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PREFACE

IN this text-book on Analytical Conics I have studied to present the prin-
ciples of analytical geometry as applied to the conic sections, keeping
always in view the fact that the subject matter is geometry and not merely
algebra with a geometrical interpretation. The book starts with the ele-
ments and presupposes no previous knowledge of analytical geometry or
conics, but it is advisable that the beginner should have already some
knowledge of graphs.

Some explanation of the order of treatment may appear necessary.
It has become almost conventional in English text-books to define a conic
by the focus-directrix property, and to treat the three varieties in the
order : parabola, ellipse, hyperbola. I have chosen another definition,
which is an immediate extension of the familiar rectangle theorem for a
circle ; next to defining the curves as sections of a cone—and I had re-
luctantly to abandon this method of approach as leading too far into solid
geometry—this definition seems to me to be the simplest, as it was one
of the earliest properties to be discovered, and it leads most directly to
the equations in the standard forms. The focus-directrix property, while
no doubt simple superficially, is by no means an obvious one, as appears
from the fact that it was not discovered until 600 years after Apollonius
wrote his celebrated treatise, and even the existence of a focus in the case
of the parabola was not suspected by Apollonius. For these reasons,
therefore, I have postponed the treatment of the focal properties and
presented their investigation in the form of a little piece of research. As
regards the order, I have taken the ellipse first, because, for a great many
properties, it may be taken as the typical conic; the hyperbola then
supplements the ellipse and provides the theory of the asymptotes. The
parabola, though it is in many respects the simplest of the conics, fails
just for this reason to be a typical conic, and some of the common terms
and definitions, if applied first to the parabola, are devoid of proper mean-
ing. Thus the term “ diameter ”” has only a forced meaning when applied
to the parabola, but its application is readily understood when it has first
been studied in relation to the ellipse and the hyperbola. Again, the
term * eccentricity ’ means primarily the relative distance of the focus
from the centre ; for the parabola the term has only its secondary meaning,
viz. the focus-directrix ratio.

1 have ventured to introduce the idea of homogeneous coordinates
very early (Chap.IL). This greatly facilitates the treatment of parallel

v
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lines and points at infinity. In fact it is scarcely possible to treat pointa
at infinity without homogeneous coordinates. The dual aspect of geo-
metry, whereby the straight line and the point can serve equally as primi-
tive elements, should probably be emphasized from the beginning, but as
most writers and teachers seem to agree in the conclusion that there is
an inherent difficulty in the process of thinking in terms of lines, I have
followed the usual practice in postponing the introduction of line-co-
ordinates until the student has had considerable experience with ordinary
sartesian point-coordinates. The early introduction of the circular points
at infinity seemed to be advisable, as it provides a clear geometrical
interpretation of results which would otherwise have only an algebraic
meaning. :

At Professor Milne’s suggestion I have included a chapter on ‘* Systems
of points on a conic.” The subject matter of this chapter is the algebra
of forms or quantics, which was largely created by Sylvester and Cayley,
but it is so clothed in geometrical language that it may be regarded as
part of geometry, and is so treated by Clebsch in his Vorlesungen; it
thus forms a useful introduction to the theory of invariants which is treated
in the concluding chapter.

In the preparation of the work I have benefited more than I can say
by the constant advice and criticism of Professor Milne. I am indebted
also to Mr. J. Milne, M.A., Master of Method (Mathematics and Science),
Provincial Training Centre, Aberdeen, and Mr. Peter Fraser, M.A., B.Sc.,
University of Bristol, for very useful criticisms. My thanks are due to
the Syndics of the Cambridge University Press for permission to include
many examples from the Cambridge Entrance Scholarship and Tripos
papers, due acknowledgment of which is given in each case. The re-
mainder of the examples, which have been 'carefully selected and
arranged, have been drawn from various sources for which acknowledgment
is impossible, and many have been specially devised. Some of the
earlier chapters have been provided with two sets of examples, A and B,
the second set being of a somewhat harder character and suitable for
the more advanced student when revising. It is hoped that not many
errors will be found among the answers.

In conclusion, I desire to thank the publishers for their unfailing
ocourtesy, and Messrs. MacLehose for the excellence of the printing.

D. M. Y. SOMMERVILLE.

Viororia Uxiv. CoLL., WEeLLINGTON, N.Z.,
July, 1923,



PREFACE TO THE THIRD EDITION

IN the second edition (1929) most of the typographical and other slight
errors of the first edition were corrected. The opportunity has now been
taken in the third edition to subject the book to a thorough revision,
without, however, disturbing the stereotype plates more than was abso-
lutely necessary. With the exception of Chapter XII, therefore, very little
change has been made in the page-numbering, and the numbering of the
examples has not been tampered with except occasionally to replace an
unsuitable example or add a few new ones at the ends of collections. The
inconvenience attached to the use of different editions of the same text-
book has thus been minimised.

Chapter XII, on homogeneous coordinates, has been almost entirely
rewritten, bringing this matter more into line with the modern treatment
which is found especially in the Italian text-books. It is recognised that
the general system of humogeneous coordinates is applicable primarily to
projective geomeiry. Projective coordinates are therefore explained from
the outset, and it is shown how the various metrical systems, areals,
trilinears, homogeneous cartesians, are derived as particular cases. The
transition from projective to metrical coordinates has, however, been left
in a somewhat abrupt state, with the assumption of the metrical definition
of cross-ratio; a full explanation of the projective measure of distance
would have required too much additional matter. In Chapter IV there
has been inserted a discussion of the sections of a cone, the omission of
which from the original edition was a matter of regret to the author. The -
only other substantial change is an expansion of the paragraph in Chapter
II relating to points at infinity and homogeneous cartesian coordinates.

D.M.Y.8.

Victoria Uxrv. CoLw.,
WaLLINGTON, N.Z
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CHAPTER 1.
COORDINATES.

1. Coordinate Network. Picture a sheet of paper ruled in squares, a
sheet of « squared paper.” Taking two of the edges, the position of any
point of the network can be fixed by counting the number of divisions which
separate the point from the two edges. Thus corresponding to every point
there is a pair of numbers, and conversely if the two numbers are noted
the point can be again found. Two such numbers, which fix the position
of a point, are called its coordinates.

The position is not determined absolutely, for it is obvious that if a sheet
of squared paper of unlimited size is given, and two numbers are assigned,
no particular point on the sheet is specified.
Two lines on the sheet must first be 18
assigned—to take the place of the two lli Pl.

|a

edges—and then the two numbers fix the

position of a point relative to these two
" lines or azes.

Denote the two chosen axes of reference

1

by X'0X and Y'OY. Their point of XS 3l 48 7 8%
intersection O is called the origin. We i Y

may then attach numbers to the two sets of i

lines of the network. Attach the cipher Y

0 to the axis Y’OY, and the numbers ¥re. 1.

1,2, 3, ... to the successive parallels going towards the right. The parallels
to the left of ¥’OY must also have numbers attached to them, and it is
convenient to denote them by the negative numbers —1, -2, -3, ... .
With this arrangement we have a regular sequence of numbers, from
negative through zero to positive, such that, without exception, each is
obtained from the preceding by adding on unity.

Similarly the other set of lines parallel to X’0OX will have the positive
numbers 1, 2, 3, ... attached to them when they lie above X’0OX, and the
negative numbers —1, —2, —3, ... when they lie below.

It is a convention that positive numbers refer to the right and above.
It would do equally well to attach positive numbers to the left, negative
numbers being then attached to the right.

We must next imagine the network made indefinitely fine by the
introduction of intermediate rulings, so that through every point there
is a line of each system carrying a definite number.
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Two numbers, positive, negative or zero, being assigned, a point is ‘
now uniquely determined as the point of intersection of the two lines
which carry these numbers. The two axes of reference divide the whole
plane into four quadrants. In the first, XOY, the signs of the coordinates,
naming always « first, are + +. In the second, YOX’, they are — + ;
in the third, X'0Y’, — —; in the fourth, Y'OX, + —.

2. Coordinates. We have now established a system of coordinates
based npon a rectangular network of lines. We may consider the two
coordinates, geometrically, as being the distances

¥ of the point from each axis. If NP is | OY
Ne—=z p and MP | OX, the coordinates are
z=NP=0OM, y=MP=ON;
y 4 and these are called respectively the abscissa
_ and the ordinate of P.
X'o0 z M X The first systematic application of numbers

to geometry was made by Descartes (1637). His
system of coordinates was just that described,
and is consequently called a Cartesian System, or, to distinguish it from
a system of oblique coordinates in which the two axes of reference are not
at right angles, it is called a system of rectangular cartesian coordinates.

The same principle is of wide application, and can be used to establish
a much more general coordinate-system. All that is necessary is to have
two distinct systems of lines, straight or curved, having the property that
every line of the one system cuts every line of the other system in just one
point, and no two lines of the same system intersect. One line of each
system is chosen and has O attached to it. The other lines are arranged
in order, and numbered ... -3, -2, —1, +1, +2, +3,... and intermedi-
ately 1-1, 1-2, etc. Every point is then the intersection of two lines, one
of each system, and is completely determined by
two numbers, 7, y. There may be isolated excep-
tions to the rule that no two lines of the same system
intersect. Thus we may take as the two systems
of lines: (1) a system of concentric circles, (2) a
system of straight lines through their common
centre. The numbers may be assigned so that the
coordinates of a paint are: (1) the radius of the
circle=7, (2) the angle 6 which the radius makes
with a fixed radius. This is called a system of
Polar Coordinates. The common centre is called the pole, the distance
from the pole is called the radius vector, and the angle 0 is called the
vectorial angle. The zero axis from which the angle 6 is measured is called
the snitial line or initial vector.

Fia. 2.

Fi1a. 8.

Another example is found in the meridians and parallels on the surface of the
earth. The coordinates of a point on the earth are then the latitude and longi-
tude, the axes of reference being the equator and a fixed meridian, say the meridian
through Greenwich. Other examples will oceur later.
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In the cartesian system the coordinate lines are all straight, and it is
said to be a type of rectilinear coordinates, as distinguished from a system
like polar coordinates, in which some of the coordinate lines are curved,
and which is therefore a type of curvilinear coordinates.

3. Relation between cartesian and polar coordinates. From the figure
we have, arrows denoting positive directions,

2=0M =7 cos 0, v »
y=MP=rsin 0,
which express z, y in terms of r, 6. < y
Conversely, if z, y are given, we have
=zt +p, 9| f M X
tan6=J. F6. 4.
z

These equations do not determine #, 6 uniquely, for r= V2% +3?, and 0
has an indefinite number of values. If we fix
r=+Va?+g?

then the two equations cos O=zfr, sin O=y/r
determine 0=a+2nm,
where « is any one value of the angle. The principal value is taken to be
that value which lies between — 7 and +.

Thus if z=38, y=—4, then r=15. Taking r=+5, we have cos6=3%,
sin 6= — £, and the principal value of 0 is —tan— 4= —53° 08’ approximately.
Taking r= ~5, we have cos 0= —$, sin =4, and the principal value of 6 is

w®— tan~14=126° 52’ approximately. Hence the polar coordinates of the point
(3, —4) may be (6, —53° 08") or (— 5, 126° 52).

We may note that (r, 0) and ( —r, 7w +0) represent the same point.
4. Distance between two points. Let

P=(z, y;) and Q= (zy Yy
be two points. Draw the ordinates PL, QM, P X
and draw PK || OX meeting QM in K. Then -
PK=LM =z, -,

Y Q

 KQ=MQ-MEK =y, -4y, o L M X

and therefore

PQ2 = (2~ 2,)* + (g~ )" . &

5. Distance between two points in polar coordinates. Let

P=(ry, 6;) and Q= (ry, 6,), Q

8o that
OP=r, OQ=r, LAOP=0, [ AOQ=0, ¥ __—7F

and therefore = £ POQ=0,-0,. 0 : A

Then  PQ2=rg2 +r — 2r;rg cos (6, —0y). Te. 6
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Examples.

1. Find rectangular coordinates for the following points whose polar coordi-
nates are given : (i) (4, 3n); (i) (-2, —4w); (iii) (-4, 4} radians).

2. Find polar coordinates for the points (i) (1, 1); (ii) (-5, 12); (iii) (-2,
- v3); (iv) (0, 0).

3. Calculate the lengths of the sides of the triangle whose vertices are (i)
8,9), (-4,4), (4, -2); (if) (5, 20°), (12, 80°), (-8,40°); and write down
the value of the perimeter.

4. Find the nature of each of the following triangles, whether isosceles or
equilateral : (i) (2, 3), (-1, —-2), (-2, 2); (i) (2, 2), (-2, -2}, (-24/3,
24/8); (i) (1, 1), (5, 8), (3+v3,2-2+/3); (iv) (2,4), (7,9), (9 2); (V)
(-4, -2), (2,643-2), (8, -2), (vi)(5,3), (-4,2), (1, -2).

5. Prove that each of the following sets of points forms
(a) a thombus : (i) (2, 5), (6, 2), (2, =1), (—2,2);

(i) (2, -1), (3,4), (-2,3), (-3, -2);

(iii).(1, -1), (-4, 4), (3,6), (-6, -3).
(b) a square : i @,2), (-3 1), (-2, -3), (2, -2);

(i) (0, 2), (3, 8), (9, 5), (6, ~1);

(iii) (3, 2), (-2, - 1), (1, -6), (6, -3).

6. Area of a triangle. Let one of the vertices be at the origin. Let the
polar coordinates of the other two vertices P and Q be (ry, ;) and (ry, 0,).
Then AOPQ=13r,r, sin (8, -6,)

=4rr5(sin O, cos 6, — cos 0, sin 0;)
=3 (@192 — Zat1)-

7. Sign of an area. If the points P, Q are interchanged the area is
$(x2y; — 71y,), that is, it is the same with its sign changed. The area of a
triangle must therefore be regarded as capable of having a sign, and we
have the result : +f the order of the vertices is reversed the sign of the area
ts changed. When 0,-0, is a positive angle less than 180° the area is
positive, and the vertices OP@Q have the same cyclic order as the positive
direction of measurement of the angle 0, viz. counter-clockwise.

The positive direction can also be defined in this way : if an observer
be supposed to walk round the perimeter in the positive sense he will always
have the area on his left.

8. Area of any friangle. This expression for the area of the triangle
OPQ can be applied to find the area of any closed polygon. Consider a
triangle ABC. Taking into account the signs
of the areas, we have

AABC=AOAB+ AOBC+ AOCA.
Hence we have the formula
LA BO =3{(1Y5—TaY1) + (TeYs— T3Y2) + (X391~ 2193) } 4
=% l z % 1) —_—
z gy 1 0
zg ys 11 F16. 7.

B
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9. Collinear points. The expression for the area of a triangle can be
- applied to'determine whether three points are collinear. If the points
" A=(z, ), B= (25, y), C= (w3, y5) are collinear, the area of the triangle
A BC is zero, and conversely. o
Hence the condition for collinearity is

z % 1= (1Y — ToYy) + (T2Y3 — TsYe) + (@31 — 21y3) =0.
z y; 1
z3 Yy 1

Examples. ;

1. Calculate the areas of the triangles: (i) (2,4), (7,9), (9,2); (ii)( -2,3),
(=17, 5) (3, -5); (iii) OPQ, where P= (5, 30°), @=(7, 60°).

2. Caloulate the areas of the polygons: (i) (2, 2), (-1, —6), (-3, 4),
(_79 “1); (li) (4, 4)’ (_69 "l)’ (5’ "2), ("‘3, 5)’ (-1’ —5); (a') the
vertices being taken in the order that will produce a simple, i.e. non-intersecting
polygon, (b) the vertices being taken strictly in the order given. In case (b) name
the actual parts of the area which have been calculated, each with its proper sign
and the number of times that it is counted.

3. Show by areas that the following sets of points are collinear : (i) 2, 2),
(4' "'4)’ (3s - 1) H (11) (2’ 9)s ( "3’ 12)5 (7’ 6), ( _89 15) H (lil) ( —5! 5)’
(-1,3), (5,0), (7, -1).

10. Joachimsthal’s section-formulae. To find the coordinates of the
point which divides the join of two given points in a given ratio. Let

P=(z, y;) and Q= (x,, y,) be the two given 0

points, and R=(z, y) a point dividing the

segment PQ so that . R }/l
PR: RQ=1:m. P K

Draw the ordinates PL, QM, RN. Then
OL=z,, OM =z, ON-=zx;

LP=y,, MQ=y, NR=y; o] L N M
and LN:NM=PR: RQ=l:m. Fe. 8
Therefore a;—_-:ﬁ:-l—.
Tg—Z ™
Hence z=lm_21_:';'__zl,
Similarly ,,J%f%&.

These are called Joachimsthal’s formulae.

11. Position-ratio of a point. The ratio PR: RQ or l:m is called the
position-ratio of the point R, referred to the base-points P, . When R
lies in the segment PQ the ratio is a positive number. If R lies outside
the segment PQ the ratio is negative, one of the segments PR, RQ being



6 COORDINATES 1

positive and the other negative. As R approaches P, k>0, and as R

approaches @, k—o . Since .
k=PR/RQ=(PQ+QR)/RQ=PQ/RQ -1,

we see that £ — 1 as RQ— , i.e. as R tends to infinity in either direction

along the line.

at o P )
-1 0 +1

Fia. 9.

at co

-1

2
oo

.o

We can now mark the position-ratio of some of the most important
points on the line (Fig. 9). '

Although there is no point whose position-ratio is exactly equal to —1
it is convenient to postulate a “ point at infinity >’ which corresponds to
this value of the position-ratio. This so-called point is to be regarded as
being at both ends of the line at once.

12, Mean points and centres of gravity. When the ratio /:m=1 the
point R is the middle point of PQ, and its coordinates are }(z, +,),
3(y, +y,), or the arithmetic means of the coordinates of P and-Q. R may
be called the mean point of the two points P, Q. If particles of equal
weight were placed at P and @, R would be their centre of gravity. If
particles of weights m, and m, are placed at P and @, the centre of gravity
divides PQ in the ratio m, : m,;, and its coordinates are

Ty +MeTy MYy + MYy
my+mg my +my
To find the mean point of three points.

Let 4=(zy, y,), B=(zy, y5), C= (25, y5) be three points, forming a
triangle. Let L, M, N be the mid-points of the sides BC, C4, AB. The
coordinates of L are }(z,+2,), $(y»+y;s). Find @

dividing the median AL in the ratio 2:1. The 4
coordinates of G are
T, + (g + Zg)
1+z o 5 M
Le. o+ +a), 3y +Ya+Ys)-
From the symmetry of this result it follows that #8 L. c
we get the same point dividing BM and CN in the Fi6. 10.

ratio 2:1. This proves that the three medians
of the triangle divide each other at the same point in the ratio 2: 1.

The point G, whose coordinates are the arithmetic means of the co-
ordinates of the three points A4, B, C, is called the mean point of these
three points, or the centroid of the triangle 4 BC.
~ Similarly, if we have any number of points, the point whose coordinates
are the arithmetic means of their coordinates is the mean point of the
system of points.
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If equal particles are placed at the vertices of a triangle,'the mean
point of the vertices is the centre of gravity of the triangle.*

By placing particles of weights m,, m,, mg at the vertices we get the
centre of gravity of the system

My Ty + Moy + My Ty , MYy +MaYs + Mgy ,
My + My + My my +mg+my

' which is called the mean point of the three points for multiples m;, m,, my.
This may also be extended for any number of points.

Examples. , _

1. Write down the coordinates of the points dividing the join of ( ~ 8, 3) and
(4, 9) in the ratio (i) 2: 1, (ii) 1 : 5, (iii) 4 : 1 externally, (iv) -2:1, (v) 1:-3.

2. Prove that the point (8, 2) is collinear with (-2, —2) and (12, 5); and
find the ratio in which it divides the segment joining them.

3. Find the ratios in which the diagonals of the following quadrilaterals
divide one another: (i) (4, 9), (1, 8), (4, 1), (7, 6); (ii) (10, 10), (14, 2),
(7’ _2)’ (2! 2); (iii) (2’ ’3), (129 _6)1 (7’ _13)r (—4’ "8)'

4, Find in what ratios the join of ( -2, 2) and (4, 5) is cut by the axes.

EXAMPLES I.

1. Calculate the sides and the perimeter of the triangle (20, 50), (—20, - 46),

(48, 5). Calculate also the area, and verify the formula
A=q/{8(s—a)(s~b)(s~c)}

2. Given the quadrilateral 4 (4, 7), B( -85, 3), C(2, -3), D(1, 2), calculate
the areas of the quadrilaterals ABCD, BCAD, CABD, and verify that their
sum is equal to twice the area of the triangle 4BC.

3. Prove that the four points (-3, 11), (5, 9), (8, 0), (6, 8) lie on a circle
with centre ( -1, 2).

4. Find in what ratios the join of (-3,2) a,nd (4, 6) is cut by the axes.

5. What are the coordinates of B if P(3, 5) divides the join of A( -1, 3) and
Bin theratio 2:3 ?

6. Prove that the point whose coordinates are

=2+t~ 21), y=p+iY2—%)
divides the join of (2}, y,) and (z,, ;) in the ratio ¢/(1 —¢).

7. Find in what ratios the diagonals of the following quadrilaterals divide
one another: (i) (5, 6), (-6, 5), (-7, -1), (9, -4); (ii) (8, 1), (-6, 3),
(-7, —4), (6, -3).

8. Show that (2, —1) is the centre of the circle which passes through the
points (-3, —1), (-1, 3), (6, 2); and find its radius.

9. Given the triangle 4 (1, 2), B(8, 4), C(4, 10), find the coordinates of a
point P such that the triangles PCB, PCA and PAB have the same area in .
magnitude and sign. Interpret the result geometrically.

* This is proved in any text-book on Statics. The centre of gravity of a heavy

lamma, like a sheet of tin, in the case where it has more than three corners, does not
in general coincide with that of & system of equal particles placed at the corners.
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10. Prove that the mean point of the vertices of a quadrilateral coincides
with the mid-point of the line joining the mid-points of the diagonals.

11. Prove that the medians of a quadrilateral (the lines joining the mid
points of opposite sides) bisect one another.

12. Apply Ptolemy’s Theorem (AB.CD+BC . AD=AC . BD) to prove that
the points (1, —2), (~2, -1), (4, 7), (6, 3) are concyclic.

13. Apply Ptolemy’s Theorem in the same way to the points (-1, —5&),
(1, =-1), (2, 1), (8, 3). Plot the points, and show by applying the test
AB + BC =AC that the four points are collinear.

14. Show that the point (7, 5) has the same position-ratio with respect to the
two pairs of points (1, 2), (5, 4) and (-5, -1), (3, 3).

15. Find the coordinates of a point which has the same position-ratio with
respect to the two pairs of collinear points (-4, 11), (16, —4) and ( - 186, 20),
(24, -10).

16. Show that there are two points whose position-ratios with respect to the
two pairs of points (-9, —2), (-3, 1) and (-1, 2), (5, 5) are equal, but of
opposite sign.

17. Given two pairs of points 4, B and C, D in a line, show that there are
two points (real, coincident, or imaginary) whose position-ratios with respect tc
A, B and C, D have a given ratio. Explain the apparent abnormality when
this ratio=1.



CHAPTER IL
THE STRAIGHT LINE.

1. Equation of a locus. If the coordinates (z, y) of a point P always
satisfy a fixed equation, the point P is restricted to lie on a certain locus
or curve. ' The coordinates of every point of the curve satisfy the equation,
and every point whose coordinates satisfy the equation lies on the curve.
To every equation there corresponds a locus (the locus of the equation),
which may be drawn by plotting the points whose coordinates satisfy the
equation ; and to every locus which is defined by a definite geometrical
relation there corresponds an equation (the equation of the locus), which
is the algebraic expression of the geometrical relation.

2. To find the equation of the straight line passing through the point
(a, b) and snclined at the angle ¢ to the axis of x.

Let C=(a,b), P=(=y)
and draw CK || Oz. Then : y P(x,y)
CK=z-a, KP=y-b, y-b
and - KCP=the fixed angle ¢. (This is the Cr—%=z K

geometrical property of the straight line.)
Hence y-—b=(z—a)tan{.

Def. The tangent of the angle which a O L -~ M*
straight line makes with the positive direction
of the z-axis is called the gradient of the line. Fre. 11.
Denoting the gradient of the line by p, the equation takes the form
y-b=p(x-a).

8. Conversely, an equation of the first degree in z, y always represents
o straight line. The general equation of the first degree in z, y is

lz +my +n=0.
Let C =(a, b) be any point on the locus, so that
la+mb+n=0.
Subtracting these, we have
l(z—-a)+m(y-b)=0.
8.4.Q, B
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Hence, if P =(z, y) is any point on the locus, and ¢ is the angle which
CP makes with the axis of z, we have

1
tan ¢ =GR _ﬂ_ “n= =constant.

The locus of P is therefore a straight line of gradient —Ifm, passing
torough (a, b). :
4. Special forms of the equation of a straight line.

(1) Gradient forms. Let the straight line make an angle ¢ with the
axis of z. Then the gradient is

p=tan ¢. y |

The line will be fixed if we know g
the point in which it cuts the y-axis. y-b
Let OB=b, and let P=(z,y) be any Bl¥ o K
-point on the line. Draw the ordinate b
MP, and draw BK || Oz cutting MP — 0 M =
in K. Then BE = =z, KP=y-b, and
EP=BK tan{. Therefore Fia. 12.

y=ztan P +b=pr+b. .o 1)

The line will also be fixed if we know its gradient and the coordinates
of any point on the line, C =(z;, y,). Then we have

Y-th=@-z)tan Y=p(Z—2;). .orrerieeriiiiinnns (2)
Let CP=r, then we have
ToT_Y YLy ceerennececesesessnnnennino(3
; cos § sing i )
or =2 +7cos, } ()
ymgy rsin

The first part of (3) is the constraint equation corresponding to the freedom-
equations (4). The constraint equation is the equation in «, ¥ which restricts
the point to the locus. The freedom equations are equations in which the
coordinates x, y are expressed in terms of a single variable or parameter (in
this case r) and express the freedom of the point to move as the parameter
varies ; they are also called parametric equations. When r is given a
succession of values we get successive points on the line.

(2) Imtercept form. The line will be fixed if we know the points 4, B
in which it cuts the axes. The distances

04 =a, OB =b are called the intercepts upon ¥
the axes. Let P=(z,y) be any point on \
the line. Join OP. Then 3
- AOAP+ AOPB= AOAB; sl
therefore ay +br=ab x
or R ® AN

a' b ¥1a. 13.



. 4] FORMS OF EQUATION 11

(3) Line through two points. Let P, =(z,, y,), Py =(x,, ¥5), P =(x, y).
Draw P,HK || Oz. Then, since the triangles P;HP, and P,KP are similar,

we have P, K KP
P,H HP,’ y P
therefore TTHh 97N e (6) | |
T2 Y2~ Y H K
Putting each of these ratios equal to ¢
and solving for z and y, we get the freedom- 0| M MM =3
equations, with parameter ¢, o, 16
p=at ‘("2‘”“1)'} ............ eeemiesseseaaaess (M)
Y=t +t(y2—9)- '

Otherwise : let the equation of the straight line be Iz +my +n=0. Then,
since the line passes through each of the points (z,, y;) and (z,, y,), we have
oy +my, +n=0, lzy+myy+n=0.

Eliminating I, m, n between these three equations, we obtain the equation
of the line in determinant form,

T Yy 1]|=0. e (8
z oy 1
z Yy 1

(4) Polar eguation. Draw the perpendicular. from the origin upon
the straight line. Let ON=p and LzON=a. The y
signs of p and o are fixed according to the usual con- w
vention for polar coordinates. Let P be any point
on the line with rectangular coordinates (z, y) and
‘polar ‘coordinates (r, 0). Then ON =OP cos (0 — a),
te. rcos (0—0)=7. crcrcrrsrnrcuccnnnes 9) 7,

(6) Normal or canonical form. Expressing the
equation (9) in rectangular coordinates, we have )

ZTCOBA+YSINA=P wevrererrracsncense 10
Examples. y p ( ) Fi1a. 15.

1. Find the gradient and the intercepts upon the axes of the following lines,
and reduce each to the normal form: (i) 3z—4y+12=0, (ii) 12x+ 5y=39,
(iii) 152~ 8y+34=0, (iv) 11z+60y=61, (v) z—y=8.

2. Find the equation of the locus of a point which moves under the following
oonditions : (i) equidistant from the points (2, 3) and (-4, 1); (ii) making with
the points (5, 1) and (-1, 2) a triangle of area 6; (iii) difference of squares of
distances from (— 1, 3) and (2, 4) equal to 8.

8. Find freedom-equations for a line (i) through (2, 3) with gradient 2;
(ii) through (1, 4) with gradient — % ; (iii) through (1, 3) and (4, 2).

4. Find the constraint equations from the following freedom-equations ¢

{) z= 2+3t,} (i) o= 3+, (i) g THE, 2+
y=—1+4t; y=-3+1t; ] 2

s Y=5—-
-t 2—-t

6. Find freedom-equations (with integral coefficients, if possible) for the
straight lines : (i) 4+ 3y="7; (ii) 3x—4y=13; (iii) T 3y=8; (iv) 2z +6y=35.



12 . THE STRAIGHT LINE [ 5

6. We shall now apply these forms to the investigation of some metrical
relations between straight lines.
Angle between two straight lines. If the lines make angles {,, ¢, with
the axis of z, then the angle between the lines is
=1~ s y
Let the gradients of the lines be p, and y,, so that
tan ¢, =, and tan §=y,, then

tan = tan ¢, —tan ¢, _ Wi =l [k
1+tan ) tan §p 1+ ppe o~ [/ =
If special values of y, and p, are put in this formula Fic. 18.
it may give a positive or a negative result, and the sign will be changed
if u; and p, are interchanged. The positive sign gives the tangent ot the
acute angle, the negative sign that of the obtuse angle.
If the equations of the lines are

Le+my+n,=0

and L+ myy +n, =0,
the gradients are —1,/m; and —1I,/m,, so that
_Lmy—lmy
tan ¢= Ly +mmy

Condition that two lines may be parallel. The lines will be parallel if
they are equally inclined to the axis of =, s.e. if
g =tee-
In the case of the general equation, the lines will be parallel when

h_b

lmy=lym, or '"71_’.”72,

t.e. if the coefficients of # and y are proportional. The angle ¢ is then zero.
As a special case two lines will be parallel when their equations in

and y differ only by a constant term. If % has any value whatever the line
lz+my=Ek
‘s parallel to the line lz+my+n=0.
Condition that two lines may be at right angles. The condition that
P ==1-; is that ¢; =g +4{,; therefore
1
y, =tan s[ﬁ= —cot g = "

te. : Yqira +1=0.
In the case of the general equation the condition is
Ll +mymy=0.
In particular the lines le+my+n=0
and me—ly =k

are perpendicular for all values of £.
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6. Distance of a point from a line. Let the equation of the line in the
pormal form be y

. ~N
z cos o +y 8in a=p, -
and let P= (2, y) be the given point. | ¢ Pixy)
Draw the ordinate PM. Then, pro-

jecting OM, MP upon ON’ (see Fig. P v

17), we have, if P is on the opposite e : x

side of the line from O, 0 T M A A
2’ cos a4y sin x=0ON'=p+d, Fe. 17.

or =p—d, if P and O are on the same side of the line. Hence
+d=a' cos a+y sin a—p.
If the equation of the line is given in the form

lx+my +n=0,
we have, by equating the ratios of the coefficients
cosoe sina_ —p 1
T T T e T VErm
Therefore d=+(l&’ +my’ +n)[VE+m?.

7. Let the expression lz +my +n be denoted by u, so that the equation
of the line can be denoted by u=0; also let la, +my, +n=u,. Itcanbe
shown that the expression u changes sign as the point (z, y) crosses the
line u=0. :

Let P=(x,, y,) and Q= (x, y,) be two points whose join cuts the line
u=0at R=(x,y). Let PR: RQ=k. Then

z=k.“’2+x1 y=kys +4h
E+1 E+1°
and since these values satisfy the equation of the line, we have
whence ke _mtmytn_
lzy+my, +n Ug
If u; and u, have the same sign, k is negative, and R lies outside the segment
PQ, i.e. P and Q lie on the same side of the.line.

If u, and u, are of opposite signs, & is positive, R lies between P and @,
and P and @ lie on opposite sides of the line.

The line w=0 therefore divides the plane into two regions, such that
for one region >0 and for the other region ¥<0. In order to determine
the different regions it is generally most convenient to determine the sign
of u for the origin.

Two lines » and v divide the plane into four regions, corresponding to
the four combinations of sign of « and ».

Three lines u, v, w divide the plane into seven regions. One is the
interior of the triangle formed by the three lines, and corresponds to a
certain set of signs, e.g. + + +, of u, v, w. The other six regions corre-
spond to all the other combinations of sign except — — —.
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Examples.
1. Find the angle between the following pairs of lines: (i) y=4x-2,
By=3z+1; (ii) y=22+3, y=3z+2; (iii) 3z +4y =17, 2z - 3y=8.
2. Find the distance of 3z +4y =5 from (i) (2, 6) ; (ii) (4, 2) ; (iii) (-1, 12).
3. Find the distance of (2, 3) from
(i) dz+3y="7; (ii) bx+12y=20; (iii) 16z - 8y + 11 =0.

4. Show that (2, —1) and (1, 1) are on opposite sides of 3z 44y =86.

5. Show that (1, 1), (2, 3), (0,7) and (-2, 4) are in the four regions of the
plane made by 3z+2y=6 and 2z —y+2=0.

6. Find the equation of the straight line (i) through (4, 5), parallel to y =5z + 6;
(ii) perpendicular to y =3z —2 and making an intercept 4 on the axis of y; (iii)
parallel to 2z + 3y +11=0, and such that the algebraic sum of the intercepts on
the axes is 15; (iv) perpendicular to 4z +7y+9=0, and such that the triangle
formed with the axes has area 3} ; (v) parallel to /3 +y/4 =1, and such that the
perpendicular from the origin is 8. : '

8. Intersection of two lines. A point of intersection of two loci is a
point which lies upon both loci, and whose coordinates therefore satisfy
the equations of both loci. The coordinates of the points of intersection
are therefore found by solving the two equations simultaneously.

In the case of two straight lines
Le+my+n, =0, ...... eerereesnnne R 4 |
b4+ Moy + 7 =0, .ccoevriiinnnernnnens RN )]
the coordinates of the point of intersection are given by
‘ z -y 1
Mg —mgny  yly—ngly Lmg—lymy”
This gives a unique solution and a definite point of intersection, provided
Limg, + lym,.
9. Parallel lines. Points at infinity. Suppose lm,=I,m,, and let
W/ly=mymg=k. Then equations (1) and (2) can be written

hz+my+ ny =0,
Lz +myy + kny =0.

Regarded as algebraic equations, these are inconsistent unless kny=n,,
in which case the two lines would coincide. Hence, if the two lines do not
coincide they have no point of intersection. The condition lmy=lym, is -
in fact the condition that the lines should be parallel.

Considering, however, the general solution (8), it appears that in this
case the values of = and y for the point of intersection become infinite,
and it is convenient to say that parallel lines determine a point at
infinity.”

With the one exception of parallel lines, two straight lines in a plane
have always a point in common. Two parallel lines have no point in
common, but they have a common direction. Two intersecting lines have
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no direction in common, but they have a common point. Hence two lines
in a plane have always in common either a point or a direction. The use
of the phrase ““ point at infinity,” which is to be regarded as synonymous
with “ direction,” enables us to make the general statement that two
coplanar lines have always a “ point > in common, which may be & *“ point
at infinity.”

' The point at infinity or direction of a line is determined by its gradient,
which is the value of the ratio —I/m. When the line is parallel to the
axis of y, m=0 and the gradient becomes infinite, but the direction is
still properly determined by the two numbers I, 0; similarly when the
line is parallel to the axis of z its direction is determined by the two
numbers 0, m. There is thus an advantage in using the two numbers
—1,m to represent the direction instead of the single number p= —1/m.

A similar device applied to the coordinates of a point has the remark-
able result of enabling us actually to represent a point at infinity by definite
coordinates just as if it were an ordinary point. This we shall now explain.

For the cartesian coordinates , y of a point let us write the ratios
z=X|Z, y=Y|Z. The point is then determined by the three numbers
X, Y, Z which are called its homogeneous cartesian coordinates. 1If p is any
factor, not zero, the homogeneous coordinates (pX, pY, pZ) always repre-
sent the same point as (X, Y, Z). In order that the cartesian coordinates
, y should be definite and finite we have to postulate that Z+0. With
this condition any set of values of X, ¥, Z determines a unique point, viz.
the point whose cartesian coordinates are z=X/Z, y=Y/Z,

The equation of a straight line lz + my + n =0 becomes IX + mY +nZ =0
which is homogeneous in X, Y, Z. The point of intersection of two lines
LX+mY +n,Z=0 and 1,X +m,Y +n,Z =0 is given by

(X, Y, Z) =(myny — myny, mly — nohy, bym, —lym,)
(or any multiple of these). When the two lines are parallel, };m, —l;m, =0,
.. Z=0. If therefore we now remove the restriction that Z +0 we can
represent points at infinity as definitely as ordinary points; they corre-
spond to sets of values of X, Y, Z in which Z =0.

The common “ point > of the two parallel lines lz+my+n=0 and
Iz + my + kn =0 is represented by the homogeneous coordinates

(X, Y, Z)={mn(k-1), nl(1 - k), O}
: =(-m,1,0).
We therefore consider (—m, I, 0) as the homogeneous coordinates of the
point at infinity on the line Iz +my +n=0, or on any paralel line.

When ! and m are not both zero the general homogeneous equation
IX +mY +nZ =0 represents a definite straight line. It cuts the axes ¥ =0
and X =0 respectively in the points (==, 0,1) and (0, —n, m). When
1==0 the line is parallel to the axis of  and the * point” (-2,0,0) is a
point at infinity. When ! and m both vanish the * points *’ in which it meets
the axes are both points at infinity. A line, however, cannot be parallel
to two intersecting lines, but, just as the term “ point ’ has been extended
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to include point at infinity, so now we extend the term * line *’ to include

the “ locus ” of the equation Z =0, and we call this the “ line at infinity.”
The line at infinity is the locus of all points at infinity in the plane. The
point at infinity on any line IX +mY +nZ =0 can now be regarded as its
point of intersection with the line at infinity, for putting Z=0 we obtain
IX+mY =0 which is satisfied by X:Y=-m:{, i.e. the homogeneous
coordinates of the point of intersection are (—m, I, 0).

10. Equation of a straight line through the intersection of two given
lines. Let the equations of the given lines be

Lae+mpy+n=0, ccovvvriiririiiienenee, (1)
UL +MaY +N5=0. cervrririirirriireesienninernnsaes (2

We could, as in § 8, find the coordinates of the point of intersection of these
lines, and then write down the equation of a line passing through this
point. But the result can be much more expeditiously reached as follows.

~ The equation (@ +my +ny) = k(o + Mol + 1) =0 <evreerrrrererrennes 3)

is an equation of the first degree, and therefore represents a straight line.
Also it is satisfied by the coordinates of the point whose coordinates satisfy
both (1) and (2). Hence it is the equation of a line through the intersection
of the given lines. For shortness we may write the equations (1) u=0,
(2) v=0, and (3) u - kv=0.

By giving the proper value to % the equation can be made to repmesent
any line through the intersection of the given lines. Regarding k as a
variable parameter the equation (3) represents a pencil of lines through the
intersection of (1) and (2).

11. Condition for concurrency. The three lines

Lz +my+m;=0, cevrienieieeireneeiee e, (1)
Le+may +75=0, woeevvrrrrrieairrrenrreieecrirennneenn (2)
LE+mgy+n3=0 .courriiiiiirnrinineccrienene, (3)

will be concurrent if the coordinates of the point of intersection of the first
two satisfy the third. Substituting for = and y the values
My =My M by —noly ,
bmy—lymy ~ bymg —lgm,y
we have, provided lmy—1Ilym, +0,

lg(myny — many) + my(nyly — noly) + mg(limy — lymy) =0, ............. (4)
which may be written also in the form of a determinant
L, m n|=0
loy my my
ly mg ny

This is therefore a mecessary condition that the three lines should be
concurrent.
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Conversely, it may be shown that, allowing for points at infinity, the
condition (4) is also the sufficient condition that the three lines should be
concurrent. ‘

Denoting the lines (1), (2), (3) for shortness by u=0, v=0, w=0, the
three lines will be concurrent, if we can find multiples A, w, v, such that

AU+ P+ v
vanishes vdentically.

For Au+po=0 represents a line through the intersection of « and v,
and if w is concurrent with « and v, we can choose the values of A and u,
so that this line may coincide with w. Then Au+ v will be some multiple
of w, say —vw. Hence

Au+py+vw=0
identically. ‘

This is often useful as a test in simple cases when the multiples A, ., v
can be found by inspection.

Ex. Prove that the altitudes of the triangle whose vertices are (z, y,),
(%g Yo)s (3, y3) are concurrent.
The equations of the altitudes are
(z—2,) (% — x3) + (¥ — Y1 (Y2 ~¥5)=0,
(2 — 2,) (23— ) + (¥ — ¥2) (Y3~ ¥1) =0,
(2 — 25) (@) — %) + (¥ — Y3) (41 — ¥2)=0.
Adding the three expreasions on the left-hand side the sum vanishes identically.

12. Bisectors of the angles between two straight lines. Let
Zz cos o+ sin a=p,
zcos B+ysinB=g¢
be the equations of two lines S4, SB, in
the normal form, and let P= (z, y) be any
point lying on the bisector of either the
angle ASB or the angle BSA’. Then, if
PM | SA and PN | SB, PM=PN. But,
having regard only to the magnitudes of
the perpendiculars,

PM =z cos o +y sin & —p,
PN=gxcos 3+ysin P —q.
Equating these, we get '
#(cos oc—cos B) +y(sin . —sin B)=p—gq,
which is the equation of a straight line and represents either the bisector
of the angle ASB or that of the angle BSA’. Having regard now to the
signs of the perpendiculars, we see that while PM and P’ M’ have the same
sign, PN and P’N’ are of opposite sign, hence for the one bisector we have
PM =PN and for the other PM = —PN. The equation of the other

" bisector is then
%(cos a +cos ) +y(sin a +sin B)=p +9¢.
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‘The two bisectors are at right angles, since
LPSB+BSP' =}(ASB + BS4’) =’f;

or, applying the analytical test to the equations, we have
(cos®e — cos? 3) + (sin%a — sin?f3) =0.
In any numerical case the two bisectors can be easily distinguished

by considering their gradients, since these are of opposite sign.
If the equations of the two lines are given in the general form

Lz +myy +n, =0,
lyz + myy + ny =0,
we must first reduce them to the normal form by dividing by V2 +m,3
and VI,2+mg? Then the equations of the two bisectors are
lla:+mly+n1_ l2z+m2y+n,

V2 +m? B Vg2 +mg?

Examples.
1. Find the coordinates of the point of intersection of each line with the next :
() y=3z+4; (ii) 2x-3y=5; (i) 3z+y+2=0; (iv) z=2438¢ y=1-1¢;
(V)z=4+48, y=1-2t; (vi)x=—-38—1, y=2+3t; (vii) y=3z+4. .
2. Find the equation of the line (i) joining the origin to the point of inter-
section of 3z—2y+4=0 and 5x+3y—3=0, (ii) joining (2, 3) to the point of
intersection of z—2y+3=0 and 3z—4y=>, (iii) parallel, (iv) perpendicular to
x+2y=4 and through the intersection of 3z+4y=8 and 2z— 5y+3=0.
3. Show that the following pairs of equations represent the same pencil of
es: (i) 224+3y—8+A(4x—Ty+10)=0 and 3z+4y—11+ p(22—5y+8)=0,
(i) 2244y — 124+ A(2z—3y+9)=0 and 32— 2y+ 6+ pu(2x+ 3y —9)=0.
4. Write down the equations of the bisectors of the angles between the lines :
() x+2y+3=0 and 2¢x—y-5=0, (ii) 42+3y+10=0 and 12z-5y+2=0,
(iii) 3z+2y+2=0and 18z—~y—-1=0.
5. Prove that the two pairs of lines 2+ y+2=0, z—Ty=2 and 6z + 8y + 13=0,
2y+ 1=0 have the same angle-bisectors.

13. Quadratic equation representing a pair of straight lines. It is often
convenient to represent by a single equation a locus consisting of a pair
of straight lines, such as the bisectors of the angles between two given
lines.

Consider any two straight lines lz+my+n=0 and Vz+m'y+n'=0.

The equation e +my+n)('z+m'y+20')=0

is satisfied by the coordinates of any point on either of the given lines,
and by no other values. It therefore represents the two straight lines
together as a single locus of the second degree. Thus, to form the equation
which represents two straight lines whose equations are separately given,
take all the terms to the left-hand side of the equations, multiply together
the two expressions on the left and equate to zero.
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Conversely, if a quadratic expression in z, y can be broken up into
factors of the first degree, the equation obtained by equating the expression
to zero represents two straight lines. Thus the equation

22 —zy —2y%+ 2z +5y=3
can be written (z+y—1)(x—2y+3)=0, and represents the two lines
z+y=1and —2y+3=0. On the other hand, the equation z* +y*-1=0
cannot be reduced, and does not represent two straight lines ; it represents
the locus of a point at unit distance from the origin, 4.e. a circle.

" 14. Condition that the general equation of the second degree should repre-
sent two straight lines. The most general equation of the second degree
inz,yis ax? + by? + 2hay + 291 + 2fy +¢c=0.

Suppose a is not zero. Multiply each term by a, and complete the square
with all the terms which involve z, and we get
(az + hy +g)2 — {(A* — ab) y2 + 2 (gh — af) y + (9 — ac)} =0.
In order that the second part may be a perfect square in y, we must have
(gh — af)?=(h? — ab) (¢ — ac).
Expanding this, and cancelling a, which is not zero, we have
abe +2fgh — aft —bg? — ch® =0, ....coceercrecrvencraannns (A)
Conversely, if this is true, and a + 0, the left-hand side can be written as
the difference of two squares, and therefore factorizes.

If a=0, and b+ 0, we may complete the square in y. Then proceeding
as before, we get the condition 2fgh — bg? — ch® =0, which is the same con-
dition as before with a =0.

If a=0 and 5=0, but A+0, multiplying by % the factors must be of
the form 2 (k1) (hy +9)
hence we must have 2fg=ch, which is again the same condition with
a=0and b=0.

If a=0, =0, and 4 =0, the expression is not of the second degree.

The expression on the left of the condition, which is denoted by A is
called the discriminant of the equation. It may be written in the form
of a symmetrical determinant

A=|a & g|.
' R b f
g f ¢

15. The homogeneous equation of the second degree. The general homo-
geneous equation of the second degree is

az? + 2hay + by? = 0.
The left-hand side breaks up into the two factors
bV —ab
y+—a—%

and these, equated to zero, represent two straight lines through the origin.
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If k* - ab is negative, we say that the equation represents two imaginary
straight lines, and if 42 —ab=0, the two lines are coincident. Imaginary
straight lines which arise from equations with real coefficients always occur
in pairs, and are called conjugate smaginary lines. Similarly we may have
conjugate imaginary points as, for example, when we try to form the
points of intersection of a circle with a line at a greater distance from its
centre than the length of the radius.

Examples.

1. Examine whether each of the following equations represents two straight
lines :

(i) zy=0, (i) zy=2y, (iii) zy+ 322=0,
(iv) 92— 2512=0,  (v) 22+ 442=0, (vi) 10zy+8z— 15y— 12=0,
(vii) 222 — zy+ 52— 2y+2=0, (vitl) 622~ 17zy— 3y2+ 222+ 10y=8,

(ix) 1022 23zy — b5y =29z — 32y — 21, (x) 6x%— 1542 — 2y + 162+ 24y=0,
(xi) 422+9=12z, (xii) 322+ Bay— 242 — 8z + 5y —3=0,
(xiii) 22— 2zy cosec 6+ 32=0, (xiv) 2?— 2zy.cot 6— 42=0,
(xv) 422+ 9y%+ 12242y + 58=0, (xvi) 2%+ 262y + 1792 — 222 — 8y—7=0,
(xvii) 422+ 12xy+ 952 - 202 — 30y + 25=0,
(xviii) 1022— 4oy — 52+ 122— 6y + 3==0,
(xix) 22222y~ 42— 20+ 4y — 1=0, (xx) B+y?—zy—2z—y+1=0.
2. Find the values of A in order that the following equations may represent
pairs of straight lines :

(i) 22+ 2y+ 8z+Ay=0, () 222+ 9xy+ 4yP=)x + 2y,
(ifi) Moy +52+3y+2=0,  (iv) 4~ 0y2~ 28+ 1))z~ 18y=20+ 2N
16. Angle between the two straight lines represented by the homo-
geneous equation. Let
by® +2hwy +az® = by - 112) (y - pe®) 5
then, equating coefficients, we have
' o+ the=—2h/b, wpy=afb.
Let @ be the angle between the two lines ; then

e Bl )

tan p="—"—=.

L Yilre

But (kg — 9)? = (o + 29)® — dpapa = 4 (B2 — ab) [B2.
2V h% —ab

Hence tan g="—"———.

a+b.
Cor. The two lines are at right angles if a +5=0; hence the equation
ax® + 2hzy —ay? =0
always represents two straight lines at right angles.

12. If the general equation aw®-+2hay +Dby®+2gx+2fy+c=0 represents
two straight lines they are parallel respectively to the two straight lines repre-
sented by the homogeneous equation ax®+2hxy +by2=0. Let the factors of
the left-hand side be By — a@ — by) (y — g — by).
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Multiplying out and comparing with the given equation, we have
pata=a/d, py+ue=—2h/b.
Hence aa®+ 2hay +by? = b(y — p,@) (¥ — ox), and the lines are parallel.
Cor. 1. The angle ¢ between the two straight lines represented by the
general equation is given by
2v'h%—ab
a+b *
Cor. 2. The two lines will be at right angles if a +5=0.
Cor. 3. The two lines will be parallel if 42 —ab=0.

18. Lines joining the origin to the points of intersection of two loci.
As an example consider the loci y |

tan =

?2+yt-22+4y—-4=0 o
and z+2y+5=0, o \I\ x
i.e. a circle and a straight line. / \
Make the equations homogeneous by intro- ™ N \
ducing powers of z; thus < \ A\ ]
22 +y?-2(x—2y)2—422=0, N
z+ 2y +52=0. \ \ /
Then eliminate z, and we get the equation N | AN
312 — 16wy — 3152=0. N

This equation is homogeneous in #, y, and is F1a. 19.

satisfied by the coordinates of any point which satisfy the two given equa-
tions simultaneously. Hence it represents the two straight lines joining
the origin to the points of intersection of the two loci. We see also
that, since the sum of the coefficients of 22 and y? is zero, these two lines
are at right angles.

Examples.

1. Find the equation of the lines joining the origin to the points of intersection
of the line z+y=1 with the curve 4z2+ 4y*+ 4z — 2y — 5=0, and show that they
are at right angles. '

2. Write down the equation of the line joining the origin to the point of inter-
section of the curves y?=adz, 23="0%.

3. Show that the lines joining the origin to the points of intersection of the
Hne 22— 3y+4=0 with the curve 22+ 4y + 232+ 122+ 4y=0 are at right angles,

4. Find the angle between the lines joining the origin to the intersections of
the line z— 3y+ 2=0 with the curve 3% — 17zy+ 16y — 12=0.

5. Find the equation of the lines joining the origin to the points of intersection
of the line }(z— 2)+m (y— 3)=0 with the locus 23— y?+ 2zy— 102+ 2y+7=0, and
interpret the result.

6. Find the angle between the following pairs of lines:

(i) 322+ Tay+22=0, (i) 112®+ 162y —42=0, (iii) 323+ 2zy—42=0,
(iv) 2+4ay+2—62-3=0, (V) 622 +ay—y2—2lz—By+9=0.
(vi) 23— Bzy+4y%+ 32— 4=0,
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7. Find the coordinates of the point of intersection of the lines (iv), (v), (vi) of
Ex. 8.

19. Harmonic ranges and pencils.

Def. 1. If the points P, @ divide the segment XY internally and
externally in equal ratios, (XY, PQ) is said to be a harmonic range, and
P, Q are harmonic conjugates with regard to X, Y ; the two pairs of points
are also said to be apolar.

It may be proved that X, Y are then harmonic conjugates with regard
to P, Q.

Def. 2. If (XY, PQ) is a harmonic range, and O is any point not on
the line XY, the pencil O(XY, PQ), formed by joining O to the four points,
is said to be a harmonic pencil, and the rays OP, OQ are harmonic conjugates
with regard to OX, OY ; the two pairs of lines are also said to be apolar.

It is proved in text-books on pure geometry that if any straight line
cuts the four rays of a harmonic pencil in X'Y’, P'Q’, the range (X'Y’, P'Q’)
is harmonic.

A particular case of a harmonic range, which is extremely useful, is
formed by taking the ratio equel to unity. Then one of the points P s
the mid-point of the segment XY, and ; we other point Q is the point at infinity
onthe line XY.

20. Condition that the two pairs of lines through the origin, y=1»x,
y=yx and y=A'X, y=p.'x should be apolar. Draw a straight line cutting
the lines in L, M, L’, M’. If this line is parallel to the first line, L is a
point at infinity, and therefore M must be the mid-point of L'M’. Let the
equation of the straight line be y =Az+¢. Then the abscissae of the points

L', M, M’ are of(N =2, /=N, o/ -2
Hence the condition that the two pairs of lines be apolar, or that M should
be the mid-point of L'M’, is
2 _ 1 + 1
p=A A=A p'=d
This is more usually written in the form
AN jpoh
A-p/ p-p
Def. The expression on the left-hand side (which has a definite value

for any four lines through the origin) is called the cross-ratio of the four
lines taken in the given order, and is written (Aw, A'w.’).

21. Condition that the two pairs of lines
ax®+ 2hxy +by? =0,
a'x2 +2h'xy +b'y2=0,
should be apolar. Let the two pairs of lines be
y=m,} y=\z, }
y=uz,) y=pz;
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then the condition in § 20 can be written in the form
' 20 +Ap) = A+ @) (N +1)

Now A+p=—2h/b, Au=a/b,

: N =20, Nu =d[b.

Therefore the condition reduces to

2(§+al —é_’f.h._’
5 8/ o’
ie. ab’ +a'b—2hh' =0.

29. Equation of the bisectors of the angles between the two straight lines
ax? + 2hxy + by%=0.
It is easily seen that the two bisectors are harmonic conjugates with
regard to the two straight lines, and they are at right angles. The equation
of any pair of perpendicular straight lines through the origin is

22 + 2h\ry — y2 =0.
Since these are also to be harmonic conjugates with regard to the given
pair, we have —a+b—2\=0;
therefore = —${(a-b)/A.

Hence the equation of the bisectors is
ha? - (a —b)zy — hy?=0.

Examples. ;
1. Obtain the equation of the bisectors of the angles between the lines
(i) 822+ 4wy +2y2=0, (if) 222 3zy+2=0,

(iif) 2(z—1)2—6(z— 1)y +2)+(y+2)*=0,
~ (iv) 28— bay+3y2 + 11z — 21y +27=0.
2. Find the equations of the lines which form with the three lines y=0,
y=22, y= —x, in some order, a harmonic pencil.
3. Find the coordinates of the points which form with the three points
(1,0), (4,0), (6,0) a harmonic range.
4. Find the harmonic conjugate of the line y=px with regard to the pair
ax? + 2hay + by =0.
EXAMPLES 1. A.

1. Given the triangle 4(10, 4), B(—4, 9), C(—2, —1), find (i) the equation
of the median through A, (ii) the equation of the altitude through B, (iii) the
length of this altitude.

2. Prove that (—4, —1) is the centre of one of the escribed circles of the
triangle 3z — 4y=17, y=4, 12z+b6y=12.

3. The vertices of a triangle are (2, 1), (5, 2), (3, 4). Find the coordinates
of the centroid G, the orthocentre 0, and the circumcentre 8, and show that
@ divides OS in the ratio 2: 1.

4. Find the equations of the interior bisectors of the angles of the triangie
11z 2y=13, 22x — 19y=3, z— 2y=119, and verify that they are concurrent.
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5. Mark the regions of the plane according to the signs of the three expres-
sions 1 -y, y+1+z, y+ 11—z, and show that the signs cannot be all negative.

6. Show that the following pairs represent the same pencil of lines, and
find for each the relation between A and . in order that they may represent the
same individual line :

(i) z+2y—38+7(3x—y+4)=0 and 8z—5y+15~pu(bx—4y+11)=0,
(ii) 3z—y—T+Ax+y—1) =0 and 2z+3y—1+p(5z—6y—~16)=0.

7. Two equal circles of radius 1 have their centres at the points (0, 2) and
(1, 0); find the equations of their parallel common tangents.

8. A line moves so that the sum of the reciprocals of its intercepts on the
axes is constant ; show that it passes through a fixed point.

9. A line moves so that the ratio of the perpendiculars upon it from two
fixed points is constant ; show that it passes through a fixed point.

10. Show, without reducing to the constraint form, that the following pairs
of freedom-equations represent the same straight line :

(i) z= 2+3¢, g T=—4+6u) (i) z=@+H/2-1), | o x=1+u,}
y=—1+44, y=—948u; y=(1-3t)/(2~-1), y=1-wu.

11. Find for each of the pairs of freedom-equations in Ex. 10 the relation
between the parameters in order that the equations may represent the same
point.

12. Find the coordinates of the in- and ex-centres of the triangle 11x+2y=0,
22z — 19y=0, z— 2y=120.

13. Find the coordinates of the in- and ex-centres of the triangle (50, 20),
{-13, 20), (2, —186).

14. A4, A’ are two points on the z-axis, and B, B’ two points on the y-axis.
AB’, A’B meet in P, and 4B, A’B’ in Q. Prove that OP, 0Q are harmonic
conjugates with regard to the axes, and are equally inclined to each of the axes.

15. Find three values of k& for which k(2?4 y%— 25)+ (3z+4y)(xz—2y—5)=0
represents two straight lines. How are these pairs of lines related to the circle
z*+y2=251?

- 16. Express by a single equation the two lines through (10 2) making an
angle 45° with the line 2x 4 3y—=4.

17. Express by a single equation the two lines through (2, 3) which make
witl) the axes a triangle in the first quadrant of area 123.

18. Prove that the equation of the two lines through the origin perpendicular
to the two lines ax®+ 2hxy + by2=0 is ba?— 2hay+ ay?=0.

19. Show that the lines joining the origin to the intersections of

342+ 5zy - 3y2+22+3y=0 and 3z—2y=1
are at right angles.

20. Write down the equation of the lines drawn from the origin to the inter-
sections of the curve y=2? with the straight line lz+ my+n=0, and show that
if these two lines are at right angles the line lr+my+ n=0 must pass through
& certain fixed point.

21. Show that all chords of the curve 32%— y®— 22+ 4y=0 which subtend a
right angle at the origin pass through a fixed point.
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22. Show that it is impossible for both pairs of points of a harmonic range to
be conjugate imaginaries.

23. Given the following pair of opposite vertices of a square, find the other
p&i.l‘: (1) (l’ 3), (7’ 1); (l.l) (5, 3), ( -3, 1); (11]) (3’ 1), (-1, 7) H (lv) (a, b),
{—a, =b); (V) (%1, %1), (Ta, Ya)-

EXAMPLES II. B.

1. The reciprocals of the intercepts which a line makes on the axes are con-
nected by an equation of the first degree ; show that the line passes through a
fixed point. Examine the case when the intercepts have a constant ratio.

2. A line moves so that the algebraic'sum of its distances from a number of
given points is zero ; show that it passes always through the mean point of the
given points.

3. Prove that the perpendiculars from the points (-8, 10), (1, 2), (1, 11)
on the lines y=3%—5, 2y==, z+y=15 respectively are concurrent, and show
that the reciprocal relation also holds for these two triangles.

4. Prove that if the perpendiculars from the vertices 4, B, C on the sides
B'C’, 0"4’, A’B’ of another triangle are concurrent, the perpendiculars from
A’, B’. ¢’ on the sides BC, C4, AB of the first triangle are also concurrent.

5. Two straight rulers with inches marked on them are laid across one another
at a given angle, so that the zero points do not coincide. Show that perpen-
diculars drawn to the rulers at points having the same marks intersect on a line
parallel to the bisector of the angle between the rulers. (Selwyn, 1914.)

6. Prove that the vertices of the quadrilateral whose sides are given by
the equations L,z + my+n,=0, etc., are concyclic if

(ymg — lgpmy ) (Loly +mgmy) + (lgmyg — lgmg) (4lg + mymg) =0,
and explain why this condition does not involve n;, n,, n;.

7. Find the gradient of a line which, along with the lines z+y=1,
»—2y+3=0, 2¢—3y+1=0 forms a oyclic quadrangle; and explain the three
solutions which can be obtained.

8. Two straight lines making a fixed angle o« intercept segments on the
coordinate axes which are each equal to the fixed segment k. Find the locus of
their point of intersection. (Selwyn, 1907.)

9, Show that the equation of any line-pair whose angle-bisectors are
aa®+ 2hay — ay®=0 is (4 — h)a2+ 2azy + (4 + h)y2=0.

10. Show that the four lines joining the origin to the points of intersection
of the two curves represented by u,+ %, +%y=0 and vy+v;+v,="0, where each
letter denotes a8 homogeneous expression in z, ¥ whose degree is indicated by the
suffix, are represented by the equation

(2509 — vyug)? = (1399 — vy2p) (g — Vgthy)-
Show for the two curves

ax?+ 2hay + by + 29+ 2fy+¢=0 and a’w?+ 2h'zy+ b'y®+ 29z + 2fy+c=0
that these four lines reduce to two.

11. Show that the three lines joining the origin to the points of intersection,
other than the origin, of the two curves represented by u,+u,=0 and v, + v, =0
are represented by the equation ugv, = vgu,.

8.4.0. o
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12. A4, A’ and B, B’ are points on the axes of # and y respectively, each at
a distance a from the origin. Find the locus of a point P such that the pencil
P(AA’', BF’) is harmonic.

13. A variable circle cuts OY in fixed points B, B’ and OX in points 4, 4°.
Show that the equation of the locus of the point of intersection of AB and A’B’
or of AE’ and 4’B is 2?=(y - b)(y ~b’) where O0B=>b and OR’=b’.

14. Show that 2! — y? — 2y tan 0+ 2ay sec 6 —a? =0 represents, for all values
of 0, two straight lines which pass through two fixed points, and find, as 6 varies,
the locus of their point of intersection.

15. 4, A’ are two fixed points on OX, and B, B’ are two fixed points on OY.
Show that the equation of the locus of a point P such that P(44’, BB’) is
harmonic is

bb'ad +aa'yd +} (a+a’) (b+b)ay —bb (a+a )z —aa’ (b+b") v +aa’bb’=0.



CHAPTER IIL
THE CIRCLE.

1. To find the equation of a circle of radius r with its centre at the
origin. Let Pz=(z, y) be any point on the circle. Then, since Va2 +¢? ia
the distance of P from the centre, and this distance is equal to r, we have
Va® +y?=r. Hence the equation of the circle is

2?4yt =r2

2. The tangent at a given point. A tangent to a curve is the limiting
case of a secant when two of the points of intersection come to coincide.
- This suggests a general method of finding the tangent at a given point P.
Take a point § on the curve, not far removed from P ; find the equation
of the secant PQ, and obtain the limiting form of this equation as @

approaches P. ,
To find the equation of the tangent at P=(=,, y,) to the circle

22+ yt=12,
The equation of any line through P is
Y- Y=z -z
If this line cuts the circle again in = (z,, y,), the gradient
Y2=% .
“ =g
We have to find the limiting value of this ratio as @ moves along the circle
into coincidence with P.
Since P and @ both lie on the circle,
ol + =1t =2yt 4y,
therefore Yol -yl =2 -z},

and hence 2" _TaTTe,
To— Ty Y1ty

The equation of the tangent is therefore

y—y1=—;i‘(w—z.).
1
36
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which becomes, on multiplying up,
@, + Yt =2,° + Y1
or finally Ly + Yy, =71%
The student familiar with the differential calculus will recognise that

. A - d,
the gradient of the tangent, viz. Lim %2~ %1_1; %=(J) _
e gradient of the tangent, viz 1m%__:’;1 le5 )y t.e. the

value of the differential coefficient when z=x, and y=y,;.

3. The normal. The normal to a curve at any point P on the curve is
. the line through P perpendicular to the tangent at P. Its equation is
.therefore easily found from the equation of the tangent.

To find the equation of the normal at (z,, y,) to the circle

o’ +yt=1%
write down first the equation of the tangent
@y + Yy =12
Then the equation of a line through (2, y;) perpendicular to this line is
-3 _Y-h
(21 '
t.e. 1% — 2,y =0.

Hence, all the normals pass through the centre.

Examples.
Find the equations of the tangents and normals to the following circles :
(i) 2®+42=25 at (3, 4), (il) 2®+y?*=13 where x= -3, (iii) 2*+y*=a® at the
point where the radius makes an angle & with the axis of z.

4. Pole and polar. The equation

TT YY1 =12 e, (1)
represents a definite straight line whether P=(z,, y,) lies on the circle or
pot. What is its relation to the point when P does not lie on the circle ?

When P lies on the circle there is just one tangent to the circle which
passes through this point, and its equation is
given by (1). When P is outside the circle, Pxyd
on the other hand, two tangents pass through
it. Let U= (', y') be the point of contact of . \¥
one of the tangents. The equation of this
tangent is ax’ +yy =12,
but this line passes through (=, y;) ; therefore
z, @ +ygy =12
This relation also expresses the condition that
the point U should lie on the line
Ty + YY1 =1
Hence this line passes through the point of contact of any tangent from
P to the circle. Since two tangents can be drawn from P to the circle

vy

" F1a. 20.
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it follows that this line is the join of the two points of contact, or the
chord of contact.

If P lies within the circle so that the tangents from P are imaginary,
the line UV is still real, though the points U, V are now conjugate imagi-
nary points. Hence : ;

To every point (zy, ;) there ts related, with respect to a given circle
2 +y2=12 a definite straight line zz,+yy,=r2. This line is called the
polar of the point with respect to the circle, and the point is called the pole
of the line.

5. Harmonic property of pole and polar. Consider any straight line
through P, cutting the circle in U and V. Let Q=(z, y) be any point
on this line, and let one of the points, say U, divide PQ in the ratio & : 1.
Then the coordinates of U are

kx +z, ky+y,
k+1° E+1°
Substituting in the equation of the circle, we get
(ks +2,) + (ky +3,)? =r2(k + 1)3,
te. B2 (a® + 2 — 1) + 2% (2w, + yy; — 1) + (02 + 4,2 —17) =0.
The roots of this quadratic in &, which we shall call Joachimsthal’s equation,
correspond to the two points U, V.

Now, if @ lies on the polar of P, then zz, +yy, —2=0, and the roots are
equal but of opposite sign, i.e. U, V divide PQ internally and externally
in the same ratio. Hence (PQ, UV) is a harmonic range. Conversely,
the locus of harmonic conjugates of P with respect to the circle is a straight
line, the polar of P.

6. The polar of any point P=(x,, y;) with respect to a circle with
centre O is perpendicular to OP. For, taking O as origin, the gradient
of OP is y, : x,, and the gradient of the polar -
is —x; 1y, T Paryn

Further, let OP cut the circle in 4, A4’.

Then, since (44’, NP) is a harmonic range, and
O is the mid-point of 44’,
ON .0OP=042=12

These two results fix the position of the polar
of a given point. 4
Q. What is the polar of the centre ? Fa. 21,

7. To find the pole of the line Ix + my +n=0 with respect to the circle
x2+y2=r% If the coordinates of the pole are (z,, y,), the equation of the

polar is xT, + Yy, =12
Comparing this with the equation of the given straight line, we have
nh_ "

Il m -—n
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Hence i m
x,=—;r“, Y= —'—‘1'2.

The homogeneous coordinates of this point may be written (I: m : -n/r?).
Q. What is the pole of a diameter?

8. Reciprocal property of pole and polar. Conjugate points and lines.

If Q@ = (2, ys) lies on the polar of P=(z,, y,), we have

. Ty%g + Y lYg =1,
This is a symmetrical relation in (z;, ;) and (z,, y,), and hence if Q lies
on the polar of P, P lies on the polar of Q. The points P, Q are called
conjugate posnts with respect to the circle.

It follows also that if the pole of a line p lies on the line ¢, the pole of ¢
lies on p. The two lines p, q are called conjugate lines with respect to the
circle. If L,z +myy +n,=0 and lz+myy +n,=0 are conjugate lines with
respect to the circle, then, substituting the coordinates of the pole of the
first line in the equation of the second, we have

Lis +mymy=n ny[r2.

If P and Q are conjugate points the polar of P passes through @ ; but
the polar of P is the locus of harmonic conjugates of P with regard to the
circle; hence, by the reciprocal propertyof a harmonic range, the two points,
real or imaginary, in which PQ cuts the circle are harmonic conjugates
with regard to P and Q. This is expressed by saying that the Join of two
conjugate points 1s cut harmonically by the circle.

Let us find what is the corresponding property of conjugate lines.
Let p be a given line and P its pole; then any
line through P is conjugate to p. Let ¢ be a
line through P, and @ its pole. Let p, g inter-
sect in 0. Then, since O lies both on p and 2n
¢, its polar passes through both P and @, and is
therefore the line PQ. But if O is outside the
circle, the polar of O is the chord of contact of
tangents OS, OT from O. Since P, Q are
conjugate points (PQ, ST) is harmonic ; there-
fore the pencil O(PQ, ST) is harmonic, s.e. p, ¢
are harmonic conjugates with respect to the
tangents drawn from their point of intersection
to the circle. . Tie. 22.

Examples.

1. Write down the equations of the polars of (1, 3), (2, 1), (3, — 1) with respect
to the circle 2%+ y?=4, and show that they are concurrent.

2. Find the coordinates of the pole of the line 3x— y=1 with regard to the
circle 2+ y2=38.

3. 8 is a fixed point and p a variable line through 8 cutting a circle in U, V.
The tangents at U, ¥ intersect in P. Show that the locus of P is a straight line,
the polar of 8.
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9.Conjugate triangles. Let PQR be any triangle, and let P’ be the
pole of QR, @’ the pole of RP, and R’ the pole of PQ, with respect to a
given circle ; then the polars of P’ and @’ both
pass through R; therefore the polar of R is AP
P'Q’. Similarly P is the pole of Q'R’, and Q 4
is the pole of R'P’. The two triangles PQR
and P’'Q’R’ are therefore related so that each
vertex of the one triangle is the pole of a side of
the other triangle. Such pairs of triangles
are said to be conjugate with regard to the
circle.

If QR is the polar of P and RP the polar
of @, then PQ is the polar of R, and the triangle
PQR is 'said to be self-conjugate with regard F1o. 28,
to the circle.

If O is the centre of the cu:cle, QR | OP, RP] 0Q, PQ | OR, and
O is the orthocentre of the triangle PQR.

Examples.
1. Prove that a self-conjugate triangle has one vertex within the circle and
the other two outside. ‘
2. Show that there is just one circle with respect to which a given triangle
is self-conjugate. (This unique circle is called the polar circle of the given triangle.)

10. The circle 2®+#2=¢® divides the plane into two regioms. If
P=(z,, y,) lies inside the circle, its distance from the centre is less than
the radius, f.e. 2,2 +y,2<#%, whence z,2+y,? ~r2<0; if P lies outside the
circle 2,2 +y,2~92>0. The two regions, the interior and the exterior of
the circle, are characterized by the sign of 22+ 42 —72. In passing from one
region to the other this expression vanishes in crossing the circle, and
changes sign. (Cf. Chap. II. §7.)

11. Geometrical meaning of the expression x®+y2—r®. Suppose
P=(z, y,) is outside the circle. Draw the tangent PT. Then

PI*=PC*-CT%=z2+y2-13. Pxayp
Hence 22 +y,2—12, if it is positive, is equal to
the square of the length of the tangent from P
to the circle.

Draw any line through P cutting the circle
in U, V. The freedom-equations of this line are
Z=a,+p co8 ),
y=y+esing,
where tan ¢ is the gradient and p is the distance
of (z, y) irom P. Substituting these values for z, y in the equation of

the circle, we have (@, +p o8 Y)2+(y, +p sin )2 =12,
ie p* +2p(x, cos Y +y, sin ) + (z,2 + y,* — %) =0.

g

\'4
F1a. 24.
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Let the roots of this equation be p,, p,; then p,p,=2,2+y,2 -2 But
p1=PU and py=PV ; hence

PU .PV=g?2+y?2-1

This product, which depends only upon the position of the point P, is
caltea the power of P with respect to the circle. It is positive and equal
to PT2 when P is outside the circle, negative when P is inside the circle,
and zero when P lies on the circle.

12. Equation of the tangents to a given circle from a given point. Let
the equation of the circle be #® +2=12, and the coordinates of the point
P=(z', y'). Draw any line through P cutting the circle in U, V, and let
@ =(x, y) be any point on this line. Then, if % is the position-ratio of one
of the points U, V with respect to P, @, Joachimsthal’s equation gives

(a2 4 y% — %) + 2k (x2’ +yy' —r®) + (22 +y2 ~12) =0.
If PQ is a tangent, U and V coincide, and this equation has equal roots;
hence (2 + gy —r= (a2 +4 =)@+ g2 1),
This is a relation connecting the coordinates (z, y) of any point on a

tangent through (z’, y'), and therefore expresses by one equation the two
tangents from (z', y').

13. Condition that a straight line should touch a given circle. The
points of intersection of the straight line lz+my+n=0, with the circle
2?+y%*=12, are found by solving these two equations simultaneously.
Eliminating « we have, provided [+0, ;

B(r* -y =(my +n)?,
t.e (B +m2) 4% + 2mny + (n® - 2r2) =0.
This quadratic equation gives two values for y, corresponding to the two
points of intersection. The line will be a tangent if the equation has

equal roots, .e. it m2n? = (I + m2) (n? — 2r2),
ie. 0=P2n2 — Pm22 - |42,
or, since 1 +0, (B+m?)r2=n2

This equation is called the fangential equation of the circle.

Examples.

1. Find the length of the tangents drawn from the point (3, 4) to the circle
22+ 42=16. ’

2. Find the equations of the tangents to the circle 22+ y2=3 inclined to the
z-axis at (i) 60°, (i) 45°.

8. Find the points of intersection of the circle 2+ y?=25 and the straight
line z— 7y +25=0.

4. Show that the equation (z—Ty+25)2=25(22+y%—25) vepresents the
tangents at the points of intersection of the circle 2%+ 32=25 with the line
r~Ty+26=0.
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14. To find the equation of the circle whose centre is («, §) and radius r.
If (z, y) is any point on the circle, the distance of (z, y) from (e, £) is 7.

Hence (@—a)+(y— B =1
Written out in full, the general equation of the circle is
o2+ 42— 20 — 20y + ¥ + P2 —12=0,

an equation of the second degree. Hence the circle is a curve of the
second degree; it is cut by every straight line in two points, real and
distinct, coincident, or imaginary.

This equation is not the most general equation of the second degree,
but involves certain conditions. We may make it a little more general
by multiplying all through by any constant. Then we see that the following
are necessary conditions that it should represent a circle: (1) there is no
term in xy, (2) the coefficients of 2* and y? are equal.

We shall next show that these conditions are sufficient, i.e. if these
conditions are satisfied the equation of the second degree will represent
a circle. The general equation of the second degree is

ax? + by? + 2haxy + 29z + 2fy +¢=0.
With the two conditions (1) A=0, (2) a=>b, the equation reduces to
aa® + ay + 29z + 2fy +¢=0,
which may be written, if a +0,

(o0 ool 2L

a?

The left-hand side represents the square of the distance from (z, y) to
(~g/a, —fla), and therefore the equation represents a circle with centre
(—g/a, —f]a) and radius Vg2 +f* —acfa.

If the coefficients a, g, f, ¢ are all real numbers, the centre is always a
real point, but the radius is real only if g% +f2> ac.

If g2 +f2<ac the radius is purely imaginary, and no real values of »
and y can satisfy the equation, for (z+g/a)? +(y +f/a)® +(ac —g* —f?)[a* is
always positive. The locus consists therefore entirely of imaginary points.
We shall call this a virtual circle.

In the intermediate case where g2+jf2=ac, the radius is zero. The

equation reduces to
(z+g/a)® +(y +f/a)*=0.

The only real values of « and y which satisfy this equation are z= —g/a,
= —f/a, and these are the coordinates of the centre. In this case the
centre lies on the curve, and is the only real point on the locus. Every
point, real or imaginary, which lies on the locus is at a zero distance from
the centre, and the curve is called a point-circle.

Q. What becomes of the circle when a =0 ?
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Examples.
1. Find the centre and radius of the following circles :
(i) 22+ 42— 6x+2y—39=0, (ii) 2 +y2—z—y=0,
(iii) 422+ 492 — 42— 5y +1=0, (iv) 322=y(7-3y),
(v) 22+ y%=2axz, (vi) Ta?+3y2— 4y=(1-22)

2. Write down the equations of the following circles: (i) centre (-3, 2),
radius 7; (ii) centre (—3, 1), radius £; (iii) through (1, 0), (2, 3) and centre
on z+y=1; (iv) through the origin, and centre at (1, 2); (v) through (0, 0),
(a, 0), (0, b).

15. Angle of intersection of two circles. If two circles cut at a point
4, the angle of intersection at that point is the angle between the tangents
to the two circles at that point, and this is “
also equal to the angle between the radii. N
The circles cut at a second point B, and from
elementary geometry the angle of intersection
at B is equal to the angle of intersection at. 4.
We may therefore speak simply of the angle
of intersection of the two circles. If the circles
touch, the angle of intersection is zero. If
the angle of intersection is a right angle, the two
circles are said to cut orthogonally.

18. Condition that two circles should cut orthogonally. If the angle
CAC’ is right, 0C"2=CA2+C'42=12+¢2. But CC' is the distance be-
tween the points («x, B), (&', ') ; hence

(-2 +(B-B)2=(a®+p2—0c) + (a2 + P2 -¢),
which reduces to 200’ + 2R =c+c'.

Examples.

1. Prove that the equation of the polar of (2, y;) with respect to the circle
B+ 42+ 292+ 2fy+ c=0 is 2, + Yy, + g(2+ 7,) +fy+ ¥;)+¢=0; and, in the case
- in which (=), y,) lies on the circle, that this is the equation of the tangent.

2. Find the equations of the tangents and normals to the following circles :
(i) 2%+ 42~ 2+ 4y=20 at (-2, 2), (ii) 22+ 2*— 4+ 9y=0 at the origin.

3. Show that the circles 2®+33=2 and (z—3)2+ (y— 3)2=32 touch at the
point (—1, —1), and find the equation of the tangent at the point of contaot.

4. When the equation of a circle is given in the canonical form

S=a22+ 42+ 292+ 2fy+¢=0,
prove that 8 is equal to the power of the point (2, ).

5. Find the power of the points (1, 2) and (3, — 1) with respect to each of the
circles (i) 23+ 42— 6z— 6y=0, (ii) 23+ 52+ 22+ 4y=10, and state how the points
are situated with regard to the circles. ~

6. Find how the points (-5, 2), (1, 7), (7, 5), (3,—2) lie with respeot to
the two circles 8 =22+ y%+ 82— 10y—-8=0, 8’ =22+y2—8z— 14y+35=0; and
deduce that the circles partially overlap.

7. Find the angle of intersection of the ocircles: (i) 2+ 32— 4x+ 6y=12 and
B+ 2+ 22— 2y=23, (ii) 2+ yP=4 and 22+ 2= 22+ 2.

F16. 25.
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8. Find the equations of the tangents from the origin to the circles

(i) 22+ 42— 62— 10y+25=0, (i) 22+ 32+ 2z — 14y + 18=0.
9. Find the equations of the circles touching the three lines

(i) z=0, y=0, z=a; (ii) =2, y=>5, 3z—4y=10.

EXAMPLES IN. A.

1. Find the equations of the two circles touching the axis of z at the origin
and also touching the line 3y=4x+24.

2. Prove that the following straight lines and ciroles touch, and find the
coordinates of the point of contact :

(i) 3y+2x=0 and 2®+ 2+ 3y+ 22=0,
(ii) 3z—4y=10 and 22+ y2+ 22— 6y=15,
(iii) 5z— 12y=45 and 22+ y*+ 16z — 14y=>56.

8. Show that the circles 22+ 38— dz— 2y — 4=0 and 22+ y3— 122— 8y + 48=0
touch at the point (4%, 2%).

4. At the points of intersection of the straight line 22— y=3 with the circle
22+ y2=4 tangents are drawn cutting in P. Find the coordinates of P.

5. Show that the circles 22+ 32— 4z + 6y +8=0 and 2%+ 32— 102— 6y + 14=0
touch at (3, —1).

8. Show that the point (1, 3) has the same polar with respect to the two
circles 2%+ 42— 102+ 10y +10=0 and 2®+y2—8z+6y+10=0, and deduce the
existence of another point which has the same polar with respect to the twa
circles.

7. Show that the equation (y—~ z+ 3)2+ 2(2— 2)(y+2)=0 represents a circle
Show that z=2 and y+2=0 are tangents, and find what is represented by the
equation z—y=3.

8. A circle of radius 3 touches the circle 2?+y?—2z—2y—-2=0 and also
the z-axis. Find its equation, and show that there are four such circles.

9. Find the equations of the two circles whieh touch both of the coordinate
axes and pass through the point (6, 3).

10. Prove that the equation of the circle whose diameter is the line joining
the points (a, b), (a’, ¥') is (z—a)(z—a’)+ (y—d)(y—b")=0.

11. In the last example, if (a, b) is a fixed point, find the locus of (a’, b’) if the
circle always passes through the origin. Explain geometrically.

12. Two circles touch the axis of y and intersect in the points (1, 0), (2,~1).
Find their radii, and show that they will both touch the line y+2=0.

(Math. Tripos L, 1912.)

13. Find the locus of the point which moves so that the length of the tangent
from it to the circle 22+ y2+ 2z=0 is three times the length of the tangent to the
circle 22+ y2=4. _

14. Find the equations of the tangents to the circle 2%+ y?=25 which pass
through (-1, 7), and show that they are at right angles.

15. Show that the tangents from the origin to the circle

a*+y?— 142+ 2y + 25=0

are at right angles.



34 THE CIRCLE (m

16. Prove that the locus of a point which moves so that the sum of the squares
of its distances from a number of fixed points is constant is a circle whose centre
is the centroid of the fixed points.

17. A point moves so that the sum of the squares of its distances from the
sides of a square is constant ; prove that its locus is a circle.

18. Find the locus of a point such that its polars with respect to two given
circles make a given angle with one another.

19. Show that there are two points on the axis of z from which the tangents
to the circle 2%+ y2— 10z — 8y + 31=0 are at right angles. Find their coordinates
and the equations of the tangents.

EXAMPLES III. B.

1. Find the condition that the line x cos a+ysin a=p should touch the
circle 2+ y?=2qa2. Hence prove that the locus of the foot of the perpendicular
from the origin upon the tangent to the circle has for its equation in polar
coordinates r=a(1+ cos 6).

2. The line z cos a4y sin a=p cuts the circle 22+ 32=4a? in the points F, G
Prove that the equation of the circle described on F@ as diameter is

22442 —a2=2p(x cos a+y sin o — p).

3. A circle is described on a chord of a given circle as diameter so as to cut
another given circle orthogonally. Prove that the locus of the centre of the
variable circle is a circle. (Queens’, 1911,)

4. If a circle cuts the two circles

S=(x—ap+(y— BPE—-172=0, & =(x—a')+(y— p)2—r2=0
at angles 0, 0/, prove that it will cut the circle Sr’ cos 6’— 8’r cos =0 ortho-
gonally. (Queens’, 1910.)

5. Write down the general equation of a circle cutting 22+ y2=¢* ortho-
gonally, and show that if it passes through the point (a, b) it will also pass through
the point c%a/(a?+ b2), c2b/(a®+ b2).

6. Show that the ratio of the distances of any two points from the polar of
the other with respect to a given circle is equal to the ratio of their distances
from the centre of the circle.

7. ¥ S= (2~ a)2+(y—B)2—2=0and 8’ = (x— a')2+ (y— B’)2—r%=0 are any
two circles, prove that the two circles S/r+8’/r'=0, cut orthogonally.

8. Find the locus of points from which it is possible to draw two tangents,
one to each of two fixed circles, which will be at right angles, and prove that the
bisectors of the angles between the tangents always touch one or other of two
fixed circles.

9. If P and Q are a pair of conjugate points with respect to a circle, prove
that the sum of their powers with respect to the circle = P2

10. Three circles cut each other orthogonally. Prove that the centres of any
two are conjugate with regard to the third circle.

11. A variable chord PQ of a given circle subtends a right angle at a given
point A. Find the locus of the pole of PQ with regard to the circle. Interpret
the case when A lies on the given circle.
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12. Find the locus of mid-points of chords of a given circle which pass through
a fixed point. )

18. Show that the equation of the chord of the circle 22+ 32— 2ax— 2By +c=0
which i8 bisected at (z’, y’) is
o'+ yy’ — w(@+2) - Bly+y)+o=a"+y? - 200’ — 2By’ +ec.
14. Show that a point-circle cuts itself orthogonally ; and conversely, if a
circle is orthogonal to itself it must be a point-circle.
15. Show that two virtual circles cannot satisfy the condition for ortho-
gonality.

16. If four circles cut in pairs orthogonally, prove that one and oﬂy one of
them is virtual,



CHAPTER 1IV.
THE ELLIPSE.

1. THE conics or conic sections were so named from the way in which
they were first studied, as sections of a cone.

Consider a right circular cone with vertical
angle 20. It is generated by a line OP which
rotates about a fixed axis OC, the angle POC
being always equal to . The point O is called
the vertex. As the generating line OP is un-
- limited in length, the conical surface extends to
infinity on both sides of the vertex and consists
of two sheets joined at the vertex.

Every section perpendicular to the axis
(transverse section) is a circle, and every section
through the vertex consists of two straight lines,
real, coincident, or imaginary.

Consider an oblique plane making with the
axis an angle 8. Let the plane through the axis perpendicular to the
plane of the section cut this plane in 44’. Take any point P on the
curve of section and draw PM 1 AA’. PM is then perpendicular to
the plane 044’, and the transverse plane through P contains PM
and cuts the plane 044’ in T7", which is a diameter of the transverse
section. Now, the transverse section being a circle,

PM2=TM .MT.
Also TM sin@+a) MT _sin(@-o)
AM™ cosa ' MA~  cosa °

Hence PM2*=k.AM .MA4',

where k is a constant =sin (B + «) sin (B — «)/cos? .

When B>a, the plane cuts only one sheet of the cone (as in Fig. 25a)
the section is a closed curve called the ellipse, and k is positive. The
plane through O parallel to the cutting plane meets the cone only in O.

36
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When B<a, the plane ‘cuts both sheets (Fig. 25b); the section is a
curve, with two open branches, called the hyperbola, and % is negative.
The plane through O parallel to the cutting plane cuts the cone in two
generating lines

P
Fia. 25b. ¥1a. 25e.

When f=a, the plane is parallel to a tangent-plane of the cone; the
section is an open curve called the parabola (Fig. 25c). In this case M 1"
is constant =204 sin « ; also TM =24M sin a, hence

PM2=404 sinta . AM,
t.e. PM2: AM is constant.

1a. Focal properties (Dandelin’s construction).

