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IV

Introduction

These notes are based entirely on lectures given by

Professor Artin during the spring semester-1955 at New

York University. This part of the notes does not depend

in any way on part I , but does assume a certain amount of

familiarity with the basic concepts of modern algebra

which can be found, for example, in Van der Waerden's

Modern Algebra , Certain algebraic prerequisites will be

presented in the introductory chapter of these notes while

others will be presented in the later sections to which

they are most relevant*

Selected Topics in Geometry (out of ^rint; will not
be reprinted),
A revised edition will be published in the fall of
1956 by Inter science Publishers, Inc. . New York,
under the title "Geometric Algebra."





1.

Chapter I

Basic Concepts of Algebraic Geometry

SI. Noetherian Rings ; We begin our discussion with some

algebraic prerequisites which will play an important role

in our treatment of algebraic geometry. vVe will not iso-

late all the algebraic material required in this intro-

ductory chapter, but we will introduce most of it, as we

progress, in the sections to which it most appropriately

belongs. We now proceed towards the main aim of this

section, namely, to prove the Hilbert Basis Theorem.

We assume throughout these notes, unless specific

mention is made to the contrary, that all the rin;*e ,:
i ic'^

we will talk about are commutative and contain an Identity

element.

Definition 1.1 : A ring /f is called Noetherian if it

satisfies the ascending chain condition for ideals.

That is, if a chain of ideals ^p/^, ... is given

in tf such that

. .

.

then there exists an integer i such that

Ac\ '
M

i+i •••
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We observe that the ascending chain condition Is

equivalent to the maximal condition*

Maximal condition ; Given any non-empty set S of ideals

in Af , there exists an ideal /ft G. S which is maxi nal,

^©•#>TL * s contained in no other ideal of S.

The fact that the maximal condition implies the

ascending chain condition is immediate. Conversely, if

the ascending chain condition is satisfied but there

exists a set S, of ideal3 not containing a maximal one,

then we are immediately led to an ascending chain of

ideals for which all the inclusions are proper which is

a contradiction.

Finally, we wish to show that the ascending caain

condition is equivalent to the basis condition.

Basis Condition : Every ideal in^has a finite basis, i.e.,

for any ideal jOc€L X/t there exists a finite number of

elements a,, i = l,..,,v, in the ideal /i'C such that

Ml = *^f + ... + \Xf

.

V/e show first that the ascending chain condition

implies the basis condition. Given any ideal MC <£. Jf ,

select a
1 £^ , and forn a,^T, i.e., the ideal rrenerated

by a,. If a,/^ 4<#T , take a
2 GL/rL % but a? 4 ai^r * and

form 6.-4/* + *~/f'. If this does not equal Mt , select

a^C Ml 9 but a^ '£. *^/f + a
2 Jf etc. V/e are thus led

to an ascending chain of ideals
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Hence for some integer n we must have

a
1
^t+ a

2
^+ ... + a

n^ = ^ •

Now, conversely, suppose the basi^ condition is

true in*0-"# Let

>&f iCA1^<~^2 - • • •

be an ascending chain of ideals. Let /Jl =(J<4/Z j. Then y(/(

is an ideal, for if a,b£/#T, then say ae.^7, and b€/rr,.

Hencea.bCA.^nj). "° » +be '*r «»x<i, J)
Citft

*
Uhlle '

if a<E.^TL, then say a^^.. Then for any cC^r acC/TT^,

so ac£.,£r£ # Now, by assumption,^ is finitely generated.

Hence,

At = a^r + ... + a
y
at .

Since a^C. >?£ , say a^e^t^ • Similarly, a
2€^r i »•••>

a
v C>ar4 • Hence, it follows that any a.,i = l,...,v,

v

belongs to jOI » provided that j is larger than any i •

Consequently,

*oi c. Jn. C-az £ . • • c /jx. ,

~~ *~ j+i~
so ^»r j

= >0t
j+1

= . .

.

which establishes the contention.

Now let us formyr[X], the ring of polynomiala in
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X with coefficients in^r-. Lettf* be an ideal of Jr [X] •

For each integer n > 0, we will construct an associated

ideal /ft as follows;n

XI n
a

j a a£/T, a coefficient of Xn in some I

•- t(X)Ct/ll degf < n j

That is, we take all f (X)€t/l of *h* form

f(X) = a
Q

+ a
x
X + ... + a

n
Xn ,

and the set of all a_ constitutes <4l .
n n

V.'e observe that:

1) ,0l n is an ideal in JT.

The first statement is clear, and the second follows from

the fact that ^r contains an identity element and, hence,

if an £>#? n » then a appears as coefficient of X in

Xf(X)€^/Z, and » consequently, a
n £/ft n+1 .

Lemma 1.1 ; Let £#, and uT be two ideals of xr[X] . If

^K C Jy . then Ji _ cih ~ for all n where sji „ and lt> * are
v '' n <- n n n

the associated ideals of OC and %* • Furthermore, if,

in addition, *#. = )? for all n, then Ot = J? .
n n

Proof ; The first part of the lemma is obvious; we

proceed to establish the second part. Let

f(X) s b
Q

+ ... + bnX
n € o&.
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We wlah to show that f (X)€tfc • The proof will go by

induction. If n = 0, then

f(X)€i =^ Cta.

We assume the statement true for polynomials of degree

n *» 1, and show its validity for those of degree n.

Since f(X)£S , we have

n^ vn n

Therefore, there exists a polynomial g(X)£t!# such that

g(X) = a + a
x
X + ... •» bnX

n
.

But, since IJcC o& , we have g(X)€<J§ • Thus

f(X) - sU)€$ , and deg(f(X) - g(X)) < n-1, so, by

induction, f(X) - g(X)C$£ # and, since g(X)€lftl , we

have f(X)££fc which finishes the lemma.

We are now in a position to state and prove the

Important theorem due to Kilbert.

Theorem 1.1 (Hllbert Basis Theorem) ; IfJT is a Woetherian

ring, then^fX] is also a Koetherian ring.

Proof i We consider the ascending chain of ideals

in^r[X). We form the associated ideals /Jt .. to the

Ideals ut ., and we obtain the following "pattern" of

inclusions:
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•

•
• •

»

U
, c C^

U 31 u 32

Ml C- At
U 21 U 22

^r . c JTl c srL
10 11 12

• • •

• • •

• • •

Considering the diagonal chain -4JZ
-Q tMl 2\ 9 <&t ^«i • • •$

we get an ascending chain the ideals of which must all

become equal after a finite number of proper inclusions.

Thus, diagrammatically, we have the following situation:

All the ideals situated in the shaded region are equal;

there are only a finite number of vertically increasing

chains of ideals to the left of this region tne ideals

of which must become equal after a finite number of

inclusions. This is indicated in the diagram by the
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arrow heads at various heights. Thus we are sure that for

every vertically increasing chain, after a finite number

of inclusions, all ideals in the chain become equal. The

line^ indicates that above it the vertical inclusions

become equalities. Now applying lemma 1.1, we ,?et that

the corresponding ideals in jW\X\ are equal, and, hence

XT[X] is Noetherian.

As an immediate corollary, we have

Corollary 1,1 1 If X^is a Noetherian ring, then

/rTX,, •••-,-X ] is a Noetherian ring.

If jf= k is a field, then k contains only the

trivial ideal, (0), and the ideal k = (1). Thus we get:

Corollary 1.2 : If k is a field, then k[Xlt ...,Xn ] is

a Noetherian ring.

