fourier’s series, and much
more ‘‘The best possible guide,” Nature Vol 1 88 detailed examples, 10 figures Index
xv + 736pp Vol |l 117 detaled examples, 13 figures x + 780pp 6% x 94

Vol. | S387 Paperbound $3.00

Vol. 1l S388 Paperbound $3.00

ALMOST PERIODIC FUNCTIONS, A S Besicovitch. Unique and important summary by a well
known mathematician covers in detail the two stages of development in Bohr's theory
of almost pertodic functions (1) as a generahization of pure periodicity, with results and
proofs, (2) the work done by Stepanof, Wiener, Weyl, and Bohr mn generalizing the theory.
X1 4+ 180pp. 538 x 8 S18 Paperbound $1.75

INTRODUCTION TO THE THEORY OF FOURIER'S SERIES AND INTEGRALS, H. S. Carslaw 3rd
revised edition, an outgrowth of author’s courses at Cambridge Historical introduction,
rational, rrational numbers, nfinite sequences and series, functions of a single varable,
definite integral, Fourier series, and similar topics Appendices discuss practical harmonic
analysis, periodogram analysis, Lebesgue’s theory 84 examples. xin + 368pp. 53 x 8

S48 Paperbound $2.00

SYMBOLIC LOGIC

THE ELEMENTS OF MATHEMATICAL LOGIC, Paul Rosenhloom. First publication in any fan-
guage For mathematically mature readers with no traimng in symbolic logic Development
of lectures given at Lund Univ, Sweden, 1948, Partial contents Logic of classes, funda-
mental theorems, Boolean algebra, logic of propositions, of propositional functions, expres-
sive languages, combinatory logics, development of math within an object language, para-
doxes, theorems of Post, Goedel, Church, and similar topics v + 214pp 53% x 8
$227 Paperbound $143

INTRODUCTION TG SYMBOLIC LOGIC AND ITS APPLICATION, R. Carnap. Clear, comprehensive,
rigorous, by perhaps greatest living master. Symbolic languages analyzed, one constructed
Applications to math (axiom systems for set theory, real, natural numbers), topology
(Dedekind, Cantor continuity explanations), physics (general analysis of determination, cau-
sality, space-time topology), biology (axiom system for basic concepts) ‘A masterpiece,
Zentralblatt fur Mathematik und lhre Grenzgebiete. Over 300 exercises 5 figures xvi +
241pp 5% x 8. $453 Paperbound $1.85

AN INTRODUCTION TO SYMBOLIC LOGIC, Susanne K. Langer. Probably clearest book for the
philosopher, scientist, layman—no special knowledge of math required Starts with simplest
symbols, goes on to gwe remarkable grasp of Boole-Schroeder, Russell-Whitehead systems,
clearly, quickly Partial Contents. Forms, Generalization, Classes, Deductive System of
Classes, Algebra of Logic, Assumptions of Principia Mathematica, Logistics, Proofs of
Theorems, etc. “‘Clearest . . . simplest introduction . . . the intelligent non-mathematician
should have no difficulty,” MATHEMATICS GAZETTE Revised, expanded 2nd edition Truth-
value tables. 368pp. 53 8. S164 Paperbound $1.75
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TRIGONOMETRICAL SERIES, Antoni Zygmund. On modern advanced level Contains carefully
organized analyses of trigonometric, orthogonal, Fourier systems of functions, with clear
adequate descriptions of summabihty of Fourier series, proximation theory, conjugate seres,
convergence, divergence of Fourier series. Especially valuable for Russian, Eastern Euro-
pean coverage. 329pp 53 X 8 S$290 Paperbound $1.50

THE LAWS OF THOUGHT, George Boole. This book founded symbolic logic some 100 years
ago. It 1s the 1st significant attempt to apply logic to all aspects of human endeavour,
Partial contents derivatton of laws, signs and laws, interpretations, elimmnations, condi-
tions of a perfect method, analysis, Anstotelian logic, probability, and similar topics.
xvii + 424pp 53& x 8. S28 Paperbound $2.00