(1) When the plane of section is not parallel to a tangent-plane, there
are two spheres inscribed in the cone
and touching the plane of section in
points F, F'. These spheres have ring-
contact with the cone, each touching the
cone along a circle. Let P be any point
on the curve of section and let the
generating line through P touch the two
spheresin E, E'. Then since PF and PE
are both tangents to the same sphere,

PF =PE;
similarly PF'=PE',
Hence if the section is an ellipse,

gso that E, E’' lie on the same side
of O,

PF +PF' =PE + PE =constant.
If the section is a hyperbola, it may be shown similarly that the differ.

'~ ence

PF ~ PF’ =const.
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F, F’ are called foci. For the ellipse the sum, and for the hyperbola the
difference, of the focal distances is constant.

(2) Let the plane of section cut the plane of contact of one of the
spheres in NX, and draw PN LNX, and PK lthe plane of contact.
Then

PK =PN cos 3,
also PK=PE cos a=PF cos a.
PF cosB
Hence PN cosa— const.

The fixed line NX is called the directriz corresponding to the {ocus F.
Hence we have the “ focus-directrix property > of a conic : the distance of
any point on a contc from a focus bears a constant ratio to its distance from
the corresponding directriz. For an ellipse the ratio is less than unity, for
a hyperbola it is greater, and for a parabola it is equal to unity.

There is one property which every section of a cone possesses, viz. it
is cut by an arbitrary line in its plane in two points, real, coincident, or
imaginary. This property is expressed by saying that a conic is a curve of
the second order, and a consequence of this is that the equation of a conic
in cartesian coordinates is of the second degree. The converse of this
will be dealt with when we consider the general equation of the second
degree.

1b. To define the conics as plane curves, without having recourse to
three dimensions, we shall use the property proved in § 1,

=kAM . M4,
which is a modification of a well-known property of the circle.

2. To find the equation of the ellipse in its simplest form. Take A’A
as axis of z and the mid-point of 4’4 as origin. Let 4’'0=0A=a. Then
MP=y, OM=z, A’'M=a+z, MA=a-z. \
Hence from the defining property

PM2=kA'M . MA,
we have y2=k(a+a)(a—2)=k(d® - .

This equation, which is of the second K M
degree, contains only squares of z and y; v\/
hence the curve is symmetrical about both
axes. -
Putting x=0, we find where it cuts the . rBze

axis of y, viz. where y*=Fka?. Since, for the ‘ @
ellipse, % is positive, this gives real values of y. Let ka®=06% Then the
equation takes the form 2 2

—"+z§ 1,

a
and the curve cuts the axis of y in two points B, B’, such that B'°O=0R ~«b.

1B
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Cor. Writing the equation in the forms

s_ L. ¥ y_. .2
E“\/l # Nl g

we see that there are no real values of z for values of y greater than b,
and no real values of y for values of x greater than a. Hence the ellipse
lies everywhere in the finite part of the plane, in fact within a rectangle
the equations of whose sides are = +a, y= +b.

If a>b, A’A is called the major azxis and B'B the minor axis. The
points 4, 4’, B, B’ are called vertices.

If a=b, the curve is a circle.

8. From the close resemblance of the equation of an ellipse to that of
a circle the curve possesses many properties similar to those of a circle.

Thus, by exactly the same method as in the case of the circle, we find
that the equation of the tangent at (z', y’) is

§— + yblz =1

When (', y’) lies outside the curve, this equation is the equation of
the chord of contact of tangents from the point to the curve, and in all
cases represents the polar of (', y') with regard to the ellipse. The polar
of P is the locus of harmonic conjugates of P with respect to the curve.
The same reciprocal properties of pole and polar hold as in the case of the
circle. If the polar of P passes through @, the polar of Q passes through P;
P and @ are conjugate points, their polars are conjugate lines. A pair of
con]ugate points are harmomcally separated by the points in which their
join cuts the curve; a pair of conjugate lines are harmonically separated
by the tangents from their point of intersection to the curve. The relation
between the coordinates of two conjugate points (z,, y,) and (z,, y,) is

‘”1"”2 LN =1
B

The relation between two conj ugate lines .
Lz +my+n;=0 and lz+myy+n,=0,

is a?l 1, + BPmymy =mnn,.

4. If (x, y) is a point on the curve, so is the point (-2, —y), and the
join of these points is bisected at O. Thus every chord of the curve which
passes through O is bisected there. O is therefore called the centre of the
ellipse. A chord through the centre is called a diameter.

The polar of the centre (0, 0) is the line at infinity, and the polar of a
point at infinity passes through O and is a diameter.

5. For all points on the ellipse, 2%[a®+y2[b2~1=0. We may show
further that, according as (z, y) is inside or outside the ellipse, the expres- -
sion #[a?+4%/b*—1 is << or > 0. Join OP cutting the ellipse in Q, and

8 0. b
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let OP=k.0Q. Then the coordinates of Q are (z/k, y/k). But Q lies on -
the ellipse; therefore a?/a?+y?/b2=k%. Now P is outside or inside the
ellipse according as & > or < 1, 1.e. according as 22/a® +y2/b® > or < 1.

6. The circle whose diameter is the major axis 4’4 is called the major
auxiliary circle or simply the auwziliary circle. If MP produced cuts the
auxiliary circle in @, P and @ are called corresponding points. Let

P=(2',y) and Q=(z, y,);
z"?

yrz .
then —be—z=1 and 2'2+y.2=d3;

%y', te.QM : PM=a:b.

Hence the ordinate of every point on the ellipse bears a constant ratio
to the ordinate of the corresponding point on the auziliary circle.
The tangents at P and @ are respectively

therefore y,=

7’ ’

w .Y
@ TE T
, . T LYY
and oz’ +yy;=a?, fde. 2 +%=l.

These meet the major axis at the same point (a2/z’, 0).
Join OQ and draw through P a line || QO cutting the axes in H, K. Then
PK=0Q=a, ’
and PH :Q0=PM :QM =b:a;
therefore PH=b and HK=a-b.

This result affords a means of describing
the ellipse mechanically. If two pegs H, K
are fixed on a rod at a distance apart equal
to ¢, and slide in grooves fixed at right angles, 0
a point P on the rod which divides KH K
externally in the ratio ! : m will describe an - B’
ellipse whose axes lie along the grooves ; the
lengths of the semi-axes being P

KP=clf(l-m) and HP=cm/[(l—m).

This is the principle of the carpenter’s trammel, or elliptic compasses.

It may be proved also directly that if P divides KH, either internally
or externally, into two fixed parts KP=a and PH =5, the locus of P is
an ellipse with semi-axes a and . More generally, if a parallelogram
with diagonals 2¢, 2¢’ moves so that two opposite vertices slide along fixed
rectangular axes, the other two vertices describe ellipses with axes c+¢'.

If the rod is kept fixed while the grooves are moved, a fixed point on
the rod will trace an ellipse on the moving surface. This arrangement
enables an elliptic cylinder to be turned on a lathe. The fixed point is
the cutting tool, and the wood to be turned is fixed to the surface which
carries the grooves. The whole arrangement is called an * oval chuck.”

A HM A
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Examples.

1. Prove directly that the equation of the tangent to the ellipse z2/a%+ y2/b2= 1
at the point (2, y) is z2’/a+ yy’/b2=1.

2. Prove that the locus of harmonic conjugates of the point (2, ') with
regard to the ellipse 22/a®+ y2/b®=1 is x2’Ja® + yy’ [b2=1.

3. Show that the tangents at the ends of a diameter are parallel. ‘

4. Find whether the points (0-9, 0-9), (13, 0:4) lie inside or outside the ellipse
222+ 3y2—14, ’

5. Find within what values of ¢ the points on the line z=1+1¢, y=2¢ will lie
within the ellipse 22/9 + /4= 1.

6. Show that 4x+3y=11 is a tangent to the ellipse 242+ 3y2=11, and find
the coordinates of the point of contact.

7. If a circle is drawn on the minor axis of an ellipse as diameter (the minor
auziliary circle), and the perpendicular PN on the minor axis from any point P
on the ellipse cuts this circle in Q, prove that NP: NQ=a:b. (Q is called the
corresponding point on the minor auxiliary circle.)

8. If @ and @’ are the points which correspond to P on the major and minor
auxiliary circles respectively, show that QQ’ passes through the centre.

9. Two circles have a common centre O. A variable radius cuts them in Q
and ¢’. Through Q and Q' are drawn lines parallel respectively to two fixed
rectangular diameters. Show that the locus of their intersection is an ellipse.

7. Condition that the line Ix+my+n=0 should be a tangent to the
ellipse x?/a®+y%/b*=1. We find the points of intersection of the straight
line with the ellipse by solving the two equations simultaneously. Elimi-
nating y, we have P23y go(ly 4 n)? —a?b?m? =0,
giving a quadratic for % :

(0?1 + 5°m?) a2 + 202nlz + a2 (n2 — b2m?) =0,

Hence we get two values for z, and corresponding to each of these we get
one value for y from the equation of the straight line. These are the
coordinates of the two points of intersection of the straight line with the
ellipse. If the line is a tangent, the two points of intersection will coincide,
and the quadratic equation must have equal roots. The condition for
this is a*n?R = a2 (a0 + b2m?) (n? — b2m2),

which reduces to atP + b?m2 =m2.

This is therefore the tangential equation of the ellipse.

8. The equation of the two tangents from (z, y’) to the ellipse is

o Y '-(’i’ ¥ )(i’f v )
(a’+b3 l) At \ag+tE-1)

The two tangents from (', ') to the ellipse are at right angles if the
sum of the coefficients of 22 and y? in this equation is zero, s.e. if

13/'2)1:0’2 ie. if 224+ y2=q?

(;i<-b7—1 +F(a_’_l)=0’ te if 22 +y2=ad+p2 ‘
Hence the locus of points, the tangents from which are at right angles, is
8 circle concentric with the ellipse. This circle is called the orthoptic circle.



40 THE ELLIPSE ' [1v. 8

This circle is very often called the director circle, since in the case of a parabola
it reduces to the directrix, but the name is much more applicable to the circles
which are noted in §24. The first use of the term director circle, or simply
director, appears to be found in a work by THoMAS GaskiN, The geometrical
construction of a conic section subject to five conditions (Cambridge, 1852), but the
property of this circle was proved by DE LA HIRE (Sectiones conicae, Paris, 1685),
and the analogy with the directrix of a parabola was pointed out by R. J.
Boscovicu (Sectionum conicarum elementa, Venice, 1757). Its properties, and
those of an analogous sphere in solid geometry, were developed by MonGE, and
in France the circle is often called the circle of Monge. The term orthoptic circle
was used by H. P10QUET, Etude géométrique des systémes ponctuels et tangentiels
de sections coniques (Paris, 1872). CHARLES TAYLOR suggested the term orthocycle;
see his Ancient and modern geometry of conies (Cambridge, 1881, p. 280), which
contains many valuable historical references.

9. Conjugate diameters.

Def. Two diameters which are also conjugate lines with regard to the
ellipse are called conjugate diameters.

Each of two conjugate diameters bisects all chords parallel to the other.

Let PP’ and DD’ be two conjugate diameters, and let ST, any chord
parallel to DD', cut PP’ in M. Since DD’ s n
is conjugate to PP’ it passes through ), the
pole of PP’, which is the point at infinity on
DD’. Since ST is parallel to DD’ it also
passes ' through Q. (ST, MQ) is then a
harmonic range, and therefore M is the mid-
point of ST. '

When the chord ST becomes a tangent, /
its mid-point M coincides with the point of 0
contact, and lies on PP’ ; hence the tangents
at the ends of a diameter are parallel to the conjugate diameter.

To find the relation between the gradients of two conjugate diameters.

Let y =,z and y=p,z be the equations of two conjugate diameters.
Let P=(x,, y,) be a point on the first. Its polar with regard to the ellipse
22/a? + 42 (b2 =1 is @z, [a® + yy, [b?=1." Since y, =%, We can write this

D
Fe. 28.

z. ., 491
a? 91 bz_xl'
For all values of =z, this represents a line parallel to the diameter

b2z + 1,02y =0, and as #;—>, it tends to coincidence with this diameter.
Identifying this equation with the equation y=p,, we have

Po= — 03,02, it pypg= —b%[a%
Examples. '
1. Show that the line y== uz+ v/a2u2+ b2 will touch the ellipse 22/a® + y3/b2=1
for all values of p.

2. Find the equations of the tangents to the ellipse 22/16+ *=1 which make
with the axis of z an angle of 60°.
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3. Show that the equation of the tangents to the elipse 22/a?+32/b%=1 a¢

its points of intersection with the line lx+ my+n=0 is
(lz+ my + n)2=(22/a®+ 42 (0% — 1) (0?2 + b2m® — n2),

4. An ellipse slides between two straight lines which are at right angles;
show that the locus of its centre is an arc of a circle.

5. Find the coordinates of the mid-points of the following chords of the
ellipse 22/9+42/4=25: ‘

(i) 14z—3y+150=0, (ii) 2z+3y+6=0, (i) 2z—y+ 10=0.

6. Find the coordinates of the mid-point of the chord z+ 2y=1 of the ellipse
422+ 52 =20,

7. Find the equation of the chord of the ellipse 222+ 3y®=12 which has its
mid-point at (1, 1).

8. Find the locus of mid-points of chords of the ellipse 3x*+ 44%2=8 which
pass through the point (2, 3). )

9. Prove that the equation of the chord of the ellipse 22/a%+ 32/b%= 1 which
is bisected at («, B) is a(z— «)/a®+ B(y— B)/63=0.

10. Show that the locus of the mid-points of chords of the ellipse
2%ja?+ 42 [b2=1
which pass through (e, B) is z(z— «)/a%+ y(y — B)/b2=0.
11. Prove that conjugate diameters of a circle are at right angles.

10. Eccentric angle. The freedom-equations of the auxiliary circle are
T=acos @, y=asin g,
where ¢ is the angle ACQ. If P is the corre- 0
sponding point on the ellipse, its coordinates
are (see § 6),
z=acos @, y=bsinq.
These are therefore freedom-equations of the 2
ellipse. The angle o is called the eccentric angle
of the point P. We may conveniently speak
of the point @ on the ellipse.
Q. Could the eccentric angle be defined by
means of the circle on BB’ as diameter, the Fia. 29.
minor auxiliary circle ?
The eccentric angles of the extremities of any diameter differ by =,
or more generally by an odd multiple of =. For if (z,, y;) and (z,, y,)
are the two ends of a diameter,
Z;=a cos @, = —%, =a cos (¢ +T),

y1=>bsin o, Yp=—y,=bsin (¢ +m).
The eccentnc angles of the extremltles of two conjugate dlameters

differ by 3> Or an odd multiple of T 3 For if ¢, o' are the eccentric angles,

we have from the relation zz’/a®+ yy’[62=0,
€03 ¢ ¢o8 @’ +sin @ 8in @' =0,

e cos (p —¢’)=0; therefore p—@'=(2n+1) g
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The diameters of the auxiliary circle which correspond to conjugate
diameters of the ellipse are therefore at right angles, and since conju-
gate diameters of a circle are at right angles we have the result that to
conjugate diameters of an ellipse correspond conjugate diameters of the
auxiliary circle.

11. Angle between conjugate diameters. The gradient of the diameter
through the point ¢ is =2 tan @, and the gradient of the comjugate
diameter is .’ = - oot ¢. Let © be the angle between the two diameters.

Then —2 (tan @ +cot )

I e TN -
tan 0= Trpe T 28— gz C0sec 2q.

T
. 2
and the principal axes are the only pair of conjugate diameters which are

The maximum value of the smaller of the two anglesis 5 when ¢=0 or ud ,

at right angles. The minimum value of the angle occurs when 2(p=g )
t.e. when cp=1t , and then tan 6 =2ab/(a®—?%). The gradients of the two

diameters are then +b/a, s.e. they are equally inclined to the major axis,
and, from the symmetry of the ellipse, are therefore equal. They are
called the equi-conjugate diameters. They are easily constructed as the
diagonals of the rectangle formed by the tangents at the ends of the axes.

12. Supplemental chords. If PCP’ is a diameter and\Q is any point
on the ellipse, QP and QP’ are called supplemental chords.

The diameters parallel to a pair of supplemental chords are conjugate.
Draw the diameter SCS’ || @P; and let it cut QP’ in M. Then,since C
is the mid-point of PP’, M is the mid-point of
QP'. Hence the diameter S8’ bisects the chord Q
QP’, and is therefore conjugate to the diameter
which is parallel to QP’. This affords u simple S
way of constructing a pair of conjugate dia-
meters making any given angle with one another.
On any diameter PP’ construct an arc of a circle P s’
containing the given angle. If this cuts the
ellipse in a point @, then QP and QP’ are parallel Fia. 30.
to the conjugate diameters. If the given (acute)
angle is less than the angle between the equi-conjugate diameters the
circle will not cut the ellipse in any points besides P and P’, and the
problem is insoluble.

13. Let P=(x,, ;) and D=(x,, y,) be extremities of two conjugate
diameters, so that T,=aC0o8Q, Ty=—asing,

y;=bsin @, ys= bcos .
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Then CP2=x2 +y,2=a? cos? p + b% sine,
OD?=2,% + y,2=0a?sin?g + b% cos®@.
Hence CP24+COD%2=a%+02,

s.e. the sum of the squares of two conjugate diameters is constant.

14, The equatlon of the tangent at the point <p is found by putting
Z,=a cos @, ¥, =b sin @, and is thus
z y _
So08Q+y sin p=1,
or bz cos @ +ay sin ¢ =ab. ‘
Let p be the length of the perpendicular from the centre upon the
tangent; then

T o _a
a?sin?q + b2 costp CD?’
‘e p.CD=ab.

Hence the area of the parallelogram formed by the tangents at the ends of two
conjugate diameters 1s constant and equal to 4ab.

15. To find the equation of the chord joining the points ¢, ¢’. The
coordinates of the two points are (a cos ¢, b sin @) and (a cos ¢, bsin ¢’);
hence the equation of the chord is
' z-acosp a(cosp’—cosq) asin}(p+9)
y-bsing b(sing’-sing)  bcosi(p+e)
which reduces to

%cos Ho+9) +'%sin $(p +¢’) =cos ¢ cos } (¢ + ¢’) +sin ¢ sin (e + @’)

—cos }( - ).
By putting ¢ =¢’ =a, this becomes the equation of the tangent at a

z
Teosa+?
a b

If @ +¢’ is kept constant =2a, we have a system of chords

%sinoc=cos§(¢p—<p'),
all parallel to the tangent at «. . Hence for a system of parallel chords the
sum of the eccentric angles of their extremities is constant, and is equal to
double the eccentric angle of the point of contact of a tangent parallel to the
chord.

Note. If the eccentric angle is not measured always the same way
round, it may be necessary to add or subtract 2r from the sum.

sina=1.

4
~COos & +
a

16. Let SPQ be a secant of an ellipse drawn through the point S =(z’, y’).
In the case of a circle the product SP . SQ depends only on the position
of the point S, and is independent of the direction of the secant. We shall
investigate the corresponding property for the ellipse.
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The equation of a line through S may be written
-z Y- y
cos® smnQ
where 0 is the angle which the line makes with the major axis, and r is
the distance of the variable pomt (x, y) from the fixed point (z', ¥').
Substituting the values of @, y in the equation of the ellipse, we have

Y3(z’ +r cos 0)2 +a?(y’ +7 sin 0)2=a2l?,
i.e. 12(a?sin20 + B2 cos?0) + 27 (a2y’ sin O + %’ cos 0) + b2’ + a2y’ — a2b? = 0.
'The roots of this quadratic in r are SP and SQ; hence
b2z + a?y'? — a?b?
SP . Q=5 ee0+ oot |
Bust if d is the length of the semi-diameter parallel to SP, and (z,, y,)
are the coordinates of one extremity,
#y=dcosl, y;=dsinf, rud =22/a?+y,2/02=1.

Therefore a2sin?0 + b2 o0s20= ‘%— _
Hence SP.5Q= ( +& 1) 2.

The product therefore depends upon two factors, one depending only on
the position of the point S. the other depending only on the direction of
the secant.

If SP'Q’ is another secant through S, and d’ is the length of the parallel

semi-diameter, z'? Y
§P - 59 =(5+ %~ )ar.

Hence SP.SQ:SP .S8Q =d?:d-.

Cor. If SU and SV are tangents to the ellipse and d, d’ are the lengths

of the semi-diameters parallel to these tangents,
SU:S8V=d:d.

17. Area of an ellipse. The area bounded by an arc of a curve PQ, the
axis of z, and the ordinates PM, QN at the ends of the arc, may be found
by the following general method. Divide MN 0
into any number n of equal parts, and draw el
ordinates at the points of division. Then, com-
pleting the rectangles externally and internally
as in the figure (Fig. 31), we get a series of

_inscribed rectangles whose sum is less than the p
given area, and a series of projecting rectangles R
whose sum exceeds the given area. But these
two sums differ by the sum of the small rect- i b
angles which border the curve, and their sum —_—
is equal to the rectangle QR. Now, as n is
increased, the breadth of each rectangle becomes smaller and smaller, and
the rectangle QR tends to zero. Hence the two sums of rectangles tend
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each to the same limit, and since the given area lies always intermediate
between them, this limit is the area required. '

In the case of the ellipse we can compare the areas of the small strips
with the areas of corresponding strips of the auxiliary circle. Since
PM :QM =b: a, the ratio of corresponding strips is always=>b:a. Hence
the whole area of the ellipse is to the whole area of the auxiliary circle
as b:a; hence the area of the ellipse =mab. Q

The area of any sector bounded by two radii (
through the centre can be expressed very
simply in terms of the eccentric angles. The
area of the sestor ACP :

—AMP+ MCP o
=§(AMQ+MCQ)=§ACQ

=4abo.
Hence the area of a sector PCP' =}ab(¢p’ — ¢).

Ex. Two conjugate diameters divide an ellipse into four equal areas.

Fia. 32.

18. Application of the integral calculus. The most powerful analytical
instrument for calculating areas is the integral calculus. The method,
which is fully explained in any text-book on the calculus, is essentially the
method of dividing the area into elements and summing these. Thus, if
the breadth of each strip in Fig. 31 is d, the area of a strip of height y is y dz,
and the whole area is represented by the integral

fre
taken within the required limits. Expressing y in terms of z from the
equation of the ellipse, we have y = 21/ a® — 22, and, for the area of a quadrant,

the limits of integration are from z=0 to z=a. Hence the whole area is
a a

o[ VE—F a2 HECER ]|

0 o

br ,
=2&2 a? = mrab.

19. Area of a triangle inscribed in an ellipse. If @,, @, @; are the
eccentric angles of the three vertices of a triangle inscribed in an ellipse,
the area of the triangle is

3ab | cos @, sing, 1
cos @, sing, 1
cosp; singg 1

= Lab{sin (¢; — @,) +sin (; — @3) +sin (@, - e}
= 2ab sin §(qp. ~ ;) Bin $(pz — 1) 5in 3@, — Pg)s
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which is b/a times the area of the corresponding triangle inscribed in the
auxiliary circle.

.. The maximum triangle which can be inscribed in a circle is equilateral ;
hence the maximum triangle which can be inscribed in an ellipse is such

that the eccentric angles of its vertices are o, ¢ + 2—“, q>+4—7c
is 3+/3ab. 3 s

Similarly the minimum triangle which can be circumscribed about an
ellipse touches the ellipse at the vertices of a maximum inscribed triangle,
and its area is 34/3ab.

Examples.

1. Show that the chord of an ellipse joining the points whose eccentric angles
have a constant difference touches a fixed concentric ellipse, and that the point
of contact lies on the line joining the centre to the point of contact of the tangent
to the original ellipse which is parallel to the chord.

, and its area

2. If a rhombus is circumscribed about an ellipse, show that its vertices lie on
the axes.

8. Show that the largest rectangle that can be circumscribed about an ellipse
is & square, and that its area is 2(a?+ b%).

4. If a parallelogram is inscribed in an ellipse, show that its sides are parallel
to a pair of conjugate diameters. .

5. Show that only one square can be inscribed in an ellipse, and that its area
is 402b%/(a?+ b2). :

6. If ¢ and ¢ are the eccentric angles of the points of contact of two ad-
jacent sides of a parallelogram circumscribed about an ellipse, prove that its
area=4ab cosec (¢ — ¢). Hence show that the parallelograms formed by the
tangents at the ends of two conjugate diameters have a minimum area.

7. Show that all inscribed parallelograms of an ellipse whose vertices are at
the ends of a pair of conjugate diameters have the same area 2ab, and are
maximum inscribed parallelograms.

8. Prove that the area of a triangle whose sides touch the ellipse
a%/a3+42[b?=1 at the points @), p,, g is .
* ab tan §(p,— @;) tan }(pg— ¢,) tan 31— @2):

20. The foci. On the major axis of an ellipse there are two remarkable
points F, F', called the focs, which have the property that if P is any point
on the curve, the sum of the focal distances PF + PF’ is constant. We
have to prove the existence of these points, determine their positions, and
find the value of the constant sum. /

Let us provisionally assume the existence of the two points, situated
as in Fig. 33, then, taking P first at 4 and then at 4, we have

AF+AF' =A'F+A'F';
therefore AF +2a-F'A'=2a-AF+ F'A".
Hence AF =F'A’, i.e. the foci are equidistant from the centre, and the
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value of the constant AF +AF =~2a. Next, taking P at B, we find
BF=BF =a. The foci may therefore be constructed by drawing a
circle with centre B and radius equal to @
cutting the major axis in F and F'.

Hence CF=+/a?-b2=c. It is convenient
to represent this distance as a fraction of the
major semi-axis, ea, and the number e is called
the eccentricity, since it indicates how far the
foci are removed from the centre. We have -

then B=a2(l-e¢), ——
and e=cos CFB=4/a® —-b?/a. &5

We can now prove that if F and F' are the points thus determined,
and if P is any point on the ellipse, PF + PF' =2a.

We have PF2=(z—ae)? + 42,
and y‘=§(a’—w3)=(l—ez)(a*—az’).
Therefore PF?=¢%z? - 2aex + a® = (ex — a)?.
Hence, since z<a and e<1,

. PF=a—ex. .uuecvreeriirsecnennnn. sesrensesesaend (1)
Similarly PF =@ 4T coreeeeerereecrrernnreneeereesanansenes 2)
Hence : PF+PF' =

Equation (1), written in the form
PF=e¢ ( 2 z)

exvresses that the distance of P from the focus is equal to e times its
distance from the straight line afe—z=0. This line is the polar of the
focus F = (ae, 0), and is called the directriz corresponding to this focus.
A similar result is obtained from equation (2).

Hence the ratio of the distances of any point on an ellipse Jrom a focus
and the corresponding directriz is constant and equal to the ecceniricity.

Cor. If the directrix cuts the major axis produced in X, OX =a/e.

The chord RF R’ through the focus F perpendicular to the axis is called

the latus rectum. Let FR, the semi-latus rectum, =I; then

l=eFX=e(CX~-CF)=a(l -¢) =b%a.
Q. What becomes of the foci and the directrices in the case of a circle ?

21. Mechanical description of an ellipse. Let a thread of length 2a have
its ends attached to the points F, F', or better let an endless thread of
length 2(a +c), where FF’ =2¢, be passed round pins fixed at ¥, F'; then,
if a pencil moves so as to keep the string always stretched, it will descnbe
an ellipse with foci F, F', major axis =2a, and eccentricity =c/a. This is
populazly called the garden‘er’s method ”* of describing an ellipse.
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22. Imaginary foei. If the investigation of §20 is carried out on
the supposition that the foci lie on the minor axis, it will be found that the
constant sum of the focal distances is 2b, and that the foci G and G’ are the
points of intersection of the minor axis with a circle of radius b and centre 4.
These foei are evidently imaginary. Continuing as in the previous investi-
gation, it can be shown that if 0G'=¢’'=¢'b, a2 =b%(1 —¢'?) and PG=b +e'y.
Hence the directrix property holds also for these imaginary foei.

Q. Has the circle any imaginary foci ?

23. Polar equation of an ellipse referred to a focus as pole. Taking FA
as initial line, £ 4FP—0, FP=r=ePN.

But PN=XF-rcos0; ' P
hence ~ r=l-ercosf, N
te. != 1+ecosb. 8
r X A\M F

If FA’ is taken as initial line the equation is

E=1—e cos 0.
r

. l . 34,
Note. The equations ;= +1+e cos O represent Fio. 34

the same curve, for the one is changed into the other by changing 6
into 6+ and 7 into —r, and the polar coordinates (r, 0) and (-7, 0+7)
represent the same point.

24. Let the tangent at P meet the major axis in 7. The equation

_of the tangent at .(x ,y')is oz’ . v .
a2
B A

F1a. 35.

Putting y =0, we find CT=a?z'.
a? a?
Hence FT=?-—ae, F’T=?+a&
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But if r, #* are the focal distances FP and F'P,
r=e‘/%—x'>=a—ex' and 7 =a+ex.

Hence FT:FT=a-ex':a+ex’=FP: F'P.

Therefore the tangent at P is equally inclined to the two focal lines through P.
The tangent and normal are the bisectors of the angles between the focal
lines.

Draw FY | the tangent and produce it to meet F'P in Z. Then
PZ=PF, and FFZ=F'P+PF=2a. Also, since C, Y are the mid-points
of FF' and FZ, CY || F'P and =a.

Hence the locus of Y, the foot of the perpendicular from a focus upon the
tangent, is the auziliary circle.

Since the locus of Z is a circle with centre F’ and radius 2a, and PZ=PF,
the ellipse may be described by a point which moves so that its distance
from the focus F is equal to its distance from the fixed circle with centre F’
and radius 2a. Hence this circle is called a director circle. There is an
equal director circle with centre F. (Compare §8.)

25. The normal. To find the equation of the mormal at any point
(«’, ¥') we have simply to find the equation of the line through (z’, y')
perpendicular to the tangent at this point. The equation of the tangent
at (z’, y') being xﬁ_'_y_y_'_

@ B

the equation of the normal is
ny n%
(m“ﬁ ) ﬁ=(y-y ) a—’.
26. Through a given point there can be drawn four normals to an ellipse
for if the normal at (z, y) passes through (z;, ¥,), we have
(a? — B?) 2y + b2y, — a’z,y =0.
This quadratic equation, together with the equation of the ellipse, deter-
mines the coordinates of four points.

The eccentric angle of the foot of a normal from (z, y) to the ellipse is
given by the equation :

 (a®—b?) cos o 8in ¢ —ax sin @ + by cos ¢=0.
Let tan 3@ =¢, so that sin o=2¢/(1 +?), cos ¢ =(1—#*)/(1 +#}). Then we
get an equation of the fourth degreg in ¢,

(a3 —b2)2¢(1 — ) — 2axt(1 +12) + by (1 —¢%) =0,
f.e. byt + 2(az +a® - B2 83+ 2(az —a? + b?)t — by =0.
If ¢,, &,, t3, ¢, are the roots of this equation,
bidats=—1 and Zt,=0,

Sty - Sttty

Now tan }(0. + @y + @3+ @4) = T =S4ty +llatats’
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hence ¥, + @, +@s+@,) =(2n +1) 7—2: Hence, if the normals at the four

points @;, @,, @3, @4 are concurrent,

P1+ @y +Pg+Py=(2n+1)m.
This condition is necessary but not sufficient, for two conditions are
required in order that four lines may be concurrent. These are the con-

ditions titatste=—1 and Ztty=0.
27. Intersection of a circle and an ellipse. A circle cuts an ellipse in

four points, P, @, R, S, which may be coincident or imaginary in pairs.
_ Let the equation of the circle be

2% + 4%+ 29z + 2fy + ¢ =O0.
Then the equation
2
§+%—1 +A(2? +y2 +292 +2fy +¢) =0

represents a curve of the second degree passing through the points of inter-
section of the circle and the ellipse. If this breaks up into two straight
lines they are a pair of common chords, PQ and RS, or PR and @S, or
PS and QBR. There should therefore be three values of A for which this
happens. '

If the equation represents two straight lines, by Chap. II. § 17, they are
parallel to the lines represented by the homogeneous equation

=) < l) 2

(At 55)ar+ (At 5)52=0,

and are therefore equally inclined to the z-axis. Hence the pairs of common
chords of an ellipse and a circle are equally inclined to the major azis of the
ellipse. , _ ‘

Let ¢y, @s, @3, ¢, be the eccentric angles of the four points ‘of inter-
section, and put tan 3o =2 Then sin ¢ =2¢/(1 +?), cos o=(1 - &) /(1 +).
Putting x=a cos ¢, y=>bsin ¢ in the equation of the circle, we get, after
reduction, '

(a2 — 2ga + c) 2% + 4fDt3 + 2( — a® + 2b° + o) 12 + 4fbt + (a® + 2ga +¢) =0.
Hence, t,, t,, &5, £, being the roots of this equation,
Xty = Ztylyls.
But tan §(p; + @y + 3 + @g) = (Zty — Ztytyly) [(1 — Ttyty +tytatsty).
Hence, if the four points are concyelic,
@1+ Pa+ Py + Py =2m7;
and, conversely, if this condition is satisfied the four points are concyeclie,
for one condition is sufficient in order that four points should be concyclic.

28. If two of the points of intersection R, 8 coincide, the circle touches
the ellipse at R, and cuts it in the two other points P, Q. The relation
between the eccentric angles is then ‘

Py + Py + 2y =2n7.
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If P and Q are given there are two circles through these points which will
touch the ellipse, and the points of contact are at ends of a diameter ; for
this equation gives two values for g, viz. T — }(p, + @;) and 27 — }(p; + Py),
and these differ by . ‘

If R coincides with S, and P with Q, the circle has double contact with the
ellipse. The relation between the eccentric angles is then ¢+ @y=nm.
The common chord is thus perpendicular to one of the axes, and the centre
of the circle lies on one of the axes.

It three of the points of intersection, @, R, S, coincide, the circle is said
to osculate the ellipse, or to have contact of the second order with the ellipse,
at @, and it cuts the ellipse in one other point P, whose eccentric angle is
determined by ¢, =2nm — 3¢p,. " '

In general a circle cannot have contact of higher order than the second
at a given point, since four points do not in general lie on a circle. If the
four points P, Q, R, S all coincide the eccentric angle @ =4nm, and the point
must be the extremity of one of the axes.

The circle which has highest order of contact with the ellipse at a given
point is used to determine the curvature of the ellipse. This circle is called
the circle of curvature or osculating circle, its centre the centre of curvature,
and its radius the radius of curvature. The curvature is defined to be the
reciprocal of the radius of curvature.

- 29. Coordinates of the centre of curvature. If U is a centre of curvature
two of the normals from U to the ellipse are coincident with the radius to
the point of contact of the circle of curvature.

For let 4, B, C be three points close together on the ellipse, and let
the perpendiculars at the mid-points M and N of the chords 4 B, BC meet
in U. Then, as 4 approaches B, 4B becomes the tangent at B and UM
becomes the normal. Also, as C approaches B, independently of 4, UN
also becomes the normal at B. U is thus the ultimate intersection of two
normals which approach coincidence.

This leads to a method of finding the coordinates of the centre of
curvature. The equation of the normal at the point ¢ is

za sin @ — yb cos @ =(a? — b?) sin ¢ cos @
=}¢? sin 20.

To find the equation of the normal at a near point, put o + do for cp'. Then,
retaining only first powers of dp, we get

za(sin @ + cos @ dp) — yb(cos @ ~sin ¢ dp) =4c*(sin 2p +2 cos 2¢ dp).
The point of intersection of these two normals is the point of intersection of

2a 8in @ —yb Co8 P=c2 BIN P COB P, eeeereererrrrrrerererrerrnns (1)
and Za co8 @+ yb sin @ =c?(cos? @ —8IN2Q). ..cvrereereereerereeennens (2)
Hence za=ctcos®p and yb= —c®sindq.

It will be noticed that equation (2) could have been obtained from (1) by
differentiating with regard te .



52 THE ELLIPSE {rv 30

30. The evolute. The locus of the centre of curvature has the freedom
equations & .
z= —cosip,

a

s .
’ y=-3 sin®q,
and the constraint equation is therefore

(az)? + (by)t=0t.

From any point on this curve two of the normals to the ellipse are
coincident, and the curve divides the plane into two regions such that
from any point in one region the four normals to the ellipse are all real
and.distipct, and from any point in the other region two of the normals
are imaginary.

This curve is called the evolute of the ellipse. If a string is wound on
the curve along the arc RS and extended to 4, then as the string is un-
wound the extremity A will describe the ellipse..
For at any moment the end of the string P is
describing a circle with centre U (the centre of
curvature), and radius PU (the radius of curva-
ture at P). All the tangents to the evolute are
normals to the ellipse, and the evolute is the
envelope of normals to the ellipse.

Q. What becomes of the four normals from

any point in the case of the circle * (This may be answered after reading
Chap. XIV.)

Examples.

1. Show that the gradient of the tangent at the end of the latus rectum is
equal to the eccentricity.

2. If the minor axis cuts the auxiliary circle at b and b’, show that the
tangents from b and b’ touch the ellipse at the ends of the latus rectum.

3. If the major axis cuts the minor auxiliary circle at a and a’, and the
tangents to the circle at these points cut the ellipse in P, @, P’, @', show that
the diameters PP’, Q@’ are parallel to the tangents at the ends of the latus rectum.,

4. Prove that the angle subtended by the latus rectum at its pole is equal
to the angle subtended at the end of the latus rectum by the segment joining
the foci.

5;3 If g, ¢’ are the perpendiculars from the foci upon a tangent, show that
gq’'="b '

6. If p is the perpendicular from the focus F upon the tangent at P, and
FP=r, prove that I/p?=2/r—1/a (the pedal equation of the ellipse referred to
a focus).

7. If r is the focal distance of a point whose eccentric angle is ¢, prove that

r=a(l—ecos ¢).

8. If Q is the point on the auxiliary circle corresponding to P, and FK 1
perpendicular to CQ, prove that KQ= FP.
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9, I BF cuts the ellipse again in P, and R is the extremity of the latus
rectum through F, prove that FP: FB=FR: F'R.

"10. If the circle described on F F’ as diameter cuts the minor axis in K and K’,
prove that the sum of the squares of the perpendiculars from K and K’ on any
tangent is constant, =2a3.

11. Prove that the semi-latus rectum is & harmonic mean between the two
segments of any focal chord.

12. Prove that at all points on the ellipse the normal passes between the
foci.

13. Show that the radius of curvature at the end of the major axis is equal
to the semi-latus rectum, =52/a.

14. Show that the radius of curvature at the end of the minor axis =a2/b.
15. Show that the radius of curvature at the end of the latus rectum
=1+t

31. Historical Note. The discovery of the curves which we call conics is attri-
buted to the Greek geometer Menaechmus, a pupil of Eudoxus and contemporary
of Plato (fourth century B.c,). He applied these curves as plane loci to the
solution of the famous problem of the * duplication of the cube.” The problem
propounded by the Delian oracle was to construct a cubical altar of double the
volume of the existing one. Arithmetic was not applied to geometry then as we
do it, so the solution had to be geometrical. Using algebraic notation, the problem
is to solve the equation z°=2. Doubtless on the analogy with the corresponding
equation of the second degree, whose solution by Euclidean methods involves
finding & mean proportional, it was shown that the Delian problem could be
reduced to that of finding two mean proportionals between 1 and 2. For if

liz=2z:y=y:2,
we get (1) 2=y, (2) =22, (3) ay=2;
hence 28=2. Now the equations (1), (2), (3) represent in our modern notation
two parabolas and a rectangular hyperbola, and it was by the intersection of
these curves that Menaechmus solved the problem.

The conics were first studied as sections of a cone; and there is extant an
extensive treatise on the subject by Apollonius of Perga (about 250 B.c. English
edition by Heath, Cambridge, 1896). One of the first properties obtained was
that which we have chosen to define the conics, viz. for the ellipse and hyperbola
PM*=kAM . MA’, and for the parabola PM2=kAM. If the curves are referred
to axes through the vertex their equations are easily found to be y%=pz for the

_ parabola and g?=kx(d+x) for the hyperbola and ellipse, or, putting kd=gp, we

have the three equations

Parabola:  y®=pa,

Ellipse : Y=pz—2a®p/d,

Hyperbola: y2=pzx+ap/d.
p is the length of the latus rectum, or parameter as it was also called. The names
paraboia, ellipse and hyperbola, which were brought into use by Apollonius,
have their origin in the properties expressed by these equations. Thus in the
parabola a rectangle of area equal to the square on the ordinate and breadth
equal to the abscissa can be “ applied ” (wrapaBdAAewv) to the parameter p. This
process of application which was called wapaBo)s] is frequently found in Euclid,

8.A.0. B
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e.g. in Book i. Prop. 44 a parallelogram of given area is applied to a given segment.
In the ellipse the rectangle equal to »2 ¢ falls short ** (éAAeirer, EAAetyfes) of the
rectangle pz, and in the hyperbola it “ overshoots ” it (mepBdAewy, tmepBoAd).
In constructing the rectangle pr the parameter p was erected at. the end of the
axis; hence the term latus rectum or “ side erected.”

The foei of the ellipse and hyperbola were obtained by Apollonius as points
dividing the transverse axis into segments whose rectangle equals }pd. The
discoveries of the focus-directrix property and the existence of the focus of a
parabola are due to Pappus (fourth century a.p.). The term focus was introduced
by Kepler (1604) from the optical property of an ellipse that rays proceeding
from a focus are reflected at the curve to the other foous.

EXAMPLES IV. A.

1. Find the eccentric angles of the extremities of the latera recta of an ellipse.

2. Obtain the equation, in polar coordinates, of the line joining two points
{7y, 0;) and (r,, 6,) on the ellipse I/r=1+e¢ cos 6, and deduce that the equation of
the tangent at (ry, 6,) is J/r=e cus 0+ cos (6, — 0).

3. If F is a focus of an ellipse and the normal at P meets the major and
minor axes respectively in @, g, and CD is conjugate to CP, prove that

) FG@:CF=FP:AC and Fg:CF=CD: BC.
(Peterhouse, ete., 1914.)

4. CP, OD are conjugate semi-diameters of an ellipse; the tangent at P
meets the major axis in 7, and N is the foot of the ordinate of P. If PD meets
the major axis in K, prove that KD?: KP3=CN: NT. (Selwyn, 1914.)

5. The ordinate M P of a point P on an ellipse is produced to meet the tangent
ali the end of the latus rectum through the focus F in R. Prove that MR=FP,

6. Tangents are drawn at pairs of points of an ellipse whose eccentric angles
differ by a constant angle 2« ; find the locus of their intersection.

7. The normal at any point P on an ellipse, whose corresponding point on the
auxiliary circle is p, is produced to meet the radius Cp in R. Find the locus of R.

8. From Ex. 7 show how to construct the minor axis, given the major axis,
a point on the curve, and the tangent at that point.

9. A circumscribed parallelogram of an ellipse is formed by drawing the
tangents at the vertices of an inscribed parallelogram ; prove that the sides of
the latter are parallel to the diagonals of the former.

10. Find the locus of the centre of a circle which touches two ﬁxed ciroles,
one of which lies entirely within the other.

11. 8P, 8’P’ are focal radii of au ellipse drawn in the same direction, and
the tangents at P and P’ meet 8P’ and SP in @ and @ respectively. Prove that
QQ’ is parallel to PP’. (Math Tripos L., 1913.)

12. Prove that the tangents from any point to an ellipse are equally inclined
respectively to the two focal lines through the point.

13. If r, ¢’ are the focal radii of a point P, and CD the semi-diameter con-
jugate to CP, prove that rr’=CD?

14. If PQ is the normal at P, and r, v’ the focal radii, prove that

PG?:rr'=l3: dab.
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15. Prove that the sum of the reciprocals of the squares of any two diameters
of an ellipse which are at right angles is constant. ’

18. A series of ellipses is constructed with a common axis BB’, and the other
axes lie along the line 44’ and form an arithmetical progression. Show that
the areas enclosed between consecutive arcs are all equal. Further, if any line
is drawn parallel to 4.4’, the areas enclosed between this line, the line 44’, and
the arcs of consecutive ellipses are all equal.

17. If g, ¢’ are the eccentric angles of the ends of a focal chord of an ellipse,
prove that tan 3o tan }o’= ~(1-e¢)/(1+e) or —(1+e)/(1-e¢). Distinguish the
two cases. )

18. PFQ and PF'R are two focal chords of an ellipse, and the eccentric angles
of Q and R are ¢ and ¢’; show that the ratio tan }¢ : tan 3¢ is constant for all
positions of P. (Corpus, ete., 1800.)

19. Prove that the length of a focal chord of an ellipse is 2d*/a, where d is
the semi-diameter parallel to the shord and a is the major semi-axis.

20. If q is the perpendicular from the foous F upon the tangent at P, r=FP,
and d is the semi-diameter parallel to the tangent at P, prove that gd==br.

21. I LF’FP=0 and L FF'P=60’, prove that tan 0 tan $6'=(1 —e)/(1+e).

22, If 0 is the veotorial angle, referred to a focus, and ¢ the eccentric angle

8 [At%4an®. Show also that the
3=N1_e ™3

of a point on an ellipse, prove that tan
maximum value of 6 — @ is 2 sin—1 \/04——: , and that it occurs when g + @ =T, r=>b.
a+ (Pembroke, etc., 1913.)

23. From a point R on the directrix for the focus F a secant RPP” is drawn
to the ellipse ; show that RF bisects the exterior angle between FP and FP’.

24, Prove that every pair of conjugate lines through a focus are at right
angles.

05, Prove that through any point P there are two lines which are conjugate
with regard to a given ellipse and also at right angles, and show that they are
the bisectors of the angles between the lines joining P to the foci.

26. P, P’ are two fixed points on an ellipse, and @ is a variable point on the
curve. PQ, P'Q cut the directrix in R, R’. Prove that ER’ subtends a constant
angle at the corresponding focus.

27. If the directrix cuts the tangents at two points P, P’ in T, 7", and the
chord PP’ in @, prove that QF bisects the angle TFT". i

28. If A, B, C, D are fixed points on an ellipse, and P a variable point on the
curve, prove that the cross-ratio of the pencil P(AB, CD) is constant and equal to

(sin 34 FC[sin $4FD)/(sin $BFC/sin }BFD),
F being either focus.

29. If the tangents at four fixed points 4, B, C, D on an ellipse cut a variable
tangent in P, @, R, 8, prove that the cross-ratio of the range (PQ, RS) is constant
and equal to

(sin }4 FC/sin $AFD)(sin }BFC|sin }BFD),
F being either focus,
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30. If the tangent at P to an ellipse is cut in 7T, 7" by two parallel tangents,
prove that TP.PT'=CD? and that PT.FT’': F'T. F'T'=FP : F'P, where
F, F’ are the foci and CD the semi-diameter conjugate to CP.

(St. Catharine’s, 1907.)

31. If from a point P on one of the equi-conjugate diameters of an ellipse
with centre C tangents PA, PB are drawn, prove that P4 BC are conoyclic.

(Magdalene, 1907.)

32. F, F’ are the foci of an ellipse, and P is a point on it. Find the loci of
the centres of the in- and e-scribed circles of the triangle FPF".

33. Find the condition that lz+my+n=0 should be a normal to the
ellipse 23/a® + 42/b2=1.

34. If P, = (xy,4,) and P, = (x,, y,) are two adjacent vertices of a parallelogram
ciroumscribed about the ellipse 8 =x?/a%+ 32/62— 1=0, and 8, 8, are the values
of § at the points P), P,, prove that 8,8;=1.

35. Prove that an indefinite number of parallelograms can be circumscribed
about the ellipse 2%/a®+ 32/b2=1 and inscribed in the ellipse 22/a?+ 32 /b%=2.

36. Prove that the envelope of the chord of contact of two perpendicular
tangents to an ellipse is another ellipse. (Selwyn, 1907.)

37. Investigate the general isoptic locus for an ellipse, i.e. the locus of points
the tangents from which contain a given angle «.

38. The points 4, 4’ are the ends of the major axis of an ellipse, and PAQ,
P’A’Q’ are tangents to the conic there ; if PP, QQ’ are two other tangents to the
conic, prove that AP.A'P'=AQ. A’Q’, and that the lines PQ’, P'Q interseot
on A4’ ‘

39. If QFq is a chord of an ellipse parallel to the tangent at a point P, and
PFp is a chord ot the circle of curvature at P, prove that Qg=Pp, F being a
focus. (Corpus, 1910.)

40. PCP’ and DCD’ are conjugate diameters of an ellipse, and ¢ is the
eccentric angle of P. Prove that 3w— 3¢ is the eccentric angle of the point
where the circle PP’D again cuts the ellipse. (Math. Tripos I., 1910.)

41. Show that through a given point on an ellipse there pass three osculating
circles, and that their points of contact are the vertices of & maximum inscribed
triangle.

42. Prove that the radius of curvature at any point P of an ellipse is d3/ab,
where d is the semi-diameter parallel to the tangent at P.

43. Prove that the length of the common chord of an ellipse and its circle of
curvature (the chord of curvature) at the point whose eccentric angle is « is d sin 2¢,
where d is the diameter conjugate to CP.

44. Prove that the chord of curvature at P which passes through either focus
is equal to 2d®/a, where d is the semi-diameter parallel to the tangent at P and a is
the major semi-axis.

45. A circle rolls within another circle of double the diameter. Prove that
any point on the circumference of the rolling circle describes a straight line, while
any other point fixed to the rolling circle describes an ellipse.

46. An ellipse rolls on an equal ellipse so that the two ellipses are always
symmetrical with respect to the tangent at the point of contact. Prove that the
fooi of the moving ellipse describe circles.
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47. Assuming that the earth describes an ellipse round the sun as focus, and
that the sun’s distance is inversely proportional to the sun’s apparent diameter
or angle which its diameter subtends at the earth, calculate the eccentricity of
the orbit when it is found that the maximum and minimum values of the sun’s
apparent diameter are 32/ 35" and 31’ 31°.

48. In a certain month it is found that the moon’s appa;rent diameter varies
from a maximum of 33’ 05" to a minimum of 29’ 33”. Find the eccentricity of
its elliptio orbit round the earth as focus.

49. On three different dates the sun’s apparent diameter is found to be 31’ 38",
31/ 32" and 31’ 57". At these dates the sun’s longitude (i.e. the vectorial angle
measured from a certain initial line) is 60° 24/, 120° 24’, 180° 24’. Determine the
eccentricity of the elliptic orbit and the longitude of perihelion (i.e. the vectorial
angle of the nearer extremity of the major axis).

50. Assuming that any section of the Earth by a plane through the polar axis
is an ellipse whose minor axis is the polar axis, major semi-axis @, and eccentri-
city e, and defining the * geographical latitude ”’ of any place as the angle which
the normal makes with the major axis, (i) prove that the distance from the earth’s
centre of a place at latitude ¢ is approximately equal to a(1— }e?sin?p), where
powers of e above the second are neglected ; (ii) show also that if the  geocentric
latitude ” ¢’ is the angle which the line joining the point to the earth’s centre
makes with the major axis, then approximately

¢’=¢— tan"1(}¢? 8in 2¢).

EXAMPLES IV. B. -

1. PFQ, PF'R are focal chords of an ellipse; show that the tangents at
Q@ and R intersect on the normal at P. (Corpus, 1911.)

2. PQ is a focal chord of an ellipse. The tangents at P and @ intersect in 7',
and the normals at P and ¢ intersect in R. Show that T'R passes through the
other focus.

3. If in Ex. 2 T'R cuts the ellipse in P’, ¢’, show that the normals at P’, Q’
intersect on PQ.

4. At a point P on the circumference of the auxiliary circle of an ellipse whose
major axis is 44’ the tangent drawn to the circle meets the major axis in 7', and
the lines P4, PA’ meet the ellipse in @ and R respectively. Show that 7QR are
collinear. - (King’s, ete., 1913.)

6. From the foci F, F’ parallel lines FP, F’P’ are drawn to an ellipse ; the
tangents at P, P’ meet in 7, and FP’, F'P meet in Q. Prove that 7 is on the
auxiliary circle, that 7'Q bisects the angle PQP’, and that the projection of 7'Q
on QP or QP’=} latus rectum. (Corpus, etc., 1914.)

6. Lines are drawn through the origin perpendicular to the tangents from a
point P to the ellipse 22/a%+32/4*=1. Find the locus of P if the lines are con-
jugate diameters of the ellipse. (Selwyn, 1912.)

7. Prove that the loocus of points from which tangents to an ellipse and its
suxiliary circle form a harmonic pencil is a concentric ellipse.

(Corpus, etc., 1902.)
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8. On two concentric and coaxial ellipses two points are taken of which the
eccentric angles are equal ; prove that the line joining them is normal to a third
concentric ellipse at a point with the same eccentric angle. (Corpus, ete., 1902.)

9. If from any point P on an ellipse perpendiculars are drawn to the axes,
show that the line joining the feet of these perpendiculars is always normal to a
fixed concentric ellipse. -

10. A pair of conjugate diameters of an ellipse, whose centre is O, are cut by
a fixed straight line in points P and P’. Prove that the locus of the centre of the
oircle circumscribing the triangle OPP’ is a straight line. © (Selwyn, 1913.)
11. Tangents are drawn to the ellipse z%/a?+ 42/b2=1 from a point P, and
with the chord of contact form a triangle whose centroid lies on the curve. Find
the locus of P, (Queens’, 1907.)

12. Two conjugate diameters of an ellipse meet the polar of a fixed point
P in Q and @', and the perpendiculars to these diameters at @ and @’ meet in 8.
Prove that the locus of S is the polar of P with regard to the orthoptic circle.

13. Through a point K on the major axis of an ellipse a chord PQ is drawn.
Prove that the tangents at P and @ intersect the line through K perpendicular
to the major axis in points equidistant from K. (Selwyn, 1914.)

14. The chord PQ of the ellipse 22/a®+ y2/b%=1 is such that the tangents at
P and Q each pass through the pole of the other with respect to the ellipse
Ba?+y2b%=1. Prove that the envelope of PQ is the ellipse

#*(at+a") /ot + Y2 (B2 + b2) [b' = (a® + a2)(82+ b2) [(aPD2 + aBDR).
‘ (Pembroke, ete., 1900.)
16, Show that the locus of a point from which two tangents to the ellipse
23/a?+32/b%=1 make equal angles with the line y=xtan ¢ is the conio (rect-
angular hyperbola)
2%~ 2zy oot 20— y*=a®~ b2  (Pembroke, eto., 1911.)

16. Show that the tangents at the extremities of all chords of the ellipse
23/a®+ y2/b%=1 which subtend a right angle at the centre intersect on the ellipse
22/at + 264 =1/a®+ 1 /B2, (Corpus, eto., 1901.)

17. O is a given point within a circle, and a line through O meets the circle
in P, PT is drawn perpendicular to OP. Show that the envelope of PT is an
ellipse. Explain what happens when O lies on the circumference of the circle.

18. Prove that if the normals at four points of an ellipse 2%/a?+ y3/b%3=1 are
concurrent, and two of the points lie on the line lz/a+my/b+ 1=0, the other
two will lie on the line z/al+ y/bm=1.

Prove that if two lines drawn through the point (Za, £b) meet the ellipse
at four points the normals at which are conocurrent, one of the lines will be
4x/a—y[b=2, and find the equation of the other. (Peterhouse, etc., 1901.)

19. PQ is a normal chord of an ellipse at P, and p, ¢ are the corresponding
points on the auxiliary circle ; R is the mid-point of the arc pg. Prove that Cp
and CR are conjugate diameters. i

20. If p is the perpendicular from the centre on the normal at the point whose
" eccentric angle is ¢ on the ellipse z2/a%+ y2/b%=1, prove that

p2=(a—b)2{l—(asin®p— b cos? p)*(a?sin? ¢ + b2cos? p)1}.
Hence show that the greatest value of p is a—b, when tan?p=b/a.
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21. Prove that the maximum ellipse inscribed in a given triangle touches
the sides at their mid-points, and the minimum ellipse circumsoribed about the
same triangle has its axes twice the length of those of the inscribed ellipse and
ocoincident with them. (The minimum circumscribed ellipse is called the Steiner
ellipse of the triangle.)

22, Two circles with fixed centres B, B’ cut at a constant angle «; prove
that the envelope of their common tangents is an ellipse with BB’ as minor axis
and eccentricity cos .

23. Two circles pass through two fixed points F, F’ and cut at a fixed angle « ;
prove that the envelope of their common tangents is an ellipse with foci F, F”
and eccentricity cos .

24. Prove that every circle which has its centre on the major axis of a given
ellipse of eccentricity 4/2 and which has double contact with the ellipse is ocut
at the ends of a diameter by every cirole which passes through the foci.

25. Through the focus F of an ellipse is drawn a line FY cutting in Y the
tangent at P, and making the angle F Y P equal to that subtended at F by either
half of the minor axis. Show that the loocus of Y consists of the osculating circles
at the two ends of the minor axis. (Math. Tripos II., 1913.)

26. The tangents to an ellipse at 4 and B, extremities of the major and minor
axes, meet in K. Show that the osculating circles at A and B have K as an
external limiting point, and subtend supplementary angles at K.

(Pembroke, ete., 1910.)

27. Prove that the equation of the circle of curvature at the point ¢ on the
ellipse 22/a? + 2 [b%=1 is

2 _
atyyp-2?

Show also that through any fixed point (f, g) there pass six circles of curvature,
and verify that the six centres of curvature lie on the conic

22+ 2 - 2fx — 2gy) — a?— b3 %=12(a%2 + b%?) — 3(a® - B2)2.
. (Pembroke, etc., 1899.)
28. P is any point and F is one focus of an ellipse. The circle on PF as
diameter cuts the auxiliary circle in ¥, Z. Prove that PY, PZ are tangentsa to
the ellipse.

20. H P is any point on an ellipse, and ¥ a focus, show that the circle on FP
as diameter touches the auxiliary circle.

30. If QP and QP are tangents to an ellipse, and ¥ is a focus, prove that FQ
bisects the angle PFP’ (i.e. the tangents subtend equal angles at the focus).

b2 ad-b2
z cosBp+2 7Y sin3p = (252 a?) cos?p -+ (2a% - b3) sing.



CHAPTER V.
THE HYPERBOLA.

1. Tae hyperbola is defined in a similar way to the ellipse. Let 4
and 4’ be two fixed points, and P a variable point, PM perpendicular to
AA’. Then the locus of P, such that

PM2=kAM . MA’,

where k is a negatlve constant, is a hyperhola.
Since PM? is positive the segments AM and M A’ are of opposite sign,
and therefore M lies outside the segment 44'.

2. To find the equation of the hyperbola in its simplest form. Take
A’A as axis of 2, and the mid-point of 4’4 as origin. Then

MP=y, OM=2, A'M=z+a, AM=z-a.
Hence, from the defining property, we have
Y= —k(z+a)(x—a)= - k(2?—a?).

y

This equation, which is of the second degree, ; z
contains only squares of z and y; hence the o A\ M
ocurve is symmetrical about both axes.

Since k is negative, & cannot be numerically
less than a. Hence no part of the curve lies
between the lines through 4 and A4’ parallel to
the y-axis, and in particular the curve does not cut the y-axis. Otherwise

there is no limit to the value of z, and as z increases y also increases
numerically without limit. The curve consists of two open branches

Fia. 37.

extending to infinity.
It is convenient to write —%a?=>50%; then the equation assumes the
standard form ot g2
241,
at b

A’A is called the transverse axis. There is no minor axis, but the other
axis of symmetry, the y-axis, is called the conjugate azis. A4 and A’ are
called vertices. O is the centre, and chords through the centre are diameters.

8. Asymptotes. The equation of the hyperbola in polar coordinates
with O as pole is cos?d _sin?® _1
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When 0=0, r=a, and as 0 increases cos?0 diminishes and sin?0 increases;
therefore 1/r® diminishes and r increases. This continues until
cos?0  sin20

a? =

{.e. tan?0 = ’lz‘:y
a

when r becomes indefinitely large. When tan 0>>b/a, r becomes imaginary,
so that all the diameters drawn between the lines ay=>bz and ay= —bx
fail to cut the curve. These two lines only meet the curve at infinity, and
separate the diameters into two classes, intersecting and non-intersecting.
They are called the asymptotes. The diameter y=pz is intersecting or
non-intersecting according as p. is numerically less or greater than b/a.
2
The ellipse z—:+?£_2= 1 may be regarded as having imaginary asymptotes

represented by the equation "/—2=O. The asymptotes of the circle

=+
a® b
2? +y%=q? are the imaginary lines 2% +42=0.

An asymgptote may be regarded as the limiting case of a tangent when the
point of contact goes to infinity. Writing the equation of the hyperbola
homogeneously 22

a? ’
we see that the line at infinity z=0 cuts the curve where z*/a? —32[b2=0;
hence the coordinates of the points at infinity on the curve are (@, +b, 0).
The equation of the tangent at (2, y’, 2') is
ml yyl _ zz ;

P
hence the equation of the tangent at (a, b, 0) is z ¥ —0, which represents
one of the asymptotes. @ b
Unlike the ellipse, which consists of a single closed curve, the hyperbola
consists of two branches which run to infinity along the two asymptotes.
If 2« is the angle between the asymptotes, tan a=b/a. When a =3,

2a=g, and the asymptotes are at right angles. In this case the curve is

called a rectangular hyperbola, also sometimes an equilateral hyperbola.

4. Many of the properties of the hyperbola can be obtained at once
from the corresponding property of the ellipse by changing &2 into — 22,

The condition that iz + my +n =0 should touch the hyperbola ?2" - %—: =1
B : : R -pm2 =l
which is therefore the tangential equation of the curve,

The equation of the tangents from (z’, y’) is

(5-5-)-G-§-E 5
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The locus of points from which tangents to the hyperbola are at right
angles, t.e. the orthoptic locus, is .

22 +yi=a%- B2
The orthoptic locus is therefore a circle concentric with the hyperbola.
I? ii real only if a>>b, and for a rectangular hyperbola reduces to a point-
circle.

5. Conjugate diameters. The theory of conjugate diameters of a hyper-
bola is somewhat different from the case of an ellipse, since we have to
distinguish between diameters which cut and those which do not cut the
curve.

The procedure of Chap. IV. § 9 applies equally to the hyperbola, but
it is instructive to use a different method.

Consider a system of parallel chords y=px+ec, all parallel to the
diameter y=pz. The line y=px+c cuts the curve in two points whose
abscissae are determined by the equation

b22? — a®(ux + ¢)® = a?b?,

t.e. (a2 - b?)2? + 2a%pcx + a?(b? + ¢%) = 0.
These points are real, if

a?ple>(b? + ) (aPp? - b?),
i.e if A>b?(a?p? - b?).
If p2<?b®/a?, this condition is always satisfied ; hence all chords parallel -
to a diameter which cuts the curve cut the curve in real points. But
if u3>b2/a?, i.e. if the diameter does not cut the eurve, the parallel chords
will only cut the curve if they are sufficiently remote from the centre.

Let (2, y) be the coordinates of the mid-point of the chord ; then, if
*,, T, are the roots of the above quadratic in z,

aluc
TR ——— m
This is always real whether the chord cuts the curve in real points or not.
Then substituting in the equation of the chord y=pxz+e¢, we have
o B .
y R r—————
Eliminating ¢ between (1) and (2), we have

z=}(x; +2y) = -

Hence the locus of the mid-points of chords parallel to the diameter y =z
is the diameter y =p.'#, where

, b

Mr =3
These two diameters are called conjugate diameters. From the symmetry
of the relationship connecting . and p’, we see that each diameter bisects

all chords parallel to the other. If p<<b/a, then n'>b/a, so that of two
conjugate diameters one is intersecting and the other is non-intersecting
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Since a tangent is the limiting case of a chord when the end points come
to coincide at the mid-point, we see that the tangents at the extremities
of the intersecting diameter are parallel to the conjugate diameter.
The pole of a diameter is thus the point at infinity on the conjugate
diameter, and the polars of all points on a fixed diameter are parallel to the
conjugate diameter.

6. The conjugate hyperbola. Consider the hyperbola

This hyperbola has the same asymptotes and axes as the hyperbola
= %
et B
but its transverse axis is the conjugate axis of the given hyperbola, and
vice versa. The two hyperbolas are called conjugate hyperbolas. Since the
ratio b%/a? is the same for both, a pair of diameters which are conjugate
with regard to the one hyperbola are conjugate with regard to the other,
and the tangents at the points where a non-intersecting diameter of the
first hyperbola cuts the conjugate hyperbola are parallel to the conjugate
diameter.
Writing the polar equations of the two hyperbolas referred to the
centre as pole, we have

1 cos?0 sin20 1 cos?0 sin26
RTE TR AT
Hence the lengths of corresponding semi-diameters CP and Cp drawn in
the same direction are connected by the relation
CP?=-Cp2
If one is real the other is imaginary. .

9. The circle on 44’ a8 diameter is called the auzidiary circle, but there
is no simple relation between corresponding ordinates of this circle and
the hyperbola. Nor is there an eccentric angle in terms of which we may
express the freedom equations of the hyperbola. Analogous freedom
equations may, however, be expressed by means of hyperbolic functions.
Since cosh?g —sinh®p =1, we may express the coordinates of any point on
the hyperbola by means of the equations

z=a cosh g,
y=Dbsginh ¢.
As @ varies from ~ © to + © , the point describes the whole of one branch
of the curve. The other branch is expressed by the equations
z=—ga cosh ¢,
y= —bsinh ¢.
We may pass from one branch to the other by adding ¢r to @, since
cosh (¢ +47) = cosh ¢ cos 7 +sinh .4 sin = — cosh ¢,
and sinh (@ + #7) =sinh ¢ cos 7t + cosh ¢.¢ sin *= —sinh g.
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%‘hu's the parameters corresponding to opposite ends of a diameter differ
.
d The freedom equations of the conjugate hyperbola are then
z=gq sinh o,
y=>b cosh .
Let ¢, be the parameter of the point P = (zy, ), 8o that
%, =a cosh ¢,,
y,=bsinh ¢, ;
and @, that of the point d= (z,, ¥,) on the conjugate hyperbola, so that
z,=a sinh @,,
Y3 =>b cosh q,.

Then, CP and Cd being conjugate diameters, %?=z%—?2/2; therefore

cosh o, sinh @, =sinh ¢, cosh ¢,,

f.e. tanh @, =tanh ¢,, and hence ¢, =¢q,. R
‘We have therefore, for the ends of two conjugate diameters,

:v=a,coshcp,} a;=asinh<p,}

y=>sinh ¢, y=>b cosh ¢,
and CP2=z,2+y,2=a® cosh®¢ + b% sinh? ¢,
Cd? =2,? + y,® = a® sinh?¢ + b% cosh?¢ ;
therefore CP2 - Ca?=(z,2 — 2,2) — (.2 — y,?)
=a®-b%

Hence the difference of the squares of two conjugate diameters of a hyperbola
and the conjugate hyperbola is constant.

Note. Since the actual length of the conjugate diameter (which is
imaginary) is equal to 4/ — Cd?, the theorem for a single hyperbola is that
the sum of the squares of two conjugate diameters is constant, just as in
the case of the ellipse.

8. The equation of the tangent at P(gp) is
z ~Y ginh o=
acosh -3 sinh =1,

and the equation of the tangent at the point
d, where the conjugate diameter meets the
conjugate hyperbola is

Adding these equations we find that the two Fio. 38.

tangents intersect on the line z/a —y/b=0, i.e.

on one of the asymptotes ; similarly for the tangents at the other ends
of the diameters. Hence the tangents at the points where two conjugate
diameters cut ome or other of the two conjugate hyperbolas form a parallelo
gram whose vertices lie on the asymptotes.

Lsinhp-Y =--
asmh -3 coshp=-1.
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9. Area of a sector of a hyperbola. The area of the sector AOP is

[1a.

Now r cos O=2=aqa cosh o,

reinO=y=>bsinh ¢;
therefore a tan 0= tanh ¢.
Differentiating, we have

a 8ec?0 dO =0 sech?op do.
But a® sec?0 =12 sech?g; Fia. 39

therefore 72 d0 =ab do,
and the area of the sector is

1] 72 0= ab ['dp=1abi.

We have thus found a geometrical meaning for the parameter @ of
8 point P, viz. it is proportional to the area of the sector 4OP.

10. Freedom equations for the hyperbola may also be found in terms
of circular functions, viz.

Zz=asecv,
y=>btan v. 2

The geometrical meaning of the angle » can be Q
expressed with reference to the auxiliary circle.
Let ACQ=v, and draw the tangent QM at Q

meeting the major axisin M. Erect MP | CA. ¢ M
Then z=asecv=CM,.

b b
y=- atan v=EQM.

As v increases from —1—; to +1—2t, one branch of the hyperbola is described,

and as v continues to increase from g to 3—27':, the other branch is described.

11. In dealing with a rectangular hyperbola-

the simplest equation is obtained by taking the ., 7 &
asymptotes as coordinate axes. S N p
Referring the curve first to its axes, so that N_
its equation is 2® — y2 =43, the equations of the N~
asymptotes are z+y=0. The perpendiculars

from a point P=(z, y) on the asymptotes are ¢
(z+y)/v/2. These are now to be the coordi-
nates of P, so that we may write

V2,=z+y, +2n=z-y, .

and therefore 2&n=22-y*=4d3.



66 ’ THE HYPERBOLA fv.

The equation of the rectangular hyperbola referred to its asymptotes
is therefore 9y =al.
We shall see later (Chap. VIIL.) how this can be applied to any hyperbola.

Freedom equations for this form are now easily written down, viz.

z=3}at, y=aft.

12. The foci. Like the ellipse the hyperbola has two foci, F, ¥’ on
its transverse axis, but in this case the difference and not the sum of the
focal distances is constant,

F'P ~ FP =constant.

Provisionally assuming the existence of these two points, situated as in
Fig. 42, their positions can be determined as follows.

Taking P first at 4, and then at 4’, we find
FA-AF=A'F-F'A';
therefore ~
FA'"+20-AF=2a+AF-F'A".
Hence F'A’=AF, i.e. the foci are equidistant
from the centre, and the value of the constant

F'A-AF=2a.

Let CF=c=ae, ¢ being the eccentricity. To find the value of ¢, and
the distance CF, let P go to infinity along the asymptote. Then FP
and F'P. become parallel to the asymptote. Draw FK | F'P, then
F'K=F'P - FP=2a, and since tan «a=bfa, FK=2b. Hence

’ R=a2+b?, BE=a¥(e2-1), e=seca=Va*+l*[a

We can now prove that, if F and F’ are the points thus determined,
and P is any point on the hyperbola, F'P~ FP =2a.

~ We have PF2=(x—ae)®+42
and from the equation of the hyperbola

, (T
y2=b2 <u~2 - l)-
Hence PF=(z—ae)?+(2-1) (22~ a?)
=222 — 2aex + a? = (ex — a)2.

FA € AF
Fi6 42.

Hence, since when P is on the right-hand branch, >4, and ¢>1,

PF=exr—a.
Similarly . PF =ex+a.
Hence PF’ - PF=2a.

If P is on the left-hand branch we find similarly that PF — PF’ =2a.

Also the distance of P from the focus F is e times its distance from the
line #—afe=0. This line, which is perpendicular to the transverse axis,
is the corresponding directriz, and is the polar of the focus F =(ae, 0).
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13. Mechanical description of the hyperbola. From the focal property
PF’ — PF=2a a mechanical method of describing the curve can be derived.

Knot a thread to a pencil P and pass the
thread round the foci as in Fig. 43, the two ends
being drawn tight at 7. Then P will describe one
branch of a hyperbola. For the two parts of the
string TF'P and TF'FP are of constant lengths
I and ! say. Therefore

FP-FP=(I'-TF)-(l1-2c-TF')
=2 -(1-1).

Hence if I -1’ =2(c —a), the transverse axis of the T F1G. 43.

hyperbola will be 2a.

14, The reader will find it & useful exercise to work out the focal pro-
perties corresponding to those of the ellipse (Chap. IV. §§ 23, 24); and
also the investigation of the normals from a given point, the coordinates
of the centre of curvature, and the equation of the evolute (cf. Chap. IV.
§§ 29, 30).

, EXAMPLES V. A,

1. Prove that the normal at (z’, y’) to the rectangular hyperbola 22— y2=a}
is zy’ + 2'y=2z"y'.

2. H K, L, M, N are the feet of the normals from any point P to a rectangular
hyperbola with centre C, show that the centroid of KLMN divides CP in the
ratio 1:3. .

3. Prove that in a reotangular hyperbola the lines joining any point on the
curve to the ends of a diameter are equally inclined to one of the asymptotes.

4. If PP’ is a fixed diameter of a rectangular hyperbola, and @ any point
-on the curve, show that the difference of the angles QPP’ and QP’P is constant.

5. Prove that in a rectangular hyperbola a chord subtends equal or supple-
mentary angles at the ends of a diameter.

6. If P is any point on a rectangular hyperbola with centre C, prove that
CP and the tangent at P are equally inclined to one of the asymptotes.

7. The tangent at a point P of a rectangular hyperbola meets a diameter

" BCB' in Q. Prove that the angles BPC and B’PQ are equal.

8. If the coordinates of a point on the hyperbola zy=c? are represented by
z=ct, y=c/t, prove that the normals at the four points 4, ty, tg, ¢4 Will be con-
current if 3¢ t,=0 and #,lgft,= — 1.

9. From any point on the normal to a rectangular hyperbola at a given
point P the other three normals are drawn to the curve. Show that the locus
of the centroid of their feet is the diameter of the hyperbola parallel to the normal
at P. (King’s, ete., 1913.)

10. Prove that the locus of a point such that the lines joining it to two fixed
points make an isosceles triangle with a fixed straight line is a rectangular
hyperbola which has one asymptote parallel to the fixed straight line.

11. A line moves so that the sum of the squares of its distances from two
fixed points is equal to the square of half the distance between the points. Show
shat the envelope of the line is a rectangular hyperbola. (Pembroke, etc., 1911.)
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12. If from a point P on a hyperbola PM is drawn parallel to an asymptots
meeting the directrix in M, prove that PM = FP,

Hence establish the following mechanical method of describing & hyperbola.
A right-angled triangle slides with one edge MN along a fixed line OY ; a string
of length AM is attached to a point 4 in the hypotenuse, the other end being
attached to the fixed point F. A pencil which keeps the string pressed against
the edge AM will describe a hyperbola with focus #, directrix OY, and an
asymptote parallel to A M.

13. Show that confocal conics of reciprocal eccentricities intersect at the
ends of their latera recta. (St. Catharine’s, 1907.)

14. A circle which passes through the foci of a hyperbola cuts the asymptotes
in P, P’ and @, Q’. Prove that PQ and P’Q’ are tangents to the hyperbola.

15. A hyperbola is drawn having two sides of a given triangle for asymptotes
and touching the other side. Determine the foci. (St. Catharine’s, 1907.)

16. A variable circle always touches two fixed circles. Discuss the locus of
its centre in the various cases when the fixed circles do or do not intersect.

17. The coordinates of points on a hyperbola being expressed in terms of
the parameter ¢ by the equations z=asec ¢, y=>b tan ¢, prove that the lines
joining the points whose parameters have a given sum all pass through the same
point. (Math. Tripos II., 1911.)

18. If the four points 4,1, %, on the hyperbola z=a(l+)/(1- ),
y=2bt/(1 - #?) are concyclic, prove that 2t, + 2t,l,ts=0.

19. Show that a pair of conjugate diameters of & hyperbola revolve in opposite
directions, while in the case of an ellipse they revolve in the same direction.

20. Two rectangular hyperbolas are such that the asymptotes of one coincide
with the axes of the other. Prove that they cut at right angles.

21. If 2+4y=+Vve+i}, where ¢ and ¢ are real parameters, prove that
¢=-const. and {=const. represent two systems of rectangular hyperbolas cutting
at right angles.

22, Show that from any point on one side of the transverse axis of a hyperbola
one and only one real normal can be drawn to each of the portions of the curve
which lie in that region.

23. P, Q, R, 8 are four points on a rectangular hyperbola such that the chord
P@ is perpendicular to the chord RS ; prove that each of the four points is the
orthocentre of the triangle formed by the other three.

EXAMPLES V. B.

1. Prove that the angle which any chord of a hyperbola (or an ellipse) sub-
tends at a focus is bisected by the line joining the focus to the pole of the chord.
2. If P, P’ are any two points on a hyperbola (or an ellipse) with foci F, F”,
prove that the four focal lines F'P, FP’, F'P, F'P’ touch a circle whose centre
is the pole of the chord PP’ (M. Chasles, 1830.)

3. The coordinates of a pomt on a hyperbola being expressed by a sec g,
b tan @, prove that the normal at the point ¢ is ax cos ¢+ by cot p=a?+b2

4, If the hyperbola zy=c?is represented by the freedom equations z=¢ tan 0.2

y=c cot ¢, show that =} — v, where v is the angle in §10. -ty



Ex. v. 8) ' THE HYPERBOLA 69

. 5. Find the equation of the normal to the hyperbola 22/a®— y2/b%2= 1, drawn
in a given direction, in the form /
 c08 o+ y 8in a=(a?+ b?) sin a cos «(aZsin?a— b2cosa) .

Discuss the cases in which tan « = or > b/a. Show that the perpendicular from
the centre on any normal is a non-intersecting diameter of the hyperbola.

6. A circle cuts a hyperbola in the points P,, P,, Ps, Py; perpendiculars
P M, and P,M, are drawn to one asymptote, PgNg and P N, to the other;
yrove that Py M, . P,M,=PNy. P,N,.

7. A circle cuts a rectangular hyperbola in four points. Show that the
mean point of the four points of interseotion is midway between the centres of
the two curves.

8. P,, P,, P;, P, are the feet of the four normals from P to the rectangular

hyperbola zy=c?; prove that, if O is the centre, OP2=20P 2

: (Corpus, ete., 1912.)

9. A rectangular hyperbola is cut by any circle in four points. Prove that

the sum of the squares of the distances of these four points from the centre of the
hyperbola is equal to the square on the diameter of the circle.

(Trinity, etc., 1906.)

10. If a triangle ciroumscribes a rectangular hyperbola, and straight lines
are drawn from the centre at right angles to the diameters through the angular
points to meet the opposite sides, prove that the points of intersection lie on a
tangent. (Trinity, 1900.)

11. Show that if the sum of the squares of the normals from a point to the
hyperbola zy=a? is constant, the point must lie on a circle. (Magdalene, 1901.)

12. Find (as a determinant) the relation which connects the parameters of
three points of the hyperbola z=a sec ¢, y=>b tan ¢, at which the normals are
concurrent, and show that it is identical with the relation which connects the
accentric angles of three points of an ellipse at which the normals are concurrent.

13. Prove that the lines joining points with the same parameter on the ellipse
z=a cos ¢, y=bsin ¢, and the hyperbola z=a sec ¢, y=> tan ¢, pass through a
fixed point. Prove also that the tangents at corresponding points intersect on
a fixed line,

14. A straight line is drawn so as to be divided harmonically by a circle and
two fixed diameters of the circle. Show that it touches a fixed hyperbola whose
asymptotes are the diameters. (Math. Tripos 1., 1909.)

15. From a point 7' on the orthoptie circle of a hyperbola, whose centre is C,
two tangents are drawn to the curve. Show that, if the chord of contact meets
one of the asymptotes in R, and CT produced in ¥, BRV3=CV . TV.

’ (Pembroke, etc., 1899.)

16. Find the locus of the foci of hyperbolas which pass through two given
points and whose asymptotes are parallel to two given straight lines.

' (Trinity, etc., 19086.)

17. If one of the common chords of a circle and a rectangular hyperbola is a
diameter of the hyperbola, show that another of the common chords is a diameter
of the circle.

8.4.0. R




CHAPTER VI.
THE PARABOLA.

1. TeE parabola was defined in Chap. IV. as follows. A is a fixed
point and A X a fixed straight line ; P is a variable point, PM perpendicular
to AX. Then the locus of P, such that Y

PM2=p.AM, B

where p is a constant, is a parabola. y

¢ 2. To find the equation of the parabola in its simplest

form, take 4 as origin, AX asaxisof z. Then AM =gz, A\ * M X

MP =y, and the equation is

y*=pz.

It is more convenient to write this

yz =4qz. F1a. 44.

a is evidently the length of some line. By taking different values of a we
get parabolas of different sizes. It is just as if we draw the same curve on
a different scale. Hence all parabolas have the same shape.

Assuming a to be positive, we see that  must be positive; hence the
curve lies entirely to the right of the y-axis. Otherwise z is unlimited
in magnitude, and the curve extends to infinity. Since y only occurs
squared, the axis of z is an axis of symmetry, and there is no other axis
of symmetry.

The parabola is a very specialized type of conic, and it will be found .
that while it has numerous properties similar to those of the ellipse
and the hyperbola it differs from them in many ways and requires special
treatment.

8. The tangent. To find the equation of the tangent at a point
- P=(z,, y,) on the curve, we shall find the equation of the chord joining P
to a point @ = (z,, y,) on the curve near to P, and then let Q approach 7.
The equation of the chord is
‘ Y=% _Y2=Y%,
T By—Ty
Since P and Q botb ¥e on the curve
yi*=4az, and y,'=daz,,
therefore Ys? — 9= da (2, — 3y).
70
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Hence the gradient of the chord is
Ya=th_ 48
Z3=% %1t
As Q approaches P, y,—>y, and the gradient —2a/y,.
Hence the equation of the tangent at (z,, y,) becomes

2a
y-n=— (z-z).
Y

This result may also be obtained by means of the caloulus. Dit-

ferentiating y® = 4ax, we obtain y %—Z =2a, t.e. iz

=2afy. Hence, as before,
the equation of the tangent at (z,, y,) is

dy _2a
y-w-(d—z)l(w—xl)—;/; @~-zy).
This equation may also be written
yy1=2a(z +z,).

Cor. The condition that lz+my+n=0 should be a tangent is found
by comparing this equation with the equation of the tangent at the point

(@1, 91), viz. 2ax — y,y + 2az, =0.

Hence l:m:n=2a:-y, : 2az,
=4a:-2y, 1 y,\

Eliminating y,, we have am?=nl,

which is the tangential equation of the parabola.

4. Pole and polar. As in the case of the other conics, if (z;, y,) does not ‘

lie on the curve the equation
’ Yy =2a(z+2,)
represents the polar of the point (2, ;).
Using Joachimsthal’s method, let % be the position-ratio with respect
to the points P=(x,, y;) and @=(z,y) of one of the points X, ¥ in
which the join of these two points cuts the curve, then the coordinates

of X or Y are kr+e, ky+y,

kE+1° k+1°
Substituting in the equation of the parabola, since X lies on the curve,
we have (ky +y, )2 =4a(k+1) (ks +2,).

Hence we have the quadratic equation in %,
K (y* - 4az) + 2k {yy, — 2a(z +2,) } + (4," - 4az) =0,
whose roots &, and k, are the position-ratios of X and Y. Now, if
_ yh=2a(z+z),
we have ky= —k,. Hence X and Y divide P@Q internally and externally
in the same ratio and (XY, PQ) is a harmonic range. Hence the polar
of P is the locus of harmonic conjugates of P with regard to the parabola.
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Cor. The relation which connects two conjugate points P=(z,, y,)
and @=(z; yy) is Y192 =2a(z; +,).

This equation expresses that the polar of P passes through @, and that
the polar of @ passes through P.

5. To find the coordinates of the pole of a given line. Let the equation
of the given line be s +my +n=0,

and let P=(zy, y;) be its pole. The equation of the polar of P is
2ax - y,y + 2ax; =O0.
Since these two equations represent the same straight line, we have
 lim:in=2a:-y, : 2m,;

n 2am
hence L=p h=-—7-

Cor. If the line L,z +my+n,=0 passes through the pole of the line
bz +myy +ny=0, we have
n - 2a
t.e. Ling +lyn, = 2am,m,.

This is the relation between two conjugate lines, and it is related to the
tangential equation In=am? in exactly the same way as the relation
between the coordinates of two conjugate points is related to the equation
y>=4az. In fact, the tangential equation may be obtained from this
relation by putting (I, my,, ny) = (4, my, #,), since two conjugate lines can
only coincide if they are tangents to the curve.

6. Diameters. T'o find the locus of the mid-points of a system of parallel
chords. '

Let y=pz+c be the equation of a variable chord in a fixed direction,
so that . is fixed while ¢ is variable. Substituting the value of  in terms
of y in the equation y2=4az, we have

py? —day — 4ac=0,

& quadratic giving the values of y for the two points of intersection of the
" chord. ) If y,, y, are the roots of this equation, and y the ordinate of the
mid-point of the chord, y=3(y, +y;) =2a/p.

Hence y is constant, and the locus of the mid-points of chords parallel to
the direction y=px is the straight line py=2a. As the corresponding
locus for the ellipse or hyperbola is a diameter or line through the centre,
we shall define a diameter of a parabola as a straight line parallel to the
axis.

There is no such thing as conjugate diameters of a parabola, but there
is & direction or gradient conjugate to every diameter, such that all chords
drawn in this direction are bisected by the diameter. The gradiant
conjugate to the diameter y=b is 2a/b. Since the tangent at the end of a
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diameter is the limiting position of the parallel chords which cut the
parabola, the direction which is conjugate to a diameter is that of the
tangent at the end of the diameter.

Since the diameters of a parabola are all parallel lines we can conceive
of a parabola as the limiting form of an ellipse whose centre is at infinity.

In the case of the ellipse or hyperbola a diameter is the polar of a point
at infinity ; this holds also for the parabola. The point at infinity on the
line y=p=x is (1, w, 0); substituting in the equation yy, =2a(xz +z,2)
these values for z,, y,, z, and putting z=1, we get py=2a. The point at
infinity on the axis is X=(1, 0, 0), and its polar is 2=0, t.e. the line at
infinity. Hence, since the polar of X passes through X itself, X lies on
the curve and the line at infinity is a tangent. This appears also from the
equation of the curve written in the form y?=4azz, for 2=0 gives equal
roots, and is therefore a tangent.

7. The focus. The focal property of the ellipse or hyperbola,
FP + F'P = constant,
- breaks down for the parabola, but there still exists a focus-directrix
property, s.e. there is a point F and a corresponding line such that the
distance from the focus F is in a constant ratio to the distance from the
corresponding line, the directrix.
The equation y?=4az may be written

: y*=@+a)-(z-a)?
fe (z—a)}+yt=(z+a)
But this expresses that the distance from the point (a, 0) is equal to the
distance from the line £+a=0. Hence a focus exists at the point (a, 0)
and the directrix is = —a, which is the polar of the focus. Since the
constant ratio is unity, we say that the eccentricity of a parabola =1.

Examples.
1. Prove that the equation of a parabola referred to its axis and directrix
as axes of z and y is P=da(z—a).

2. Prove that the equation of a parabola referred to axes through the focus,
parallel and perpendicular to the axis, is
yi=4a(z+a).
3. Show that the equation y®=az+b represents a parabola. Find its latus
rectum, and the coordinates of the focus.

4. Show that the equation y=aa?+ 2bz+ ¢ represents a parabola. Find its
latus rectum, and the coordinates of the vertex.

5. Draw the following parabolas, and find the coordinates of the vertex, and
the angle which the tangent makes with the axis of # at the point where the curve
cuts the y-axis: (i) y=a2+4x+9, (ii) 4y=22— 2z 11, (iii) 10y= 322+ bx+20.

6. Draw the following parabolas ; find the coordinates of the focus, and the

angle which the tangent makes with the axis of z at the point where the curve
outs the positive y-axis: (i) y2=8z+9, (ii) y*+ 12z=16, (iii) y*=5z+ 3.
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7. Prove that the diameter which bisects the chord lz+my+n=0 of the
parabola y2=4az is y= — 2am/l, and that the distance between the curve and this
chord, measured along the diameter, is am?/2—n/l.

8. We shall now prove some geometrical properties of the parabola
Let F be the focus, XM the directrix, PT the tangent and PG the normal
at P. Then XA=AF =a.

M X &A1)

—I\&

T x|\ /F N 6
P’
Tia. 45,
The tangent at P is vy, =20(z +,).