S2. Introductory concepts of olgebraic geometry : We

proceed, at first, in this section in an heuristic manner.

We want to consider the common solutions of the following

polynomial equations:

f
1
(x

1
,...,xn ) =

f2(X,,...,X ) =

(2.1)
d L n

f '(X.....X) - ° •**"!»••• *"n
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If the coefficients of these polynomials belong to the

complex number field, we will refer to this as the classi-

cal case* In general, we permit the coefficients to

belong to an arbitrary commutative field: denoted by k.

The next question which presents itself is: where

are we to take the solutions from? In order to obtain

any degree of generality, it is evident that we should^

t

restrict the solutions to lie in k; for example, if

2 2
k = R, the field of rational numbers, then X, + Xt 1 =

has no solution in R. It is, therefore, apparent that to

obtain any amount of generality we must permit ourselves

to take solutions the components of which lie in an

extension field of k and which is algebraically closed.

We could stop here, however, this is ^till not general

enough for our purposes, for throughout these notes we

will want to consider "sufficiently eeneral 1
' points

belonging to the set of common zeros of a set of poly-

nomial equations. Thus it will be necessary to take an

extension field Si of k which is not only algebraically

closed, but is such that the degree of transcendency of

SI over k is infinite* The two points of view, namely,

whether we take the components of the solutions from the

algebraic closure of k, or fromj"! , as defined above,

will be resolved when we consider, later in these notes,

the Hilbert Nullstellensatz. Summarizing, we will take
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the components of the solutions from the universal domain

Si where -H- is an extension field of k such that:

1) The degree of transcendency of ft/k is infinite,

and

2) ft is algebraically closed.

If a solution of (2,1) lies in k itself, we will

call it a rational solution , and if a solution of (2,1)

is algebraic over k, we will call it an algebraic solution

We shall now see that any "reasonable" extension

field of k can be "accommodated" in J~L • To be precise,

we provei

Theorem 2.1 : Let kCE, and let E k(a,,...,a ), Then

there exists an isomorphism <T:L -^»/l which is identity

on k.

Proof: Put k, = k(a, ,...,a ,), and let k = k. Then———— r-i l' ' r-i o

E = k = ^ t(cl ). The proof proceeds by induction. For

r = 0, the statement to be proved is trivial. Suooose

the theorem is true for s < r. Then there exists an

isomorphism

<Tr-l ! k
r-l
—

*

kr-l
C -°-

which is identity on k. There are two cases:

1) a^ is transcendental over k ,. Then select in

-H- an element 3 which is transcendental over k » • This
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can be done since/1 has Infinite degree of transcendency

over k while k , has only a finite degree of transcen-

dency over k. Now extend (f , to E by mapping a onto

p • As is well-known, this extension is an isomorphism

which leaves k fixed.

2) a is algebraic over k , • Let
r r—JL

that is, P is the irreducible equation over k , satis-
r-JL

fied by a . Let P be its imaffe in k . • Select
r Vm±

P €_n. as root of P . This can be done since JT is

algebraically closed. Now we extend the isomorphism

Cf , to an isoraorohism of E into/X which leaves k fixed
r-l

by mapping a onto B • That this is an isomorphism is a

well-known result of modern algebra, hence, the theorem

is true for a - r which concludes the proof.

Now let us return to the original discussion which

started this section. We took polynomials f. f f« f « t .f £k[X]

where X = (X,,,..,X ), and agreed to take common solutions

(x) = (xlf .,.,x
n ) fromil n

where nn = ilX, ..x'jT • But,

we observe, that if (x) is a zero for f,,f
? , ,,,,f , then

(x) is also a zero for g^f-i + ... + &r
?
r

where the g. are

arbitrary polynomials of k[X], Thus (x) is a zero of the

ideal generated by £+ 9 £ 2 » •

•

•»^r » Thus instead of con-

sidering the original problem we consider the fol loving:
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given an ideal J£C k[X] where X = (X, , ...,X ) invest i-

gate the zeros (x) of4L where (x) = (x, , ... ,x )6Lj\
n

, and

where (x) is called a zero otjt if for every f (X)C^j ,

we have f (x) 0. This oroblem is actually equivalent

to our original problem since, by the Corollary 1.2, any

ideal/>£ of k[X] is finitely generated, so to find a zero

of £z. it suffices to find a zero of only a finite number of

elements ofv#*. .

De finition 2.1 ; Let><7£be an ideal of k[X]. The set of

zeros ofy^rcis called an algebraic set (we also say that

/JL defines an algebraic set) over k.

We observe that some authors refer to an algebraic

set as a variety, and then call what we will call a

variety an irreducible variety.

To designate that an ideal^t defines an algebraic

set, say S, we will writer/^

—

> S. We note that S can

be the empty setc&j this is true when/ft « k[X], since
n

then the identity element 1€>9T. Also, S = S\ when

4TL = (0), the zero ideal. It is also possible for

different ideals to define the same algebraic set.

We observe trivially:

LerTHia. 2.1 1 IttfL and h are ideals, then ^tC 7? —> Vr>W

where j0Z —*>V, and o—>W.

We now wish to show that the class of algebraic

sets is closed under union and intersection. To be

exact, we show:
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Theorem 2,2 t 1%CI end V are ideals, and If /fl —e>V, and

1? —>W, then Vt/W and V/l W are algebraic sets. Moreover,

At*}* -*V/>W, and both the ideals /JL*b an&JKnb define

Vt!W,

Proof ! The fact that^tfl+t? —*V/V is immediate. T
'e

proceed to the second statement. Let & 0-> S, and

/JZb-*R. Since /JinhcJfc
9
eji^Atnhah

$ we have,

by lemma 2.1, that SDV, and SdW. Consequently,

(2.1) SDVuW.

Now we show that any zero otJlb is in Vu V, Let (x)

be a zero ofjOlh , and suppose (x)^uV; we wish to show

that (x)€W, By assumption, (x) is not a ?ero of/ft •

Hence, there exists an f(X)C^£ such that f(x) + 0. Let

g(X) be any element of O ; then f (X)g(X)£./£ h . Therefore,

f(x)g(x) = which implies that g(x) = 0, i.e., (x)€W.

Finally we observe that /Zhcu/tf) hi whence, RDS.

Combining (2.1) with the statement following it, we have

Thus R s S « VuW, and theorem 2.2 has been established

in full.

83 • Varieties and generio points i

Definition 3«l i An algebraic set V is called a variety

if V is not a proper union of a finite number of alge-

braic sets.
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Using theorem 2.2, we can say, therefore, that an

algebraic set V is a variety if V is not a proper union

of two algebraic sets. That is, if V is a variety, and

V = WO U where W and U are algebraic sets, then either

U = V or W = V.

Now let S be any set in-OJ1 . To S, we associate an

ideal/H of k[X] as follows?

»z = jf(x)|f(x)£k[x]> f(s) » oj- .

That is,^l consists of those elements of k[X] which

vanish for all points of S. We observe:

1) ,01 is an ideal. The proof is trivial.

2) If S is an algebraic set defined by^T , then the

associated ideals of S is the largest defining ideal of 5.

To prove this, we observe that -^7 C-<0£ 9 for, since

Jt^ —>S, we have if t€Jr[Q9 then f(S) = 0; thus fCXX,

so4X<CJr?. Now letZl —>R. Since^Z^C^, we have
o o

SOR. But RpS, by the definition ofjfJZ. Consequently,

R = S; whence^? is the largest defining ideal of S.