SYMBOLIC LOGIC, C. I. Lewis, C. H. Langford. 2nd revised edition of probably most cited
book 1n symbolic logic Wide coverage of entire field, one of fullest treatments of paradoxes,
plus much material not available elsewhere Basic to volume s distinction between logic
of extensions and intensions Considerable emphasis on converse substitution, while matrix
system presents supposition of variety of non-Aristotelian logics Especially valuable sec-
tions on strict limitations, existence theorems Partial contents Boole-Schroeder algebra,
truth value systems, the matrix method, implication and deductibility, general theory of
propositions, etc. “Most valuable,” Times, London 506pp 53 x 8. S170 Paperbound $2.00

GROUP THEORY AND LINEAR ALGEBRA, SETS, ETC.

LECTURES ON THE ICOSAHEDRON AND THE SOLUTION OF EQUATIONS OF THE FIFTH DEGREE,
Felix Klein. Solution of quintics in terms of rotations of regular icosahedron around its
axes of symmetry. A classic, indispensable source for those interested in higher algebra,
geometry, crystallography Considerable explanatory material included 230 footnotes, mostly
bibhiography ‘“‘Classical monograph detailed, readable book,” Math. Gazette 2nd edi-
tion. xvi + 289pp 538 x 8 S$314 Paperbound $1 85

INTRODUCTION TO THE THEORY OF GROUPS OF FINITE ORDER, R. Carmichael Examines
fundamental theorems and their applications Beginning with sets, systems, permutations,
etc, progresses in easy stages through important types of groups Abelian, prime power,
permutation, etc Except 1 chapter where matrices are desirable, no higher math i1s needed
783 exercises, problems xvi -+ 447pp 53 x 8 S$299 Clothbound $3 95

$300 Paperbound $2.00

THEORY OF GROUPS OF FINITE ORDER, W. Burnside First published some 40 years ago,
still one of clearest introductions Partial contents permutations, groups independent of
representation, composition series of a group, isomorphism of a group with itself, Abelian
groups, prime power groups, permutation groups, invariants of groups of linear substitu-
tion, graphical representation, etc ‘‘Clear and detarled discussion numerous problems
which are instructive,” Design News. xxiv + 512pp 5% x 8 S$38 Paperbound $2 45

COMPUTATIONAL METHODS OF LINEAR ALGEBRA, V. N. Faddeeva, translated by C D Benster
1st English translation of unique, valuable work, only one in English presenting systematic
exposition of most important methods of linear algebra—classical, contemporary Details
of deriving numerical solutions of problems in mathematical physics Theory and practice
Includes survey of necessary background, most important methods of solution, for exact,
iterative groups. One of most valuable features 1s 23 tables, triple checked for accuracy,
unavailable elsewhere Translator's note x + 252pp 53 x 8 S424 Paperbound $1 95

THE CONTINUUM AND OTHER TYPES OF SERIAL ORDER, E V. Huntington. This famous book
gives a systematic elementary account of the modern theory of the continuum as a type
of serial order Based on the Cantor-Dedekind ordinal theory, which requires no technical
knowledge of higher mathematics, it offers an easily followed analysis of ordered classes,
discrete and dense series, continuous series, Cantor’s transfinite numbers “Admirable
introduction to the rigorous theory of the continuum reading easy,”’ Science Progress
2nd edition. vin + 82pp 5% x 8 $129 Clothbound $2 75

§$130 Paperbound $1 00

THEORY OF SETS, E. Kamke. Clearest, amplest introduction in English, well suited for inde-
pendent study. Subdwisions of main theory, such as theory of sets of points, are discussed,
but emphasis is on genera! theory. Partial contents rudiments of set theory, arbitrary sets,
their cardinal numbers, ordered sets, thewr order types, well-ordered sets, their cardinal
numbers vi -+ 144pp 53 X 8. S141 Paperbound $1.35

CONTRIBUTIONS TO THE FOUNDING OF THE THEORY OF TRANSFINITE NUMBERS, Georg Cantor.
These papers founded a new branch of mathematics. The famous articles  of 1895-7 are
transiated, with an 82-page introduction by P E B Jourdain dealing with Cantor, the
hackeround of his discoveries their results, future possibnities 1x -+ 21lpp 5% x 8