This cuts the axis at T, where y=0, z= —z,. Therefore TA=AN.
Hence TF=XN=MP=FP, and therefore L FTP=/ FPT, te. the
tangent is equally inclined to the focal line and the axis. This property is
the principle of the parabolic reflector. Light from a source at F would be
reflected along lines parallel to the axis and produce a beam of parallel
rays which could be projected to a great distance. Conversely, parallel
rays, from the sun for example, would be reflected and come to a focus
at F ; hence the term focus.

, 9. Join FM cutting the tangent at P in Y. Then, since FP=MP,

L FPY =/ MPY, the triangles FPY and MPY are congruent, and
LFYP=/MYP=aright angle. Hence Y is the foot of the perpendicular
from the focus upon the tangent at P.

Then, since TF=FP, Y is the mid-point of TP. But A4 is the mid-
point of TN. Therefore AY || NP, and AY is therefore the tangent at
the vertex.

Hence the locus of the foot of the perpendicular from the focus on a tan-
gent 1s the tangent at the vertex. This straight line is for the parabola the
degenerate form of the auxiliary circle.

10. Draw the normal PG. Then PG| YF; hence F is the mid-point
of 7G. Therefore FG~TF=FP.

Hence FG=XN, and therefore NG'=XF =2a.

NG is called the subnormal. We have, therefore, proved that the
subnormal is constant and equal to the sems-latus rectum.
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11. Polar equation referred to the focus. Let the angle 6 be ZAFP.
We have r=FP=PM=XIL=2a~rcos 0,
or, putting 2a¢ =1, the semi-latus rectum,

1
;-l +cos 0. P

2. Freedom equations of the parabola.
The pa.rabola admits of a very simple y X
system of freedom equations. Taking
the equation y®=4az, put y==2at; then .
z=ai?, and we have the freedom equations X a A\xl' ax F

z=al?, y=2at.

F1a. 46.

13. Equation of the chord joining two points. ‘T'he gradient of the chord
joining the two points ¢, and ¢, is 2a(¢; —t,)/(at,? — at,?) =2/ (t; +1t,). Hence
the equation of the chord is y — 2at; =2 (z — at,2)/(t, +1,), which reduces to
= §(ty +1,)y +atyty =0.

Putting ¢, =, =¢, we get the equation of the tangent at ¢, viz.

z—ty+at®=0.

Cor. 1. 1/t is the gradient of the tangent at ¢, t.e. the parameter t 18 the
cotangent of the angle which the tangent makes with the axts.

Cor. 2. If the chord ¢, passes through the focus (a, 0), we have
Ht, +1=0.

Hence the gradients of the tangents at the ends of a focal chord are
reciprocals with opposite signs, and therefore the tangents at the ends of a
focal chord are at right angles.

Cor. 8. Bince the directrix is the polar of the focus, tangents at the ends
of a focal chord intersect on the directrix. Hence the orthoptic locus of
the parabola s the directrizx.

Examples.

1. Prove that the semi-latus rectum of a parabola is the harmonic mean
between the two segments of any focal chord.

2. Show that the length of a focal chord of a parabola which makes an angle
with the axis is 2! cosec? 0.

3. Prove the following mechanical method of drawing a parabola. A set-
square KMQ, with right angle at M, slides with one edge M K along a fixed line ;
a string of length MQ has one end fixed to @ and the other to a fixed point F.
Then a pencil which keeps the string tight and presses against the edge MQ will
describe a parabola.

4. Show that the parameters of the ends of the latus rectum of the parabola
'-a", y==2at are + l

6. Show that the parameters of the ends of a focal chord are ¢ and — 1/&
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14. The normal. The gradient of the tangent at (z, y,) is 2a/y,.
Hence the equation of the normal at (z,, y,) is .

y-h= —g—;(w-xﬂ,
te. ¥ (z—z,) +2a(y —y,) =0.
Cor. The equation of the normal at ¢ is
2at(w ~ at®) + 2a(y — 2at) =0,
f.e tx+y —(at® + 2at) =0.

15. To find the normals which pass through a given point (z,, %,),

substitute &, y; for #, y in the equation of the normal at ¢, and we get

at® +(2a — z,) ¢ — y, =0.
This is a cubic in ¢, and its roots are the values of the parameters of the feet
of the normals from (z,, y;). Hence three normals can n general be drawn
to a parabola from a given point.

Q. Why is it that only three normals can be drawn from a given point
to a parabola, while four can be drawn to an ellipse or hyperbola ? What
becomes of the fourth normal ?

Cor. 1. If t,, t,, t; are the roots of the above cubic in ¢, we have

ty+1y+23=0,
This is therefore the relation which must hold between the parameters of
three points in order that the normals at these points may be concurrent.

Cor. 2. Consider a system of parallel chords. Since the locus of their
mid-points is a straight line parallel to the axis, the coordinates of the
extremities of any chord are connected by the relation g, +y,=constant,
and hence if £, and ¢, are the parameters of the two ends of any chord of a

parallel system, t, +t,=constant.

Let the normals at the extremities of one chord meet in P, and let the
parameter of the foot of the third normal from P to the curve be ;. Then
lg= — (¢, +?;) =constant; hence the third normal is a fixed line, ¢.e. the
normals at the extremities of a system of parallel chords intersect upon s fived
line which 48 a normal to the parabola.

18. The evolute. Consider two normals at points @, Q' very near to
one another, and let them meet at P. As the normals tend to coincidence,
P tends to a limiting position which is the centre of curvature at Q, and the
locus of the centre of curvature is the evolute.

From any pomnt on the evolute two of the normals which can be drawn
to the parabola are coincident; we may therefore write the parameters
of the feet of the three normals ¢, ¢, ¢/, and 2t +¢ =0.

The normal at the point ¢ is

tw+y-at(®+2)=0,
and the normal at ¢’ = —2¢ is
— 2z +y+2at (462 +2) =0,
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The coordinates of the point of intersection of these two lines are
z=a(3%+2),
y=—2a,
~ These are therefore the coordinates of the
centre of curvature at the point ¢&. Together
these two equations represent freedom
equations of the evolute. Eliminating ¢,
wehave  4(;_9q)3=27ay".

The evolute is therefore a curve of the
third degree, symmetrical about the axis of
®. It cuts the parabola where z=28a, and it
has a cusp where z=2a. This curve is
called the ¢ semi-cubical parabola.” A
curve whose equation is of the form y=cz®
is called a generalized parabola.  When
n=2 or }, it is the ordinary parabola. For
the semi-cubical parabola n=3.

17. Area of a parabolic segment or sector. (1) To find the area of the
segment cut off by the chord PP’. ‘

Take any point Q on the arc and draw a chord PP’. Let L, M be the
mid-points of these chords and join LM, cutting the curve in 4. Then AL
is the diameter corresponding to the chord
PP’,and the tangent at 4 is parallel to PP’. R L

Take another point @ very near to = g A7
Q on the curve, and draw the chord QQ' g/f——/ L7
meeting the diameter in 7. Draw the ﬂ 9
ordinate Q"M’, and complete the parallelo-
grams MTKQ, M'TK'Q', K'Q, QM’' and 7 af a7/ I L
PP'R'R.

Ultimately when @' comes to coincide
with @, QQ° becomes the tangent at @,
and TA=AM.

Now the parallelogram

QM'=K'Q=2N"Q.
The areas LAQP and AQP R are therefore divided into small strips which are
ultimately in the ratio 2:1. Hence the area LAQP=2A4AQPR, and there-
fore the area of the segment P’AQP is £ of the parallelogram P'R'RP.

(2) To find the area of the sector bounded by a radius vector FP and
the radius vector F4.

Assuming the preceding result, we have (Fig. 46)

Area FAP=LAP+ FLP=3AL.LP+1LF.LP
—y{32+}a-2)} =y(a+1a)
=} . 2at(1at® +a)
—a*(t+38),
where ¢=cot = tan }0.

Fro. 47.

R P
: F1a. 48,



78 THE PARABOLA vz 17

This could be obtained also directly by integrating a}J.rde.

We have r=asec’}0=a(l +22),

and de =1 sec?}0 dB =} (1 +22)db.
Therefore $2d0=a2(1 +3)dt.

Hence the area = QJ.f” a9

=a?|(1+8)di=a?(t +38).

EXAMPLES VI. A.

1. OP, OQ are tangents to a parabola, and PQ cuts the axis in X; prove
that the distance of K from the focus is equal to the distance of O from the
directrix. (Corpus, 1911.)

2. Find the equation of the chord of the parabola y?=_8x which is bisected
at the point (2, —3). - )

3. Two perpendicular focal chords of a parabola meet the directrix in T'
and 7" respectively ; show that the tangents to the parabola, which are parallel
to these chords, intersect in the middle point of 77,  (Math. Tripos L., 1915.) -

4. Prove that the locus of the mid-points of all chords of the parabola
42=4az which pass through the point (', ') is the parabola 2a(z—2")=y%—yy’.

5. Two parabolas have the same directrix and the same axis, intersecting
at X. The vertex of one is A and the vertex of the other is at the focus of the
first. The parabolas intersect at P, and PM is drawn perpendicular to the
directrix. Show that AP?=44X. AM. (St. Catharine’s, 1907.)

6. The chain of a suspension bridge hangs in the form of a parabola whose
axis is vertical and vertex downwards. In the Menai Suspension Bridge the
chain hangs symmetrically with a span of 570 feet, and the dip is 43 feet. Find
the latus rectum of the parabola, and the inclination to the horizon at each end
of the chain.

7. In the Tower Bridge of London each of the side spans is a suspension
bridge whose span is 285 feet ; the height at the shore end is 34 feet and at the
river end 136 feet, measured from the lowest point. Find the position of the
vertex of the parabola, the distance of the directrix below the vertex, and
-the inclinations to the horizon at each end of the chain.

8. When a stone is thrown it describes a parabola whose axis is vertical and
vertex upwards. A stone is thrown from the ground so as just to clear two fences,
the first at a horizontal distance of 10 feet and 5 feet high, the second 8 feet high
and at a distance of 24 feet. Find the inclination to the ground at which the stone
must be thrown, and the point at which it will reach the ground.

9. An airplane when moving horizontally at an altitude of 2000 feet drops
a bomb which reaches the ground at a point 500 feet away from the point which
was vertically beneath the airplane when the bomb was dropped. Find at what
angle it strikes the ground.

10. Show that any circle-whose diameter is a focal chord of a parabola
touches the directrix.
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11. Prove that if the chord of a parabola z=af?, y=2at, whose ends have
parameters 7, n’, passes through the fixed point {a(m?+4), —2am}, the chord
joining the points whose parameters are m, n is perpendicular to the chord joining
the points m, n’.  What conclusion can you draw by making the point » move
up tom ? (Peterhouse, etc., 1914.)

12. Prove that the lines joining any point on a parabola to the two ends of
any double ordinate cut the axis at points equidistant from the vertex.

'13. If four concurrent lines cut a parabola in P, P’; Q,Q’; R, R’; 8,8';
prove that the cross-ratio of the parameters of PQRS is equal to that of
PQ'R'S.

14. Show that the chord joining the points ¢ and — 1/¢ of the parabola z=ai?,
y=2a¢ passes through the foous.

15. Two equal parabolas have the same vertex, and their axes at right angles.
Show that they cut again at an angle tan-1%.

16. Two parabolas have the same foous and axis, but their vertices in opposite
directions. Prove that they cut at right angles.

17. Two tangents to the parabola y2=4ax make with each other an angle 60° ;
show that the locus of their intersection is one branch of a hyperbola. What
locus does the other branch represent ?

18. A parabola rolls symmetrically on an equal parabola. Find the locus of
the focus.

19. Prove that a circle outs a parabola in four points whose centroid lies on
the axis.

20. Prove that the centroid of the feet of the three normals which can be
"drawn from any point to a parabola lies on the axis. ,

21. Show that the feet of the three normals that can be drawn from any
point to a parabola lie on a circle which passes through the vertex.

22. P is any point on a parabola whose vertex is 4, and @, R are the feet of
the normals from P to the curve. Show that QR passes through a fixed point
and that AP and QR meet on a fixed line. (Math. Tripos I., 1809.)

23. Normals to the parabola y*=4az at the points P,, P,, P; meet in the
point (b, k) ; find the coordinates of the centroid of the triangle P, PyP;.

24. If two equal parabolas have a common focus, show that their common
ohord passes through the focus and bisects the angle between the axes.

25, Prove that the angles of intersection of two equal parabolas having a
common foous are supplementary, and that one of them is equal to half the
angle between the axes.

26. Prove that the area of a segment of a parabola cut off by a focal chord
which makes an angle « with the axis is $a? cosec3a.

27. Two equal parabolas of latus rectum 4a bave a common focus. Show
that if o is the inclination of their axes, the area common to both is *;%a?cosec®1a.

28. A circle whose centre is at the focus of a parabola whose latus rectum is
4a cute the parabola at an acute angle «. Show that the area of the crescent-
shaped portion between the curves is 2a2(«x sec®o ~ tan a— 3 tanda).

29. A variable chord of a given conic subtends a right angle at a focus.
Find the position of the point of contact of the chord with its envelope, and
show that the envelope is a parabola.
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30. At the point of intersection of the rectangular hyperbola zy=k® and the
parabola y?=4ax the tangents to the hyperbola and the para.bola make angles
6 and ¢ respectively with the axis of 2. Prove that tan 0= — £ van ¢.

(Downing, 1911.)

81. The polar of the point P with respect to the parabola y®>=4ax meets the
curve in @, B. Show that, if P lies on the straight line lz+my+ n=0, then the
middle point of QR lies on the parabola I(y2— 4ax)+ 2a(lx+my+n)=0.

(Math. Tripos L., 1911.)

32, If the line lz+my+na=0 meets y?=4az in P and @, and if the lines
joining P, @ to the focus meet the parabola in 7', U, show that the equation of
TU is nz—my+la=0. (Trinity, ete., 1900.)

33. The tangents drawn from a point P to a parabola whose focus is F touch
it at Q and Q' ; prove that FP2=FQ.FQ".

34. The three points (xy, ¥;), (%3, ¥p), (%3, ¥3) form a tna.ngle self-conjugate
for the parabola y®=4ax. Prove that the area of the triangle is

H(ya— v3)(y3— ¥1)(¥1 — ¥a)/ae
(Corpus, 1907.)

EXAMPLES VI. B.

1. Triangles are inscribed in the parabola y?>=4az, each having its centroid
on the line z=¢. Prove that the tangents at the angular points form triangles
whose centroids lie on a parabola of latus reoctum $a.  (Peterhouse, ete., 1900.)

2, From a point M on the axis of a parabola normals M P, MP’ are drawn
to the curve. Show that the circle ecircumscribed to the triangle formed by the
tangents at P and P’ and the tangent at the vertex subtends at M an angle
2sin-t1. (Trinity, ete., 1901.)

3. Four fixed tangents T, T,, T T4 to a parabola intersect in the six
points Pyy, Py, .... From these points perpendiculars p;y, Pyg, ... are drawn to
any other tangent. Prove that

Pia - P3a=Dy3- Pos= P14 - Poz- (Trinity, etc., 1901.)

4. Prove that a circle whose diameter is a chord of a parabola, such that

the distance between the diameters through its extremities is double the length
of the latus rectum, will touch the parabola. (Trinity, eto., 1906.)

5. Prove that the length of the chord through a point P on the parabola
y*=4az drawn in a direction making an angle 6 with the axis of z is equal to
4q sin (o — 0) cosec® 0 coseo a, where « is the inclination of the tangent at P to
the axis of . (Math. Tripos I., 1913.)

6. PFQ is a focal chord of a parabola; circles are described through the
focus F to touch the parabola at P and @ respectively ; prove that these circles
cut orthogonally. (Corpus, etc., 1912.)

7. Any circle is described through the focus of a parabola so as to touch the
curve at one point and meet it again in P and Q. Prove that the locus of the
intersection of the normals at P and Q is a parabola. (St. Catharine’s, 1912.)

8. OP, CP’ are two fixed tangents to a parabola drawn from a point C on
the axis. A variable tangent cuts them in @ and @’. Prove that either the sum
or the difference of the segments CQ, CQ’ is constant.
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9. The tangent at any point P of the parabola y®=4az is met In Q by a line
through the vertex A at right angles to AP, and Z is the foot of the perpendicular
from 4 on the tangent at P. Show that there are three positions of the point P
on the parabola for which the point Z lies on the straight line lx+ my+na=0,
and that the corresponding points @ lie on the line (21— n)z+ 4my+ 2na=0.

(Pembroke, ete., 1910.)

10. A point P moves in a plane in such a way that VP— SP=SK, where § .

is a fixed point in the plane, ¥ & fixed point not in the plane, and K the foot of
the perpendicular from ¥ on the plane. Prove that the locus of P is a parabola
with focus at 8; and that, if the vertex of this parabola is 4, the point V lies on
a second equal parabola with vertex at S and focus at A.

(Pembroke, ete., 1910.)

11. A sphere rolls on a parabolic wire, with which it is in contact at two

points ; show that the locus of the centre of the sphere is an equal parabola.
- (King’s, ete., 1913.)
12. PQ is & chord of a parabola normal at P; a circle described on PQ as
diameter cuts the parabola again in R. Prove that the projection of QR on the
axis is twice the latus rectum. (Queens’, 1911.)
13. Prove that if a > b > 0 and ¢ > 2(a—b), the two parabolas y?=da(z+c),
y*=4b2 have a pair of common normals, inclined to the common axis, and that
the distance d between the curves, measured along one of these common normals,
is given by d®=4(a—b)(c--a+b). (Pembroke, ete., 1909.)
14. If from a given point P three normals be drawn to any parabola having
the same focus and its axis in the same direction as that of & given parabola,
prove that the sum of the angles which the normals make with the axis is constant,
{Queens’, 1900.)
15. A fixed line meets the directrix of a given parabola in F and the polar
of Fin #; pairs of points are taken on the line such that the pairs of tangentsa
from them contain equal or supplementary angles ; prove that they divide FF*
harmonically. . (Pembroke, etc., 1900.)
18. A parabola whose axis is along the axis of z intersects the ellipse
#3/a®+y?(b®=1 orthogonally at the point whose eccentric angle is ¢. Show that
the latus rectum of the parabola is 2a sin @ tan . {Pembroke, ete., 1901.)
17. CP and CD are two conjugate semi-diameters of an ellipse, lying on the
same side of the major axis, and a parabola is drawn through P and D with its
axis along the major axis of the ellipse. Show that the ratio of the latera recta
of the parabola and the ellipse is equal to FP~F'D: FF’, F and F’ being the
foci of the ellipse. (Selwyn, 1907.)
18. Prove that the point of intersection of the normals to the parabola
t?=4az at its points of intersection with the line lz+my+n=0 are given by
Pa=2aR+ 4am® - nl, Py=2mn.
19. A chord of a parabola passes through a fixed point; prove that the
normals at its extremities meet on another fixed parabola,
20. Prove that the normals at the ends of a focal chord of the parabola
=40z intersect on the parabola y2=az— 3a2.
21. Show that a+2a cos 6, 22 sin 0 are the coordinates of a point on the
circle 22+ y3— 22z — 342=0, and deduce that the polar of any point on this circle,
with respect to the ofrole 23+ 42+ 232 — 3a? =0, touches the parabola 32+ dax=0Q.
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22. Show that the polar of any point on the parabola y2=4az, with respeot
to the ellipse 22/cc+ y2/B=1, touches a parabola whose latus rectum is p2/(ac).

23. Prove that the polar, with respect to the parabola y?— z=0, of any point
on the hyperbola 22— 23= 1, touches this hyperbola.

24. PQ is a fooal chord of an ellipse, of which H is the other focus, and the
circle PQH outs the ellipse again in U, ¥. Show that, as PQ varies, UV touches
a fixed parabola. (Math. Tripos I, 1909.)

25. Show that if the middle point of a chord of a parabola lies on a fixed
straight line, then the chord is either in & fixed direction or touches another fixed
parabola. ' (Math. Tripos II., 1914.)

26. Show that the common chord of a parabola and its circle of curvature
at any point constantly touches another parabola having the same vertex.

(Pembroke, etc., 1901.)

27. A dot is made on a sheet of paper, which has a straight edge. The paper
is folded so that this edge always passes through the dot. Show that the crease
touches a fixed parabola.

28. If in the last example the sheet of paper is circular, show that the crease
will envelop an ellipse, whose foci are the fixed point and the centre of the circle,
and major axis half the diameter of the circle., (Ferguson Schol., 1901.)

29. The chords PQ, PR of the parabola 3= 4az pass respectively through the
points (0, 42), (0, —4a). Prove that QR envelops the circle 22+ y®=4az.

(Trinity, ete., 1911.)

30. Through a fixed point on the axis of a parabola any line is drawn cutting
the curve in the points P, Q, and the circle through P, Q and the focus F outs
the parabola again in the points P’,@’. Prove that P'Q’ envelops another

. (Trinity, etc., 1909.)

31. Show that the pole of a chord of a given conic which subtends & constant

angle at a focus lies on another conic having the same focus and directrix.
(Selwyn, 1914.)

32. Prove that a chord of a conic which subtends a constant angle at one
focus envelops another conic with the same focus.

33. Conics are described having the same focus, and their major axes equal (2a)
and in the same straight line. Prove that the tangents at the ends of the latera
recta through the common focus touch a parabola of latus rectum 4a.

(Corpus, 1807.)

34. Two parabolas have a common focus and axes inclined at an angle o
Prove that the locus of the intersection of two perpendicular tangents, one to
each of the parabolas, is a conic. (St. Catharine’s, 1899.)

35. Normals are drawn from any point (z, ) to the parabola y*=4az. Prove
that p,, pg, pg> the radii of curvature at the feet of the normals, satisfy the equation

oot + oot + oyl =ata ¥ (22— a). (Trinity, 1902.)

36. Prove that if p;, pg, py are the radii of curvature of a parabola, with focus

F, at the feet of the normals from a point P, p;papg= 8FP8, (Corpus, etc., 1912.)
37. Through the vertex 4 of a parabola a line AY is drawn perpendicular to
the tangent at P meeting the ordinate PN in K. Show that KN is half the

distance of the centre of curvature at P from the axis of the parabola.
(St. Catharine’s, 1914.)
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38. The normal at a point P of a parabola touches the evolute at Q, and R
is the centre of curvature of the evolute at . Prove that the straight line PR
makes with the axis an angle cot}(cot ¢ + cot 2¢), where ¢ is the inclination of
the tangent at P to the axis. (Selwyn, 1914.)

89. Find the coordinates of the point of mtersectlon of the parabola y®=4ax
with a circle of radius b which touches it at the vertex, the centre of the circle
being within the parabola. What happens when b is equal to, and less than, 2a -
respectively ?

Prove that if a=1 inch and b=2-2 inches, the maximum distance (measured
parallel to the axis of the parabola) between the nearly coincident portions of the
two curves between their points of intersection is ‘01 inch. ° (Downing, 1911,

40. Tangents OP, OP’ are drawn from the point O(z’, y’) to the parabola
y*=4ax, and F is the foous. Prove that OP. OP'[FO=(y* - 4ax’)/a.

(Selwyn, 1907.)

- 41. Through the extremities Q, @’ of a focal chord of a parabola the double

ordinates @R, Q’R’ are drawn to cut the axis in N and N’. Chords are drawn

through R and R’ parallel to QQ’ to meet the diameter which bisects QQ’ in M
snd M’ ; prove that

RM*- R'M3=2QQ’. NN, (Selwyn, 1913.)



CHAPTER VII.
SYSTEMS OF CIRCLES.

1. Radical axis of two circles. Consider two circles
S=a?+y?-2ax -2By +¢ =0,
S'=af+y*-20'c-208"y+¢' =0.
The expression denoted by S represents the power of the point (2, y) with
respect to the circle, and is equal to the square of the tangent from (x, y)
to the circle.
‘ The locus of a point which has the same power with respect to the
two circles is therefore S=g,

t.e. 2(e—a)2+2(B - L)y +c —c=0.
As this equation is of the first degree and is satisfied by values of zand y
which satisfy both S=0 and §’'=0, it represents a straight line passing
through the points of intersection of the two circles. This line exists
whether the circles cut in real points or in imaginary points, and is called
the radical axis of the two circles. When the two circles intersect in real
points, the radical axis is the line of their common chord ; when the points
of intersection are imaginary, the radical axis lies entlrely outside both
circles. In either case there are points of the radical axis which lie outside
both circles, and from these points the tangents to the two circles are equal.
The radical axis could therefore be constructed by drawing any two common
tangents and bisecting the segments between the points of contact. The
join of these mid-points is the radical axis.

The radical azis is perpendicular to the line of centres, for the gradient
of the line joining the centres is (B — f’)/(x —«’), while the gradient of the
radical axis is — (ax—a)/(f - B).

2. The radical axes of three circles taken in pairs are concurrent. If

S,, Sa, S; are the three circles, the equations of the radical axes are
8p—83=0, 8;-8,=0, §;-8,=0.
Since the sum of the three expressions on the left vanishes identically,
these three lines are concurrent. The point of concurrence is called the
radical centre of the three circles. The radical centre has the property that
the tangents drawn from it to each of the three circles are all equal. If the
three cucles overlap and enclose a common area, the radical centre lies
within this common area, and real tangents cannot be drawn from the
radical centre to the three circles.
84
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Examples.

1. If two of the radical axes of three circles taken in pairs are coincident,
prove that all three radical axes coincide.

2. If two of the radical centres of four circles, taken in threes, coincide, and no
three of the circles have a common radical axis, prove that all four radical centres
ooincide.

3. Pencil of circles. If S and 8’ are two given circles the equation
8+AS’ =0 represents a circle passing through the points of tntersection of
the two circles.

Writing the equation in full, we have

2 +y2—2ax — 2By +e+ A (7 + 4% - 20’z — 2By + ') =0,
or 1+0 (@2 +y?) - 2(x+r Y2 - 2(B + AR )y +c+ A’ =0,
which represents a circle with centre
a+ia’  B+AR
1+A " 1+x °
Further, the coordinates of any point which satisfy the two equations
S=0 and §’=0 simultaneously will also satisfy the equation S +AS’=0.
Hence the circle passes through the common points of the two given circles.
By giving different values to the parameter A, we obtain then a system
of circles all passing through two fixed points. This is analogous to the
equation u+Av=0, in which 4 and v represent straight lines, and which
represents a pencil of lines through a fixed point. The system of circles -

represented by the equation §+AS8’=0 is analogously called a peacil of
circles. ’

4. Coaxal circles. The radical axis of the two circles S and 8’ is repre-
sented by the equation S-S =0.

This is just a particular case of the general equation S +AS'=0 for A= -1,
and therefore we must regard the radical axis as a degenerate circle of
the pencil.

Now take any two circles of the pencil

S+A8'=0 and S+u8’ =0,

or, written in full,

S+A8" =(1+A)(@? +4?) - 2(x+ M)z —2(B + AP y + (¢ + Ac’) =0,

S+ = (1 +u)(@ +97) ~ 2 (o +pa')a = 2(B +uB')y + (o +ppe’) =0,
To find the radical axis of these we have to eliminate 22+y2. Multiply
the first equation by 1+ and the second by 1+2, and subtract. We
get then (1 4 y(6 4 A8") — (1+2)(S +w8") = (e — 1) (S - §") =O.
The equation of the radical axis is therefore again S —8’=0.

Hence every pair of circles of a pencil have the same radical axis. For this
reason a pencil of circles is called a system of coazal circles or a coazal system

of circles.

8.A.C. 6
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5. Reduction of the equation of a coaxal system to the simplest form.
To find the equation of a system of coaxal circles in the simplest form take
the axis of y as the common radical axis; then, if
S=a?+y?-20x - 2By +¢ =0,
S'=a?+y?-2a'c- 20"y +¢' =0,
the equation of the radical axis is
2a-a)z+2(B-Bly=c-c.
But this is to reduce to z=0; hence
B=f" and e=c'.
The first condition shows that the centres of all the circles lie on the straight
line y={ perpendicular to the radical axis. Take this line as the axis of «;
then B=0=f'. The second equation of condition shows that the constant
term is the same for all the circles. Hence only the coefficient of & can
vary, and the equation of the system reduces to
2 +y2 -2z +c=0,
where A is a variable parameter, and ¢ is a constant.

Examples.
1. Prove that through any point there passes one, and only one, circle of a
given coaxal system.
2. Prove that in any coaxal system there are two circles, real, coincident, or
imaginary, which touch a given straight line.
3. Interpret geometrically the analytical condition that the two circles of
Ex. 2 should be coincident.

4. If the common points of a coaxal system are imaginary, prove that the
two circles which touch a given straight line are always real.

8. Types of coaxal systems. Every circle of the system
B+yR -2z +¢=0
cuts the radical axis, £=0, where
y2+e=0.
There are two distinct cases according
as ¢ is positive or negative.

(1) Let ¢ be negative and equal
to —%2. Then every circle of the
system cuts the radical axis in the
fixed points (0, k), (0, —k). These
are common points of the system.
Writing the equation

(-2 +2=02+ 12,
we see that the least circle of the system has its centre at the origin and
its radius equal to k.

Fia. 49
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(2) Let ¢ be positive and equal to 2. Then no circle of the system

cuts the axis of y. The equation becomes

@= N2+t =N - A3,
F1a. 3

A must lie between —k and +%, and as A
approaches either of these values the radius
tends to zero. We therefore get two point-
circles belonging to the system, the points
(%, 0). These are called Umiting-points.
In this case the common points are imaginary.
In case (1) the common points are real and
the limiting-points are imaginary. .

(3) The case where ¢=0 is intermediate between these two cases, and
is a limiting case of each. The common points

coincide and the limiting points coincide, and all .
the circles touch the axis of y at the origin. The ‘
least circle of the system is a point circle at the ~ \

common point of contact.

A coaxal system assumes special forms when one
or both of the common points or limiting points
becomes a point at infinity.

(4) Let one of the common points B become & = - pq 1.
point at infinity ; then the line of centres becomes
the line at infinity, and the circles reduce to a pencil of lines through 4.
The radical axis becomes indeterminate, coinciding with any one of the
lines.

(5) Let one of the limiting points become a point at infinity ; thex the
radical axis becomes the line at infinity, and the circles become concentric,
with the remaining point as common centre.

(6) Let the second common point also become a point at infinity ; then
the circles reduce to a system of parallel straight lines. The common
points must be regarded as coincident points at infinity, as the system is
the limiting case of a common-tangent system when the common point of
contact is a point at infinity. The limiting points also coincide with the

same point at infinity.

7. If a circle cuts two circles of a coazal system orthogonally it will ol
them all orthogonally. Let the circle

2?+4y%-242-2By+C=0
out orthogonally each of the circles
S=a+y* — 201 — 2By +¢ =0,
8§ =2+t - 20z - 2Py +¢ =0,
8o that 24a +2BB =C+e,
and 244’ +2BR' =C +d.
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Then the condition that it should cut orthogonally the circle 8+ AS’ =0 is
o+ Ao’ B+Ap’ c+Ac’
S Py W o il P
ie. (24a+2BB-C~c) +M(24a" +2Bp' - C -¢')=0.
But each of these terms vanishes by the given conditions; hence the con-
dition is satisfied for all values of A.

8. Conjugate systems of coaxal circles. Consider the coaxal system

22+y? - 20z +¢=0.

Then if the circle ?+y2-24z-2By+C=0

cuts every circle of this system orthogonally, we have for all values of A,

M -c-C=0;

hence A=0 and C=-ec.

B is then quite undetermined, and we find that every circle of the system
#®+y2 —2uy -c=0, ‘

where . is variable and ¢ is constant, cuts orthogonally every circle of the

system @? + 42 - 2\ +c=0.

But the former equation is of exactly the same type as the latter, with:
z and y interchanged. It therefore represents a system of coaxal circles
whose axis is the axis of .

Let us assume that the given system has real common points, so that
¢ is negative, = — 2, and the common points are (0, +k). Then the other
system cuts its axis where 22 + k2 =0, 4.e. in imaginary points ; its limiting
points, the point-circles, are found by writing the equation in the form

2+ (y - )= pt - B
giving = +k. Hence the limiting points are (0, +%), and coincide with
the common points of the other system. In the same way the imaginary
limiting points (£, 0) of the given system coincide with the imaginary
common points of the other system.

Two such systems of coaxal circles are called conjugate systems. -

If =0, we have two conjugate systems, one touching the axis of x at
the origin, and the other touching the axis of y at the origin, their equations
being 2+t - Dz =0,

72+ y: - 2uy =0.
It is obvious in this case that every circle of the one system cuts every
circle of the other system orthogonally, since they cut at right angles at
the origin. .

It may be noticed also that a system of concentric circles and a pencil
of lines through their common centre are conjugate systems, and also, as
a still more special case, two systems of parallel lines cutting at right angles.

9. Orthotomic circle of three given circles. Given three circles, to
construct a circle cutting each of them orthogonally. Let Q be the radical
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centre of the three circles. Then, since the tangents from O to the three
circles are equal, a circle with centre O and radius equal to the tangent
will cut all three circles orthogonally. If the circles overlap so as to have
an area in common, the radius of the orthotomic circle is imaginary ; if
they pass through one point the radius is zero, and the orthotomic circle
is a point-circle.

10. It is easily proved geometrically that the ends of a diameter of
any circle are conjugate points with regard to a circle which cuts the first
circle orthogonally. Hence, if P is any point on the orthotomic circle of
three given circles, its polars with regard to the three circles will all pass
through the other end of the diameter through P of the orthotomic circle,
and are therefore concurrent.

This property can be used to find the equation of the orthotomic circle
of three given circles. ‘

The equation of the polar of the point (', ') with regard to the circle

22 +y? -2, - 2By +¢,=0
is z(z' — ;) +y (¥ — By) — @ — Byy” +¢,=0.

Writing down the equations of the polars with regard to the other two
circles and eliminating # and y, we have as the equation of the locus of

@9 z-a, Y-PB az+By-¢ |=0
T-0p Y—PB; T +Py—Cp
z-og Y—P3 %T+Bgy—cy
This may be written in another and more general form. Make the
equations of the circles homogeneous, so that
S, =2? + 4 — 20,22 — 2B,yz +¢, 2% ;

148, 198, _138,
then T-oz=3 = -'/"Blz—ﬁ'a?’ alm-ﬁly+c,z—2—;.
Hence the equation of the orthotomic circle can be written
a5, 35, 35, |=0.
or Ody 0Oz
ox 0Jdy Oz
ox 0dy Oz ,
This determinant is called the Jacobian of the three functions S, S,, Sy,
lnd. is usually written 3(S,, Sa, Sy)
0(z, ¥, 2)

Q. Since the Jacobian is of the third degree, the locus should be a
curve of the third degree. Explain this.
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11. Net of circles. If S;, S,, Sy represent any three circles, whose
centres are not collinear, the equation

S +AS + S5 =0, wereverseririnirininienissnsniad (1)

where A, p. are variable parameters, represents a circle which belongs to a
system with two degrees of freedom. This is called a net of circles (some-
times also a bundle).

Let the origin be chosen as the radical centre of the three circles

Si=22+y2 - 20,2 — 2B,y +¢; =0,
etc. Then, since the radical axis of S, and S, passes through O, therefore
¢;=¢y; and similarly ¢, =cy=£%, say. Then the equation (1) becomes

G Mty o By AR By
2+y:-2 Tiaip z-2 Tirin y+k=0...... ... (2)
Hence the radical axis of every pair of circles of the system passes through
the origin, and therefore the origin is the radical centre of every set of three
circles, .e. a net of circles is a system of circles with a common radical centre.

Equation (2), which represents any circle of the system, is of the form

- 22+ y? - 20 - 2Py + k=0,
where k is constant, and a, B can be regarded as the variable parameters.
The square of the radius of this circle is «®+ 8% —%; hence the locus of the
cenires of point-circles of the net ts the circle
2+yi=k,
and it is easily verified that this circle cuts orthogonally every circle of the net.

If & > O, the orthotomic circle is real.

If k=0, the orthotomic circle is a point-circle, and all the circles pass
through this common point.

If & <0, the orthotomic circle is virtual. In this case there is a real
circle 22 + 42+ k=0, which is cut by every circle of the system in points
which lie on a line oz + By =0, passing through its centre, t.c. every circle
of the system culs this fixed circle at ends of a diameter.

Examples.
1. Prove that all the circles of a net which have their centres on a given
straight line form a pencil of circles.

2. Prove that all circles which cut a given circle orthogonally form a net.

12. The pencil and the net of circles are particular cases of systems of
circles. A circle depends upon three constants or parameters, a,  and ¢,
and if these are quite independent it has three degrees of freedom. One
condition, which leaves it with two degrees of freedom, can be represented
by an equation involving «, 8 and ¢. The simplest equation is one of the
first degree or a linear equation, say

Ao+ BB +Cc+ D=0.

This then represents a linear system of circles with two degrees of freedom.
Now this equation expresses that the given circle cuts orthogonally the

tircle C(s* +y*) + Az + By + D=0.
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Hence the linear system is a net, or system with a common radical
centre.

Again, two linear equations in &, 3, ¢ represent a linear system with one
degree of freedom. This is a system cutting two fixed circles orthogonally,
and is therefore a coaxal system or pencil.

Cor. Two nets of circles have in common a system of coaxal circles,
the radical axis being the line joining the radical centres of the two nets.
The conjugate coaxal system is determined by the orthotomic circles of
. the two nets.

INVERSION.

18. Consider a fixed circle with centre O and radius &, and any point P.

The point P’ on OP, such that

OP . OP' =132, '
is called the #nverse of P with respect to the fixed circle. The fixed circle
is called the circle of wnversion, its centre is the centre of tnversion, k* is
called the constant of tnversion, and £ is the radius of inversion.

The relation between P and P’ is symmetrical, so that P is the inverse
of P'.

The constant 4? being positive, the points P, P’ lie on the same side
of 0. 1If k* were negative, P and P’ would be on opposite sides of 0. The
circle of inversion in this case has an imaginary radius, though its centre
is still real, and it is a virtual circle. We can avoid having to deal with a
virtual circle of inversion by the following process. Let P’ and P” be
the inverse points of P with respect to the positive and negative constants
k* and —%® respectively, and the same centre of inversion O ; so that

OP .OP'=Fk, OP.OP'=-}32
Then OP” = ~OF’. Hence we can obtain the inverse point P for the
negative constant by finding first the inverse point P’ for the positive
constant, and then rotating through two right angles about 0.

14. Formulae for inversion. To find the coordinates of the inverse
of P=(x, y) with regard to the circle
2% +yP =k
Let the coordinates of P’ be (2, y').
Z y OP OP.OP op:2

y
z y OP 0P OP.OP /o o y7a
- k? __$'2+y'= \/
2y B '

P

Then —=%= x
: B Py
f.e. z =m 5 y’ =;z+—y§. : Fie. 82,
Using polar coordinates, with O as pole, the equations of transfor-
mation are I

0 =0, r=—,
r
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The points P and P’ will coincide if 2’ =2 and y’ =y ; then
2 +yt=43
Hence the circle of inversion is the locus of self-corresponding points.
15. Inverse of a curve. If the coordinates z, y are connected by any

equation so that P lies on a certain curve, the coordinates ', y’ of P’ will
be connected by a corresponding equation found by substituting

o k2’ _ By
2ry? YT
The locus of the resulting equation is the inverse of the locus of P.
The inverse of a straight line is a circle.

The straight line le+my+n=0
. k' K2y’
gives lx'2+y"+ma:'2+y’2+”_o’

or, multiplying up and dropping the dashes,

n(22 +42) + K2l + k2my =0,
which represents a circle passing through O, and having the tangent at
O parallel to the given straight line.

If the straight line passes through O, so that n=0, its inverse becomes
lz +my=0, i.e. it is the same line. The points of the line are then inter-
changed in pairs, while the line as a whole is unaltered.

The snverse of a circle is a circle.

The circle @?+y? - 202 — 2By +¢c=0
B+y?) B ky _
becomes Eamr 2ax2+y,—2[5x2+y2+c—0,
s.e. c(7® +y?) — 20k*x — 2Bk%y + k2 =0.

This degenerates to a straight line when ¢=0, 7.e. when the circle passes
through the centre of inversion ; and the straight line is parallel to the
tangent at O.

16. If two curves tntersect in a point P, their inverses intersect in the
tnverse pont P’.

Let the polar coordinates of the point of intersection be (r, 0). The
corresponding point on either of the inverse curves is (k2/r, 8); hence the
mverse curves cut in the point (k?/r, 6), which is the inverse of (r, 0).

If two curves touch at a point P, their inverses touch at P’, the inverse
of P.

Consider first two curves intersecting in two near points P, Q. Then,
since to each point there corresponds a unique point, the two inverse curves
will intersect in the distinct inverse points P’, @’. Now, if the curves are
varied slightly so that @ comes to coincide with P, then @ will coincide
with P, 1.e. when the original curves touch the inverse curves also touch.
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17. Twa curves cut at the same angle as their inverses. Let two curves
cut-at P, and let P4, PB be the tangents at P; then the inverses of these
lines are circles P'A4'0O, P'B’O passing
through O, and they touch the inverse curves
~ at P’. Now the angle of intersection of the
inverse curves is equal to the angle between
the tangents to the circles at P’ or O; but
the latter are parallel respectively to the
lines P4 and PB. Hence the angles of inter-
section are equal.

From this property it follows that a small N
rectilinear triangle is transformed by inversion into a small curvilinear
triangle whose angles are equal to those of the original triangle. The
smaller the triangle the more nearly can its sides be regarded as being
rectilinear, i.e. if the triangle is diminished and its inverse is magnified,
a8 by a magnifying glass, so as to look always of the same size, it will
become more and more nearly rectilinear. At the same time its angles
remain constant, and we can say that it always remains similar to itself.
We therefore say that the inverse figures are similar in their smallest
parts, or in the infinitesimal. A transformation which keeps angles
unaltered is said to be conformal.

Fie 53.

18. The method of inversion or reciprocal radii is of use in simplifying
certain classes of theorems, especially those which involve circles or
systems of circles, or in deriving new theorems from simpler ones which are
already known.

Exactly the same method is used in stereographic projection. This is a
process by which a sphere is projected on a plane ; the centre of projection O is
a point on the surface, say the north pole, and the plane of projection is the plane
of the equator or any parallel plane. Actually the plane is the inverse of the
sphere with O as centre of inversion, and the two fundamental properties of
inversion are true for stereographic projection, viz. circles are transformed into
circles, and angles are unaltered in magnitude. Stereographic projection was
khown to the ancient geometers, and a treatise on the subject by Ptolemy (about
150 A.p.) entitled “ The Planisphere” is in existence. The theory of plane
inversion was not developed, however, until the nineteenth century ; this curious
fact, which is on a par with the fact that spherical trigonometry was developed
before plane trigonometry, is without doubt due to the all-important influence of
astronomy. One of the earliest applications of inversion, and it seems to amount
to an independent discovery of the method, was made by W. Thomson (after-
wards Lord Kelvin) in 1845. He called the inverse of a point its image in the
circle or sphere, and he bases on this his theory of * electric images.” Liouville,
in his comments on this theory, gave to the geometrical process the name * Trans-
formation by reciprocal radius-vectors.”

Examples.
1. Three circles which pass through one point form a curvilinear triangle
whose angle-sum is equal to two right angles.

Take the common point O as centre of inversion. The three circles then
become straight lines forming a rectilinear triangle. Since angles are unaltered



o4 INVERSION [vi. 18

by inversion, and since the angle-sum of a rectilinear triangle is equal to two right
angles, the theorem follows.

2. Prove that three circles which cut a real fourth circle O orthogonally and
intersect in pairs form a curvilinear triangle within O whose angle-sum is less than
two right angles.

Take one of the vertices of the curvilinear triangle as centre of inversion.

3. If a system of circles touch two fixed circles, they also out orthogonally
one or other of two fixed circles.

This follows by inversion from the theorem that if a system of circles
‘touch two fixed straight lines, they cut orthogonally one of the bisectors of the
angles between the two straight lines.

4. Prove that a circle which cuts the circle of inversion orthogonally is
unaltered by inversion. i

5. Prove that a system of coaxal circles with real or imaginary common
points is inverted into a system of coaxal circles with real or imaginary common
points respectively.

6. Prove that a system of coaxal circles is unaltered individually by inversion
in a cirele of the conjugate coaxal system, the limiting points being unaltered.

7. Prove that a system of coaxal circles is unaltered as a whole by inversion
in a circle of the same system, the limiting points being interchanged.

8. Prove that a system of coaxal circles and the conjugate system can be
transformed by inversion into a system of concentric circles and their diameters.

9. Prove that a system of tangent coaxal circles and the conjugate system
can be transformed by inversion into two sets of parallel straight lines intersecting
at right angles.

10. Prove that three circles which out each other mutually at right angles
oan be inverted into a circle and two perpendicular diameters.

11. Prove that a net of cirocles is inverted into a net of circles.

12. Prove that a net of circles which has a real orthotomio circle can be
inverted into a system of circles with collinear centres.

19. Invariant of two circles. If two circles intersect at an angle 0, and
t is the length of the common tangent, » and #’ the radii, and 4 the distance
between the centres,

B=d*—(r—9)?
=124+724+2r7 cos 0 —(r—1')2
=2rr'(1 +cos 0).
If the circles are inverted 0 remains constant ; therefore ;rti, is also invariant.

If the circles do not intersect, and ¢ is a transverse common tangent,
B=d—(r+7)2=2r"(cos 0 -1).
Hence again, % remains invariant. The angle 0 is in this case of course

imaginary, but since cos 0 is always determined by the formula
(2 +1"8-d?)[(2rr),
cos 0 is always real.
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20. Casey’s Theorem. If four circles touch a straight line at points
4, B, C, D, their common tangents are connected by one of the relations

AB.CD+BC.AD+CA . BD=0,

or, denoting the length of a common tangent of the circles with radii r,
and 74 by (12), etc., we have

(12)(34) £(13)(24) £(14) (23) =O.
We may write this
az @4 , (13 (24) L8 (23
Vrirs Vs \/rlr, Ve Vr1r4 Virgry
Now each of these terms is unaltered by inversion. Hence, we have the
result : If four circles all touch a fifth circle their (direct or tramsverse)
common tangents (sustably chosen) are connected by one of the relations
(12)(34) £(13)(24) +(14) (23) =0.
Suppose the circle 4 reduces to a point-circle, then it lies on the fifth
circle. The squares of the lengths of its common tangents with the other

circles are just the powers of the point with regard to these circles. Hence,
if we denote the circles 1, 2, 3 by S,, S,, S;, where

Sy=22+3% - 20,2 - 2B,z +¢,, ete.,
we obtain the equation of the fifth circle, t.e. the equatlon of a circle tc «ching
the three given circles, viz.

(23) \/sl £(31)4/8; £(12)4/8;=0.
‘When this is rationalized it is of the second degree in S, S,, Sy, and therefore
represents two circles. Three other pairs of circles are found by changing
the Signs Of Sl’ Sz, Sa.
The above theorem is analogous to Ptolemy’s Theorem for a cyclic

quadrilateral. It reduces, in fact, to Ptolemy’s Theorem when the four
circles become point-circles.

=0.

21. Application of complex numbers. There is a useful application of
complex numbers, by which the formulae of inversion can be greatly
simplified.

The complex number z+¢y may be denoted by the single letter z;
then we shall denote the conjugate complex number -4y by z. We have
now two new variables or coordinates 2, Z instead of the cartesian coordi-
nates z, y, and the equation of any locus can be expressed in terms of 2, z.
It is just a sort of transformation of coordinates, but the new axes are
imaginary. The equations connecting 2, y and z, 2 are

orY=2 2.“:_“-3’ also 22 + 42 =2z

T—-1y=2, 2uy=2-%,

The equation of a circle whose centre is the origin 18 expressea simply by
sz=a?
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Expressing in terms of 2, z the general equation of a circle
2%+ y2 — 202 — 28y +¢=0,
we have 2z-a(z+2) +if(z—32)+¢=0,
or 2Z—(a—1B)z— (¢ +1B)z +¢=O0.
Let a+4B=2p, so that « —iB=7; then we have
2z - pz—pzZ+c=0.

This equation, therefore, represents a circle whose radius, r, is glven by

=0+ Pi-c=pP-c,
and whose centre (z=a, y=[) is determined by

r+iy=o+1iB, or z=p.

Ex. Show that the equation of any straight line can be reduced to the form
P2+ pzZ=ec.

22. The formulae for inversion in the circle 22 + 32 =%® or 22=4%® are
o= BPr Bz , Fy Fky

’

“FErpm @ VTR s

Y 2
whence =2 +iy = kz_(xz;y) = ]%
— 2
§l=xl_iyl=k2(wzz 1‘y) =k:,
ie. Pi=k*=7"
This may be represented by the single equation
2Z2=k2,

since this implies also the conjugate equation 2'z=#%®2, so that the equation
for inversion is obtained from the equation of the circle by accenting one
of the 2’s.

We shall apply this now to find the formulae of inversion in the general
circle 22— Pz —pi+c=0.

Let P, P’ be a pair of inverse points, and let
the complex numbers which correspond to the
vectors OP, OP’ be z, ', and those which corre-
spond to the vectors CP, CP’ be p, p’. The
vector OC is represented by p=a + 3.

Then, by the composition of vectors,

‘ z=p+p, 2'=p+p.
But by the previous result

Py

pp'=r*=pp-ec.
Therefore Z-p)(# -p)=pP—c
i.e. % - 2_’2" —pz+c=0,

pz—
Ti-p

or
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Examples.

1. Prove that the last equation is eqmvalent to

w—o y—B  a?+P-c  (@-a)l+(y'-pP

z-a y-B (@—af+(y—BP  oE+pi-c
2. Show that when the circle of inversion becomes a straight line pz+ pz=e,

the formula for inversion becomes
P2’ +pz=c.
3. Show that inversion in the straight line y=2 tan 0 is represented by
2’ =22,

and deduce that inversion in a straight line is the same as reflexion in the straight
line.

EXANMPLES VII. A.

1. Find the coordinates of the limiting points of the pairs of circles :
(i) 22+y2—38x+1=0," 222+ 22— Tz +2=0;
(i) 22+ 12—z—3y+3=0, 2*+y2+8z—6y—3=0.
2. Show that (z— a)®+(y—BP+A{(z—a)2+(y— B3 =0 is the general
equation of a system of coaxal circles having (o, B) and (a’, 8’) as limiting points.
3. Show that (1, 2) is one of the limiting points of the system
(z—1)2+ (y— 22+ A(22+ 42+ 22+ 5)=0,
and find the other one.
4. Find the equation of the orthotomic circle of the circles
22+ 32-22—4y+6=0, 22+y2+4y—6=0, 22+42—10x+18=0.
5. Show that the circle s#2+#2=4 is cut by each of the circles
(z =22 +(y+1)*=9, (z+4)*+(y+4)*=36, (#+3)%+(y—~6)2=49 at the ends of
diameters.
6. Show that 22+42—10x+9+k(22+2%+82+9)=0 represents a non-
mtersecting system of circles, and find the coordinates of the limiting points.
7. Find the equation of the circle which has for its diameter the chord cut
off on the straight line az+ by +c=0 by the circle (a?+ b2)(2?+ 32) = 2¢2.
(Peterhouse, ete., 1899.)
8. The polgrs of a point P, with respect to two circles, meet in . Show
that the radical axis of the circles bisects PQ.
9. If the circle a®+ 42— 2ax—2By+c¢=0 is a circle of a coaxal system
having the origin as & limiting point, prove that the equation of the system is
A2+ 12) — 20z~ 2By +¢=0,
snd that the equation of the conjugate system is
(a+ uB)(@*+4?) — c(z+ py)=0.
10. Prove that the equations of the common tangents of the circle z2+ y2=289
and the circle whose diameter is the chord of the first circle x cos a+y sin a=15

are 3(x cos a+y sin a) + 4(y cos a— x sin o) =85.
(Peterhouse, etec., 1901.)
11. Prove that the locus of the pole of the line y=% with respect to the family
of coaxal circles 22+ 32+ 20z +¢=0, in which ¢ is constant but A varies, is the
parabola z2=ky+c. (Downing, 1914.)
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12. Find the locus of the pole of the line Iz+ my+n=0 with respect to the
family of coaxal circles 22+ 42+ 2Az+¢=0, and interpret the result when m=0,

13. Find the condition that the circle 2%+ y?— 20z — 2By+ c=0 should cut
the circle 2%+ 3% — 20z — 28’y +¢'=0 at ends of a diameter.

14. If 8, =0, Sy3==0, §,=0 are the equations of three fixed circles, prove that
18; +m8,+ n8y=0, where I, m, n are variable, represents a variable circle cutting
a fixed circle at the ends of a diameter, and that if this fixed circle is virtual the
variable circle will cut a real fixed cirele orthogonally.

15. If 8, and 8, are two circles which cut two given circles each at ends of
diameters, prove that every circle of the system 3, — A8;=0 cuts the given circles
in the same manner.

16. Prove that there are in general two circles in any coaxal system which

. are out diametrically by any given circle.

17. Prove that there is in general just one circle of a given coaxal system
which cuts a given circle diametrically.

18. Prove that there is a whole system of real circles each of which is cut
diametrically by every circle of a coaxal system with real common points, and
that all the circles of this system have double contact with a fixed ellipse of

. eccentricity /2.

19. Sketch the figures obtained by inverting the following diagrams : (i) paper
ruled in squares with a circle inscribed in each square, (ii) & tesselated pavement
made of equilateral triangles with a circle inscribed in each triangle. State some
of the more immediate properties which should be apparent in the new figures.

(Pembroke, etc., 1911.)

20. Two equal circles 4, B and a third cirele C, inside 4 and of half the radius,
all touch a line at the same point. Show that inversion in 4 followed by inversion
in B is equivalent to inversion in C followed by reflexion in the common tangent.

(Pembroke, etc., 1912.)

EXAMPLES VII. B.

1. Find the equations of the radical axes of the circles (z— a)? + (y— b)2=103,
(z-b)'+(y—a)t=0a? (x—a—b—c)®+y2=ab+c? and prove that they are con-
current. Find also the equation of the circle which cuts the three circles
orthogonally. (Peterhouse, etc., 1900.)

2. Find the limiting points of the system of circles

22+ 3%+ 292+ ¢+ AM(aB + 2+ 2fy +¢') =0,
and show that the square of the distance between them is

{(c—c' 2~ 422+ 4%+ 4g%¢} | (f2+g2). (Corpus, 1907.)

3. If 7, 7’ are the radii of the circles S, 8, and 6 their angle of intersection,
prove that the equations 8/r—8’/r’. et¥=0 represent the point-circles of the
coaxal system determined by § and §’.

4. Prove that the radius of the minimum circle of the coaxal system deter-
mined by two circles is (rr*/d) sin ©, where r, r* are the radii of the circles, d the
distance between the centres, and 6 the angle of intersection.

5. Show that the value of A for the minimum ecircle of the system 8+ A8’=0
is (d® + 13— ¢3)/(d®— 12+ r'2), where r, * are the radii, and d the distance between
the centres, of the circles S, §’.
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6. A variable circle is one of a definite coaxal system, and a perpendicular is
drawn from a fixed point to its polar with respect to the variable circle. Show
that the locus of the foot of the perpendicular is a circle whose centre is on the
common radical axis of the system of circles. (Math. Tripos 1., 1913.)

7. Three circles 8,, 8,, 9, are given, and the radical axis of each with respect
to two given circles O, 0’ form triangles 4 BC and A’B’C’ respectively. Prove
that these two triangles are in perspective. (Corpus, ete., 1912.)

8. If a conic through the commeon points of a coaxal system of ciroles is cut
by any circle of the system in P, Q, prove that PQ is parallel to a fixed direction.

9. Prove the following geometrical construction for the limiting points of
the coaxal system of circles whose common points are the intersections of a given
line I with a given conic 8 : draw d, the diameter conjugate to I, and let T and 7"
be the ends of the equal diameter d’; let the tangents at 7' and 7’ cut I in C and
C’; then the circles with centres C, ¢’ and radii CT', C’T” intersect in the points
required. ‘ .

10. X 4, B, 0, D are four concyclic points and O any other point, prove that
0A42.(BCD)+0OB?.(CAD)+0C?.(ABD)+0D2%. (CBA)=0,
where (BOD) represents the area, with the proper sign, of the triangle BCD, eto.

11. If 4, B, C, D are the centres of four circles which have a common ortho-
tomic circle, and P, @, R, 8 are the powers of a point O with regard to the four
circles, prove that

P.(BCD)+@.(CAD)+ R.(ABD)+8.(CBA)=0.

12. I 4, B, U are the centres of three coaxal circles, and &, f,, #; the lengths

of the tangents drawn to them from any point, prove that
BC.t2+CA .12+ AB.t2=0.
13. Show that the lengths of the tangents by, &y t3, by, t5 from any point to five

* fixed circles are conneoted by a fixed relation of the form

ab 2+ btt+ et + dt 2+ efs2=0.

14. Show that the lengths of the tangents from any point to four fixed circles

are connected by a fixed relation of the form
a2+ 062+ ot 2+ dtS=e. v

15. Show that the locus of a point such that the tangents from it to four fixed

circles are connected by a fixed relation of the form
at, 2+ bt2 + ot 2+ d1,2=0
is in general a circle. What is the locus if a+b+¢c+d=01
16. Show that the equation

aty?+ bt,2+ cl2=d,
where ¢, &, ¢, are the lengths of the tangents from a variable point P to three
fixed circles whose centres are not collinear, can represent any circle. What is
the relation between g, b, ¢ if the locus is a straight line ?

17. Prove that all the circles of a net which degenerate to straight lines form
a pencil of lines.

18. If 0 is the angle of intersection of the two circles 8, 8, prove that the
radii of the circles S/r+8'/r’ are 2rr'f(r+1‘).cos 6 and 2re'[(r+ r’) . 8in 36.
Deduce that if the circles § and 8’ out in imaginary points, one. of the circles
8/r+8'[r’ is real and the other is virtual ; and +hat if § and 8’ sre orthogonal
the two circles 8/r + 8’ /s’ coincide.
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19. Prove that if the Jacobian of three circles 8;, 8,, S; vanishes identically,
the equations of the three circles are connected by a linear relation

18, +m8y+ n83=0.
20. If z+iy=atan(p+id), where i=+/—1, prove that @=const. and
¢ =const. represent conjugate systems of coaxal circles.
21. If x+4y=(p+1¢)”?, prove that p=const. and ¢=const. represent con-
jugate systems of coaxal circles having a common tangent.

22. Prove that the circles 8=0 and 8’=0 are inverse with regard to either
of the circles S/r + 8’/r'=0, where r, 7’ are the radii of the circles S, S".

23. A circle §=0 and a point P are transformed by inversion in a certain
circle with centre O and become the circle 8’=0 and the point P’. Ifr, » are the
radii of these circles, § the power of P with regard to S=0, 8’ that of P’ with
regard to 8’=0, and p, ¢’ the distances OP, OP’, prove that S/(pr)= £.8’/(p’r’).
Hence show that for a given circle of inversion and a given point P the expression
8/r is transformed into AS’/r’, where A is the same for all circles S.

24. If 8;, 8,, 83, Sy are the powers of a point with regard to four circles which
out in pairs orthogonally, and whose radii are r,, r,, 75, r4, prove that

Sy2/r %+ Sp2[rod+ Sg¥lrg¥+ 82/r2=0.
25, If 8,, S,, Sy, Sy are four mutually orthogonal circles, prove that the
condition that the two circles
ASy+ RSy + AgS3+ A8y =0,
18y + S+ 1gSg+ 1gSg =0
should be orthogonal is
Mg+ Aabtara®+ Agltgrg®+ Aguagrg®=0.

26. Show that two inverse points with regard to a circle 8 can be regarded
as point-circles cutting 8 in the same two (imaginary) points.

27. Prove that the equation of a circle which cuts each of the three circles
22442 - 202 — 2By +¢;=0 (¢=1, 2, 3) at the same ancle ¢ can be written

2+y2 x y 1| +2rcos9 |0 2 y 1]|=0
6w B 1 oy Byl
s ay By 1 rp % By 1
C3 a3 PBg 1 r3 o3 By 1

where r;, r,, 73 are the radii of the given circles and r the radius of the required
circle. Hence prove that all the circles which cut three given circles at equal
(not specified) angles form four coaxal systems, the pairs of base-points being the
points of intersection of the orthotomic circle with the homothetic axes, i.e. the
(four) straight lines which cut the three circles at equal angles. (Each pair of
circles has two homothetic centres, or centres of similitude, and the six homothetic
centres of the three circles lie in sets of three on the four homothetic axes.)

28. Prove that the operations of inversion with respect to two coplanar circles
in succession are commutative if the circles cut one another orthogonally.
(Pembroke, 1913.)
29. Prove that
|(z~2)/ (2~ ;)| =const. and am{(z - 2)/(z - z,)} =const.
represent conjugate systems of coaxal cirales.



CHAPTER VIIL
'OBLIQUE AXES AND TRANSFORMATION OF COORDINATES.

1. In applying analysis to any geometrical problem the coordinate
axes should be chosen so as to simplify the analysis as far as possible. If
there are two lines which are distinctly indicated in the problem, it will
generally be an advantage to take these as axes. But it will often happen
that these two lines are not at right angles. In such cases we can use a
convenient system of oblique coordinates defined as follows.

Let 'Oz and y'Oy be the oblique axes, inclined at an angle . Let P
be any point, and draw MP || Oy and NP || Oxz. Then the coordinates

OM=NP=2z, ON=MP=y y
determine the position of P.
The convention of signs is the same as with N x P

rectangular coordinates, and the two axes divide
the plane into four regions: in the first, 20y, the L/
signs of x and y are + + ; in the second, yOz’, they
are — +; in the third, 2’Oy’, — —; and in the
fourth, y'Ox, + —.

This system is more general than the rectangular
system, and includes it as a particular case when w=90°. It may be called
the gencral cartesian system.

2. Elementary formulae in oblique coordinates. Oblique axes are not
very convenient for numerical work, or for problems in which the actual
magnitudes of segments or angles are concerned. It is important, however,
to note in what respects the elementary formulae differ when the axes
are oblique.

The student may verify the following results:

Distance between two points,

PR = (23— 2, + (42— 41)* +2(22 — 2,) (y: — 1) cOs .
Joachimsthal’s formulae,
lzy + ma, _ ly, +my,
im0 YT Em
for the coordinates of a point dividing the join of two pownts in a given
ratio, are unchanged.
Area of a triangle OPQ,
i e A

w
Xjlo X MX
Y
¥1a. 56. -

8.A.0.
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3. Equation of a straight line ; intercept form. If the line is parallel
to Oy, we have z=const. ; if it is parallel to Oz, y=const.

If it cuts the axes at 4 and B, let 04 =a,
OB=b. Let P=(z, y) be any point on the line,

and draw the ordinate MP. B y
: MP MA
Then 08 ~od’ 4
- P
therefore y_ao-z,
b a
Hence the equation of the line is , Y x
T 0x M A
at3 1. / A\

The equation of a straight line is therefore always a. 86.

of the first degree, and its intercept form is the same in rectangular and
oblique coordinates.

4, Oblique axes are used in certain cases to simplify the equations of
lines or curves when two of the principal lines which appear in the state-
ment of the problem are not at right angles.

Ex. Perpendiculars PM, PN are dropt from a variable point P upon two
fixed lines OM, ON, and OM + ON is constant ; find
the locus of P. ’
Take OM, ON as axes. Then
OM=2x+ycos w,
ON=y+2z cos w. .y Py
Therefore (z+y cos @)+ (y+z cos w)=k,
f.e z+y=1Fk/(1+cos w).

N

w
d
This represents a straight line parallel to one / 0 M M
of the biseotors of the angles between OM, ON. Fia. 57.

5. The conic referred to oblique axes. Since the equation of a straight
line is of the first degree in 2, y, an equation of the second degree represents
& curve which has the property that it is cut by any straight line in two
points, real, coincident, or imaginary ; it therefore represents a curve of
the second degree or a conic. We shall see presently what conics are
represented by the simple equations 22/a? +y2/b? =1, y®=4az, etc. Many
of the equations and formulae for conics are exactly the same in oblique

- coordinates. The student may verify the following results

The equation of the tangent at (', y') to the curve
az® + by =1
in azz’ +byy =1.
This is also the equation of the polar of («’, ¥').
The origin is the centre of the conic

az® + 2hay + by? =1.
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The lines y =z, y=p'z are conjugate diameters of the conic
az® + by =1,

of a+buy’ =0. :

The equation of the tangents from (2', ') to the conic az®+by*=1 is

(az® +by® ~ 1)(ax" + by ~ 1) = (awz’ + byy’ - 1)%.

6. Equation of a central conic referred to a pair of conjugate diameters.
Since each diameter bisects all chords parallel to the conjugate diameter,
the equation of the conic must be such that for every value of = we have

two values of y equal but opposite in sign, and similarly for y ; i.e. the
equation contains only squared terms and a constant, and is therefore of

the form la® +myl=1.

Let the conic be an ellipse with conjugate semi-diameters of lengths
a and b. When y=0, z= +a, and when =0, y= +b; hence the equation

of the ellipse i
e ellipse is & .\ g .
at B
Similarly the equation of a hyperbola referred to conjugate diameters is
? R
& gl

7. Equation of a hyperhola referred to its asymptotes. Let the equation

. referred to the principal axes be

The lengths of the perpendiculars from the point P=(z, y) upon the
asymptotes are ‘—::-;t%, each divided by ( &15 + b_lz) . Hence, if the lengths of
these perpendiculars are 2’ and y’, we have
vy =(+ L) -2
Y=\@&*tp a?+5%
2ab
a®+p2’
Put ¢’ =2 sin , ¥’ =y sinw, and we get the equation in oblique coordinates,
xy=}(a®+02).

Also tan }w=>b/a; therefore sinc =

Examples. ;

1. Show that the tangent at any point of a hyperbols makes with the
asymptotes a triangle of constant area.

Taking the asymptotes as axes, the equation of the hyperbola is zy=#%. The
equation of the tangent at (=, y’) is

’ xy +x'y=2k,

and its intercepts are OA4 =2k/y’ and OB=2k/x'. Hence the area of the triangle
OAB is $0A4 . OB sin w=_2/2sin o z'y’ =2k sin @y which i gonstant.
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2. Prove that the segments of any chord of a hyperbola included between
the curve and its asymptotes are equal.
Let the equation of -the chord be lx+ my+n—0 This cuts the hyperbola
zy=Fk in points P, @ whose abscissae are given by the equation
le®+ nx + mk=0,

and the asymptotes in points 4, B whose abscissae are — n/l, 0. If r,. z, are the
roots of the last equation, the » of the mid-peint of PQ=}(z;+v,)= —4n/l. But
this is equal to the z of the mid-point of 4B ; therefore AP=QB.

3. Prove that the segment of any tangent of a hyperbola included between
the asymptotes is bisected at the point of contact.

8. Equation of a parabola referred to a diameter and the tangent at its
extremity. Since every chord parallel to the tangent at O is bisected by
the diameter, the equation must be of the form

yi=aux?+2gz+c; 7
-and since every line parallel to the diameter
meets the curve in one point at infinity, a=0;
and finally, since the curve passes through the
origin, ¢=0. Hence the equation reduces to x
y* =29z, or y2=4pz.
To find p, draw the focal chord P'FP || Oy,
and draw the tangents at P and P’ intersecting

in T, which lies on Oz. Then the coordinates -
of P are x=0M =OF, and

y=MP=TM =20M =20F.
Therefore, substituting in the equation,
40F%=4p.0OF;

hence p=0OF.

9. Equation of a conic referred to a tangent and the normal at the
point of contact. Let the equation of the conic be

az®+ 2hzy + by? + 29z + 2fy + ¢ =0.
Since the curve passes through the origin, ¢=0. Put £=0, and we have
by® +2fy =0

This must give equal roots ; one root is y = 0 therefore the equa‘mon must
reduce to 42=0, and we have f=0. The equation of the conic then
reduces to az?+ by? + 2hay + 292 =0.

Ex. Al chords of a conic which subtend a right angle at a fixed point O on the
conic cut the normal at O in a fized point.

Take the tangent and normal at O as axes. The equation of the conic is then
ax® + 2hxy + by? + 292 =0.

Let the equation of the chord PQ be lz+my+n=0. The equation of the pair
of lines OP, OQ is then

n(az? + 2hzy + by?) ~ 292 (lz + my) =0.
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The two lines will be at right angles if

an+bn—2¢gl=0.
Now the normal at O, i.e. the axis of z, cuts the line PQ at (—n/l, 0), t.e
(- 2g/(a+b), 0). Hence this is a fixed point. This point is called the Frégier
Point corresponding to O.

TRANSFORMATION OF COORDINATES.

10. We have seen that a problem is often simplified by a suitable
choice of axes. Frequently, however, the axes are already determined,
and in order to effect a simplification it is necessary to pass from one set
of axes to another. By this transformation the coordinates of a given
point will be changed, and the equation of a given locus will be transformed
into another equation. We shall proceed to work out the relations which
connect the two sets of coordinates of a given point in various trans-
formations.

11. To transform to new axes parallel fo the old, but with a different
origin. (Translation.) Let P be any point, whose coordinates referred
to the old axes are z, y, and referred to the new
axes 2, y'. Let the coordinates of the new
origin referred to the old axes be «, 8. Then y

T=7"+a r=c—a
od ) T

y=y +p. “ y'=y-§ ) ,

(4) and (4’) are the equations of transfor- o] x.
mation from the old to the new axes, and the
new to the old, respectively. (4’) is said to be A
the inverse transformation to (4), for if it follows
after (4), it annuls its effect. Similarly (4) is
inverse to (4’). These equations also hold in Fi6. 59.
the same form when the axes are oblique.

12. To transform from one rectangular system to another with the
same origin. (Rotation.) Let the axes Ox, Oy be rotated through the
angle 0 into the new positions Ox’, Oy’

Let P be any point whose coordinates re- y k
ferred to the old and the new axes are (z, y)
and (', ). Draw PM | Ox, PM’'| Oz'. v ®
Then the projection of OP on any line being ('8
equal to the sum of the projections of OM’
and M’P, taken with the proper signs, we 5
have, projecting first on Oz and then on Oy,
z=1'cos 0 -y’ sin 9,}
y=2z"8in 0 +y" cos 0.
Similarly, by projecting OP and also OM and MP on Oz’ and Oy,
= zcos 6+ysi.n0}
Yy =~zsin0+ycos0.

14

o] « x X

.......... (B) FI6. 60.
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The second set of equations may also be found from the first by solving
for 2’ and y’. (B) and (B') are, as before, inverse transformations.
The two sets of equations may be conveniently represented by a single

scheme ¢ ’ p

4 Y
z|cos0 ‘ —sin 0

y sinel cos 0

which may be read either horizontally or vertically.

13. Examples.

1. Transform the equation 222+ 3y%—12z+ 12y+24=0 to parallel axes
through the point (3, - 2).

Here z==2’+3, y=y’—2; hence the equation becomes

2(2'+32+3(y’ ~2)2- 12(2’ +3) + 12(y’ — 2) + 24=0,
ie 22724 3y2=6.

When the transformation has been effected the accents may be dropt, so that
the transformed equation is written

‘ 222+ 3y2=86.

2. Transform the equation 11a®+24xy+4y®=5 in rectangular coordinates
by rotating the axes through the angle tan—!(— $).

Taking the angle 6 as a negative angle between 0 and — 90°, we have

\ gin 6=—4$, cos 0=§,
and the equations of transformation are
z=(3z"+4y’')/5, y=(—42’+3y’)/5.
The equation then becomes :
11(32 + 4y)2+ 24 (3 + 4y) ( — 4z + 3y) + 4( — 4z + 3y)2= 125,
and this reduces to —2?+ 42=1.

3. Transform the equation 14a%—dxy+11y%—36z+48y+41=0 to rect-
angular axes through the point (1, —2) inclined at the angle —tan—1} to the
original axes.

In this case it is best to effect the transformation in two stages. First change
the origin to the point (1, —2) by putting z=2"+1, y=y'—2. The equation
then becomes

(2 + 12— 4(2’ + 1)(y’ — 2) + 11(y’ — 2)2— 36(a’ + 1) + 48 (3’ — 2) + 41 =0,
which reduces to 1422 dxy + 1132=25.

1 2
—tan—13: gin Q= — — ==
Then rotate the axes through —tan—'}; sin9 7B cos 6 75 and the

equations of transformation are 5:=(2x’+y’)/v5, y=(—2'4+2y’)/+/5. The
equation then becomes
14(22" + ' — 422’ + y')(— &' + 2y") + 11 (— 2’ + 2y")2= 125,
which reduces to 322+ 2)2=5.
Note. In carrying out the two successive transformations it is essential
that the origin should be changed first, for if the axes were first rotated,
the coordinates of the new origin would also be altered.
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14, The general transformation from one set of rectangular axes to
another is best carried out in two stages, first changing the origin and then
rotating the axes. The whole transformation is said to be compounded
of the two separate transformations, and it is very important to notice

that the final result depends upon the order in which the two transfor-
mations are carried out.

First changing the origin to («, f), the coordinates (z, y) become (zy, y,),
where T =z~ a,} =2 +a,
h=y-§; y=9:+p
Then, by rotating the axes through 0, the coordinates (z;, y,) become
(z', ¥'), where
" &'= x;co80+y,sin0, z, =2 cos 0 -y’ sin 0,
yY=-z,8n0+y, cos0; y, =2 &in O+’ cos 0.
Hence (, y) become (', y’), where
=1 cos 6 —y sin 0+u,} © ¥'= (z-o)cosO+(y~p)sin 9,} ()
y=2'sin0+y cos0+B.J y=—(z-o)sinO+(y—P)cos6.f ™
The transformations (0) and (C’) are inverse, but it is not possible in this
cage to represent them by a single scheme read horizontally and vertically.
Examples.
Transform the following equations, both sets of axes being rectangular :
1. 122%+ T2y — 1242 172—3ly— T=0 to axes through (1,~ 1) turned through
an angle tan-14.
2. 22+ 3zy+ 22—z~ 3y=2 to axes through (5, — 3) rotated through 45°.
45"3. 322+ 22y + 3y®— 182— 22y + 50=0 to axes through (2, 3) rotated through
4. 6a%+24xy—y3=1 80 as to remove the term in zy.
6. 1142+ 42y +14y%=5 80 as to remove the term in zy.
6. 92%+ 24y + 22— 62+ 20y + 41 =0 50 a8 to remove the terms in z, y and zy.
7. 822+ 122y — 842+ 122+ 4y + 3=0 80 as to remove the terms in z, y, and zy.

15. Sometimes the new axes are given by their equations. In this
case it is easy to write down the equations of transformatlon expressmg
(«', y') in terms of (z, y), for in the case of rectangular axes 2’ and y’ are
the perpendicular distances of the point (x, %) from the new axes. If the

new axes are obhque we have to multiply these perpendicular distances
by cosec w'.

If the equations of the rectangular axes of y’ and z’ in the normal
form are Lz +muy +n, =0,
l@ +may + '"'s =0,
the equations of transformation are
o’ =hz+my+mn,
Y =Lz +myy +ny
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Ex. Transform the equation #®+d4ay+4y%—142-8y+5=0 to new axes
of z and y whose equations are z+2y—3=0 and 22— y+ 1=0 respectively.
We have ¥'=+(2z—y+1)/vb, y'=x(x+2y—3)/+/5.

In order to fix the signs the positive direc- ? yr \r&, N

tions on the new axes must be fixed.

Taking these as in the figure, we see that when 4 \( /
referred to the new axes the coordinates of -
the old origin are +,— respectively for 2 and
y. Hence the + sign must be taken in Y
both cases. We have then ?\/

bz=(22"+y')v/5+1, ZQ )Z %
Sy=(—2'+2y")v/5+1, ' H \[ +
and the equation becomes ~ /

\/5y/g= 4%’. ¥16. 61.

16. Effect of a transformation of coordinates upon the general equation
- of the second degree. We shall investigate the effect of the two simple
transformations of rectangular coordinates upon the general equation
ax? + by? + 2hxy + 292 + 2fy + ¢=0.
(1) The transformation =2+ a,}
y=y'+B.

The equation becomes, omitting accents, -

a(@+o)2+b(y+B)2+2h(x+a)(y + B) +29(z +a) + 2f (y + B) +¢=0,
or, collecting terms,

a2 +by? + 2hay + 2x(ac + hB +9) + 2y(ha + 1P +f)
+acd®+bB2 + 2haf + 290+ 2fB +¢ =0,

t.e. the terms of the highest degree are unchanged, and the constant term
is the result of substituting « for # and B for y in the original expression.

Denoting the original equation by F(z, y) =0, the new constant term
is F(x, B). The coefficients of z and y are the differential coefficients of
F (o, B) with respect to « and p, viz. %g and g—g . If F(z, y) is made homo-

AL

geneous by introducing 2z, we may write
F(z, y, 2) = aa®+by? + c2® + 2fyz + 292z + 2hay.

Then we vhave the identity
oF oF 0oF

oz +y —a? +2 3% "
If y is put afterwards equal to 1, the new constant term
1/ oF ,oF @
c'=F(a, ﬁ, Y)=§<OC a;'f'ﬁ 5B-+Y a—YF') .

This last result often affords an easier way of obtaining the new constant
term.

2F(z, y, 2)=x
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(2) The transformation z=x'cos 00—y’ sin 0,}
y=2'sin 0+y' cos 6.
Since these equations are homogeneous in z’, ¥, each term will give rise
only to terms of the same degree. We shall only investigate the trans-
formation of the terms of the second degree

ax? + 2hzy + by,
which become, writing ¢ for cos 0 and s for sin 0,
(e — ys)? + b (a8 + yo)* + 2h (o — ys) (zs — yo),
or 2%(ac®+bs® + 2hsc) + 1y(as® + be® — 2hsc) + 2xy( —asc +bsc +h . —s?).
The new coefficients may be written
@' =3}a(1 +cos 20) +b(1 — cos 20) + A sin 20
=4(a +b) +4(a—-b) cos 20 + % sin 20,
b =3(a+b) —-%(a—b) cos 20 — A sin 20,
A= —}(a~b) sin 20 +4 cos 20.
17. Invariants. In the translation transformation, a, b and A, which
are unaltered, are called snvariants. There are invariants also for the

rotation transformation, for
a'+b' =a+b,

and a't’ —h'*=ab-h3.

The first is obvious by adding the expressions for ¢’ and ¥’. To prove
the second, we have

a't’ =}(a+b)*—{4(a—b) cos 20 + A sin 20}3,

b= {3(a—b) sin 20 — & cos 20}3;
therefore a't'—h*=}(a+D)2-}(a~ b)* ~h*=ab— 3.
EXAMPLES VIII.

1. Tangents are drawn from points R, R’, one on each asymptote, to touch
a hyperbola in P, P’, and T is the pole of RR’. Prove that TP, TP’ are parallel
to the asymptotes.

2. Prove that if from two fixed points O and O’ on a hyperbola there be
drawn two rays to cut one another on the curve, the segment PP’ which these
rays intercept on either of the asymptotes is of constant length.

(Trinity, 1911.)

3. MM’ is any chord of a hyperbola and P is an extremity of the conjugate
diameter. Lines MK, PQ, M’K’ are drawn parallel to one asymptote to meet
the other in K, Q, K. Show that CK . CK’'=CQ?, where C is the centre.

: (Trinity, ete., 1900.)

4. If the tangent at any point of a hyperbola with centre C cuts the asymp-
totes in L, L’, prove that CL.CL'=a?+1? Hendce show that if F, F’ are the
foci, L, I, F, F’ are concyelio,
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5. Any two points P, Q are taken on & hyperbola. Lines are drawn through
P, Q parallel to the asymptotes and intersecting in X, K’. Prove that KK’
passes through the centre of the hyperbola. (Queens’, 1901.)

6. The tangent to an ellipse at a fixed point D meets two parallel tangents
in § and . Prove that 8D . DT is constant and equal to the square of the semi-
diameter parallel to the fixed tangent.

7. Show that if the axes are inclined at an angle w the directrix of the
parabola y2=dcx is
z+ycosw+c=0, (St. Catharine’s, 1900.)

8. If y=ypx, y=p'z are conjugate diameters of the ellipse whose equation
referred to another pair of conjugate diameters is 23/a%+y2/b%=1, show that

= — b2/al,
9. Prove that (z/a)§+(y/b);"=l is the equation of a parabola, whether the

" axes are rectangular or oblique, and that it touches both of the coordinate

axes.
10. Find the equation of the chord joining the points (z, y,) and (x,, y,) on .
the parabola (a:/a)*+(y/b)§=l, and deduce that the equation of the tangent

" () is zl(a)t +y/(by' =1,

11. Prove that the line lx+my+n=0 will be a tangent to the parabola
(/o) +(y/b)t =1 if ()1 + (bm) 1 +n1=0,

12. Find the equation of the directrix of the parabola (x/a)"‘+(y/b)*= 1

13. Show that the coordinates (x, y) of the focus of the parabola

(@lat+(ypyt=1

are given by the equations #®+ 2zy cos w +y2=azr=>by.

14. Prove that if ab=k(a+b), where k is constant, the locus of the foci of all
the parabolas (z/a)} + (y/b)¥=1, as a and b vary, is a circle.

15. A variable chord of a circle is divided harmonically by two fixed lines

through the centre ; prove that the envelope of the chord is a hyperbola with the
lines as asymptotes. (Pembroke, ete., 1909.)

16. Through a given point a straight line is drawn to intersect two given
straight lines. Show that the locus of the circumcentre of the triangle so formed
is a hyperbola, and find the positions of its asymptotes. (Queens’, 1910.)

17. Prove that the condition that the two circles

23+ 13+ 22y co8 w + 297+ 2fy +¢=0, 22+42+ 2y cos w+ 29’z + 2"y +¢ =0
should cut orthogonally is

1 ©08 g =0.
€08 1 S
g f tle+e)

18. If «, B are the angles which a line makes with the coordinate axes, and »
is the angle between the axes, prove that

0082+ cosd 8 — 2 cos a co8 P 008 w=sin® w.
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1o, It o, B and o, B’ are the angles which two lines make with the coordinate
axes, prove that the two lines will be parallel if :

cosa cosP |=0,
cos o’ oos B’

and perpendioular if
1 cosw cosa |[=0.
008 ® 1 cosB
cos o’ cos P’ 0

20. Prove that the angle ¢ between two lines whose directlon-angles are
a, 8 and o, B’ is given by either of the equations

cos psinfw=—| 1 cosw cosa |, sin@sinw=| cosa cosB |
cosw - 1 cos 8 cos o’ cos B’
cosa’ cos B’ O
21. The points in & plane are displaced so that the point (z, y) referred to
rectangular coordinates takes the position (X, ¥), where X=pz+gqy, ¥Y=rz+sy.
Show that a unit square in any position becomes a parallelogram of area ps~gr,
and that the parallelogram has the sum of the squares of the lengths of its sides

constant. What is the least possible angle between the sides of the parallelogram ?
(Pembroke, etc., 1913.)



CHAPTER IX.
TRACING OF CONICS.

1. Relation of the Ellipse, Hyperbola, Parabola, and Circle to the line
at infinity. - (1) Consider first the Hyperbola, whose cartesian equation is
| & L
Making this homogeneous, we have the equation
# ¥,
@R
To find where the curve cuts the line at infinity put 2=0. Then the
equation 2 a3
r_y_
a? b2
represents the two (real) straight lines joining the centre O to the points
at infinity H, K on the hyperbola. Hence the hyperbola cuts the line at
infinity in @ pair of real points H, K. The homogeneous coordinates of
H, K are (a, b, 0) and (a, —b, 0).
(2) For the Ellipse 2 g

atp=b

the investigation is similar, but the two lines OII , OK, whose joint
equation is 2 o
-+ g =0,
a?  b?
are imaginary. Hence the ellipse cuts the line at infinity in a pair of con-
Jugate imaginary points H, K ; their coordinates are (@, b, 0)and (a, —1b, 0).
(3) The equation of the Parabola, written homogeneously, is
y:=4azz.
The two lines OH, OK are then given by the equation 42 =0, and therefore
coincide. Hence the parabola cuts the line at infinity in two cotncident
points, or the line at infinity is a tangent to the parabola.
(4) The general equation of a Circle, written homogeneously in z, ¥, 2, is
2% +y2 + 292 + 2fyz + c22 =0.°
Putting z2=0, we get as the equation of the two lines OH, OK in this case
22 +y2=0.
112
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This represents a pair of conjugate imaginary straight lines, and, as the
equation does not contain the particular constants g, f, ¢, it follows that
all circles cut the line at infinity tn the same two points. These points are
called the circular points at infinity, and will usually be denoted by I and J.
Their homogeneous coordinates are (1, +1, 0).

Cor. Two circles have in common four points, two of which, I and J,
are absolutely given. The existence of four points of intersection is in
accordance with analysis, since two simultaneous equations, each of the
second degree, have four sets of solutions.

2. Asymptotes, centre, diameters, axes. In the case of the hyperbola
" we saw (Chap. V. § 3), that the asymptotes are the tangents at the points
where the curve cuts the line at infinity,
and they pass through the centre. Then
the asymptotes of the ellipse are imaginary.

In both cases the line at infinity is the chord

of contact of tangents drawn from the centre,
and is therefore the polar of the centre.
Further, the axes are the bisectors of the
angles between the asymptotes. These
relations are represented diagrammatically

in Fig. 62.

-In the case of the parabola the asymp- (%5
totes coincide with the line at infinity, and centre
the pole of the line at infinity is the point Tia. 62.
of contact. Hence the centre of the parabola is the point at infinity on
the curve, which is also the point at infinity on the axis. Every line
through this point is therefore to be considered as a diameter, so that all
diameters are parallel to the axis. . ‘

8. We shall postpone until next chapter the complete investigation of
the converse theorems to those of §1. Their object is to determine the
character of a conic from its intersections with the line at infinity. But
first we must introduce an analytical definition of a conic which will be
more general than the geometrical definition given in Chap. IV. § 1.

Def. A conic is the locus of the general equation of the second degree

F(x, y) =az® + 2hay + by? + 29% + 2fy + ¢ =0.
The characteristic geometrical property of this locus is that it is cut by any
straight line in two points, real, coincident, or imaginary, and it is the most
general locus possessing this property. This property is, in fact, possessed
by the different types of conics as already defined, including two straight
lines. In this chapter, however, we shall assume that the equation repre-
sents a proper conic which is a hyperbola, an ellipse, or a parabola according
a8 the locus cuts the line at infinity in real, imaginary, or coincident points.

Making the equation homogeneous in %, y, 2z, we have
F(z, y, z) =az®+ by? + c2® + 2fyz + 2g2% + 2hxy =0,
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Then, putting 2=0, we ﬁnd as the equation of the two lines OH, OK, joining
the origin O to the points at infinity H, K,
az? + by? + 2hay =0.

Case I. 1f the two lines OH, OK are real, so that ab - A2 is negative,
the curve is a hyperbola.

Case I1. If the two lines OH, OK are imaginary, so that ab—h? is
positive, the curve is an ellipse.

Case I11. If the two lines OH, OK are comcldent 8o that ab- A=
the curve is a parabola.

Case IV. If the points H, K are the circular points, the equation of

the two lines OH, OK becomes 22 +42=0. Hence a=>b and h=0, and the
curve is a circle.

We may prove the last result also as follows. The conditions that the
locus should pass through the points I and J, whoae coordinates are
(1, 1, 0), are a-b+2:h=0,

a—-b-2:h=0.
Hence a=b and £ =0, and the locus is therefore a circle. Hence every
convic which passes through the two circular points is a circle.

If the conic passes through just one of the circular points, its coefficients
cannot be all real.

4, Directions of the asymptotes. Since the asymptotes are the tangents
to the curve at H, K, they are parallel respectively to OH, OK. Hence
the asymaptotes are parallel to the two stratght lines represented by the equation

ax® + 2hay + by? =0.