If S is an algebraic set, and^E the associated

ideal, or, as we will also say, the determined ideal,

(hence the largest defining ideal of S), we denote this

association by: S —>>jOl.

If we restrict ourselves to the largest defining

ideals, then the converse of lemma 2.1 holds, namely:
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Lemma 3*1 : Let V, W be algebraic sets, and let j(JI ,h be

the largest defining ideals of V, W respectively. ' Then

ProofifgM =? f(v) =o^f(W) » O-Vfeb.

Combining lemmas 2.1 and 3*1 and the preceding

discussion, we know that there is a one-to-one lattice

inverting correspondence between algebraic sets and

certain ideals, namely, the largest defining ideals.

Also, we observe that since k[X] is Noetherian, it follows

that every deseeding chain of algebraic sets breaks off,

or, in other words, the minimal condition is satisfied

for algebraic sets.

We will now prove the important theorem:

Theorem 3.1 s Any non-empty algebraic set is the union of

a finite number of varieties.

Proof : We consider the set £^ of all algebraic sets

which do not satisfy the statement of the theorem; that

is, £ consists of those algebraic sets which are not a

finite union of varieties, We wish to show that J~ = j> .

the empty set. Assume that JT is not empty, and let V

be a minimal set of £^, and V 4 fi • Then, by definition,

V is not a variety. Hence,

(3.1) V = UUW

where U, W are algebraic sets, a. d U 4 v * and V 4 V.

It follows, by the choice of V, that U^C* and w£ll-
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Thus U is a finite union of varieties, and W is a finite

union of varieties. Consequently, V is a finite union of

varieties by (3,1); whence, VC £^ which is a contradiction,

so £ is empty.

Theorem 3,1 shows that every algebraic set V can be

written as:

(3.2) v - w
1
uw2

U...uw
r

where the W., i = l,#..,r, are varieties. It is not

true, however, that this representation is unique since,

for example, it is possible that W«CW, in which case W«

can be omitted from the representation (3.2) yielding

another representation. If, however, we assume that it

is never true that KjC W, for i 4 J» then we can show

that the representation (3»2) is unique. In order to

prove this, we first prove the following!

Lemma 3*2 : Let U be a variety and let V be an algebraic

set with the representation (3«2). If UCV, then there

exists an integer i such that UCW*.

Proof

j

U = UflV

(3.3)
- unv

1 u t(unw
2 )o ...u(UrtWp )].

But by theorem 2.2 we know that the class of algebraic

sets is closed under union and intersection. Thus (3.3)

yields:
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variety U 3 union of two algebraic seta

from which it follows, by repetition, that there exists

an integer i such that U * UOW^, or UCl^,

Now let us show the uniqueness of the representation

(3.2) under the added assumption that W. it v. for i 4 J»

ouopose we also have:

where U^, i = l,...,s, is a variety and U^U, for i f J.

Since UXV, we have by lemma 3*2 that there exists an

integer j such that UjCW*, and, similarly, there exists

an integer r such that V,',CU , so

u.cw.cu
i J r

whence, by assumption, i = r, and, therefore, U* = W..

Thus each U* occurs among the W,, and, similarly, each W,

occurs among the IK, so we have uniqueness.

We have seen already that there is a one-to-one

lattice inverting correspondence between algebraic sets

and their largest defining ideals. We now wish to show

that the varieties are in one-to-one correspondence with

the prime ideals of k[X]. We first show:

Theorem 3>2 : If V is a variety, then V —*x/ where/^ is

a prime ideal (i.e., those polynomials of k[X] which

vanish on all of V form a prime ideal).
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Proof t Suppose// is not a prime ideal. Then there exist

ft',be'^T* k[X] such that abC^ f and a^/a, and b4^» Set

Then /JIOjlq properly since a ^ ip 9 and

Jfl- —»UcV

where the inclusion is proper since>d£ is the largest

Ideal defining V. Similarly, we set

h m4& b^T .

Then O 3 Aft properly, and i>——*WcV where the inclusion

is proper. Thus UyWcV, Now

=^ 2
+ a^F + b^ + ab^,

so

but^O—>UuW, and thus UuV'OV. Hence, V U u W where

UcV, and WcV properly which contradicts the fact that V

is a variety, and, therefore, theorem 3«2 has been estab-

lished.

We now wish to show that any prime ideal XQ. determines

a variety which, in turn, determines the given ideal 4A •

Suppose, then, that^o. is a riven prime ideal defining an

algebraic set V. It lu,''mjf-m k[X], then the algebraic set
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is fa which Is a variety, and there is nothing to prove*

Hence, we mav assume that/0 4 4f • Let K denote the

canonical map of // = k[X] (where, as usual, X = (X,,...,X ))

onto 'q.

AT= k[X] -£-* 4S/*g .

Since ^//£ is a domain of integrity, we can form its

quotient field K. Let i denote the isomorphism of <4T/4p~

into F:

Now consider K|k, i.e., the restriction of the canonical

map to k. This gives a homomorphism of k, and is, there-

fore, either trivial or an isomorphism, but since^4^*l
>

we have 1 ^r^ft t and, consequently, 1 does not £0 into

under Y( • Hence )<|k is not trivial but is an isomorph-

ism into. Let k denote the ima-je of k under )<|k, so

1c r^ k. Finally, let X go into (x)(where (x) = (x,, . . • ,x )

)

by the canonical map. Then x///£ = E[x] , so K E(x).
6

Now, by the properties of fl , we can find an (x)£./l n

such that the obvious map r:Ic(x) ——*k(x) is an iso-

morphism (on k, r is the given isomorphism, and r takes

x into x). r is called the realization in S\ • Thus we

have the following sequence of maps:

k [X] J£»If£]J^ &{!)<-£» k(x).



19.

Hence we have a homomorphism: k[X] —*-k(x) whose kernel

Is 40 $ so (x)^.V, As we shall see presently, we have

obtained the existence of a generic point for a non-

empty variety.

Now consider the set consisting of the one point

(x). As we have just seem (x) —•*££-, Let V —> 4S7 .

Since (x)CV, we have^3^, but^/7 is the largest ideal

which can define V; hence /fl^AO. $ s<x/Jl=<C£* Recapitulat-

ing, we have shown that starting with a prime idealVJ which

defines an algebraic set V, then this V determines LJj.
(i,e.

V determines a largest defining ideal which Is AM. ). rtow

we will show that the algebraic set V is actually a

variety. Suppose

V = UuW

where U, W are algebraic sets such that-££ —-*U, and

k —>W. Then>0?i? >U u V s V, so Jfthc 4jL since^. is

the largest ideal defining V. Now if ^t^'ZX , then there

exists an a£^ such that a «£.££, but abcx^ for any b C &
;

consequently, oc. JJt , so either^7c^ , ovbC-<jf •

Hence, either UoV, or VOV. Therefore, either U =V or

W - V, so V is a variety.

Combining theorem 3-2 with the ^receding dis-

cussion gives

t

Theorem 3.3 : The varieties of «rt-
n are in one-to-one

correspondence with the prime ideals of k[X],
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We also mentioned in the discussion that we obtained

the existence of a generic point for a non-empty variety.

By this, we meen:

Definition 3»l s Let V be a non-empty variety determined

by the prime ideal^ . Let (x)£V, (x) is called a

generic point of V if the ideal determined by the set

consisting of just (x) is^(i.e., (x) —*AA —oV).