DOVER SCIENCE BOOKS

NUMERICAL AND GRAPHICAL METHODS, TABLES

JACOBIAN ELLIPTIC FUNCTION TABLES, L. M. Milne-Thomson. Easy-to-follow, practical, not
only useful numerical tables, but complete elementary sketch of application of elliptic
functions Covers description of principle properties; complete elliptic integrals, Fourier
series, expansions, periods, zeros, poles, residues, formulas for special values of argument,
cubic, quartic polynomials; pendulum problem, etc Tables, graphs form body of book:
Graph, 5 figure table of elliptic function sn (u m), cn (u m), dn (u m) 8 figure tabie of
complete elliptic integrals K, K/, E, E’, nome q 7 figure table of Jacobian zeta-function
Z(u). 3 figures. x1 + 123pp 538 x 8 S194 Paperbound $1.35

TABLES OF FUNCTIONS WITH FORMULAE AND CURVES, E. Jahnke, F. Emde.Most comprehensive
1-volume English text collection of tables, formulae, curves of transcendent functions 4th
corrected edition, new 76-page section giving tables, formulae for elementary functions not
in other English editions Partial contents sine, cosine, logarithmic integral,” error integral,
elliptic integrals, theta functions, Legendre, Bessel, Riemann, Mathieu, hypergeometric
functions, etc ‘“‘Out-of-the-way functions for which we know no other source” Scientific
Computing Service, Ltd 212 figures 400pp 554 x 83% S133 Paperbound $2.00

MATHEMATICAL TABLES, H. B. Dwight. Covers in one volume almost every function of im-
portance in applied mathematics, engineering, physical sciences Three extremely fine
tables of the three trig functions, inverses, to 1000th of radian; natural, common logs,
squares, cubes, hyperbolic functions, inverses, (a2 + b2) exp 3ka, complete elliptical in-
tegrals of 1st, 2nd kind, sine, cosine integrals, exponential integrals, Ei(x) and Ei(—X),
binomial coefficients, factorials to 250, surface zonal harmonics, first derivatives, Bernoulli,
Euler numbers, their logs to base of 10, Gamma function, normal probability integral, over
60pp Bessel functions, Riemann zeta function. Each table with formulae generally used,
sources of more extensive tables, interpolation data, etc Over half have columns of
differences, to facilitate interpolation vin + 231pp. 538 x 8 S$445 Paperbound $1.75

PRACTICAL ANALYSIS, GRAPHICAL AND NUMERICAL METHODS, F. A. Willers. Immensely prac-
tical hand-book for engineers How to interpolate, use various methods of numerical differ-
entiation and integration, determine roots of a single algebraic equation, system of linear
equations, use empirical formulas, integrate differential equations, etc. Hundreds of short-
cuts for arriving at _numerical solutions Special section on American calculating machines,
by T W Simpson. Translation by R. T Beyer 132 illustrations. 422pp. 53 x 8

§273 Paperbound $2.00

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS, H. Levy, E. A. Baggott. Comprehensive
collection of methods for solving ordinary differential equations of first and higher order
2 requirements: practical, easy to grasp, more rapid than school methods. Partial contents
graphical integration of differential equations, graphical methods for detailed solution
Numerical solution Simultaneous equations and equations of 2nd and higher orders
“Should be in the hands of all in research and applied mathematics, teaching,”” Nature
21 figures viii -+ 238pp 538 x 8. S168 Paperbound $1.75

NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS, Bennet, Milne, Bateman Unabridged
republication of original prepared for National Research Council New methods of integration
by 3 leading mathematicians ‘‘The Interpolational Polynomial,”” ‘‘Successive Approximation,”
A A. Bennett, “Step-by-step Methods of Integration,” W. W Miine ‘‘Methods for Partial
Differential Equations,’”” H Bateman Methods for partial differential equations, solution
of differential equations to non-integral values of a parameter will interest mathematicians,
physicists 288 footnotes, mostly bibliographical 235 item classified bibliography 108pp
53 x 8. S$305 Paperbound $1.35
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