5. Coordinates of the centre. The centre of a conic, if it exists, is a
point C, such that every chord through C, terminated at each end by the
curve, is bisected at C. If the origin is a centre, it follows that when (z, )
is a point on the curve, so also is the point (~x, —y). Now the only terms
which are unaltered by changing the sign of both z and y are the terms of
the second degree and the constant term. Hence if the origin is a centre,
there must be no terms of the first degree.

Let the coordinates of the centre be (e, B). Then, transforming to
(, B) as origin without changing the direction of the axes, the terms of
the second degree are unchanged while the new coefficients of 2z and

2y are 19
™ =aoc+h[3+g,
10F

and 3 7‘3 =ha+bﬂ +f.

Equating these to zero, we have two equations of the first degree which
determine «, B uniquely. Solving, we get

Al @ghaf
Tab-w PTab-w
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These equations for the centre give a unique and definite solution except
when ab — h2=0, 1.e. when the curve is a parabola or two parallel straight
lines. The two equations az+hy+g=0 and hz+by+f=0 represent
straight lines through the centre, and therefore diameters. It will be seen
later (see Chap. X. § 7) that they are the polars of the points at infinity on
the axes of z and y respectively, and they therefore cut the curve at
points at which the tangent is parallel to the axis of 2 or y.

6. Equation of the principal axes. Having transformed the equation
of the conic to parallel axes with the centre as origin, it reduces to the form

ak2+2hEy +bn? +¢' =0,
where ¢ =qo+2haf +bB% + 290 +2fB +o
=a(ax+AB+9)+Blha+bB +f) +(ga+fB+0)
=ga+fB+c.
The equation of the asymptotes is now
ak2? +2hE 7 + b2 =0.

The principal axes are the bisectors of the angles between the asymp-
totes, and are therefore at right angles, and also harmonic conjugates with
regard to the asymptotes. As they are at right angles their equation is

of the form E2 4+ 20y ~ 92 =0,
and since they harmonically separate the asymptotes
—a+b=2h\

Hence the equation of the principal axes is
h(E - —(a-b)&En=0.

7. Alternative method of finding the axes. A conmvenient method of
finding the positions and lengths of the axes, which has the advantage of
definitely discriminating between the major and the minor axis, is as
_follows:

Consider the central conic

az® + 2hzy + byt =1,
and construct a concentric circle
22 +yi=r%

Starting with a small value of r, the circle will lie entirely inside the ellipse
(or outside if it is a hyperbola). As r increases the circle will come to cut
the conic in four points, but just before this happens it will touch at the
ends of the minor axis (or transverse axis, for the hyperbold). As r
increases the circle will come to surround the curve, if it is an ellipse, but
just before this happens it will touch at the ends of the major axis; in
the case of a hyperbola this of course will not happen, and there is only one
case of real contact. When the circle cuts the conic the lines joining the -
origin to the points of intersection are given by the homogeneous equation

r*(az? + 2hay + by?) = (2* + %),
i.e. (ar® - 1)a® + 2hr2zy + (b2 - 1) y2 =0.
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In order to get the principal axes, we have therefore to choose r so that
this equation may represent two coincident straight lines.
The condition is that

hPri=(ar® - 1) (br% -1),
t.e. (ab—1%)r*~(a +b)72 +1=0.
The positive roots of this equation are the lengths of the semi-axes. If
7y is one of the roots, the equation of the corresponding axis is then
(ar® -1)z +hr 2y =0,
or hry2x +(bri2 - 1)y =0.
If ab—74? is negative, so that the conic is a hyperbola, the roots of the
quadratic in #2 are of opposite sign. One of the values of r is therefore
imaginary, corresponding to imaginary contact of the circle with the conic,
but the corresponding axis is always real, since its equation involves only r2.
8. Examples.
1. Trace the curve 1742 — 12zy + 8y2+ 46z — 28y + 17=0.
Making the equation homogeneous by means of z, we obtain
1722 — 122y + 842+ 462z — 28yz + 1722=0.
Putting z=0, we find the equation of the lines joining the origin to the points
H, K, in which the curve cuts the line at infinity,
1722 — 122y + 832 =0.
These lines are imaginary ; hence the curve is an ellipse.
The coordinates of the centre are given by
10F
2 oz
% —aa%i'; —6x+8y—14=0;

=17z— 6y+ 23=0,

hence the centre is (-1, 1).
Transforming to paralle]l axes through the centre, the equation of the curve
becomes ’ 1782~ 12Ex+ 8792=20.
The axes being at right angles, their equation is of the form
) 52+27\E.-7]_712=0,
and they harmonically separate the asymptotes 17£2— 12Ex+ 842=0 (which in
this case are imaginary). Hence A=3.
The equation of the axes is therefore
_ 282+ 3En - 29%=0,
ie. (26— n)(&+27m)=0.
The principal axis 2£—%=0 cuts the curve in the two points ( %5, \_jﬁ) and
2 4 .
(— —5 ——g)» te (0-89, 179) and (-0-89, — 1:79). The principal axis
e o Y 2 1 2 1
+20=0 cuts the curve in the two points (——,—) and <—, ———).
i.e. (—0-89, 0-45) and (0-89, — 0-45). V5 V5 v Vb
To determine the curve more accurately, we note that the new coordinate

axes cut the curve in the points (£+/%%,0) and (0, +4/§), t.e. (£1-08,0) and

{0, £1-58). - The curve is shown in Fig. 63.

ey
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The axes may be found alternatively by the concentric circle method. The
equation of the lines joining the centre to the points of intersection with a con-
centric circle of radius r is

r2(1763— 1230+ 872) = 20(E3+ o).
The condition that these should coincide is
36r% = (1772 - 20) (872 - 20),
which reduces to (r—4)(r2-1)=0.
Corresponding to r=2, the major axis, we have
4873 48En+4 1272=0,

s.e (28 - )2=0,
and corresponding to r=1, the minor axis, we have
(E+2n)2=0.
The equation of the ellipse referred to its principal axes is then
a?(a+y2=1.
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2. Sketch the curve
7723+ 182y — 2Ty + 70z — 30y + 29=0.

Making the equation homogeneous by means of z, we obtain

7722+ T8zy — 2732+ 70z — 30yz + 2922=0.
Putting z=0, we find the equation of the lines joining the origin to the pointe
H, K, in which the curve cuts the line at infinity,

7722+ 78xy — 2742 =0,

e (7z+ 9y)(11x— 3y)=0.

Hence the points H and K are real, and the ourve is therefore a hyperbola.
8.4.0, i
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The coordinates of the centre are given by

19F
392 =772+ 39+ 35=0,
10F
5 »a—-=39z—27y— 156=0;

hence the coordinates of the centre are (=&, — 7).
Transforming to parallel axes through the centre, the equation of the curve

becomes T7E2 4 78En— 2742+ 36=0,
and the asymptotes are (75+97)(11§ - 379) =0,
The axes being at right angles, their equation is of the form
\ £+ 220En—12=0,

and they harmonically separate the asymptotes ; therefore

=27-7T71-78\=0,
whence A=—%.
Hence the equation of the axes is

32— 8En—392=0,
e (38 +m)(E—37)=0.
The principal axis 3£+ %=0 cuts the curve in the two points (&;, — %) and
(—+%>» T)» which are real. The principal axis £—3%=0 cuts the curve in the
two points (4, 14) and (— §4, — }4), which are imaginary.

- To determine the curve more accurately, we note that the new coordinate

axes cut the curve in the points (++/ —$£¥§,0), which are imaginary, and in

(0 + ‘\/3) f.e. (0, £1-16), which are real. The curve is shown in Fig. 64.

9. If the curve cuts the line at infinity in coincident points it is a
parabola, and we may proceed as follows.
Since ab—h2=0, the terms of the second degree form a perfect square,
and hence we may write the equation
(az +hy)? + a(2gx + 2fy +¢) =O0.
1f now the two lines az + hy =0 and 29z + 2fy + ¢ =0 are at right angles, this
equation is of the form »2=4p&, the standard form of a parabola. But
this is not in general the case. We may, however, write the equation
(ax+hy + k)2 =2a(k —g)z+2(hk —af)y + K* - ac,
and then we can determine % so that the two lines
ax+hy+%k=0
and 2a(k—~g)x+2(kk —af)y +k2—ac=0
may be at right angles, ¢.e. so that
a?(k - g) +h(hk —af) =0.
k is thus determined, and the equation is then reduced to the standard form
nz = 41" Zr
where 7 =0 or az +hy + k=0 is the principal axis, and § =0 is the tangent
at the vertex.
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Example. Trace the parabola
422+ y2 - 4oy — 10y — 19=0.
The terms of the second degree form a perfect square, and the equation can
be written (22— y)3=10y+19.
Introduce the term %, and write the equation
(22— y+ k)2=4kz+ (10— 2k) y + B+ 19,
In order that the straight lines on the
left and right-hand sides, viz. / y %
22— y+ k=0
and  4kz+ (10— 2k)y+k2+19=0,
may be at right angles, we must have
8k— (10— 2k)=0;
hence k=1, and the equation becomes
(2z—y+1)2=4(z+2y+5).

Putting n=-(2z-y+1)/vb
and §=(x+2y+5)/v5,
the perpendiocular distances from the A
new axes, and fixing the signs so that 0
the positive directions of the new axes \
may be as in the figure (Fig. 65), we
ok tain '

4 /
_ n’=75 &; | -
. 4
hence the latus rectum is 75 V \

The coordinates of the vertex are Fi6. 65.
( - ‘Eb - %)' »

1
The coordinates of the focus referred to the §, n axes are (75-, 0). Hence

substituting in the above formulae, giving £ and 7 in terms of z and y, we obtain
2—y+1 1 z+2+5,

vE ' VB B
hence the coordinates of the foous, referred to the original axes, are (— §, — ).
10. Miscellaneous examples.
1. Trace the curve 422 — 9y — 24z — 36y — 36=0.
We may write the equation thus:
4(z— 32— 9(y+2)*=36.
Transferring to the point (3, — 2) as origin, the equation reduces to

2 £y,

9 4
hence the curve is a hyperbola with centre (3, —2) and axes parallel to the axes
of z and y.

0
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2. 6% — 10y%+ 112y — 4z + 9y =0.
The terms of the second degree factorize, and we have
(32— 2y)(22+ 5y) — 4z + 9y ==0.

Write this (32~ 2y + ) (22 + 5y + B) =P,
and determine « and B.

The coefficient of 2 is 20+ 3B=—4,
and the coefficient of y is S5a~2B= 9,

Hence a=1, B= —2, and the equation becomes
(3z~2y+1)(22+5y—2)= -2,

This is the equation of a hyperbola referred to its asymptotes. The centre is the
point of intersection of the asymptotes, viz. (— To o)

EXAMPLES IX.

1. Find the coordinates of the centres of the conics :
(i) 222+ 392+ 4wy~ 8z — 14y +9=0, (ii) 722~ 2y%— 122y + 2z + 4y + 2=0,
(iti) 22+ 4y% — 62y — 5z + 10y + 3=0. '
2. Find the equations and the lengths of the semi-axes of the conics :
(i) 822+ 5y — 6xy + 182 — 14y + 9=0,
(ii) 1322+ 372~ 322y — 14z + 38y — 35=0,
(iii) 52— 5y% — 24xy + 142+ 8y — 16=0.
3. Find the equations of the asymptotes of the hyperbolas :
(i) 6zy+9z+4y=0, (ii) 22%~ 3y2 — 2y + 42— 1=0,
(iif) 322+ 2%+ 6xy + 62+ 10y + 1=0.
4. Sketch the conics :
(i) 2~ 4wy — 2%+ 102+ 4y=0, (i) 22+ 42— 20— 16y+1=0,
(iif) 4122+ 24y + 9y — 130z — 60y + 116=0,
(iv) 22— 4zy + 52 — 4z — 2y — 31 =0,
(V) 2z +y+1p2=2-2y, - (vi) Ba®— day + 8y2~ 62— 12y — 36 =0,
(vii) 72%— 48zy — Ty? + 110z — 20y + 100=0.
5. Find the equation of the ellipse 22~ zy+2;2=6 referred to its principa)
axes.
6. Find the magnitudes and directions of the axes of the conic

Ptay+y?—-2x+2y—6=0. (King’s, etx , 1913.)
7. Reduce to its principal axes the conic 92— day+ 62— 102 -7=0, and
prove that its area is w+/2. (Trinity, ete., 1911.)

8. Find the equation of the conic through the points (0, 3), (3, 0), (0, —2),
(2, 0), (2, 1), and trace it roughly.

9. Prove that the six points (2, 3), (3, 2), (3, 1), (1, 3), (1,2), (2,1) are on
8 conic whose equation referred to its axes is 322+ 32— 2=0, (Trinity, 1909.)

10. Trace the curve y?— 4oy — 522+ 6y + 42x — 63 =0, (Peterhouse, 1900.)
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11. Draw the curve 922 + 6xy +y2+2x + 3y +4=0, and find its latus rectum.
(Queens’, 1901.)

12. Find the species, the eccentricity, and the position of the axes of the
conic 22 — 1132 — 16zy + 10z + 10y — 7=0, and sketch the curve.
: (Math, Tripos II., 1911.)

13. Trace the conic 34a?-+24xy+41y3+48z+14y—108=0, and find its
eccentricity. (Corpus, etc., 1913.)

14. Find the coordinates of the focus and the vertex of the parabola

23 —4xy + 492+ 102 - 8y +13=0. (King’s, 1912.)

15. Find the equation of the directrix and the coordinates of the focus of the
parabola 2 +2xy + 32 — 3z + 6y —4=0. (Magdalene, 1910.)

16. Find the equation of an ellipse with focus (-1, 1), directrix # —y +3=0,
and eccentricity 3. :

17. A conic is given by the equation

22+ 2(2) — Dy + 222 4+ 222+ 202y + X2+ I -1 =0,

where ) is a parameter which takes all real values. Show that the conic is always
real, and find the values of A for which the conic degenerates.  (King’s, 1912.)



CHAPTER X.
THE GENERAL CONIC.

1. THE general equation of the second degree in #, y may be written
F(z, y) = az® + by® + 2hary + 29z + 2fy + ¢ =0.

The first thing we notice about this equation is that it has six terms, each
with a coefficient to which we can give an arbitrary value. If, however,
every term is multiplied by the same factor, the equation is unaltered.
Hence only the ratios of the six coefficients are significant. It follows that
& conic can be made to satisfy five conditions, e.g. to pass through five given
points. In order to fix a conic it is sufficient to determine five of its
elements. For example, an ellipse will be determined if we know the
lengths of its axes (2 data), their orientation (1), and the position of the
centre (2). The problem of determining these elements depends upon
the reduction of the general equation to one of the simple forms which
have been considered in the previous chapters.

- 2. Joachimsthal’s ratio equation. To find the ratios in which the line
joining the points P=(z, y') and Q=(z, y) is cut by the conic: let the
line PQ cut the conic in a point X, which divides PQ in the ratio k: 1.
The coordinates of X are then

kz+a' ky+y
k+1° E+1°
Since X lies on the curve, we have
a(kz+a')®+b(ky +y')%+2h(kx+2') (ky +y')
+2(k+1){glkz+2") +f(ky +y')} +c(k +1)2 =0,
Writing this in descending powers of %, we have
k2 (ax? + by? + 2hay + 292 + 2fy +¢)

+2k{axz’ +byy’ +h(zy +2'y) +9(z+2) +f(y+y') +¢}

+(az? + by + 2ha’y’ + 297" +2fy" +¢) =0.
The two roots of this equation correspond to the two points X, Y in which
PQ cuts the conic.

8. Condition that P and Q may be conjugate points with regard to the
conic. If (PQ, XY) is harmonic, X and Y divide PQ internally and
externally in the same ratio, and therefore the values of % are equal but
of opposite sign, 1.e. their sum is zero. Hence

axx’ +byy’ +h(zy +2'y) +g(@+2) +fly+y) +¢c=0,
122 .
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which may also be written
z(az’ +hy' +9) +y(hs’ +by’ +f) + (92’ +fy’ +¢)=0.

4, Pole and polar. The polar of a point P= (2, y’') is defined as the
locus of points @ =(x, y), which are conjugate to P; hence, from § 3, the
equation of the polar of P=(2/, y') is

z(az’ +hy' +g) +y(ha' +by’ +f) + (92 +fy +¢) =0,
which may also be written
' z oF + a~F +2 oF =0
o Vg tr T
Since the tangent at (z, y, #) is the polar of the point of contact, this
equation is also the equation of the tangent at («, y', 2’), provided this
point lies on the curve.

5. The centre. The centre is the pole of the line at infinity. Let its

homogeneous coordinates be (2;. y;, ;). Then the equation of the polar is
ST, OF 0T
ox, Y0dy, "0z
But this is to reduce to z=0. Therefore the coordinates of the centre
satisfy the two equations

0.

oF oF

37=0’ 5?'/‘ =00
te. ax +hy + gz=0,
and hx + by +fz=0,
whence z y 2

kf~bg gh-af ab—~i*
6. The expressions in the denominators of these fractions are most
conveniently represented by determinants. Consider the determinant

Aéaky,
B b f
g f ¢

whose vanishing expresses the condition that the equation
F(z, y, 2) = aa®+ by + c2® + 2fyz + 2922 + 2hwy =0
should represent two straight lines (Chap. IL § 14).

Now the denominator under « is the minor of g in this determinant,
obtained by striking out the row and column containing ¢ ; similarly the
denominator under y is the minor of f with the sign reversed. We shall
use the term cofactors for the minors with signs prefixed as follows : a
positive sign if the element is at any of the four corners or the centre, and
a negative sign for any other element. Then the cofactor of each element
will be represented by the corresponding capital letter. Thus

4 =be—f?, F =gh-af,

B=ca—g2, G=Rf~bg, [ -ercerecrrecresrsnareanans (1
C=ab-F?, H =fg—ch.
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It will then be seen that the determinant can be expanded in different

ways, thus CASGAARH AGE, e, 2
while we have also relations of the form
GH+hB+gF =0, uuveeeeeereeecrrrerereererennn (3)

which represent the determinant with two rows made the same.

The determinant V=l4 H @
H B F
G F C

is also important. By actual multiplication it may be verified that
BC - F?2 = Aa, GH - AF = Af,
CA - G2= A, HF —BG@=Ag, } vvreereereererenenn (4).
AB-H?= Ac, FG@-CH = Ah,
and then
V=A(BC-F?)+H(FG-CH)+G(HF - BG)=A(ad +LH +g¢G) = A*.
With this notation the homogeneous coordinates of the centre of the
general conic are (G, F, O).
7. Diameters. A diameter is a line through the centre, and the pole
of a diameter is a point at infinity. The polar of (2, y’, ') is '
,OF  ,0F  oF

o oty a+z % =0;
hence ?.E,:() and ?—E-—-O
Ox oy

are the polars of (1, 0, 0) and (0, 1, 0) which are the points at infinity on
the coordinate axes. These are therefore diameters, and any diameter
can be represented by
A oF oF 0
P +u 67— .
Conjugate diameters are diameters which are conjugate lines with
regard to the conic, and each passes through the pole of the other. The

pole of the diameter o’ g+y' g—f=0 is (#', y', 0), and the gradient of the

conjugate diameter is therefore u’'=y’/2’, while the gradient of the given
diameter is p= —(az’'+hy')/(hz’ +by’)= —(a+hw')/(h+bp’). Hence the
gradients of two conjugate diameters are connected by the symmetrical

equation a+h(n+p')+bup’ =0.
This expresses that the two pairs of lines
y=p

y—u's and aa?+2hzy + byt =0
should be apolar. Hence a patr of conjugate diameters are harmonse con-
Jugates with regard to the asymptotes.
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The same relation also expresses that the points ai infinity on the two
conjugate diameters are conjugate with regard to the conic, or harmonic con-
jugates with regard to the points at infinity, H, K, on the conic, for the homo-
geneous coordinates of the points at infinity on the diameters are (1, y, 0)
and (1, @, 0).

8. The tangents from a given point. Let P=(z', y’) be the given point
and @ =(z, y) any point on a tangent through P. Then the line PQ) meets
the conie in two coincident points. Hence, in Joachimsthal’s equation
(§ 2), the values of k are equal, and therefore
{azx’ +byy’ +h(zy’ +2'y) +g(z+2) +f(y +y) +c}?

=(aa® + by? + 2hxy + 297 + 2fy + ) (ax"® + by"® + 2hx’y’ + 292" + 2fy’ +c).
This equation is the relation which connects the coordinates (x, y) of any
point on a tangent through (%', %), and is therefore the joint-equation of
the two tangents. The equation may be written in the form

. 1/ oF OF aF)’
Fz,y,2)F(«', ¥, z’)=1<x5—x,+y ay,+z 5

9. The orthoptic circle. The orthoptic locus is the locus of points at
which the conic subtends 4 right angle. - Hence, if (2', ') is any point on
the orthoptic locus, the tangents from (', y') to the conic are at right
angles. The condition for this is that the sum of the coefficients of 2*
and ¢ in the equation of §8 should vanish. Hence the equation of the
locus is

(a +b) (az? + by? + 2hzy + 292 + 2fy +¢) — (az + by + g)% — (hx + by +f)2=0.
With the notation of § 6, this can be written
C(2®+4?) -2Gz -2Fy + A+ B=0,

which represents a circle, concentric with the conic.

When the conic is a parabola, C=0, and the locus degenerates to a
straight line 2Gz+2Fy=A4+ B,
the directrix of the parabola.

10. The asymptotes. The asymptotes are defined as the tangents to
the curve at infinity. The points at infinity, H, K, on the curve are
determined by the equations

az? + 2hay + by =b(y — Ax)(y — p) =0, 2=0,
so that the homogeneous coordinates of H, K are (1, A, 0) and (1, p, 0)
The equation of the tangent at (1, A, 0) is
oF _oF
7z +A —a-g =0,
and the joint equation of the two asymptotes is
oF 6F> oF @
(§;+)\5y— (ax +y.—a:T/' =0,

ie. (g)’+(x+p) -aa—g g+7\p. (3—5)’-0.
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But A+p=—2k/b, \p=a/b; therefore the equation of the asymptotes
becomes IF\2 oF oF OF\2
b(% —2}1—6; a—y—+a(-a—;> =0.
11. Reduction of equation to axes through the centre. If (o, B) are the
coordinates of the centre, the equations of transformation are
r=§+a,
y=n+p.
By this transformation the terms in & and v vanish, and the terms of the
second degree are unchanged. To find the constant term ¢/, we have
¢’ =ao? +bf% +2haf + 29 + 2fB +¢
=o(ac +hB +g) + Bhax +bB +f) + (ga +fB +¢).
Now, since («, B) is the centre,
ao+hf3 +g=0,
hoa+bB +f=0;
therefore d=ga+fB+c=(gG+fF+cC)[C=A]C.
The equation therefore reduces to
ak2+2hEx +by? +%=O.

This is the equation of a central conic referred to axes through its centre.
If the conic is a parabola, C=0, and the equation cannot be reduced to
this form. If A=0, the equation becomes homogeneous and represents
two straight lines.

12. Reduction of the equation to the principal axes. By transforming
to parallel axes through the centre, the equation has been reduced to the
form ak2+2hEn +bn?+ A/C=0.

We have next to rotate the axes through an angle 0, so as to remove the
term in §n. The equations of transformation are
E=E"cosO—x'sin0,
n=& sin 0+ cos 0.
The coefficient of 28"y’ is
—a cos 0 sin 0 + b cos 0 sin 0 + k(cos20 —sin20).

Equating this to zero, we have
tan 20 = _2£ s
a-b
which determines the angle 0 which one of the principal axes makes with
the axis of z.
The equation then reduces to the form

‘ a’E2+b'n"2+ A[/C=0,
where @’ =a cos?0 + b sin20 + 24 cos O sin 6
=3}(1 +b) +}(a - b) cos 20 + 4 sin 20,
b =}a +b) —}(a —b) cos 20 — k sin 20.
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Putting Rt=(a~b)*+4ht=(a+b)® -

we have cos 20=(a-b)/R, sin20=2k/R;
hence o' =3a+b)+Ha-b)?/R+2h*/R=%(a+b+R)
and b =4a+b-R)

The equation then reduces to
(@a+d+R)E?+(a+b— R)n”+2A/C =0.
From this we find at once the squares of the semi-axes r,?, r,*
= -2A/{C(a+b+ R)}.

13. The eccentricity. If @, b are the semi-axes, the eccentricity is
given by €2 =(a? - b?) [a?.
If no distinction is made between the axes, there are therefore two values
for the eccentricity,

E=1-r2/r? and e€%=1-r?r?

. 9R  R(@+b-R) , 2R
he “axb+R . 20 ° Taxb-R
From these we get the relations
(L= (1 =) =1, coomrrrerereserrmsessssssssssssrene. 1)
ee?= — R2[C, ... eeeeesesnneces (2)
and §+$§=1' ..................................... (3)

From (1) it follows that the two values of ¢ are either both >1 or both
<1, and from (2) ¢® and e are either both positive (when C<<0), or one
positive and one negative (when C>0), but never both negative, since the
sum of their reciprocals = +1.

‘We may therefore classify as follows :

(1) C<0. Hyperbola. ¢ and e'? are both positive, and therefore, by
equation (3), both >1.

(2) C>0. Ellipse. ¢*>0 and e2<<0, and therefore, by (1) e2<1.
¢’? may be numerically > or <1, accordmg as << or >4%.

The two values of the eccentricity refer to the real and the imaginary
foci, but they are also the eccentricities of the two conjugate hyperbolas
#3/a? — 2 [B*= 11, or the real and the virtual conjugate ellipses,

2?Ja? + 2 0% = x1,
with reference in each case to the real foci.

If 2 =e¢", then, by (3), each =2, and the curve is a rectangular hyperbola
with eccentricity 4/2.

If &= —e, then, by (1), e#=0; hence, by (2), R=0. This requires,
for real values, that ¢ =5 and %£=0, so that the curve is a circle.

If e2=1, then, by (3), "2 is infinite, and hence, by (2), C=0. The curve
is thus a parabola. This is the case also for two coincident or parallel
straight lines. For two distinct straight lines, considered as a conic, the
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eccentricity is the same as that of a conic of which the two lines are
asymptotes. :

If ¢2= -1, then, by (3), ¢=4. This is a particular case of an ellipse
which has some special properties. It is called Fagnano’s Ellipse. In it
the minor auxiliary circle passes through the foci.

EXAMPLES X.

1. A hyperbola touches the axis of y at the origin, and the line y="Tx—5 at
the point (1,2). One of its asymptotes is parallel to the axis of z. Find the
equation of the curve. (Trinity, 1909.)

2. Four points 4, B, C, D lie on a circle. From C and D lines CE, DF are
drawn parallel to 4B and equal to AB. Prove that BCDEF lie on a rectangular
hyperbola. (King’s, 1913.)

3. For what value of A will the equation aa®+by?+ 2gx+ 2fy+ 2xzy=0
represent two straight lines ! Prove that one of the lines is the tangent at the
origin to the curve az?®+ by®+ 2gz + 2fy + 2)\xy=0 for any value of A

4. Show that the lines y=mx, y=m'r are equal diameters of the conic
ax®+ 2hay + byt =1 if (a—b)(m+m’)—2h(1 —mm’)=0. Hence find the equation
of the pair of equi-conjugate diameters. (Pembroke, 1911.)

5. Prove that the area of the ellipse ax®+by?+ 2hay+2gx+2fy+c=0 is
equal to =ACE, v

6. Find the equation of the orthoptic circk of the conie (az+ by — 1)2=2)zy,
and prove that for different values of A the orthoptic circles are coaxal.

(Magdalene, 1907.)

7. The tangents at the ends of the axes of an ellipse form a rectangle 4 BCD,
and a conic § is drawn through these four points. A pair of conjugate semi-
diameters of the ellipse cut the conic § in points P, Q. Prove that PQ is a tangent
to the ellipse.

8. A circle is inscribed and a rectangular hyperbola is circumscribed to an
equilateral triangle. Show that each curve passes through the centre of the
other. (Peterhouse, 1913.)

9. A conic ax®+by?=1 and a point P(h, k) being given, prove that the locus
of a point @ whose polar makes a constant angle with QP is a conic passing through
P and the origin. What is the nature of the locus when the constant angle is
(i) zero, (ii) a right angle ? (Math. Tripos I., 1915.)

10. Prove that if 4, A" are two fixed points, the locus of P, such that
L PAA’— /L PA’A
is constant, is a rectangular hyperbola with 44’ as a diameter. Is the constant
angle the same for both branches ?
11. Any conio is inscribed in a quadrilateral A BC D having a right angle at B.
If BA, BC touch the conic in E, F respectively, prove that the foot of the per-

pendicular from B on EF lies on a fixed circle. (St. Catharine’s, 1912.)
12. Prove that the four normals drawn from the origin to the conic
ax®+ 2hay + by® + 2fy=0

form a harmonio pencil if 54ak3+ (22— b)3=0. (Corpus, 1910.)
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13. Any two diameters of a conic are at right angles to each other and meet
the tangent at a fixed point P in @ and R. The other two tangents to the conic
through @ and R intersect in 7. Show that 7' lies on & fixed straight line.

(Trinity, 1901.)
14. Pis a variable point on a fixed line, and the polar of P with regard to
a given conic meets the conic in @ and R. Show that the locus of the centroid
of the triangle PQR is a cubic curve having a double-point at the centre of the
conic.
Explain the result when the fixed line is a diameter.

15. With the point (2, ') a8 centre a family of circles is drawn to cut the conic
ax®+ 2hay + by + 29z + 2fy+¢=0. Prove that the locus of the middle points of
the chords of intersection is the rectangular hyperbola,

(x—2')(hx+ by +f)— (y—y')(ax+ hy+ g)=0.
(Math. Tripos 1., 1910.)

16. Show that a pair of conjugate diameters of the ellipse aa®+by2=1 lie
along the lines az®+ 2hay — by®=0. Prove also that there is one conic with these
lines as asymptotes which cuts ¢2?+ by?=1 orthogonally at the common points,

(Pembroke, 1912.)

17. The two diagonals AOB and COD of the quadrilateral ACBD intersect

at right angles in 0, and O4.0B>0C.0D. Prove that the eccentricity of the

ellipse of smallest eccentricity which can be described through the four points
ABCDis +/(1-0C.ODJOA.OB). (Trinity, 1900.)

18. The parabola which has four-point contact with the conic
ax?+ 2hay + by + 29x+ 2fy=0
at the origin is drawn ; prove (i) that the axis of the parabola makes with the
tangent at the origin the angle @, where tan p=(fF+¢Q)/(fg~gF); (ii) that the
equation of the directrix of the parabola is 2Gz+ 2 Fy+ g2+ f2=0.
(Queens’, 1901.)
19. A, B are two fixed points, and P a variable point. The angle PAB=6
and PBA=¢.

(i) Prove that if @ tan 0+ b tan p=c, the locus of P is in general a hyperbola
passing through 4 and B; but if ¢=0 it is a straight line perpendicular to 4B ;
and if a=> it is a parabola whose axis is perpendicular to AB.

(ii) If a cot 6+ b cot p=c, show that the locus of P is a straight line, per-
pendicular to 4 B if ¢=0 and parallel to 4 B if a=b.

(iii) If sin 6=y sin @, show that the locus of P is a circle.

(iv) If acot(6— a)+b cot(p— B)=c, where o and B are given angles, prove
that the locus of P is a conic circumscribing the triangle 4BC, where C it
determined by making /CAB=a, LCBA=§.



CHAPTER XI.
LINE-COORDINATES AND ENVELOPES.

1. Line-coordinates. We have considered a straight line as the locus -
of a point which moves according to a certain geometrical law which is
expressed by an equation connecting the coordinates of the point. But
a line may be considered as a geometrical element, to be fixed, like a point,
by certain data or coordinates. Thus a
straight line 4B will be fixed if we know ¢
the lengths of the intercepts 04, OB on the
axes; or the perpendicular ON from the
origin and the angle XON ; or the gradient
and the intercept OB ; and so on. Just as
in the gase of a point, two data are always
required, but there is a wide choice of suit- :
able date. Any pair of data which suffice 0 a AN
to fix the line can be called the coordinates P16 ¢6.
of the line, but in choosing data we shall
make it a condition that the line is to be uniquely determined by the
coordinates, and conversely that only one pair of coordinates belong to any
line. We shall find it convenient, for reasons which will appear later, to
take as our coordinates the negative reciprocals of the intercepts on the axes,
and we shall denote these by ! and m, - N _
8o that 1 1 LA

= - — m= — =«
a’ b /’ A

We can then speak of the line (I, m), — T {2~ 2,3 T
which is the same as the line whose > =
equation is <]

e +my +1=0. < 7
The signs as well as the magnitudes — *2+3 1-2,+3
of I, m being thus determined, to l
every pair of values of ! and m there = <]
corresponds one line, and conversely. A7
Fig. 67 represents the four lines :
(%2, £3). As ! and m vary, we can obtain—with certain possible excep-
tions—all the lines of the plane. When m=0, we get lines parallel to the
axis of y; when [=0, lines parallel to the axis of z. If 1=0 and m=0,
bowever, we do not get any line, and we caunot represent a straight line

130

N
F16. 67.
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through the origin with any finite values of ! and m. These apparent
exceptional cases will be considered later.

2. If | and m are not free to take all values independently, but are °
connected by an equation, we shall get, not all lines in the plane, but only
a class of lines.

Take the equation 21+ 3m+6=0.

We can draw up a table of corresponding values of I and m, thua

l -6 -3 0 3 6 1A ;r
m |2 0| -2|-4| -6 fimmnre
y v
1 1/
The corresponding values of the intercepts are |4
: TFo23]
a | 017 033| » | -033|-017 TR
I Vil
- ' 1
b |-05] @ | 05| 025 | 017 206 it
et el
AT T T
When the lines are drawn they all appear to pass Fra. 68

through the same point (3, 1) (Fig. 68). '
Consider any equation of the first degree in I, m,
Al+ Bm+C=0.
The equation of the line with coordinates I, m is
le+my+1=0.

The given equation of the first degree then expresses that the line always
passes through the fixed point (4/C, B/C). Hence an equation of the first
degree in 1, m represents a system of straight lines through a fized point.

8. We shall next consider some equations of the second degree in I, m.

Ex. 1. 2B+ mi=1.

4 0 2 4 6 -6 -65 7

m 1 ‘96 | -83 71 53 -39 14

The corresponding intercepts are, in magnitude,

M w | 5 | 25| 2 |17 ] 15 | 14

b 1 |104| 12 14 | 10 |2-5 7.1

and each pair may be taken +. The lines in this case envelop a curve (ellipse.
Fig. 69).
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Thus an equation in I, m represents a class of lines which envelop a
curve, just as an equation in 2, y represents a class of points whose locus
is a curve

! 1 i P 1 INSALL AL
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Fia. 69.

Ex. 2. Im+1+m=0. (Parabola touching the coordinate axes. Fig. 70.)

l -4 | -2 (-16] -1 | -08|~-07 2 4 ®

m |-13| -2 | -3 © 4 23 [ -07;-08] -1

a 025 | 05 | 067 1 125 | 143 | -0-5 [-0-25| O

b 075 | 0-5 | 0-33 0 |-025|-043) 16 | 125 1
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Ex. 3. Im=4. (Hyperbola. Fig. 71.)

4 -3 -2 -1 0 1 17 2 3 4 5

m |[-13| -2 | -4 ® 4 2 13 1 08 .

a @ -1 (-051{-033[|-025| —0-2
b 0 |-025(-056|-075( -1 |-1-25
Examples.
Draw the envelopes of the following equations : »
1. 2l-m+1=0. 2. 1+2m=3. 3. 31— 2m="5.
4. B=m. 5. B+m?=1. 6. B=2m+1.

4. We shall consider now a few examples of the converse problem, to
find the equation of the envelope of a line which moves according to some
assigned law. '

Ex. Find the equation of the envelope of a line which is at a fixed distance
2 from the point (3, 1).

Let the coordinates of the line be (I, m). Then we have

3l+m+1
TVErmd’
Rationalizing, 4 P+m)=(3l+m+1)2,
or 52— 3m2+ 6lm+ 61+ 2m+ 1 =0.

The envelope is a circle with centre (3, 1) and radius =2.

Ezamples.

Find the equation of the envelope in the following cases, and interpret the
result geometrically :

1. A line moves so that the algebraic sum of its distances from the points
(2,1), (- 1,3), (-1, —4) is equal to 3.

2. 4, B, C, ... are any number of points such that the origin O is their
centroid, and a line moves so that the algebraic sum of its distances from these
points is constant.

3. A line moves so that the product of its distances from two points { +3, 0)
on the same side of the line is constant, = 16.

4. A line moves so that the product of its distances from the points
( £13, 0) on opposite sides of the line is constant, =25,

5. A line moves 8o that 5 times the product of its distances from the points
(1, 2), (1, —2) is equal to the square of its distance from the point (5, 0).

6. A line moves so that it makes with the coordinate axes a triangle whose
perimeter is constant, =1.

7. A line moves so that the algebraic sum of its intercepts on the axes is
oonstant, = 1.

8. The vertex of a right angle moves along a fixed line (z=0) while one arm
passes through a fixed point (1, 0). Find the envelope of the other arm.

S.AS K
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5. Tangential equations. We have seen that an equation in I, m
represents an envelope, or curve generated by a moving line. It may be
viewed also from another point of view. The equation in I, m is the
condition that the straight line kz+my +1=0 should be a tangent to the
curve. In exactly the same way an equation in point-coordinates z, ¥
represents a locus, or curve generated by a moving point ; it also repre-
sents the condition that the point (z, y) should lie on the curve.

From the second point of view the equation in [, m is called the tangential
equation of the curve, and we have already met examples of tangential
equations. In future, however, we shall generally speak of the equation
in I, m as the line-equation, the equation in z, y being the point-equation of
the curve.

We shall illustrate three methods, each of general application, for
finding the tangential or line-equation of a curve.

To find the line-equation of the circle whose centre 18 at the origin and
radius equal to 1.

MeTHOD 1., using a geometrical property of the curve.
1f the line (I, m) or ke +my +1 =0 is a tangent, the length of the perpen-
dicular upon it from the origin is equal to r. Hence

1
—— e S r
Ve+m:
whence, rationalizing, r2(B+m?)=1.

MeTHOD II., from the point-equation by expressing that the line
le+my+1=0

cuts the curve in two coincident points.
The equation of the lines joining the origin to the points of intersection
of the line lr+my+1=0 with the circle 2% +y%=1%is ’

22 + 42 =12 (lx + my)?,
ie. (7212 — 1) 22 + 20%lmay + (r2m? - 1) 32 =0.
These lines will coincide if
rAPm? = (1202 - 1) (2m® - 1),
t.e. if 2(B+m2)=1. _
MzrHOD III., from the point-equation by identifying the equation

lz +my +1 =0 with the equation of the tangent at a given point.
The equation of the tangent at (2, y') to the circle 2* +y2=1% is

z'z+y'y—r2=0.
If this is the same line as lz +my +1=0, we have
l= =o' [}, m=—y' |2
‘But (¢, ') lies on the line; therefore la’ +my’+1=0.
Hence, substituting for ' and ¥/,
r2(B+m?)=1.
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Ex. Deduce the following line-equations from the point-equations (cf. Chaps
IV.§7; V.§4; VL §3):

Circle, B+ 2z —2By+c=0, (la+mP+1)2=(P+m?)(o2+ B2-c).
Ellipse, 22/a?+ 42 [b3=1, AP+ bPmi=1.

Hyperbola, a?/a®—y2/b3=1, a?l2 - B*m?=1,

Parabola, yi=4az, am?=1

6. Homogeneous line-coordinates. In the former examples of tangential
equations we expressed always the condition that the line lz+my+n=0
should be a tangent. Thus we found that the tangential equation of the
ellipse 22/a® + 42[b2=1 was a®P +b*m®=n?, and in each case we found as
the tangential equation an equation homogeneous in I, m, n. The line-
equations which were considered in the last section are derived from these
by putting n=1.

For many reasons there is an advantage in leaving n variable, and then
we shall call I, m, n the homogeneous coordinates of the line lz +my +n=0.
Since the line is not altered if we multiply each term of the equation by
the same factor, any multiple (kl, km, kn) of the homogeneous coordinates
(1, m, n) will represent the same straight line. It is therefore only necessary
to consider the ratios I:m:n, and the actual values have no significance.

One great advantage of employing the homogeneous coordinates I, m, n
is that it avoids the necessity of dealing with infinite values. There was
a difficulty in representing a line through the origin by the coordinates I, m,
which represent the negative reciprocals of the intercepts, since these
intercepts vanish ; but using homogeneous coordinates, the condition that
the line should pass through the origin is simply »=0, so that, e.g., (1, 2, 0)
will represent a definite line through the origin. '

7. Simultaneous equations in 1, m, n. Two simultaneous homogeneous
equations in I, m, n determine one or more sets of values of the ratios
1:m: n,i.e. one or more straight lines. These are the straight lines common
to the two envelopes. For example, if the two equations are of the first

degree, a,l+bm +en=0,
agl +bym +cyn =0,
the single set of values of the ratios

l:m:n=bcg—bye, : ¢85 — oy : a1Dy —asdy
which satisfy these two equations are the line-coordinates of the line
common to the two pencils, or the line joining the two points represented
by the two equations.

8. Degree of an equation in line-coordinates. The degree of an equation
in cartesian coordinates has a definite geometrical meaning, being equal
to the number of points in which the curve is cut by any straight line, or
the degree of the curve. Similarly, in line-coordinates the degree of the
equation is equal to the number of lines which the envelope has in common
with any pencil, or the number of tangents that can be drawn to the curve
from any point; for if we associate with the given equation of degree r
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the equation of a pencil, which is of the first degree, the two equations
determine r sets of values of the ratios I:m:n. This number is called
the class of the curve. A curve of the first degree is a straight line, a curve
of the first class is & point.

9. The general equation of the second degree in I, m, n. The general

equation of the second degree will be written
(1, m, n)=APR + Bm?® + On? +2Fmn +2Gnl + 2HIm =0.

This equation represents a curve of the second class, that is, having the
property that two tangents can be drawn to it from any point. For if
the equation is solved simultaneously with an equation of the first degree,
we get two sets of values of I:m : n, and therefore the envelope has two
lines in common with any pencil. It should be possible, therefore, to
identify the envelope of this equation with the general conic. We shall
do this by finding the tangential or line-equation of the general conic.

10. To find the tangential or line-equation of the conic
ax?+by? + cz? + 2fyz + 2gzx + 2hxy = 0.
The line-coordinates of the tangent at (', ¥, 2') are (I, m, n), where
MN=az'+hy +g2,
ran=ha' +by +f7,
M=gx' +fy’ +c2'.
H 2, y', 2 are eliminated between these three equations and the equation
0=Ilz' + my’ +nz',
we get an equation in I, m, n which is the relation between the line-coordi-
nates of any tangent, or the condition that the line (I, m, n) or
Iz +my+nz=0
should be a tangent. This gives us, therefore, the tangential equation of
the conic in the form kg —0.

a
h
g
l

e o

l
b m
f n
m 0
When this is expanded, we get
Al + Bm? + Cn?®+2Fmn +2Gnl + 2HIm =0,

where, as usual, the capital letters stand for the cofactors of the corre-
sponding small letters in the determinant A.

11. To find the pole of a given line
Ix +my +nz=0.
Let the coordinates of the pole be (2, y’, #); then comparing this
' equation with that of the polar of (¢, ¥, 2’), we have
N=az’+hy' +g2,
rm=hz' + by +f2,
M=g2' +fy tc&.,
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Multiply these equétions respectively by A; H, @, and add, and we get
Az =A(dl+ Hm + Gn).

Similarly Ay’ =\(Hl+ Bm + Fn),
Az’ =\(Gl+ Fm + Cn).

We can therefore write the homogeneous coordinates of the pole of
the line (I, m, n) in the form <§9, @, 2(—P) We can also write the line-
ol’ om’ on

equation of the pole of the line (l,, m,, n,) in the form
% .9 . 0p
1 'a—ll + m'a—?n—l +n 'a—nl =0.

When (I, m, n) is a tangent to the conic, %% aa—<P , g(—P are the coordinates
of the point of contact. m-on

These expressions for the point-coordinates of the point of contact of
a tangent are related to the line-equation of the conic in exactly the same
way as the line-coordinates of the tangent at a given point are related to
the point-equation. We can therefore carry out the process of § 10 with
line-coordinates and point-coordinates interchanged, and thus the point-
equation is derived from the line-equation by exactly the same analytical
process. This is in accordance with the identities (4) in Chap. X. § 6.

12. Conjugate points and lines. Two points (z, y, 2) and (2, ¥’, 2’) are
conjugate when their join is cut Larmonically by the conic, or when one

lies on the polar of the other. Then their coordinates are connected by
the symmetrical relation

axz’ +byy’ +c27 + f(y2 +y'2) + g (22’ +2'x) +h(zy’ +2'y) =O0.
Similarly, two lines are conjugate if each passes through the pole of the
other. Hence, if (I, m, n) and (', m’, n') are conjugate lines, -
V(4l+Hm +Gn) +m' (Hl+ Bm + Fn) +n’ (Gl + Fm + Cn) =0,
or AW+ Bmm'+Cnn’ + F(mn’ +m'n) + G(nl’ +0'l) + H (Im’ + I'm) =0.
13. If the equation
AP+ Bm? + Cn®+2Fmn +2Gnl +2HIm =0

reduces, each factor when equated to zero represents a point, and the

;%ugtizn then represents two points. The condition for this is (cf. Chap.
.§14)

4 H @G |=0.
H B F
G F C

The equation of the line joining these two points is then (cf. Chap. X. § 5)
(HF - BG)z+(GH — AF)y + (4B - H?) =0.

Examples.
1. Find the line-equations corresponding to the following point-equations s
(i) 22— 4P+ 22y — 4z + 6y + 1=0, (ii) 422+ 4wy + 32— 62+ 2y + 1=0,

(iif) 222 — 3zy + 492+ z— 2y + 3=0.
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2. Find the point-equations corresponding to the following line-equations:
(i) 1224 Tm2 — n?+ 6mn — dnl+ 120m =0, (i) (1+m—2n)2=0, (iii) B+m?=0.

3. Show that 2+ y=0is a tangent to the conin 422+ 3y%+ 6zy — 8z — 14y +9=0,
and find its point of contact.

4. Show that the conic 3n2+2mn — 4nl+ 6lm=0 touches both of the coordinate
axes, and find the coordinates of the points of contact.

5. Find the coordinates of the point of intersection of the tangents to the
conic 322—2y%4 6zy—4x+ 6y+8=0 at the points where it is cut by the line
z+1ly—4=0. :

6. Find the equation of the polar of the point (— 2, 3) with respect to the
conic 222+ 3m?— n+ 2mn — 4nl+ 6lm=0.

14. Line-equation of the circular points. The condition that the line
lz +my +nz=0 should pass through the point I=(1, 4, 0), is
l+im=0,
and through J= (1, -1, 0), l—im=0.
Hence the assemblage of lines through I or J is represented by the
quadratic line-equation
(l+im)(l-im) =P +m?=0.

15. Foci of a conic, in relation to the circular points. Consider the
ellipse 2 o
+ gz = 1.
From each of the circular points two tangents can be drawn to the curve.
The equation of any line through one of the circular points is
Yy-y1=1(z—-=),
te. ww—y+(y —iz)=0.
The condition that this should
be a tangent to the ellipse is
a2+ B =(y, —imy)?
Hence the equations of the four
tangents from I and J to the
conic are
+tz -y +iVa2 - =0,
Taking these four lines two at a
time, we find the coordinates of

their points of intersection, other
than the points I and J, to be
(xVat-0%0) . . Fio. 72.

and (0, z1Va?-b?).

But these are the coordinates of the real and imaginary foci. Hence the

foci of a conic are the points of intersection of the tangents to the conic from

the circular points. '
This is represented in Fig. 72, where corresponding dotted lines

represent conjugate imaginary lines, which intersect in real points.

a?

sl

'LJ
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In the case ot a parabola the curve touches the line at infinity IJ, and
~ the tangents IF and J F” coincide. F’ becomes the point at infinity on
the curve, and @, @ coincide with the circular points.

18. Coordinates of the foci of the conic
ax? +by? +2hxy +2gx + 2fy +¢c=0.
Let F=(«, B) be a focus; then the equation of FI is
or, using homogeneous coordinates,
, z+¢y— (e +13p)z=0.

This line will be a tangent to the conic if its homogeneous line-coordinates
{1, 4, —(x+1P)} satisfy the line-equation of the conic '
AP + Bm? + On® + 2 Fmn +2Gnl + 2Hlm =0.

Hence A-B+C(a+if)2—2Fi(x+4B)—2G(x+1B)+2Hi=0,
ie. C(a*-P%)-2Gx+2FB+4- B +24(Caf — Fo.— GB + H) =0.
Similarly, the condition that FJ should be a tangent leads to an equation
of the same form with the sign of ¢ changed. Adding and subtracting,
we get C(o2 - B2) —2Ga+2FB+A4 = B=0, wccrerrererrscrscnnnane (1)
CaB — Fa—GB+H=0. wuceeeceerrvcnenensinanens (2)
These two equations, being each of the second degree, determine four
sets of values of «, B, and therefore four foci. Regarding o,  as current
coordinates, each equation represents a rectangular hyperbola, and it is
easily verified that the centre of each is at (G, F, C), i.e.. both hyperbolas

are concentric with the given conic.
Transforming to the common centre as origin, the equations become

CB(ER =) = (@ = D) A, crevrerereerrmsreccensrsassenn )
CEEN =RA. coereeencsesensssssaseaaes (4)
From these we get
O4 (B2 +12)2 = CH(E2 — )2 + 4C* E22 = {(a — D)* + 4h%} A2
hence C2E24+72) = £ RA. e (5)

By adding and subtracting (3) and (5), we get the values of &2 and »?*, and
hence we get finally the coordinates of the foci, ¢/C+&, F/C +.

17. A more convenient method of finding the foci in a numerical case
is the following. If F=(a, B) is a focus, the lines joining («, ) to the
circular points, f.e. (z—«)?+ (y — B)*=0, are tangents to the conic. If the
chord of contact of the tangents is lz +my +n =0, the equation of the conic,
which touches the two lines FI, FJ at the points of intersection with this
line, is of the form

M-+ (y—PP2}+(z+my+n)2=0;
hence, identifying this with the equation of the conic, we have
 az® + by + 2hay + 29z + Ay +o—M(z - ) +(y - B)*} = (ke +-my + ),
i.e. A must be chosen so that the expression on the left-hand side may be
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a perfect square. The conditions for this will be found to lead to the same
equations (1) and (2) as in § 16.

Examples.

1. Find the foci of the conic 22— 52+ 8zy — 22+ By — 6=0.

If (o, B) is & focus, and lz+my+»=0 the corresponding directrix, we can
find A so that

22— 532+ 8xy — 22+ By — B+ A{(z— )2+ (y — B)2} =(lw+my+n)3,
t.e. A is to be chosen so that
(A+1)2%+ (A= 5)y2+8xy— 2(Aa+ 1)z —2(AB—3)y+ A (02 + B%) — 6 eeveuenene (1)

may be a perfect square.

One condition is

(A+1)(A—5)=186, ie. A2-42-21=0;

whence A= -3 or 7.

Taking A="7, the expression (1) becomes

822+ 212+ 8xy — 2(Ta+ 1)z~ 2(TB — 8)yy + T(a2+ PB2) — 6, cerreneee cenee(2)
ie (2z+y)2— (Ta+ 1)z~ (TB—3)y+ L(a2+ B2 —3,
and since it is a perfect square it can be written )
{224+ y—3(TB—3)}% oricerrrreenceieseeas erveeneene (3)
Identifying this with (2), we have
148-6=Ta+1, f.e. @=2B—1, woroorrreerrerremererressrons 4)
and (TB—3)2=14(c®+ B?)— 12=14(5p2 - 4B + 1)~ 12;
henoce 3p2-28-1=0,

giving B=1or — 1.
The coordinates of the real foci are therefore, from (4), (1, 1) and (— 5 —3).
Similarly A= — 3 will give the imaginary foci.
Then the equations of the directrices are found by putting the values of § in
the expression (3), and equating to zero, viz.
22+y—-2=0 and 6z+3y+8=0.

2. Prove directly that the conditions that the origin should be a focus
are A= B and H=0.

3. Find the real foci of the conic 522+ 1032~ 12zy+ 6x— 10y+6=0, and
the corresponding directrices.

4. Find the real foci, directrices, and eccentricity of the conic
322 — dxy + 2z + 4y — 9=0.

18. Coordinates of the foci of a conic whose line-equation is given. The
coordinates of the foci of a conic are most easily found when the line-
equation is given, .

@=AP+ Bm?+Cnd+2Fmn+2Gnl +2Hlm =0. ................ 1)

This represents the assemblage of all tangents to the conic. Now we have
to consider specially the tangents which pass through one or other of the
circular points. The equation which represents the assemblage of all
lines through one or other of the circular points, .e. the line-equation of
the circular points, is B+mi=0. .
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Solving (1) and (2) simultaneously, we would get the line-coordinates of
the tangents FI, FJ, etc., from the circular points to the conic. We
require, however, the coordinates of the points F, F', etc., or their line-
equation. Now the equation

AR + Bm? + On2 + 2Fmn + 2Gnl + 2Hlm + W12 + m?) =0 ............ (3)

is the line-equation of a conic, and it is satisfied by the values of I, m, n,
which satisfy both (1) and (2), é.e. it represents a conic having the four
lines FI, FJ, F'I, F'J as tangents, and therefore F, F’ and G, @ as foci.
But if the equation (3) breaks up into factors it represents two pencils of
lines, and these are the pencils through a pair of foci. The condition for

bhis is A+n H G |=0,
H B+) F
G F c

te. ~ CA+(a+Db)AN+A%=0.

- Let A, and A, be the roots of this equation; then the line-equations of the
two pairs of foci are

P+M(P+mH)=0 and @+ +m?)=0.
Each of these expressions will factorize, the one into real and the other
into imaginary factors. If the real factors are
(@, +yym +n) (ol +ygm +m),
the coordinates of the real foci are (z,, y;) and (x,, ¥y).

Ex. Find the foci of the conic 1522+ 12y%— 4wy — 44z + 8y —4=0. The line-
equation is 42+ 34m3— 11n? + 2mn — 32nl+ 12lm=0.
The equation of any conic with the same foci is ,
(4= + (34— Nym? — 11n2+ 2mn — 32nl+ 12lm=0.

This will break up into factors if A=25 or 450,
Taking A=25, we find the factors

(I—m+n) (211+ 9m+ 11n)=0.
Hence the real foci are (1, — 1) and (23, %). The other value of A would give the
imaginary foci.
19. Focus and axis of & parabola. When the conic is a parabola C'=0,
and the two hyperbolas in § 16 reduce to straight lines
' 2605 —2Fy=A — B, ..ouverrrrrcierernneereenrnennns (1)
Fr+Gy=H. .eenreerenriseaiotsssencannanns 2)

In each case the remainder of the curve is the straight line at infinity.
We get then only one finite focus, the other three being at infinity.
Solving these equations, we get the coordinates of the single focus

2(6%+ F)z=2HF +G(4 - B),
2(G? + F2)y=2GH — F(A - B).
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20. For the parabola we may also use the method of §18. In this
case, since (=0, only one value is obtained for A, the second root being
infinite. The line-equation of the real foci then becomes

(a +b) (AR + Bm? +2Fmn +2Gnl + 2Hlm) — A (2 +m?) =0.
Since there is no term in %2, this must break up into factors of the form
(@l +ym+n) ([ +pm)=0.
The real and only finite focus is then (%, ;). The second factor represents
a point at infinity in the direction of the line y=px ; this therefore gives
the direction of the axis.

Examples.
1. Find the focus and axis of the parabola
4224 42 — 4oy + 222 — 6y + 24=0.
The line-equation is 32— 5m2 — 4mn — 2nl+ 6lm=0.
The equation of any confocal conic is
(3+ MR+ (—5+2)m2—dmn—2nl+ 6lm=0.
This will break up into factors if A=1, and we get the factors
(21— m—n)(1+2m)=0.
Henoe the focus is (— 2, 1), and the axis is parallel to y=2z. Since the axis passes
through the foous, the equation of the axis is
y—22=1+4=>5.
2. Find the coordinates of the real foci of the conics whose line-equations are
(i) 3R+ n2+3nl—Im=0, (ii) 42— 4m?+ n¥—mn+5nl—Ilm=0,
(iii) 22— 4m2?— 3mn — nl+ 5lm=0. '
8. Find the coordinates of the real foci of the conics :
(i) 322+ 4oy — 22— 6y —4=0,
(ii) 1942+ 112 — 6zy+ 16z — 132y + 256=0,
(iii) 422+ y® — 4wy + 62— 18y +36=0,
(iv) 822+ 3y% - 2zy — 8x+ 8y + 16=0.

EXAMPLES XI.

1. Prove that the conic 30224 35y2= 122y + 24x+ 16y +- 16 has one focus at
the origin. Find the equation of the corresponding directrix, the eccentricity,
and the coordinates of the second focus. (Pembroke, 1909.)

2. Find the equations of the two conics which touch the coordinate axes
(supposed rectangular), have a focus at the point (1, 1), and pass through the

point (3, 1). (Pembroke, 1912.)
3. Trace the conic 1422~ 4xy+ 1142+ 20z — 20y — 4=0, and find the coordi-
nates of the foci. (Corpus, 1912.)

4. Prove that the conic 922 — 24xy + 41y%= 152+ By has one extremity of its
major axis at the origin, and one extremity of its minor axis on the axis of z.
Find the coordinates of its centre and foci. (Pembroke, 1910.)
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5. The conic aa?+ 2hxy + by + 22+ 2y =0 is such that its real foci lie one on
each of the coordinate axes; show that ab—h¥=2(h—a)(h—0b), and that the

. . 1 1
lengths of its semi-axes are — % and Wab——hT)' (Selwyn, 1907.)

8. Prove that if the normals at the points in which the conio az3+ by?=1is

out by the lines lz+ my=1 and l’z+m’y=1 meet in a point, then
Wia=mm'fb= - 1.

Show that if one of these lines passes through a fixed point, the other touches a
fixed parabola. (Corpus, 1914.)

7. From a given point on a conic two chords are drawn equally inclined to
a fixed direction. Prove that the line joining their other extremities passes
through a fixed point. ) (Pembroke, 1906.)

8. Show that the line-equation of the two points at infinity on the conio
az®+ by + 2hay + 29z + 2fy + ¢=0 is b+ am? — 2hlm=0.

9. Show that the line-equation of the two points in-which the line (', m’, #’),
cuts the conic == AR+ Bm2+ Cn?+ 2Fmn+ 2Gnl+2Hlm=0 is

3= {U(AV+ Hm'+ Q') + m(HV' + Bm’+ Fn')+ n(Gl'+ Fm’+ Cn') I

10. A chord PQ of 2%/a?+y%/b®=1 is drawn through the fixed point (f,g).
Prove that, if the circle through P, @, and C, the centre of the ellipse, cuts the
curve again in the points R, S, then RS will touch a fixed parabola whose focus
is C and tangent at the vertex (a®— b?)(gy — fz) +a®b?=0. (Trinity, 1906.)

11. Show that the envelope of the polars, with respect to a’z3+b'y? +¢’ =0,
of points on ax?+by? +2gx +2fy=0 is

(a’fz - b'gy) +2¢’ (a’bgz +ab’fy) - abe? =0,

12. The perpendiculars from fixed points P,, P,, ... on & variable line have
lengths p;, Py, ..., and the line moves so that the sum Zkyp2=0. Show that the
envelope of the line is a conic; and that if 2k, =0 it is a parabola, and if
Skyky(P P, =0 it is a rectangular hyperbola. (Pembroke, 1910.)

13. O and A are fixed points on the circumference of a circle of radius g,
OA subtending at the centre an angle 2a. The tangent at a variable point P on
the circle intersects the tangent at O in T, 7Q is drawn parallel to 4P ; show
that T'Q envelops a parabola, and find its position and magnitude.

(Queens’, 1910.)

14. Show that if z cos ¢+ y sin $=p,, x cos ¢+ ysin ¢=p, represent a vari-
able pair of parallel tangents of a fixed conic, the lines z cos {+y sin ¢ =2Ap; + pp,,
x cos Y+ y sin $=2Ap,+ pup;, where A, p are constants, envelop another fixed
oonic with parallel asymptotes. Explain the case when A+p=1.

(Pembroke, 1914.)

15. Find the conditions that the general equation of the second degree in
1, m, n should represent a circle, and obtain the coordinates of the centre.

16. Show that the coordinates of the foci of the general conic are given by
the equations C22—2Gx+ A=2A,
Cy2-2Fy+ B=12\A,
where A i8 either root of the quadratic
Ca—(a+b)r+1=0. (King’s, 1913.)
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17. Show that the equation of the polars of the circular points with respect
to the conic S=0 is aS 2 aS 2
a—) +(~-) =0.
<3x) (ay)
18. Prove that

b (%‘:)2“ <g§>2- 2h g_‘: 2554(03-&.

Interpret the equations obtained by equating each side to zero.

19. Show that the equation of the directrices of the conic =0 can be written
in the form (g§>2+ <g—‘:)2 ~4)\8 =0, where 1 is a root of the quadratic equation
03— (a+b)A+1=0,

20. Writing the line-equation of a conic in the form
AP+ 2HIm + Bm?+n(2Gl+2Fm+ Cn)=0,
interpret the equations A2+ 2HIm + Bm2=0 and 2GI+2Fm+ Cn=0.
21, Show that the line-equation of the conic =0 can be written in the form

(Gl+ Fm+ Cn)2+ A(DEE - 2hIm + am?)=0
and interpret it. .




CHAPTER XII.
PROJECTIVE GEOMETRY AND HOMOGENEOUS COORDINATES.

1. Tug history of geometry reveals three successive stages in generaliza-
tion. First there is the geometry of Euclid and its developments by
Apollonius and others : Elementary Metrical Geometry ; in this the theory
of parallel straight lines always formed a sort of stumbling-block and
necessitated the frequent statement of exceptional cases, the simplest of
which is contained in the proposition : * two straight lines intersect in a
point unless they are parallel.” The next stage was inaugurated by
Desargues’ conception of parallel lines meeting at infinity, and is charac-
terized by the introduction of points and lines at infinity. By this con-
venient notation it was possible to get rid of the exceptional cases and
state general theorems which could be interpreted in the language of
metrical geometry. It was shown by Poncelet how by the process of
projection a figure which involves parallel lines could be transformed into
one in which the corresponding lines intersect, and that thus there is no
real distinction between the two cases. In the third stage, that of Pure
Projective Geometry, the scaffolding of metrical geometry was taken away
and a uniform system of geometry revealed in which points and lines at
infinity are irrelevant and two coplanar lines intersect in a point without
exception.

' 2. For metrical geometry the most convenient system of coordinates
is the rectangular cartesian system, and in this the exceptional case of
non-intersecting lines survives. The dévice of replacing the cartesian
coordinates # and y by the ratios X/Z and Y/Z, thus introducing homo-
geneous cartesian coordinates, enables points at infinity to be represented
on the same footing as ordinary points. We proceed now to take the
third step and introduce a system of coordinates which is entirely non-
metrical, and forms a convenient medium for projective geometry.

3. Projective coordinates. A point is represented by or defined as a
set of three numbers or coordinates (w, y, z)—an ordered triad—such that
if k is any number, not zero, the triad (kz, ky, kz) represents always the
same point as (%, y,2). A straight line is defined as the class of points
whose coordinates satisfy a homogeneous equation of the first degree in
x’ y’ z’

lz+my+nz=0. .
With these definitions we verify the axioms that two distinct points
148
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uniquely determine a straight line, and two distinct lines uniquely deter-
mine a point. '

If u and v are homogeneous linear expressions in , y, 2, the equation -
%+Av=0 represents a straight line through the intersection of u=0 and
v=0.

The equations =0, y =0, z=0 represent three straight lines, called the
lines of reference, and it is essential for this representation that they
should form a triangle and not have a point in common. For if they all
had a point P in common, the equation Iz +my +nz=0 would represent a
line through P and could not represent an arbitrary line. The triangle
thus formed is called the triangle of reference.

4. Unit-point. In fixing a system of coordinates of this kind we may
take for triangle of reference any three lines which form a triangle 4 BC.
But obviously something more is required before we can assign the co-
ordinates of a given arbitrary point. There is one unique point with the
coordinates (1, 1, 1). We call this the unit-point I. If this point is
known it can be shown that the coordinates of any other point can be
determined if that point can be derived from 4, B, C and I by a construc-
tion involving only intersections of lines and joining of points (projective
construction).

5. Harmonic ranges and pencils. As an example, which is fundamental,
consider the following construction. Let 4I, BI, CI cut the opposite
sides of the triangle in L, M, N ; let MN cut BCin L'. '

The equation of AI is y —2=0, and the
point Lis therefore(0,1,1). Blisz —2=0,
and therefore NM is ¢ — 2+ puy =0 where .
isto be determined. Also Clisz—y=0and
therefore NM is also ¢ —y +vz=0. Identi-
fying these two equations we find p.= —1
and v= -1, so that NM is x-y—-2=0. g
Hence L'is (0,1, ~1),and AL isy +2=0. .

More generally, if AL is y-2A2=0, Fle. 78.
then AL’ is y +Az=0.

This is the construction for a harmonic range (BC, LL’) or a harmonic
pencil 4(BC, LL'). We find therefore that the two pairs of lines

y=0,2=0 and y=+iz

A

form a harmonic pencil.

6. Still more generally we shall find the condition that the two pairs
of lines y =2z, y=pz and y=»A'z, y = p'z should form a harmonic pencil.
Let y— =X, y—pr=Y,
then S A—pwe=Y-X, (A-plysAY-pX.

Hence (A-p)(y—A2)=AY —pX)-N(Y -X)=(A-N)Y -(u-2)X,
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Similarly (A-p)(y-wz) =(A-p)Y - (- p)X.
Applying the previous result we find then that the condition that the
two pairs of lines ¥ —0, A-2)Y —(u-N\)X =0

¥=0,f *¢ (-p)Y—(u-p)x-0
should form a harmonic pencil is
A-N 7‘_:&I= -1 '
p=ANfop-p :

The construction for a harmonic range or pencil is a purely projective
one, and we take this construction in fact as defining a harmonic range
and no longer define it metrically in terms of ratios of segments. In the .
present discussion we wish to exclude segments and angles entirely from
our consideration.

Ex. Show that y=2z, z=2\y are harmonic w.r.t. y= +z.

7. Line-coordinates. A system of coordinates for the line as element
can be defined in a precisely similar way. A line is represented by a set
of three numbers (I, m, n)—ordered triad—such that if k is any number,
not zero, the coordinates (kl, km, kn) always represent the same line as
(¢, m, ). A homogeneous equation of the first degree in I, m, n,

al+bm+cen=0,

represents the class of lines whose coordinates satisfy this equation. Two
such equations determine the ratios I :m : n uniquely; and two distinct
lines, 4.e. two distinct sets of values of I, m, n, determine uniquely a set of
coefficients @, b,c. We can thus identify the class of lines represented by
the homogeneous linear equation with a pencil of lines through a fixed
point. A point in line-coordinates is thus represented by a homogeneous
equation of the first degree. But the point is also determined by the ratios
of the three coefficients (a,b,¢). We may thus connect the system of
line-coordinates with the already defined system of point-coordinates. The
equation lz+my+nz=0
connects the point-coordinates (z, y, 2) of a point with the line-coordinates
(I, m,n) of a line; the point and line are said to be incident with one
another, the point lies on the line and the line passes through the point.
If 1, m, n are fixed, the equation represents the locus of points lying on the
line (I, m, n); if «,y,2 are fixed, it represents the assemblage of lines
passing through the point (z, y, ).

1=0 is the equation of the point (1,0, 0), s.e. the vertex 4 of the
triangle of reference. Thus I=0, m =0, n =0 represent the three vertices.

8. If u and v are homogeneous expressions of the first degree in I, m, n,
the equation %+Av=0 represents a point lying on the line joining the
points 4 =0 and v=0. In particular if ‘

u=zl+y;m+2zn and v=z,l +y,m +2,m,
% +Av =0 represents the point whose coordinates are
(@1 +77y, 1+ 0y, 21+ M2y)-
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Hence the equations

PY=Y1+ Y2

P2 =2y + A2y,
where p is a factor of proportionality, are freedom-equations of the line
joining the points (2, ¥;, 2;) and (24, ¥y, 2,). Similarly

px ZI+M2)}

pl= L+,
pm=my + hm,, } ................................. (2)
pﬂ n1+)\"2’

are freedom-equations of the point of intersection of the lines (I, m,, n;)
and (I,, m,, n,).

9. Conditions for collinearity and concurrency. The equation of the
line joining two points (2;, ¥;, 2,) and (@,, ¥,, 2,) is found by eliminating p
and A between equations (1).

The condition for collinearity of three points (zy, ¥y, %), (s, Yo 2a),
(23, Y3, 23) is found by substituting the coordinates of one of the points in
the equation of the line joining the other two; hence it is
. % % |=0.

To Y2 %
T3 Y3 %3
To find the point of intersection of the two lines
L +my +nz=0,
Lo + myy +ngz =0,
we have Ty z=myng—mgny : myly —noly 1 lmy —lym,,
The condition that the three lines
Lo +my +n2z2=0,
b +myy -+ nyz =0,
Ly + mgy + nzz=0
should be concurrent is found by substituting in one equation the coordi-
nates of the point of intersection of the other two lines ; hence it is
I, my n |=0.
l, my ny

Iy my mng

10. Principle of Duality. The exact correspondence between point-
coordinates and line-coordinates is expressed by the Principle of Duality.
Any theorem involving only the incidence of points and lines can give rise
to a dual or reciprocal theorem obtained by interchanging the terms
“ point >’ and * line,” * point of intersection ’ and “ line joining,” ‘“ con-
current ”” and “ collinear.”” Both theorems can be expressed by the same
algebraic work, merely interpreting «, y, z in the one case as point-coordi-
nates and in the other as line-coordinates, and vice versa for I, m, n.
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11. The figure formed of four arbitrary straight lines a, b, ¢, d, and
their six points of intersection or vertices, (bc) =4, (ca)=B, (ab)=C,
(ad)y= 4", (bd)=B’, (cd)=C", is called a complete quadrilateral ; the reci-
procal figure, formed of four arbitrary points and their six joins, is called
a complete quadrangle. The joins of opposite vertices 44’, BB', CC’ of
the complete quadrilateral form a triangle called its harmonic triangle ;
and similarly the points of intersection of pairs of opposite sides of the
complete quadrangle form its harmonic triangle.

F16. 74. F16. 75.

Taking the harmonic triangle of the complete quadrilateral (quadrangle)
as triangle of reference, let the equation of one side (vertex) d be

z+y+2=0.

The side (vertex) a passes through (lies on) the intersection (join) of
z+y+2=0 and z=0,
hence its equation is of the form
M+y+2=0.
Similarly the equations of b and c are of the form
r+py+ z=0,

and z+ y+vz=0.

But b and c intersect in (are joined by) 4, which lies on (passes through) ,
Hence the last two equations are satisfied simultaneously by #=0 and
y/z= -1[u or —v, therefore

pv=1.
Similarly vA=1 and 2Ap=L
Therefore Mulvi=1.

Auv=+1 would give A=p=v=1 and a, b, ¢ would coincide. Excluding
this we have Auv=—1, and then A=p=v=—1. Hence the equations of
the four lines (points) are

+%ry+2=0

8.A.C L
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We deduce from this that it is always possible by proper choice of
coordinates to represent four arbitrary lines, no three of which are con-
current, by the equations
tzty+2=0,
and four arbitrary points, no three of which are collinear, by the coordi-
nates

(£1, £1, *1).
12. Examples.

Ex. 1. AA’BB’CC’ is a complete quadrilateral and LMN its harmonic
triangle. P, @, R are three collinear points on the sides of the triangle LMN,
and P, ¢, R’ are their harmonic conjugates with regard to the pairs of oppo-
site vertices 44’, BB’, CC’ which lie on the sides MN, NL, LM. Prove that

P’, @', R are collinear.

If the harmonic triangle LMN of a
complete quadrilateral be taken as
the triangle of reference the point-
coordinates of the pairs of opposite

If the harmonic triangle lmn of a
complete quadrangle be taken as the
triangle of reference the line-coordi-
nates of the pairs of opposite sides

vertices 4, 4’; B, B’; C,C’ of the | a,a’; b,b°; ¢, ¢’ of the complete
complete quadrilateral can be taken | quadrangle can be taken to be
to be

0,1, £1), (£1,0,1), (1, £1,0).

Let the three collinear points P, @, R,
one on each of the sides of the har-
monic triangle, lie on the line whose
point-equation is

Let the three concurrent lines p, g, r,
one through each of the vertices of the
harmonic triangle, pass through the
point whose line-equation is

lz+ my+nz=0.

P is the intersection of this line
with the side MN, and its point-
coordinates are therefore, putting x=0,

p is the join of this point to the
vertex mn, and its line-coordinates
are therefore, putting =0,

(0, —n, m).

The harmonic conjugate P/, of P
with regard to 4, 4/, i.e. (0,1, £1), is

The harmonic conjugate p’, of p
with regard to a, a’; s.e. (0,1, £1), is

(0, m, —n).

Similarly the point-coordinates of
Q' and R’, the harmonic conjugates
of @ and R with regard to B, B’ and
C, (' respectively, are

Similarly the line-coordinates of

g’ and 7/, the harmonic conjugates of
g and r with regard to b, b’ and ¢, ¢’
| respectively, are

(=% 0,7) and (I, —m,O0).

But
0 m -n
-1 0 n
! -m 0

| But
=lmn

0 1 -1
~1 0 1
1 -1 0

=0.
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Hence P’, Q’, R’ are collinear. There-
fore, if a straight line cuts the diagonals
44’, BB’, CC’ of a complete quadri-
lateral in the three points P, @, R,
and P, @, R’ are the harmonic con-
jugates of P, @, R with regard to the
corresponding pairs of vertices, then
P, Q’, R are collinear.

POLARS FOR TRIANGLE

151

Hence 2’, ¢’, r* are concurrent. There-
fore, if a point is joined to the diagonal
points aa’, bb’, cc’ of a complete quad-
rangle by the three lines p, g, 1, and
', q’»r’ are the harmonic conjugates
of p, g, r with regard to the corre-
sponding pairs of sides, then p’, ¢’, 7
are concurrent.

2 Let P = (f, g, h) be any point, and let AP, BP, CP cut the sides BC, C4, AB
of the triangle ABCin D, E, F. Let EF, FD, DE cut BC, CA, ABin X, Y, Z.
Then X, Y, Z are collinear.

The equation of 4D is —=£, and similarly for BE g X
and CF. g
The equation of EF, which joins the points (f, 0, &)
and (f, g, 0), is
z y 2z |=0,
S 0 h
S 90 -y
$.e "f.‘_g + f_
" VAR AL I
and this line cuts =0 at its intersection with the line 2
LY. 2 Fi6. 76.
Z+Z+2=0. .
S g9 h

The symmetry of this equation shows that this line passes through ¥ and Z also.

The line X YZ is called the polar of the point P with respect to the triangle.
It is the polar line of the point (f, g, 4) with respect to the trmngle regarded
as a curve of the third degree. For the equation of the curve is

o(z, y, 2)=wyz=0,
and the polar line is defined by the equation
290 ., % 3<P -
T oF f +Y=- 3 +tzop 0,
mgh+yhf+zfq=0.
If we form the analogous equation

f.e.

IE o rigi-o,
we obtain the equation of a conic

' Syz+gzz + hxy =0,
which is called the polar conic of the point (f, g,
triangle. Its equation is also given by

)
zzafg

k) with regard to the

2
Fooe +2yz Ay

aah 0.

+oo=
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13. Cross-ratio. The expression

M- [d- Dy

NN M-k
which is a function of the parameters of four lines of a pencil,

Yy=Mz, y=DAz, y=MT, Y=Ag,

referred to the base-rays =0 and y=0, and which has the value -1
when the two pairs 1, 2 and 3, 4 are harmonic, is called the cross-ratio of
the four parameters and is written (MA,, Aghy). Four collinear points also
may be determined by four parameters, when referred to two base-points
(%1, Y1, 21) and (x,, Yy, 2,) ; Viz. the coordinates are

(g + ATy, Yy +AyYs, 2, +A2),

where A is given the values A;, Ay, A3, Ay

But the same set of points may be represented by different parameters,
depending upon the choice of base-points and the “ unit-point * or point
corresponding to A=1. The great importance of the cross-ratio of the
parameters depends upon the fact that it is independent of the choice of
base-points and unit-point. The proof of this depends upon a general
theorem (for the proof of which see Chap. XVIII, § 4), that wher a one-to-
one correspondence exists between two sets of numbers t, t' the cross-ratio of
any four values of t is equal to the cross-ratio of the four corresponding values
of t'. '

Between the points of a range and the values of the parameter there
is a one-to-one correspondence ; to every point corresponds one value of A
and conversely. If )\’ is another parameter by which the points are deter-
mined, there is again a (1, 1) correspondence between the points and the
values of 2'. Hence there is a (1, 1) correspondence between A and A'.
Similar relations hold for a pencil of lines. We therefore speak of the
cross-ratio of a range or a pencil, as it is a characteristic of the figure
itself and does not depend upon the frame of reference.

Ex. Show that the two points (z, +Az,, ...) and (%, — Az, ...) are harmonic

conjugates w.r.t. the base-points (z,, y;, z;) and (2, ¥s, 25)-

14. Two ranges of points which are transversals of the same pencil are
said to be in perspective ; the joins of corresponding points are concurrent.
Similarly two pencils of lines such that the intersections of corresponding
lines are collinear are said to be in perspective. Two ranges in perspective
are in (1,1) correspondence, and therefore the cross-ratio of any four
points is equal to that of the four corresponding points; this 1s also
equal to the cross-ratio of the pencil of lines joining the corresponding
points.

The processes by which new ranges and pencils are formed in this way
are called projection and section, or simply projection. Two ranges or
two pencils which can be connected by a finite number of projections are
said to be projective and have the same cross-ratio.
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15. The six different cross-ratios of four numbers. The cross-ratio of
four numbers @, b, ¢, d depends upon the order in which they are taken.
We can write the cross-ratio (ab, cd) in the form

b-c_C-4
b-d C-B’

where A=bc +ad, B=ca+bd, CE ab+cd. There are 24 orders of the four
numbers a, b, ¢, d, but only 6 different orders of 4, B,C. Hence there are
only six different values of the cross-ratio.

A, B, C are each unaltered if we interchange any two of the four
numbers g, b, ¢, d and at the same time interchange the other two. There-
fore

wbc@_

(abd, cd) = (ba, dc) = (cd, ab) = (dc, ba).

Hence they fall into six sets of four.

Further, if a and b or ¢ and d are interchanged, 4 is interchanged with
B, and C is unaltered ; hence the cross-ratio (ab, cd) is changed into its
reciprocal.

Again, B-4 C-4

(M,bd)—m——l—c—;‘—B—l (ab,cd).

Hence, denoting (ab, cd) by A, and applying in alternate succession the
two transformations, taking the reciprocal and subtracting from unity, we
get the six values

1 1 A 1
A R U v U v
16. Special ea.ses of equality among the cross-ratios. If A= ;‘, we have
A=+l
(1) Let A=1. Then the six values reduce to three, viz.

1 1 A
=1, 1-A=1 -)—\=0, .
In this case, (a —b)(c —d) =0, so that either a=b or c=d.
(2) Let A= —1. The six values again reduce to three, viz.
1 1 1 A 1
A=g= L I-A=l-2=2 {53177
The pairs a, b and ¢, d are harmoniec.

(3) There is only one other distinct case of equalities, viz. when

=,

a=1 —%. This gives A2—A+1=0, i.e A= — o or — ? the imaginary cube

roots of ~1. The six values then reduce to two, viz.

1 1 1 A R
A= 1_7_\=1 2= "9 3 =——=1-A= -0l
In this case the four numbers, which cannot be all real, are said to be
equianharmonic.
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Examples.

1. Prove that the six cross-ratios of four real points in a straight line, taken
In all orders, can be represented by sin? 6, cos? 6, — tan20, cosec?6, sec26, — cot20.

2. Prove that (XY, PQ).(XY,QR)=(XY, PR).

8. If X, Y, 4, B are fixed points on a straight line, show that there are two
distinet points P for which (XY, AP)=(XY, PB), and that they are harmonic
conjugates with regard to X, Y. ~

4. Two points X, Y separate harmonically each of the three pairs of points
P,P'; QQ; R, R. Provethat (PP',QR)=(P'P,Q'R’).

5. Prove that the three points whose cartesian coordinates are (—1, —w),
(~®, ~?), (—w? —1) each form a harmonic range with the three points (1, ©),
(00, ©?), (02, 1), © denoting one of the complex cube roots of unity.

6. Show that the four points whose cartesian coordinates are (0, 0), (1, »),
(0, @2), (w?, 1) form an equianharmonic range.

7. OP, 0Q are two lines through the origin containing an angle 30°; prove
that they form with the imaginary lines 22+ y2=0 an equianharmonic pencil.

17. Expressions for the homogeneous coordinates by cross-ratios.
Let P=(X, Y, Z) be any point, and I =(1, 1, 1) the unit-point, referred
" to the triangle ABC. Then we have a pencil 4 (BC, IP), the equations of
whose rays are 2=0, y=0, y—2=0, Zy — Y2=0. These are all of the form
y—2z=0, where A has respectively the values o, 0, 1, ¥/Z. Hence the
cross-ratio
A(BC, IP)=(w,0; 1, Y/Z)=Y/Z.

Similarly B(CA4,IP)=Z/X and C(4B,IP)=X]|Y.

In a similar way it may be proved that if p =(l, m, n) is any line, and
% i8 the unit-line (1, 1, 1) or #+y +2=0, the cross-ratio of the range formed
by the intersections of the side a or BC with the other two sides of the
triangle of reference and the two lines 4 and p is

a(be, ip) =m/n.

18. Transformation to a new triangle of reference. A system of homo-
geneous coordinates is determined by a triangle of reference X YZ together
with a unit-point I=(1,1,1). Let the figure be referred to another
triangle of reference X'Y'Z’, the equations of whose sides, referred to XYZ,
are

(Z’X') v=lx+my+n2=0,

(X'Y') w=lgz +mgy +n52=0,
and let the new unit-point I' be (%, Yo, o). Let the coordinates of an
arbitrary point P be (X, Y,Z) referred to the original triangle and
(X', Y',Z’) referred to the new. The equations of the four lines Z’' X',
Z2’Y',Z'l', Z'P are

v=0, u=0, vu—-uw=0, Vu-Uv=0,

where U=z +myo+nzy, Us=hX+mY +nZ, ete.

(Y'Z') u=hz+my+nz=0, }
sesereuvinasenereenants (1)
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Then we have by § 17
XY =Z/(X'Y, I'P)=(0,0; uy/ve, U/V)=Ig7/;ﬂ'
0

- If we suppose that the expressions u, v, w have first been prepared by
multiplying by the appropriate factors so that uy=v,=w, we obtain the
simple results :

Y:Z=U:V:W,
i.e. for any point (z, y, z) its coordinates referred to the new triangle are
given by

Py =l +may + ngz,
p2’ =lsx + mgy + ngz,
where p is a factor of proportionality.
It is essential that the three lines (1) be not concurrent ; hence the
determinant of the transformation
=l m n |+0.
I, my my
. Iz my my
The inverse transformation is found by solving for z, y, z in terms of
z', y', 2, and may be written
' p'z=Lx +Ly +Lg, 1
PY=Ma' + Moy + Mgz, & ccuveveivrnnnernonnnnens
p'2=Nyz'+ Ny’ + N7/, J

“where the capital letters are the cofactors of the corresponding small letters
" in the determinant.
Further, the equation of a line £z +%y +{2=0 becomes

E(Ly' + Ly + Lgz') + (M2’ +...) +{ (N2’ +...)=O0.
Identifying this with 'z’ + 7'y’ +{'2' =0 we have
ot/ =L+ Mm+N{, }

o7 =l +my +nyz,
} .................. comrerenns (4)

o =Lt +Mum+ Ny,

ol = L& + Mgy + N,
and inversely

o'n=mE +myn’ +mgl,

6= mE + ngn’ + nyl'.

19. Although homogeneous coordinates are best suited for treating

projective geometry, they may be usefully applied also to metrical geo-

metry. We assume now the metrical definition of the cross-ratio of four
points on a straight line :

Glg= 11E1+ lz_nl_l_ ls 1,}

AC
(4B, 0D) =55 BD

This is consistent with the property of the projective cross-ratio as being
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equal to the cross-ratio of the parameters by which the points are deter-
mined. For the parameter of a point may be its distance from a fixed
origin O on the line. If the distances of 4, B, C, D from O are a, b, ¢, d,
AC=c-a, etc., and the cross-ratio
c—afd-a
(AB, CD) =ch &—'_—'b = (Cd, ab) = (ab, C(l).

Different special systems of coordinates are obtained according to their

relation to the line at infinity.

20. Cartesian coordinates. The simplest special system is that in which

the line at infinity is taken as one side z=0 r

of the triangle of reference. We have thena _—

system of cartesian coordinates, the other two

sides of the triangle, OX, OY, being the N, try2)

coordinate-axes, and the vertex O the origin. I x
Let I=(1, 1, 1) be the unit-point, and / /‘“7

P =(x, y, 2) any point. Draw parallels through 7 S

I and P to each coordinate-axis cutting the Ve 77

other axis in L, N and K, M respectively.
Then z/z=the cross-ratio of the pencil ¥ (0X, PI)

=(0X, MK)=0M|OK =0M, if OK =1.

Similarly, if OL=1,
y/z=ON.

z, y, z are thus identified with the homogeneous cartesian coordinates as
previously defined.

21. Areal coordinates. If the line at infinity is taken as unit-line
z+y+2=0, the unit-point (1, 1, 1) is its
pole, so that if XI, YI, ZI cut the
opposite sides of the triangle in D, E, F,
FE cuts YZ on the line at infinity, d.e.
FE|YZ. Similarly DF||ZX and ED|XY.
I is therefore the centroid of the triangle.

If P=(z, y, 2) is any point

g=X(YZ, IP)=(YZ, DL)

_APZX X
T APXY"

Hence z:y:z=APYZ: APZX: APXY.

This system of coordinates is therefore called areals.

Lz .
=YL (since YD = DZ)
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1f three particles of masses z, y, z respectively are placed at the vertices

X, Y,Z, Lis the centre of mass of the two particles y and z, and then since
XP APZX APXY APZX+ APXY y+2
PLTAPLZ™ APYL ™ APYZ T

P is the centre of mass of the three particles. From this point of view
areal coordinates are called also barycentric coordinates.

29, Trilinear coordinates. If a, b, ¢ are the lengths of the sides of the
triangle of reference, and «, {3, y are the
perpendicular distances of P from the sides,
the area of the triangle PYZ =}ax. Hence
the areal coordinates are proportional to

ax, bB, cy.
Numbers proportional to the distances

o, B, v themselves are called the trilinear
coordinates. Since in areals the equation of

the line at infinity is z+y+2=0, in iri- - /B L C\_,.

linears the equation of the line at infinity is -t

az+by +cz=0, Fia. 79.

and the unit-point is the point equidistant from the three sides, t.e. the
centre of the inscribed circle.

In both areals and trilinears the unit-point is in the interior of the
triangle, and the ratios of the coordinates of any interior point are all
positive (Fig. 79).