We observe, first of all, that if (x) is a generic

point of the variety V, then V is the smallest algebraic

set containing (x). For suppose (x)£ r where \\ is an

algebraic set, and^—>W. Then^t(x) = (i.e., (x) is

a zero of the IdealMt), but this implies that-*tfTC^ ,

so Wr>V.

Next, we note that any point is a generic point of

some variety. Let (x) be any point in/I 11
. Let 4M. be

the ideal defined by the set consisting of this one

point. Then^ %/f since 1 doesn't vanish for (x). Fur-

thermore,^ i s a prime ideal, for suppose f(X)g(X)d-^.

Then f(x)g(x) = 0. Suppose f(X)£<J., i.e., f(x) 4 0.

Then g(x) = 0, so g(X)<E^ . Thus/i? is a prime ideal

not equal ^T, but we know that then^tf defines a variety,

and (x) is a point of this variety. Moreover, (x)

satisfies the conditions of Definition 3.1, so it is a

{.reneric point of the variety V.

Before proceeding further with the general discussion,

we will consider a few examples in order to illustrate the
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concepts that we have introduced.

Vie take k - Q, the field of rational numbers, and

-*t = C, the complex numbers. We wish to determine the

p
varieties in Pi of which the following points are

generic points: (e,e ), (e,e), (/2,1), (0,0),

1) (e,e )• Since e and e are independent trans-

cendental elements the ideal 46. of 4f= Q[X,,Xp] determined

by (e,e ) is (0), the null ideal, which defines the

variety JTL . Thus (e,e ) is a generic point of ji , and

JTL is the smallest algebraic set containing (e,e ).

2) (e,e). Here, we must consider those f(X
1
,Xp)C>^

such that f(e,e) = 0. It is easy to see that the prime

ideal /^determined by (e,e) isM = (X
x

- X
2

) (the prin-

cipal ideal generated by X, - X«), and thus the variety

of which (e,e) is a generic point is | (x,,Xp) |x, = x? 1
•

3) (^2,1). Here, it is easy to see that

^ = (x* - 2)/r' + (x
2

- \)/r
,

so that the variety of which (i/2,l) is a generic ooint

is {(s/2,1), (-v^2,l)} . We note that both (/2,1) and

(-v/2,1) are generic points of this variety,

lj.) (0,0). Here, Jig consists of those polynomials of Jf

with no constant term, and the variety of which (0,0)

is generic point is just the point (0,0). In fact, if

we took instead of (0,0) any point (r,,rp) where



22.

r^r^CQ, we would get that the variety of which it ia

a generic point is Just the point (r,,r
2 ).

Now let us go back to the general discussion* The

next concept which we wish to define is that of the

dimension of a variety.

Definition 3*2 : Let V be a variety, and let (x) be a

eeneric point. Then the dimension of V is: dim V =

[k(x)ikj. (i.e., the degree of transcendency of k(x)

over k).

Instead of dim V, we will also vjrite dim(x). We

observe that for the illustrative examples: in case 1),

the dimension of the variety is 2; in case 2), the

dimension of the variety is 1; while in cases 3) and ij.),

the dimension is 0.

V'e must show that the definition of dimension is

independent of the particular generic point chosen. We

will do this presently, but first we must show how the

other points of a variety are related to a generic point*

Let V be a variety and (x) a generic point of V,

Consider the obvious map:

Vj:k[X] —*k(x)

( V, is identity on k and takes X into x). Clearly, V?

is a homomorphism with kernel iJL • Let (z)£ f\
n

, and

consider the obvious map

v: k[x] —>k[z]*
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Clearly, v is a homomorphism if it is well-defined, so

we must see if v is well-defined. That is, we must have

f(x) = g(x)j=>f(z) = g(z), or it suffices to have

f (x) = =) f (z) 0. But f (x) = means f (X) € ^£ , so

the map v is well-defined if and only if >C^(z) = 0. Thus

the map v is well-defined and consequently a homomorphism

for all (y)£.V. Hence, we can say the points of the

variety V for which (x) is the generic point are exactly

those for which the obvious map v:k[x] —*> k[y] is well-

defined and, therefore, a homomorphism. We call this

procedure a specialization, i.e.,

Definition 3*3 ? (y) is called a specialization of the

generic point (x) if the obvious map v:k[x] —-*k[y] is

well-defined.

If (y) is a specialization of (x), we will denote

this by: (x) —> (y). We also observe that in terms of

specializations we can say that the points of the variety

V, whose generic point is (x), consist of the speciali-

zations of (x).

Let (x) —> (y). Since, as we»ve seen, any point

(y) is a generic point of some variety, we may consider

specializations of (yK e claim:

Levnma_ys 3: (x) —>() —>(z).r^(x) —->(z).

Proof i If a polynomial relation holds in (x), then,

by assumption, it holds in (y), and, therefore, by
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Let us now see whet (y) —* (x) and (x) —> (y)

means. In this cp.se, we haves

k[X] -^->k[x] <—>k[y].

Here, the map v is an isomorphism since it is well-defined

in both directions, so the kernels of the homomorphisms

k[X] —>k[x], and k[X] —*k[y] are the same, so that

(x) and (y) are generic points of the same variety, be

call them equivalent generic points.

Finally, we show that dim V is independent of the

choice of the generic point. This is clear since for any

two generic points (x) and (y) of V, we have the iso-

morphic rings: k[x]^k[yj; thus k(x)^k(y) by the

obvious map, so the degree of transcendency computed with

the generic point (x) is the same as thet computed with

the generic point (y).

The next concept which we want to introduce is

that of a subvariety . We say that 'a- is a subvariety of

the variety V if Vi is a variety and if to is a sublet of V.

The first observation which we wish to make concerning

subvarieties is the following} any point of the variety

V can be considered as a generic point of a subvariety.

i'hat is, let (x) define V, and let (y)eV, then (y)

defines a subvariety W, for (x) —^(y), but the speciali-

zations (y) >(z) ftrm the points of W, and, by lemma
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3.3, these are points of V.

Now, we wish to relate the dimension of a variety

with that of a subvanety. We prove the important theorem:

Theorem 3.^ : Let W, V be varieties. Suppose WCV; then

dim W < dim V, and dim W = dim V implies that W = V.

Proof : Let (x) = (x, f ...,x ) be a (jenei'ic point of V,

and let (y) = (y-i, •••,_) be a generic point of VI. Then

the obvious map 4 : ^ Cx3 —

—

>k[yj is well-defined, oupoo^e

dim W = r. There is no loss of generality in assuming

that y,, yo».*., yr are algebraically independent elements

over k. Then x,, x^,..., x are algebraically indepen-

dent, for otherwise some polynomial f(x, ,...,x ) = C with

coefficients which are in k and not all zero. Therefore,

since 4 is well-defined, we have f

(

Vi, • • • , V_ ) = which

is a contradiction, so dim V > r. Now assume that dim V = r.

We wish to show that then (y) —-s» (x), or, i.e., 4 is an

isomorphism. Let zCk[x] and z 4 0# assume that z is in

the kernel of 4. z is algebraically deoendent on x,,...,x

since, by assumption, dim V = r. Consequently, we must

have

(3.U) a
fl

(x
1
,. ..,xr )z

s
+ ... + a (x1# ...,x

r
) =

where the a,(x
1
,...,x ) are polynomials with coefficients

in k and not all are zero. If we assume that s is the

minimal degree for all such equations satisfied by z, then

a
Q
(x,,...,x ) +0. Applying 4 to (3*k) we obtain
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ft ^i »•••#*») s ° which contradict 8 the fact that j^f» 9 Jr

are algebraically Independent. Hence the kernel Is zero,

so both (x) and (y) are generic points of V, so ' = V«

Now we wish to consider some special values of

dim V. Piriit, we note that dim V » max dim(x) where,
(x) €. V

for any (x)eV, dim(x) = (k(x)2kj. . Secondly, we observe

that

< dim V < n.