23. The actual perpendiculars e, f, v from P on the sides of the triangle
of reference could be taken as a symmetrical system of metrical coordinates,
but since only two coordinates are required to fix a point in a plane these
are superabundant. They are, in fact, connected by an identical relation.
We have

APYZ+ APZX + APXY = AXYZ=A, say,

therefore ax+bB +oy=2A.

We shall call these the metrical or non-homogeneous tnhnea.r coordmates
Similarly the three quantities
X_APYZ Y__APZX Z~APXY
T AXYZ’ TAXYZ' TTAXYZ
could be taken as superabundant areal coordinates, connected by the
identical relation

X+Y+Z=1.

To pass from the metrical coordinates «, 8, y to the trilinear coordinates
z, y, 2 we have the equations
a By  2A
T y z av+by+er
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Similarly if «, y, z are the areal coordinates

APYZ_APZX _APXY A
z ~ y @z z+y+z’

Thus, the equation B2=pax+g, which represents a parabola with axis Cd,
becomes in trilinears
4 A%yt=2p Az (ax + by + c2) + q (ax + by + cz)?

which is homogeneous in z, y, 2.
Ex. TFind the equation of the locus of a point such that the algebraic sum of
its distances from the sides of the triangle is equal to the perimeter.
We have a+B+y=a+b+c,
hence the equation in trilinears is
2A(z+y+2)=(a+b+c)(az +by +cz).

24. Condition for parallelism. The condition for parallelism of two
lines
Lo +myy +nyz =0,
1o% -+ myy + 1,2 =0,
is the same as the condition for concurrency of the two lines and the line
at infinity. Hence if the equation of the line at infinity is
lox +mey +ngz=0
the condition for parallelism is
ly, my my|=0.
L m m
I, my my ‘
The equation (lz +my +n2) + A(l® + mey + ny2) =0 represents any line
parallel to the line lz +my +nz=0.

25. Joachimsthal’s section-formulae. Since o is- the same as the
ordinate of the point P referred to BC as axis of « in rectangular cartesian
coordinates, the formulae for the coordinates of a point (a, 3, y) which
divides the join of two points (e, By, v1) and (o, Py, v2) in & given ratio

k:1 are
_ oy t+ka, _BitkB, _Yitky,
*=1rE B= 1+k°' Y 1+% °

These hold also for the metrical areal coordinates X, Y, Z connected by
the relations X+ Y +Z=1=X,+Y,+Z,=X,+ Y, +Z,.

26. Some important points and lines connected with a triangle. Areal
or trilinear coordinates are very useful in treating of the geometry of the
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triangle. The following results are tabulated for convenience of reference.
The verifications are left as exercises to the student.

Trilinears. Areals,
D, the mid-point of the side BC 0:1/b:1/e 0:1:1
Median 4D, - - - bB=cy y=2z
Line through 4 || BC, - B=-cy Y= -2
Centroid @, - - - l/a:1/b:1/c 1:1:1
Symmedian or Lemoine point a:b:e a?:b?:c
Interior bisector of angle 4, = cy=>bz
Exterior bisector of angle 4, B=-v cy=-bz
In-centre I, - - - 1:1:1 a:b:c
Ex-centre I, - - - -1:1:1 -a:b:c
Circumcentre S, - - cosA:cos B:cosC gin 24 :sin 2B :sin 2C
Altitude AL, - - - B cos B=ycos C ycot B=zcot C
Orthocentre O, - - secA:secB:secC tand:tan B:tanC

Centre of nine-point circle, cos(B~C):etc. tan A(l +tan Btan C): ete.

Isogonal and isotomic conjugates.
Def. 1. If AX is any line through 4, the line AX’, such that
LX'AC=BAX,
is said to be tsogonally conjugate to AX with respect to the angle BAC.

Prove that, if AX, BY,CZ are three concurrent lines through a point
P =(o, By, Y;), the isogonal conjugates AX’, BY’, CZ’ are concurrent in a point
P= (l, 1—, l » the coordinates being trilinears.

o Bn

Def. 2. The point P’ is called the isogonal conjugate of P with respect
to the triangle A BC.

Def. 3. 1f P is any point on the segment BC, the point P’ which lies
on BC and is such that BP=P’'C is called the ssotomic conjugate of P with
respect to the segment BC. ‘

Prove that, if AX, BY, CZ are three concurrent lines through a point P whose
areal coordinates are (z,, y,,2,), and X’, Y, Z’ are the isotomic conjugates of
X, Y, Z with respect to the sides of the triangle, the three lines 4X’, BY’, CZ’
are conourrent in a point P’ = (l—, -l—, l)

N N |

Def. 4. The point P’ is called the isotomic eonjugate of the point P with

respect to the triangle A BC.

Examples.

1. The points X, Y are taken on the sides BC, CA respectively of the
triangle 4 BC, so that BX=3XC and CY =2Y 4. Show that 4X passes through
the mid-point of BY.

Since this is a metrical problem, we must take a definite system of metrical
coordinates and take account of the identical relation. Taking areal coordinates,
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the equation of AX is y=3z, and that of BY is 2=22. Hence the co-
ordinates of P are (2:3:1). Y=(2:0:1) and its metrical coordinates
are (%, 0, }), while those of B are (0, 1, 0). Hence the coordinates of
the mid-point of BY are (}, 4, 3) or (2:3:1), and therefore it coincides
with P.

If it were required to find the ratio 4
AP: PX =), we have 4=(1,0,0), X=(0,%, }).
Then Y
PE([:}X:H)E(% :'3:1);(2:3:1). P
Hence A=2. B X Cc
Fi1a. 80,

2. F is the mid-point of the side AB of the triangle ABC. Any line
through F meets BC in P and C4 in Q. AP and BQ meet in R. Show that
CR is parallel to 4B.

Taking areal coordinates, F=(1:1:0), and the equation of a line through
this is
z-y+kz=0.
The equation of AP is of the forms
A +(x -y +kz) =0
and y+pz=0.

Therefore A= -1 and AP is y=kz. Similarly
BQ is x+kz=0. Hence CR is

(y-k2)+(x+kz)=x+y=0 or z+y+z=z Fia. 81,
Therefore CR || AB.

27. Line-coordinates. If a, b, ¢ denote the three lines of reference
which form the triangle 4 BC, ¢ the unit-line, and I any line (&, 7, %), the
line-coordinates are expressed in terms of cross-ratios as follows :

0 =a(be, i), C/E=b(ca,dl), &Mm=c(ab,l).

Let 4 and I cut the sides of the triangle
in U, V, W and P, Q, R, and let p, ¢, r be
the perpendicular distances of 4, B, C' from
the line I. Let the coordinates be areals, so
that ¢ is the line at infinity. Then

yf{=a(be, 4)
=(CB, UP)=BP|CP=q]r.
Hence E:q:l=p:q:r, Fia. 82.

i.e. when the line at infinity is #+y+2z=0, the line-coordinates (&, 7, %)
of the line £z +vy+{z=0 are proportional to the distances of the line
from the vertices of the triangle of reference.
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In trilinears let the equation of the line be la+mB +ny=0. Trans-
forming this to areals by the transformation z=ax, y=>bf, z=cy, it
becomes

wlfa+ym[b+2nfec=

Hence l:m:n=ap:bq:ecr.

~Ex. Show that the point-equation F(«, B, ¥) =0 in trilinears is equivalent
to the equation F (z/a, y/b, z/c)=0 in areals ; and the line-equation ¢ (I, m, n)=0
in trilinears is equivalent to the equation ¢ (al, bm, cn) =0 in areals.

28. The three perpendiculars p, ¢, r from A4, B, C to the straight line
may be taken as superabundant coordinates of the line, and are connected
by an identical relation. In Fig. 82 let MN =u, NL=v, LM =w; then we
have

=a*—(g-r)’ v*=b—(r-p)? wi=c-(p-gq>
But one of the four relations % +v 4w =0 is true ; therefore
Zut - 23022 =0.
Hence Z{a® - (g - - 22 - (r - p)HSE ~ (p - )%} =0,

or, multiplying out and collecting terms,
(g=)t+ e —2r = PR (p— g -

+2(q —1r)2(—a?+b%+c?) +...

+Xat —23b3c2 =
The last line factorizes to

—(a+b+c)(—a+b+c)(a-b+c)(a+b—c)=—16A%,
The first line similarly breaks up into factors, one of which is
g-nN+r-p+r-9,
and it therefore vanishes.
The second line reduces to

20 (~+a2+b02 -+ +a?) +... —dgr(—a? + B2 +P) —...
=4%a?p? — 8Zqrbe cos 4.
Hence the identical relation reduces to
a’p? +b%g? + c2r? — 2bger cos A — 2crap cos B — 2apbq cos C'=4A2.

Then we may pass from the metrical coordinates p, ¢, r-to the areal
line-coordinates £, v, { by the equations

r_ 2A

P_9_T_ .
§ ¢ {Za%? - 22T be ccnul}i
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29. Distance of a point from a straight line. As a rule metrical formulae
are not very simple in homogeneous coordinates, but there is one formula
which is of importance from theoretical con-
siderations. This is the formula for the distance
of a point from a straight line.

Let zy y,, 2, be the metrical areal coordinates
of the point P, lz+my+nz=0 the equation of
the line. 1, m, n are proportional to the per-
pendlculars AL, BM, CN from the vertices

(§27). We shall take them as actually equal . q- on
to these distances. Join AP cutting BC in D. P‘I '
Th BD_APAB_z, L MEKRN

. DC~APCA ~y, Fia. 8.
therefore DR= Yo + &1

Yot2o
Al AP APAB APCA APAB+APCA y0+zo
S PD=APBD - APDC _ APBC y

therefore 0=PK= {(yo +2,) Yom + 24t + xol} [(@o+Yyo+729)
Yot+2

=lwy+my,y + nzy,
since Ty+Yy,+29=1.

This expression involves the metrical point-coordinates and the
metrical line-coordinates. In order to find an expression for the distance
depending only on the ratios of the coordinates, we must, with the help of
the identical relations, make the expression of zero dimensions in both
z,y, zand I, m, n. We shall find it most useful, however, if we write the
expression in terms of the natural distances o, (3, v of the point from the
sides, and p, ¢, r of the line from the vertices. Then we have

2A (apo +bgP +ery) .
14
(aoc +bB +cy) (a2p® +... — 2bger cos 4 —...)F
and from this, by puttingz : y : 2=Adoe: B : Cy andl:m:n=Pp:Qq: Rr,
where AP : BQ: CR=a:b:e¢, we can get the expression in any system of
homogeneous coordinates.

80. Statical proof of distance-formula. The point whose barycentric
or areal coordinates are z, y, 2 is the centre of gravity of three particles of
masses z, ¥, z placed at the vertices of the triangle. Hence, since the sum
of the moments of these three particles about any line is equal to the moment
of a particle of mass z +y +2, placed at their c.6., we have

Sz+y+z)=pr+qy+re.
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31. Homogeneous cartesian coordinates. We have shown that the ordinary
system of cartesian coordinates, rendered homogeneous by the introduction of z, is
a particular case of the general system of homogeneous coordinates, in which the
equation of the line at infinity isz=0. It is in- '
structive to demonstrate this by another method.

Take CA and CB as axes of z and y; let
LACB=eo, and CN, the perpendicular from C
on AB, =k, so that ck=2A. Then, using
actual values of the coordinates, )

%y=zgs8inw, By=y,sinaw,
but, instead of taking Yo=7%o8in », let zg=",/k.
This makes x, and y, the usual oblique coordi-
nates, and they are definite multiples of the

trilinear coordinates.
The identical relation

x
4\

a“o'i‘ bﬁo+ch=2A F1a. 83a,
becomes (a%g+ by,) sin o+ 2A2,=2A = ab sin c.
Henoce 1-2 =“M="f9+y_0,
0 ab b a

Now let a—> and b—w, so that 4B becomes the line at infinity. Then the

identical relation becomes 2=
o=1.

The equation of the line at infinity aa+bB+6y=0 becomes az+by+abz=0;
dividing by ab and letting a—> and b— oo, this becomes z=0.
Similarly, the coordinates being rectangular, we can exhibit the line-coordi-
nates as a limiting form of the general system.
We have p=AP cos ¢, = BQsin ¢, r=—p. v
Let us define the line-coordinates as ' \ B
I P P d
C4A v
Then, since the ratios PA:CA end QB:CB @
both —1, we get in the limit
l=cos ¢, m=sing, n=—p. -rdp
The equation of the straight line is then C P AN
lz+my+n=0 or zcos p+ysin p=p,
and the identical relation connecting the line- L
coordinates I, m,  is FIa. 83m,
Bymi=1.
It is easily verified that this is the limiting form of the general relation
Za?p®— 23grbe cos A=4A2,

=2 _ 9 e '
m=5p=g "' - M

when a—>o and b ->wo.

32. Use of triangular paper. When areal coordinates are used in
numerical work, for the plotting of lines and curves, a triangularly ruled
paper may be used with advantage. Three lines of the network are chosen
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as lines of reference forming a triangle 4BC. The line BC is marked 0,
the line through A4 parallel to this is marked 1, and the other parallel
lines with the same spacing are numbered 2,3, ... beyond 4 and -1,
-2, ... on the other side of BC. Similarly the series of lines parallel to
CA4 and AB are marked with the positive and negative integers. The
coordinates , y, z of a point of intersection P of three lines of the network
are the numbers marked on the three lines which pass through P. A4, B,
C have the coordinates (1, 0, 0), (0, 1, 0), (0, O, 1) respectively. Inter-
mediate lines may be marked 1, -2, ..., *9, etc., and then we have points
with coordinates such as (0-3, —1-2, 2-5) or (3, —12, 25).

We may pass from one point to another by a succession of steps parallel
to the lines of the network. A step u parallel to BC, C4, or AB changes
(z, y, 2) into (z, y —u, 2+u), (T+u, y, z—u), or (z—u, y +u, z) respectively,
leaving the sum of the coordinates unaltered, and for 4 the sum is equal
to 1, hence the coordinates z, y, z of any point satisfy the fixed relation
T+y+z=1.

To plot a point whose coordinates are given, e.g. (7, —38, 9), first divide
each number by z +y +2, in this case 13, and we get (0-54, —0-23, 0-69).

If the equation of the line at infinity is ax + by + ¢z=0 the lines parallel
to BC are graduated a2, 2a7%, 3a~L, ... , those parallel to CA4 : b7, 2b7,
3b-1, ..., and those parallel to 4B: ¢, 2¢7%, 3¢, .... Then the co-
ordinates of any point (z,y,?) are connected by the identical relation
az+by+cz=1. In this case the centroid of the triangle of reference is
(a7, 7%, ).

33. Application of three dimensions. A simple representation of areal
coordinates is afforded by an application of three-dimensional geometry.
In three dimensions a cartesian frame of reference consists of three axes
Oz, Oy, Oz. The coordinates of a point P are the segments , y, z cut off
along the axes by planes through P parallel to the coordinate-planes yOz,
etc. The equation of a plane is of the first degree in #, y, z. In particular
the equation z+y+2=1 represents a plane which cuts the axes in points
X, Y, Z, making equal intercepts OX =0Y =0Z=1. The cartesian three-
dimensional coordinates z, y, z of any point P on this plane, which are
connected by the equation z+y+2z=1, are also its metrical areal co-
ordinates referred to the triangle XYZ. If PX cuts YZ in U, and the line
through P parallel to XO cuts the plane YOZ in L, then

o LB _ PU APYZ
0X~ XU T ©oXYZ
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EXAMPLES XII

1. Show that the equation in areals of the line joining the mid-points of the
sides 4 B and AC of the triangle of reference is ~x+y+2=0.

2. If the straight line lz+my+nz=0 cuts the triangle of reference in
X, Y, Z, and the coordinates are areals, prove that the ratios of the segments

YZ:ZX: XY=lm—mn): m(n-1): n(l—m). .

3. Find the conditions that the general equation of the second degree in
areal coordinates should represent two parallel straight lines.

4. Prove that the centroid, the circumcentre, and the orthocentre of a
triangle are collinear, and find the equation of this line (the Euler line).

5. L, X; M,Y; N, Z are points on the sides BC, CA, AB of the triangle
ABC. ZM, XN, YL are concurrent in P, and are parallel respectively to
BC,CA, AB. ZL and MX meet in 4’, XM and NY in B’, and YN and LZ
in C". Prove that AA4’, BB’, CC’ are concurrent in P.

6. Prove that the locus of the mean point of the three points in which a line '
parallel to lz+ my+ nz=0 cuts the sides of the triangle of reference is a straight
line, and find its equation in areal coordinates.

7.* Triangles are described externally on the sides of the triangle 4 BC with
angles as in the figure, and the coordinates are trilinears.

(i) Find the equation of 44’.

(ii) Express the condition that A44’, BB’, CC’
should be concurrent.

(iii) If the angles A, and Xy, py and w,, v; and v,
are interchanged, show that the same condition will
secure that 4A4’, BB’,CC’ in the new figure are
oonourrent.

(iv) If ‘
Ug=vy=90°—4, v;=23=90°- B, A=, =90°-C,
prove that AA4‘, BB’, CC’ are concurrent in the
orthocentre.

(V) B gy=v=90°—4, v,=2=90°—B, N=p;=90°-C,
prove that the point of concurrence is the centre of the nine-point circle.

(vi) If py=vy=4, vy=23=B, A=y, =C, prove that the point of concurrence
is the Lemoine point.

(vil) If yy=v, =4, v,=2,= B, ;= u3=C, prove that the point of concurrence
is the centroid. '

(viii) If Ay=2g=2A, pg=ty=u, v;=vy=v, prove that 44’, BB’, CC’ are con-
current in the point {sin A/sin (4 +1), ...}

(ix) In (viii) find A, @, v 8o that the point of concurrence may be the circum-
centre.

(x) In (viii) find A, i, v so that the point of concurrence may be the ortho-
centre.

(xi) If the triangles A’BC, B'CA, C’AB are all equilateral, prove that
AA’ BB, CC’ meet in the point {cosec(A4+60°), ...}, and show that at this

*These examples are taken from a paper by A. G. Burgess, Edinburgh, Proc.
Math, Soc., 32 (1914), p. 58.
8.A.0, M
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point the sides of the triangle 4 BC each subtend an angle of 120°. (This point
is called the inmer isogonic point. If the equilateral triangles are described
inwards, the point of concurrence is called the outer isogonic point.)

(xii) If in (viii) A=p=v=0, show that the point of concurrence is

{cosec (4 +6), ...},

(xiii) If py=vy=A+0, vy=2=B+0, \y=p;=C=+6, prove that the point of
concurrence is {sin(4 ¥9),...}. (If 6=60° these two points are called the
tsodynamic points.)

8. The lines joining 4, B, C to a point P cut the opposite sides of the triangle
ABC in L, M, N, and PL=!. AL, PM=m.BM, PN=n.CN. Prove that
l, m, n are proportional to the areal coordinates of P.

9. LPL’, MPM', NPN’ are lines through P parallel to the sides BC, C4, 4B
of the triangle of reference and terminated by the other sides. If z, y, 2z are the
areal coordinates of P show that

, LL : MM’ : NN’ =a(y+2):b(z+x): c(x+y).

10. Prove that the trilinear coordinates of the two Brocard points are
(b/e, c/a, a/b) and (c/b, ajc, bja). [One Brocard point P has the property that
L PBC=PCA=PAB, and the other Z PCB=PAC=PBA.]

11. If L, M, N are the feet of the perpendiculars from O, whose trilinear
ooordinates are «, B, Y, on the sides of the triangle 4 BC, prove that

MN?=[2+v2+ 2By cos 4.
Hence show that the pedal triangle LM N is equilateral when O is either of the
points {sin (4 + 60°), ...} (the isodynamic points).

12. Show that the trilinear equation of the line joining the circumcentre and
the symmedian point is « sin (B—C)+ @ 8in (C'— 4)+ sin (4 — B)=0.

13. Show that the trilinear equation of the line joining the two Brocard
points is Ta(at—b%?)/a=0.

14. Show that the trilinear equation of the line joining the in-centre and the

" eircumcentre is Za(cos B— cos 0)=0.

15. Prove that, if 0 varies, the point {sin(A4+0), sin(B+ 0), sin (C+ 6))
describes a straight line. If the coordinates are trilinears, name the points corre.
sponding to 6=0, +60°, 90°, -

16. Show that, if 0 is variable, the line

zsin (a+ 0)+ysin (B+0)+2zsin (y+0)=0
passes through a fixed point.

17. Show that, if 0 is variable, the line

asin (4 — 6)+ B sin (B— 6)+y sin (C— 0)=0
in trilinear coordinates is parallel to a fixed direction.

18. Show that Ax=a+ pt, \y=>b+qt, Az=c+rt are freedom-equations of a
straight line through the points (a, b, ¢) and (p, g, 7).

19. ABCisany triangle ; A’, @, Rare any points on BO, CA, A Brespectively,
and ! is any line through 4 ; A’Qand A’Rcutlin ¢’ and B’ respectively, BC’ cuts
B’Cin P. Prove that P, Q, R are collinear,
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20. Four fixed points are joined by three pairs of lines intersecting respectively
in the points 4, B,C; and P is any other point. Through A is drawn the
harmonic conjugate of AP with regard to the fixed pair of lines through 4, and
lines are similarly drawn through B and C. Show that these three lines are
concurrent. (Pembroke, 1899.)

21. A line cuts the sides of the diagonal triangle of a complete quadrilateral
in P,Q, R; and P,Q’, R’ are the harmonic conjugates of P, Q, R respectively
with regard to the pairs of opposite vertices of the complete quadrilateral. Prove
that P, @', R’ are collinear. Deduce the collinearity of the mid.-points of the
diagonals of the complete quadrilateral.

22. A straight line meets the sides BC, C4, AB of a triangle in L, M, N,
On AL, BM, CN are taken any three points A’, B, ¢"; B'C’, C’A’, A’B’ meet
BC,CA,AB in P,Q, R. Show that 4’P, B'Q, ("R are concurrent. .

: (Math. Tripos I., 1909.)

23. ABC and A’B’C’ are two triangles such that 44’ BB’, CC’ are con-
current (triangles ¢n perspective). Show that the points of intersection of BC
and B’C’, CA and C’A’, AB and A’B’ are collinear. (Desargues’ Theorem.)

24. A straight line cuts the sides of the triangle ABCin 4’, B, C". U,V,W
are the harmonic conjugates of 4‘, B’, ¢ with respect to the vertices of the
triangle in pairs. The lines joining any point O to U, ¥, W cut the opposite sides
of the triangle UVW in X, ¥,Z. Prove that AX, BY, CZ are concurrent.

25. In the last example, if the lines joining Oto 4, B, O cut the corresponding
sides of the triangle UVW in L, M, N, prove that UL, VM, WN are concurrent.

28. A straight line cuts the sides of the triangle ABC in X, ¥, Z. Any line
is drawn through X cutting C4 in B, and ABin C,. Similarly, lines are drawn
through ¥ and Z cutting the sides of the triangle in Cy, Ay and 4,4, B, BB, and
€0y cutin L, CC, and 44, in M, A4, and BByin N. Prove that AL, BM, CN
are concurrent.

27. Two sets of concurrent lines through the vertices of the triangle 4 BC cut
the opposite sides in P, Q, R and P/, @', R’. BQ and CR’ cut in U, BQ' and CR
in 7’; CR and AP’ in V, CR’ and APin V’; AP and BQ’in W, AP’ and BQ
in W. BV and CW’ meet in L, CW and AU’ in M, AU and BV’ in N. Show
that AL, BM, CN are concurrent.



CHAPTER XIII.
THE CONIC IN HOMOGENEOUS COORDINATES.

1. Equation of a conic in homogeneous coordinates. Since in every
system of homogeneous coordinates a straight line has always an equation:
of the first degree, and a conic has the property that it is cut by any straight
line in two points, real, coincident, or imaginary, the equation of a conic
is of the second degree. The general homogeneous equation of the second
degree in z, y, 2 is

[z, y, 2)= ax? + by? + c2? + 2fyz + 292z + 2hxy =0.
Yy Y

2. Intersection of a straight line and a
conic. Let lz+my+nz=0 be any straight
line. To find the points in which this line
cuts the conic we have to solve the two
equations simultaneously. We thus deter-
mine the ratios @ : y : 2 for a common point.
In order to effect the solution it is convenient
to eliminate one of the variables, say z.
We then get a homogeneous equation of
the second degree in z, y, which represents
the two lines joining C to the points of
intersection.

B X — X' c
F1a. 85.

Ex. Pisagiven point on the conic yz=a2, and y=pzis a variable line through
the fixed point 4 cutting the conic in U, V. Prove that PU, PV are harmonic
conjugates with regard to two fixed lines through P.

Let P=(x,, ¥, 2;), and put Y ==,y -y, Z=x,2 —2,% 80 that z, ¥, Z are the
coordinates referred to the triangle PBC. Then the equation of the conic become
(Y + 1,202 + zy2) =, %%,

Since P lies on the conic, y;2, =22, and the equation reduces to
YZ + «( Yz + Zy,)=0.
The equation of the variable line becomes

Y-puZ= —u).
Eliminating =, we have wi=eln )
YZ(p2y - y) +(Y — u2)( Y2, +2y,)=0,
ie. 7 Y2 - py, 22=0.
This represents a pair of lines through P which are harmonic conjugates with
regard to ¥ =0 and Z=0), i.e. with regard to PC, PB.

168
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3. Carnot’s theorem. If the side BC of the triangle of reference cuts
the conic in X, X’ (Fig. 85), the equation of the pair of lines 4X, 4X’ is
found by putting =0 in the equation of the conic, and is therefore

by? + 2fyz + c2* =0.
Let the coordinates be areals and let y: 2z and y’:2’ be the solutions of
this equation. Then
BX:XC=04BX: AAXC=2:y.
BX BX' 2z’ b

Hence we have 0X 0% =SZ/—' =

Similarly CY CY ¢ 4 AZ AZ a

AY AY "a BZ BZ b

Hence BX.BX' 0Y.CY .AZ.AZ'=L
CX.CX' AY .AY' BZ.BZ

This is known as Carnot’s Theorem. It gives a relation between six
points which lie on a conic, and the converse theorem may be used as a
test in order that six given points may lie on a conic. ‘

Examples.
1. If 8, 8’ are any two points in the plane of a triangle, and if the lines joining
8, 8’ to the vertices meet the opposite sides in X, Y, Z, X’, Y’, Z’, prove that these
six points lie on a conic.
2. if X.Y,Z are points on the sides BC, C4, AB of a triangle such that
AZX, BY, CZ are concurrent, prove that a conic can be constructed touching the
sides of the triangle at X, ¥, Z.

The resemblance of Carnot’s theorem to the theorem of Menelaus may
be noted. If the conic degenerates to two straight lines Carnot’s theorem
is at once deduced from Menelaus’, and if one of the lines becomes the line
at infinity each of the ratios BX’':CX’,CY': AY’, AZ': BZ' become
unity ; then Carnot’s theorem reduces to that of Menelaus.

4. Tangential equation. To find the condition that the line
lz +my +n2=0
should be a tangent to the conic
az? + by? + cz? + 2fyz + 292z + 2hay =0,
eliminate 2, and we get the equation of the lines joining C to the two points
of intersection,
(an® —2gnl + cl?) 2 + 2 (kn? + clm — gmn — frl) zy + (bn? — 2fmn + cm?) y2 =0,
These will coincide if
(An? — gmn — fnl + clm)? = (an® ~ 2gnl + cl2) (bn? — 2fmn + cm?).
Multiplying out, and cancelling n2, this reduces to
(be =f2) B + (ca — g¥) m® + (ab — h?) n® +2(gh ~ af )mn
+2(hf — bg)nl + 2(fg — ch)Ilm =0,
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or, with the usual notation,
AR + Bm? + Cn? +2Fmn +2Gnl +2HIm =0.

This is therefore the tangential or line-equation of the conic. We may
denote it briefly by F(l, m, n)=0.

Further, the line ks +my +nz=0 will cut the conic in real or imaginary
points according as F(@, m, n)=<0. :

8. Joachimsthal’s ratio equation. Any point on the line joining the
two points (2, yy, 2;) and (%, ¥a, %) can be represented by the coordinates
() +A%g, Y1 + Mg, 21 +A2,), A being a variable parameter. The actual value
of the position-ratio corresponding to any value of A can be found only
when the particular metrical system of coordinates is specified, but gener-
ally it is not necessary to deal with these actual values.

To find the points in which the line joining the points P=(z', ¥, 2')
and Q= (z, y, 2) cuts the conic, let the coordinates of one of the points be
(z+7a', y+My, z+22"). Then, substituting in the equation of the conic,
we have of of of

2 ’ o . . W =

(2, o', z)+7\<zax,+y ay,+z az,>+f(::;, ¥, 2)=0.
the two roots A, and A, of this equation correspond to the two points X, Y,
in which PQ cuts the conic.

Cor. 1. If (PQ, XY) is harmonic, the roots are equal and of opposite
sign (see Chap. X1II, §13, Ex., or § 5), 4.e. \; + A, =0. Hence the locus of @,
the harmonic conjugate of P with regard to the conic, 4.e. the polar of P, is

of U, U _
x a? +y @; +2z a—z—, =0.

If P lies on the conic this is the equation of the tangent at P.

Cor. 2. I£Q lies on one of the tangents from P to the conic the roots A
and ), are equal; hence the equation of the two tangents from P to the
conic is TR Y . A i )2

[y 2f, Yy, z)—z z-a?+y517+z$; .

Conics specially related to the triangle of reference.

6. To find the equation of a conic circumseribing the triangle of reference.

The general equation of a conic is ,
az? +by? + c2? + 2fyz + 2gzx + 2hay = 0.
If this passes through the point (1, 0, 0), we have a=0. Hence, if it passes
through the three vertices, a=0, b=0, ¢=0. The general equation of a
conic circumscribing the triangle of reference is therefore
Jyz +gzz + hry =0.
In an exactly similar way the line-equation of a conic touching the sides
of the triangle of reference is
Fmn +Gnl+ Him =O0.
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7. To find the equation of a conic touching the sides of the triangle of
reference. If =0 is a tangent, the equation
by +c2® + 2fyz=0
must have equal roots; therefore
be=.
Bimilarly, if ¥ =0 and z=0 are tangents,
ca=g® and ab=1I3.
Hence a, b, ¢ are all of the same sign. We may suppose them to be positive
and put a=p?, b=¢? c¢=72. Then f= +gr, g= +rp, h=+pq. The signs
here cannot be all +, or two — and one +, since in either of these cases

the conic would reduce to two coincident straight lines. We may take
therefore as the equation

P*2? + ¥y + 1222 — 2qryz — 2rpzx — 2pqay =0,
where p, ¢, r may be positive or negative.
This equation may be written
' (pz+qy —12)* — dpgzy =0,
which may be resolved into four irrational factors of the form

Vpx £V qy +V'rz=0.
The corresponding line-equation of this conic is
pmn +gnl +rlm =0.

Examples.

1. If a conic touches BC, CA, AB in X, Y, Z, then AX, BY, CZ are
concurrent. ’

Take the equation

P22+ g2+ 1222 — 2gryz — 2rpaz — 2pgry=0.

Putting z=0, we find the equation of the line joining 4 to the point of contact of
the conic with BC, pr=qy;
and the three lines pz=qy=rz are conc-irrent in the point (1/p, 1/g, 1/r).

2. If & conic circumscribes the triangle ABC, and if the tangents at
4, B, C cut the opposite sides in X, ¥, Z, prove that X, Y, Z are collinear.

8. To find the equation of a conic referred to two tangents and the chord
of contact. Let =0 and y=0 be the tangents and z=0 the chord of
contact ; then, putting =0, we must have equal roots 22=0; therefore
b=0 and f=0. Similarly, since y=0 is a tangent at 4, we must have
a=0 and g=0. Hence the equation reduces to

c2® +2hxy =0,
f.e. xy =k,

Ex. Interpret the line-equation im==n3,

This can be applied to the case of a hyperbola expressed in cartesian
coordinates, with the asymptotes as axes, for in this case the triangle of
reference consists of the two asymptotes and the line at infinity, the latter

being the chord of contact of the asymptotes regarded as tangents. Hence
the equation is zy-¥
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9. Geometrical meaning of the vanishing of any coefficient in the general
equation of the second degree. If a=0, the equation is satisfied by the
coordinates (1,0, 0). This is therefore the condition that the conic should
pass through the vertex 4.

If f=0, the equation of the two lines joining 4 to the points of inter-
section with =0 is by2 +¢22=0. But this represents a pair of lines which
are harmonic conjugates with regard to y=0 and z=0. Hence f=0 is
the condition that the line BC should be cut harmonically by the conic.

Similarly for the equation in line-coordinates, 4 =0 is the condition that
the conic should touch the side BC, and F=0 is the condition that the
tangents from 4 to the conic should be harmonic conjugates with regard
to AB and AC.

10. Equation of a conic referred to a self-conjugate triangle. If the
triangle of reference is self-conjugate with regard to. the conic, each of its
sides must be cut harmonically by the conic. Hence f, g, and 4 all vanish.
The equation of the conic is therefore

‘ . ax? +by? +c22=0.
It is easily verified that the polar of each vertex is the opposite side of the
triangle.

In choosing a self-conjugate triangle the first vertex may be taken quite
arbitrarily, and has two degrees of freedom. The second vertex must then
lie on the polar of the first, and has one degree of freedom. The third vertex
is then fixed. Hence there are o self-conjugate triangles, and 3 ways
‘in which the equation of any conic may be reduced to this form.

We have already had examples of the reduction of the general equation
to this form when the conic is referred to its principal axes. In this case
the self-conjugate triangle consists of the two axes and the line at infinity.

11. In order that the conic should be real, a, b, ¢ cannot be all of the
same sign. Let a and b be positive, and ¢ negative, and write the equation
P2% + gPy? — 1222 =0.

We may write this

P =(rz - qy) (rz +qy),

showing that 72 +gy =0 are tangents, with =0
as chord of contact. Similarly px+rz=0 are
real tangents with y=0 as chord of contact,
but the tangents whose chord of contact is
2=0 are imaginary., Hence one vertex C lies
within the conic.

12. A self-conjugate triangle may be con-
structed as follows. Take any four points
P, Q, R, S on the conic. These form a
complete quadrangle whose harmonic or
diagonal triangle 4 BC is self-conjugate with
regard to the conic. For if PQ and RS meet 4B in X and Y, the two
ranges (PQ, CX) and (RS, CY) are harmonic, and therefore XY or 48

ViG. 86.
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is the polar of C. Similarly each side of the triangle 4 BC is the polar
of the opposite vertex. In a similar way we may construct a self-con-
jugate triangle as the harmonic triangle of a complete quadrilateral
circumscribed about the conic.

Ex. The tangents at four points P, @, R, S on a conic form a complete
quadrilateral circumscribed about the conic. Show that its harmonic triangle
coincides with that of the complete quadrangle PQRES.

Taking 4 BC, the harmonic triangle of the complete quadrangle PQRS, as
triangle of reference, the equation of the conic may be written

ax? 4+ by?+c22=0.
The coordinates may be chosen so that §=(1,1,1). Then a+b+¢=0, and we
have P=(-1,1,1),Q=(1, —1,1), R=(1, 1, —1).

The tangents at P, @, R, 8 have line-coordinates (—a, b, ¢), (a, —b, ¢),
(a, b, —¢), (a,b,c). These are of the same form as the point-coordinates of
P,Q, R, S; hence the harmonic triangle is again 4 BC.

13. Two conics intersect in four points, forming a complete quadrangle
inscribed in each. The harmonic triangle of this quadrangle is therefore
self-conjugate with regard to both conics. By taking this triangle as the
triangle of reference it is possible to express the equations of any two
conics in the form aa® + by +c,22 =0,

. 6@+ byt + o =0.
This is often very useful when we are dealing with a system of conics, but
it requires modification if the four common points are not distinct.

Examples.
1. A point P describes a straight line. The polars of P with respect to two
fixed conics intersect in Q. Prove that the locus of Q is a conic.
Let the equations of the conics be
a,lx’+ b1y3+6122=0,
a7+ byy?+c,22=0,
and let (2, ¥, 2’) be any point on the fixed line lz+my+nz=0. The polars of
this point with respect to the two conics are
a2’z + byy'y +¢,2'2=0,
@ x'%+ byy'y +c2'2=0,
and we have also lx’+my’ +nz’'=0.
Eliminating #’, y’, 2’ between these three equations, we get
(b6 — bty ) Y2 + m(Cy4 = €40, ) 22 + 1 (a1 by — aghy ) 2y =0.
The locus is therefore a conic which passes through the vertices of the common
self-conjugate triangle of the two conics. The pole of Iz + my + nz=0 with respect
to the first conic is (I/ay, m/by, nfe;), and these coordinates satisfy the equation
of the locus. Hence the locus passes also through the poles of the given line with
respect to the two conics.
2, State the reciprocal theorem.

14. Conjugate triangles with regard to a conic. Two triangles are con-
jugate with respect to a conic when each vertex of one is the pole of the
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corresponding side of the other. Take one of the triangles 4 BC as triangle
of reference, and let the equation of the conic be
ax? + by? + c2® + 2fyz + 292z + 2hay = 0.
Then the sides of the conjugate triangle 4’ B’C” are
az + hy +g92=0,
he+by +fz=
g% +fy+cz=0.
These cut the corresponding sides =0, y=0, 2=0 in the points
(0 -9, h): (f O _h)’ _f 9, 0)’
which are collinear on the line z[f+ y/g +z/h =0. Hence two tmngles
which are conjugate with regard to a conic are in perspective. This line is
the axis of perspective, and it may be shown that the centre of perspective
is (1/F, 1/G, 1/H).
Ex. Prove the converse theorem : If two triangles are in perspective there
is a unique conic with respect to which they are conjugate.

15. Equation of a conie passing through four given points. Let the four
points be the intersections of the two lines a=0, =0, with the two lines
y=0, §=0. Then the equation

: af=kyd

represents a conic through the four points.
The equation in §8 is a particular case of this when two of the lines,
v and 8, become coincident. The equation
aB=y?
then represents a conic passing through the two pairs of coincident points
oy and By, 4.e. having « and ( as tangents and vy as chord of contact.
More generally, if S and S’ are any two conics,
S=kS
‘represents a conic through the four points of intersection of S and S’;
~ S=kaf.
represents a conic through the four points of intersection of the lines o,
with the conic S.

16. Contact of conics. There are several important special forms of
this equation.

(1) Let o and B coincide. Then the four points of intersection coincide
in pairs, and the equation S =ka?
represents a conic touching S at the two points in whieh it is cut by a,
i.e. & conic having double contact with S, with o as chord of contact.

(2) Let B be a tangent to S at (', y’, 2') ; then the equation

as as as>
represents a conic touching S at (a: , y’, ') and cutting it again in the
two points where it is cut by a.
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(3) Let B be the tangent to S at P, and let « also pass through P;
then the equation
o8 98 oS )
S=(lw+my+nz) (:B a—$'+y a—y,+z a—z,‘ »
where l2’ +my’ +nz’ =0, represents a conic meeting S in three coincident
points at P and one other point. This is called contact of the second order.
It is the same sort of contact as that of the circle of curvature with a
conie. '
(4) Let o and B coincide with the tangent at P; then the equation

S=k(xis-+ §+z aﬁ)z

o7 Y oy’ oY
represents a conic meeting S in four coincident points at P, and no other
point. This is called contact of the third order. Since five points determine
a conic no higher contact is possible unless the conics coincide altogether.

17. Degenerate conics. When A =0 the conic, as a locus, degenerates
to two straight lines. What then becomes of the conic when considered
as an envelope ? -

The tangential equation

is

a h g 1 [=0
A b fm
g [ ¢ n

l

Now, by a known theorem in determinants, when the determinant
' a h g |[=0,

A b f

9 f ¢

the bordered determinant becomes a perfect square in I, m, n. In fact,
gince A=0, GH=AF, CA=G?, and AB=H?; therefore the equation

reduces to (41 + Hm + Gny2[A =0.

Now, an equation of the first degree in [, m, n represents a pencil of lines
passing through one point. Hence, when the conic degenerates, as a locus,
to two straight lines, it degenerates, as an envelope, to two coincident points.
This double point is just the point of intersection of the two lines, and its
coordinates are (4, H, @) or (H, B, F) or (@, F, 0), all of which are
equivalent.

Suppose now that the conic degenerates further, as a locus, to two
coincident straight lines. Then 4, B, C, F, G, H all vanish, and the
tangential equation appears to be quite indeterminate. Let us observe
the conic in the act of degenerating to the two coincident straight lines
#2=0. Take the equation

e(y - px)(y —gz) +2*=0,
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which represents a proper conic degenerating to the two coincident straight
lines as e+0. The tangential equation of this conic is
4P +4pgm? —e(p - q)?n® +4(p +¢) Im =0.

which reduces to P+(p+q)Im+pgm2=0,
t.e. (I +pm)(l+gm)=0,
and this represents two pencils of lines whose vertices are (1,p,0),(1,4q,0)
f.e. two points on the line z=0.

Thus, when the conic degenerates, as a locus, to two coincident straight
lines, it degenerates, as an envelope, to two points which may be real or
imaginary. This may be explained geometrically as follows. ~Consider a

Conic-envelope degenerating
(a) to two real points.

(b) to two imaginary points.

Fia. 87.

hyperbola with its axis and vertices fixed, but let its asymptotes gradually
coincide. As the hyperbola ultimately collapses into two coincident
straight lines, coinciding with the transverse axis, its tangents will come to
pass through one or other of two fixed points, the vertices. If the hyper-
bola collapses in the other way into two coincident lines coinciding with the
conjugate axis, the real tangents all come to coincide with this line. But
through any point in the interior of the hyperbola there pass two imaginary
tangents, and as the hyperbola collapses these will come to pass respec-
tively through the two imaginary points in which the hyperbola ultimately
cuts the double line.

Exampbles.
1. Determine the line-equations of the conics whose point-equations are
(i) 22— 2y — 222+ byz — 22— 2y =0,
(ii) (z+y+2)2+ e(2y+2) (¥ + 22) =0, =0,
(iii) (z+ y+2)2+ (22 + 12+ 29 =0, =0,
iv) (z— ¥+ e(z+y— 2z)(x— 2y + 2) =0, e~ 0,
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2. Determine the point-equétions of the conics whose line-equations are
(i) B+m2=0, (ii) (al+bdm+cn)(al+b'm+c'n)=0,
(iii) (al+dm + cn)2+ (B +m2+n?)=0, e->0.

EXAMPLES XIIL

1. The tangents at 4, B, C on a conic form a triangle 4’, B, C". Prove
that the triangles 4 BC and 4’ B’C’ are in perspective.

2. Two conjugate points P, P’ lie respectively on.-two sides of a triangle
inscribed in & conic. Prove that PP’ passes through the pole of the third side.

(Trinity, 1910.)

3. Prove that the locus of isogonal conjugates of points on a straight line is
8 conic circumscribing the triangle of reference.

4. Prove that the polars, with respect to two conics, of a point on a given
straight line intersect on a conic eiroumscribing the common self-conjugate
triangle. (Corpus, 1914.)

5. Through a point O any two lines are drawn to cut in P, @ and P’, Q" any
conic which touches two fixed lines through O at given points. Prove that PP’
meets QQ’ on a fixed line. (Selwyn, 1914.)

8. 04, OB are tangents to & conic at 4 and B. The bisector of the angle
AOB cuts AB in M, and PQ is any chord through M. Prove that QM bisects
the angle POQ.

7. ABC and A’B’C” are two triangles conjugate with regard to a conic, and
therefore in perspective. If the axis of perspective cuts the conic in X and ¥,
show that there is one conic touching the given conic at X and Y, and having
ABC as a self-conjugate triangle. Prove also that the tangents to this conic at
X and Y meet in the centre of perspective.

8. The tangents at the fixed points B, C on a conic meet in A, and any
other tangent to the conic cuts 4B, AC in L, M respectively. Prove that, if
BM and CL intersect in P, the locus of P is a conic having double contact with
the given conic at B and C.

9. Show that the parabola which osculates the rectangular hyperbola zy=¢3
at the point (&, k) is (xk— yh)2=4c*(zk+ yh— 2¢). (Corpus, 1907.)

10. Two triangles are each self-conjugate with regard to a conic. Prove that
they can both be inscribed in a conic, and both circumscribed about another
conic.

11. Prove that the conics 7y2~-4zy+42+2y~17=0 and 2*+2y2-4=0
touch each other at two distinet points, and find the coordinates of the inter-
section of the tangents at these points. (Queens’, 1910.)

12. Conics are drawn passing through two fixed points 4, B and touching
two fixed lines. Prove that the locus of the point of intersection of the tangents
at A and B is a pair of straight lines separating the given lines harmonically, and
also that the chords of contact with the fixed lines pass through one of two fixed
points separating 4, B harmonically. (Selwyn, 1910.)

18. Prove that if two complete qua,drangles have the same diagonal points
their eight vertices lie on a proper conic unless they lie four by four on two straight
lines. (Trinity, 1907.)
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14. A conic touches four fixed straight lines @,b,¢,d. U and V are two
fixed points on d, and the tangents from U and ¥ to the conic meet in P. Prove
that the loous of P is a conic passing through U, ¥V and the vertices of the
triangle abe. ' ‘ v

15. Two conics 8; and 8, intersect in 4, B, C,0. Two lines through O
cut 8, in P, @, and 8, in P, Q. If P,Q, passes through a fixed point T,, prove
that P,Q, also passes through a fixed point T',.

As a particular case, prove that if from the point of intersection of the Steiner
ellipse and the circumcircle lines are drawn to the ends of a diameter of the ellipse
cutting the circle in P, Q, the chord PQ will always pass through the Lemoine
point.

18. A quadrangle A BOD is inscribed in a conic ; 4B and CD intersect in B,
and AD, BC in F. Prove that if P be any point on the conic the harmonic
conjugate of EP with respect to EB, EC meets the harmonic conjugate of FP
with respect to F4, FB on the tangent at P. (Trinity, 1910.)

17. A conic is inscribed in a triangle 4 BC, its equation in homogeneous
coordinates being (Ix)t + (my)? + (n2)!=0. The lines from 4, B, C to the points
of contact with the opposite sides meet the conic in a, b, ¢; and the tangents at
a, b, ¢ form another triangle A’B’C’. Show that the equation of the conic through
A, B, C, A’, B, C" i8 (Iz) 1+ (my) ' + (nz)1=0. (Math. Tripos I1., 1912.)

18. Two conics have three-point contact at P and intersect again at Q. PRis
the tangent at P, QR the harmonic conjugate of QP with regard to the two

tangents at Q. Show that R lies on the second common tangent of the two
conics. (Math. Tripos 1., 1909.)

19. A complete quadrilateral, of which one side is variable, is circumseribed
about a fixed conic. Show that the line joining the mid-points of its diagonals
passes through a fixed point.

20. Prove that the equation of the isoptic locus of the parabola y2=4ax for
the angle a is 42— 4ax=(z+a)? tan® «, and that this represents a hyperbola, of
eccentricity sec a, having the same focus and directrix as the parabola.

21. Write down the equation of the circle which osculates the conic
ax? 4 by? + 2hay + 292=0
at the origin, and deduce that the radius of curvature at the origin is g/b.

22. Determine all the common tangents of the conics 32+ 22+ 2yz+ 2xy=0,
22+ y2+ 922 — 6yz — 622 — 82y =0. (Math. Tripos II., 1913.)

23. Given any conic § circumscribing a triangle 4 BC, prove that there is
one conic 8’ inscribed in the triangle and having (imaginary) double contact with
the given conic. Show that the chord of contact is the line through the points
of intersection of the tangents to S at 4, B, C' with the opposite sides, and its
pole is the point of intersection of the lines joining 4, B, C to the points of contact
of 8’ with the opposite sides. Show further that there is one conic (virtual)
which has double contact with 8 and 8’ at the same points, and with respect to
which the triangle 4 BC is self-conjugate.

24. Prove that chords of a conic %, which subtend a constant angle «
at a given point of the conic, envelop a conic, and that, for different values of
the angle «, the envelopes all touch 2 at the same two points.




CHAPTER XIV.

THE LINE AT INFINITY AND THE CIRCULAR POINTS.

1. IT has been seen that homogeneous coordinates are not very well
suited for the investigation of metrical theorems. The formulae for the
distance between two points, the angle between two lines, conditions for
perpendicularity, etc., are complicated and unwieldy. Homogeneous
coordinates supply, in fact, a beautiful analytical instrument for dealing
with pro;ectlve geometry, but for metrical geometry the appropriate
instrument is afforded by cartesian coordinates. With homogeneous
coordinates and in projective geometry there is no distinction between
the different types of conics: circle, elhpse, parabola hyperbola. The
only distirction is between a proper conic, a virtual conic, and a degenerate
conic (i.e. two straight lines, real or imaginary, with a double point; or
two coincident straight lines, with a palr of points, real, coincident, or
imaginary).

Further, in projective geometry there is no distinction between one
point and another in relation to a conic, except that between exterior and
interior points, which depends only on the realityor otherwise of the tangents
from the point to the conic. For example, the foci are not distinguished
from any other interior pomt Nor is there any distinction between one
line and another, except in regard to the reality or otherwise of the points
of intersection with the conic.

Now it is always possible, in a more or less cumbrous way, to deal with
metrical properties by using a particular system of homogeneous coordi-
nates, trilinears or areals. Thus, by working out a complicated expression
for the distance between two points, we could write down the equation
of a circle. Again, using Joachimsthal’s section-formulae, we could form
the condition that a chord through a certain point is always bisected there,
and thus obtain the coordinates of the centre. The asymptotes could be
found by writing down the equation of the tangent at any pomt and then
letting the coordinates of the point tend to infinity. These processes,
however, can all be replaced by the procedure of projective geometry,
with the aid of the straight line at infinity and the two special points
at infinity called the circular points.

We shall show in this chapter how these figures can be applied to
certain metrical problems in connection with the conic when referred to
homogeneous coordinates. First, we shall consider some results which
require only a conmderatlon of the line at infinity.

179
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2. Condition for a parabola, ellipse, or hyperbola. Conics are classified
according to the nature of their intersection with the line at infinity. A
hyperbola cuts it in real points, an ellipse in imaginary points, and a para-
bola in coincident points. We can therefore determine the nature of the
conic ax? +by? + c2® + 2f yz + 2g2x + 2hxy =0,
as follows. Let the equation of the line at infinity be

Iy +mgy +ngz=0.

Then the condition that the conic should be a parabola is that the line
whose line-coordinates are (ly, mg, 1y) should be a tangent, i.e.

Al + Bmg + Ong + 2 Fmgng +2Gnly + 2Hjmy =0.
Then, referring to Chap. XIIIL §4, we see that the points of intersection
will be real or imaginary according as

(hng? — gmgng — frgly + clymo)® = (ang — 2gngly + cly?) (bng? — 2fmgng + cmg?).

Hence the conic will be a hyperbola or an ellipse according as

Al 2+ Bmg? + Cng? +2 Fmgng +2Gngly + 2Hlgmy = 0.

Ex. The lines PA, PB, PC cut the sides BC, CA, AB of the triangle 4 BC
in L, M, N. Find the locus of P so that the conic which touches the sides of the
triangle at L, M, N may be a parabola.

Let P=(zy, ¥y, 2;)- Then L=(0, yy, 2y), M=(x;, 0, 2), N=(z, y,0).
The line-equation of the conic is of the form

Smn+gnl+klm=0,
and its point-equation is
S22+ g%+ W22 — 2ghyz — 2hfex — 2fgry=0.
Since this is to touch BCin L, g: h=z, : y, ; hence fx, =gy, = hz;, and the equation
of the conic is Yy mn+zynl + 2y, lm=0.
If the coordinates are areals, the condition that this should be a parabola is
Y12+ 2%+ 8y =0.
The locus of P is therefore a conic circumscribing the triangle, and having the

tangents at each vertex parallel to the opposite side. This is the minimum
circumseribed ellipse (Ex. IV. B, 21).

3. The centre. The centre is the pole of the line at infinity, and its
coordinates are therefore (Chap. XI. § 11)

(Aly+ Hmy+ Gny, Hly+ Bmy+ Frg, Gly+ Fmg+Cnyg).

Ex. TFind the locus of the centre of a conic which passes through the incentre
and the three excentres of the triangle.

Taking trilinear coordinates, the coordinates of the four points are (1, £1, £1).
The equation of a conic through these is pa?+gB2+ry*=0, where p+q+7=0.
If a, b, ¢ are the lengths of the sides of the triangle of reference, the coordinates of
the centre of this conic are

w:B:y=agr:brp: _2.b.¢c
: B:y=agr:brp:cpg PAPAr
Therefore afy+bya+capf=0,

which represents the circumcircle of the triangle (see § 7).
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4. Diameters. A diameter is a line through the centre. The fine
Iz +my +nz=0 will be a diameter if

I(Aly + Hmg+ Gng) +m (Hly+ Bmy + Fng) +n(GQly + Fmy + Ong) =0.
The diameter (7, m, n) is therefore conjugate to the line at infinity (I, mg, n,)-

5. The asymptotes. The asymptotes are the tangents to the conic at
its points of intersection H, K with the line at infinity. If u is the line at
infinity, the equation f(@, y, 2) - kuz=0

represents a conic touching the given conic f at H, K. The equation of
the asymptotes is therefore obtained by determining % so that this equation
may represent two straight lines.

Cor. The conics f=0 and f—2u?=0 have asymptotes of the form
Sf-k2=0, f—ku?=0.
Both pairs of lines cut ¥==0 in the same two points, the points at infinity

on f=0. Hence the two pairs of asymptotes are parallel, and the conics
are similar and similarly placed, or homothetic.

Ex. The conic yz+zx+xy=0, in areal coordinates, is the minimum cireum-
soribed ellipse, and the conic ¥+ y%+4 22— 2yz— 22z —2zy=0 is the maximum
inscribed ellipse. Show that these conics are homothetic.

We have u=2x+y+2, fa=u?—4yz+2x+ay)=u?—4f,; therefore, eto.

6. We have next to consider the circular points at infinity. These
“have been defined and obtained as the points of intersection of any circle
with the line at infinity. In order to obtain the coordinates of the circular
points in homogeneous coordinates, we shall find first the equation of a
circle, then, as we know the equation of the line at infinity, the coordinates
in question can be found by solving the two equations simultaneously.
A circle involves metrical determinations ; hence we must take a definite
system of coordinates, say trilinears, and, as any circle will suffice, we shall
choose the circumcircle of the triangle of reference.

7. Equation of the circumecircle in frilinears. Let P=(a, B, v) be any
point on the circumcircle, and invert the circle with centre of inversion P.
The circle inverts into a straight line, so that 4’, B’, ¢, the inverses of
4, B, C, are collinear (Fig. 88). Then, since PB. PB'=PC.PC', B, B,
C’, C are concyclic and ZPCB=PB'C". Hence the triangles PBC and
PC’B’ are similar. If PN, the perpendicular on A’B’, =p, we have then

PX:BC=p: BC,

a BC
t.e. -—= .
a p
Similarly b = c4 a = A'F .
B » Y P

The signs of «, B, y are so arranged that they are all + for a point within
“B.AO. N
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the triangle, and will be the same as the signs of B'C’, C'4’, A’B’. Hence,
since B'C’' +(C'A’ + A’ B’ =0, we have

o +é + ¢ =0,

« B ¥y
Hence the equation of the circumcircle in trilinear coordinates is

aBy+bye +caf =0.

A'

Fia. 88,

To find the equation of the circumcircle in areal coordinates, we have to
write z/a, y/b, z/c instead of o, B, v, and we get

a%yz + b%w + ey =O0.
8. Coordinates of the circular points in trilinears. The circular points
are the points of intersection of any circle with the line at infinity.

Take the circumcircle afy+byx +cxf=0, and the line at infinity
aa +bB +cy=0. The ratio B : v is given by the equation

@By = (by +¢B) (BB +ev),
ur, since &% +¢% —a?=2bc cos 4,

B2+2By cos 4 +v2=0,
te. B:y= —cos dxisind=—¢Fi4,
Henoce o:B:y=etif;Fid; 1,

Hence the tangential equation of the circular points in trilinears is
(le'B +me=i4 —n) (le~ B + mefd —n)
=P +m?+n?~2mn cos A —2nl cos B=-2Im cos C=0.
Similarly the tangential equation in areals is
a*B + b%m? + c®n® — 2mnbe cos A — 2nleca cos B — 2lmab cos C =0,
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9. General equation of a circle. To find the general equation of a
circle, we have only to form the equation of a conic which passes through
the points of intersection of the line at infinity with the circumcircle.
Hence in trilinear coordinates the equation of any circle is of the form

afy +bya +caf —(ax + 5B +ey) (pa +¢f +ry) =0,
and in areal coordinates

- atyz + b2z + ey — (T +y +2)(pT + qy +72) =0.

10. Geometrical meaning of the constants in the equation of a circle.
Let the equation of the circle in areal coordinates be

(z +y +2)(pz +qy +12) — (a®yz + b2z + Axy) =0.
Let the circle cut the sides a, b, ¢ of the triangle in X,, X,; Y,, ¥,;
Z,, Z,; and let t,, t,, ty be the lengths of the tangents from 4, B, C to the
circle. Then t,2=A4Z, . AZ,, t,2= BZ, . BZ,, etc. g A
2, 1,2, t,2 are the powers of the vertices 4, B, C
with regard to the circle. Let the metrical areal
coordinates of Z, and Z, be (zy, ¥;, 0), (%5, ¥, 0)-
These satisfy the two equations
r+y=1,
- czy +(z +y) (px +qy) =0.
Eliminating z, we have
y? - (P +p-g)y +p=0.

Therefore Y1y =p/c.

ACAZ, AZ AZ
But hW=%4po- o 0 =T
Hence p=cyy,=AZ, . AZ,=132
Similarly g=t? and r=tg

Hence the general equation of a circle in areal coordinates is
(2 +y +2) (8,2 + t,2y +15%2) — (aPyz + bPzz + cPay) =0,

where a, b, ¢ are the lengths of the sides of the triangle of reference 4 BC,
and ¢, t,, &, are the lengths of the tangents from 4, B, C to the circle.

Ex. The equation of a circle in trilinear coordinates being

ZaaZpa—Zapy=0,

prove that the squares of the lengths of the tangents from 4, B, C to the circle
are bep, cag, abr.

11. The result of the last section enables us to write down the equation
of any circle in areal coordinates, when we know its intercepts on the sides
of the triangle.

Examples.

1. The inscribed circle,

With the usual notation, where 2s=a -+ b+¢, the intercepts on the sides are_
AZ,=AZy=s—~a, BZy=DBZ;=s-b, CX;=CXy=8—0
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Hence the equation is
a*yz+b%a+ Py — (2 + y+2){(s — a)le + (s — b2y + (e — ¢)%} = 0.

The equations of the escribed circles can be found in a similar way. They
can be written down from the last equation by changing the sign of a, b, or c.

2. The nine-point circle.

Here AZ,=}c, AZ,=b cos A, so that the power of A is 4bccos A. Similarly
for B and C. Hence the equation is

atyz+ b22z + cPxy — Hx + y+2)(xbe cos A + yca cos B+ 2ab cos C)=0,

which reduces to Zayz ~ Za%bc cos A=0.

12. Power of a point P with respect to the circle whose equation in areal

coordinates is
?(x, ¥, 2) = (x +y +2)(px + qy +r2) - (a%yz + b?zx + c2%xy) = 0.

Join P4 cutting the circle in U and V. Then the power of Pis PU . PV.
Let U and V divide PA in theratioA: 1. Let the metrical areal coordinates
of P be (xg, Yo, 25). A=(1,0,0), and therefore the coordinates of U are
proportional to (%, +A, ¥y, %). Substitute in the equation of the circle,
and we have, sinoe @, +y,+2,=1,

(A +1) (P2 + Py + Yo + 129) — {M(6%2 + Pyo) + a2y + b2y + c25yiye} =0,
which gives the quadratic equation for A,
DA+ NP + Py + Yo + 120 — b2 — *Yo) + @ (Zp, Yo, %) =0.
The roots of this equation are the ratios

up VP
_ Megp Mgy
Now MA=@(Zg, Yo, 2)/p and AU.AV=p;
hence PU . PV =9(zg Yo %)

13. Line-equation of a circle with given centre and radius. In questions
which involve the centre of a circle it is best to form the line-equation of
the circle. When the coordinates of the centre O are given, the line-
equation is easily found, for we have simply to write down the equation
of a conic touching the lines O and OJ at I and J respectively. If the
joint-equation of the circular points is ww’=0, and the line-equation of
the centre is w=0, the line-equation of a circle with centre O is (cf. Chap.
XIIL § 8) w? — A’ =0.

We can establish this result also independently, and show at the same time
that A is proportional to the square of the radius.

From Chap. XII. § 28, we have, if r is the distance of the point (a, B, v)
from the line (I, m, n) in trilinear coordinates,

r2(aa + 5B +cy)?(I2 +m® + 0% — 2mn cos 4 —2nl cos B —2Im cos O)
=4A%(la + mP +nyp.
Hence, since a circle is the envelope of a line which is at a constant distance
from a fixed point, this is the line-equation of a circle with centre («, B, y)
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and radius r. If (&g, Bg, Yo) 8re the metrical trilinear cooxdinates, so that
aoy +bBy+cy,=24, and we put la+mB+ny=w, and
B —-23mn cos 4 =ww',
the equation of the circle reduces to
Pow’ =

14. Condition for perpendicularity. By means of the circular points it
is possible to reduce any metrical problem which involves the measure-
ment of angles to a problem in projective geometry, to which we may
apply homogeneous coordinates.

We shall first prove that two perpendicular straight lines are harmonic
conjugates, or apolar, to the pair of lines joining thewr point of intersection
to the circular points.

Taking rectangular cartesian coordinates, let the two lines be repre-

sented by the equation aa? +Shay + byt =0.
The equation of the two lines joining their point of intersection O to the
circular points, I and J, is 2% 442 =0. '
The condition for apolarity is (Chap. II. § 21)
a+b=0,

but this is just the condition for perpendicularity.
The metrical property, perpendicularity, is thus expressed by means of
the projective property, apolarity.

15. The circular points as a degenerate conic. In rectangular cartesian
coordinates the line lr+my+nz=0 passes through one of the circular
points, if l:l:i:‘l’n=0, s.e. if B+m2=0, ... _"(1)

and this is thus the line-equation of the two circular points. The circular
points therefore appear as a degenerate conic-envelope with (1) as its line-
equation. If we form the point-equation in the usual way, we find

2 =0, (2)
which represents the line at infinity taken twice.

Hence the two figures form together a single degenerate conic, the line
at infinity being the locus and the circular points the envelope. This conic
is called the Absolute, its points, the points at infinity, are called absolute
pownts, and its tangents, the lines through one of the circular points, absolute
lines.

From this point of view we can restate the theorem of §14. Let
Lz +my+nz=0 and lLz+my+n,z=0 be the rectangular cartesian
equations of two perpendicular lines; then

Ll +mmy=0.
But this is just the condition that the two lines should be conjugate with

regard to the conic whose line-equation is I* +m2=0. Hence two perpen-
dscular lines are conjugate with regard to the absolute.
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16. Condition that the two lines (I, m,, n,) and (l,, m,, n,) should be
perpendicular, in trilinear coordinates. The line-equation of the circular
points in trilinears is

B +m? +n% —2mn cos 4 —2nl cos B ~2lm cos C=0.
The two lines will be at right angles if they are conjugate with regard to
this degenerate conic; hence the condition is
Lly +mymy +nyng — (myny +mgn,) cos A — (n,l, +nyl;) cos B
- (Iymy +lym,) cos C=0.

17. Angle between two straight lines. We shall prove next that the angle
between two straight lines can be expressed in terms of the cross-ratio of the
pencil formed by the two straight lines and the two absolute lines through their
point of intersection.

Let y=ztan 0, y=xtan 0° be the equations of the two lines u, u
referred to rectangular axes with origin at their point of intersection O.
The equations of the two lines OI and OJ, which we shall denote by ¢ and §
are y =1z, y= —tx. Then the cross-ratio

t—tan® | ¢—tan’
—t—tan®  —i—tan 0"
t~tan® cos0+4sinb

’

(Y, w')=

= — 20
Now» s7tan® cosO—ssm0 © )
Therefore (4, wu') =e%@-0),
and therefore @=0"-0=}ilog (4, uu’).

18. Condition for a rectangular hyperbola. A conic will be a rectangular
hyperbola when its asymptotes are at right angles, and are therefore
harmonic conjugates with regard to the absolute lines through the centre.
This may be expressed by saying that the circular points I, J are conjugate
with regard to the conic.

Let the equation of the conic in trilinear coordinates be

ao® +bB2% + oy +2fBy +2gyex +2haf3 =0,
and let ay, by, ¢y and A,, By, Cp, denote the magnitudes of the sides and
angles of the triangle of reference.
Let the coordinates of the circular points be I'= (e, By, 11), J = (23, Ba, Ye)s
then the condition that these two points should be conjugate with regard
to the conic is

acy %y +bPB,1Bs +oyrYe +f(Brva + Bava) +9(v10 +Y20) +A (o Bg + 2afy) =0.
Now the line-equation of the point-pair I, J is either
2 +m2 +n2 — 2mn cos Ay —2nl cos By—2lm cos Cy=0,

or (lot, +mBy 4+ ny,y) (loty +mPB, 4+ ny,) =0.
Identifying these two equations, we have

op =2, Byys+PBay1= —2A cos 4,

BiBe=2 1% +Ye%=—2A cos By,

YrYa=A %Py + Py = —2A cos Cp.
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Hence the condition reduces to
“a+b+c—2f cos A4g—2g cos By—2h cos Cy=0.
Similarly, if the coordinates are areals the condition is
aag® +bby? + ccg? — 2fbyce 008 Ay — 2gcgay cos By — 2haghy cos Cy=0.

Examples
. Prove that every conic which passes through the in- and excentres
ofa tmngle is a rectangular hyperbola.
) The trilinear equation of any conic passing through these four points
(1, £1, £1) is po3+¢p2+ry2=0, where p+g+r=0. But this is the condition
-for a rectangular hyperbola.
2. Prove that every circumscribed conic which passes through the ortho-
centre is a rectangular hyperbola.
The condition that the oconic fBy+gyx+haB=0 should pass through the
orthocentre, whose trilinear coordinates are (sec 4, sec B, sec C), is
JSoos A+gcos B+hcos C=0,
but this is just the condition for a rectangular hyperbola.
These two examples are particular forms of the same theorem, viz., If A, B,
C, D are four points such that each 18 the orthocentre of the triangle formed by the
other three, every conic which passes through them is a rectangular hyperbola.

19, The condition for a rectangular hyperbola could be found more
eagily if we were able to write down the condition that a pair of points,
whose line-equation only is given, are conjugate with regard to & conic
whose point-equation is given. We have simple formulae of this de-
scription in the case of two pairs of points on the same straight line, or two
pairs of straight lines through the same point, which are given by quadratic
equations, viz. the two pairs of lines

a,2® +2h,zy + b,y =0,

a2+ 2h,wy + by =0
are harmonic conjugates or apolar if
a,by — 2k, kg +agh, =O0.
We require something analogous of wider application.

The formula in the case of the rectangular hyperbola in areal coordinates
snggests the result that the pasr of points represented by the line-equation

AP + Bm? +Cn® + 2Fmn +2Gnl + 2Hlm =0
are conjugate with respect to the conic-locus

a'e® + by +0'22 +2f 'yz + 29" 2z + 2k Ty <0,
f Aa’ + BY +Cc +2Ff' +2Gg’ +2HHK =0.

It is left to the reader to prove this by reproducing the proof in § 18
with altered letters. In the same way it can be shown that if the point-
equation represents two straight lines, the same condition will secure that
these two lines are conjugate with regard to the conic-envelope tepresented

by the line-equation. This relation between the coefficients of a conic-
locus and a conic-envelope is of far-reaching importance, not only in these



188 CIRCULAR POINTS AT INFINITY {xrv. 19

cases where one of the conicr is degenerate, but also when both conics are
proper conics. The term apolar which has been used in the restricted
cases is'applied also in the general case. The actual geometrical relation-
ship between two conics in the case of apolarity will be considered in
Chap. XX.

We can now say that & rectangular hyperbola 1s a conic-locus which is
apolar to the degenerate conic-envelope consisting of the circular points.

Further, two perpendicular straight lines form a degenerate comic-locus
which 1s apolar to the circular points ; hence the condition that the two

straight lines 40 1 582 1 oy2 + 2By + 2gya + 2ha =0
should be at right angles is, in trilinear coordinates,
a+b+c—2fcos A-2gcos B-2hcos C=0.

20. The foci of a conic. We have seen (Chap. XI. § 15) that the foci
of a conic are the points of intersection of the tangents to the conic from the
circular points. This result may be stated in a slightly different form.
Regarding the circular points as a degenerate conic-envelope, the given
conic and this degenerate
conic have four common tan- B
gents, which form a complete
quadrilateral. The six ver-
tices of this complete quadri-
lateral are the circular points
I, J and the two pairs of foci
F, F' and G, G'. The har-
monic triangle consists of the
line at infinity IJ, and the
two axes FF’' and GG’ ; and
its vertices are the centre C,
and the points at infinity
A, B on the axes. Since the
two conics have real line-
equations of the second degree
their simultaneous solutions
are two pairs of conjugate
imaginary sets of values of
the line-coordinates I, m, n.
Hence the four tangents are
two pairs of conjugate imaginary lines. Then, since the point of inter-
section of a pair of conjugate imaginary lines is real, we have two real foci,
F, F’, the other pair @, @ being conjugate imaginary points. All four
cannot be real and distinct, for then their joins F@, etc., would be real.

If the conic is a parabola it touches the line at infinity IJ, and one of the
real foci F' becomes the point of contact of the line at infinity with the
‘curve, t.e. the point at infinity on the parabola. The two imaginary foci
G, @ then coincide with 7 and J.

F16. 90,
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If the conic is a circle it passes through I and J. Then all four foci
coincide with the pole of the line at infinity, ¢.e. the centre of the circle.

21. The equations for the coordinates of the foci of a conic in homo-
geneous coordinates would be too complicated to be useful, but the con-
verse problem is of importance and can be solved without much difficulty,
viz. to find the equation of a conic with given foci. ’

To find the line-equation of a conic confocal with a given conic.

Let the line-equation of the given conic be £=0. Then we have to
form the equation of a conic touching the four tangents from the circular
points to X, 4.e. a conic touching the common tangents of £ and the de-
. generate conic ww’=0. The equation is therefore

A2 +on’ =0,
where ww’ =0 is the line-equation of the circular points.

The line-equations of the pairs of foci could be found from this by
choosing A 8o that the left-hand side breaks up into factors. The condition
for this would give a cubic for A. One root A=0 will correspond to the
pair of circular points, the other roots will give the two pairs of foci.

22. To find the line-equation of a conic having a given pair of points

as foci. Let the two given points be F,=(z,, ¥y, 2,), Fo=(;, ¥5, 25).
These two points form a degenerate conic, whose line-eguation is

(I, +my, +n2) (loy +myy +12) =0.  evenenee. JOS (1)

We have then to write down the equation of a conic touching the four
common tangents of the conics wew’ and (1), viz.

(lz, +my, +nz,) (lx, +my, +n2,) + Aww’ =0.
Examples.

1. Show that the real foci of a conic inscribed in a triangle are isogonal
conjugates with regard to the triangle.

The trilinear line-equation of a conic with foci (e, B,, v;) and <a-l—, Bl . ‘—Yl—) is

1 1
(lay + mBy + nyy) (1B 1y + Y0 + 10y By)
~ A+ m?+ n?— 2mn cos A —2nl cos B— 2lm cos C)=0.
If this touches 2=0 the coefficient of /2 vanishes ; therefore A=o,B,v,. Then the
coefficients of m? and n? also vanish, and the equation reduces to
Zmnay (By2+ 1,2+ 28,7, cos 4)=0;
therefore the conic touches all three sides.

2. Find the equation of the inscribed conic which has one focus at the
circumcentre (and the other consequently at the orthocentre).

The trilinear coordinates of the circumcentre are (cos A4, cos B, cos C). Then
cos? B+cos? C+ 2008 Bcos Ccos A=1—cos? A=sin24, and the equation of the
conic is Zmna? cos A=0,

In areal coordinates the equation becomes
2Zmn gin 24 =0.
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23. Ex. Find the locus of the foci of parabolas inscribed in the triangle of
reference. ,
The trilinear equation of a conic having (a,, B,, v;) and («,, By, ¥,) a8 foci is

(toay +mB, + nyy) (bay + m B, + nyy)
— MB+m2+n2— 2mn cos 4 — 2nl cos B—2lm cos C)=0. ........ 1)
For a parabola one foous i8 at infinity, and therefore .
any+ bRy + cy,=0. (2
The oonditions that the conic should touch the three sides of the triangle are
x@y=A=0,8,=Y, (3)
Substituting the values of «;, B,, v, from (3) in (2), we get

Hence the focus («,, {,, ;) lies on the circumcirele of the triangle,

EXAMPLES XIV.

1. Find the locus of the centre of a conic which touches two given lines at
given points.

2. A system of conics is drawn passing through the vertices of the triangle
of reference and also through the centroid. Prove that the locus of their centres
is a conic touching the sides of the triangle of reference at their mid-points.

3. A conic is inscribed in a triangle 4 BC, touching the sides at P, @, B. The
lines @R, RP, PQ meet BC, CA, AB in L, M, N respectively. Prove that LMN
are collinear, and show that if this line passes through the centre of the conic,
it will, for different conics, envelop & conic touching the sides of A BC.

(Pembroke, 1908.)

4. Prove that the line (,m, n) will be a diameter of the conio az?+ by?+ cz2=0,
the coordinates being areals, if I/a+m[b+n/c=0.

5. Prove that in areal coordinates the equation of the diameter of the conic
a2?+by?+ cz2=0 which is conjugate to the direction of the line (I, m, n) is

a(m—n)xz+b(n—Uy+c(l—m)z=0.

6. Prove that the areal coordinates of the centre of the conie

() + (my)+ (n2)h =0
are (m+n, n+1l, l+m).

7. If the equation (lx)’}+(my)i+(nz)*=0 in areal coordinates represents a
parabola, show that I+m +7 =0, and that the line (m —n)z +(n -}y 4+ (I -m)z2=0
is parallel to the axis.

8. Find the trilinear line-equation of a conic which touches the sides of the
triangle of reference at the feet of the altitudes; and prove that the trilinear
coordinates of its centre are proportional to the sides.

9. A conic 8 touches the sides C4, CB of the triangle of reference at 4, B.
Another conic 8’ has three-point contact with 8 at A and passes through B.
Prove that the locus of the centre of S’ is a conic touching CA at 4 and inter-
secting § in two points on the line whose areal equation is 3z —y+2=0.

(Math, Tripos IL, 1911.)
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10. A hyperbola is such that the triangle of reference is self-conjugate with
respect to it, and one of its asymptotes passes through a vertex of the triangle.
Prove that the locus of its centre is a straight line through this vertex parallel
to the opposite side. (Corpus, 1912.)

11. A variable line moves in a plane so that the intercepts made on it by the
sides of a fixed triangle bear constant ratios to one another. Show that the line
envelops a parabola inseribed in the fixed triangle. (See Ex.” XII. 2.)

: (Pembroke, 1913.)

12. Prove that the areal equation of the ellipse circumscribing the triangle
of reference and having its centre at the centroid of the triangle is yz+ zx+ 2y=0.
(The Steiner ellipse, or minimum circumseribed ellipse.) .

13. Prove that the areal equation of the ellipse inscribed in the triangle of
reference and having its centre at the centroid of the triangle is v/z+ v/y+ v/2=0.
(The maximum inscribed ellipse.)

14. Given in position two points and their polars with respect to & conic,
find the locus of the centre of the conic. (Corpus, 1912.)

15. Show that if the polars of P and @ with respect to a conic are parallel
respectively to QR and PR, the polar of B must be parallel to PQ ; and that the
triangle PQR is self-conjugate with respect to a second conic having the same
asymptotes as the former. (Pembroke, 1910.)

16. If an ellipse is either inscribed or circumsecribed to a triangle, show that
its centre must lie either inside the triangle formed by the mid-points of the sides
or in one of the angular areas bounded by two of the sides of this triangle.

17. Prove that the lines Za sin (B— C)=0 and Za/a=0 are at right angles.

18. Prove that the line joining the circumcentre and symmedian point
(Ex. XII. 12) is perpendicular to the join of the Brocard points (Ex. XIL. 13).

19. Prove that the Euler line (Ex. XII. 4) is perpendicular to the line
o cos 4+ B cos B+ vy cos =0 (the polar of the orthocentre).

20. Show that the freedom-equations z=f+1, y=g—2Acos C, z=h—Acos B
represent in trilinear coordinates a line through (f, g, ) perpendicular to BC.
Show further that if f, g, & are the metrical trilinear coordinates, A is the
actual distance of the point (z, y, z) from (f, g, ) measured in the positive
Airection.

21. From a given point O distances O4’=p, OB’=q, OC"=r are measured
in directions perpendicular to the sides BC, C4, A B of the triangle of reference.
Prove that the perpendiculars from 4, B, C on B’C’, C'A’, A’B’ are concurrent
in a point whose trilinear coordinates are (1/p: 1/g: 1/r).

22. L, M, N are the feet of the perpendiculars from a point O on the sides of
the triangle of reference. Show that the perpendiculars from A4, B, C on the
corresponding sides of the pedal triangle LMN of O are conourrent in a point 0,
the isogonal conjugate of O.

23. O is a point at which the sides of the triangle 4 BC subtend equal angles
(#sogonic point). Show that the pedal triangle of the isogonal conjugate of O is
equilateral (1sodynamic point).

24, Show that the equation bcaP—abBy+(c®—a?)ya=0 represents a rect-
sngular hyperbola, and find the equations of its asymptotes.
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25. If in Ex. XII. 7 (xii) the angle 0 is varied, show that the point of con.
currence of AA’, BB’, CC’ describes a rectangular hyperbola passing through
4, B, C, the centroid, the orthocentre, and the two isogonic points.

26. Find the areal equation of the circle with respect to which the triangle
of reference is self-conjugate (the polar circle), and write down its line-equation.
Show also that-its centre is at the orthocentre of the triangle.

27. Find the point- and line-equations, in areal coordinates, of the escribed
ecircles.

28. Show that if fBy+ gy« + haB=0 represents a parabola in trilinear coordi-
nates, and if it touches at A the circumcircle of the triangle of reference 4 RC,
then f/(b £ c)2=g/ab=h/ac. (Corpus, 1911.)

29. Prove that the parabola whose focus is the vertex C of the triangle of
reference and whose directrix is the side 4 B has for its trilinear equation

o?+ B2+ 24P cos C=y2sin? C, (Corpus, 1910.)

30. Prove that, if the conic axz?+ by?+ ¢22=0 touches any one of the sides of
the triangle formed by joining the middle points of the sides of the triangle of
reference, it is a parabola whose focus lies on the nine-point circle of the triangle
of reference. {Selwyn, 1910.)

31. Prove that 22=4zy in areal coordinates represents a parabola whose
focus is (a2, b2, 2ab cos C) and axis z(ad+ 3b%— c?) — y(3a2+ b2 — c?) — 2(a®— %) =0.

32. A variable parabola passes through a fixed point and touches two fixed
straight lines. Show that the envelope of the diameter of the parabola through
the point of contact with one of the lines is a hyperbola, and that the two hyper-
bolas so enveloped are of the same dimensions. Show further that the envelope
of the line joining the points of contact is a hyperbola equal to the conjugate
hyperbola of the first two. (Pembroke, 19086.)

33. Find the trilinear equation of the locus of a point such that the feet of
the perpendiculars from it on the sides of the triangle of reference are collinear.

34. A straight line cuts the sides of the triangle of reference at L, M, N, and
the perpendiculars at these points to the sides of the triangle are concurrent.
Find the trilinear equation of the envelope of the straight line.

35. L, M, N are the feet of the perpendiculars from a point P on the sides
of the triangle of reference ABC. Find the locus of P if AL, BM, CN are con-
current, and show that the locus passes through A, B, C, the orthocentre, and
the centres of the inscribed and escribed circles.

36. Prove that the inverse of a line through one of the circular points is a
line through the other of the circular points, and that the two lines intersect on
the circle of inversion.

37. If z, y, z are superabundant coordinates connected by the identi-
cal relation lj+mgy+nz=1, show that the equation of any circle can be
written

oz, y, 2) = (lgz + mey + n2)(pz+ gy + r2) — (a®mgngyz + Bnglgzz + Flgmary) =0,
and that the power of the point (24, ¥y, 2o) i8 ©(xg, ¥g, 2o)-

In particular for trilinear coordinates, where ¢(a, B, Y) =Zaa. Zpa- ZaBy
and Saa=2A, prove that the power of the point (g, By, ¥o) i8

*abc/Az. (g, Bos Yo
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38. Prove that the areal equation of the point-circle at (%> Yg» %) i8
(T+y+2). Za(Pyd+ b2+ 2beyz, cos A)— (Zxg)2. Satyz=0.

39. Prove that the areal equation of a circle with centre (3, ¥y, 2,) and
radius r is
(z+y+2). Zx(cPy,®+ b2+ 2bcy,z, cos A)— (7 +y,+2,)2. Zalyz— 2 (z+ y+2)2=0.

40. Deduce from Ex. 39 that the distance » between the points (z, y, z) and
(%', ¥', 2’) in areal coordinates is given by

Pz, Zx')2=Zad(yz' — y'z)? - 23 (22’ ~ 2'x) (zy’ — x’y)be cos A.

N. If (§ 7, ), &, 7, ¢) are the areal coordinates of the circular points,
adjusted so that E£’=a?, prove that the square of the distance between the points
(z, y,2) and (2, y’, ') is
z Yy z|. |z y z |+(Cz.Zr)
z y 2 z y 2
E 2 3 € 9 v
and that the corresponding expression in rectangular coordinates is
2 y z|. |z y z |+(2'A
 y o  y z
1 ¢+ 0 1-¢ 0

42. Prove that the areal ccordinates of the centre of the circle

2z . Zpz— Zalyz=0

are a( —pa+gb cos O+ rc cos B+ abe cos A4), eto.

43. Show that the areal equation of the circle passing through the points

(%, yi» 2:)(5=1, 2, 3) is
z y z Za¥yz[Zz |=0.

z ¥y oz ZaPyz 3z
Ty Yo 7 ZaPyzy/Ziz
Ty Y3 7 Zalygzg/Za

44. Three lines are drawn through the Lemoine point of a triangle parallel to
the sides, meeting them in ¥, 2’; Z,X"; X, Y. Prove that these six points
are concyclic (the Lemoine cirele). : )

45. If three lines are drawn through the Lemoine point antiparallel to the
sides of the triangle, meeting the sides in ¥, 2’; Z, X’; X, ¥/, prove that these
8ix points are concyclic (the cosine circle).

46. XX', YY', ZZ’ are pairs of points on the sides BC, C4, AB of the triangle
ABC, such that Y’Z||CB,Z'X | AC, X'Y | BA; Z'X and X’Y meet in P,
X’Y and Y’Zin@Q, Y’Zand Z’X in R. Prove that AP, BQ, CR are concurrent;
in a point K, and that the six points XX’Y Y'ZZ’ lie on a conic. Show further
that the conic is a circle if, and only if, K is the Lemoine point (the Tucker circles).

47. Prove that if K, in Ex. 46, is a fixed point, the locus of the centre of the,
conic is the straight line joining K to the centroid. Interpret the case when K'
is the centroid.

48. Prove that the centre of the circle in Ex. 45 is *be id-peint of the jain
of the circumcentre and the Lemoine point., ‘
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49. Prove that the condition that the two circles whose trilinear equations

are 2aa . Zpa==SaPy and Zaa.Zp’a=Zafy should cut orthogonally is
1+ Zpp’—Z(p+p’+qr'+q’r) cos 4=0.

50. Show that the trilinear equation of the circle whose diameter is the line

joining the points (a,, 8;, v;) and (a,, By, v,) is
Zaa . Zabe{(B, By+ YY)+ (ByYe+ BoYr) c0s A}=Zac, . Zan,. Zafy.

51. Show that the trilinear equation of the circle with the circvmcentre and
the Lemoine point as ends of a diameter (the Brocard circle) is abeZoa=Sadpy.

52. Prove that the orthoptic circle of any inscribed conic cuts the polar circle
of the triangle orthogonally.

53. Prove that the orthoptic circles of a system of conics touching four given
lines form a coaxal system.

54. Prove that the directrices (two real and two imaginary) of a conic are
common chords of the conic and its orthoptic circle.

55. Prove that the circumcircle of a self-conjugate triangle of a rectangular
hyperbola passes through the centre.




CHAPTER XV.
CONFOCAL CONICS AND SIMILAR CONICS.

1. Systems of conics with common foci. Two conics are sail to be
confocal when they have both (real) foci in common. Since the foci are
the vertices of the complete quadrilateral formed by the tangents to the
conic from the circular points, we see that if the real foci are given the
imaginary foci are fixed, and vice versa. And the conics which have
the same foci form a system touching the four fixed lines which join the
foci to the circular points.

2. Confocal ellipses and hyperbolas. We shall consider first the case
in which the two foci F, F’ are distinct and at a finite distance.

KT
XL

Fia. 91,

‘The mid-point O of FF’ is then the centre of every conic of the system,
and FF’ is the principal axis. Taking O as origin and OF as axis of z
the equation of any conic of the system must be of the form )

2y
—+% =1,

_ P 1

where, for a real conic, p at least must be positive, and p> g. Now
OF*=c2=p-q.
1956
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Hence, if p and ¢ are fixed and A is a variable parameter, the equation
| = \+ A 1
P- A q- A n
represents a system of confocal conics with foci at the points (+V/p—- g, 0)

When A<g¢<p, the conic is an ellipse, As A increases, both axes become
smaller, but the minor axis more rapidly, until, when A =g, the conic flattens
out into the two coincident lines 42 =0.

When ¢<A<p, the conic is a hyperbola, and as A increases, both axes
increase, the conjugate axis more rapidly, until, when A=p, the conic
flattens out into the two coincident lines 22 =0.

- When A>p, the conic is virtual.

. For negative values of ), increasing numerically, the axes of the ellipse
increase, and their ratio becomes more nearly equal to unity, s.c. the
ellipse becomes more nearly circular ; and as A->— 0, the ellipse tends to
the line at infinity, taken twice. The last result is seen by writing the
equation in the homogeneous form

x? y?
p-rtgn ™
for this reduces to 22=0.
We have thus a system of confocal ellipses and hyperbolas.

3. Through every point there pass two conics of the system, one ellipse
and one hyperbola, and these cut at right angles.

If the conic passes through the point (x,, y,), we have

Mg -N+y(p-N -(p-N(g-N =0,

which is a quadratic for A. Now, on putting — e, g, p for A, the left-hand
side has the signs —, +, —. Hence, of the roots of this equation one is
<(g, and the other lies between g and p, t.e. one of the conics is an ellipse
and the other a hyperbola.

Let P be the point of intersection of an ellipse and a hyperbola of the
system. Then the tangents to the ellipse and the hyperbola, which pass

through P, are the two bisectors of the angles between PF and PF’, and
are therefore at right angles.

4. A very convenient way of writing the equations of the ellipses and
hyperbolas of a confocal system is as follows :

2 y2
Hyperbolas ose ~ wimig ~ O
. a? y? i
Ellipses GoshEg + e 7 =c?;

for in the first case, p=c? cos®p, g= —c?sin%gp, and in the second case,
p=c? cosh?{, g=c? sinh®y. In each case, p—g=c2.

Ex. Prove that if 2+ iy=c cos (+¢}), the curves p=oconst. and $=const.
form a system of confocal hyperbolas and ellipses.
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5. Confocal parabolas. Let us consider the next case, in which one focus
is at infinity. The conics are then parabolas.