Let us consider the case dim V = n.

case 1) dim V = n . Let (x) be a generic point of V.

Then x,,Xp,...,x must be algebraically independent.

Thus any (y)^--DL
n

is a specialization of (x) since no

polynomial relation can hold in k[x], so in this case

V = /ln . Consequently, J*L
n has dimension n, and any

proper subset has dimension less than n.

case 2) dim V = . Then (x) is algebraic, i.e., each

x* is algebraic over k. Let (y) be a specialization of

(x); (x) —^(y). ihen, as we've seen, (yJ i3 a generic

point of a subvariety v«: VOW. Thus = dim V > dim V
9

so dim = which inplies, by theorem 3- U-» that V = W.

Therefore, (y) is also a generic point of V. Hence, in

this case, every specialization is an equivalent generic

point. Thus if (x) —*(y), then k[x]c^k[yj. But here

k[x] = k(x). This follows from the following facts:
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a) k[x] is a finite dimensional vector space. This is
v
l

vn
clear for k[x] is spanned by the totality of

*i
•••*

n »

and since each x, ,is algebraic we can reolace higher

powers by lower ones,

b) k[x] is a domain of integrity. This is likewise

clear since k is a domain of integrity.

c)^ A finite dimensional vector space over a field ./ulch

is a domain of integrity is a field. For let R be a

firite dimensional vector space over a field, and let R

be a domain of integrity. Let acR, and a 4 0. Consider

the map! x —>ax for all x€R. Clearly, this map is on

isomorphism of R into R , and, since it preserves dimen-

sion, it is an onto map. Therefore, the equation ax = p,

a, 0£. R always has an unique solution X6.R.

Combining a), b), c), we have k[x] = k(x), so, in

this case, the specializations of lx) are just those

{y)€. J'"l
n

such that k(x) CTk(y). That is, when dim V = 0,

V has as many points as there are isomorphisms of k(x) over k.

Thus, if dim V = 0, the number of points of V is at most

the degree of k(x) over k. If all x. are separable, then

the number of points equals the degree of k(x) over k.

case 3 ) dim V = n-1 . As we know, the varieties are in

one-to-one correspondence with the prime ideals, so

In a similar manner, one shows: If ^f is a rinc without
divisors of zero satisfying the minimal condition for
rirht anc left Ideals, then/fis a field - see van der
Waerden, Modern Algebra, Vol.11, p. 139.
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V <

—

> 4& where/* 4 (0) since V + A n
. Let t££f • Since

<C
r = k[X] is an unique factorization domain, we can factor

f uniquely except for arrangement and units into irreducible

polynomials: f = P-.^.P . ^ov » l<&<f ^=$ there exists

an irreducible non-constant polynomial ?<£4£\ oince 4f

is an unique factorization domain, it follows that £ /f

is a prime ideal /i? • Let </» —>V . Prom /£^ zz.J.0 ,

we have V p V
f

so dim V > n-1. However, X4 4(°)/ s o

V
Q + _fl

n
. Thus dim V

Q
< n-1. Hence, dim V

Q
= n-1, and

V = V, so V= P </\ Therefore, we see that any n-1

dimensional variety is defined by the zeros of a prime

ideal which is generated by an irreducible non-constant

polynomial.

Conversely, suppose v/e are given a non-constant

irreducible polynomial p. Then /& = ¥/f is a prine ideal.

Let V be the variety determined by^ • iince V + /l
n

,

we have dim V < n-1. To show that dim V = n-1, all we

must do is exhibit one point of V with this dimension.

Since P is non-constant, it must depend on at least one

variable - say X • Now select x,,...,x ,£f_fl alge-

braically independent, and solve in i \ :

p(x
1
,x

2
,...,x

n_1
,X
n ) = 0,

Call the solution x . Then, by construction, x «

(x,,Xp,««.,x ) is a zero of P and, hence, a zero of ./£ ,
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so (x)£V, and, by construction, dim(x) n-1. Thus the

variety determined by a prime ideal which is generated

by an irreducible polynomial is of dimension n-1. Vie

note that the prime ideal is unique up to a constant, i.e.,

if P,yr and P
2
^r (P,, ?2 irreducible) give the same

variety, then p, and p~ differ by a constant. This fact

is trivial to prove.

In the way of terminology, we call one dimensional

varieties curves . Two dimensional varieties are called

surfaces , and n-1 dimensional varieties are called

hypcrsurfaces. We emphasize that an n-2 dimensional

variety is not necessarily the intersection of two

hypersurfaces. We will study in a later chapter the

intersection of varieties in greater detail.

§[(.• Products of algebra ic s ets: In this short section,

w* want to introduce the concept of the product of two

al'-ebraic sets, and investigate a few of its properties.

Let VC Jl n
, and w C/lm be algebraic sets. The

set Vx Wc n n+m
, obtained by taking all oointe (x,y)

such that (x)£V and (y )£«'•> is called the product of the

algebraic sets V and W. 'e claim, first of all, that

VxW is an algebraic set. For suppose^ —«* V where ML

is an ideal of k[X], and suopose 2?—s» V' where h is an

ideal of k[Y]. 7etfj^= k[X,Y], and let <C=^^'+bD'.
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Ve show that the ideal Jl of ^7 determines VXW. Let

(x,y) be a zero of &~ j therefore, it must be a zero of

/^, Thus (x) must be a zero of/K since /ft doe sn't depend

on Y. Similarly, (y) is a zero of b , so any zero of &~»

is of the form (x,y) where (x)GV and (y)cW. Hence

the zeros of <Jv belong to VX 1 '. Conversely, if (xj)cVxW,

then clearly ^.(x,y) = 0. Consequently, we get that VxW

is an algebraic set defined by dL»

We observe the important fact that the product of

two varieties is not necessarily a variety. To see this,

consider the following example: let k = Q, the rational

numbers, and let/V* C, the complex numbers. Consider

the variety V = |(»/2) , {W2)y , i.e. the variety V con-

sisting of the two points (\/2) and (-V2). Then

V*V = {{/£,&), (-y^2,./2), (^2,-</2), (-/2,s/2)}

which splits into two varieties:

VXV = {(S2,/2), (WS, -,/?)}U {(v£,-v£), (Vi,v/2)} .

We have previously defined what we mean bv the

dimension of a variety. But wo know that every algebraic

set can be decomposed uniquely into a union of a finite

number of component varieties. Hence, we define as the

dimension of an algebraic set the maximal dimension of

its coTioonent varieties, or, i.e., dimension of the

algebraic set V = Max dim(x). It is immediately clear
(x)€V



31.

that the dimension of a proper algebraic subset of the

algebraic set V is not necessarily less than that of V,

Theorem lj.,1 i dim(V VW) = dim V + dim W".

Proof ! Since dim(VXW) = Max dim(x,y),
(x)€V
(yk.w

it is clear that dim(V X'- ) < dim V + dim W. Now choose

a point (x)£V with dim(x) = dim V, and choose a point

(y)£Ul with dim(y) = dim Yi, and such thet the transcen-

dence base of (y) is algebraically independent of that

of (x). This can be doi^e by the nature of f\ • Then

for this (x) and (y) , we have di:n(x,y) = dim V + dim v
, so

dim(VxW) > dim v + dim W, and the theorem follows.
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Chapter II

Valuation Rings, Places, and Valuations

81. Introduction ? In Chapter I, we introduced some of

the basic concepts of algebraic geometry and obtained

several results using a minimum of algebraic tools. In

order to obtain deeper results, we will proceed in this

introductory section in developing the interconnection

between valuation rings, places, and valuations. Oar

discussion will culminate in the extension thnorem for

places which will be applied many times in the sequel to

get further results in algebraic geometry.

Let K be any field; we define, fir3t of all, what is

meant by a valuation ring.

Definition 1.1 ; A subring^tT* of K is called a valuation

-1
ring if for any a6K, a^t^T zz^> * £ V

.

As an example of a valuation rin; , we nave, of

course, the entire field; we call this the trivial

valuation rinft .

As an immediate consequence of the definition, we

have 1 €" 4Jf$ so a valuation ring is a rinp with an

identity element.

Let us now consider the set Mi of non-units of X) ,

i.e.,

M = / a|a6,</, a
-1

«t X)
r'j .
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It is immediately clear that the following statement holds:

(1.1) &4
ft

^=^ a"1 ^.^^.

We investigate now some of the properties of <<£ •

V e have

:

1) If a + h^AS , then either a or b does not belong to <J?

Proof : The statement is certainly true if either a or b

is 0. Thus we assume that a, b 4 0* Assume that 5 t" XT'

(if \4z.Jtf * then -&Af and the argument is analogous).

Since a + b <£ .<# , we have by (1.1) that (a + b)'1^^ .

Hence,

(1 + £)1a + b)"1^ Jf
,

i.e., b" &.,(/ whence b & /CO , and the contention has been

established.

2) If a, \>&/f and ab^ /p , then neither a nor b belongs

to AjL ,

Proof : We have by hypothesis and (1.1) that (ab) bg.^' ,

so a" € Af • Consequently, a ^.^ • In a similar manner,

we get b £ IP ,

Taking the contrapositive statements of 1) and £)

we havet

1 ) If a and b belong to AA , then a + b £ AJL •

2 ) If a, b£X/ and if either a or b belongs to ^ ,

then ab £ *& •
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But 1 ) and 2 ) say that <M Is an ideal. Thus thet
set of non-units of a valuation ring forn an ideal. We

also have that any Ideal 4 * is contained in '/ , i.e., AA

is the unique maximal ideal of // , for any element of <&

not contained in
<<f

is a unit. Therefore, ^i^f * s a

field; especially, /jp. 13 a prime ideal. riecaoitulating,

we have:

Lemma 1.1 : The non-units,*x
#
of a valuation ring ju form

a maximal ideal.

Let U denote the units of df • Clearly, U is a

multiplicative group. We now claim that the field K can

be decomposed into the following disjoint union:

(1.2) K = ** U U <J AJL
-*"1 '

where *$ denotes the set of elements inverse to Sjf-

and where it is understood that we don't take the inverse

of 0. Since jfU U = jf , all we must show is that '^'^

consists of the complement of ^in K. But this Is clear,

for if a
(fc

//'
t then a" €? -<f

$ but since a j£ U, we have

a'1^^, aoa6^'"1,
l While if a e^ (

"1 \ then a"
1^^ ,

and a & //• Thus (1.2) has been established. Also, we

see that iff determines the valuation ring if .

From (1.2), we get that if ^1 and <(f~ are tv/0

valuation rings of K with non-units >u. , , ^. « and units

ut» Up, then

*f
x
cSz

c=3 ^ x=>^ 2
«=-*> u

a
<r u

2 .
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Next, we will introduce the concept of a place and

show the relationship between it and a valuation ring.

Let K, P be two arbitrary fields.

Definition 1.2 ; A map 4? K —* Pu{ ooj is called a

place if:

1) 4"1 (P) =Af is a ring;

2) ^\a/ is a non-trivial homomorphismj

3) if 4(a) = oo(i.e., a £ // ) , then (Ka"
1

) = 0.

Before proceeding with some consequences, we pive

an example of a place, l/e take as k; the field of rational

functions in one variable, i.e., P(x) where P is a field;

write each element of P(x) as a fraction in reduced form.

Nov/ substituting x = a <£ P gives a map of P(x) into

P Lt{ coj if we specify that if after substitution a

appears in the denominator, then we map this element

into oo • Clearly, the mapping is well-defined. Condition

1) is satisfied since if f,g€= P(x) have denominators which

are not divisible by x-- a, then the same is true for their

sum and product. On xf9 the mapping is, of course, a

homomorohism, and it is non-trivial since 1 does not go

into C. Condition 3) is obviously satisfied. Intuitively,

therefore, we may view a ^lace as a substitution.

As another example, we take K = Q, the field of

rational numbers. We write each fraction so that not both

numerator end denominator are divisible by some fixed
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prime p Ve now consider the map of Q into equivalence

classes obtained in the following manner: we replace

numerator and denominator by the residue clas3 to which it

belongs modulo p. If the denominator is the residue

clas3, we map the element into co • This ;ap follows, of

course, the sar.ie procedure £.3 the one o! the firLt ei^rnle

since for f (x) £ P[x], we have f(x) = (x-a)Q(x) + R, rnd

f(x) = f(a) = R mod(x-a).

The first consequence we have from definition 1.2

is that a/ = 4" (P) is a valuation ring. For if af^,
then 4( a ) = co which implies by condition 3) that 4( a ) = 0,

so a" £ -c/\ Now let us investigate the non-units -*£ of

the valuation ring .// = 4 (F). By (1.2), we know that

Aj consists of C and the inverses of elements which do

not belong to /J'. Thus we certainly have that 4(-tf) =

(i.e., {A belongs to tho Kernel of 4)« Wow suppose

4(a) = 0. If a"
1^^, then

4(aa"1 ) = 4(D = 4(a)4(a'1 ) = 0,

so 4(1) = which implies that \{.(^) = and this contra-

dicts condition 2) of the definition. Hence, a <£ &'

,

so 4 (a" ) = co , or a"*^^*"1 ^, Thus a & <£ . Consequently,

we have that <&. is the kernel of 4 on 4f'• The proof also

show3 that 4(1) = 1 («p tJiis follows immediately from

condition 2) )•



37.

So far, we have associated with a place a valuation

ring. Now let us start out with a val uation ring A? given;

we wish to associate ritft it a place 4* Let^ be the

maximal ideal of non-units of ^» we define:

/ oo if a<£ //.

4(a) =
j

V. a + -4£ if a e 4f .

That is, for a€^we take the canonical map, so F = ^/tf
Let us verify that this 4 is indeed a place. By definition

4 (F) = ^V , the given valuation ring, so condition 1) i3

surely satisfied. 4U^ * s # of course, a homomorphism, and

it is non-trivial since 1^ *£- • If a (^ /f , then a"1 e <£

by (1.2), so condition 3) is satisfied. Hence, 4 is a

place, and the ring belonging to this place is the given

valuation ring.