The equation of a parabola, with focus at the origin and axis the axis
of z, is yr=4A(z+2).
When A>0 the vertex is to the left, and when A<<O the vertex is to the
right. In the intermediate case, when A =0, the parabola flattens out into
the two coincident lines y2=0. As A+, the parabola tends to the line
at infinity taken twice. The last result is easily seen by writing the
equation in the homogeneous form

¥4 )
3 4z<7\+z.

Fia. 92.

8. Through every point there pass two parabolas of the confocal system,
one belonging to each group, and these cut at right angles.

If the parabola passes through the point (z,, ¥,), we have

42 + 40z, — 4,2 =0.

This is & quadratic for A, and the roots are one positive and the other
negative.

Further, the tangents to the two parabolas which pass through P are
the bisectors of the angles between PO and the line through P parallel
to the axis, and they are therefore at right angles.

Ex. Prove that if z+iy=(p+i{)? the curves p=const. and {=const. are
two groups of parabolas forming a confocal system.

7. Line-equation of a conic of a confocal system. The line-equation
of the conic 2 o
@F-A E-n
f.e. the condition that the line
Ax+my +n=0
8.A.0 o

L,
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should be a tangent, is (a® — AP + (b2 - N\)m? =n3,
or A(R +m?) = a2 + b®m? — nd.
Since this equation is of the first degree in A, it follows that one and only
one conic of a confocal system can be drawn to touch a given line.

A similar result holds for confocal parabolas, for the line-equation of
the parabola P=4A(z+N)
is A2 +m2) =nl.

Referring to Chap. XIV. § 21, the general line-equation of a system of
conics confocal with the conic

S =APR + Bm? +Cn? +2Fmn +2Gnl + 2HIm =0

is AB+m?) =3,
for this represents a conic touching the four lines common to the conic <
and the degenerate conic P +m2?=0, i.e. touching the four tangents to 3
from the circular points. ' '

If C=0, 3 is a parabola, and all the conics of the system are parabolas.

Ex. Find the equation of the conics confocal with 2xy=c.

The line-equation of this is 2¢%m—n2=0. Hence the line-equation of the
confocal system is 2c2m — n2+ A+ m?)=0, (1
and the point-equation is  Az?-+ry2— 2zy=(32—1)c% (2)
To find the foci we have to determine A so that the left-hand side of (1) may
factorize. This gives A= 1. The factors corresponding to A=1 are

(cl+cem+n)(cl+cm—mn). :
Hence the real foci are (¢, ¢) and ( —¢, —c). A= —1 gives the imaginary {oci.

8. Line-equation of a conic with given foci. If (z), ¥;, 2,) and (x5, ¥s, %)
are the homogeneous cartesian coordinates of the foci, so that their line-

equations are Tl +ym +2n =0,
Zol +yym + 2,0 =0,
the equation of the system of conics with these points as foci is
MB +m?) =(z,0 + yym + ) (2gl +ygm +25m).
~ If either 2,=0 or 2,=0, all the conics are parabolas. If both z,=0 and
2, =0, the conic degenerates to a point-pair lying on the line at infinity.

9. Tangential properties of confocals. The locus of the point of inter-
section of two perpendicular tangents, one to each of two given confocal
conics, t8 a circle.

Let the equations of the confocal conics be

2 ¥ @ ¥
F+ﬁ=l and a~2*3+62__—)'\=1.
The equations of two perpendicular tangents are
z cos @ +y sin ¢ = (a? cos®¢ +¥* sin%p)i,
z sin @ —y cos @ = {(a* —A) sin’*@ +(b* - Q) costp}t.
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Squaring and adding, we get
o ?+yt=a®+02-)
As particular, or limiting, cases of this theorem, we have the following :
(1) Let the two conics coincide. Then the locus is the orthoptic circle.
(2) Let one of the conics reduce to a point-
pair, viz. the foci; then the locus is the
auxiliary circle of the other conic.

10. The tangents from any point P on a
conic to a confocal conic are egually inclined
to the tangent at P. For

LFPT=/LFPT,
LFPU=LFPU;
therefore LUPT=LUPT. Fio. 93.

11. Graves’ Theorem. These tangential properties of confocal conics
are analogous to the focal properties of a conic, where the focal lines through
a point are replaced by the tangents to a confocal. It appears, in fact, that
the ordinary focal properties are limiting cases of these more general
theorems, since the two focal lines are just the pair of tangents to the
confocal conic when it has degenerated to a point-pair. One of the most
remarkable extensions of focal properties is the generalization of the method
of generating an ellipse by a thread passing round the foci.

A thread, with its ends joined, is passed round an ellipse and drawn tight
by a pencil point at P; as P moves it will trace an ellipse confocal with the
given ellipse.

Let P, P’ be two positions of the tracing point very close to one another.
Let 8, 7 and 8’, T" be the points of contact of
the tangents from P, P’, and let PS and P'S’
meet in M, PT and P'T' in N.

We have then the condition

SP+PT +arc TT' =arc 8§’ +S'P'+P'T".
Now in the limit, as P’ approaches P,

arc S8’=28M and arc T7"=2TN.
Draw PK | 8’P' and P'K’| PT. Then, ulti-
mately, MK=MP and NP'=NK’. We bave
then
(SM + MP)+(PK’'+K'T)+(TN+N1T')
=(SM + MS')+(S'K +KP')+(P’'N+NT"),
fe. MK +PK'+K'N=MK +KF’' +K'N.
Hence PK’'=P'K.

It follows, therefore, that PP’ is equally inclined to PM and PN, and
therefore equally inclined to FP and F'P. PP’ is therefore the tangent
to an ellipse with foci ¥, F’, and hence the locus of P is this ellipse. A
similar proof holds for the parabola and the hyperbola.
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12. The locus of the pole of a given straight line with regard to the conics
of a confocal system is a straight line. The pole of the line Iz +my +n=0,
with regard to the conic
A +m?) =a®? + b?m? — n?,

is z:y:z=(2-N1:(®-Nm:-n.

Eliminating A, we have
mz —ly= —(a®-b%)Im/n,

which represents a line at right angles to the given line.

In particular, if the given line is a tangent to one of the conics of the
system, its pole with regard to that conic is the point of contact P, and the
locus of the poles with regard to all the conics is the normal at P. Hence,
if S and & are confocal conics, and ¢ is a tangent to S at P, the pole of ¢
with regard to S’ lies on the normal to S at P. As there is always one conic
of the system touching the given line, we can express the theorem thus:
The locus of poles of a given straight line with regard to the conics of u confocal
system 1is the normal at the point of contact to the conic which touches the given
straight line.

If I, m’, n’ are the coordinates of the line associated with I, m, n,

we have Vem' :n' =mn:—nl: (a®-b?)im.
‘Hence — W' =mm’ =nn’[(a® - B?).

The relation between the two lines is therefore symmetrical. Hence we
may say that the tangents at a point P to the two conics of the system which
pass through P have the property that each is the locus of poles of the other
with respect to the conics of the system.

Ex. From any point @ on the tangent L

at P to a conic tangents Q7, Q7T are drawn
to a confocal conic; prove that 7'P, T'P P
are equally inclined to the tangent at P.
The pole of PQ lies on the normal PK;
it algo lies on 77V, the polar of @. Hence it 0
is the point K.
Let 77 meet PQ on L. Then (LK, TT’)
is harmonic, and P(LK, T7’) is harmonic.
But PK 1 PL; therefore I'K and PL are the

bisectors of the angles between PT and PT". F1a. 95.

13. Corresponding points. Consider first two circles with centres O
and O, and fix a diameter 4B and A’B’ on each. Then calling 4 and 4’
corresponding points, any other pair of points P and P’ on the two circles
are called corresponding points, when the angles AOP and A’0'P’ are equal,
the angles being measured in a definite sense round each circle.

If the circles are now distorted into ellipses with major axes 4B and
A’B’ by diminishing the ordinates in given ratios, the new positions ¢
and Q' of P and P’ are called corresponding points on the two ellipses.
The points @ and Q' have then equal eccentric angles, and if the semi-
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axes are @, b and a’, ' and the coordinates of Q and Q' referred to the
prmmpa.l axes are «, y and ', y’, then
zla=z'fa’ and y[b=y'[V'.

Similarly corresponding points on two hyperbolas #2/a® —y2/6?=1 and
#%[a® — y"%[b =1 are such that z/a=2'/a’ and y/b=y'[V’, and such points
have the same parametric value when the equations are expressed in the
form z=a cosh ¢, y=> sinh ¢.

And lastly, corresponding points on two parabolas y*=4az and
y2=4a'z’ (the axes of reference not necessarily being the same for the two
curves) are such that z/a=2'fa’ and y/a=y'[a’. Such points have the
same parametric value when the equations are expressed in the form
z=at?, y=2at, or, if the origin is at the focus and the equation is

2 =423z +23),
when the freedom-equations are z=22—22, y=2¢\.

When the two conics are similar, so that their axes are in the same
ratio, corresponding points are similarly situated on the two curves.

14, A system of confocal ellipses and hyperbolas tntersect one another in
sertes of corresponding points. The equations of an ellipse and a hyperbola
of a confocal system are

@ P a2 y?
cosh?) smhzqa =¢* and cos?p  sin’p

Fia. 96. Fia. 97

Both these equations are satisfied by
Z=c cosh ¢ cos g,
y=csinh { sin q.
Hence, keeping ¢ constant and letting ¢ vary, the ellipses are cut by the

fixed hyperbola in a series of points P, @, ... with the constant eccentric
angle @ ; similarly, keeping ¢ constant and letting ¢ vary, the hyperbolas
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are cut Ly the fixed ellipse in a series of points P, S, ... with the constant
parameter ¢.
A system of confocal parabolas intersect one another in a series of corre-
sponding points.
The equations of two intersecting parabolas of a confocal system are
P=42(z+{?) and y*=—49*(z-¢?).
Both these equations are satisfied by
z=¢% - {2,
y=20¢.
Hence, keeping ¢ constant and letting ) vary, the first system of parabolas
are cut by the fixed parabola of the second system in a series of points
P,Q,... with the constant parameter ¢; and similarly for the other
system.

Examples.
1. The distance between two points, one on euch of two confocal conics, is
equal to the distance between their corresponding points.
Taking the case of two ellipses 4, A’ (Fig. 96), let their semi-axes be a, b and
"a’, b/, so that a?— b2=a3— b2 ; and let the eccentric angles of the two points P, B

be o, ¢’. .
Then PR2=(a cos ¢—a’ cos ¢’)2+ (bsin ¢— b’ sin ¢*)?
and Q8%=(a’ cos p—a cos ¢)2+ (b’ sin @ — b sin ¢")?

PR? - (Q8%=(a?— a'?)(cos? ¢ — cos? ¢’) + (b% - b2)(sin? ¢ — sin? ¢”)
= (a®— a"?)(cos® @ — cos? @’ +sin? ¢ —sin? ¢’)=0.
Therefore PR=@8.

This proves the theorem also for the two hyperbolas B, B’, since § and Q are
the points which correspond respectively to P and E. The theorem may be
proved in a similar way for two confocal parabolas.

A corresponding theorem to this in three dimensions is known as Ivory’s
Theorem.

2. Prove that if ¢, ¢’ and o, ¢’ are the parameters for the two ellipses
and hyperbolas which intersect in P, @, R, 8,

PR?=Q8%=c*{cosh (¢ + ")~ cos (p+ ¢")Hcosh (¢ — §") — cos (¢~ @)}
3. Prove similarly for confocal parabolas that
PRA=QS*={({+ )P +(9+9PH(Y— )+ (e - o).

15. Elliptic coordinates. The position of any point P can be determined
by the parameters A, u. of the two conics which pass through P and belong
to a given confocal system of ellipses and hyperbolas. This gives us a
sort of coordinate system in which the two systems of lines of the coordinate
network are confocal ellipses and hyperbolas. As these lines are curved
and not straight lines as in cartesian coordinates, the coordinates are called
curvilinear coordinates. Ordinary polar coordinates are also partly curvi-
linear. The particular system of curvilinear coordinates that we are to
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consider is called elliptic coordinates. (There is an analogous system based
on confocal parabolas called parabolic coordinates.)
Take one particular conic of the system which we shall choose as an

ellipse 2 P
@ p=l
then any conic of the confocal system is represented by
__3:2_, + .. yz_ =1
PEN N S

To any point (z, y) there corresponds one set of values of the parameters
A, u of the conics which pass through this point. These are the roots of
the equation

A2 +A(a2 + b2 — a2 - y2) +a%b% — b2® - a2y2 =0.
Therefore At+p=—a? -2 +a+4p,

M=a?h? — b2 — a%y2, )
From these we get (@2-13)at= (a®+2)(a®+p), } o
(az_bg)y2= —(b2+)\)(b2+u). ........................... )

To every set of values of (A, p) there correspond four points, the points
of intersection of the two conics. Since 2, | are given as the roots of a
quadratic equation they are interchangeable, and the point (2, y) is repre-
sented either by (A, ) or by (i, A).

Elliptic coordinates were devised at first by Lamé (about 1840), not for plane
geometry but for the corresponding system of confocal ellipsoids and hyperboloids
in space, and it is in three dimensions that they are most useful. They afford a
convenient system of curvilinear coordinates for treating the geometry of curves
on the surface of an ellipsoid analogous to the determination of a point on an
ellipse by its eccentric angle, or a point on a sphere by its latitude and longitude,
and are also of use in physical problems such as the attraction of an ellipsoid or
the distribution of temperature within an ellipsoid.

SIMILAR CONIOS.

16. Similar figures. Two plane figures are said to be similar and
similarly placed, or homothetic, when, corresponding to a point O in the

Plane of the first figure, it is possible to find
a point O’ in the plane of the second figure,
such that radii OP drawn from O to the P
points of the first figure are proportional to
parallel radii O’P’ drawn from O’ to points $ D
0 5
o
Fie. 08

of the second figure. The ratio OP: O'P’

is called the ratio of stmilitude. A pair of

points P, P’ or O, O are called corresponding

points, and the lines PQ, P'Q’ joining any

two points and their corresponding points are called corresponding tines.
When one such pair of points O, O’ exists, there is an infinity of such
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pairs. For take any point S in the plane of the first figure and draw
0’8" || 08, so that LS'O'P'=/8OP, and 0'S’:08=0'P’: OP. Then
the triangles OSP and O'S’P’ are similar, and SP:8’P'=0P : O’'P' =the
ratio of similitude.

If corresponding radii are not parallel, but pairs of corresponding radii
are proportional and include equal angles, the two figures are similar
without being homothetic. A mere rotation of one of them will suffice
to make them homothetic.

If one of two homothetic figures is rotated in its plane through two right
angles, the figures are again homothetic, but in the one case corresponding
radii are drawn in the same sense, and in the other case in opposite senses.
In either case, since pairs of corresponding lines of the two figures are
parallel, and therefore intersect on the straight line at infinity, two homo-
thetic figures are in perspective. The centre of perspective, which is the
point. of concurrence of lines joining pairs of corresponding points PP’,
QQ’, ete., is called the homothetic centre.

17. Similar conics. If two conics are similar their centres are corre-
sponding povnts. ,

Since, by supposition, the conics are similar, there exists a pair of
corresponding points O, O such that, if POY and P'0'Q’, pOg and p'0’¢’
are corresponding chords through O, 0’,

OP:0'P'=0Q:0Q =0p:0p'=0q:0¢ =k.
Let D, D', d, d be the lengths of the diameters parallel to these chords
Then D?*:d2=0P.0Q:0p.0gq=k*.0'P'.0Q :k*.0p".0¢

- =0P .0Q :0p .0q¢=D"?:d"
Hence corresponding diameters are proportional, and therefore the centres
are corresponding points.

18. Condition that two conics should be homothetic. Let the equations
of the two conics, referred to parallel axes through their centres, be

ax® +2hxy +by? =1,
a'z?+2h'2'y +b'y?=1.
Transforming to polar coordinates, these equations become
72(a cos?0 + 2% cos 0 sin 0 + b 8in20) =1,
7%(a’cos?0 + 27’ cos 0 sin 0 +b’sin20) =1.
The ratio of the squares of parallel radii, corresponding to the angle 0,
is therefore @’ cos®0 + 25’ cos 0 sin 0 +b'8in%0
a c0s%0 + 2% cos 0 sin 6 +5 sin20
This ratio must be a constant, k2, for all values of 0; hence
a Kb
Pl dal Sl
These are therefore two mecessary conditicns that the conics should be
homothetic.
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19. A peculiarity arises when k2 is a negative constant. In this case the

equations of the two conics are of the form
ax? +2hay + byt =1,
ax’? + 2ha’y’ +by'% = - &,

and the one conic is homothetic to the conjugate of the other conic. The
ratio of similitude is in this case purely imaginary.

Ex. Deduce that two conics are homothetic when the terms of the second
degree in their equations are the same.

20. Two homothetic condcs have their corresponding asymptotes parallel,
for the terms of the second degree in the two equations are the same, and
these, equated to zero, represent lines parallel to the asymptotes. Hence
two homothetic conics cut the line at infinity in the same two points.
The equation of a conic passing through the points of intersection of the
conic, 8 =0, with the line at infinity, «=0, is of the form

S —uv=0,
where v=0 represents any straight line. In cartesian coordinates u does
not contain z or y; hence this equation has the terms of the second
degree always the same.

Further, if the conics are concentric their asymptotes coincide, and
gince a conic touches its asymptotes at the points at infinity, we have to
conceive of two similar, similarly situated, and concentric conics as having
double contact at infinity. The equation of a system of such conics is

S -Au?=0.

Examples.

1. In areal coordinates the conic 8, =yz+2zz+2y=0 is the minimum
circumscribed ellipse of the triangle of reference, and the conic

8, = 22+ 92+ 22— 2yz— 2z - 2xy=0
is the maximum inscribed ellipse. Show that these conics are homothetic and
concentric. '

We have u=z+y+2z, Sy=1u?—4(yz+2x+ay)= u2—48,; therefore, etc.

2. Prove that the conditions in areal coordinates that two general conics
should be homothetic are

bl+cl_2fl—cl+al_2gl al+bl_2hl
b+c-2f c+a—2g a+b-2h
and that the four conditions that they should be homothetic and concentric way
be written a b e f g h|=0
al bl cl f’ gl hl I
1 1 11 1 1],
21. Condition that two conics should be similar. If the conics
ax? +2hxy + byt +...=0 and a'z?+2h'xy +by+...=0
are similar, but not similarly placed, we can rotate one of them so as to'
make them homothetic. Let the equation of the second conic after
rotation he a,2% +2h,@y + by +... =0,
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We are now to have Pinb 3 =Z=)\, reesessesensantteasssnsssssanasassssenne (1}

but, the axes being rectangular,
a,+b,=a’+¥,
ab, ~h2=a'b' - b3

and from (1), @, +b;=A(a +b),

a;b, — hy2 =22(ab ~ h?).

a+b 2 (a'b - k')

a+b " Afab=-1i?)

g+ a+bd @
V(@b -1 y/(ab-R2)’

The geometrical interpretation of this analytical condition is that the
agymptotes contain equal (or supplementary) angles. Since the eccen-
tricity of a conic is determined by an equation involving only the ratio
(ab—4?)/(a +B)? (see Chap. X. § 13), this condition is often stated loosely
thus: two conics are similar when they have the same eccentricity. The
complete statement, however, is: the necessary and sufficient condition
that two conics should be similar is that the two eccentricities of the one
should be equal to the two eccentricities of the other; in order that the
two conics should be really of the same shape, and have a real ratio of
similitude, it is necessary that the eccentricities of the real foci in each case
should be equal.

Cor. 1. All parabolas are similar conics.

Cor. 2. All rectangular hyperbolas are similar conics.

Therefore

EXAMPLES XV.

1. Two mutually perpendicular straight lines are so related with respect to
a conic that each passes through the pole of the other. Show that they are
similarly related with respect to any confocal conic. (Trinity, 1913.)

2. Prove that the conics 22—y~ 4z +2y+2=0 and 22+ 3y -4z~ 6y +4=0
are confocal.

3. Show that the locus of the intersection of tangents to & variable ellipse
of a confocal family at points having given eccentric angles is a hyperbola.

_ (Math, Tripos II., 1913.)

4. Prove that the locus of the point of interseotion of two perpendicular
tangents, one to each of two confocal parabolas, is a straight line perpendicular
to the axis.

S. Prove that the general equation of a conic confocal with the conic § is
A8+270P+22=0, where ®=0 is the equation of the orthoptic circle in ite
normal form.

6. Show that the general equation of conics whose foci are the given points
(a,0) (0, b') is )

{(z—a)(b--b') - (y—b)(a—a")}*+ 2N{(z - a)(z— @)+ (y - b)(y — b")} - A2=0.
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7. If ¢ is the angle between the tangents to the conic A=k of the confocal
system 23/(a? +1) +y3/(b* +2) =1 from the point whose elliptic coordinates referred
to the ellipse 22/a®+y3/b*=1 are 1, p, prove that

ro_ —A-H) (k)
tant o= 5 T u-2k8

8. If A, @ are the values of the parameters for the parabolas of the confocal
system y*=4A(x+1) which pass through P, prove that the angle ¢ between the
tangents from P to the parabola y2=4k(z + k) is given by tan? = - (A - k) (n — k).

9. A pair of tangents to any confocal of z%/a?+y?[b?=1 pass respectively
through the fixed points (0, ¢;) and (0, ) ; show that the intersection of the
tangents lies on the circle

(xﬁ +y2 - a?+b3) (6 +65) =2y(01Cp — a2+b3). (Pembroke, 1913.)

10. 'Two conics are concentric and coaxial ; a point is taken such that the
tangents from it to one of the conics intersect the other conic in four points, of
which one of the joining chords (other than the tangents themselves) is a diameter.
Prove that the locus of the point is a concentric and coaxial conic, which when the
two conics are confocal is also confocal with them. - (Pembroke, 1900.)

11. The three sides of a varying triangle touch the parabola y?=4az, and
two of the vertices lie on the confocal parabola y®=4(a+A)(x+2); prove that
the third vertex lies on the confocal y2=4(a+ @)(z+ ), where ap=4r(a+2).

(Pembroke, 1913.)

12. If a focal chord of an ellipse, which is parallel to a semi-diameter CP, is
equal to the transverse axis of the confocal hyperbola through P, prove that P
is one of four points on the ellipse, and the hyperbola cuts off from the focal chord
a length equal to the transverse axis of the ellipse. (Selwyn, 1913.)

13. A variable line is such that the lengths p;, p, of the perpendiculars on it

from two fixed points satisfy the equation A(p 3+ p,%)+ 2p:pyp,=d®, where ), i1, d
are constants ; find the envelope.

14. Given a triangle 4 BC, prove that there are four conics (one ellipse and
three hyperbolas) which can be inscribed in the triangle and have the property
that a confocal conic can be circumscribed about the triangle. Prove the
following properties of this group of conics : (i) at each vertex the circumseribed
ellipse and one of the hyperbolas touch the exterior bisector of the angle, and
the other two hyperbolas touch the interior bisector ; (ii) the points of contact
of the insoribed oconics are points of contact of the in- and e-scribed circles ; (iii)
the three normals to each of the four inscribed conics at its points of contact are
ooncurrent. .

15. An angle of constant size moves so that one arm passes through the focus
and the other is a tangent to a fixed parabola. Find the locus of its vertex.

16. An angle of constant size moves so that one arm passes through a foous
and the other is a tangent to a fixed ellipse. Prove that the locus of its vertex
is a circle touching the ellipse at two points where the tangent is inclined at the
given angle to the focal radius. .

17. Tangents are drawn from a point P to two confocal parabolas, and they
form a constant angle «. Show that the loous of P is a hyperbola which has
double contact with each of the two parabolas.

18. Prove that the centre of similitude of two confocal parabolas is the
common focus.
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19. Prove that two similar, similarly situated, and concentric conics intercept
between them equal segments on any line which they cut.

20. Show that a tangent to the inner of two concentric homothetic ellipses
and terminated by the outer is bisected at the point of contact.

21. Show that any tangent to the inner of two homothetic and concentric
ellipses cuts the other in points whose eccentric angles have a constant difference.

22. Prove the theorem corresponding to the last example for the hyperbola.

23. Prove that any tangent to the inner of two concentric homothetle conics
cuts off a constant area from the other.

24. Prove that the distance between two parallel tangents at correspondmg
points of two concentric homothetic ellipses is proportional to the perpendicular
from the centre on the tangent to one of them. ,

25. Prove that the theorems of Exs. 19, 20 and 23 are true for two equal
coaxial parabolas whose vertices are in the same duectmn State the theorems
corresponding to Exs. 21 and 24.

26. Given three conics, homothetic in pairs, prove that their six homothetic
centres lie in sets of three on four straight lines.

27. Two variable conjugate semi-diameters of an ellipse S cut a fixed con-
centric ellipse 8’ in points P, Q; show that the envelope of PQ is an ellipse
homothetic and concentric with 8, and find the condition that it may coincide
with 8. (Cf. Ex. X. 7.)

- 28. Two variable conjugate semi-diameters of an ellipse cut a fixed concentric
circle in points P, @ ; prove that the envelope of PQ is a similar ellipse.
(Selwyn, 1910.)

29. Prove that the locus of the Frégier point (see Chap. VIII. §9) correspond-
ing to a variable point on a fixed ellipse is a homothetic and concentric ellipse.

30. Distances P@ are cut off on the inward drawn normals at points P on an
ellipse, equal to k times the semi-diameter conjugate to the diameter through P.
Find the locus of Q. Examine particularly the cases k= + 1, k=2ab/(a?+ 5?).

31. Find the equation of the circle of which the chord of the ellipse

az®+byr=1
intercepted on the line lz+my=1 is a diameter. Prove that this circle will
touch the ellipse at a third point if the given chord touches a certain similar,
similarly situated, and concentric ellipse. (Pembroke, 1910.)

32. An ellipse 8’ of given area has contact of the third order (four-point
contact) with a given ellipse S. Show that the locus of the centre of  is an ellipse
similar and similarly situated to 8. (King’s, 1912.)

33. A variable circle touches an ellipse, and the chord joining the other two
pointe of intersection touches a similar coaxial ellipse. Prove that the locus of
the centre of the variable circle is a coaxial ellipse. (Trinity, 1899.)

34. H the conic uz%+ vy®>+w22=0 in areal coordinates touches at a finite
point the conic similar and similarly situated, but which passes through the
angular pojnts of the triangle of reference, show that w+v+w=0, and that the
conics are hyperbolas. (Pembroke, 1901.)




CHAPTER XVL
PENCILS AND RANGES OF CONICS.

1. Pencil of conics; four-point system. A conic is completely and
uniquely determined by five points. If four points only are given the
conic has still one degree of freedom, and an infinity of conics can be drawn
to pass through the four points. This is analogous to a system of lines
passing through one fixed point, and we call it a pencil of conics. It is
also called a four-point system of conics, and the four fixed points are called
base-points.

If S, and S, are any two conics of a pencil, they intersect in four points,
and all the conics of the system pass through these four points. A pencil
of conics is therefore completely determined by any two conics of the
system. '

The equation of any conic passing through the points of intersection
of S; and .S, is 8, +A8,=0.

This equation exhibits the conics of the pencil as depending linearly on .
a single variable parameter A.

Let the four base-points be 4, B, C, D. Then the pairs of lines BC, 4D ;
CA, BD; 4B, CD can be regarded as degenerate conics of the system. It
the equations of the lines 4B, BC, CD, DA are denoted by a=0, =0,
Y=0, =0, then two conics of the system are S;=ay=0 and S,=pd=0.
Hence the equation of the pencil can be written

ay —AB3=0,
where A is the parameter on which the system linearly depends.

Ex. Find the equation of the pencil of conics thrbugh the four points
( £1, %1) in cartesian coordinates.

It is only necessary to find the equations of two distinet conics through these
four points. The pairs of lines 2= +1 and y= +1 both pass through all four
points ; hence we can take

Si=(z-1)z+1)=22-1, S,=(y-1)}y+1)=43~1,
and the equation of the system can be written
2-1=A(y2-1).

2. Through any given point there passes one conic of a given pencil, for
the given point together with the four base-points completely and uniquely
determine the conic.

200
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Otherwise : if the conic S; +AS;=0 is to pass through a given point
(#', '), we have S;’ +A8,’ =0, an equation of the first degree to determine A.
This property is therefore a result of the fact that the parameter A is
involved linearly.

There are two conics of a given pencil which touch any given line, for
the condition that a conic should touch a line is an equation of the second
degree in the coefficients, and gives therefore an equation of the second
degree in A. If the line passes through one of the base-points the two
conics will coincide, for the point of contact must coincide with the base-
point, otherwise the line would meet the conic in more than two points.
If the line passes through two of the base-points the conic will degenerate
to this line and the line through the other two base-points.

8. Harmonic triangle. We shall find it most convenient to use homo-
geneous coordinates. We have seen that, by taking as triangle of reference
the harmonic triangle of the complete quadrangle determined by four
points, the trilinear coordinates of the four points become (+p, +q, +7),
and by taking more general homogeneous coordinates the coordinates can
be reduced to the simple form (1, +1, +1).

Now, if the conic aa? +by? +c2® +2fyz + 2gzx + 2hay =0 passes through
the four points (+1, +1, +1), we have

a+b+c+2f+29+2h=0,
a+b+ec+2f-29-2h=0,
a+b+c-2f+29-2h=0,
a+b+c-2f-29+2h=0.
Bubtracting each equation from the first, we get
f=0, ¢g=0, A=0,

and a+b+e¢=0.
Hence the equation ax? +by? +c? =0,
with the condition a+b+c=0,

represents a pencil of conics through the four points (+1, +1, +1). Thes
form of the equation shows that the triangle of reference is self-conjugate
with regard to every conic of the system. Hence all the conics of a pencil
have a common self-conjugate or harmonic triangle.

This is obvious also geometrically, since the harmonic triangle of the
quadrangle ABCD is self-conjugate with regard to any conic through
4, B, C, D.

4, Polar properties. The polar of the point (z', ¥, 2’) with regard to a
conic of the pencil is 0’z +by'y +c2'z=0.
Let (I, m, n) be the linc-coordinates of this line, so that lmaz’, m=by
n=cz ; then, since ¢ +b +¢c=0, :
i

m n
?+7+;;-0.
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Hence the polars of a fized point (z', y', #) with regard to all the conics of a
pencil pass through the fized point (1/2', 1y, 1/2'). If (I, m, n) is a fixed
line, and (', ', 2') a variable point, we can interpret the same equation
as follows : the poles of a fized. straight line with regard to all the conics of
a pencil lie on a conic which circumscribes the common self-conjugate triangle.

As a particular case of this we have the theorem of the following para-

graph.
5. Locus of centres of conics of a pencil. Let the equation of the line

at infinity be 1% +my +ngz=0.
Then the coordinates of the centre of the conic
az® +by? +c22=0

are (ly/a, mo/b, ngfc). But a+b+c=0; ,
therefore the coordinates of the centre are connected by the equation

l_o +n_3’ +"_"9.—.0,

z Yy =z
The centre-locus 1s therefore a conic circumscribing the harmonic triangle of
the pencil.

Ex. Prove that the polars of a point on the centre-locus with regard to all
the conics of a pencil are parallel.

8. Nine-points conic. If I, I,, I, I; are the four base-points, the
. equation of AI is y=2. Let AI cut the centre-locus in M, and the line
at infinity in M’. We have the following lines:
BI : 2—2=0, :
BI,:z+2=0,

BM : (mg+ng)z+12=0,
BM': lyx +(mg +mg)2=0.
Hence the range (II,, MM’) is
harmonie, t.e. M is the harmonic
conjugate of the point at infinity
with respect to I, I,. Hence M
is the mid-point of II,. Hence
we have the theorem : The locus
of centres of conics of a pencil with
base-points I, 1,, I,, I i3 a consc
circumscribing the harmonic tri-
angle of the quadrangle II,1,1,,

and also passing through the mid- Fra. 9.

points of the six segments 11, 11,,

II,, LI, 1,1, I,1I,. The fact that the centre-locus passes through the
points 4, B, C can also be shown in this way : the pairs of lines I1;, 1,1,,
etc., are degenerate conics of the system, and their centres are the points
4, B, C.
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When the coordinates are trilinears, I, I,, I,, I, are the in and ex-
centres of the triangle 4BC. They form an orthocentric quadrangle, t.e.
each of the four points is the orthocentre of the triangle formed by the othet
three. The locus of the centres is the circle 4 BC, and we have the theorem
of the nine-points circle.

7. The asymptotes of any conic of a pencil are harmonic conjugates with
regard to the asymptotes of the centre-locus, and are therefore parallel to a
pasr of conjugate diameters of the centre-locus.

Consider the lines joining the vertex C to the points of intersection of
the line at infinity with the locus of the centres. We get the equation of
the pair of lines by eliminating z, viz.

(Lo +moy) (mox + loy) — ne’zy =0,
and similarly for any conic of the pencil we have
12 (ax? + by?) + ¢ (lyx +mgy)? =0.
Applying the condition for a harmonic pencil we have
lomg(nola + cl ) + lymg (ng2b + cmg?)
= (L2 + mg? — ng?) clgmg =lmeny?(a + b +¢) =0.

8. Special conics of a pencil. When the centre-locus is a circle its
asymptotes pass through the circular points, and therefore the asymptotes
of every conic of the pencil, being harmonic conjugates with regard to the
lines through the circular points, are at right angles. Hence when the base-
potints are orthocentric, all the conics of the pencil are rectangular hyperbolas.

A pencil of conics in general contains one rectangular hyperbola, for its
points at infinity are uniquely determined as the pair of points which are
harmonic conjugates at the same time with regard to the circular points
and the two points at infinity on the centre-locus. The asymptotes of this
rectangular hyperbola are therefore parallel to rectangular conjugate
diameters of the centre-locus, 7.e. parallel to the axes of the centre-locus.
If there are two rectangular hyperbolas in the system, these two pairs of
points must coincide, and all the conics of the system are rectangular
hyperbolas ; the centre-locus is a circle, and the base-points are ortho
centric.

A pencil of conics in general contains two parabolas, for the centre-locus
has two points at infinity, real, coincident, or imaginary, according as the
centre-locus is a hyperbola, a parabola, or an ellipse. The axes of the two
parabolas are therefore parallel to the asymptotes of the centre-locus.

9. Range of conics; four-line system. A conic is completely and
uniquely determined by five tangents, for the condition that a conic should
touch a given line (I, m, n) is expressed by the equation

A2 + Bm2 +Cn? + 2 Fmn +2Gnl + 2Hlm =0, ,
which is an equation of the first degree in the coefficients A4, B, etc.,

of the line-equation. Five such equations will determine the ratios
4 :B:C: F:G:H uniquely.
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An infinity of conics can be drawn to touch four given lines. If >
and 3, are any two conics, expressed by their line-equations, they have
four common tangents, whose line-coordinates are the solutions of the two
simultaneous equations =, =0, £,=0. The equation

21+)\22=0
represents a conic touching these four lines, and exhibits a system of
conics the coefficients of whose line-equations depend linearly upon a
single variable parameter A. This is analogous to a range of points, the
coefficients of whose line-equations depend also linearly upon a single
variable parameter. A system of conics touching four fixed lines is there-
fore called a range of conics, or a four-line system of conics. We may also
call it & pencil of conic-envelopes as distinguished from a pencil of conic-loci.

10. Harmonic properties. If the harmonic triangle of the complete
quadrilateral formed by the four lines is taken as triangle of reference, the
line-coordinates of the lines can be taken to be (1, +1, +1), and the
equation of the system of conics, in line-coordinates, is of the form

AR+ Bm? +Cn?=0,
with A+B+C=0.

All the conics of the system have the triangle of reference as a self-
conjugate triangle. :

The pole of the line (¥, m’, n’) with regard to a conic of the system is

Al'l+ Bm'm +Cn'n=0.
The coordinates of the pole baing x=Al', y=Bm', 2=Cn’, the locus of the
poles of the line (', m’, n’) with regard to all the conics of the range is the
line

A AL’

' m =
Again, if (', ¢, %) is a fixed point, the envelope of its polar with regard to
the conics is the conic oy 7

—+L +—=0,

I m n

which touches the sides of the harmonic triangle.

In particular, therefore, taking the line at infinity loz +mgy +nyz=0
as the fixed line, the locus of the centres of all the conics of the range is a
straight line, xfly+y[my+2z[ny=0.

If A, A’; B, B’; C, (' are the pairs of opposite vertices of the com-
plete quadrilateral formed by the base-lines, these pairs of points are
degenerate conics of the system, and their centres are the mid-points of
the diagonals 44’, BB’, CC’. Hence we have proved the theorem that
the mid-points of the diagomals of a complete quadrilateral are collinear,
and the line on which they lie is the locus of centres of conics touching the
four sides.

11, There is one conic of a given range which touches any given straight
line, for the given line together with the four base-lines completely and
uniquely determine the conic.

8.4.0. »
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There are two conics of a given range which pass through any given point ;
these will coincide if the given point lies on one of the base-lines, and the
base-line is then the tangent at the point. If the given point is the point
of intersection of two of the base-lines, the conic will degenerate into two
pencils, the vertices being at the given point and the intersection of the
other two base-lines.

As a particular case, a range of conics contains in general one parabola,
viz. that conic of the system which touches the line at infinity. If the line
at infinity is one of the base-lines, all the conics of the range are parabolas.
The centre of the parabola of a range is the point at infinity on the locus
of centres ; hence the axis of the parabola is parallel to the line of centres.

EXAMPLES XVIL

1. Prove that one rectangular hyperbola, and only one, touches a given
conic at the ends of any chord; and that, if the rectangular hyperbola passes
through & fixed point P, the chord must touch a fixed circle with centre P.

(Pembroke, 1909.)

2. Find the locus of centres of a system of conics having four-point contact.

3. Show that in the case of a family of conics having three-point contact
at P and passing through a fourth point @, the locus of centres touches the conics
at P, has curvature at P of the opposite sign and of double the magnitude of that
of the conics, and has PR as a diameter, where R is the middle point of PQ.

(Pembroke, 1912.)

4. Prove that the equation of a circle which touches the parabola y2=4az

and passes through its focus may be written
(1+ 12) (32 — 4az) + (- ty + at?) (x+ ty + 3a)=0.
(Peterhouse, 1901.)

5. What is the nature of the curve 5(y?— 4ax) + (z— 2y —a)(z+ 2y +32)=01
Show that it has a focal chord of the parabola y?=4ax as diameter, and find where
it meets the parabola again. (Peterhouse, 1913.)

8. Prove that two ciroles can be drawn through the origin, each having
double contact with the conic (2®— 42) cos 2a+ 2zy sin 2¢+2=0, and find the
equations of their chords of contact. (Peterhouse, 1914.)

7. If a system of conics is drawn having four-point contact with the conic
ar®+ 2hay + byt + 2fy=0 at the origin, prove that the orthoptic circles of these
oconics form a coaxal system whose limiting points are the origin and the point
—hf/(a®+ h?), af/(a®+ h?), and whose radical axis is Az —ay+§f=0.

8. 'A conic has three fixed pairs of conjugate lines. Show that its orthoptio
cirole cuts a fixed circle at right angles. (Math. Tripos IL., 1915.)

9. Determine the different kinds of conics represented by the equation
2+ Hay+4y2+2(1+2)z+8y+5+21=0, as A changes from a large positive
value to a large negative value. Examine in particular the critical cases
A=1,0, —1, —2, and illustrate by rough diagrams the transition from one kind
of conic to another. (Pembroke, 1911.)

10. Draw diagrams of the following systems of conics. Determine the
critical values of A\ for which the conic becomes two straight lines or a parabola,
and state the character of the conic in the various intervals :
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(1) 1623+ (A~ 1)y2— 16(A+ 6)z+ 24y =0,
(i) 42+ a2+ 4xy+4(9-2)z+ 16y + 80=0,
(iii) 224+ 2(1+N)zy+12—-4(1+70)z+4(1+20)y -561=0.
11. Show that the conics whose axes are in a given direction, and which pass

through three fixed points, pass through another fixed point.
(Math. Tripos L., 1909.)
12. When one of the base-points of a pencil of conics is at infinity, so that
there is one parabola in the system and the centre-locus is a parabola, show that
the former parabola is double the size of the latter.
13. A system of conics is drawn passing through two fixed points and touching
two fixed lines. Show that their chords of contact with these lines will pass

through one of two fixed points. (Trinity, 1899.)
14. A conic touches the sides of a parallelogram ; show that its foci lie on the
rectangular hyperbola through the corners. (Math. Tripos II., 1915.).

15. Prove that the equation of the family of conics inscribed in the rectangle
formed by the lines z+a=0, y £ b=0 is 22/a2+ y2/b%— 1+ 2hxy/ab+32=0. Prove
also that the locus of the foci is 22~ y2=a2—b2, and that if two of the conics
intersect on this latter locus they do so at right angles. (Pembroke, 1899.)

16. Prove that the axes of the parabolss which have a common focus and pass
through two given points are parallel to the asymptotes of the hyperbola which
passes through the common focus and has the two given points for foei.

(Corpus, 1913.)

17. Show that Ex. 14 is equivalent to the following: Two complete quadri-
laterals with a common diagonal are circumscribed about a conic ; prove that the
eight vertices of the quadrilaterals, other than the vertices 4, B and 4’, B’ which
lie on the common diagonals, lie on a conic which is apolar to botk 4. B and 4’, B".

18. ABCD is a complete quadrangle, and AD, BD, CD meet BC, CA, AB
respectively in X, ¥,Z. If P is any other point, prove that the six conics
(PYZAD), (PYZBC),(PZXBD), (PZXCA), (PXYCD), (PXYAB)have asecond
common point. (Pembroke, 1909.)

19. If the focus of a conic be given, and if the asymptotes pass each through
a fixed point on a straight line through the foous, prove that the locus of the
centre is a circle. (Corpus, 1913.)

20. If three conics have a pair of common tangents, show that the points of
intersection of the three other pairs of common tangents are collinear.

(Trinity, 1899.)

21. BOB’, COC’ are two chords of a conic, intersecting at O ; 40A4’is a third
chord through O, and a second conic is drawn touching the first at 4 and 4’
If CB meet the second conic in H, K, and C’B’ meet the second conic in H’, K’,
prove that HOH’ (or HOK") is a straight line. (Math. Tripos IL., 1914.)

22, Show that by choosing suitable coordinates any pencil of conic-envelopes
can be represented by the equation z®/(a+A)+33/(b+2)+22/(c+A)=0, where A
is the variable parameter.

23. If the centre-locus of a pencil of conics is a vectangular hyperbola, show
that the system contains a circle.



CHAPTER XVIIL
PARAMETRIC REPRESENTATION.

1. Rational, algebraic freedom-equations. We have frequently had
occasion to represent a locus by freedom-equations, which express the
coordinates of any point on the locus in terms of a variable parameter.
Thus, in rectangular coordinates the straight line was represented by the
freedom-equations r=a+pt,

y=>b+gqt.
(a, b) is one point of the line and ¢/ p is the gradient.
The ellipse #2/a? +32/62=1 was vepresented by the freedom-equations
' T=a Cos @,
y=bsin @,
the eccentric angle ¢ being taken as parameter.

The parabola y? =4ax, on the other hand, was represented by equations

of quite a different form, z=at?,
y=2at,
in which the parameter ¢ is involved algebraically.

There is a great advautage in choosing the parameter, if possible, so
that the equations involve it algebraically and rationally.

In the above freedom-equations of the ellipse the parameter ¢ 18
involved not algebraically, but trigonometrically. If we write cos ¢ =t¢,
we get the algebraic equations

z=at, y=bV1-£;
but these do not involve the parameter rationally. If, however, we put
tan 3¢ =1, the equations become
_gl-e o
=trye YT 1ae
and now the parameter is involved both algebraically and rationally. In
a similar way we may reduce the freedom-equations of the hyperbola to
t‘he form 1 +t2 9%
et V=brow

2. Algebraic, rational, and integral freedom-equations in homogeneous
coordinates. There is still a fundamental point of distinction between
these freedomn-equations of the ellipse and the hyperbola and those of the

216
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parabola, for in the latter the parameter is involved integrally. It is not
in general possible, with cartesian coordinates, to choose the parameter so
that the freedom-equations of a conic involve the parameter algebraically,
rationally and integrally, but we can do 86 if we use homogeneous coordi-
nates. Introduce the third variable z to make a system of homogeneous
cartesian coordinates. Then the freedom-equations of the ellipse will be
poa il Lop 2
“trve VT
Now, since we are dealing with homogeneous equations, it is only necessary
to consider the ratios of the coordinates. We may therefore multiply each
by any common factor, and thus we may write
z=a(l-£),
y=2bt,
z=1+2.
These are more correctly written
am=a(l -3,
Ay =20t
Az=1+£,
where A is any multiple different from zero, but we shall usually omit
the A, it being understood that the equations imply that z, y, z are only
proportional to the expressions on the right.

z=1.

8. Any conic can be represented by rational freedom-equations.

"We see then that any of the three types of conics can be represented
by algebraic, rational, and integral freedom-equations of the second degree.
This can be shown also for any conic as follows. If we take as triangle of
reference two tangents and the chord of contact, the equation of any conic
can be written in the form

xy = k22
Write this 2
kz «
Then we can put z=1, orsimply z=1,
z=M, i y=k,
y = )\ktz, z2=1.

4, Freedom-equations of the second degree represent a oconio.
Conversely the equations
Z=ayt? +2a,t + ay,
y=b,t% +2bt + by,
2=cyl% +2¢;t + ¢
in general represent a conic.
For the intersections of any straight line lz+my+nz=0 with the
curve are found from the equation '

(lay + mby +ncg) % + 2(la, +mby +mey)t +(lag +mi}o +mncy) =0),
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This is a quadratic equation giving two values for ¢, and therefore, in
general, two points of intersection.
In particular the parameters of the points in which the curve cuts the
sides of the triangle of reference are found by putting =0, y=0, 2=0.
Examples.
1. Find the position of the conic A
x=1?,
y=2-1,
z=t(t+1)
with respect to the triangle of reference,
=0 cuts the conic in two coincident points +1
t=0, and is therefore a tangent. 2z=0 cuts the
‘eonic at the same point ¢=0, and also at t= — 1.
y=0 cuts the conic at ¢t= —1 and ¢=1. Hence o
the conic touches BC at B and passes through 4. B c
2. Find the freedom-equations of a conio Fr16. 100.
ciroumscribing the triangle of reference.
Let the values of the parameters at 4, B, C be a, b, ¢; then we have the
equations z=p(t-b)(t—c),

y=q(t—¢)(t—a),
z=r(t—a)(t-b).

5. Condmon for a parabola, ellipse, or hyperbola. If the coordinates
are homogeneous cartesians, z=0 is the equation of the line at infinity.
The conic will therefore be an ellipse, parabola, or hyperbola according as

% —Cocy = =0,
for the roots of the equation cy* +2olt+c.,—0 are. the parameters of the
points at infinity on the conic.

In particular the freedom-equations

Z=ayt® +2a,l + ay,

y="byt? +2b;t + by,
with 2=1, always represent a parabola. For 2=0, as a quadratic in ¢, has
two roots infinite. The two points at infinity therefore coincide, and
t=co0 is the point at infinity.

Ex. Find the asymptotes of the hyperbola

x__t“+t—6 B+

=#_1 YTeEIv
The points at infinity are ¢= 1. Let lz+my+n=0 be an asymptote; then this
cuts the curve in the two coincident points t=1 or t=—1. We have as the
quadratic for ¢, U2+t~ 6)+ m(i2+ 2t) + n(2— 1)=0,
i.e (I+m+ n) 2+ (I+2m)t — (61+n)=O0.
In order that this equation may have the equal roots {=1 or {= — 1, we must have
l+m+n=—6l—n,

and 1+ 2m= +2(6l+n),
whence I:m:n=6:8:—-26 or 2:-12:-1,
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Therefore the asymptotes are 6xz+8y =25,
‘ 2z—12y=1.

6. Formation of freedom-equations of a conic. If the equation of a
conic can be written in the form «f =vd, where o, B, v, 8 denote expressions
of the first degree, we may form freedom-equations by putting

a=xyt, [t=4.
z and y may then be expressed in terms of ¢.
Ex. 322+ 2zy—y+4x—6y+5=0.
The terms of the second degree can be factorized, and we have
(Bz—y)(z+y)+4x—6y+5=0

Put 3z—y=t
—t(z+y)=4x—6y+5,
whence (42— 14)z= 2-6t—-5,

(42— 14)y= -2 -4-15,
or, using homogeneous coordinates,
z= #-6t—5,
y=—t#—4t—15,
z= 414,
In this case the curve is a hyperbola, and the points at infinity are determined
by ¢=o and t=1.

7. Parametric line-equations. Just as the point-coordinates x, y, 2 may
be expressed in terms of a parameter, so also the line-coordinates I, m, n
may be parametrically expressed.
Thus the equations l=a,f* +2a,t +a,,
m =byt? +2b,t +b,,
n=cyt? +2c,t +¢,
represent an envelope of the second class, for the pencil 2l +ym +2n=0
through the point , y, 2 has two lines in common with the envelope. These
are therefore the general tangential freedom-equations of a conic.

Ex. Determine how the conio
l=t(t-1),
m=(t— l)”
n=t(t—2)
Is situated with respect to the triangle of
reference. v
When l=0 we have ¢t=0 or ¢{=1, and
therefore there are two real and distinet 4
tangents from 4 to the curve. When m=0
we have t=1 (twice); therefore the tangents
from B both coincide with one of the tangents from A, and therefore with 4B

and B lies on the curve. When n=0, ¢=0 or i{=2; therefore one of the tangents
from C coincides with the other tangent from A4, i.e. with AC.

Fia. 101
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8. Line-coordinates of the tangent. The parametric line-equations of a
- conic can be found from the point freedom-equations by obtaining the line-
coordinates of the tangent at a point . We shall first obtain the equation
of the chord joining the points ¢ and ¢’. We can write down the equation
in the form of a determinant
T el +2at+ay, At +2at +ag |=0. .eerereenenns 1)
Yy bt +2b,t+by byt +2b,t +b, ‘
z ot +2¢l+cy ot +2¢t +e
On expanding this, the factor ¢ ~ ¢ cuts out and the coefficients of z, y, z are
I=Agt' —4,(t+)+ 4,,
m=Bytt' — By(t +1') + By b wevereerrerrereneereesenianes @
. n=Ctt' = Cy(t +1t') + C,,
where the capital letters denote the cofactors of the corresponding small
letters in the determinant
ay 20, a,]|.
b 2b, b,
o 20 o
Now put ¢’ =¢, and we get the line-coordinates of the tangent at the point ¢,
I=Ay*-24t+ 4,
m= By?-2B,t+ Bz,}
n=Cg%-2Ct+C,. |
These are therefore the parametric line-equations of the conic.

9. Pole and polar in terms of parameters. In the last paragraph the
equations (2) give the line-coordinates of the line joining the points at which
the tangents have parameters ¢ and ¢’ on the conic whose parametric line-
equations are given by (3), .e. (2) represents the polar of the point of inter-
section of the lines whose parameters are t and t'.

In a similar way it can be proved that the coordinates of the pole of
the line joining the points ¢ and ¢’ can be written down from the point
freedom-equations by changing ¢ into #’, and 2¢ into ¢+¢', thus

T=aylt’ +a,(t+1') +ay,
Y=byft’ +by(E+8) +bg F -crverrerrinniiririeiaceennes (4)
Z2=Cylt" +cy(L+1E) + ¢y

10. Equation of the tangent att. Taking the equation (1) of § 8, which
represents the chord #t’, subtract the second column from the last and cancel
t'—t; then put ¢'=t¢ and cancel the factor 2; then multiply the last
column by ¢ and subtract from the second. Then we get as the equation
of the tangent at ¢,

Lz agl+ay a+ay [=0. iineenreniniinene 5)

Yy bt+b  bit+by
¢ of+e ot+e |
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This equation may be written in a very convenient and general form
as follows. In the point freedom-equations introduce another parameter
¢’ to make the quadratic expressions homogeneous, thus

T =a,l? +2a,tt’ +ayl’?, etc.;

then i have % g—f =ast +a,l’, % g; =a,t +ayt’, ete.
Hence the equation of the tangent at ¢ can be written
T Y 2 =0 s eecsereesennenes (6)
ox Oy 0z
o ot o
or Oy 0z

It can be proved that this holds generally for freedom-equations of any
degree.

11. Centre and asymptotes. Let the coordinates be cartesian, so that
2=0 is the equation of the line at infinity. Then the parameters t,, ?, of
the two points at infinity on the curve are the roots of the equation

cot? + 20, +co=0.
The centre is the pole of the chord ¢, ¢, and its coordinates are therefore
T =azlyls +a,(t +15) +aq
= (@500 — 20,0, +acy) [cs, ete.
The asymptotes are the tangents at ¢, and #,. Their separate equations
may therefore be written down by equations (6) of § 10.

Ex. Find the coordinates of the centre and the equations of the asymptotes
of the conic whose freedom-equations in homogeneous cartesian coordinates are
z=1084+2(-3, y=0£+3, z2=2£-1.

The parameters of the points at infinity are +1. The pole of the chord
joining t=1, t'=—11is .

T=tt'+(t+t)—8=—4, y=wW+3(@t+t)=-1, z=tt'-1=-2.
Hence the coordinates of the centre are (2, ).
The tangent at ¢ is z 2t+2 2t-6 |=0.
y 2+3 3t
z 2t -2

Putting =1, t= — 1, successively, we find the equations of the two asymptotes
z=2 and z-2y=1.

12. Foci of a conic. If the point F=(«, B) is a focus of the conic whose
rectangular cartesian freedom-equations are

z=a,t* +2a,t +a,, etc.,
then the lines FI, FJ joining F to the circular points are tangents to
the conic. The equation of FI is

(z — a2) +1(y — B2) =0,
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Substitute the values of z, y, 2 in terms of ¢, and express the condition for
equal roots in the resulting quadratic equation. This will give one equation
connecting aand 3. Treating FJ similarly, we get another equation which
will only differ in the sign of «. These two equations, which are equivalent
to the two which we get by equating to zero the real and imaginary parts
of one of them, determine the values of « and B.

Ex. Find the foci of the ellipse
z=202-1, y=21 2z=~24+1,
Let F=(o, B) be a focus. Then the equation of FI is
(z - 0z) +i(y— Bz)=0.
Substituting for z and y, we have the quadratic equation
' (2 - a—iB)+ 26t~ (1+ x+iB)=0.
F1I will be a tangent if this equation has equal roots ; the condition for this is
1=2+(ax+iP)—(x+iB)2, :
t.e. o?—P2—a~1+§(2apf - B)=0,
Similarly FJ will be a tangent if
a—P2— a1 -4(2af - B)=0.
Hence o?—Bl-a=1,
and 208 — B=0.
The solutions are a=3}(124/5), B=0 for the real foci,
’ «=%, B=+§iy/5 for the imaginary foci.

13. Indeterminateness of the freedom-equations. We have seen that
the freedom-equations of a given straight line are not unique. Thus
r=l—3t} and z=-2 +6u}
y=2+t y= 3-2u
represent the same straight line z+3y=7, the parameters ¢ and « being
connected by the relation 2u +¢=1.

The reason for the indeterminateness of the freedom-equations in
cartesian coordinates is that the origin and scale of measurement of the
parameter are both quite arbitrary. Thus the general freedom-equations
of a straight line in cartesian coordinates are

z=a+pl,
y=b+gqt.
Here we have four constants, a, b, p, ¢, but only two are required to fix the
line. Instead of @, b, we may put the coordinates of any other point on
the line, say a + pto, b +¢f,, and we get equivalent freedom-equations
r=a+ply+pt,
y=b+gqty+qt.
We might choose #, so that a +pt,=0, and then one of the four constants
disappears. This corresponds to a change of origin of t. Again, if we put
ku instead of ¢, we get the equations
z=pku,
y="b"+qku,
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and we may choose k& so that pk=1. The equations then become simply
z =y,
y=b'+pu,
which involve only the two constants b and p. This corresponds to a
change of scale of ¢.

14. Relation between the parameters in equivalent representations. With
homogeneous coordinates the general freedom-equations of a straight line
are z=a,t +a,,

y=b,t +by,

z=¢yl +¢p-
Here we have six constants, but as only the ratios z : y : 2 are significant,
we need only the five ratios of the constants. We are still free to choose
three relations between the constants, since only two independent constants
are required, i.c. we can change the parameter so that the parameters of
any three given points on the line may have assigned values. Let the points
which have the parameters t,, t,, t; have now the assigned values u;, u,, us,
and let the freedom-equations become

Z=Dpy%+ Po

y=qnu+qg

Z=r U+,
Then Oty +ay _ bity+by _ ity + %

Py +Pe %t TtTo

and two similar sets of equations with 2, u, and ¢35, u3. These six homo-
geneous equations of the first degree in p;, Py, etc., determine the ratios of
the new constants uniquely in terms of the ratios of a;, a,, etc. They are
equivalent to five equations.

The parameters ¢ and u are now connected by a certain relation which
is found by equating any two of the ratios in (1). Thus we have

(3191 — bypy) tu + (3190 — byPo) £ + (@ogy — boP1) % + (@00 — boPo) =O.

This relation is of the form atu—bt+cu—d =0, .ccceeeeerrerreeerererennann (2)
and is linear in both ¢ and u; it is therefore called a lineo-linear relation.
Solving for u, we get bt+d
U= ——— . rireceeniieresennneeesessesnrennanes (3)
at+c

The characteristic property of this relation, in either the form (2) or the
form (3), is that to each value of ¢ corresponds a single value of u, and vice
versa, and the values of ¢ and u are said to be in one-to-one correspondence.

(1, 1) correspondences are of very great importance, and will be considered
in detail in the following chapter.

15. Any three points on a conic may have arbitrarily assigned para-
metric values. ’

Let 4, B, C be the three points on the conic, and ¢, ¢y, ¢, their para-
meters in any given parametric representation. We have to show that the
same conic can be represented in terms of a parameter u, so that the points
4, B, C, have any arbitrarily assigned parametric values w;, ug, u.
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Take ABC as triangle of reference. The parametric equations of
the conic are then
z=a(t—1t,)(t—1ts), T =p(u — uy) (4 — ug),
y=bi-t;)(t-1ty),; and y=q(u-us)(u—u),
z=c(t—1;)(t—1y) z=r(u—u)(u—-1u),
where a, b, ¢ and p, ¢, r have certain definite values.
Now, for any value of ¢ and the corresponding value of u the ratios
z:y:z must be the same ; hence

Put t=¢, and u=u,, the corresponding value; then
bti-ty_gu—t
cti—tly ru —u

Hence, dividing corresponding sides of these two equations, we have

=k t"t2=“~’“ﬁ/“1‘“”. ....... oY)
T e
Multiplying up and collecting terms, we get an equation which can be
written in the determinant form

tu t w1 |=0. ciiiiiiinninnienineenen. (2)

huy 4 w1

bty t3 uy, 1

tug ty ug 1
The symmetry of this equation shows that it is immaterial which of the
three ratios z: y : z we compare. Hence the three given points will have

the assigned parametric values when u is determined by this relation.
The equation (2) is of the lineo-linear form

atu—,8t+yu—6=0,
and wu is expressed in terms of ¢ by the equation

u=(8t+38)/(at +1).

The equation (1) may be written in cross-ratio notation

(121, tats) = (Uney, Ugls). .eovreerrriiiiriennsranrssaennanns (3)

Hence we have the result: When e contc s represented tn terms of two
different parameters, the parameters are connected by a lineo-linear relation,
and the cross-ratio of the parameters of any four points on the conic ts tnde-
pendent of the particular parametric representatwn

The significance of the last result will apear in the following chapter.

The general freedom-equations of a conic contain 9 constants, but only
their ratios are concerned, and the number reduces to 8; further, by giving
three assigned points fixed parametric values, the constants reduce finally
to 5. This is the exact number of constants required to determine a conic,
and hence we see again that freedom-equations of this type are capable of
representing any conic.
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Ex. Find freedom-equations for the conic yz+2zz+zy=0 such that the
vertices of the triangles of reference may have the parametrio values 0,1, .
The freedom-equations must be of the form

z=p(t—1),
y=ql,
z=ri(t—1).

Substituting in the equation of the conic, we have
gri¥(t— 1)+ rpt(t— 12+ pgt(t+ 1) =0,

e, gri+rp(t—1)+pg=0.
Hence gr+rp=0,
and ~rp+pq=0;

therefore — p=g=r, and the equations are
z=t-1, y=-—1t, z=-—t(t-1)

EXAMPLES XVIIL

1. Find the point-equations corresponding to the following freedom.
equations :

(i) z=22—1t+1, (ii) z=32-1t, (iii) z=28+1¢-1,
y=10>+2, y=£+2-1, y=0-3t+4,
z=12—1; =t+2; z—3t2+2t+2

2 Find the line-equations corresponding to the freedom-equations in Ex. 1.
3. Find freedom-equations for the following conics :
(i) 22— 242+ 322 —yz— 22z —2y=0,  (ii) 22— 3y®— 22— dyz— 222+ 2xy=0,
(iii) 22+ 22— 323+ 2yz + 222+ 2xy=0.

4. Determine the coordinates of the centre of each of the following conics
in cartesian coordinates :

(i) z=22+1, (i) z=t (i) z=32+¢,  (iv) z=i-1,
y==02+2t, y==8#+1, y=2t+1, y=028+2t-1,
z=12-1; z=12—-1; 2=1241; z=1t.

5. Determine the coordinates of the centre of each of the following conics
in areal coordinates :

(i) z=Yt—-1), (i) z=2, (iil) z=22+1,
y=i-1, y=2t-1, y= -3-t+1,
z=t; z2=22+1; 2= -4+t 1.

8. Determine the nature of each of the conics in Ex. 4, and in the case of a
hyperbola find the equations of the asymptotes.

7. Determine the nature, and, in the case of a hyperbola, the asymptotes of
the conics in Ex, 5.
8. Show that z=312+2t—1,) and x=12-2¢t—-3,) in cartesian coordinates
y=£-3, y=02+2t-1,
z=£-1 z=c(i?- 1),
represent homothetio hyperbolas.
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y=t+1, y=—28+1,
2= —212+2t z2=2t-2,

represent homothetic hyperbolas.

9. Show that x=2t2—£~ 1,} and x=2t’-—t+l,} in areal coordinates

10. Find the foci of the conics whose freedom-equations in rectangular
cartesian coordinates are

(i) z=362—2t, (ii) r=22—-4t+5, . (i) 2= —312+36t+21,
y=2t—1; y=08+2t+1; y=17£2448t-22,
z2=5(241).

11. Show that the freedom-equations of a conic in cartesian coordinates can
be reduced to one of the three forms :
cx=0420t+ay z=c(?—1) for a hyperbola,
y=124+2bt+b,, z=c(i2+1) for an ellipse,
z=1 for a parabola.

12. Find the equation of the tangent at ¢ to the locus 2=a2+b, y=ct+d;

and find the locus of the intersection of two tangents at right angles.
(Corpus, 1913.)

13. The parameters ¢, ¢’ of the ends of a variable chord of the conic
zr=1,y=2t, 2= are connected by the equation #'+¢—#+2=0; prove that
the envelope of the chords is a conic, and find its line-equation.

14. The parameters of the ends of a chord of the conic in Ex. 13 are connected
by the equation att’—3b(t+¢)+¢=0; prove that the chord passes through a
fixed point, and find its coordinates.

15. Find the equation of the directrix and the length of the latus-rectum of
the parabola z= a2+ 2bt, y=ci2. (Selwyn, 1913.)

16. Prove that the locus of the point, of which the coordinates with regard
to rectangular axes are given by xz(i#+s%)=ai(s®+1), y(2+s2)=as(l-£), is a
circle when ¢ is constant and s varies, and also when s is constant and ¢ varies,
and that the two circles are orthogonal. (Pembroke, 1912.)

17. Show that if @ and b are constant the freedom-equations z=a cos (0 — «),
y==bcos (8 B) in the variable parameter 6 represent, for all values of a, 8, an
ellipse inscribed in the rectangle z+a=0, y+5=0.



CHAPTER XVIIIL
CORRESPONDENCE, HOMOGRAPHY, AND INVOLUTION.

1. ONE of the most important and fundamental ideas, not only in
geometry, but in all branches of mathematics, is that of correspondence.
While it would be outside the scope of this book to treat at length the whole -
theory of correspondence, it is necessary to enter in some detail into the
elementary ideas which underlie it. A fuller treatment requires a wider
acquaintance with the theory of projective geometry than can be assumed
at this stage.

It will be convenient to begin with some simple examples.

(1) Let 1, I’ be two straight lines, and S any point not on either of them.
Then if lines through 8 cut 7, ¥ in points P, P'; Q, Q’; R, R’; ..., we have
two ranges of points PQR... and P'Q'R’... in
correspondence. To every point P on ! corre- s
sponds a single definite point P’ on I’ which is
the intersection of I’ with SP; and vice versa, to 3
every point P’ on I’ corresponds a single definite
point P on l. This type of correspondence is
called one-to-one or (1,1). (In particular the two
ranges are said to be in perspective with centre v
of perspective S.) Il" Q\' R AN

(2) Let a fixed line I and & fixed circle (or

oonic) C be given, and let O be a fixed point on Fra. 102.
~ the circle, and P any point on the circle. Then if OP cuts ! in P, we have the
points of the circle and the points of the line in correspondence. To every point P
on the circle corresponds the unique point P’ on the line, and vice versa. This is
also an example of a'(1, 1) correspondence.

(3) Let the tangent at P to the fixed circle cut I in P’; then again we have a
ocorrespondence between the points of the circle and the points of the line. To P
on the circle corresponds the unique point P’ on the line, but since two tangents
can be drawn from P’ to the circle there are two points P; and P, on the circle
corresponding to each point on the line. The correspondence in this case is (2, 1).

(4) In example (1) there is a (1, 1) correspondence between the poiuts P...
and the lines OP.... Thus there may be a correspondence between different
sorts of geometrical elements.

2. Consider now the analytical expressions of the correspondences
described in § 1.
(1) Two ranges in perspective.
(a) Let the two lines [, I’ be parallel, and take ! as axis of z, 08 1. OP.as
227 \
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axis of y (Fig. 103). Then the points P, P’ are determined by their abscissae
OP=z, O'P'=x’. If 8O’=k. 80, we have

' =kx.
Sat o,
D) \ 1] /
P : Aoy

7 ' 0 .I" o l

o I PI
4 4
X

0 x P 0 )

F16. 108. Fie. 104,

(b) Next let S be at infinity in the direction a (Fig. 104).
Then, if 00’ cot a=¢, =zt

(¢) Suppose next that I, I’ interseot in O (Fig. 105).
Draw SA|| PO and 84’( PO, and let OA=a, OA'=b,
AP=g, A’P’=2’. Then z’: a=>b: z; hence

,_ab
=
z
1 L
(d) Taking now the perfectly general case, let the -0/ A P\
points of the line v F1a. 105,

r=a+pt
y=b+qt
the centre of perspective being §.=(a, 8). Then, since P, S, P’ are collinear, we
have the relation

z=a'+ p’t’}
9

} be in perspective with the points of the line y=b'+qt

a+pt a’+pt «|=0,
b+gqt b+qt B

1 1 1
which reduces to the form

Ut +mt+nt’ + k=0,
In each case we have obtained a lineo-linear equation in the parameters ¢, #
or a, z’.
(2) Correspondence between points P on a conic C and points P’ on a straight

line I, when PP’ passes through a fixed point O on the conie.

Let I cut the conic in X, ¥ ; then, taking OXY as triangle of reference, the
equation of the conic can be written

z=1(t-1), y=i-1, z=1.

The parametric values for 0, X, Y are thus 1, », 0. Let P’ be determined by
the ratio 2’ : y’=#". The equation of OPisz=ty. Since this line passes through
P’, x'=1y’; hence =t

which is the simplest possible representation of (1, 1) correspondence.
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(3) Correspondence between points P on a conic and points P’ on a straight

line I, when PP’ touches the conic at P.

Let ! cut the conic in X, Y. Take XY and the tangents at X and Y as
triangle of reference. Then the freedom-equations of the conic may be taken to be

z=t2, y=-1, z2=2t, )
giving the equation 22+ 4xy=0. The equation of the tangent at  is
' -2+ 8y +1z=0.

Putting z=0 and z: y=¢', we get  '=1,
the expression of the (2, 1) correspondence.

3. Generalizing from these examples, it will be seen that an (», n’)
correspondence between two sets of elements can be represented by an
equation connecting the algebraic parameters ¢, ¢’ of the elements, involving
t to power n and ¢’ to power n'.

The most important case for us is that of a (1, 1) correspondence, which
is represented by a lineo-linear equation of the form

ytt' —at +0" —B=0. oririiniennne S (1)

Expressing ¢ in terms of ¢, we have the equation
,_ot+p o
R @)
In this equation only the ratios of the four coefficients have to be considered,
and they must be such that the determinant : g or ad — Py is not zero;

for if this were the case, we should have
2@l +B)_a
Tayt+By Y
or else t= — B /o, and there would be no proper relation between ¢ and ¢’.

4, Equality of cross-ratios in a (1, 1) correspondence.

When a (1, 1) correspondence exists between two sets of numbers t, ¢,
the cross-ratio of any four values of t is equal to the cross-ratio of the four
corresponding values of t'.

Let the correspondence-equation connecting the two parameters ¢, ¢ be

y_w+ﬁ
_yt +8°
We have to prove that the cross-ratio
4 L=ty fty—ty b —t3 [t =t
tity, toly) =2 3/1___3=1' s,/ 2 7T (11, 4't).
(1% 3‘) -ty b=ty b~ by =44 L' b ')
14 ’_ I_M1+B_“L3+IB
We lhé.ve b~k Ty, +0 Yig+0
_(@8-BY)(t —ts)

(6 +8) (vl - 0

8.A.0. Q
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Changing the suffix 8 into 4, we have

¢ l_(aﬁ—ﬁY)(tl_li)

T T ) (yaro)

By division,

W=t yta+d t—t
Then changing the suffix 1 into 2, we have

‘ b=t Y+ ty—ty
t—t Y+ f—ty

and by division again,

4y —t /itg’—ta'_tl—t3 A
=t t ~t b=t tg~t,

".e. (tl ,tz', t3,t4l) = (t1t2’ t3t4) .

5. Homographic ranges. It is proved in text-books on pure geometry
that when two ranges of points on the same or on different lines are in
perspective with each other or each with another range, so that there is a
(1, 1) correspondence between them, the cross-ratio of four points on the
one range is equal to the cross-ratio of the four corresponding points on the
other range. Two such ranges are said to be homographic.

This theorem can be deduced immediately from the theorem of § 4,
when we have established the following relation between the cross-ratio
of four points and the cross-ratio of their parameters.

When a range of points on a line is determined by equations of the form
i T=a,t +a,,
y=byt +by,
wn terms of a rational algebraic parameter, the cross-ratio of four points
on the range is equal to the cross-ratio of their

parameters. B B
- The cross-ratio of the four points p B £
4
_ PP, / PP, M M, MM,
(PP » P3Py) = P—l P, P_z—P; M M, / 1,121}1_4
z
=E£:@/E£2§. o M, M, M, M
Ty =Ty Ty =Ty e
But T, — Tz =a,(t, — L), ete., F1a. 108,
therefore (PlPa, P3P4) =t1 "ts /tz'——t:’: (tltza tstl)'
b=ty ty—1,

Further, by Chap. XVII. § 14, if the range is expressed in terms of any
other parameter ¢, the parameters ¢ and ' are connected by a lineo-linear
relation, and therefore (£,'ty’, 5'¢,") = (tyty, tsty). Hence the cross-ratio of
the four points is always equal to the cross-ratio of the corresponding
parameters.




" xvon T EQUALITY OF CROSS-RATIOS 231

8. Cross-ratio of four points on a conic. (1) We shall prove first that
in whatever way a conic may be represented by rational algebraic freedom-
equations of the form

© z=ayt? + 20,8 +aq,
=Dbyt? + 2b,¢ + by,
2=c,t% +2¢:t + ¢y,
the cross-ratio of the parameters of four given points on the conic is always
the same.

If the conic is represented in terms of another narameter u, we have
seen (Chap. XVII. § 14) that the parameters are connected by a lineo-linear
relation, and therefore, by § 4,

(tity, tata) = (uytip, Uslty).
The cross-ratio of the parameters of four points on a conic is therefore a
perfectly definite number which does not depend upon the particular mode
of representation.

We have next to see what is the geometrical meaning of this cross-
ratio. Take four points P;, P,, Py, P, on the conic, and let X be any
other point on the conic. Taking as triangle of reference the tangents at
X and any other point Z on the curve, and the chord of contact XZ, we can
wnte the freedom-equations of the conic in the form

z=t, y=t, z=1
Let the parameters of P,, P,, P;, P, be ¢, ty, t5, t. Join X to the four
points ;. then the equations of these four lines are

=42, Y=1l2, Yy=tz, y=t2.
Then (by Chap. XII. §13) the cross-ratio of the pencil

X(P,P,, P,P)=21"5 / i §
—ty/ ty~t,’
but this is just equal to the cross-ratio of the parameters. Hence
(2) Four fixed points on a conic subtend at any other point on the conic a
penctl with constant cross-ratio, and when the conic is represented in terms of
an algebraic parameter the cross-ratio of the four points ts equal to the cross-
ratio of thesr parameters.

By the principle of duality, or by interpreting the equations in line-
coordinates, we have the reciprocal theorem: .

(3) Four fixed tangents to a conic cut any other tangent in a range with
constant cross-ratio, and when the conic is represented in terms of an algebraie
parameter the cross-ratio of the four tangents is equal to the cross-ratio of their
parameters.

7. Cross-ratio of the base-points of a pencil of conics. Consider a pencil -

of conics through the four points 4, B, C, D. Taking the harmonic triangle of
this quadrangle as triangle of reference, the coordinates of the four points will
be (+p, +g, +r), and the equation of a conic of the peneil ig

az?+ by + c2?=0,
with the condition ap®+ bg®+ cr®=0,
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Hence, eliminating ¢, we can write the equation of the conic
r2(az? + by?) = (ap? + bg?)2?
or a(r?x?— p?2?)=b(g%2 — r%2).
alrz—pz) _qztry _,
b(gz—ry) rz+pz
and the conic is thus expressed in terms of the parameter ¢
The parameters of the four given points are then

h=w, 1,=0, ¢3=-'I%’, t4=q;;

Hence we can write

. 2
hence the cross-ratio (tyly, taty)= — ;% .
If the points are taken in different orders, the other values of the cross-ratio are
—(cr?) [(bg?), ete.

Examples.

1. Prove that the cross-ratio of the pencil subtended by the points of
intersection of the two conics
’ 8 = aa?+by?+¢c2?=0,

8’ =a'22+ by’ +c2?=0
at any point on 8 are — (ap)/(bg), ete., where
piqir=bc’~bc:ca’—c’a:ab —a’b, k
2. Prove that the cross-ratio of the pencil subtended by the points of
intersection of the two conics
S = fyz+ gzx+ hxy=0,
8 =fyz+g2x+h'zy=0
at any point on S are — (fp)/(gq). etc., where
piqir=gh’—g'h: W' —RY: fg’' = [

3. Prove that through four given points there pass three conics on which the
four points form a harmonic set, and determine whether these conics are all real.

Let the four points be (+p, +¢, £7); then the equation of any conic through
these four points is

ax?+ by? + c22=0,
with the condition ap®+ bg?+cr?=0.
The cross-ratio — (bg?)/(cr?)=—1; therefore bg?=cr? and ap?= —2b¢%. By
equating the various ratios to — 1, we get three conics
—2x2/p%+ 32 |g? + 22 )r2=0,
2?p?— 22 I+ 22 (=0,
22[p?+ y?g? — 222 |r3=0.
(i) If the four points are all real, let p=g=r=1, and we get three real conics
— 20242 +22=0, 22-2y2+22=0, 2%+y%2—2:2=0.

(ii) If the points are two pairs of conjugate imaginaries, let p=i,g=r=1;

then the three conics are _
2224924 22=0, —22-22+22=0, - z3+y%-2:2=0.
The last two are real, but the first is virtual.
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(iii) If the points are two real and two conjugate imaginaries, we must proceed
otherwise, since the harmonic triangle has two sides conjugate imaginary lines.
Let the sides be 2=0 and x+iy=0. Then the conic

(a— b)(x+ iy)2+ (a+ )z — iy)®+ c2P=0
has this triangle self-conjugate and its coefficients all real ; it will pass through
the four points given by

T+ iy=+(p+iq), z—iy==*(p—1q), 2z==1

if 2a(p?~ ¢)+ 4bpg+c=0.
The four points are (p, g, £1), (g, —p, +i). Proceeding as before, we get three
conics. One will be found to be

(P? - ¢¥)(2® — ) — (PP + ¢*)%% + dpqay =0,
which is real ; the other two will be found to be conjugate imaginary conics.

4. Prove that through four given points there pass two conies on which
the four points form an equianharmonic set. Show that they are conjugate
imaginary if the points are either all real or all imaginary, but are real if two of
the points are real and two conjugate imaginary points.

If the points are (+1, 1, £1) the two conics are z*+cwy?+w%?=0
and 22+ 0%?+wz?=0, which are conjugate imaginaries. If the points are
(£1, £1, +4), the two conics are wz?+ w?>2—22=0 and 0222+ wy?—22=0, again
conjugate imaginaries. If the points are two real and two imaginary, let the
sides of the harmonic triangle be 2=0, z+ wy=0, z+ w2y=0, and let the points
be given by z+wy= +(1+ ), z+0?y= £(1+w?),z=+ 1. Then the two conics
are 22— 12+ 22— 2zy=0 and — 22+ 242+ 2% — 2xry=0, which are real.

8. Conic generated by two homographic pencils. The converse of the
_theorem in § 6 affords one of the most important applications of (1, 1)
correspondence.

If A and B are two fized points, and if to every ray drawn through A corre-
sponds one and only one ray through B ; and similarly to every ray through B
corresponds one and only one ray through A, the locus of the point of inter-
section of corresponding rays is a conic through A and B.

Consider two pencils with vertices 4=(1, 0, 0) and B=(0, 1,0). The
equations of corresponding rays are ‘

y=X and z=yz
But if they are in (1, 1) correspondence,
the parameters A, . are connected by
an equation of the form

alp +bA+cpn. +d=0.
Hence the locus of points of intersection
of pairs of corresponding rays is

azxy +byz + czx + dz? =0, /

which represents a conic passing through Fio. 107.
Aand B.

Hence the locus of points of intersection of corresponding rays of two
homographic pencils is a conic passing through the vertices of the two pencils.

By the principle of duality, we have the reciprocal theorem : the envelope
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of the lines joining pasrs of corresponding points of two homographic ranges
18 a conic touching the lines on which the ranges lie. (Fig. 107.)

We shall now exhibit the use of the above theorems in solving
geometrical problems.

Examples.

1. A variable triangle is such that its sides pass through three fixed points
and two of its vertices lie on fixed straight lines; find the locus of the third
vertex. (Colin Maclaurin, 1722.)

Let the sides QR, RP, PQ of the triangle PQR pass respectively through the
fixed points 4, B, C, and let the vertices @, R lie on the fixed lines 0Y, OZ.
Draw any line % through B, This cuts OZ in a
unique point R, and R4 cuts OY in a unique
point @ ; lastly, QC is a unique line u’ corre-
sponding to #; and similarly it may be shown
that % is a unique line corresponding to «’.
Hence we have two pencils through B and C in
(1, 1) correspondence, and therefore the locus
of P, the point of intersection of corresponding
rays, is a conic passing through B and C.

2. Show that O lies on the locus in Ex. 1.

3. 4 and B are two fixed points on a
given conic, and P is a variable point on the
fixed line I. PA, PB meet the conic in X, ¥
respectively; AY cuts BX in Q. Prove that Fre. 108.
the locus of @ is a conic.

Draw any ray u through 4 meeting the conic in ¥. Join BY cutting ! in P,
and join AP meeting the conic in X. Then BX corresponds uniquely to AY,
and similarly it can be shown that AY corresponds uniquely to BX. Hence
there is a (1, 1) correspondence between the rays AY and BX. The locus of
their point of intersection is therefore a conic passing through 4 and B.

4, If in Ex. 3 I cuts the conic in L and M, show that L and M lie on the
locus.

0

9. A very important case arises when to 4B, regarded as a ray through
A, corresponds B4, regarded as a ray through B. Then, if P is any point
on the line 4B, since AP and BP are always corresponding rays, P is a
point on the locus. The conic-locus in this case therefore contains the
whole line 4B; the remaining part of the locus must therefore consist of
another straight line. Hence: If 4 and B are fixed points, and if a (1, 1)
correspondence exists between the rays throughk A and B of such a nature that
the ray A B through A corresponds to the ray BA through B, the locus of points
of intersection of corresponding rays is a straight line (which, with the line A B,
makes up the complete conic-locus).

Reciprocally : If a and b are fized lines, and if a (1, 1) correspondence
extsts between the points on a and b of such a nature that the point of inter-
section ab, regarded as a point on a, corresponds to the point ba, regarded as
a point on b, the envelope of the lines joining corresponding poinis 18 a poind
(which, with the point ab, makes up the complete conic-envelope).
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Ex. OX, OY are two fixed lines, on which lie the fixed points 4, B respec-
tively. Circles through 4, B cut OX, OY in P, Q respectively. Prove that the
line PQ passes through a fixed point.

P and @ are in (1, 1) correspondence, and when P is at O, @ also coincides
with 0. Hence O on OX corresponds to O on OY. The conic-envelope generated
by PQ therefore consists of the point O
and another fixed point U. To find U,
consider two particular positions of the
circle. If the circle passes through O, PQ
becomes the tangent at O. Another par-
ticular circle consists of the line 4B and
the line at infinity; in this case PQ is
therefore the line at infinity. Hence U
is the point of intersection of the line at
infinity with the tangent to the circle
which passes through O. Hence all the
lines PQ are parallel, as is also easily proved F1a. 109.
by elementary geometry.

10. The theorem (2) of § 6, which is the fundamental projective theorem
for a conic, can be stated from another point of view. We know that five
points completely determine a conic. If a sixth point is to lie on the
conic it must satisfy some condition. We have found then that the con-
dition that six points 4 BCDEF should lie on a conic, is that the cross-
ratios E(4BCD) and F(ABCD) must be equal. This condition can be
expressed in terms of collinearity, and leads to

Pascal’s Theorem. If a hexagon is inscribed tn a conic the points of
intersection of pairs of opposite sides are collinear.

Let the pairs of opposite vertices be
denoted by 4, 4’; B, B’; C,C'; so that
the order of the vertices is AB'CA’'BC’;
and let B'C and BC’ meet in X, 0’4 and
CA’'inY,A'Band AB’inZ. Then we have
to prove that X, Y, Z are collinear.

We have two pencils with equal cross-
ratios  B(A’B'C'A)=C(A4’'B'C’'4).

Cut these by the transversals B'4 and C'4
respectively, and let the points
BC’ (o) : 4

(a)=5 (gra) =4
then (ZB'LA)=(YMC'4).
But these two ranges have the point.4 in common. They are therefore,
by a known theorem, in perspective, and ZY, B’M, LC’ are concurrent.
But B’M and LC’ intersect in X ; therefore ZY passes through X.

"The line XYZ is called the Pascal line of the hexagon 4AB'CA’'BC’.
By taking the points in different orders we can obtain 60 Pascal lines.
A large number of theorems relating to the configuration formed by these
lines has been discovered by Steiner, Kirkman, Cayley, Salmon, and others.

X
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Some information regarding these is to be found in the Notes to Salmon’s
Conic Sections.
By the principle of duality we obtain from Pascal’s theorem :

' Br.ianchon’s Theorem. If a hexzagon is circumscribed about a conic the
lines joining pairs of opposite vertices are concurrent.

11. The following theorem is proved very simply by an application of
Pascal’s and Brianchon’s theorems :

If two triangles are inscribed in the same conic they are both circumseribed
about another conic.

Let ABC and A4’'B'C" be two
triangles inscribed in the same conic
8. Then, considering the hexagon
ABCC'B’A’, we have by Pascal’s
theorem the three collinear points

AB BC , (CC ¢
(&2)=P (5a)=> (42)=0
"te. AA’, CC', PP’ are concurrent.
Hence, by the converse of Brianchon’s
theorem, the hexagon APC'A’P'C
circumscribes a conic, but the sides of
this hexagon are those of the two tri- Fro. 111.
angles ABC, A'B’C’; therefore, etc.

This gives us two conics S and S’ 8o related that there is a pair of
tringles inscribed in 8 and circumscribed about §’. We shall now prove
the theorem : .~

If two conics are so related that one triangle can be inscribed in one and
circumscribed about the other, an unlimited number of triangles can be so
constructed.

Let ABC be one given triangle, and take any point 4’ on 8. Draw
the tangents from 4’ to §’ cutting S in B’and C". Then, since the triangles
ABC and A’B’C’ are both inscribed in the same conic S, a conic can be
constructed to touch their six sides. But the conic S’ touches five of the
sides, and since a conic is completely determined by five tangents, S’ must
be the conic which touches the six sides. Hence B’C" is also a tangent to S.

Ex. If a parabola is inscribed in a triangle
tts focus lies on the circumscribed circle.

Let ABC be the given triangle, I and J
the circular points. Then we have a triangle
ABC circumscribed about one conic, the
parabola, and inscribed in another conic, the
circumseribed circle, which passes through I
and J. Draw the tangents from I and J to the
parabola intersecting in the focus F. Then
the triangle IJF is circumscribed about the
parabola, and is therefore inscribed in the circle.
Therefore F lies on the circumscribed circle.
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12. Correspondence between pairs of points on the same line. When
two homographic ranges lie on the same line the question arises: can a
point coincide with its correspondent ?

Let the equation connecting the parameters ¢, ¢' of corresponding

points be att’ +bt +ot' +d=0.
Then, if the two corresponding points, ¢ and ¢, coincide, we have, putting
¢ =t, af? +(b+c)t+d=0.

his is a quadratic in ¢ ; hence there are in general two points which coincide
with their correspondents. “These two points are called the double-points
of the homography. They may be real, coincident, or imaginary.

13. The cross-ratio of any pasr of corresponding points and the two
double points of the homography s constant.

Let the parameters be so chosen that the parameters of the double
- points are 0 and . The equation of the homography is then

bt +ct’' =0,
and the cross-ratio (0 « , &#') =t/t' = —¢/b, which is constant.

14. Suppose a homography to be defined in the following way. Let
8, 8’ be two fixed points outside the line I, and let I’ be another fixed line.
Then, to obtain the point P’
from the point P, join SP
cutting ' in @, and join S'Q
cutting ¢ in P’. In this case
the double-points of the homo-
graphy are X and Y, the
points of intersection of I with
U and SS8".

Although the two ranges lie
on the same line, it is essential
that they should be kept distinct ¥ P PP X~
in all operations, and it must ¥ro. 118,
be made quite clear to which of
the two ranges a given point P belongs. If in the above example P
belonged to the second range instead of the first, its correspondent would
be constructed differently ; first join S'P cutting I’ in @', then join SQ’
cutting ! in P”.

Thus, when P is considered as belonging to the first range, its corre-
spondent is P’; but when it is considered as belonging to the second range,
its correspondent is P”'.

We can say that to P on the first range corresponds P’ on the second,
and to P’ on the second corresponds P on the first ; but we cannot say
that to the point P corresponds the point P’ and wvice versa, without
mentioning to which range each point belongs, for there is then an ambi-
guity owing to the fact that the relation between pairs of points is not
symmetrical. S
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15. There is a very important case in which the correspondent of any
point is the same, whichever range the point is supposed to belong to.
Let us see what is the condition for this.