Let us investigate more thoroughly the maps involved

when a place 4 is given: 4>:ff —>Pc/{ooj. k\if \Jf —>?

is a homomorphiom with kernel jM^ , an we've soen, so

Af//^^. $(/f)* Therefore, we have the following sequence

of maps:

Af-Z+jf/AA, -U 4W) -Up.
o

The map X" is the canonical map, j 1 a an isomorphism, and

i is the injection ncr>. However, the map )< (where )*C

takes a ^.//^ into oo ) is the place we vould have gotten

if we had started with the valuation ring Jf a3 given.
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Thuf we have, summarifinf the preceding discussion, that

plaoes and valuation rings are in a one-to-one correspon-

dence provided we have the following understanding: a

given place determines a valuation ring which in turn

determines the given place up to isomorphism. We will

oay that two plaoes are equivalent if they have the same

valuation ring* Hence, there is a one-to-one correspon-

dence between places and valuation rings up to an equivalency*

Next, we want to c> meet the concepts of place and

valuation ring with that of n valuation* Before defining

what is meant by a valuation, we must define what we mean

by an ordefed group. Let be a group written multipli-

catively*

Definition l^Ji The ."roup is said to be ordered if

contains an invariant sub-semigroup 3 such that

${j { l} U S (
"1)

(where the union is meant to be disjoint)*

Now we show that this definition leads to a sensible

ordering, i.e., the usual conditions of ordering are

satisfied* Namely, we define for a, b 6 G where G is an

ordered group: a < b if and only if ab £ S (so a < l<-=> a<~ s).

a) We first note: a < b<^> ab*le S <-^ b^a € s.

Proof : Since b~Xa •b"1(ab'*)b, if ab"1 e S, then b
ml

a * s

by the invarlance of S, and since ab b(b~la)b , we get

the implication the other way.
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Now, we have from the decomposition of that either

1) ab^e S, or 2) ab"1^ { l}, or 3) ab
-1 € S

(-1)
.

That is, either 1) a < b, or ?.) a •*= b f or 3) b < a.

b) a < b, b < o > a < c. Since we have ab" <E". S arid

b£ «r~ S by the semigroup property of S, ve pet ac" *£T S,

so a < o*

c) a < b —} ac < be. 7or ab~ €E S, so ace b ^ 8, i.e.

ac < be. '.imilarly, v;e show ca < cb.

d) a < b — / b < a . Prom a < b, we ;?et, applying

c), that 1 < a b, and, by another application of c), we

get b"1 < a*1 .

e) a < b, c < a ^=$ ac < bd. Since a < b, using c), we

get ac < be. Similarly, we have be < bd. Then, using b),

we get ac < bd.

If G should be 8 commutative group, we can, of course,

omit the word invariant in definition 1.3» It is also

possible that there is ar> addition defined in G. However,

if not, we cr*n always define one for an ordered proup.

v re simply take: a + b = :!ax(a,b). That this 1j well-

defined follows from the discussion after the proof of a).

It is clearly an associative operation. Let us 3how that

it is distributive, i.e., we claim that (a + b)c«sac + be.

Suppose that a < b (i.e., either a < b or a = b), then

ac < be, and Ilax(ac,bc) = be; while Max(a,b) • c = be.

To the ordered '^roup G, we will adjoin a zero element,

0, such that multiplying any element of G by yields



and such that is less than every element of G in the

ordering. Then a + = + a = a for any a €. (J.

Finally, we can define what is meant by a valuation

of a field K.

Definition Uj. : A valuation of a field K is a map
| |:

K —t>Q t-'{oJ- where G is an ordered group, and where
|

is such that:

1) |a| = <^--> a =

2) |ab| = |a||b|

3) |a + b| < |a| + |b|.

As an iiinediate consequence, we have that |l| = 1.

Also, |-1 1 = 1; since from condition 2) we get |-l| = |l|=l,

but in an ordered group we can*t have an element 4 1 of

finite period, for if, sa-r, a > 1, then all powers of a

are greater than 1.

Now, if in G tl e addition is based on the Max, we

will show that from a valuation we get a valuation ring.

Let

4f = (a|a£K, |a| < l} .

First, we show that M' is a rin~. If |a| < 1 and |b| < 1,

then |ab| = |a||b| < 1, and |a + b| < IIax( |a |, |b| ) < 1.

Next, we show that -^ is a valuation ring. If a i£ /f , then

|a| > 1, so la"
1

!
= lal"

1 < 1. Thus a"1 *-" Jf , so // is

a valuation ring, l
:he non-units x& of // are those a <r //

-1j- v
tuch that a <fc xf , i.e., those a such that |a| < 1, and
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|a|" > 1, so

and, consequently, the units of // are

U |a |a| = 1 ) •

I,trt us analyze the map
| | more carefully. Let

K* K - ') I ; then by condition 2) the map

I I: K* —>G

is a homomorphism, and, as we've seen, the kernel is U;

therefore K /U Zl ["' where Jk"** { denotes the imare of K*'

under |. Thus we have the following sequence of naps

K* —>K^U -U |K*| -±o G

whore j is an isomorphism, and i is the injection map.

Now let us suppose that we are r;iven a valuation

ring Af belonging to a field 11; /-£ its aaxiial ideal,

and U the ..roup of units. We wish to obtain a valuation.

From the above discussion, we see thnt we should define

for aCK: |a| = aU. The set of all {&UJ form

K /U o|o| • We must, first of all, show that the proup

G = K"/u* is ordered. To do this, we must exhibit a sub-

semi croup S with the required properties. We define S

in the following way; aU £ S if and only if aUC^ , i.e.,

if and only if a£, >£, . Clearly, 3 is a semi groun, and,

of course, invariant since X is a field. -dnce



K* » (^- {o})u UU(^f- {o)) (-1) (disjoint),

we fret nod U that

G * k7<J - Scy{l}uS (
"1) (disjoint),

so, indeed, K"/U is en ordered ;n?oup.

How let us check that |a| = aU satisfies the other

conditions for a valuation. The first two conditions are

immediate. To verify condition 3), we i.iust show that

|a + b| < | a. |
+ |b|. However, th:.s is equivalent' to the

following: |a| < 1 =^> |l + a| < 1 + |a|. For, say,

||| < 1, then ll + || < 1 + |||, so |a + b| < |a| + |b|;

the implication the other way is trivial. Thus in our

case, i.e., with addition based on the lax, all we must

show is that |a| < 1^) |l + a| < 1. Kence, suppose that

aU = | a. | < 1. This i.iplies that a G,jCT. Thus 1 + a^-o",

so |l+a| < 1. Therefore, |a| = aU is a valuation, and,

moreover, its associated valuation ring is the given one ^ •

Summarizing, we have that tbere is a one-to-one

correspondence between valuations and valuation rin£S with

the understanding that a given valuation determines a

valuation ring which, in turn, determines the given valua-

tion up to isomorphism. Since we have already seen that

there is a one-to-one correspondence between places and

valuation rin^s with the usual understanding, we now have

the comlete interconnection of the three concepts.
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Before proceeding further with the theory, we will

illustrate the preceding discussion by means of an example.

Let K = C(z) be the field of rational functions of a

single complex variable. Ve know that a place is obtained

by substituting z for z. The valuation ring of this place

is

-'/ = f(z)
gTzT

g(z ) *

where f ,g <£, C[z]; while the maximal ideal of non-units is

f"
= J f(z)

/ gTzT
g(z

Q ) * 0, f(z
o ) =

and the group of units is

u - \ u*xU "
{ I&T g (z ) 4 o, f(z

o ) 4 o\ .