Let the equation connecting the parameters be

' at+ 3
S yt+d
80 that to P(f) on the first range corresponds P’(t’) on the second. Now
to P'(') considered as being on the first range will in general correspond a
third point P”(t”) on the second, but if P’ is also the point which corre-
sponds to P, considered as belonging to the second range, then P” must
coincide with P.
w0 +B a(at+B)+B(yt+8) (a2 +Py)t+B(x+8)
h =ZTR - :
We have ¢ Y+ y(ot+B) +8(vt+8)  y(x+8)¢+(By +9?)

Hence, if ¢’ =t, Yo +8)2% - (o2 - 82)¢ — B(x +8) =0.

This equation is satisfied identically by «+8=0, and if this condition is
not satisfied, we have the quadratic equation

Yyt~ (a—8)t— B=0.
But this equation is just the condition that ¢’ =¢, and its roots determine
the two double-points of the homography.

Hence either (1) every pair of points are connected in pairs so that to P
on the first range corresponds P’ on the second, and to P’ on the Jirst range
corresponds P on the second, or (2) this relation only holds in the case of the
double-poinis.

Case (1) is of great importance, and we shall return to it presently.

In general, we obtain an unending chain of points. To P, on ! corre-
sponds P, on V', to P, on I corresponds P on ¥/, and so on. If it happens
that one point P, of the chain coincides with P,, the homography is
periodicwith period n. The case n =2 is that which we have just considered.
The conditions that the homography should be of period 2 are either
®+8=0, or (in order that the remaining quadratic should be an identity)
a=8, B=0, v=0. The latter conditions give ¢’ =1, and the two ranges are
identical. In the former case the two ranges are said to be in inwvolution.
An involution is therefore a periodic homography of period 2, in which the
elements are connected definitely in pairs, and the defining relation is

at+
= -
or Y& —x(t+0) - B=0,
t.e. it is a lineo-linear symmetrical equation in ¢ and ¢.

t'

t’

Examples.

1. Prove that the condition that the homography # =(at+ B)/(yt+ 8) should
be of period 3 is o®+ 8%+ ad+ By=0.,

2. Prove that the condition that the homography should be of period 4, but
~ot of peried 2, is o+ 52+ 2By =0.
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16. Double points of an involution. As in the case of the general homo-
graphy, an involution possesses two double points Dy, D,, whose parameters
are the roots of the quadratic

yt? - 2ut — 3 =0. :
These may be real or imaginary. The condition for equal roots is a2 + By =0.

B

But this is excluded, as it makes the determinant * vanish, and the

relation ¢’ = (ot + B)/(yt — ) would reduce to ¢ =ajy. When the double
points are real the involution is said to be hyperbolic, when they are
imaginary it is called elliptic. o

These relations have all been explained with reference to ranges of
points on a straight line, but they may equally well be applied to pencils
of lines through a point, or points on any curve, or tangents to any curve,
or indeed to any one-dimensional figure whose elements are determined
by a single parameter. :

As an example of an involution, which will at the same time fix the
names elliptic and hyperbolic, consider the pairs of conjugate diameters of
a central conic. ;

Taking the ellipse 22/a? +12[b* =1, the equations of a pair of conjugate
diameters are y=uz, y=p'z,

where ., @’ are connected by the symmetrical lineo-linear relation
s’ = —b2fa?,

Hence the pairs of conjugate diameters form an involution. The double
lines are formed by putting p’ =, and we get the imaginary values

p= xibfa.
Hence the involution is elliptic. '

For the hyperbola a?[a? —y2[*=1, we have the conjugate diameters
y=uz, y=p',

where @, u’ are connected by the relation

pp’ =b?/a.
The double lines in this case are real, given by .= +b/a, and are in fact the
asymptotes. The involution is therefore hyperbolic.

17. Every pasr of points of an involution are harmonic conjugates with
regard to the double points.

Let the parameters be chosen so that the parameters of the double
points are x+/k; then the equation of the involution is

=k
The cross-ratio  (Z, ¢’ ; vk, —/k) =%—]IZ :l_;%= ~1.

If the parameter ¢ is the distance of the point P from a fixed point O on
the fixed line, the equation &’ =k means geometrically that the points P, P’
are 8o related that OP .OP' =k.

This relation is sometimes taken as the defining relation for an involution
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of points. Tt is not convenient as a general method of defining an involution,
however, as it would not apply, for example, to a pencil of lines.

The point O is called the centre of the involution. It is the point which
corresponds to the point at infinity on the line. In an involution-pencil
there are two double lines, and the bisectors of the angles between these
lines are the central lines of the involution. They are, in general, the only
pair of lines of the involution which are at right angles.

18. Examples of involutions.

1. Pairs of points on a line which are conjugate with regard to a circle or conie
form an involution, the double points being the points of intersection of the
straight line with the conic.

2. Pairs of straight lines at right angles to one another through a fized point O
form an involution of lines, for the correspondence between such pairs is (1, 1)
and symmetrical. In this case the double rays are the two lines with respect to
which each pair are harmonic conjugates, i.e. they are the lines OI and OJ
joining O to the circular points. Since the double rays are imaginary the
involution is elliptic.

3. Any straight line i8 cut by a system of coazal circles in an involution. Take
any point P on the line J; then there is just one circle of the system which passes
through P, and this cuts ! again in P’. The same circle again is determined by
P’; hence to P’ corresponds P. There is thus a (1, 1) involutory correspondence
between the points P and the points P’. The double points are the points of
contact of the circles of the system which touch I.

4. Desargues’ Theorem. A straight line is cut in involution by a pencil of
conics passing through four fixed points.

This is the general theorem of which the last example, relating to coaxal
circles, is a particular case, and the proof is exactly similar.

5. By the principle of duality, or independently by applying the same
method of proof, we have also the theorem : The pairs of tangents from o fived
point to a range of conics touching four fixed lines form an involution pencil.

As a particular case, pairs of tangents from a fized point O to the conics of a
confocal system form an involution ; the double lines are the tangents to the two
conics of the confocal system which pass through O.

19. An involution is completely determined by two pairs of elements.
Consider two pairs of lines through the origin, and let their equations be
S=ax* +2hzy +by® =0,
8’ =a’a? + 2h'zy + b'y2 =0.
Then there is a unique pair of lines
F=Ax?+2Hzy + By*=0,
with respect to which the pairs S and S’ are harmonic conjugates. For
the conditions that S and S’ should be apolar to F are

b4 -2hH +aB =0,
b’'4A-2h'H +a’B=0.
These determine uniquely the ratios
A:-2H : B=ha'~Fa:ab’ —a'b: bk’ - bk,
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Hence the double elements of the involution of which S and §’ are two pairs
are given by
F=(ha' - Wa)a? - (ab’ —a'b)zy + (bh' - b'h) y?=0,

and the involution is completely determined.

20. The cross-ratio of two pairs of elements. Let the two pairs of
elements be given by the quadratic equations

a2+ 2kt +b =0,
a'2+2h't +b'=0,
and let the two pairs be ¢,, t, and /', ¢,’, so that
t, +t; = —2hja,  tt, =bla,
ooty = -2 o', bty =b[a".
The cross-ratio
A=(tty, 48) = (6, =t,) (8, = 8)) [t — 1)t — &)
=(tity +4/ty —tity —t)'ts) [(taly + 1yt — ity — L5'ty)-

Let aa' (Gt +4't) =y, aa' () +h't) =pa;
then P+ g =aa’(ty +1,) (8 +ty) =4RE,
and Wthe =a%a"2{t,a(t'2 +1'2) +1,'t5 (82 + %)}

=4(abh'® +a'b'h? — aba'b’).
Therefore [1,, i, are the roots of the equation
p? — 4hh'p + 4{h%h"2 — (ab - h?) (¢}’ - 1'%)} =0,
or, writing for shortness,
ab-H2=C, o't -h2=C", ab +a'b—2hh"=2K,

the roots Bar Ra=2kR' £24/(CC").
We have then A=(ab’ +a'b—p)/(ad’ +a'd—p,)
=(K +VCC") (K= VCC),

or the two values of the cross-ratio, which correspond to the two different
orders of the pairs, are the roots of the equation

A% -2\ (K2 +CC)/(K2-CC")+1=0.
21. Elements common to two involutions. Let the double elements of
two involutions be determined by the quadratic equations
A +2Ht + B =0,
At +2H't+ B'=0;
and suppose the pair of elements

at*+2ht +5=0
to be common to both involutions.
Then aB -2hH +b4 =0,
aB' —-2hH' +b4'=0;
hence a:-2h:b=HA'-H'A:AB'-A'B: BH'- B'H.

Therefore the pair of common elements is uniquely determined.
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The two common elements will be real if 42 — ab>0, ¢.e. if
(AB’'-A'B)*-4(HA’'-H’'A)(BH’ - B'H)>0.
This may be written
(AB' -2HH' + BA'?>4(AB-II?)(4'D - H").
Now, if the two pairs of double elements are both real, with this condition
(t.e. K2>CC"), the cross-ratio of the two pairs of double elements is positive

(§ 20), ¢.e. the double elements do not separate each other.
If either of the pairs is imaginary, say 4 B - H2>>0, then we have

4i2AB - (aB+bA)*>0;
therefore 44 B(h?-ab)>(aB-bd)?;

but 4 B> H?2>0, therefore #2>ab, and the two common elements are real.

Hence two involutions on the same range have a unique pasr of elements
tn common, which are real if either (1) one or both of the involutions are
elliptic, or (2) 1f the two involutions are both hyperbolic, provided their double
elements do not separate one another. .

Examples.

1. Pairs of conjugate diameters of a conic form an involution which is elliptic
in the case of the ellipse and hyperbolic in the case of the hyperbola, and the
double lines are the tangents to the conic from the centre, i.e. the asymptotes.

Pairs of rectangular lines through the centre also form an elliptic involution,
and there are two real lines which are common to this involution and the involu-
tion of conjugate diameters. These are the rectangular conjugate diameters, or
the principal axes of the conic.

2. Two rectangular hyperbolas determine a pencil of conics which cut the
line at infinity in an involution of points of which the double points are the
circular points. Hence every conic of the pencil is a rectangular hyperbola.

3. A pencil of conics cuts the line at infinity in an involution of points whose
double points are the points in which two conics of the system touch the line at
infinity. These two conics are therefore parabolas. Hence a pencil of conics
contains two parabolas, and the directions of the axes of these parabolas
are harmonic conjugates with regard to the asymptotes of each conic of the
system.

4. If a pencil of conics contains a circle, the involution on the line at infinity
has the circular points as a pair. The double points D, D, are therefore
harmonic conjugates with regard to the circular points. Hence the axes of the
two parabolas of the system are at right angles. Further, if C is the centre of
any conic of the system, CD, and CD, are conjugate diameters and are at right
angles, and are therefore the principal axes of the conic. Hence the principal
axes of all conics of the system are in two fixed directions at right angles.

8. Consider a circle and a conic. These determine a pencil of conics, and
one conic of the system is the pair of common chords. If these meet the line at
infinity in L,, L,, and I, J are the circular points, we have

. (L1Dp IJ)=(L2D19 JI)
Hence the two chords are equally inclined to an axis of the conic.
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6. Consider two confocal conics through a point P. These determine a range
of conics. The tangents from P to the range of conics form an involution of
which the double lines are the tangents at P to the two given conics. One conic
of the range is the degenerate point-pair consisting .of the circular points I,J.
Hence the tangents at P are harmonic conjugates with regard to the lines PI, PJ,
and are therefore at right angles, i.e. two confocal conics cut orthogonally.

Another degenerate conic of the range is the point-pair Fy, F,, the foci. The
two tangents at P are therefore harmonic conjugates with regard to PF,, PF,,
i.e. they bisect the angle F,PF,, i.c. each tangent at P is equally inclined to the
two focal lines.

7. Consider a conic with foci F;, F,, and take a point P not on the conic.
The tangents PT, PT’ belong to the involution determined by PI, PJ and
PF,, PF, The double lines of this involution are conjugate with regard to PI
and PJ and are therefore at right angles, and they bisect the angles TPT” and
F,PF,; hence the angles TPT’ and F,PF, have the same bisectors.

22. Correspondence between two conics. The points of two conics may
be in (1, 1) correspondence. This will happen when the parameters ¢, ¢
of the points on the two conics are connected by the usual lineo-linear
relation att’ +bt+ct’ +d=0.

In particular we can have a correspondence between the points of the
same conic. ‘

If points P, P’ on a conic are connected by a (1, 1) correspondence, the
envelope of the line PP’ is a conic having double contact with the given conte -
at the two double points of the homography.

Let the parameters of the double points X, Z be @ ,0; then the equation
of the correspondence reduces to the form

bt +ct’ =0. (1)
Take as triangle of reference the chord XZ and the tangents at X and Z,
which intersect in Y ; then the parametric equations of the conic are
T=12
Y=20, I crrrcrisrressiissesssnessnnsnnsnssssesnnesees 2
2=1.
The equation of the chord joining the points ¢, ¢’ is
T—3(E+)Y+U2=0. cereeerrrnrrnreiniinnnnennin(3)
Substituting for ¢’ in terms of ¢, the line-coordinates of this line become

l=c,
LOER 10 ) 15 TR vevnenees(4)
= = bi2.

Provided b=Ee, these are the parametric line-equations of a conic touching

the given conic at X and Z.
23. Involution on a conic. An involution is a symmetrical (1, 1)
correspondence, and is represented by the symmetrical lineo-linear equation
S TR YO S S S (5)
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Comparing this with the equation (3) of the chord joining the points ¢, ¢,
we see that (5) is the condition that the chord should pass through the
fixed point (d, —2b, @). Hence, an involution on a contc ts determined by
its intersections with a pencil of lines, and the double points of the involution
are the points of contact of the tangent lines of the pencil.

The proviso bzc in the theorem of last paragraph is just the condition
that the homography should not be an involution. If b=¢, we have m=0,
and the envelope degenerates to the point Y, i.e. the lines joining pairs
of corresponding points of the involution are concurrent in Y.

Examples.

1. A and B are two fixed points on a conie, and ! is a fixed line cutting the
conicin U, V. PA cuts!l in R and BR cuts the conicin Q. Find the envelope
of PQ.

From the construction there is a (1, 1) correspondence between P and @ ;
and this correspondence is not symmetrical, for the construction which carries
P into  would carry Q into another point P’ such that QA and BP’ intersect
on I. Also when R coincides with U or V, P and @ will coincide; therefore
U, V are the double points of the homography. Hence the envelope of PQ is
a conic having double contact with the given conic at U and V.

2. 8 is a fixed conic, and A4, B two fixed points not on the conic. R is a
variable point on the conic, and B4, RB cut the conic in P, Q. Prove that the
envelope of P@Q is a conic having double contact with § at its points of inter-
section with 4 B,

3. 4 and B are two fixed points on a conic. A variable circle through
4, B cuts the conic again in P, Q. Prove that PQ passes through a fixed point.

Starting with the point P, the point ¢ is determined by drawing the circle
PA B cutting the conic again in ¢, and the same construction applied to @ gives P.
Hence P, @ are connected by a symmetrical (1, 1) correspondence, and therefore
PQ passes through a fixed point O. One circle through A4, B consists of AB and
the line at infinity, which cuts the conic in H, K. Hence the line at infinity is
one position of the line PQ ; therefore O is a point at infinity, and all the lines PQ
are parallel.

EXAMPLES XVIIL.

1. ABOD are four points on a conic, and abcd are the tangents at these
points. Show that the quadrangle 4 BCD and the quadnlateral abcd have the
same harmonic triangle.

2. Show that the cross-ratio of the tangents to four conics of a pencil
S+28’=0 at each of the four base-points is equal to the cross-ratio of the
parameters (A AAg2,).

3. P... and P’... are two homographic ranges on different lines, and I is
any other line. PP’ cuts l'in @, and M is the harmonic conjugate of @ with
regard to P, P’. Prove that the locus of M is a conic passing through the points
of intersection of ! with the two given lines.

4. Deduce from Ex. 3 that if P..., P'... are similar ranges (i.e. if the

ratio of corresponding segments PQ: P'Q’ ls consta.nt) the locus of the mid-point
of PP’ is a straight line.
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6. Prove that if i m n |=0

lp my my

ls my ny
the three lines z/l +y/m,+2/n,=0, etc., touch a conic inscribed in the triangle
of reference. Prove further that if the same condition is satisfied, the three lines
form a triangle insoribed in a conic in which the triangle of reference is inscribed,
and they also form a triangle self-conjugate with respect to a conic with respect
to which the triangle of reference is self-conjugate. (Math. Tripos 1., 1910.)

6. Rays making angles «, B, y with a zero line are in involution when paired
with rays whose angles are o’, B, y. Show that they are also in involution
when paired with rays whose angles are o, e+ a’— v/, a+a’= B

(Math. Tripos II., 1913.)

7. Two homographic ranges of points on a line are such that no (real) point
on the line is self-corresponding. Prove that two positions of a point P may be
found in any plane through the line such that all pairs of corresponding points
of the ranges subtend the same angle at P. (Pembroke, 1910.)

8. One vertex F of a variable triangle MPFN is fixed, and the angle M FN is
constant, while the other vertices M and N move respectively on fixed straight
lines TH and TK. Prove that the envelope of the side MN is a conic of which
F is a focus, and which touches the given lines TH and 7K. Give a construction
for the other focus. ‘ (Trinity, 1911.)

9. Prove that if the three sides QR, RP, PQ of a movable triangle PQR
pass through the fixed points D, E, F respectively, and P lies on a fixed conio
through E and F, and Q lies on a fixed conic through F and D, then R lies on &
fixed conic through D and E. (Trinity, 1900.)

10. The sides of a square ABCD are trisected, the points being named in
order AHEBLMCNPDQR. Prove that, if points X, ¥ move on BC and AD
respectively so that the pencils A(LNDX) and B(QDCY) are homographic, the
ranges traced by X and Y are in perspective. Hence construct (i) a pair of
corresponding rays of the pencils (other than 4D, BC) which are parallel to one
another, (ii) the tangents at A and B to the locus of intersection of AX and BY;
and sketch roughly this locus. {Math. Tripos IL., 1912.)

11. A variable triangle PQR is inscribed in a conic, and the sides QR, RP
pass through fixed points 4, B. Show that if 4 and B are conjugate with regard
to the conic, PQ passes through a fixed point C. Show that the triangles PQR
and A BC are in perspective and that the locus of the centre of perspective is the
conic itself. (Math. Tripos IL., 1914.)

12. Through a fixed point O a line is drawn cutting the sides of a given triangle
in X, ¥, 2, and P is the harmonic conjugate of X with regard to ¥,Z. Show
that the locus of P is a conic through O, 4, B, C.

13. Ifin Ex. 12 04 cuts BC in L, and L’ is the harmonic conjugate of L with
regard to B, C, show that the tangents at A and O are AL’ and OL’".

14. A variable triangle PQR is such that two of its vertices @, R lie on fixed
straight lines OY, OZ, the sides PQ, PR pass through fixed points B, C, and the
third side QR touches a fixed conic which touches OY, OZ. Show the# the loous
of P is a conio. ) '

S.A.0. B
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15. It a polygon is inscribed in a conic, and all its sides but one pass through
fixed points, prove that the envelope of that side is a conic having double con-
tact with the given conic.

16. If PP,P;..., 0,Q,Q; ... are corresponding points of a homography on
a conic 8, prove that the double points are the points of intersection of the conic
with the Pascal line of the hexagon P,Q,P,0,P,Q..

17. Hence find a construction for a conic touching three given lines and
having double contact with a given conic.

18. Find a construction for a polygon inscribed in a given conic and having
-each of its sides passing through a given point. '

19. A variable conic outs a fixed conic in two fixed points and passes through
two other fixed points. Show that the line joining the variable points of inter-
section of the two conics passes through a fixed point.




CHAPTER XIX:
SYSTEMS OF POINTS ON A CONIG.

1. I~ this chapter we shall study the geometry of one dimension, where
the figures, instead of being carves in two dimensions, consist of systems
of points lying on a line or curve. The study of this narrow domain is
useful in two ways: first, as an introduction to the invariant theory of
curves in two dimensions, and second, as an application to the theory of
algebraic equations, whose roots can always be represented by points lying
on a line or curve.

Intrinsically there is no difference between the geometry on a straight
line and that on a conic or any other curve which can be represented by
rational algebraic freedom-equations. But in the case of & conic we shall
derive much external assistance from the geometry of the conic itself.

) 9. We shall take therefore a fixed conic, which we shall call the base-
. conic. Choosing any two tangents and the chord of contact as triangle of
reference, we can write the equations as follows :

Point-equation S=y2—422=0, Line-equation Z=m?-nl=0,

Parametric equations z=¢3, l=1,
y=2t, m = —t,
z=1, n=_g,

the line ¢ being the tangent at the point ¢.
To avoid infinite values of the parameter it is sometimes convenient to
use the homogeneous parametric equations

=2, y=2 z=t?,

~ DYADS OF POINTS ON A CONIOC.
8. A pair of points on the base-conic can be represented by the quadratio

equation S=a4? 4+ 20t +ay;=0.
The form of the equation shows at once that the two points are the inter-
sections of the line ags +a,y +a2z=.0

with the base-coniec.

4. Apolar pairs of points on a conic. The cross-ratio of two pairs of
points on a conic is equal to the cross-ratio of the pencil formed by joining
41
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the two pairs of points to any other point on the conic, and is equal to the
cross-ratio of their parameters (Chap. XVIII. §6). Two pairs of points,

f=ay?+2a,t +a,=0,
g=bet? +2bit +b, =0,
are said to be apolar when their cross-ratio has the value —1. Analytically
the condition is represented by the equation (see Chap. II. § 21)
agbg — 20,5, + a3y =0
To interpret this geometrically, we see that two lmes
Lz +m,y+n2=0,
Iy +myy +ny2=0
are conjugate with regard to the conic, whose line-equation is m® —nl=0, if
2mymg =n,ly +m,l;.
Substituting aq, a,, a, for I, my, n, and by, b,, b, for l,, m,, n,, we get the
above condition. Hence two dyads on a conic are apolar if their chords are
conjugate or apolar with regard to the conic.

5. Involution on a conic. An involution of points on a conic consists
of a symmetrical (1, 1) correspondence in which the points are connected
in pairs. Let f=a4+2a;t +a,=0,

- g=byt?+2bt+b, = 0
represent two of the pairs of points, P, P’ and @, Q' ; and let the chords
PP’ and Q@' intersect in O. Then there is a unique dyad =T, T,, which
is apolar to both P, P’ and @, @', viz. the chord 7,7, is the polar of O
~ with regard to the base-conic. Now every chord conjugate to T,T,
passes through O; hence, the equations of the chords PP’ and Q@' being

Ao +a,y + asz =0,

ber +b,y +byz =0,
the equation of any other chord through O is

(@ + ayy + agz) + A (By + byy + by2) =0.

The involution is then determined by the intersections of these chords
with the conic, and is therefore represented by the linear system of dyads
f+Ag=0.

Examples.

1. Show that the double points of the involution determined by the two
dyads f=agf®+ 2a,1t’+ agt® and g =bgt®+ 2b;tt’+ byt is the Jacobian of f and g,

of of |_
a o |
9
ot or

2. If the Jacobian of two dyads consists of two ~oincident points. show that
the two dyads have a point in common,
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3. Prove that the three pairs of points whose parameters are u, %’ ; v, v ; W, &
are in involution if

(w4 u') (0" — w’) + (v+ V') (w0’ — ww’) + (w+ w') (uu’ — vv')=0.

6. Polars of a point with regard to a system of points on a line. The
equation f=ag™ +,010,8" % +,0505" 2% +... +a,t'" =0 '
represents a group of # points on the line. If (u, u’) is any point on the
line, the first polar of (u, u’) with respect to f is defined to be

s, 7 o

173 a +u a7
This represents a group of n —1 points on the line.

Similarly the first polar of (u, ') with respect to the first polar, s.e.
| u 2 +u' 2)2 f=0 |
o0 "o ’

2
or u’§f+2uu'—af—+u"g?;=0

o ot ot’

is called the second polar of (u, u’) with respect to f; and similarly higher
polars can be defined. :

7. Polar of a point with respect to a given dyad. The first polar of u

with respect to the dyad agf? +2a,t +ay =0,
is u(agt +a,) +(a,t +a,) =0,
t.e agtu +a,(t +u) +a,=0.

But this expresses that the dyads
agh? +2a,A +ay=0
and . R-(t+u)h+tu=A-£8)(A—u)=0 s
should be apolar, and the latter consists of u and its polar ¢. Hence any
point and its polar with regard to a given dyad form a harmonic set with the
given dyad.

This result shows that the polar-point can be found by a projective
geometrical construction which is quite independent of the parametric
representation. A figure which is obtained from a given figure by a
projective or non-metrical geometrical construction, independent of any
special parametric representation, is called a covariant of the given figure.
Analytically this means that the equation which defines the new figure is
unaltered if the parametric representation is altered, t.e. if the equations
are transformed by a linear transformation of the form .

t' = (ot + B)/(Yt +3).
Similarly a projective relation between two figures which is expressed by
an equation (containing only coefficients), which is unaltered by any such
transformation, is called an invariant relation. Thus the expression
gy — 20,b, +asb, is & joint-invariant of the two dyads in § 4.
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TRIADS OF POINTS ON A CONIO.

8. Polar-dyad of a point with respect to a given triad. Let
v f=agt® +3a,%" +3a,lt’ +agt’3=0
represent a triad. The polar-dyad of the point P=(u, u’) is
¥ ¥ g

“s+u

ot o
te. (3o +a,') 2 +2(a,u +a,u’) 8 + (ayu +ayu’) 2 =0,

The chord joining this pair of points is called the polar-azis of the point P,
To exhibit the polar dyad as a covariant of the point P and the given
triad, we shall establish the following construction :
The polar azis of a given point P with respect to the triad ABC is the
polar line of P with respect to the triangle A BC (Chap. XII. §12, Ex. 2).
Let 4, B, C be the given triad,
and P the given point. Join PA,
PB, PC cutting BC, CA, AB in
X,Y,Z Join YZ, ZX, XY cutting
BC, CA, AB in X', Y, Z’. Then
X', Y, Z' are collinear m a line
which is the polar of the point P
with respect to the triangle 4 BC.
Also, if ABC is chosen as triangle
of reference, and the coordinates of
P are (z', y', #), the equation of
X'YZ is

A

F16. 114,

+5 4+ 5=0.

8|8
R Jee
N

Now let the parameters of the points 4, B, C and P be &, &, t; and u. -
Then 4 BC being the triangle of reference, the equations of the conic can
be written T =(t—1,) (L~ o),

y=({-t3)(t =),

z=(t—t,)(E—ty).
The equation of the polar axis is then

z(u—t) +y(u—ty) +2(u—t3) =0,

and this cuts the conic in two points whose parameters are the roots of
the equation in ¢,

(-t (t—tg) (u~t;) +(t—£5) (E = ) (u —tg) + (6 — 1) (£ — ) (u — 85) =O.
But this is evidently the polar equation derived from the equation
f=@-t)(E-t)(-4)=0.

Hence the polar axis of any triad is derived by the above geometrical
construction.
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Examples.

1. Show that the equation of the polar axis of the point % with regard to
the triad ag®+ 3ay1®+ Ba,i+ ag=0 is (Ggu + ay) T+ (a0 %+ ag) y+ (agu + ag)2=0.

2. If Q is the polar of P with respect to a given dyad f, show that the
dyad PQ is apolar to f.

3. Show that the triads for which a given line lz+my+nz=0 is the polar
axis of a given point % form a linear system.

4. Prove that the second polar of P is the fourth point in which the polar
conic of P with respect to the triangle 4 BC (Chap. XII. §12, Ex. 2) outs the
base-conic.

9. Hessian of a friad. The question arises: can the point (v, u’) be
chosen so that its polar-dyad may consist of two coincident points 3 The
condition that the two points ke eoincident is

(aot +ayu') (agu + agu’) — (@ u +ax’)2=0,
or, in determinant notation,
agu+a %’ agu+ayu’ |=0,
autau’  agu -+

f.e. o o
ot 9uow
Ry |
Ou ou’ ou'®

This equation represents a pair of points. Hence there are two points whose
first polars with respect to a given triad consist of coincident points. These
two points are called the Hessian points or the Hessian dyad of the given
triad.

~ 10. Reduction of the equation of a triad to the canonical form. The
investigation of the properties of a triad can be simplified by referring its
equation to the Hessian points as base-points. The equation of the
Hessian points thus reduces to #'=0. This requires that

ag, —a% =0,
a,05— a2 =0,
Hence, either ;=0 and a;=0 .crcrirrrereererereeneennes (1)
or Go_%_%,
G, Gy 4ag

The second alternative would make f a perfect cube, which is not in general
the case. Hence, adopting the first alternative, f redues to

S=a,t® +ayt’s
As in the general system of homogeneous coordinates, we can replace t
and ¢’ by any multiples of them ; thus if we write ay}t=E, aglt =1, the
triad reduces further to f=E3+73=0, ‘

and its Hessian is H=En=0.
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We can now prove that each of the Hessian points of a triad taken double
is the first polar of the other.

For, taking f=¢ +¢'3, its Hessian is ##'=0. The polar of the Hessian
point (1, 0) is #3=0, which represents the other Hessian point (0, 1)
taken double. ‘ :

11. Let f=8+13=0
be the canonical equation of a triad of points 4, B, C on the base-conic
=0, y=2', z=¢2
Then we know (Chap. XIII. § 7, Ex. 2) that the tangents at 4, B, C meet
the opposite sides of the triangle 4 BC in three collinear points L, M, N.
If ¢’ =1 and ¢=1,, t,, t; are the values of the parameters for 4, B, C respec-
tively, the equation of BC is
T -}t +15)y +1at32=0,
and that of the tangent at 4 is
' z -ty +t,%2=0.
Buy thtty=—t, and fly= — 83,0, =12;
therefore the equation of BC becomes
: z+ 3y +1,22=0.
Hence L, the intersection of BC with the tangent at 4, is
. ( _t12, 0, 1) E(lx Os tl)’
and the points L, M, N lie on the line y=0. The line LMN cuts the base-
conic in two points whose parameters are given by ¢’=0. This represents
the Hessian of the given triad f, and the chord LMN through the Hessian
poiats is called the Hessian axzis. Hence the tangents at three points A, B, C
on the base-conic cut the opposite sides of the triangle A BC in three collinear
. points L, M, N, and the line LMN cuts the conic 1n a pasr of points forming
the Hessian of 4, B, C.
From this construction it is evident that the Hessian is a covariant of
‘the given triad.

Ex. Show that the polar axes of points of the conic all pass through the
pole of the Hessian axis with regard to the conic.

12. It is obvious from geometry that if two of the points 4, B, C coin-
cide, the Hessian points will coincide with the two coincident points.

Conversely, if the Hessian points coincide at T, two of the three points
4, B, C will coincide at T. Take the two points L, M on the tangent at T,
then the point 4 on the conic which corresponds to L is either 7' or the point
of contact of the other tangent from L ; similarly for B. Suppose neither
4 nor B coincides with 7', and let the lines L4, MB meet in O. Then
LB, MA, OT are concurrent in a point within the conic. But this point
should be C, a point on the conic, which is impossible. Hence one at
least of the points 4, B must coincide with 7. Similarly one at least
of the points 4, C, and one at least of the points B, C, must coincide
with T, and therefore two of the points 4, B, C coincide with 7'. :
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This leads to the necessary and sufficient condition that the cubic
f=ag® +3a,8% + 3agt + a3 =0
should have two roots equal, viz. that the Hessian
' H =(ayay — a,2) 8 + (3435 — a,09)t + (6,85 — a5%) =0
should be a perfect square, and the equal roots are the roots of the equation
H=0. The condition for this is
A =(ay2; — a,8,)% — 4(ay0, — a,2) (3105 — @g?) =O0.
The expression A is called the discriminant of the cubic, and is an invariant.

If the roots of the cubic are all equal the Hessian vanishes identically.

The conditions for this are
, Gy @y Gy =0y:0y: 0y

When the points 4, B, C are all real the line H is entirely outside the

conic ; hence we have the condition for real roots of the cubic, viz. A<<0.
Examples.

1. Prove that there are two points which form with 4, B, C an equian-
harmonic tetrad (Chap. XII §16), and that they coincide with the Hessian
points.

2. If, using homogeneous parameters, the Hessian points H;, H, of three
points P,, P,, P, are represented by =0, #’=0, show that the three points
P,, P,, P, can be represented by

t+¢'=0, t+wt’'=0, t+w’'=0,
where « is an imaginary cube root of unity.
3. Hence show that the range P,P,P H, is equianharmonis. - -
4. Prove that the three ranges
P, PyPyH, H,y,
PoPy Py H\H,,
PyP Pyl H,
are homographic. (The three points P,, P,, P; are said to be cyclically projective,
and H,, H, are the double points.)

13. Apolarity of two triads. Taking the two cubic equations

Sf=ag® +3a,8% + 3a,t +ay =0,

g =byt® + 3b,% + 3byt + by =0,
the relation agbg — 3a,by + 3a,b, - azhy =0,
which is linear and symmetrical in the coefficients of f and g, is exactly
analogous to the harmonic or apolar relation between two quadratics, and
when this relation is satisfied the two triads are said to be apolar.

The geometrical meaning of this relation can be obtained as follows.
Let uy, uy, ug be the parameters of the three points of the second triad.
Then the polar of «, with respect to the first triad is represented by

, (agtty +ay) 8 +2(ayu, +a,)t + (A%, +ag) =0,
and the pair u,, u; are represented by the equation
B — (ug + ug)t + uguy =0.
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These two pairs are harmonic or apolar if
(@t +ay) ugg + (ay; +a5) (ug + %) + (agu, +a4) =0,
b if  aguytguy +ay (UgUy + gty +uyus) + g (u; + Uy +ug) +a5 =0,
But gty = ~bg[by, Suyug=3by[by, Zu,= —3b, /b,
Hence we get Goby — 3a,by + 305D, — aghy=O0. ,
Therefore two triads A BC, A’ B'C’ are apolar if the polar dyad of one point A
with respect to A’B'C’ is harmonic with respect to BC. (For another geo-
metrical meaning for the apolarity of two triads see § 19, Ex. 5.)
Examples.
1. Show that the two triads ¢, ty, &3 and uy, u,, u, are apolar if
(b — 0,)(t — g) (8 — wg) + (& — )ty — tg) (b5 — 1y )+ (1 — ug) (g — ) (ty — 11g) =0.
2. Prove that any triad is apolar to itself.

3. Prove that the polar axis of A with respect to the triad 4 BC passes through
A and is conjugate to BC with regard to the conic.

4. Prove that the polar axis of each of the Hessian points is the tangent to
the base-conic at the other Hessian point.

5. Prove that any point ¢ forms with the Hessian points of 4 BC a triad apolar
to ABC.

14. From a given triad 4 BC we can obtain another triad 4’B’C’, such
that each of the three points is the harmonic conjugate of one of the given
points with regard to the other two.

The line 44’ is then the polar axis of 4 with regard to 4BC, and the
three lines 44’, BB’, CC’ are concurrent in O, the pole of the Hessian axis
with regard to the base-conic. The two triads 4 BC, 4’B’C’ therefore form
an involution.

A’'B'(C’ is a second covariant of the given triad. It is generally called
simply the Cubic covariant.

Examples.
1. Prove that the parameter of the point 4, the harmonic conjugate of 4
with respect to B, C, is (agt, + ag) [(agh®+ ayt;).
2. Prove that the cubic covariant of ayt®+ 34,2+ 3a,t+ay=0 is
(agas— 3ay1,05+20,%) 8+ 3(agay0y + 0,0y~ 2aq05?)1?
— 3(aga905+ 04057 — 20, %a5)t — (agay? — 3a,08,05+ 20,%) =0,
3. Show that the cubio covariant of 8+¢3=0 is 3 - 3=0,

4. If A’B’C’ is the oubic covariant of 4 BC, prove for both 4 and 4’ that
its second polar with regard to 4 BC coincides with 4.

5. Show that the cubic covariant of the triad ABC consists of the polars
of A, B, C with regard to the Hessian.

6. Prove that the cubic covariant of a triad is the Jacobian of the triad
.and its Hessian.

7. Show that a triad and its cubic covariant have the same Hessian.

8. Hence show that the cubic covariant of a given triad can be constructed
by drawing tangents to the base-conic from the points L, M, N on the Hessian axis.
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9. Show that the cubic covariant of a given triad 4 BC can be constructed
thus: draw the tangéents at 4, B, C forming the triangle PQR, then AP, BQ, CR
cut the conic in the points 4’, B’, C’ of the cubic covariant.

10. If A’B’C’ is the cubic covariant of 4 BC, show that ABC is the cubic
covariant of A’B’C".

11. Show that if a triad is apolar to its cubic covariant, two of the pointe
of the triad must coincide. Verify algebraically by showing that the dis-
oriminant A=0,

12. Show that the diseriminant of the cubic covariant is A3,

18. If f+)g is a linear system, or involution, of triads on a conic, A being a
variable parameter, prove that the poles of their Hessian axes describe a conic.

(By choosing the parameters of three points on the conic suitably one of the
cubics can be reduced to the simple form g=3+1. The coefficients in the
equation of the Hessian axis will be found to involve 2%) ,

14. If f and g are apolar triads, prove that every pair of triads of the linear
system f+ g are apolar.

15. Show that there is one triad which is apolar to each of three given triads.

16. If f,, f,, f are three given triads, show that each triad of the linear system
MS1+ M fs+25f3=0 is apolar to one and the same triad.

17. If f; and f, are two given triads, and g, and g, are two triads each apolar
to both f; and f,, show that each triad of the pencil f; + A/, is apolar to each triad
of the pencil g, + ug,.

TETRAD OF POINTS ON A CONIC.

15. Consider next the quartic equation

Sf=agt +4a,t3 + 6ayt? + 4agt +a, =0,
which represents a tetrad of points on the base-conic S = 42 —- 4z =0,
Since two conics intersect in four points, the quartic equation admits
of a somewhat different treatment from the cubic, for we can consider the
tetrad as defined by the intersection of a variable conic with the base-
conic. In this connection we shall anticipate an important definition and
theorem relating to a pair of conics (see Chap. XX. § 16 and Chap. XIV.
19).
g 'i‘wo conics, a conic-locus
F=ar®+by? +c2® +2fyz + 2922 + 2hxy =C
and a conic-envelope
' P'=A'P+Bm2+C'n%+2F mn+2@nl+2H'Im=0
are said to be apolar when their coefficients are connected by the equation
ad’ +bB' +cC' +2fF +29G +2hH’ =0.
.- The geometrical properties which correspond to this relation are:
é}l) In F can be inscribed a triangle which is self-conjugate with regard
to ®';
(2) About ' can be circumscribed a triangle which is self-conjugate
with regard to F.
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18. Consider now a pencil of conics passing through the given tetrad.
Let one conic of the pencil be

aa® + by? + c2® + 2fyz + 292w + 2hay = 0.
The parameters of the points in which this conic cuts the base-conic
z=8, y=2 z=1
are given by vhe equation
at? + 453 + (4D +29) 2 +4ft + ¢ =O0.
Identifying this equation with f=0, we have
a=ay, h=a,, 2b+g=3a, f=a; c=a,.
b and g are not fully determined, but we may take
b=ay;+2, and then g=az—2),
where A has any value.
Then we have the pencil of conics
ag®? + agy? + 2% + 204yz + 20022 + 20,2y + A(y? — d2x) =0.
The conic
F=ag?®+agy? +a42® +205y2 + 20,22 + 20,2y =0
has a particular significance. It is the unique conic-locus through the

four given points apolar to the base-conic m? —nl=0; for the condition
that a conic of the pencil should be apolar to the base-conic considered as

an envelope is (@g+)) - (@3 —20) =0, s.e. A=0.
The pencil of conics through the given tetrad is therefore represented by
F4+A8=0.

In a precisely similar way, we find that the range of conics touching
the four tangents to the base-conic £ =m?—-nl=0, whose parameters are
the roots of the tetrad, is & +uT=0,

where - P=a P +4am? +agn? — da;mn + 2a,nl — daglm =0
represents the unique conic-envelope of the range which is apolar to the
base-conic S.

17. The pencil F+AS contains three degenerate conics consisting of
pairs of straight lines, the pairs of common chords of F and 8. The values
of A for these are found from the equation

ay a, a,—-2\ |=0,

o1 ag+i ag

ag—2\ ag ag
t.e. A3 —IA =T =0, o (1)
where I =ay, — 40,05+ 3a,2,

J =ay0,0, — ag0s% + 20,0505 — a,2a, — a,3.

These are two invariants of the quartic equation. The equation (1) is
called the Reducing Cubic of the given quartic equation, because, as is
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shown in the Theory of Equations, the quartic equation can be solved
algebraically when we know the roots of this cubic equation. One process
of solution, in fact, consists in breaking up the quartic into quadratic
factors, and this corresponds exactly to the geometrical process of separating
the tetrad of points into two pairs.

18. It is obvious geometrically that if two points of the tetrad coincide,
two of the line-pairs coincide, and the reducing cubic has two roots equal,
and, conversely, if the reducing cubic has two roots equal, two of the line-
pairs (4B, CD), (AC, BD), (4D, BC) must be identical, and therefore two
of the points 4, B, C, D must coincide. The necessary and sufficient
condition that the quartic should have two roots equal is therefore that
the reducing cubic should have two equal roots. The analytical condition
that an equation of any degree should have two roots equal is expressed
by the vanishing of a certain function of the coefficients called the dis-
criminant A, and this function is an invariant, but we have just seen that
the discriminant of the given quartic is equal to or a numerical multiple of
the discriminant of the reducing cubic, which can be expressed in terms
. of the invariants I and J. Hence, we do not get a new invariant of the
quartic independent of I and J. - In fact, the discriminant of the reducing
cubic, or the condition that the equation (1), § 17, should have equal roots
is obtained by eliminating A between this equation and its first derivative
1232 -1 =0. The result is easily found to be I3 -27J2=0. We can there-
fore take as the discriminant of the quartic l

A= I3-27J2,

19. Geometrical meaning of the vanishing of the two invariants I and J.
If J =0, one root of the reducing cubic is zero, and the conic F itself breaks
up into two straight lines, and F has the property that a triangle self-
conjugate with regard to F can be circumscribed about S. Now a triangle,
in order to be self-conjugate with regard to a pair of straight lines con-
sidered as a degenerate conic, must have one vertex at the intersection of
the two lines, and the two sides through that point harmonic conjugates
with regard to the two lines. Hence the line-pair F, which consists of cne
pair of lines joining the four given points, are harmonic conjugates with
regard to the tangents from their intersection to the base-conic, i.e. they
are conjugate lines with regard to the base-conic. J =0 s therefore the
condition that the tetrad should be harmoniec. .

To find the geometrical meaning of the condition I =0, let the para-
meters of the four points of the tetrad be 0, w, 1, #. Then

F=126(~1) (- u) = 1263 — 1222 (u + 1) + 126,
so that a,=0, a,=3, ay=-2(u+1), ay=3u, a,=0.
Then  I=ag, -4a,a5+3a,2 = —36u +12(u+1)2=12(u - u +1).
Hence, if I=0 we have u= —w or —?, and the cross-ratio
(00, lu)=1ju=-w? or —w.
Hence I =0 $s the condition that the tetrad, should be equianharmonie.
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Examples.
1. Show that if the tetrad ABCD is equianharmonic the Hessian dyad of
A4 BC consists of D and another point.

2. If f and g are apolar triads, show that the envelope of the Hessian axes of
the linear system f+ 2g (which is a conic ¥, see § 14, Ex. 13) cuts the pase-conic
in an equianharmonic tetrad.

3. Show also that the locus of the poles of the Hessian axes is a conic F which
touches the tangents to the base-conic at its points of intersection with the
conic P. '

4. Show further that, f and g being still apolar triads, the conics F and ¥ are
both apolar to the base-conic considered in each case either as a locus or as an
envelope.

5. Show that the Jacobian of two triads is a tetrad, and that if the two triads
are apolar their Jacobian is equianharmonic.

20. The sextic covariant of a tetrad. If the four points 4, B, C, D are
grouped in pairs, e.g. AB, CD, there is one pair of points X, X’ which
separate harmonically both AB and CD. By grouping the four pointe
in pairs in all possible ways, 4B, CD; AC, BD; AD, BC, we obtain
three pairs of points XX’, YY’, ZZ'. We shall see later that these form a
covariant of the given tetrad ; this covariant is called the sextic covariant.

21. Reduction of the equation of a tetrad to the canonical form. Take
XX', a pair of points of the sextic covariant of the tetrad ABCD, as the
base-points, so that their equation is ##'=0. Then, since XX’ harmonically
separate 4 B, this pair of points must be represented by an equation of the
form af® +bt'2=0. Similarly the other pair CD must be represented by
an equation of the form a’t? +5'¢2=0. Hence the equation of the tetrad is

; (af? +bt'2) (a2 +b't'2) =0,
which is of the form agtt +6a,1%'% + a4t =0.
This may be further simplified by putting att=E, alt =1v); then we have

f=Et+ 6022 +9t=0.
Examples. .
1. Prove that the sextic covariant of the tetrad f=z*+ 8x22y®+ =0 consists
of the three dyads zy=0, 22— %=0, 22+ 4*=0. .
2. Show that each of the three pairs of points of the sextic covariant
harmonically separates the other two pairs.

29, The Hessian of a tetrad. The first polar or polar-triad of the point
(u, w’) with regard to the tetrad f is
+u' s .

of
T O — reeveseserenens 1

u_
Let us find the condition that two of the points of the polar-triad may be
coincident. We know that the equation f(f)=0 has two roots equal if

o vanishes also. Hence the condition that (1), as an equation in ¢, should

ot
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have two roots equal is that (1) should vanish simultaneously with the

uation
* u g—z+ u’~% =0, e (2)
Similarly, considering (1) as an equation in #', we have
2
u afzgt, +u'—gt—‘{; =0. ....... ereereeenererennanannes 3)
Eliminating u, ' between (2) and (3), we have
% 9 |_o
ot otot’|
K
otot’ ot?

which represents the Hessian of f. Writing it out in full, we have
H=| ag?+2a,tt’ +ast®  a,8% +2a,tt’ +azt'? | =0.
a,t% 4+ 20,8 +agt’  ayl? +2a4lt’ +a,t'?
The Hessian therefore consists of the four points whose first polars contain
two coincident points.

Let us find the common tangents of the conic ¥ (§ 16) and the base-
conic S. These can be best found by using line-coordinates. Since the
tangent to S=y* —4ex =0 at ¢ is -ty +1%2=0, we can take as parametrio
line-equations of S, or, as we shall call it when it is considered as an

envelope, 3, =1,
m= -1,
n=_,

~ the parameter of the tangent being the same as that of the point of contact.
The line-equation of ¥ can be written in the form

P=la, a, a, 1l |=0.
a a, ag m
a, az; a; n
Il m a O

Then the parameters of the four common tangents of 3 and &, or of
their points of contact, are the roots of the equation

a, a; a, 1 |=0.
a, a, az; -t
e, ay ay t*
1 -t 2 0
Multiply the second column of this determinant by ¢ and add to the
third, and multiply the first column by ¢ and add to the second, and we get
ag+a; ait+a, 1 [=0.

at+a;, axt+ag —t
agf+ag agt+a, £
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Treat the rows in the same way, and we get finally
agl? +2a8+ay  ayt* +2a5t +ag | =0,
| a2 +2a5t +ag  ayt? +2agt +a, |
which is identical with the Hessian H. Hence the Hessian of a tetrad
consists of the points of contact of the common tangents to the base-conic and
. the conic-locus through the given tetrad which is apolar to the base conic-
envelope.
23. If we go through the same process, taking any conic of the pencil
F + A8 =0, the equation for the parameters of the points of contact of the
four common tangents to this conic and S is found to be
agl? +2at +ay+h  ayt* +2a,t +ag—-N |=0,
ayf? +20t + a3~ N agl? +2aqt +ag + N3
which reduces to H +Af=0.
This then represents a linear system of tetrads on the base-conic. When
A is a root of the reducing cubic the conic F +AS breaks up into two straight
lines; the common tangents of this degenerate conic and the base-conic
are then simply the tangents to the base-conic from the point of intersection
of the line-pair. The four points of contact then coincide in pairs, and for
such values of A the expression H +Af must be a perfect square. We have

Fia. 115.

then three pairs of points, the points of contact of tangents to the base-
conic from the points of intersection of the pairs of joins of the given tetrad.
The parameters of these six points, which form the Sextic Covariant of the
tetrad, are found by eliminating A between the equation H +Af=0 and
the reducing cubic, or we may express the covariant T' thus, noting that
each factor is a perfect square,
T2=4(H + 7 f)(H +MJ)(H +25f)
=4H3 - IHf2 +Jf3=0,
where A;, Ay, ); are the roots of the reducing cubic.
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In Fig. 115, P,P,P,P, is the given tetrad and 4, B, C the points of
intersection of the three pairs of chords. 4,4, B;B,, C,C, (the latter
imaginary), the points of contact of tangents from 4, B, C to the conic,
form the sextic covariant, which may also be said to consist of the double
points of the involutions determined by the four given points taken in
different combinations.

The triangle ABC is self-conjugate with regard to the conic; hence
the three pairs of points of the sextic covariant, A4, BB, C,C, are
mutually harmonic.

Since the triangle 4BC is also self-conjugate with regard to every
conic of the pencil F +2S, it follows that every tetrad of the pencil H +2f
has the same sextic covariant. The Hessians of these tetrads are, of course,
different, but they form the same pencil of tetrads.

24. Apolarity of two tetrads. Two quartics
[=at® +4a,® +6a,1% + dagt +a, =0,
g = bytt +4b, % +6byt? + 4byt +b, =0
are said to be apolar when their coefficients are connected by the lineo-
linear relation g b, 4By +6aghy — 4a5b; +Agbo=0. ...corvrerrrnerrrene @
This relation may be interpreted geometrically in various ways.
(1) Consider the pencil of conics
F+A8=0,
determined by the four points of f, and the range of conics
W +uZ =0,
‘determined by the four tangents of g; F(or ®) being the conic-locus (or
envelope) through f, which is apolar to the base-conic Z, and ¥’ (or ') the
conic-envelope (or locus) touching the tangents at g, which is apolar to
the base-conic 8. The condition that one of each should be apolar is
agbg + (ag + 1) (4bg + 1) +agby — 4agh; +(ag — 20) (20, — ) ~ 40,3 =0,
f.e. @oby — 40,bg + 6a,bg — 4ayb; +aghy +3Ap.=0.
This is satisfied if (1) is true and if either A or p. vanishes. Hence if fand g
are apolar every conic-locus of the pencil F +\S s apolar to the conic-envelope
V', and every comic-envelope of the range ¥’ +uZ is apolar to the conic-
locus F. Moreover, the relation is symmetrical, so that every contc-envelope
of the range ®' +AX 1s apolar to the conic-locus @, and every conic-locus of the
pencil G +pS 1s apolar to the conic-envelope P’

(2) Consider the locus of points P=(a’, y’, 2) whose polars with
respect to the two conics F and @, which pass respectively through f and g
and are apolar to the base-conic Z, are conjugate with regard to the base-
conic.

The polars of P with respect to F and G are

T(ag®’ +a,y" +ay2’) +y(a@ +agy’ +ag2") +2(axx’ +agy’ +a,.2") =0,
Z(box’ +byy +bgZ’) +y(byx’ +bay’ +bg2’) +2(bg’ +hgy’ +bgz’) =0.
8.4.0. s
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These are conjugate with regard to the base-conic = =m? - nl if
2(a,2" +ay’ +a52") (b + by’ +bg2’) =(agx’ +byy’ +a,2") (b7 +bgy’ +b,2’)
+ (a2 +agy’ +a.2") (b’ +by" +by2’).
Hence the locus of P is a conic. This conic will be apolar to the base-conie
ZH 9 (a,by — 2ayb, +gby) ~ (Gghy + ghy +gby +agdy — 2,y — 2agdy) =0,
te. if agby — 4a,by + 6a,b, — 4agh; +a by =0.
Hence, if f and g are apolar, the conic-locus of points, whose polars with respect
to the conics F and G are conjugate with respect to the base-conic, ts apolar
%0 the base-conic .
" Reciprocally, i f and g are apolar, the conic-envelope of lines, whose
polars with respect to the conics P’ and V' (the conics which touch the tangents

to the base-conic at f and g respectively and are apolar to the base-conic S)
are conjugate with respect to the base-conic, 48 apolar to the base-conic S.

Examples.

1. If &’ and P are two conic-envelopes which are both apolar to the conio-

loous F, prove that the points of intersection of F and ¢’ and the points of contact
on ®’ of the common tangents to ¥’ and &’ form two apolar tetrads on ®’.
‘ 2. Prove that the first polar of the point w with regard to the tetrad f is
the triad
(B3 + 30,2 + Ba,t+ ag) + (ay 15 + 3%+ 3agt + a,)=0.
3. Prove that the second polar of u with regard to f is the point-pair
B(agu®+ 20,4+ ay) + 26(a, 4R + 2a,u + ag) + (ayu? + 2a4u+ ag) =0.
4. Prove that the third polar of 4 with regard to f is the point
t(agu® + 30y %% + 3au+ ag) + (ayuP+ 3au? + 3agu+a,)=0.

5. Prove that any point and its first polar group with regard to a tetra.d f
form a tetrad apolar to f.

6. Show that each polar, of any order, of a point ¢, of a tetrad f, with regard
to f, contains the point ¢,.

7. Prove that the second polar of one of the Hessian points of a tetrad f,
with regard to f, consists of two coincident points, and that the third polar
ocoincides with this ¢oincident pair.

8. Prove that each Hessian point forms with its first polar group an
equianharmonic tetrad.

9. Prove that each of the blements of the sextic covariant 7' has its third
polar coincident with one of the three points of the first polar, and forms with
these three a harmonic tetrad.

10. Prove that each pair of elements of 7' forms the double points of the in-
volution determined by the other two pairs.

11. If the harmonic triangle A BC is taken as triangle of reference, so that the
parametric equations of the base-conic are z=12—1, y=21, z=#2+1, show that
the parameters of the tetrad can be taken to be (¢, —¢, 1/¢, —1/t).
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EXAMPLES XIX,

1. If a conic F is apolar to the base-conic, both as a locus and as an envelope,
show that F cuts the base-conic in an equianharmonic tetrad.

2. If f=ay®+ 30,2+ 3a,t+a;=0 and g = £+1=0 are two triads, show that
the Hessian of the triad f+ g is H,,+ HoA+ Hyy)?, where H,, and H,, are the
Hessians of f and g, and H,, = ayt®+ (ay+ag)t+a,, & joint-covariant of f and g.

3. Prove that the polar-dyads of either of the points H,, with respect to
the two triads f and g, are mutually harmonic.

4. Prove that the Jacobians of all pairs of cubics of a linear system are the
same. ,

5. Show that there are four values of A for which the Hessian of the cubic
f+2g consists of two coincident points, and that these four double-point
Hessians form the Jacobian of f and g.

6. Show that the line-equation of the conic, which touches the tangents to
the base-conic at the four points forming the Jacobian tetrad of the two triads
f= a3+ 3,2+ 3ayt+ o, and g = #+ 1, and wlach touches the line joining one pair
of points of one of the tetrads, say t= —w and t= —? is

P+ 4 (ag— agym? — ayn?+ 2aymn — L (ag— ag)nl— 2a,lm=0;
and that this conic touches also all the sides of the two triangles formed by the
two triads.

7. Show that the triangle formed by the three pomts of any triad of the
linear system f+ g is circumscribed about a fixed conie.

8. Show that every triad of a linear system is a self-conjugate triangle with
respeot to a fixed conic which cuts the base-conic in the Jacobian of the linear
system. In particular, for the linear system determined by the two triads

= agl®+ 3a, 2+ 3a,t+ ag, g = 3+ 1, show that the fixed conic is
07+ P53y~ Gg)y? ~ a2 — ayyz+ § (ag — ag) 22+ ayry=0.

©. Show that the Jacobian of any two members of a linear system of quartics
(or quantics of any degree) is the same,

10. Show that there are six values of A for which the tetrad f+Ag has two
points coincident, and that these six double-points form the Jacobian of the
tetrads fand g.

11. Show that the Jacobian of the two tetrads #+6a+1=0 and
t4+ 6b£* + 1=0 consists of the points in which the sides of their common harmonie
triangle cuts the base-conic.

12. I F and @ are the conic-loci through the tetrads f and g apolar to the
base-conic envelope, prove that the locus of a pomt whose polars with respect to
F and @ are conjugate to the base-conic is a conic U, and that if fand g are a,pola,r
the conic-locus U is apolar to the base-conic envelope.

13. Prove that the equation of the polar of the powmnt (2, y’, 2°) with respect
to the triangle formed by the triad ag®+ 32,2+ 3a,t+ a;=0 on the base-conic is
8{z(agr’ + a1y’ + 52"+ y(ag?’ + a1y’ + a52") (a2 + apy’ + agz’) + 2(ay 3 + agy’ + agz’?)

+(y2- 42'7')(2(agty—~ a,2)2 + (@25 — a,8,)y + 2(a,a5 — a,2)2}
= (2yy’ — 42’2 — 422'){2(agag— 022" + (agea — 0,0,) Y + 2(a;a4 — ag3)2’}= 0.
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14. Prove that the locus of a point such that its polars with respect to the
triangles of the two triads f'and g on the base-conic are conjugate with regard to
the conic is a curve of the fourth degree which cuts the base-conic in the six points
f and g and also in the two points H,, of Ex. 2.

15. Show that the centre of the involution-range determined by four points
whose abscissae are given by the equation ayz?+ 43,23+ 6a,22+ 4a,z+ a,=0 has
© for its abscissae }(aga;— a,a,+ 2a)2) /(2% — agag+ agh), where A is a root of the
reducing cubic 423 — JA —J =0. (Trinity, 1911.)



CHAPTER XX
INVARIANTS.

1. Orthogonal or congruent transformations. When a curve is referred
first to one set of rectangular axes Oz, Oy and then to another 0'z’, 0y,
its equation in the first case is transformed into another equation in
accordance with equations of the form (Chap. VIIL. § 14).

2 =Lz +my +”1’} ..................................... )
Y =13 +may +ny
where 12+m? =1,
I24+mg? =11 errnenneseseetneines (2)

L, +mym,=0.
These equations represent a transformation of rectangular azes or an
orthogonal transformation.

This can be considered also from another point of view. Instead of
supposing that we are dealing with one and the same figure, referred to
different axes, we may consider that we have two different figures referred
to the same axes; and evidently in this case the two figures are equal in
all respects or congruent. The equations (1), with the conditions (2),
therefore represent a displacement of a figure from one position to another.
From this point of view the transformation is called a congruent trans-
formation.

2, General linear transformation. Leaving out the conditions (2), we
have the general form of transformation between oblique axes. Still more
generally, the equations

& =hr+my +nz, »

Y =Lz +myy +ng2, 1 ...... (3)

2 =l +mgy +ngz
represent the general transformation in homogeneous coordinates from one
triangle of reference to another (Chap. XII. §18). This is called the
general linear transformation. .

We can consider this also from another point of view. If we suppose
that we have always the same triangle of reference, the equations (3)
represent a transformation by which a given figure is changed into another
figure, just as one circle is changed into a different circle by the transfor-
mation of inversion.

%5
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3. Projection. Consider two separate planes IT and IT’, and a point O
not on either of them. Then if P is any point on the plane II, a unique
corresponding point P’ on II’ is obtained as the point where OP cuts the
plane II'. P’ is called the projection of P on the plane IT, and O is the
centre of projection. Any figure in II is thus projected into a corre-
sponding figure in II’. In particular, any straight line I in II s projected
into a straight line I in II', for all points on the projection lie in the plane
Ol, and also in the plane II’, and therefore lie in the line of intersection of
these two planes. -

If OP is parallel to the plane IT’, the point P’ which corresponds to P
will be at infinity, and if the plane Oa is parallel to the plane IT’, all the points
on the corresponding line a’ will be at infinity ; thus to the particular
. straight line @ in II corresponds the line at infinity in II’. In this way the
line at infinity may be projected into any ordinary line, and from the point
of view of projection there is no distinction between the line at infinity and
any ordinary line.

A system of concurrent lines through a point P is projected into a
system of concurrent lines through the point P’, the projection of P. Thus
concurrency and collinearity are unaltered by projection.

A curve in IT which is cut by a straight line I in » points is projected
into a curve in II’, which is cut by the corresponding straight line /' in n
corresponding points. Hence the degree of a curve is unaltered by pro-
Jection. Similarly, since a tangent to the curve in II is projected into
a tangent to the corresponding curve in IT', the class of a curve will also be
unaltered. Thus a conic is projected into a comic. An ellipse may be
projected into another ellipse, or into a hyperbola or a parabola, according
as the line which is projected into the line at infinity cuts the ellipse in
imaginary points, real points or coincident points. Thus from the point
of view of projection there is no distinction between the three types of
conics. A degenerate conic, however, is projected into a similarly degenerate
conic, t.e. two straight lines into two straight lines, and two coincident
lines into two coincident lines.

Lengths and angles will generally be altered, s.e. metrical properties
are not preserved by projection. The cross-ratio of four collinear points
or of four concurrent lines is unaltered, however, because there is a (1, 1)
correspondence between the points and also between the lines of the two
planes IT and IT'. :

4. Projective transformation in one plane. We can now suppose the
plane II' to be moved into coincidence with the plane II, and then we have
two figures in the same plane such that to any point P in the one figure
corresponds a unique point P’ in the other, and to a straight line ! through P
eorresponds a unique straight line I’ through P’.

6. Perspective. There is a special type of projective transformation
between two coincident planes IT and IT’, which can be obtained by pro-
jecting one and the same figure in another plane IT, with different centres
of projection. Let S and 8’ be the two centres of projection and I the



xx. 8) PROJECTION 267

line of intersection of the plane II, with II or IT’, and let 88’ cut IT in O.
Then starting with the point P in II, join SP cutting II, in P;, join S'P,
cutting I’ in P'. We thus obtain a (1, 1) point-correspondence between
II and II'. Since S, §’, Py, P, P’ all lie in the same plane, which cuts
the plane IT in PP, it follows that PP’ passes through O Hence the
line joining a pair of corresponding points P, P’ passes through a fized

int O. .
meet a be any line in II. Then the plane Sa cuts I, in a line a,, and tha
plane S’e, cuts II' in the corresponding line a’. The planes Sa, S’a’, and
IT, have the line @, in common, and this cuts the plane II in the point .4
in which a and o’ intersect. But this point lies on the line of intersection
of the planes I, and II, s.e. I. Hence the point of intersection of a pair of
corresponding lines a, a’ lies on a fixed straight line I.

This transformation is called the perspective transformation. O is called
the centre and I the axis of perspective. It is completely specified, without
going outside the plane IT or I, when the centre and axis and a pair
of corresponding points 4, A’, or a pair of corresponding lines a, a’,
are given,

6. Equations of the perspective transformation. To find the equations
of the perspective transformation in the simplest form, take the centre of
perspective O as vertex of the triangle
of reference, and the axis ! as the
opposite side. Take any two points
X, Y on I as the remaining vertices.
Let A=(1, 0, a) be any point of the first
figure lying on OX; then the corre-
sponding point A’ lies also on OX, so
that 4’=(1, 0, a’). Now let P=(z, y, 7)
and P'=(z, ¢, 2') be any pair of cor-

responding points. The two sets of ~—x Y T
coordinates are then connected by two Fia. 118,
equations.

The first is found by the condition that PP’ passes through 0. This
grves TY =T'Y. cerereernrirernriniiiesesenesaesaasnes (1)

The second equation is found by the condition that AP and A’P’ intersect
onl. Taking X, Y, Z as current coordinates, the equations of AP and 4’P’

are XY Z|=0 and |X Y Z |=0.
1 0 a 1 0 o
T y z z y 7
Putting Z =0, and equating the ratios of X : Y, we have
oy __ oY

....... (2)

ax—-z o'z’ -2
By (1) this reduces to ay? =a'y'’z.
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Hence the equations of transformation are

A\ =z,

N =y,

A =k,
where k=a’fa. This ratio is equal to the cross-ratio (0X, 44'), and is
called the cross-ratio of the perspective. When it has the value —1, the

transformation is involutory, t.e. symmetrical, and is called harmonie
perspective.

Examples.
1. If the line joining a pair of corresponding points P, P’ cuts the axis of
perspective in U, prove that the cross-ratio (OU, PP’) is constant, =k.
2. If u is the line joining O to the point of intersection of a pair of corre-
sponding lines p, p’, prove that the cross-ratio (lu, pp’) is constant, =%.

7. Equations of the general projective transformation. Let the figure
TI be transformed first by perspective into the figure II;, and then let II,
be moved rigidly in its plane into the figure II’. We have then a trans-
formation of the figure II, through II,, into II’. Let II be referred to the
triangle OXY, O being the centre of perspective of II and II;, and X, ¥
any two points on the axis of perspective. Then O, X, Y are the same
points in II;. Let 0’, X', Y’ be the corresponding points in IT’, so that
the triangles OXY and O'X'Y’ are congruent. Let
P=(z,y,2), Pi=(@,yp%) and P'=(,y,7)

be three corresponding points of II, I, and II’, all referred to the same
triangle OXY. The coordinates of P’ referred to O'X’'Y’ are the same
as those of P, referred to OXY; hence (%, ¥,, 2,) are connected with
(#', y', ') by the equations of transformation of coordinates from the
triangle O’X’Y"’ to the triangle OXY, viz.

z’ =ayw; + by, +o12y,

Y’ =05, +byyy + g2y,

2 = a4, + b3y, +cs2,.
Also the coordinates of P and P, are connected by the equations

Az =2, A=y, Az =Fkz
Hence the coordinates of P and P’ are connected by the equations
' =lLx+my+ngz,
Y’ =z +mayy +ny2,
2 =l +mgy +ngz,
where I, m, n are written instead of afA, bfA, ko/A.
8. The general equations of the projective transformation are therefore
of the same form as the equations of transformation of coordinates, or the

congruent transformation. The only difference is that in the latter the
coefficients must be connected by certain relations which express either
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that the two figures are congruent (when the triangles of reference are
the same), or that the two triangles of reference are congruent (when the
figures are the same), while in the general transformation there are no such
limitations.

Now we have obtained a linear transformation by combining a per-
spective transformation with a congruent transformation. To see that
this does give us the most general projective transformation, let us count up
the constants at our disposal. The general linear transformation contains
9 constants, but since only the ratios of the coordinates are in question,
only the ratios of the 9 constants are significant. Hence the general linear
transformation depends upon 8 constants. The perspective transformation
depends upon 5 constants, 2 for the coordinates of the centre, 2 for those
of the axis, and 1 for the constant cross-ratio. And a congruent transfor-
mation, which is determined by moving a specified point into a given
position and then rotating the whole figure through a certain angle, depends
upon 3 constants, 2 for the translation and 1 for the rotation. Hence we
have exactly the number of constants required, and therefore our equations
represent the general projective transformation.

9. Any conic can be projected into a circle with unit radius, and at the same
time any point into the centre of the circle.

Let C be any conic and O any point, and let  be the polar of 0. Then
1 cuts the conic in two points 4, B. If now the figure is projected so that
1 becomes the line at infinity, O is projected into the centre of the new conic;
and if further the two points 4, B can be projected into the circular points
the new conic will be a circle.

We shall suppose first that O lies within the conic, so that 4, B are
conjugate imaginary points. Choose a self-conjugate triangle of reference,
so that O and [ are a vertex and the opposite side. The equation of the
 conic i8 then of the form  gp2 4 po2_ g20,

and I is z=0.

The conic being supposed to be real and the tangents from (0, 0, 1) imaginary,
we can assume that @, b, ¢ are all positive. In the projection take homo-
geneous rectangular cartesian coordinates, and let the origin O be at the
centre of the circle. Then the line at infinity is 2’=0. Further, the two
lines 04, OB are to be transformed into the absolute lines 0’7, 0'/J, t.e.

az® +by2=0 into z2+yZ=0
This can be done by putting
Ve .z=2',
Vvb.y=y',
“ e .z=2,
and the equation of the conic is transformed into z2 + y"*=1, which repre-
sents a circle of unit radius.

The equations of transformation are real since a, b, ¢ are all positive.
But if O is outside the conic, s0 that 4, B are real, then a and b are of
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opposite sign ; #’ and y’ are then not both real. In this case we have still
linear equations of transformation, but they involve imaginary numbers,
and the transformation is imaginary. Real points and lines are in general
transformed into imaginary points and lines. For the purpose of general-
izing or simplifying theorems, and for the sake of continuity, we do not
reject such imaginary transformations, but consider them as on the same
footing, analytically, as real transformations.

Examples,

1. Show that any two conics can be projeoted into (i) two circles, (ii) two
eonfocal conics, (iii) two parabolas with a common focus.

2. Show that two conics which have double contact can be projected into
concentric circles.

3. A variable line through a fixed point O cuts a given conic § in X and ¥,
and on this line is taken a point P such that the cross-ratio (OP, XY ) is equal to
a given constant. Find the locus of P,

4. From a variable point P on a fixed line ! tangents ¢, # are drawn to a given
conic, and a line u is taken so that the cross-ratio (1t, lu) is equal to a given
constant. Find the envelope of .

5. 4 and B are a pair of opposite vertices of the common circumscribed
quadrilateral of two conics, and P is one of their points of intersection. Prove
that the tangents at P are harmonic conjugates with regard to PA, PB.

10. Metrical invariants of a conic. We have seen in Chap. VIIL that
when we transform from one system of rectangular coordinates to another,

the expression S =022+ by +2hxy + 29T +UY +C cvvnrrrerrerererrerrsrnnn. (1)
is transformed into another expression of the same form,
S'=a'e3+b'y 2+ 20Ty +29°T +2f'Y +¢', vrrrrrrerrrrennn. (2)
and that o' +b'=a+b, } )
a’t -h'2=ab- k3 ¥

6 +b and ab - h? are therefore invariants for the orthogonal linear transfor
mation. Since we may also view this transformation as a transformation
changing one figure into another, while keeping the axes fixed, and since
from this point of view it is a congruent transformation, the conics S=0
and 8’ =0 only differ in position ; they have the same eccentricity, the same
lengths of axes, the same latus-rectum, and so on. These geometrical
magnitudes are therefore invariants. :

The actual equality of the expressions (3) is not of much significance
geometrically, for if we only know that the conic 8’=0 is the conic S=0
transformed by a congruent transformation, we cannot be sure that the
actual values of the transformed coefficients a’, ', etc., have been preserved,
but only their ratios. If after the transformation the equation §'=0
had been multiplied all through by M, then we should have

a' +b" =M(a+b).
a’t’ - k't =M?(ab-h3).
These are the significant equations rather than the equations (3).

(4)
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To obtain an absolute tnvariant, which has a fixed value so long as the
equation represents the same conic referred to any rectangular axes,
whether the equation is multiplied or divided by any factor, we must form
an expression of zero dimensions in the coefficients. Thus the ratio

(ab—-h?)/(a+b)?
is an absolute invariant, and this has a definite geometrical significance;
if ¢ is the angle between the asymptotes it represents, in fact, the geo-
metrical invariant —} tan3o.

A conic is determined, without regard to position, when the lengths
of its two axes are given. There are therefore just two independent
geometrical invariants, and there ought to be two independent absolute
invariants under the congruent transformation. Recalling the expressions
for the lengths of the axes (Chap. X. § 12), we see that these involve.
. in addition to a+b and ab—A2, also the value of the discriminant A.
A involves the coefficients of terms of the first degree and does not
depend only on @ +b and ab— k2. We sught therefore to have A also as an
invariant, or, since it is of the third degree in the coefficients,

A’ =MB3A,
Assuming this at present without proof, we see then that under the ortho-
gonal transformation the expression S has three invariants
a+b, ab-h*=C, and A.
All measurements relating to the conic can be expressed in terms of these
three invariants, s.e. every geometrical invariant can be expressed as a
function of these, and, moreover, it will be a homogeneous expression of
zero dimensions since it cannot be changed by multiplying all the coeffi-
cients by a common factor. The absolute invariants are therefore the ratios
of the three invariants
I=a+b, Js(ab—h’)i, K =Ab
Examples. '
1. Prove that the area of the conic =m(EKJ-1)3,
2, Show that the product of the squares of the eccentricities =4— (1J-1)%
3. Show that the tangent of the angle between the asymptotes = 2i(JI-1),
4. Show that the area of the triangle formed by the asymptotes and any
tangent =i(KJ1)3 _
5. Prove that the length of one of the equiconjugate diameters
—(-2K31J-4)}.

11. Projective invariant of a conic. We shall consider next the effect
upon a conic of the general linear transformation, or the transformation
to any other triangle of reference. Geometrically this is equivalent to a pro-
jection. Now any conic can be projected into any other conic, for we have
shown (§ 9) that by a real transformation any conic can be projected into
a circle with arbitrary radius and centre, and in such a way that any point
in its interior is transformed into the centre of the circle, a second conie
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can then, by another real transformation, be projected into the same circle,
and any point in its interior into the centre of the circle. Hence the only
thing which is left unaltered by a real transformation is the distinction
between the interior and the exterior of the conic, and the characteristic
of being a proper conic. Both of these characters depend upon the value
of the discriminant A ; hence we should expect that A is an invariant, and
the only projective invariant of the conic.

12. We shall now prove that A is an invariant under the linear trans-
formation, e=La’ +my +n7,
y=1lx" +myy’ +n,2',
2=La’ +mgy’ +mny2'.

Let S =aax®+by? + c2® + 2fyz + 29zx + 2hay

=w(az +hy +g2) +y(ha + by +2) +z(gx +fy +c2).
Then by the transformation S is changed into
S'=a'a’2+b'y2 +¢'2'2 + 2f y's + 29" % + 20’y
Write for shortness aly + hly +gly=L,,
hly +bl, +fly= Ly,
gh +fly+cly =L,
and similar expressions for M,, N,, etc.

Then ax+hy +gz=Lex’ + My + N2, ete.,

and we find &' =LL,+1,L,+§,L,,
S =myNo+meNy +mgNe=n,M, +n,My+n,M,
ete.
Then A=|a K ¢ |=|l4 my n ||L, L, L, ),
A lp mg my (| M, M, M,
g f ¢ |l m n|| N, N N,
and the second determinant factor is equal to
L my ny|la & g]|.
lp my ny ||B b f
Iy mg myflg f ¢
Hence, writing the determinant or modulus of the transformation
L m mn|=D,
lo my my
ly mg ng
we have A'= DA,

A is therefore a projective invariant of the conic. It must be left to
geometrical intuition to satisfy us that it is the only projective invariant.
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13. We can now supply the deferred proof that A is an invariant under
the orthogonal transformation. The general transformation is in this
case z=la' —my’ +p?,

y=mz' +ly’ +q7,
z=7,
where » B+m?=1.
The determinant of the transformation is

D=|l -m p|=P+m?=1.
m 1l q
0 0 1

Hence, with the orthogonal transformation, A’ =A,

" 14. Projective invariants of a system of two conics. We shall pass on
now to consider the projective invariants of two conics. Two conics have
mutual relationships which are unaltered by projection. For example,
if the two conics touch in one or in two points, or have contact of a higher
order, the transformed conics will touch in the same way. If a triangle

can be inscribed in one conic and circumscribed about the other, or a
* triangle self-conjugate with regard to one conic inscribed or circumscribed
about the other, or a pair of common chords conjugate with regard to one
of the conics, these relationships must be true also for the transformed
conics. Such geometrical properties will be expressed by relations between
invariants.

Consider the pencil of conics

AS+8'=0,
determined by the two conics S, 8’ whose point- and line-equations are
S =az? + by? + c2® + 2fyz + 2922 + 2hwy =0
and S = AR+ Bm2+Cn? +2Fmn +2Gnl + 2HIm =0,

with similar expressions for 8’ and X'.

Now, since the conics intersect in four points 4, B, C, D, there are six
common chords which, taken in pairs (4B, CD), (4C, BD), (AD, BC),
form three degenerate conics of the pencil. Let us find the values of A
corresponding to these three pairs of lines. The condition that the conic
should break up into two straight lines is

M +a’ M+E Ag+g |=O0.

M+E A+ AM+Sf

A+ MAf et
When this determinant is expanded, we get a cubic equation in A, which
we shall write AN+ ONE + O'A LA’ =0,



274 INVARIANTS [xx. 14

A and A’ are the discriminants of the two conics S and §’. To evaluate
® and @, we have

O=|a % gl+|a ¥ g|+|a b ¢
¥y flie v filen g
g fellg fellgf ¢

=@'4d+VH+¢'Q)+(WH+YB+f F)+(¢G+f F+cC)
=a’'A+b'B+c'C+2f' F+2¢'G+2h'H.
Similarly @' =ad’+bB’ +cC’ +2fF' +29@" +2kH’.

Suppose now that the conics undergo a projective transformation, so
that S, S’ are changed into S;, S;’; then AS +.8’ is changed into AS, +5S,’.
A being a constant is of course unchanged. If the conic AS +.S’ breaks up
into two straight lines, the corresponding conic AS, +8,’ will also break up,
gince a pair of straight lines is projected into a pair of straight lines, t.e.
28, +8,’ will break up into factors for the same values of A as those for
which AS +5’ reduces. Hence, if A, A’, ®, @’ are changed into A;, A,
89,, 0/, the two equations

AN +ON +O'A +A’ =0,
Al;\s + @1)\’ + @1’1 + All =0
are identical. Therefore

But we have already seen that
A, =D2A, A/ =D\
therefore 0,=D20, O6,=DQ,
D being the determinant or modulus of the transformation.

Hence ® and O’ are invariants in the same sense as A and A’. They
are joini-tnvariants of the two conies.

15. Invariants for the reciprocal system. In a similar way, if we take

the range, or four-line system, of conics
AZ +3'=0,

we get a cubic equation for A as the condition that this conic-envelope
may break up into two points. Since BC - F2=qgA, etc., the equation
is found to be A3 + AN + A’ON +A2=0.

This shows that when we pass from the point-equations to the line-
equations, the invariants corresponding to

A, e, 0, A,

become A AQ, A'G, A1

Hence, if there is a geometrical relation between two conics which
is expressed by a relation between the invariants A, ®, ®’, A’, by recipro-
cation there is a geometrical relation which is expressed by the same '
function of the invariants A2, A®’, A’Q, A3,
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16. Apolarity. The meanings of the invariants A and A’ are already
known, for A=0 implies that the conic S breaks up into two straight lines.
Let us investigate the meaning of the equation ® =0, or

Ad’ + B +C¢ +2Ff’ +2Gg +2HK =0.

This evidently implies some projective relation between the two conics.
It connects the conic S’ as a locus with the conic & =~ X as an envelope.

Let us take as triangle of reference X YZ a triangle which is self-conjugate
with regard to %. The equation of X then reduces to

S=AR+ Bm®+(COn2=0,
and T S =ad'?+ by + B + 2 'yz + 29 2 + 2h wy =0,
Then ®=4a’+ Bb +Cc’' =0.

Now we can choose the self-conjugate triangle with one vertex X on the
conic §’; then a’=0. A second vertex lies on the polar of X with regard
to X. This cuts 8 in two points. Choose one of these as the second
vertex Y ; then &’ =0. The triangle of reference is now fixed, and @ =C¢'".
Now C cannot vanish, since then ¥ would reduce to two points and we would
have A=0. Hence, if ® =0, ¢/ =0, and the third vertex Z also lies on S’.
Hence @ =0 $s the necessary and sufficient condition that the conic-locus S’
should have an inscribed triangle which is self-conjugate with regard to Z.

Again, let us take as triangle of reference a triangle self-conjugate
with regard to §’, so that f'=0, ¢’=0, »’'=0. Take the side =0 as a
tangent to =, so that 4 =0, and a second side y=0 as one of the tangents
to T which passes through the pole of =0, so that B=0; then @ =C¢'.
¢’#=0 unless A’=0; therefore if ® =0, C=0, and the third side z=0 also
touches . Hence ® =0 s also the necessary and sufficient condition that
the conic envelope X should have a circumscribed triangle which 1s self-
conjugate with regard to S'.

When a conic-locus and a conic-envelope are so related they are said
to be apolar. '

® =0, which involves the coefficients of the point-equation of 8’ and
the line-equation of X, is therefore the condition that the conic-locus §’
should be apolar to the conic-envelope ¥, and similarly ® =0 is the con-
dition that the conic-locus § should be apolar to the conic-envelope ='.
Notice that this relation between two conics is not symmetrical when both
conics are considered as loci, and it is always necessary to state which is
a locus and which an envelope.

The expressions are also used : X ¢s harmonically snscribed in S', and S’
18 harmonically circumseribed about 3.

It is clear from the preceding reasoning that when 3 and S’ are apolar
there is an snfinity of triangles inscribed in the conic-locus S’ and self-
conjugate with regard to X, and an infinity of triangles circumscribed about
the conic-envelope T and self-conjugate with regard to S’.

A line-pair locus is apolar to a conic-envelope £ when the two lines
are conjugate with regard to ¥, and a point-pair envelope is apolar to
a conic-locus S when the two points are conjugate with regard to 8. A -
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point-pair and a line-pair are apolar when the line joining the two points
is cut harmonically by the two lines.

17. Reduction of the equations of two conics to the normal form. The
algebraic work of determining the relation between the invariants corre-
sponding to a geometrical condition can be greatly simplified by reducing
the equations of the conics to & normal form. When two conics intersect
in four distinct points, the harmonic triangle of the complete quadrangle
formed by these four points is self-conjugate for both conics, and when this
triangle is taken as the triangle of reference, the equations of the conics

become S=ax? +by? +c22 =0,

S’ ' =a'a® + byt +c'22=0.
These equations may be still further simplified by taking multiples of the
coordinates, or by the linear transformation

Ve . xz=2', /V.y=y, +/¢.z=2.

S’ then reduces to the form 22+y2+22=0. Of course if the original
coordinates are real, and if the conic is real, these new coordinates are not
all real, but this is of no consequence algebraically. We can therefore
take as the normal form of the equations of two conics

S=ax?®+by?+c22=0,

S'=at+ y2+ 22=0.
Then A=abe, @ =bc+ca+ab, O =a+b+ec, A'=1. a, b, ¢ are then the
roots of the cubic equation

At -2+ 0t—-A=0.
Any relation between the invariants A, ®, ®’, A’ will then be a symmetric
function of a, b, c.
- 18, Harmonic conics of two conics. Consider the two conics
S =ax?+by? +c?=0,
S'= 22+ 42+ 22=0,
and let us investigate the locus of a point P, such that the tangents from P
to the two conics form a harmonic pencil. The condition is the same as

that the tangents from P to the conic S’ should be apolar to the conic-
envelope . Now the equation of the two tangents from (2, ¢, 2') to

S is (@2 +y2+22) (2" +y'2 +2'0) = (22" +yy +27)2,
t.e. 22(y2+2'% +... -2y 2'yz —...=0.
The condition that this degenerate conic-locus should be apolar to
S =bcl? +cam? +abn2=0
is be(y'2+2%) +ca(z’2+22) +ab(z'® +4'2) =0.
Hence the equation of the locus of P is
F=a(b+c)z® +b(c+a)y®+c(a+b)22=0.

The locus is therefore a conic; it is called the harmonic contc-locus of
S and §'.
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In an exactly similar way, using line-coordinates instead of point-.
coordinates, it can be proved that the envelope of a line which s cub
harmonically by the two conics S and S’ 18 a conic whose line-equation ts

$=(b+c)l +(c+a)m? +(a+bn?=0.

This is called the harmonic conic-envelope of S and §'.
It is at once obvious that the four conics, S, 8’, F, & have a common
self-conjugate triangle.

Examples.
1. If 8 reduces to two straight lines intersecting in O, show that the F-conie
reduces to the two tangents from O to 8.
2. If Z and 3’ reduce to pairs of points, show that the F-conio is a conio
passing through these four points, and show how to construct the tangents to F
at these points.

19. Consider the tangent to S at one of its points of intersection 4
with 8. Of the two pairs of points of intersection of this line with the
two conics, one pair consists of coincident points at 4 and one point of the
other pair coincides with 4 ; these therefore form a degenerate harmonic
range, and therefore this line belongs to the ¢ conic-envelope. Hence
the P-conic touches the eight tangents to S and S’ at their points of inier-
section. Similarly it can be proved that the F-conic passes through the
eight poinis of contact of the common tangenis of S and S’.

Ex. If two conics cut at right angles at each of their four points of inter-
section, show that in general these four points are concyclic.

Since the tangents at the four points are tangents to the ®-conic, and since
they cut at right angles, the four points must lie on the orthoptic circle of the
®P.conie. It may happen, however, that ® reduces to a point-pair at infinity,
harmonic with respect to the circular points. In this case the orthoptic circle
of @ is completely indeterminate, and the four points are not necessarily con-
cyclic. (See Ex. X, 16.)

20. Mutually apolar conics. If the conic-locus S is apolar to the conic
envelope X', by taking as triangle of reference a triangle 4 BC inscribed in
S and self-conjugate with regard to X', we can write their equations

S =2fyz + 2gzx + 2hxy =0,
S =a'z?+by?+c'22=0.
Suppose also that the conic-locus 8’ is apolar to the conic-envelope T ; then
= —a/f2-bg2-¢'h2=0.
Hence the conic S’ passes through the four points (+f, +g, +4). These
are the vertices P, @, R of the triangle formed by the tangents to S at
4, B, C, and the point, O, of intersection of AP, BQ, CR. Hence the two
conics have also the property that a triangle can be inscribed in one and
" circumscribed about the other, for the triangle PQR is inscribed in S’ and
circumscribed about 8.
 § 8.4.G,
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If we take the common self-conjugate triangle of the two conics as
triangle of reference, we may take
S=22+42+22=0,
S'=a's3+b'y?+c'22=0.
Then O=a'+b +c¢ =0,
O’ =b'c' +c'a’ +a'b’ =0.
Hence o', b, ¢’ are the roots of an equation of the form A3~k=0; if we
take k=1, the roots are 1, ®, w2, and we can write
S’ =2? + 0y + 0¥ =0. ‘
Hence (Chap. XVIII. § 7), the cross-ratio of the four points of intersection
on each of the conics is — or —w?, i.e. the four points of intersection form
an equianharmonic tetrad on each conic.
The F-conic of the two mutually apolar conics S and S’ is
F =22+ 0%+ wz?=0.
The line-equation of the $-conic is
P’ =PB+om?+win?=0,
and its point-equation is therefore
22 +0%y? + w2? =0.
Hence the F and P conics of two mutually apolar conies are identical.

The three conics S, S’ and F are then all- mutually. apolar, and the
four points of intersection of any two form an equianharmonic tetrad upon
both. Also each conic is the harmonic conic of the other pair. '

These conics appear to be imaginary, but that is only because of the
particular choice of coordinates. If two real conics cut each other equi-
anharmonically, they intersect in two real and two imaginary points, and
the common self-conjugate triangle is imaginary (see Chap. XVIII. §7,
Ex. 4).

Further, since F passes through the points of contact of the common
tangents to S and §’, and 8’ touches the tangents to F and 8 at their points
of intersection, the points of contact of the common tangents are also points
of intersection of the conics. Hence the tangents at the 12 points of inter-
section coincide in pairs in 12 lines which are the common tangents. Only
half of these tangents will be real, since any two of the conics can have only
two real points of intersection.

Ex. Prove that if the F and ®-conics of two conics S and 8’ are identical,
S and 8’ are mutually apolar.

21. Reciprocal of a conic with respect to a given conic.

The, envelope of the polar of a variable point P on a given conic S with
regard to another fized conic S, is a conze.

Taking the harmonic triangle of the two conics as triangle of reference
we can write 8= ax? +by? +cad =0, :

Sp=a%+y* +23=0.
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The polar of P=(2’, y’, #) with regard to S, is
Z'z+y'y+22=0.
The line-coordinates of this line are (I, m, n)= (', ¥, 2).

Now, since P lies on S, az'®+by'3+c2*=0;
therefore ' al® +bm2® +cn2=0,
and this is the line-equation of a conic, §’, and its point-equation is

8’ = bea? + cay? + ab2? =0.

Similarly it may be proved that the locus of the pole of a variable
tangent to S with regard to Sy'is & conic which is identical with §', and
also § is the envelope of polars of points on §’ with regard to S,.

The conics S and S’ are said to be reciprocal with regard to S.

" Ex. If 8,8, 8, are a set of mutually apolar conics, show that each is the
reciprocal of the second with respect to the third.

22. If two conics are connected by some geometrical relationship which
is unaltered by projection, this can generally be expressed by means of a
relation connecting the invariants A, A’, ®, ®@’. Any such. relation
between the invariants must satisfy the following conditions :

(1) Tt must be unaltered when the two conics are referred to any other
homogeneous coordinates. Since only the ratios of A, A’, O, ®’ are in
general unaltered by this transformation, the equation must be homo-
geneous in A, A’, @, ©@’, each considered of the same dimensions.

(2) It must be unaltered when the equations of the conics are multi-
plied by any factor. Hence the equation in A, A’, ®, ®’ must be homo-
geneous in the coefficients of each of the conics, or the equation must be
homogeneous when A, ®, @', A’ are considered of dimensions 3, 2, 1, 0 or
0, 1, 2, 3 respectively.

With the help of these principles the calculation of the invariant
relations corresponding to a given geometrical relation can often be greatly
simplified by reducing the equations of the conics to some simple type.
The following example will illustrate this.

23. Condition that two conics should have a triangle inscribed in the
one and circumscribed about the other. We have seen (Chap. XVIIL §11)
that if two conics 8 and 8’ are such that one triangle can be inscribed in 8’ and
circumscribed about 8, an infinity of such triangles can be constructed.

Let the conics be transformed so that one such triangle is taken as triangle of
reference; then the equations can be written

3 =2Fmn+2Gnl+2HIm=0,

8’ =2f"yz+ 29’2+ 20’y =0,

and AS = — F22? — Py? - H%2+ 2GHyz+ 2H Fzx + 2 FGay =0,
Y= — f2R — g2m2 — h2n® + 2¢'h’'mn + 20’ 'nl+ 2 'g'Ilm =0,
Then A*=2FGH, A'=27¢'W, O=2(F+gG+H),
AQ'=f2F2+g2G2+ h2H?+ 29’ QH + 2" HF + 2"’ FG
=(fF+g'G+WHR

Hence we get the relation 02=4A0’,
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This is homogeneous in A, ©, ©’, A’, and each side is of dimensions 4 and 2
respectively in the coefficients of the two conics., Hence this relation is unaltered
by any linear transformation. It is therefore a necessary condition, and it is
easily verified conversely that it is a sufficient condition, provided the conics do
not degenerate.

24. Absolute invariants of two conics. The ratios
A:0:0: A ,
are absolutely unaltered by any linear transformation, provided the
equations of the conics have not been multiplied or divided by any factor
after the transformation. As we cannot be sure of this not having happened,
we cannot, however, say that these ratios are absolute invariants. We
must form expressions which are of zero dimensions, not only in A, G,
@', A’, but also in the coefficients of the two conics. Leaving out one of
the four quantities at a time, we obtain the following as the simplest absolute

invariants :
ot , 0 e _, 03
Y=po Y=re Femx F=pgs
But these are not independent, for we have R=(%Q’ and R’ =QQ'2.

25. Every tnvariant relation (except A=0 and A’=0) which s expressed
sn terms of A, ©, @', A’ can be expressed in terms of the absolute invariants
Qand Q.

Consider any homogeneous equation in A, ©, ®’, A’. We shall suppose
it made rational and integral, so that it consists of a sum of terms of the
form EAS@O@CA’S,

Then, since it is homogeneous in the coefficients of the two conics separately,
each term is of the same dimensions, r, 7, say, in the coefficients. Therefore

33+204+6' =7,
and 0+20"+38 =7
These lead to 3+0+0"+8 =1(r +7') =const.,

and the equation is also homogeneous in A, @, @, A’.

Now substitute for A and A’ in terms of Q and @', and the term becomes

BQ-3Q - T @UHO-Y QW+ -5,
But 25 +0 -8 =1(2r —7')=const.,
28 +0' -3 =1(2¢ —r ) =const.

Therefore the factors involving @ and ©’ can be cancelled out, and we are
left with an equation in @ and @’ alone. This equation is of course not in
general homogeneous in @ and @'.

For example, the invariant relation @*=4A0’ (§ 23) becomes Q@ =4.

Cor. If two invariant relations in A, @, @', A’ are given, the values of
Q and @ are determined, and no further relation between @ and Q' is

possible.
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26. The common chords of two conics. The cubic equation

AN +OM+OA+A'=0 (1)
determines three values of A for which the conic
AS+8'=0
breaks up into a pair of straight lines. Eliminating A, we have the equation
AS? - OS828+0O'8'S2—A'83=0, ..cevreerrrreierennane (2)

which is of the sixth degree, and represents the three pairs of common
chords of the two conics.
Similarly, if we eliminate A between the equations
ADZ+AOA2+A'OA+A%=0
and AZ +2'=0,
we get the line-equation
AZZ3 -A@'Z2E +A'QZ'32-A"233=0,
which is of the sixth degree, and represents the three pairs of points of
intersection of the common tangents of the two conics.

' 27. Condition for single contact. If the conics touch, two pairs of
common chords coincide, and the cubic equation in A will have two roots
_equal. The condition for this is that the Hessain quadratic (Chap. XIX,
§ 12) of the cubic equation (1), viz.

(3AQ' - B A2 +(9AA' - OO )1 +(3A'O - O3 =0,
should have equal roots. Hence
(9AA' - O0')2=4(0"2-3A'0)(02-3A0"),
t.e. 0202 +18AA'O0’ — 2TA2A"2 - 4A0Q" —4A’G? =0, ,
which is the condition for single contact. The expression which is here.
equated to zero is called the tact-invariant. Expressed in terms of @
and @', the condition is '

Q%2 +18QQ —4QQ'(Q +Q') - 27=0.

28. Osculating contact. If the three roots of the cubic in A are all equal,
three of the points of intersection coincide, and the conics osculate. Equa-
tion (2) then represents the common tangent and the common chord, each
taken three times. The conditions for this are

These are the (two) conditions for osculation or three-point contact. Ex-
pressed in terms of @ and @', these become
Q@=3, Q=3

There are two other sorts of contact of two conics, four-point contact
and double contact. The latter requires two conditions, but the former
requires three, one condition in addition to those required for three-point
contact. By § 25, Cor. these three conditions cannot be expressed in terms
of A, ®, @, A’ alone. Weshall see in § 34 what are the conditions for four-
point contact and double contact.
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29. Examples.

1. Find the condition that the four points of intersection of two conics 8 and 8
should subtend a harmonic pencil at any point on S’

Transform the conics to the common self-conjugate triangle as triangle of
reference, so that their equations become ‘

S=a2z?+ by +c22=0,
8’ =22+ +22=0.
The coordinates of the four points of intersection are (p, ¢, +), where
P2 r?=b-c:0—a:a—b.
The values of the cross-ratio of the pencil subtended by these points at any point

on 8 are —g?/r?, ete. (Chap. XVIIL §7). Hence, if the pencil is harmonic one of
these six values must be — 1. Hence

(¢®~ r)3(r2— p?)%(p? - g?)2=0.
Now ¢*—r*=b+¢—2a=0"-3a; the equation therefore becomes
(®’ - 32)(0’ - 3b)(@’ - 3¢)=0,

i.e 072 - 3072Za+90"Zbc — 27abc=0,
or 2TAA%—9A'QO+203=0,
on making the equation homogeneous with the help of A’

If this is expressed in terms of Q and ¢, it becomes

12007 9QQ +27=0.
2. Find the conditions that the four poinis of intersection of two conics should

form a harmonic tetrad on each conic.
In addition to the condition in Ex. 1, we have also

2Q%Q" - 9QQ’+27=0.

Hence Q=Q' and 2Q%-9Q%+27=0,
i.e. (2@ +3)(@-3)*=0.
Hence there are two alternative conditions,
Q = Q’ = 3’
e=0=-1.

We shall see in the next example that the first alternative must be rejected.

3. Find the condition that the four poinis of intersection of two conics 8 and 8
should form an equianharmonic tetrad on 8.
Proceeding as in Ex. 1, we must have one of the values —g¢%/s?, etc., = —a
or —w3. Hence ‘
(- or)(g®— %) =0.
Putting in the values of g% and s, this becomes
(wa+ w?b+c)(wa+wb+c)=0,

i.e Zbe=Ta?=(Za)2 - 23be.
Hence ) 02=3A'0,
s.e. Q'=3.

Hence we see that if the four points of intersection form an equianharmonte
tetrad on both conics, @=Q’=3.
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The conditions Q=@Q’=3 are satisfied also if the two conics osculate. A
simpler form of the conditions, which is also really the necessary and sufficient
condition, is given in the next example. v

4. Show that the necessary and sufficient conditions that the four poinis of
ndersection of two conics should form an equianharmonic tetrad on both conics are
0=0=0" (Cf §20). '

5. Prove that if ©2=3A0@’ and ©2=3A’0, either the two conics osculale, or
0=0'=0.

Cor. Q=Q’'=3 are the pecessary and sufficient conditions that the conics
should osculate, and Q=@Q’= — $ are the necessary and sufficient conditions that
they should cut each other harmonically.

6. Prove that if \ is the value of one of the cross-ratios of the pencil subtended
by the points of intersection of two conics 8 and S’ at any point on 8,
Mor+1 )3_ A+1(2A-1)(A—2) 3
®1-3A0’/ \27A2A'—9AGO’+ 2@3} y

. 80. Points of intersection of two conics S, 8. The most symmetrical
way to represent a group of points obtained by the intersection of two
curves is to form the line-equation of the whole group of points. We
have had an instance of this already in representing the circular points,
where it is simpler to deal with the line-equation than the coordinates of
the separate points.

Consider any conic passing through the four points of intersection of

S, §’. Its point-equation is :
AS +8'=0.
Forming its line-equation, the coefficient of I* is
Ab+B0)(Ae +0) = (Af +f)2 =224 +A(bc’ +b'c—2ff") + 4°,

and the coefficient of 2mn is

(Ag+9" )M +1) - (Aa +a’)(Af +f) =D2F + \(gh' +g'h —af —a’f) + F'.
Hence the line-equation reduces to

B +2P +3 =0,

where & =(b¢’ +bc—2ff)BB+...+2(gh’ +9'h—af —a'fimn+...,
and X, 2’ have the usual meanings.

Now, if we vary A this system of conics will always pass through the
four fixed points, and will therefore have just these four points as envelope.

The equation of the envelope is formed by expressing the condition for
equal roots of A , and we have

$=43Y
as the line-equation of the four common points.
Similarly it can be proved that

F2=4AA'SS’
is the point-equation of the four common tangents, where
F=(BC'+BC-2FF)2*+...+2(GH'+G'H ~AF - A'F)yz +...;
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31. Covariants. Let us now consider the equation
F2=4AA'SS’
from the point of view of invariants. If the conics are transformed by

the general linear transformation, the equation of the four common tangents
after the transformation will be

F.2=4A,A,S,8/, :
where 8y, 8', A, A/, F, are exactly the same functions of the new variables
and the coefficients of S, and S," that S, §’, A, A’, F are of the original
variables and the coefficients of S and §’. But since this new equation
can be obtained by substituting for z, y, z their values in terms of z’, y,7,
these two equations are identical, t.e.

F2—4A, A8, =k(F2-4AA’SS’).
But 8,=8, 8,'=8", A;=D2A, A =D2A’; therefore k=D*, and
F,= D%,
The function F behaves therefore exactly like an invariant, but it

involves not only the coefficients but also the variables. It is called a
covariant of the two conics. The function

F2—-4AA'SS
is also a covariant, and so also are S and S’ themselves.

Analytically a covariant of one or more functions S;, S, ... of the
point-coordinates , y, 2 is an expression C involving the point-coordinates
and the coefficients of the given functions, such that when the functions are
transformed by a linear substitution into the functions 8,’, Sy, ... of the
new variables z’, y’, 2/, the same function C’ of the new variables and the
coefficients of §,’, 8,, ... is identically equal to the original function C
multiplied by a factor which is independent of the coefficients.

Geometrically a covariant of one or more loci is a locus which is con-
nected with the given loci by a law which is unaltered by projection.

Thus F2-4AA’SS’'=0 represents the four common tangents of the
two conics § and §’, and when it is transformed it represents again the
four common tangents of the transformed conics.

32. We can now, either directly by the method of § 18, or by com-
parison with that result, identify the covariant F with the harmonic conio
locus of the two conics S and §’, t.e. the locus of points at which the two
conics subtend a harmonic pencil. For if

S=aa?+by? +c22=0, 2 =bcl? + cam? +abn? =0,
S'=a+y%+22=0, Z=PB+m2+n2=0,
F =(ca + ab)a? + (ab + be)y? + (be + ca)22 =0,
which is the equation of the harmonic conic-locus.

33. Contravariants. In a similar way, or by reciprocation, we see that
O 13 the envelope of lines which are cut harmonically by the two conics S and 8,
or the karmonic conic-envelope of the two conics.
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The function & also behaves as an invariant and is exactly analogous
to a covariant. Since, however, it involves the line-coordinates instead
of the point-coordinates, it is called a contravariant.

The distinction between a covariant and a contravariant lies in the
point of view and the analytical expression, for a contravariant, which
represents an envelope, can always be expressed by means of its point-
equation, and then we get a corresponding covariant.

Thus expressing the conics as in § 17, we find

&= (b+0)B+(c+a)m?+(a+bn*=0,
and the point-equation of this conic is
(c+a)(a+b)z?+(a+b)(b+e)y? +(b+o)(c +a)22=0.
This may now be written

(@ +b +c)(ax® +by? +c2?) + (be +ca +ab)(z? +y2 +22) — Za(b+c)2?=0,

t.e. » @'S+08 -F=0.
Now, since this equation is homogeneous in the coefficients of the two
conics and involves only invariants and covariants, its form will be un-
altered when by a linear substitution the equations of the conics are made
general. Hence & as a locus belongs to the linear system determined by
S, §’, and F.

Similarly the line-equation of F can be found to be

A'OS +AO'Y -AA'P=0.
Examples. )

1. If 8 and & touch at a point P, prove that F and P both touch 8 and §*
at P. (Use the property in § 18.)

2. Tf 8 and &’ touch at two separate points, F and ® both touch 8 and 8’ at
these points.

3. If 8 and 8 have three-point contact at P, F and P also have three-point
contact with both § and 8’ at P.
(Take 8 =2%+20y=0, & =c(2+2zy)+2y(my+nz)=0.)

4. Tf 8 and & have four-point contact at P, F and ¢ also have four-point
contact with both S and 8’ at P.
(Take S=22+2zy, & =c(z2+2xy)+b)

84. Conditions for double contact of two conics S and 8. When S
and S’ have double contact at P and @, F also has double contact with 8
at P and Q; hence in this case F belongs to the pencil or linear system of
conics S+ [LS' =0.

Hence denoting the coefficients of F by a, b, ¢, f, g, h, where
a=BC'+BC-2FF, t=GH +GH-AF —A'F, ete.,
a=X\a+pd’, f=Af+uf, '
b=2Ab+ub’, g=Ag+uy,
¢=Ac+pe h=M +phk'.
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Eliminating A and p, we get all the determinants of the third order vanishing
in the following array :

a b e f g h|=0

a’ b’ cl fl gl h’

a b ¢ f g h .
Although there are 20 determinants here, this is only equivalent to two
conditions. These are the (two) necessary and sufficient conditions for
double contact.

These conditions are also necessary for four-point contact, for four-

point contact is double contact in which the two points of contact coincide.
For four-point contact also, the conditions for three-point ‘contact are

necessary, t.e. 3A 0 ©®

These, together with the above conditions, give the (three) conditions for
four-point contact.

The determinants in the above array are of dimensions (3, 3) in the
coefficients of the two conics, and it might be expected that the conditions
for double contact could be expressed in terms of the fundamental in-
variants. But the only terms involving A, ®, ®’, A’ of the required
dimensions are AA’ and ®®’, and two relations of the form IAA’ +m® O’ =0
could not exist unless AA’ and @@’ both vanish.

85. The conics F and P perform rbles with respect to other covariants
and contravariants of the two conics analogous to those performed by the
invariants A, ®, ®’, A’ with respect to other invariants. Thus, just as most
invariant relations can be expressed in terms of these four fundamental
invariants, so most covariants can be expressed in terms of S, §’, F and
the fundamental invariants, and similarly for the related envelopes or
contravariants.

Examples.
1. Find the reciprocal of 8 with regard to 8.
Taking 8 =ax®+ b2+ c22=0,

8 =a+ 2+ 22=0,
the reciprocal of S with regard to 8’ is
. bcxz+cay2+abz3=0.
This can be expressed in the form
(bc+ ca+ab) (22 + Y2+ 22) — Za(b+ c)22=0,
e 08 —-F=0.
Similarly the reciprocal of 8’ with respect to 8 is
®’'S-F=0,
2, Show that the line-equation of the reciprocal of 8§ with regard to 8’ is
Q2 - A'P=0.
3. Prove that the locus of points whose polars with regard to § and 8’ are
oonjugate with regard to the ®-conic is the F-conie.
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86. System of three conics. A system of three conics Sy, S,, S; has the
invariants A of each singly, the joint-invariants @ of the conics taken in
pairs, and further invariants of all three taken together. If we consider
the net of conics ASy +285 +285 =0,
the discriminant is YIS WS W,

My +0hg +Ashy .«
Mg +Mga+Ags - -

Expanding this, we get
AAS +.oo + Opah®hs + O APy +.on + OrphMod,

where 0,5, etc., stand for the mutual invariants, and there is one invariant
of all three, viz.

Oum=|a; ks gs|+| @ ks gp |+ete.
by by fs| |k b5 fo
9 f2 o n fs a

We shall not enter further into these invariants, but there is one covariant
which is of great importance. This consists of the determinant

298, 98, 0§,

% Oy 0

9S, 08, 98,

oz Oy oz

0S; 083 08,

% %

and is called the Jacobian of the three conics. Since the differential
coefficients are all linear expressions, the Jacobian is a cubic curve.

87. The Jacobian of three conic-loci s the locus of points whose polars
with regard to the three comics are concurrent. The polars of the point

(@, ¥, 2) are S, a8, a8
-1 hiae § 21
Tor +y % +2z 3% 0,

= 0’

eto. Hence the condition for concurrency is represented by the vanishing
of the above determinant.

If the three conics have a point in common, evidently this point satisfies
the condition for concurrency of its polars; hence the Jacobian passes
through this point. .

If the three conics have two points 4, B in common, the polar of any
point P on 4B with respect to each of the conics passes through the
harmonic conjugate of P with respect to 4 and B. Hence the Jacobian
consists of the line 4B and a conic. '

If the conics have three points 4, B, C in common, the Jacobian consists
of the three lines BC, C4, AB.

1f the conics have four points in common, the Jacobian vanishes identi-
cally ; and, conversely, if the Jacobian vanishes identically, the conics
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belong to the same pencil, or are linearly connected, i.e. for a certain system
of values of A;, Ay, A, Ay + g8, +248;=0.
To prove this, suppose first that S; belongs to the linear system

)‘Sl + y.Sg =0 ;

then S;=28, +p8y, aS’ aéi‘ %i, etc., and the determinant vanishes

identically. Conversely, if the determinant vanishes identically, it is

possible to find multiples A;, Ay, A5, such that
BS as BS

1 M 2 )‘3 hdn: U

Multiply these three equatlons respectlvely by z, y, z and add ; then, since
z %%1 +y %%1 +2z 859 1=28,, it follows that
A8y +28, +238;=0.
88. The Jacobian of any three conics of the linear system
, AS+A'S’ +2""8" =0
88 the same as the Jacobian of S, §', S8”.
The Jacobian of the three conics
AS+ 'S +A"8"=0
uS +p'8" +p”8"” =0,
vS+v'8 + v'8" =0

=0, ete.

is
os _,o8 ., 08" , .n |l 08 08 88”
A= a +A a—z- +A 3 " =| A )\' )\" ‘a—z' g oz
LI i momoRes as as”
ot w P U vy oy dy Oy
va_S.-'.y'aSI.;.y"g_S_,T a_S a_S,. ,aS_"
oz ox or = ° oz 0z o0z |,

and the last factor is the Jacobian of S, §’, 8”.
89. If three comics have a common self-conjugate triangle, the Jacobian
consists of the sides of this iriangle. Let the three conics be
S=ax?+by? +c22=0,
S'=a'2?+b'y? +c'22=0,
8" =a"2?2+b"y2 +c""22=0.
=az, etc., and
J=

108
Then § 55

ax by ¢z
az by c'z
allx bl’y c’lz
Le. zyz=0.

= 0,
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40. The cubic covariant of two conics. Now consider the Jacobian of
the three conics S, S’ and F, or that of S, S’ and P (as a locus). Since
& belongs to the same linear system as S, §’, F, these two Jacobians are the
same. Since the four conics have a common self-conjugate triangle, the
Jacobian consists of the three sides of that triangle. This is a covariant
of 8 and §’, since it is a locus definitely connected with the two conics. We
may call it 'the cubic covariant.

There are special cases in which the cubic covariant is further
specialized.

(1) If S and S’ have simple contact, so that F also touches them at the
point of contact, part of the covariant consists of the tangent at the point
of contact.

Ex. Prove that the complete Jacobian in this case consists of the tangent
at the point of contact taken twice, and a line through this point which cuts the
four conics 8, §’, F, ¢ in points the tangents at which meet in a point on the
common tangent. (Show that we can choose 8 = a2+ 2yz, 8’ = az®+ cz®+ 2fyz,
and use these equations.) ‘

~ (2) If S and 8’ have three-point contact, the cubic covariant consists
" of the tangent at tha point of contact taken three times.

(Take 8 =22+ 2yz, 8 = a(2?+ 2yz) + 2g22.)

(3) If S and 8’ have double contact, or four—pomt contact, the cubic
covariant vanishes identically.

41. The cubic contravariant of two conics. Corresponding reciprocally
to the cubic covariant J of the two conics S, S’ there is a cubic contra-
variant I'. Analytically this is determined by the same process as that
by which we formed the Jacobian J, using line-coordinates instead of point-
coordinates. It is then the line-Jacobian of X, 2’ and P, or that of =, =’
and F (as an envelope). Geometrically it is the envelope of lines whose
poles with regard to =, 3’ and & are collinear, and it can be easily seen
that in the general case it consists of the three vertices of the common
self-conjugate triangle of = and 3'. In the other special cases it can be
proved that :

(1) If 3 and 3’ have simple contact at P, and p is the tangent at P,
I’ consists of P taken twice and a point on p such that the points of
contact of the tangents from this point to =, 2', F, @ are collinear in a line
through P.

‘ (2) If £ and I’ have three-point contact, I" consists of the point of
contact taken three times.

(3) If 3 and X’ have double contact, or four-point contact, I" vanishes
identically.

42. Application of invariants and covariants to metrieal problems. The
projective invariants and covariants can be used also in metrical problems
by expressing the relations between given conics and the fixed degenerate
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conic or Absolute consisting of the line at infinity and the circular points.
Thus we have the fixed conic *
S'=2, Z=P+md

If we take another conic S, the F-conic of S and 8’ is the locus of points
such that the tangents to S and $’ are harmonic conjugates, but since the
tangents to 2’ are the absolute lines, this condition makes the tangents
to X at right angles. Hence the F-conic s the orthoptic locus of the conic S.
The ®P-conic is the envelope of lines which are cut by S and S’ harmoni-
cally. But since the two points of intersection with §’ coincide, one of
the points of intersection with S must also coincide with this point. Hence
the line must pass through one of the points of intersection of S with the
line at infinity. Hence the $-conic consis's of the two points at infinity on
the conc.

The invariants ® and ®@’ are (see,
however, footnote on this page).

=0, O =a+b.

Hence the condition that a conic-locus
should be apolar to the absolute (or
circular points) ¢s that 4 should be a
rectangular hyperbola, and the condi-
tion that a conic-envelope should be
apolar to the absolute (or line at in-
fmity) is that it should be a parabola. -

Since F passes through the 8 Fro. 117,
points of contact of the common
tangents to ¥ and X', and since. these common tangents are the tangents
to the conic from the circular points (absolute tangents), the 8 points of
contact consist of four imaginary points on S, and the circular points 1, J,
each taken twice. Hence F passes through the circular points, and is
therefore a circle (Fig. 117). ,

Moreover, any conic passing through the circular points must be
regarded as having double contact with the absolute, since the common
tangents coincide in pairs with the tangents at I and J. Conversely,

* The point- and line-equations of the absolute should be written more striotly
S’ =22 +e(2+y* +2f yz+ 29'22) =0,
2 =e(It+md) - e2(f 2B +g*m?® - n2+2f'mn+2g9'nl - 2f'g'Im),
where -0, or, putting f*=0=¢" and neglecting ¢*,
S'=2+e(22+y2), Z'=e(l2+md).
Then if §==0 is any conic, ® =C+e(4 + B), @ =¢(a+b), while A’=0.

Unless we proceed strictly in this way, we may draw wroni:onclusions from in.
variant relations such as @*=4A@’. This relation means that a triangle can be
circumsecribed about § and inscribed in §’, but such a triangle must collapse into the
line at infinity, and the condition then implies that the conio § touches the line at
infinity, and is therefore a parabola. This is correctly indicated by substituting the
above values for @ and ®’ which give
o C*+2¢C(A + B)=4Ae(a+D),
reducing to C=0 when e—0. If, on the other hand, we took @=C and @'=a+b
we should get' the relation C*=4A(a+b) which is quite wrong,
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the condition that S and .8’ should have double contact is the condition
that S, S’ and F should belong to the same pencil, and therefore that
8 should pass through the circular points. We find

F= 022 +Cy? + (4 + B)2? - 2Fyz — 2Gzz =0,
and the conditions that S and 8’ should have double contact are
a b c f g & [=0.
00 1 0O 0 0.
C C A+B -F -G 0

It will be found that these conditions require either (i) a=5 and A=0 or
(ii) C=0, F =0, @=0. The first alternative gives a circle, the second gives
two parallel straight lines. It frequently happens that we have to consider
a pair of parallel straight lines as a degenerate form of circle, since a pair
of lines intersecting on the line at infinity is a degenerate hyperbola having
double contact with the line at infinity. Thus the theory of reciprocity
would require that four circles can be drawn to pass through three given
points 4, B, C, just as four circles can be drawn to touch three lines..
These four “ circles > are the ordinary circumscribed circle of the triangle
A BC, and the three pairs of parallel lines consisting each of a side BC and
the line through the opposite vertex A parallel to this side.

Considering the points of intersection of ¥ and S, which are the points
of contact of the tangents to S from the circular points, we see that the
common chords of a conic and s orthoptic circle are the polars of the focr,
v.e. the directrices, and the polars of the circular points, s.e. a pasr of vmaginary
diameters.

EXAMPLES XX,

1. The conic whose equation in rectangular coordinates is

ax®+4 2hay + byt=1
is such that ab—h%?=a+b-1, investigate the geometrical meaning imphed by
this relation.

2. If 2(a+ b)2=9(ab— A3), prove that the circle whose diameter is the minor
axis passes through the foci.

3. Determine the homogeneous relatlons which subsist among the invariants
of pairs of the conics :

8, =(az+ PyP—22=0, §,=p%2>+y?)—2s=0,
83 = 2y + 2BAr + 4ody — 20 /B =0,
and verify the corresponding geometrical relations between the conics.
(Math. Tripos II., 1913.)
4. If 8 and 8’ have three-point contact at O and cut again in L, and if M, N

are the points in which F cuts S and S’, prove that OM, ON are harmonic con-
jugates with regard to OL and the tangent at O,

-5. If the conic-locus 8 is apolar to the conic-envelope £’, prove that the
oonic-envelope 2 is apolar to F, and the conic-locus 8 is apolar to Y. Prove also
that in this case a triangle can be inscribed in S and circumscribed about <I> and
one circumscribed about 8’ and inscribed in F. .
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6. If the conic-locus 8 is apolar to the conic-envelope Z’, show that the
reciprocal of § with regard to 8’(2’) is apolar to ’.

-7. If a conic-locus 8, which is-apolar to a given conic-envelope I', is apolar
to its reciprocal 2’ with respect to I'(C), show that S cuts C in an equianharmonic
tetrad, which is the same as that consisting of the four points of contact on I'" of
the common tangents of 2’ and T'.

8. Prove that the condition that F and ¢ should be apolar is
00’ +3AA'=
9. Prove that the condition that a triangle can be inscribed in F and cir-
cumscribed about ® is 202+ 10AA’QO’ — 3A2A2—4A’@3 - 4A@#=-0.

10. Show that all the conic-loci apolar to four given conic-envelopes form a
pencil,

11. Prove that there is one conic-envelope which is apolar to four given conic-
loci.

12. Prove that the Jacobian of three conics passes through the nine vertices
of their common self-conjugate triangles taken in pairs.

13. The Jacobians of four conics taken in sets of three have six common
points which are the degenerate members of the pencil of conic-envelopes apolar
to the four conics.

14. If the conic-locus 8, is apolar to the ®-conic of S, and S, then 8, is apolar
to the ®-conic of §; and 8;, and S is apolar to the P-conic of 8, and S,

15. If the conic-envelope 2’ is apolar to the orthoptic circle of 3, show that
2 is apolar to the orthoptic circle of 2*, and that the two orthoptic circles out
at right angles.

16. If 8 and 8’ are circles, show that their ®-conic has its real foci at the
ocentres of the circles.

17. 1f S and S8’ are homothetic, show that their ®-conic touches each of their
asymptotes.

18. Prove that the discriminant of ® is (@®’—-AA’)?2 and that of F is
AA(@O’— AA’), and hence that if F degenerates to a line-pair ¢ degenerates to
‘& point-pair, and conversely (provided 8 and 8’ do not degenerate).

19, Show that the ®-conic of a rectangular hyperbola and a circle is a
parabola.

20. If the asymptotes of a rectangular hyperbola are parallel to the axes of
another conic, show that the ®-conie of the two conics is a parabola.

21. If a circle and a rectangular hyperbola are such that their F and ®-conics
both degenerate, show that one of their common chords is a diameter of the
circle and another is a diameter of the hyperbola.

22, Show that a circle (locus) will be apolar to a rectangular hyperbola
(envelope) if the circle passes through the centre of the hyperbola, and a circle
(envelope) will be apolar to a rectangular hyperbola (locus) if the hyperbola passes
through the centre of the circle.

23. Show that the F-conic of two parabolas is a hyperbola whose asymptotes
are parallel to the axes of the parabola.

24. If a circle (locus) is apolar to a concentric hyperbola (envelope), show that
the circle is the orthoptic circle of the conjugate hyperbola.
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25, If a circle (locus) is apolar to a parabola (envelope), show that the centre
of the circle lies on the directrix of the parabola.

26. If a circle (locus) is apolar to a conic (envelope), show that the circle cuts
orthogonally the orthoptic circle of the conic.

27. If a circle (envelope) of given radius is apolar to a given parabola (locus),
show that the locus of its centre is an equal parabola.

28. If a parabola (locus) 3 is apolar to a parabola (envelope) Z’, show that
the diameter of § through the point at which the tangent is parallel to the axis
of 2’ touches =’.

29. If two parabolas are mutually apolar, show that they intersect in a point
at which the tangent to each is parallel to the axis of the other. Find the F and
@ conics.

30. Verify for a circle S and a parabola 8’ that if @%=4A@’, the circle passes
through the focus of the parabola.

31. T is a given conic-envelope and 4, B, C, D are four points such that the
lines A B,CD and AC, BD are conjugate with regard to Z; prove that AD, BC are
also conjugate lines, and that every conic-locus through 4, B, C, D is apolar to 2.

32. If two circles are mutually apolar, prove that their radii are equal and
that they cut at an angle 120°.

Show further that the F and $-conics of the two circles is a hyperbola whose
foci are the centres of the two circles, latus rectum equal to the diameter, and
eccentricity = 4/3.. Also show- that the tangents at the six real points of inter-
section of the three curves coincide in pairs and form two equal equilateral
triangles.

33. If T is apolar to &, prove that the centre of perspective of any inscribed
triangle of 8’ and its polar triangle with regard to 2 lies on 8’; and that the
axis of perspective of any circumscribed triangle of £ and its polar triangle with
regard to S’ is a tangent of =.

34. If two of the vertices of a self-conjugate triangle with respect to 8 lie
on §’, prove that the locus of the third vertex is @8 — AS’=0.

35. Two conics intersect in four points 4, B, C, D. Show that if the tangents
at C are harmonio conjugates with regard to CA, CB, the tangents at D are
harmonic conjugates with regard to DA, DB; and prove that the condition
that this relation should hold for some selection of the points of intersection is
©0’=AA’. Verify that this relation is satisfied for two orthogonal circles.

'36. If two circles are connected by the invariant relation @@’=AA’, show
that either they are orthogonal or else }d®=r2+r?%, where r, r’ are their radii
and d the distance between their centres.

37. Prove that if a triangle can be inscribed in the ellipse 22/a?+ y?/b%=1
and circumscribed about the ellipse 22/a2+32/b2=1, +a'fa+b’'[/b=1.

38. Prove that if a triangle can be inscribed in the hyperbola z?/a%— 32/b2=1
and ciroumscribed about the hyperbola z3/a®—y?/b2=1, then a’/a—b’[b=—1
or + 1, according as the vertices of the triangle all lie on the same branch or on
different branches.

30. Two confocal ellipses are such that a polygon can be inscribed in one and
sircumscribed about the uther; prove that the perimeters of all such polygons

_are equal. (M. Ghasles, 1845 )

R 8.4.0.
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40. Two homothetic and ooncentrio ellipses are such that a polygon can be
inscribed in one and circumseribed about the other ; prove that the areas of all
such polygons are equal.

41. If two conics 8, 8’ are such that one quadrilateral can be inscribed in 8
and circumscribed about 8’, prove that an unlimited number of such quadri-
laterals exist. Prove that their diagonals both pass through a fixed point, and
that the joins of the points of contact of the opposite sides with 8’ also pass
through this point ; and prove that the invariant relation connecting the two
oonics is 8AZA —4A’'GE’+ 03=0.

42. Deduce from the last example that if a circle through a pair of foci of a
conic cuts the asymptotes in P, P, @, @’, PP’ and QQ’ are tangents to the conic.

43. If a conic § passes through the four foci of a conic 8’ and cuts the tangents
at the ends of any diameter in P, P, Q, @’, prove that PP’ and QQ’ are tangents

to S’
‘ 44, Determine the distance d between the centres of two circles 8, 8’ of
radii r, » if a triangle can be inscribed in § and circumscribed about §’,

45, If a quadrilateral can be inscribed in the ellipse 22/a%+ y2/b%=1 and cir-
cumscribed about the ellipse z2/a® 4 32/b3=1, prove that +a2/a?xb72/b2=1, and
distinguish the different cases.

46. If two conics S and 8’ are such that quadrilaterals can be inscribed in 8
and circumscribed about §’, prove (i) that the poles, with regard to 8’, of one pair
of common chords lie on 8, and (ii) that the polars, with regard to S, of one pair
of points of intersection of common tangents touch 8”; and conversely, that if
either of the relations (i) or (ii) is true, the conics admit inscribed and circum-
scribed quadrilaterals.

47. Prove that if two conics 8, 8’ intersect in four distinet points, and if
@3 -4A00’+8A2A’=0, quadrilaterals can be circumscribed about § and in-
scribed in 8.

48. If the centre of the circle S lies on the circle §’, prove that quadrilaterals
can be inscribed in 8’ and circumscribed about 8.

49. Points on the circle 22+ y®=12 being represented by rcos «, rsin a,
show that consecutive vertices of a quadrilateral inscribed in the circle

224y =qa?+b?
and circumscribed about the ellipse 22/a?+ 42/b%= 1 are connected by the relation
tan oy tan o= ~b2/a®; and for the circle 23+ y2=a?—1}? and the same ellipse
the relation is sin «, sin oy=">5%/(a%— b?).

50. If A, B, C are three fixed points on a conic S(Z), prove that the pencil of
conie-loci passing through A4, B, C and apolar to 2 have as their fourth common
point the pole of the Hessian axis of the triad 4BC.

51. If ABC and DEF are two triangles such that B, C are conjugate points
with respect to the polar conic of 4 with regard to the triangle DEF, prove that
C, A have the same property with regard to the polar conic of B, and similarly
A, B with regard to the polar conic of C.



ANSWERS TO THE EXAMPLES.

Chapter I. §85.
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16. k= -2o0r }. Points 3,4 and -7, ~1.
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(i) 38 5 — 3, 45 —Ha+y=2. (iv) -85 # & He+ity=1L
(v)1; 8, —8; zcos(—45°) +ysin( -45°)=44/2.

2. (i) 3z +y +1=0, (ii) z + 6y +1=0, (iii) 3z +y=9.

8. (i) z=2+¢, y=8+2¢; (ii) z=1-3t, y—4+t' (iii) 2=1+3¢, y=3 -4

4. 4z - 3y =11 in each case.

5. (i) 2=7-3t, y=t; (i) =3 +4¢, y=-1+3¢t; (ili) 2=2+3¢t, y=2+7¢;

(ivi)z=-3+3t, y=1-¢

) Chapter II. §7.
1. (i) 45°, (ii) 8° 087, (iii) 70° 34", 2. (i) 6, (ii) 3, (iii) 8.
8. (i) 2, (ii) 2, (iii) 1.
6. (i' v=5z - 15, (ii) 3y +z =12, (m) 2z+3y lS,(lv) Tx-4y=1+14,(v) 42+ 3y = 240
uf 206 8.A.G..
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Chapter II. §12.
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(iv) 8, -1; (v) -4, 8; (vi) -3, —§.
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2. (i) 0, 3; (ii) 4, ¥ (iii) 74, (iv) -12.

Ohapter II. §18.
1. 32* - 82y ~3y2=0. 2. ax=>by.
8. 5z —1lzy - 5y2=0. 4. 45°.
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8. (i) 45°, (ii) 60°, (iii) tan—12=63° 26’, (iv) 60°, (v) 45°, (vi) tan-1}=30° 58".
?. (iv) 1, =2; (v) 2, -8; (vi) 8/3, 5/3.

Chapter II. §22.

1 (i) 22 -2y - 22 =0, (ii) 32* + 22y - 3y* =0,
(ifi) 3(z—1)2+ (2~ 1)(y +2) -3(y +2)0=0, (iv) 5a* — 4oy — 5y* + 34z — 2y + 52=0.
2. 2y=z, by+22=0, y+4z=0. 3. 22/7, 16, 19/4.

4. az+hy + p(ha +by) =0,
EXAMPLES II. A.
1. (i) y=4, (ii) 122+ 5y +3=0, (iii) 10. 8. G=(33),0=(4),8=(49).
4. Tz -9y -310=0, z+2y+97=0, 11x -3y - 8=0, concurrent in ( ~11, —43).
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12. -220,60; -12, —44; -45, —165; 33, -9,
13. 8,6; -31, -7; 68, —34; 29, 83.
15. k=0, (3z+4y)(z -2y -5)=0; k=12, (T2 +y+26)(3z-y-16)=0;
k= —§, (z+3y - 5)(x—-Ty-25)=0.

18. 5z* — 24zy — 5y — 522 + 260y =0. 17. 92% +dy® + 132y — 762 — 50y +150=0.
20. 0, 1. 21, 1. -2.
28. (i) (3, -1), (5,5); (i) (2, -2), (0, 6); (iii) (-2, 2), (4, 6); (iv) (b, a), (b, ~a);

(V) (3@ + 2~ 41 +9a), M@ — T+ Y1+ 7))} (M@ +Za +ys - a) M- 2+ 22+ +05))

EXAMPLES II. B.
7 -3, -3, -3 8. Four lines #+y+ kcot a=0. 12, 2% +y2=a’.

_ Chapter ITL §8.
(i) 3x+4y =25, 42=3y; (ii) 32 +2y+13=0, 22F3y=0:
(ili) # cos a+ysin e=a, y=2z tan c.

Chapter III. § 8.
Q. The line at infinity.
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_ Chapter IIL. §7.
Q. The point at infinity in the direction perpendicular to the diameter.

Chapter III. §8.

1L z+3y=4, 2v+y=4, 3z —y=4; conocurrent in (§, $). 2. 24, -8.
. Chapter IIT. §18. .
L3 2. (i) y=v/3(z+2), (i) y=x++/6. 8.3,4; 4,3,

Chapter III. §14.
Q. The circle degenerates to a straight line and the line at infinity.
1L 3 -1;7 (i) § 35 v2. (iii) 4, § 5 4
(iv) 0, §; & (v)a,0; a. (vi) -4, 4; $v1L
2, (i) 2 +y*+62 -3y —1=0, (i) 2*+¥* +z -2y -1=0, (iii) 23 +y* +3z ~ 5y ~4 =0,
(iv) 22 +9y2 - 22 -4y =0, (v) 2* +y% - ax - by =0.

Chapter ITI. §16.

2. (i) 3z -4y +14=0, 42 + 3y +2=0; (ii) 42 -9y =0, 9z +4y=0.
8. z+y+2=0. 5. (i) —-13, -2; (i) 5, 2.
8. §=-39, —20, 72,49 ; 8’ =176, -21, - 17, 52. ?. (i) 60°, (ii) 45°.
8. (i) 82 =152y, (ii) (z -y)(17z+31y)=0.
9. (i) 2* +y* - axtay +4a*=0,

(ii) 2*+y? -8z —6y+21=0, 2% +y? - 282z + 14y +101 =0,

2 +y? -162 —22y +-149=0, 2*+y?+4x-2y-11=0.

EXAMPLES III. A. -
1. 2 +yr=6y, 22 +g*+24y=0. 2. ()0, 0; (i) 2, —1; (iii) -3, -5. 4. §, -4
8. The point of intersection (3, —1) of the line of centres with the pola.r of the first
point ; also the point at infinity (2, 1, 0). 7. The chord of contaot.
8. (z-143)*+(y+8)*=9, (x-1+4/21)*+(y-3)*=9.
9. 2% +y% - 62 — 6y +9=0, 23 +y* - 30z — 30y +225=0.
11. azx + by =0. 12. 1 and 5. 13. 42* +4y* -z =18,
14. 4x -3y +25=0, 3z +4y=25. 15. 24z — 142y — 2492 =0.
18. Two circles passing through the two centres ; if the angle is a right angle the locus
consists simply of the circle whose diameter is the join of the two centres.
19. 3,0: 7,0; 3z+y=9, -3y=3; 3r-y=21; z+3y=’l.

EXAMPLES III. B.
- 1. p=a(cos a+1), cardioid curve. 5. 2* +y? — 20z — 2By +c*=0.
8. The locus is & curve of the fourth degree. If the centres and radii of the given
ciroles are (a, 0), r and ( — a, 0), 7', the bisectors touch one of the circles
2 +(y+ o) =HrFr)
11. If the given circle is 2® +y*=¢* and 4 = (a, 0) the locus is the circle
(r* —a?)(2? +y?) + 2arie =24,
which becomes the tangent at 4 when a=r.
12. A circle with centre half way between the centre and the given point.

Chapter IV. §6,
4. Outside, inside, 5 -l<i<it. 6 21
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Chapter IV. §9.
2. y=4/32417. 5. (i) -10-5, 1; (ii) ~1:5, —1; (iii) - 45, L.
8. o, o 7. 2z +3y="5.
8. 328 +4y* — 6x - 12y =0, a similar ellipse.

Chapter IV. §19.
1. Take as the eccentric angles of the two points p+a.

Chapter IV. §20.
Q. Al four foci coincide at the centre, and the four directrices coincide with the line
at infinity. )

Chapter IV. §22.
Q. No. See § 20, Q.

Chapter IV. §80.

Q. Of the four normals from any point two are real and coincide with the diameter
through the point, the other two are the lines joining the point to the circular

points.
EXAMPLES IV. A.
1. cos-le, mtoosle. 2. ljr=e cos 0 +cos {#(0; +0,) — 0} sec (6, - 0,).
8. z*/a? +y2 b2 =secto. 7. 2 +yt=(a+b)% 9. Use § 16.

10. Ellipse whose foci are the centres of the two circles.

82. The tangents at 4 and A’, and the two ellipses (z? —a®e?)/(1+e) + y*/(1Fe) =0.
83. a3/l + b2 /m?=ct[nd 87. (2? +y? —a® — b%)? tan®a =4(b%? + a’y? - ab?).

47. -0117. 48. -0564. 49. 017, 281°00°.

EXAMPLES IV. B

. Use Ex. IV. A, 12. 6. a*x? +b%y2 =at + b4, 7. 23/a® +2y2/(a® +b%) =1.
The ellipse 22/(b —b') +y3/(a - a’)2=(ab’ —a’b)?/{(a —a')* — (b - b')*}%
The ellipse 2?/b% +y?/a® =a?b?[(a? —b?)%.
10. If the fixed line is Iz +my=1, and the ellipse x2[a® +y?[b*=1, the locus is

a?lz +btmy =}(a® +b%).
11. The given ellipse, and the ellipse 2?/a®+y*/b*=4.
17. The circle is the auxiliary circle of the ellipse, and O is a focus. If O is on the

circle the envelope reduces to two points.

18. z/a -4y[b+2=0.

© 0w

EXAMPLES V. A
8-7. Use equation zy =¢3.

15. Let C4, OB be the asymptotes, AB a tangent. Draw the circle 4 BC, and let the
exterior bisector of the angle C cut the cirole again in O. Then the circle with
centre O and radius OA4 passes also through B and cuts the interior bisector of
the angle C in the two foci.

16. Two conics whose foci are the centres of the fixed circles, their asymptotes being
perpendicular to the common tangents.

17. If @ +¢’ =24, the line passes through (0, -b cot ).

EXAMPLES V. B.

2. Use converse of theorem : if a quadrilateral is mrcumscnbed about a circle the
sums of its opposite sides are equal; or Ex. 1.
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If tan = +b/a the normal is perpendicular to an asymptote and is at infinity
There is no real normal for tan a>b/a.

The point ( - a, 0), the line x=a.

A hyperbola with the given points as foci.

Chapter VI. §7.

. Lat. rect. =a, foous {(}a*®- b)/a, 0}.
. Lat. reot. =1/a, vertex {~b/a, (ac —b%)/a}.

(i) ( -2, 5), tan-14="75° 58" ; (ii) (1, —3), 180°—tan—1}=153°26";
(iii) ( - 0-83, 1-79) ; 26° 34".
(i) (%, 0), tan-1§=53°08’; (ii) (—§, 0), 180° — tan—23=123°41";
(iii) (33, 0), 55°17
Chapter VI. §15.

. The diameter through the point is a normal at infinity.

EXAMPLES VI. A.

. 4z +3y+1=0. 6. 1890 ft., 163°.

. 95 ft. from shore end ; 66-4 ft. below vertex ; 35° 367, 55° 04",

. tan-133 =31° 46’ ; 52 ft. 9. tan-18 =82° 52/,

. The chord joining the ends of two rectangular chords through a fixed point M on

the parabola cuts the normal at M in a fixed point (the Frégier point of M.
Cf. VIIL § 9).

32* -y +10ax + 3a*=0. The other branch corresponds to the angle 120°.

The directrix. 22. The point ( — 24, 0), and the directrix.

—$(2a-5), 0.

If 0 is the vectorial angle, referred to the foous, of one extremity of the chord,
the vectorial angle of the point of intersection of two consecutive chords is
0+45°; and the equation of the envelope is I/r=e(1 +cos 0).

EXAMPLES VL B.

If 0 is the inclination of either tangent to the axis, r+r’=2a cos § cosec? 0
1f (z, y) is the given point, 0, + 0, + 0, =tan-1y/z.

Chapter VII. §35.

- (I +m?)(cm® +n*)=0. The line passes through one of the limiting points, or

through one of the ¢ circular points ” (see XI. § 14).

Chapter VII. §10.

. The remainder of the Jacobian is the line at infinity.

EXAMPLES VIIL A.

L(i)1,0; -1,0. (ii)2,1; 3, ¢. 3. -2, -1.
. 2? +y? ~dx -2y +2=0. 6. +3,0. 7. (a® +6%) (2 +y®) +2¢c(ax + by) =0.
12.

lzy —ma®=ny —mec; in general a hyperbola, but a parabola when 1=0. When
m=0 we get really only the axis of 2, but the equation gives also z=n/l. This
line is the locus of harmonic conjugates of any point on the line z= —n/l with
.respect to the degenerate circle which consists of the radical axis z=0 and the
line at infinity.

200’ +2BB8 =c—c’ +2(a’* + B).
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EXAMPLES VII. B. -
1. 22 -2y =a+b, 2(b+c)z—2by=(b+2c)(a+b), 2(a+c)x—2ay=(a+2c)(a+8b
Radical centre a+b, §{(a+b). Orthotomic circle
{z-(a+d)P+{y-Ha+d)P=Ha -0
2 —g/(1+2), —f/(1+1), where A is a root of the equation
(PP—c )N —(c+c)A+ (g2 —c)=0.

15. A straight line. 16. a +b+c=0.
20. 2! +3* +2ax oot 2¢ —a? =0, z* +y* — 2ay coth 2¢ +a?=0.
21, 2 +y* -z/p=0, 2* +y*+y/P=0.
24. lnvert with regard to one of the points of intersection and apply Ex. 23.

Chapter VIII. §14.
1. zy=0. 2. 323 +2y=0. 8. 82 +4y*=1.
4. Rotate through tan-13; 152*-10y*=1. 5. Rotate through tan-12; 32® +2y3=1
8. Axes through ( -1, 1), rotated through tan-1}; 182 - 732 +54=0.
7. Axes through ( —3, —3), rotated through tan-'}; 10(z? -y%)=1.

EXAMPLES VIIL

12. z(a +b cos ) +y(b +a cos w)=ab cos .

16. If parallels through the given point to the given straight lines meet the latter in
M and N, and O is the point of intersection of the given straight lines, the hyper-’
bola passes through O, and its asymptotes are the perpendiculars to OM and ON
at their mid-points.

21. Sum of squares =2(p* +¢* +1* + %) ; sin-12(ps —qr)/(p* +¢* +r* +4%).

EXAMPLES IX.
L () -1, 3; (i) b #; (i) 1, -3
8 ()z+ty+1=0,2z-y+2=0;1,2. (ii)2z+y+1=0, z-2y-1=0;1,3.
(ifi) 8z -2y +1=0, 22 +3y —2=0; a*=1, b¥=-1.
8. (i) 32+2=0, 2y +3=0; (ii) 6z + b6y +4=0, 10z—15y +12=0.
(iii) y -2++/3(x+y+1)=0.
4. (i) Hyperbola. Centre(-1,2). Axesz+2y=3, 2z-y+4=0.
(ii) Ellipse. Centre (1, 2). Axes 4 and 2, parallel to coord. axes.
(iii) Ellipse. Centre (1, 2). Axes z -3y +5=0, 3z +y=5.
(iv) Ellipse. Centre (2, 1). Axes z—2y=0, 2z +y=5.
(v) Parabola. Vertex (-3, —4). Axis2z+y+1=0.
(vi) Ellipse. Centre (1, 1). Axes 2z+y=3, 2-2y+1=0.
(vii) Rect. Hyp. Centre (-1,2). Axes 4z-3y+10=0, 3z +4y=>5.
8. (3-4/2)2*+(3+4/2)2=12. 8. 24/5, 2+y=0; 2¢/§, z-y=4.
7. 2 +2y2=2.
8. 2z% — 3y* +4ay - 52 -5y +2=0. Hyperbola. Centre (§, 0). Asymptotes parallel
to y=4(2+4/10)x.
10. Hyperbola. Centre (3, 3). Axes 22— (3+£4/13)y +3(11+4/18)=0.
11. Parabola. Lat. rect. =74/10/100.
12. Hyperbola. e=2/y/3. Centre (-3, §). Axesz+2y=1, 2x-y+1=0.
18. Ellipse. Centre ( —3§, o). Axes 3z +4y +2=0, 42-3y+3=0. e=}v2
14. Focus ( -§, §). Vertex ( - §f, 1) 15. 362 -36y +77=0. (-3i, - )
16, 72 + 7yt +2zy + 102 — 10y +7 =0. 17.1, -1 1
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. EXAMPLES X.
1. Ty - 242y +202=0, 3. 2fgh=af*+bg"
4. (ab — M) (a* +y*) =(ax + hy)* +(Rx + by)d.
8. (2ab - A)(z* +y?) — 2bx — 2ay =0, tangent circles.
9. (i) a similar conie, (ii) & rect. hyperbola.
16. Orthogonal conio az® + 2hzy — by*=(b —a)/(b +a).

Chapter XI. §8.
1. Point (2, -1). 2. Point (-3, - %) 8. Point (-4, ).
4. Parabola. 8. Circle. - 8. Circle.

Chapter XI. § 4.

1. Circle, B +m?=1, 2. Circle, centre O. 8. 250* +16m2=1, ellipse.
4. 14402 - 25m* =1, hyperbola. 6. 5(I% +m?)=1, circle.

6. |im| -2|l| -2|m| +2=0, with |}| and |m| each >2, four arcs of circles. :
7. lm+1+m=0, parabola. 8. I=m3, parabola.

Chapter XI. § 18.
1. (i) 107 4+ 3m?® +2n* + 10mn — 2nl + 14lm =0, (ii) m?+4mn -2l 4+2lm =0,
(iii) 4472 +23m? + 2322 + 10mn ~ 4nl + 32lm =0.
2, (i) 22 +y* -4z +6y ~3=0, (ii) p(2x +1)*+2¢ (22 +1) (2y +1) +r 2y +1)*=0,
(iii) 22 =0. .
8. -3,3. 4.0, -4; 3,0. 5. 2, -1 8. 20z — 28y —45=0.

Chapter XI. §17.
8. (1, -1), 2z ~3y+2=0; (-1, 2), 2z -3y +1=0.
4. (-1,3),22~y+1=0; (3,1), 22~y —1=0; e=,/5s

Chapter XI. §20.
e (i)2,1;1, -1. (ii)3, -2; 2, 1. (iii) focus ( -2, 1), axis of parabola y=3z+T.
3. i1, -2;2 -4 () -2,3; —4 4
(iii) focus (0, 3), axis of parabola y=2x+3. (iv) H{4+v/14), —}4+v/14).

EXAMPLES XI.

Directrix 3z +2y+4=0. Second focus (1}, #), directrix 3z +2y=8. e=1/4/3.

16(2? +y*) — 182y - 8(z +y) +1 =0, 22y =1.

Ellipse. Centre (—¢, ). Axes2z-y+2=0, z+2y+1=0.

Foci - (3+4/3), #(2++/3).
4. Centre (§, §). Foci §++v/2, $+4v/2.

18. Parabola with focus at the centre of the circle and vertex at mid-point of 04 ;
part of the envelope is also the point at infinity on OA4.

14. When A=pu=1 the two conics are homothetic and concentric ; if A=p=} the
second conic reduces to the asymptotes of the first.

15. FG=CH and BC — F2=CA4 - G*. Centre (1/F, 1/G, 1/H).

20. A*+ Bm* +2HIm =0 represents the points at infinity on the tangents from the
origin. The point 2G1 +2Fm +Cn=0 is the point of intersection of the twa
tangents which are parallel to the first pair.

21. GI+ Fm +On=0 is the centre, and bl* — 2kim +am? =0 the two points at infinity
on the conio.

Lol o o
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EXAMPLES XII.

3. A=0, A+B+C+2F +2G +2H =0. :
4. Euler line in trilinears Sco(b? - ¢?) cos 4 =0, in aréals Tz cos 4 sin (B - C)=0.
8. z/(m —n) +y/(n -1) +2z/(l - m)=0.
7. (i) _E:sm P'l/Sin (B+U'l).
Y sinv,/sin (C+v)
() 8in A, sin y, sin v, _sin (A + ) sin (B + ;) sin (C +v2);
SiD A, Si0 (1, 8in v, 8in (A +2g) 8in (B + ) sin (C +vy)
(ix) cot A=(k —cos 24)/sin 24, etc., where k may have any value ; in particular,
if k=1, 1=90° - 4, etc. ; if k=0, 1=180°-24, etc. ) )
(x) tan A=k tan 4, etc., where ¥ may have any value; in particular, if k=1,
A=A, ete. ; if k>, A=pu=r=90°
15. The line Sz sin (B ~0)=0. 0=0, the Lemoine point ; 6=+60° the isodynamio
points ; 6=90°, the circumcentre.
16. sin (B —v), sin (y - «), sin (a-B).
19. Parallel to line o« cos 4 + B cos B +7 cos 0=0, the polar of the orthocentre.

Chapter XIII. §17.
1. (i) (I+m +n2 =0, (i) I +m-2n)(l -2m +n) =0,
(ii) 12 + m2 +n? —mn —nl —Im=(l+om +on)( +om+on)=0,
(iv) (1 +m +n)2=0 for all values of &.
2. (i) 22=0, (ii) {(be’ —b'c)z + (ca’ — c'a)y + (ab’ —a’b)z}* =0,
(i) (ax + by +c2)? —(a® +b? +c2) (22 +y? +2%) =0, i.e.
{(b® + c®)x — aby — acz)® + (a® + 6% + c?) (cy - bz)?2=0.

. EXAMPLES XIIL
8. The polar of O. 11. 8, 2.
15. Let the equations of the conics referred to the triangle A BC be
8y = fiyz +g1zx + hyzy =0, Sy = foyz + 9522 + hyxy =0.
Then, if Ty = (%, 41, 21) and Ts = (2 Y2 22)s
zyffy: il b =lfs: Y2l9s t Za/Pa.
19. Cf. Chap. XVI, § 10. )

21. b(z®+y?) +2g2=0. 22. 2=0, y=0, 2+22=0, —z+12y+42=0.
24. The points of intersection of the polar of the Frégier point corresponding to the
given point.

EXAMPLES XIV.

1. If the conic touches 4 B at B and AC at C, the centre-locus is the line joining 4
to the mid-point of BC.
8. mn cos A +nl cos B +Im cos 0=0. 14. A straight line.
24. c(ax ~bB —cy)xa(acx+bB ~cy)=0. 28. Za? cot A =0, XI* tan 4 =0.
27, (z+y +2){8%2 +(s — o)ty +(8 - b)*z} =Ta’yz, —mn cot $4 +nltan § B +im tan}C=0.
33. Taa . ZaPy=0, i.e. the line at infinity and the circumcircle.
34, ImnXa® =Xl (c*m? +b2n?) cos 4.
35. TPy (cos C —cos 4 cos B)=XBy*(cos B —cos C cos 4).
38. Express squares of distances of centre from 4, B, C.
40. Verify with the help of the identities 2bc cos 4 =56 +c* - a®.
41, Substitute £&'=a%, ... n{’ +70'{= —2bccos 4.
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44. The Lemoine circle in areals is Sz . Zb%?(b* +¢e)z=(Ta?)?. Talyz.

45. The Cosine circle in trilinears is Tax . Zab*c? cos 4 =HZa?)?. TaPy.

46. If the equations of ¥'Z, Z’'X, X'Y in areals are —pr+y +2=0, z-qy +2=0,
z+y-r2=0, R={1/(p+1), 1/(g+1) 1/ir+1)}. The equation of the conic is
Tz . Spz - S(g+1)(r+1)yz=0.

47. I E=(f, g, ) in areals the equation of the centre-locus is Z(g—h)z=0. If K is
the centroid, f=g=h, and the straight line becomes indeterminate. In this
case all the conics have the centroid as centre.

49. Express that the polar of the centre of either circle with regard to the other is
the common chord.

EXAMPLES XV.
18. A conic. If A, p are fixed and d is variable, the conics are confocal.
14. In trilinears the inscribed conic is
(6, —cos A)ymn +(0, - cos B)nl +(65 —cos C)lm =0,
where 0,, 0;, 0;=1, and the circumscribed conic is
(0; + 050,)yz + (03 +0,0,) 2 + (05 +6,0,)zy =0.
0,, 0,, 0, must be either all + (ellipse), or one + and two — (hyperbola). The
points of concurrence of the normals are (k, ky, ks)s (— ko Kg» Ka)s (Kss —Ko» Kn)s
(ky, ki, — ko), where kq=1+cos 4+ cos B+cosC, ky=1+cosd —cos B-cosC,

ete.
15. The tangent to the parabola which makes the given angle with the focal radios
to its point of contact.

18. The equation of the locus is (2* +y* —a®) tan®a + 2yae tan o — 62 =0
17. The equation of the locus is
(% +20)2 +(z +21)% - 2(2 +22) (x +22) cos 2o = (x? +y?) sin®2a,

which may be written {y?—4A(x +2)}*={(z +2}) cos 20 — (2 +20) %

25. If the outer parabola has freedom-equations z=at*, y=2at, any tangent to the
inner cuts the outer in points whose parameters have a constant difference.
The distance between corresponding tangents measured parallel to the axis is
constant, and therefore the perpendicular distance is proportional to the sine
of the inclination of the tangent to the axis.

27. If S=atja* +y2[b* —1=0, §' = Ax*+2Hzy + By*-1=0, the condition is

a4 +b:B=1.

This occurs, for example, when §” is the orthoptic circle of 8.

80. An ellipse with semi-axes a — kb, b —ka. If k=1, it is a circle with radius a —b;
k= —1, a circle with radius ¢ +b; k=2ab/(a®+b*) gives the locus of the Frégier
point (see Ex. 29).

81. (am?+bi3) (2 +y?) — 2blz — 2amy +a+b ~ 1 -m*=0; az? +by*=(a -b)*/(a +b)%

EXAMPLES XVL
2. A straight line through the point of contact.
B. A circle. It meets the parabola again in the points (a, ~2a) and (9a, —6a) on
the line z +2y +3a=0
8. Circles 2? +y?=+4(z cos  +y sin ). Chords of contact % cos & +y sin ¢=+1.

9. A>1, hyperbola, A= —1, parabola,
A=1, two parallel imag. lines, ' -2< A< -1, hyperbola,
0< A<, virtual conie, ’ A= —2, two real lines,
=0, two imag. lines, A< —2, hyperbola,

- 1< <0, ellipse,
9.A.0,
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10. (i) A< -8, hyperbola, (i) (cont.) A=0, two real lines,
A= -8, two real lines, 1>2>0, hyperbola,
=3>A> -8, hyperbola, A =1, parabola,
A= -3, two real lines, A>1, ellipse,
0>2> -3, hyperbola, A->w , parabola.
(id) A<0, hyperbola, . (ii) (cont.) 1<A<17, virtual conie,
A=0, two real lines, . A=17, two imag. lines,
0<A<]1, hyperbola, A>17, ellipse,
=1, two parallel imag. lines, " A+, parabola.
(iii) A< -2, hyperbola, (iii) (cont.) A= -, two imag. lines,
= -2, parabola, -5 <A<0, ellipse,
=-2<A< — 4, ellipse, - A=0, parabola,
A= -4, two imag. lines, A>0, hyperbola,
~$ <A< — %, virtual conic, A—>, two real lines,

EXAMPLES XVIL
1. () 2y’+llz’+5yz 82z — 3xy =0, (ii) 23 — 42y® — 22® - 25yz + 482z + 112y =0,
(iif) 2542 + 45y* + 882% — 153yz — 2892 + 1702y =0,
8. (i) 7I* — 4m? - n® +4mn + 20l +8Im =0, (ii) I* + 8m? +n? — dmn — 26nl +8lm =0,
(iii) 9I* — Tm? — 20n2 — 68mn — 34Im =0.
8. (i) z= 288+ 43, (i) 2= 32 -4t+1, (i) =z=602-2¢-1,
y=-88+2t-3, y=-8+2t+1, y= ~-4t42,
z= -3t+1. z= 4t -6. z2=-2042t-1.
4. (i) 3, &5 (i) 0, §; (iii) $4:@Gv)1,2. 5 ()1,3,1; (i) 0, -5, 3; (iii) -2, 1, |
8. (i) Hyperbola; -y =0, z+3y=2; (ii) Hyperbola; 2y=1, 4z -2y +1=0;
(iii) Ellipse ; (iv) Hyperbola, 2 -y +1=0, z=1.
7. (i) Hyperbola ; 2* +y* +2* - 3yz +Tzz — 3zy =0.
(ii) Hyperbola ; 2=0, 11z -6y —10z=0. (iii) Parabola.
10. (i) 0, —¢; (ii) 43, 3%; (i) 1, -2 and -3, 1.
12. Directrix of parabola 4a(z —b) +¢*=0. 18. B-m? a2 +4nl=0.
14, a, b, c. 18. az +cy +b*=0, 4b’c'(a’+c')"*.

EXAMPLES XVIII.
8. Draw PF’ making L F'PT =FPH, and QF’ making L F'QT = FQK.
10. A hyperbola with asymptotes parallel to 4D and the line 4X, where, if X and ¥
are oorresponding points on BC and AD, AX || BY.

Chapter XX. §9.
8. Let the polar of O cut the conic in Z, J. The locus of P is a conic touching the
given conic at I and J.
4. Let I cut the conic in 7, J. The envelope of « is a conic touching the given conic
at T and J.
. EXAMPLES XX.
1. One of the semi-axes =1.
8. @5, =0, i.e. locus Sy is apolar to envelope X,; 3A,/0,,=0,,/0,, =0,,/3A,;
therefore 8, and 8, osculate.
29, If S=y* - 4azx, 8’ =* - 4byz, then F = 2ab2® + 2y, ®=n*+8ablm. F and & coin-
cide.
89. Use Graves’ Theorem. 44, d*=r232rr".



INDEX
~ {The numbers refer to the pages.)

Abscissa, 2. ,

Absolute, the, 185, 290.

Absolute invariants, 271, 280.

Absolute points and lines, 185.

— position, 1.

Altitudes of triangle, conourrent, 17.

— of triangle of reference, 159.

Angle between conjugate diameters, 42.

— — two straight lines (rect. axes), 12,
(obligue axes), 111 ; line-pair of the
quadratic equation, 20.

—, logarithmic expression for, 186.

— of intersection of two circles, 32.

Apolar conics, 255, 275 ; mutually, 277.

— pairs of points or lines, 22; on a
conio, 247.

— points or lines w.r.t. a conic, 187 (see
also Conjugate points and lines).

— tetrads on a conic, 261-262.

- triads on a conio, 253.

Apolarity, 187, 275.

Apollonius, Treatise on conics, 53.

Area of ellipse, 44, 128.

— of hyperbolic sector, 65.

— of parabolio segment or sector, 77.

—of triangle (rect. axes) 4, (oblique
axes) 101.

< — ingoribed in ellipse, 45.

—, sign of, 4. 6 ol :

Areal coordinates, 156; plotting points,
164; as ocoordinates in three Ki.omen-
sions, 164.

Asymptotes, defined, 60; tangents at
infinity, 61, 113 ; of circle or ellipse
imaginary, 61; general cartesian

uation, 125; directions of, 114;
relation’ to line at infinity, 181;
from freedom-equations of conic,
218, 221.

—, equation of hyperbola referred to,
65, 103, 171.

Auxiliary circle, of ellipse, 38; of
hyperbola, 63; as pedal locus, 49 ;
degenerate form for parabola, 74.

— -, minor, 39.

Axes, ocoordinate, reotangular, 1;
oblique, 101; limiting ocase of
trilinears, 163.

Axes, of ellipse, 37 ; hyperbola, 60 ; relation
to asymptotes, 113.

—, equations of, for general conic, 115;
parabola, 141.

—, homothetic, 100.

—, lengths of, 116, 127.

—, major and minor, 37.

—, transverse and conjugate, 60.

—, equation of conic referred to, 126.

Axis of persépzctive, 2617.

—, radical, 84.

Barycentric coordinates, 157.
Bisectors of angles of line-pair, 17, 23.
— — of triangle, 159.

Boscovich, R. J., 40.

Brianchon’s theorem, 236.

Brocard points, 166, 191.

— circle, 194.

Bundle of circles, 90.

Canonical equation of cirole, 32 ; coaxai
circles, 86 ; ellipse, 36 ; four straight
lines, 160; hyperbola, 60; para-
bola, 70 ; straight line, 11 ; tetrad,
258 ; triad, 251 ; two conics, 173, 276.

Carnot’s theorem, 169.

Cartesian coordinates, 2 ; general, 101 ;
as special case of proj. coord., 156,
163.

Casey’s theorem on tangent oircles, 95.

Cayley, on Pascal’s theorem, 235.

Centre of circle, 31 ; ellipse, 37 ; hyper-
bola, 60 ; g&mbol&, 73.

— of conio, relation to line at infinity,
113; oartesian coord., 114, 123;
homogenedus coord., 180 ; from
parametrio equations of conic, 221.

—, equation of conic referred to, 126.

—of ocurvature, ellipse, 51; para-
bola, 77.

— of gravity, 6, 157.

— of inversion, 91.

— of involution, 240.

— of perspective, 267.

—, homothetic, 100, 204.

Centre-locus of pencil of conics, 211;
range of conics, 213.

308
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Centroid, 6; of triangle of reference,
15

Chasles, Michel, 68, 293.

Chord of contact, 27.

— of curvature, 56.

Chords, common, of circle and ellipse,
50 ; of two conics, 281 ; of conic and
orthoptic circle, 194.

—, parallel, 43 ; locus of mid-points, 40,
62, 72 ; normals at ends of, 76.

— subtending right angle at point on
conic, 104.

—, supplemental, 42.

— joining two points on conic, 43, 75,
220 ; polar coord., 54.

Circle, 25-35; in homogeneous coord.,
181-184.

—, extended meaning, 291.

— of ourvature, 5].

—, inscribed and: escribed, 183, 184.

—, cosine, 193.

~—, Tucker, 193.

—, Lemoine, 193.

—, nine-points, 184.

— of inversion, 91.

—, auxiliary, 38.

—, osculating, 51.

Circular points at infinity, 181-194, 113 ;
as segenerate conic, 185; line-
equation of, 138, 182.

Circumcentre of triangle, 159.

Circumecircle, 181.

Circumscribed conie, 170.

— parallelogram, 43, 64.

Class of a curve, 136.

Classification of conics, w.r.t. eccen-
tricity, 127 ; w.r.t. points at infinity,
114. X

— of pencils of circles, 86.

Coaxal circles, 85-88.

Collinearity, 5, 148.

Common chords of circle and ellipse,

— — of two conics, 281.

— elements of two involutions, 241.

-— tangents of two conics, 283 ; circles,
94

Comple.te quadrangle, coordinates of
vertices, 150; inscribed in oonic,

172.
Complete quadrilateral, equations of
sides, 150; circumscribed about

oconic, 173 ; mid-points of diagonals
collinear, 167, 213.

Complex numbers, applied to orthogonal
conics, 68, 196, 197; to inversion,
95-97 ; to coaxal circles, 100.

Composition of transformations, 107.

Concurrency, 16, 148, 164.

Cone, 36, 53.

Confocal conics, 189, 195-203.

Conformal transformation, 93.

Congruent transformation, 265.

INDEX

Conic, defined, 36; history of, 53;
analytical definition, 113; referred
to oblique axes, 102; in homo-
geneous coord., 168 ; determined by
five points, 122 ; generated by homo-
graphic pencils, 233.

Conjugate axis of hyperbola, 60.

— diameters, 40, 62, 103; relation to
asymptotes, 124.

— hyperbolas, 63 ; ellipses, 127.

— imaginary lines and points, 20.

— points and lines w.r.t. conic, 28, 37,
122, 137, 187.

— systems of coaxal circles, 88.

— triangles, 29 ; in perspective, 173.

Conjugates, harmonic, 22.

— isogonal and isotomic, 159.

Constraint equation, 10.

Contact of conics, 174, 281, 285-286.

— of circle with ellipse, 51, -

Contravariants, 284, .

Coordinates, 1-8; areal, 156; bary-
centric, 157; cartesian, 2, 10i;
curvilinear, 3, 202; elliptie, 202;
homogeneous, 145-167;  homo-

geneous cartesian, 15, 156, 163 ; line
or tangential, 130-135, 147, 160;
metrical, 157; oblique, 2, 101-105;
parabolie, 203 ; polar, 2 ; projective,
145 ; rectangular, 2 ; rectilinear, 3 ;
superabundant, 167 ; trilinear, 157.
— network, 1. )
Correspondence, 223, 227-246.

— between two conics, 243.
Corresponding points on ellipse and
auxiliary circle, 38, 39. L

— — on conics of same species, 200.

—— on homothetic figures, 203.

Cosine circle of triangle, 193.

Covariant, 249, 284.

—, cubic, of triad, 264; of two conics,
289.

—, sextio, of tetrad, 258.

Cross-ratio, 22, 152-154.

—in a (1, 1) correspondence, 224, 229.

— in a homography, 230, 237. :

—in an involution, 241.

— of four points on a conic, 55, 231-233,
283. '

— of base-points of a pencil of conios,
231-233.

— unaltered by projection, 266.

Cubic covariant of a triad, 254.

— — of two conics, 289.

Cubic equation, 250.

—, reducing, 256.

Curvature, 51.

Curvilinear coordinates, 3, 202.

Cyclic projectivity, 253.

— quadrangle, 24a.

Dandelin’s theorem, 36a.
Degenerate conics, 175-176.



INDEX

Degree of a curve, 135.

Desargues’ theorem on involutions, 240 ;
for perspective triangles, 167.

— conception of parallel lines, 145.

Descartes, René, 2.

Determinants, 123.

Diameter of conic, 113 ; general equation,
1%4; conjugate to line at infinity,
181.

—of ellipse, 37; hyperbola, 60, 62;
arabola, 72. (See also Conjugate
iameters.) .

Direction, 14.

Direc(.zor circle, 40, 49. (See also Orthoptic

cirele.)

Directrix, 368, 47, 66, 140, 194.

- of parabola, 73, 125.

Discriminant of cubic, 253.

— of quartic, 257.

— of quadratic equation in z, g, 19.

Distance between two points (cartesians
and polars), 3; (oblique coord.),
101 ; (areals), 193.

- of point from line, (cartesians), 13;
(homogeneous coord.), 162.

Double contact, circle and ellipse, 51 ;
two conics, 174 ; conditions for, 285.

Double points of homography, 237.

— — of involution, 239, 248.

Duality, principle of, 148.

* Duplication of the cube, 53.
Dyad of points on a conic, 247.

Eccentric angle, 41.

Eccentricity, 47, 66, 73 ; two values, 127 ;
for similar conics, 206.

Elli%se, 36-59 ; etymology, 54.

—, Fagnano’s, 128.

—, Steiner’s, 59.

Elliptio compasses, 38.

— coordinates, 202.

— involution, 239.

Envelopes, 131.

— of normals, 52.

Equation of a locus, 9.

—, constraint, 10.

—, freedom, 10.

—, line, 134.

—, parametrie, 10.

—, pedal, 52.

—, point, 134.

—, tangential, 30.
(See also Canonical.)

Equianbarmonic tetrad or range, 153;
condition for, 257; intersection of
two oonics, 233, 278, 282.

Equiconjugate diameters, 42.

Equilateral hyperbola, 61.

Escribed circles of triangle, 184.

Eudoxus, 53.

Ealer line of triangle, 165, 191.

Evolute, 52, 76.

Excentres of triangle, 169.

301

Fagnano’s ellipse, 59, 98, 128.

F-conic, 276. (See Harmonic conic.)

Fermat points, see Isogonic points.

Foci, 46, 66, 73 ; history of, 54 ; optical
property, 54, 74 ; relation to circular
points, 138, 188; coordinates of,
119, 139-142; from line-equation,
140 ; from freedom-equations, 221;
Dandelin’s construction, 36A.

— of conic inscribed in triangle, 189, 236,

-, imaginary, 48.

Four-line system of conics, 212.

Four-point contact, 175, 286.

Four-point system of conics, 209.

Freedom-equations, 216-226;
minateness of, 222.

— of circle, 41 ; ellipse, 41, 216 ; hyper-
bola, 63, 65, 66, 216 ; parabola, 75,
218 ; straight line, 10, 11, 148.

Frégier-point, 105 ; locus of, 208.

Gagkin, T., 40.
Gradient, 9.

— of tangent, 26.
Graves’ theorem, 199.

indeter-

Harmonically inscribed or circumscribed
conics, 275.

Harmonic conic, 276, 284.

— — of ellipse and auxiliary circle, 57.

— — of circle and two diameters, 69.

Harmonio conjugates, 22.

-— perspective, 268.

— properties of pencil of conics, 210;
range, 213.

— property of pole and polar, 27.

— ranges and pencils, 22, 146, 153.

—tetrad, 257; intersection of two
conics, 232, 282.

— triangle, 149.

Hessian of a tetrad, 258-260.

— of a triad, 251.

— axis of a triad, 262.

— point of triangle, see Isodynamio
points.

Homogeneous cartesian coordinates, 15,
156.

— coordinates in general, 145-167.

— line-coordinates, 135, 147, 160.

— quadratic equation in z, y, 19.

Homographic pencils, conic generated by,
233.

— ranges, 230 ; on one line, 237.
Homography, 230, 237; on a conic,
243. ‘

Homothetic axes, 100.

— centre, 100, 204.

— conics, 181, 204-206.

Hypel;bola, 364, 60-69, 103 ; etymology,
54.

—, rectangular or equilateral, 81, 65,
Hyperbolic functions, 63.
— involution, 239.
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Imaginary foci, 48.
— lines and points, 20.
In-centre of triangle, 159.

Infinity, line at, 179-194; equation
(oartesians), 16, 156; (areals and

;rélinears), 156, 157; projection,
6.

—, points at, 6, 14; on conioc, 112, 290 ;
line-equation of, 144.

Initial line, 2.

Inscribed circle, 183.

— conio, 171.

— parabola, 190, 236.

—and circumscribed polygons of two
conics, 56, 236, 279, 293, 294.

— and circumscribed confocal conics of a
triangle, 207.

—, harmonically, conics, 275.

Intercepts, 10.

Intersection of circle and ellipse, 50.

— of straight line and conio, 168.

— of two lines, 14, 148.

— of two conics, 281, 283.

—, lines through, 16, 21.

Invariants, 249, 265-204.

—, absolute, 271, 280.

—, metrical, 109, 270.

—, projective, 271-274.

— of cubic, 253.

— of quartic, 256-257.

-— of two circles, under inversion, 94.

Inverse transformation, 105.

Inversion, 91-97.

Involution, 238-244.

— on a conic, 243, 248.

Isodynamio points, 166, 191.

Tsogonal conjugates, 159.

— — of straight line, 177.

Isogonic points, 166, 191.

Isoptic loous, 56 ; of parabola, 178.

Isotomic conjugates, 159.

Isotropic lines, see Absolute lines.

Ivory’s theorem, 202.

Jacobian of three circles, 89, 100.

— of three conics, 287-288.

— of two dyads, 248 ; triads, etc., 263.

*Joachimsthal’s section-formulae, 5, 101,
158.

— ratio-equation, 27, 30, 71, 122, 170.

Kelvin, 93.
Kepler, J., 54.
Kirkman, T. P., 235.

La Hire, P. de, 40.

Lamé, G., 203.

Latus rectum, 47, 53.
Lemoine point, 159, 165.

— circle, 193.

Limiting points, 87.

Linear systems of circles, 90.
-~ — of conijes, 209, 287.

INDEX

Linear systems of dgads, 248.
— — of tetrads, 260.

— — of triads, 251, 255.

— transformation, 223, 249, 265.
Line-coordinates, 130-135, 147, 160.
Line-equation, see Tangential.
Lineo-linear relation, 223-224, 228-229.
Line-pair, 18 ; condition for, 19.
Liouville, J., 93.

Locus, equation of, 9.

Maclaurin, C., 234.

Major axis, 37.

Maximum inseribed ellipse, 59, 181, 191,
205.

— — triangle, 46.

Mean points, 6.

— proportionals, 53.

Mechanical description of ellipse, 38, 47 ;

" hyperbola, 67, 68 ; parabola, 75.

Medians of triangle, 159.

— of quadrilateral, 8.

Menaechmus, 53.

Menelaus’ theorem, 169.

Metrical coordinates, 157.

— geometry, 145, 155, 179.

— invariants of conic, 270.

Minimum circumscribed ellipse, 59, 180,
181, 19%, 240:

— - triangle, 46.

Minor axis, 37.

— auxiliary circle, 39.

Modulus of transformation, 272.

Monge, G., 40.

Net of circles, 90 ; conics, 287.

Network, coordinate, 1.

Nine-points cirole, 184 ;  centre, 159, 165.
— conice, 211.

Normal to circle, 26, 52.

— to ellipse, 49.

— to parabola, 76.

Normal forms, see Canonical.

Oblique axes, 101-105.

One-to-one correspondence,
2217.

Ordinate, 2.

Origin, 1.

Orthocentre, 159, 165.

Orthocentric quadrangle, 68, 187, 212.

Orthooycle, 40. .

Orthogonal circles, 87-90 ; condition for
(rect. coord.), 32, (oblique coord.)
110, (trilinears) 194; projective
invariant, 293.

- conics, 129, 218, 277 ; confocal, 196,
197. .

— transformation, 265.

Orthoptic locus (circle), 39, 62, 125;
directrix of parabola, 75; of in-
scribed conic, 194 ; projective pro-
perties, 290-291.

152, 223,
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Orthotomic cirole of three circles, 88.
— — of a net of circles, 90.
Osculating circle, 51.

— contact, 51, 281.

Oval chuck, 38.

Pappus, 54.
Parabola, 36a, 70-83; oblique coord.,
104 ; etymology, 53; line at in-

finity a tmiﬁ::xt, 73, 112; conio-
envelope apolar to absolute, 290.

—, condition for (cartesians) 114, (homo-
geneous coord.) 180, (freedom equa-
tions) 218.

Parabola, semi-cubical, 77.

Parallelism (rect. coord.) 12, (oblique
coord.) 111, (homogeneous coord.)
158 ; of line-pair, 21.

Parameter, 10, 216.

—, cross-ratio of, 152, 224, 229-231.

— of conic (latus rectum), 53.

Parametric equations, see Freedom-

. equations.

P s theorem, 236.

Pedal equation, 52.

le, 166.

Pencil of circles, 85.

— of coniocs, 209-212, 174.

— of lines, 16, 162.

—, harmonic, 22.

Periodic homography, 238.

Perpendioularity (rect. ocoord.) 12,
(oblique) 111, (trilinears), 186, 188;
of line-pair, 20, 21; in relation to
circular points, 185.

Perspeotive, 266-268.

— ranges and pencils, 152, 227.

— triangles, 167. .

Picquet, H., 40.

Plato, 53.

Point, Frégier, 105.

—, Lemoine or symmedian, 159.

—, mean, 6.

— at infinity, see Infinity, and Circular
points.

Point-circle, 31.

Point-pair, condition for, 137.

Polar :;.r.t. system of points on & line,
249.

— axis of a triad, 250.

— oirele of triangle, 29, 192.

— oonio w.r.t. triangle, 151.

— coordinates, 2.

Pole of coordinate system, 2.

— of a line, 27, 72, 136.

Pole and polar w.r.t. circle, 26-28;
ellipse, 37; parabola, 71 ; neral
oonic, 123, 170 ; oblique coordinates,
102 ; from freedom-equations, 220.

— — w.r.t. triangle, 151, 250. .

Polygons inscribed and circumscribed to
two oonics, 56, 203, 294. (See also
Triangle.) .
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Poncelet, 145.

Position-ratio, 5.

Power w.r.t. circle, 30, 32, 183-184, 192.

Principal value of angle, 3.

Projection, 152, 266-270.

— of conic into circle, 269.

—, stereographic, 93.

Projective geometry, 145, 179.

— coordinates, 140.

— invariants, 271-274.

Ptolemy, on stereographic projection,
93

—’s théorem, 8, 95.

Quadrangle, coordinates of vertices, 150 ;
inscribed in two conics, 173. .

—, cyclic, 24a.

—, orthocentric, 68, 187, 212.

Quadrilateral, equations of sides, 150 ;
oircumscribed about conic, 173 ; col-
linearity of mid-points of diagonals,
167, 213.

Quartic equation, 265.

Radical axis, 84.

— centre, 84.

Radius vector, 2.

— of curvature, 51.

— of inversion, 91.

Range, harmonioc, 22.

— of conics, 212.

Reciprocal of conis, 278, 286.

— radii, transformation, 93.
Rectangle-theorem for circle, 29, 36.
— — for ellipse, 43.

Rectangular hyperbola, 61 ; eccentricity,

127; equation referred to asym-
Ftobes, 65; ocondition for, 186;
ocus apolar to absolute, 188, 290.

Reotilinear coordinates, 3.

Reducing cubic, 256.

Reflexion, 97.

Regions, 13, 29, 37.
Relative position, 1.

Salmon, G., 235.
Section-formulae, 5, 7, 101, 158.

Self-conjugate triangle, 29 ; of two conies,

173 ; oconic referred to, 172; of a
pencil of conies, 210.
Semi-oubical parabola, 77.
Sextic covariant of tetrad, 258, 260.
Sign attached to coordinates, 1, 157.
— of angle, 12.

" — of area, 4.

— of distance, 13.

— of position-ratio, 5.

Similar conics, 181, 204-206.

— ranges, 244.

Statical applications, 6, 1567, 162.
Steiner, J., 235. :

Steiner ellipse, 59, 178, 180, 191.
Stereographic projection, 93.
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Straight line, equation, 9-11, 102, 145.

— —, gradient of, 9.

Subnormal of parabola, 74.

Superabundant coordinates, 157.

Supplemental chords, 42.

Symmedian or Lemoine point, 159.

Systems of circles, 84-91.

—of conics, see Confocals,
Ranges.

— of points on a conie, 247-264.

Pencils,

Tact-invariant, 281.

Tangent to circle, 25; ellipse, 37, 43;
hyperbola, 61, 64 ; parabola, 70, 75 ;

eneral conic, 123, 170; from
eedom-equations, 75, 220.

-— from a given point, 30, 39, 61, 103, 125,
170 ; lengths, 29, 44; to confocal
conics, 207.

— line-coordinates of, 220.

—, point of contact of, 137.

Tangential coordinates, see Line-coor-
dinates.

Tangential equations,
parametric, 219.

— — of circle, 30, 134, 184 ; ellipse, 39 ;
hyperbola, 61 ; parabola, 71.

— properties of ellipse, 49; parabola,
74 ; confocal conics, 198-200.

Taylor, C., 40.

Tetrad of points on conie, 255.

Thomson, W. (Lord Kelvin), 93.

134-136, 169;

INDEX

Tracing of conics, 112-121.

Trammel, 38.

Transformation, conformal, 93.

—, congruent or orthogonal, 265.

— of coordinates, 105-109, 154, 265.

—, imaginary, 270. ’

—, inverse, 105.

— by inversion or reciprocal radii, 93.

—, linear, 223, 249, 265.

—, projective, 266.

— of ejuation of second degree, 108.

—, composition of, 107.

Transverse axis, 60.

Triad of points on conic, 260.

Triangle, area, 4, 101; inscribed in
ellipse, 45.

—, important points and lines connected
with, 158.

— inscribed and circumscribed to two
conics, 236, 279, 293, 294,

—, maximum inscribed and minimum
circumscribed, 46.

— of reference, 146.

Triangular paper, 164.

Trilinear coordinates, 157.

Tucker circles, 193.

Unit-point, 146.
Vectorial angle, 2.

Vertices of copios, 37.
Virtual circle, 31; conic, 196.
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