The valuation associated with this valuation ring is

|f(z)| = f(z)U where f(z)€ C(z). Hence, |f(z)| =

(z-z^)
1^. n is called the order of the zero of f (z) at

o

z_ where a negative n is counted as a pole, and where

n = means that f(z) has no zero or pole at z •
1:e see

o

that the ordered group G is simply a cyclic group generated

ty (z-z )U and is isomorphic to Z, the additive group of

integers. y'e also have

|f(z)| < 1 5 (z-z
Q )

n
£. ^> <£z} n > 0,

and we can see that G has the reverse ordering of Z.
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Summarizing, we see that the place merely tells us

whether a function approaches or oo at a particular point,

whereas the valuation gives us a refinement of this state-

ment by telling us with what order the function rocs to or oo •

Now, let us return to the general theory. ve want to

orove the fundamental theorem on the extension of a hono-

morphism to a place. This theorem will play a fundamental

role in our development of algebraic geometry.

Theorem i»i ; Let K be any field and /J' a subring of K. Let

P be an algebraically closed field; suppose f://'—>F is a

non-trivial homomorphism. Ther; there exists a place i of

K such that b\jf = f (notei 4 is not necessarily unique).

Proof ; There are two types of extensions ti^at we will con-

sider. We proceed to describe the first of these. Let S

con-ist of those elements sg./ such that f(s) 4 0. Clearly,

S forms a semi-^roup, and 5 + <J> since f is non-trivial. In

general, given a conmutative ring R and a sub-semi froup S

which contains no divisor- of zero, we can for-.i the quotient

r
s

JS

ring consisting of all S r^h, seS.'" In our case, we form

' = {||a€^r, ses] .

<\

/J ia a rin/j with an identity ole.nont, V/e extend f to

f on M by defining

^ee N. H. McCoy, Rings and Ideals , Carus Mathematical
Monographs, p. 94 •
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i
a
l

aP
Let us show that f is well-defined. If -= = —, then

s
l

s
2

a
l s2

= aP s
l*

and » since f is a well-defined homomorphism, we

have f(a
1
)f(s

2
) = f(a

2
)f(s

1
). But f(s

]L
) 4 0, and f(s

2
) 4 0,

so dividing, we get

f( a]L ) f(a
2 )

TCqj
=
ITsJ7

which establishes that f is well-defined. It is clear

that f is a homomorphism since f is. Finally f \/f = f

,

for if a €..*/, then we can write it as ~, and
' s

f (T ) TTsT
f(a) '

i

Therefore, we have that f is an extension of f

.

This is the first type of extension, but it may

yield no extension at all; this happens when the ring /f

is its own quotient ring, i.e., when for any a£.Xf if

f(a) 4 0» then a" £. /f • When this happens, we will show

that if we select any a€ K, we can extend f to either XT [a]

or to /f [aT ].- the second type of oxten3ion. First, we

observe that if f(/f) = F CF, then F
Q

is a field, for let

sj£ F . and s^ 4 0. Then s = f (a) 4 for some &*L/f

:

o o' o o *

hence, a"
1
^. if 9 and 1 = f(aa"X ) = f(a)f(a"1 ) = s

Q
f(a~1 ).

Let a denote the image of at£ if under f. Extend f to

Xj\X\ in the obvious manner (i.e. just a;?ply f to the co-

efficients of a polynomial of XJ[X] ; strictly speak in.?, we

should use a new variable Y in this map, but we won't do

this in order to avoid introducing too much notation).



The Image of P(X)€ <<f[X) will be denoted by F(X). The

ima<re of xf [X] Is, of course, FQ [X] where P
Q
[X] is a

principal ideal domain. Now, we attempt to extend f to

g on '-'[a] by defining g(P(a)) = T*(£) where £ is any

element of P. If g is well-defined, it is clearly a

honomorphism and is an extension of f . So, we must just

see if it is well-defined: i.e., does P(a) = —y 7(r) = 0?

Consider the set 41 of all P(X) with P(a) = 0. It

is the kernel of the substitution map: VX'fX] *—e>/^[a]«

Ml is, of course, an ideal of XT[X\ 9 so our question

as to whether g is well-defined can be worded as follows:

Is the image Ml in F
Q
[X] of XH, of such a nature that

X « £ is a zero of it? Since XTl is an ideal of the prin-

cipal ideal domain F
Q
[X], we have : ^t = Q(X) • P

Q
[X].

Thus £ must be selected as a zero of ^(X), and, since P is

algebraically closed, such a £ can be chosen, provided

^(X) 4 a non-zero constant, and we have an extension to

.^[a]. But it is possible that QV-) is a non-zero constant

(if 3(X) = 0, then any £ e. F works) in which case our

construction does not work, so we must consider in detail

this case* v-e may assume that TJ(X) = 1. Then there is a

Q(X) * X + pQ + pjX + ... + pp
Xr

where p, • 0, i = 0,...,r, and where

1 + po * *l
a + •*• * pr

ar
* °*
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Thus if a satisfies such an equation, our attempted con-

struction doesn f t go through. However, we now show that

the attempt can 1 t fail with both a and a" = p. For suppose

it did. Then a,p satisfy

(1.3) 1 + P + Pxa
+ ... + pp

ar

(l.k) 1 * P^ pjp + ... + PgP
S

-

where p. =
i>4

= 0, * = 0,...,r; j = 0,.,.,s, and where we

may assume that r and s are minimal, "e note that r and s

are greater than or equal 1, for if, for example, r = 0,

then 1 + p^ = ^£ T + P^ = 0, or T = C which is a
* o o

contradiction. Vie may assume that s < r since the argument

will be symmetric in r and s. £ince p = a" , we have from

(1.U
! I

S _ Pi „S-1 PS
... J— ,

l+ Po
1+

Pco

or

s ii
.

ii i i s-1
1.5) a « pQ

+ p1
a + ... + ps-1

a

where p, GiJj' since T + p. = T 4 0, and where p. ' =

i s 0,..,,s-l. ^ince s < r, we can write

„r _ „S/
rt
r-Sv

a = a (a ; ;

therefore, we can, using (1.5), lower, the decree of a in

(1.3) I i.e., we have

1 + p + px
a + ... + pr

(a
r " s

)a
s = 0,

or
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(1.6) 1 + pQ p1
a+... +pra

r*3
(p^

f

+ ... Pgli*
3"1

)
= °»

and the hirtfiest power of a in (1.6) is r-1 which contra-

dicts the minimal character of r. Hence, if we can't

extend f to Uf [a] , then we can extend it to x/ [ol ].

Now, we are in a position to apply Zorn's Lemma.

Consider the set E of all extensions of f to larger rin.'rs,

If Si t 6? are two suc^ extensions, we say that g« > g^ if gp

is f.n extension of g^ (i.e. the ring on which g2 is defined

contains -cne ring on wmch g, is defined and g~ restricted

to the ring of g, is equal g^). Clearly, this yields a

partial ordering oi fc'. We muse show that every totally

ordered subset of r
. has an upper bound. Let {ga l be a

totally ordered sublet of E; the rin^o on which the g

are defined are ordered by inclusion. Take the union of

the:*e rings and consider the map g defined on this union

as follows: if y^ the union, then yc some set of the

union, and g should act on y as the original g did. The

definition is consistent since all g« > g are extensions

of ga , and g is a homomorphism since if y,,Yp^ union;

then Yt»Y2^ some set of the union since the rings are

ordered by Inclusion, so the statement is clear. Also, it

is clear that g is an extension of any g , and is an

upper bound. Thus E is inductively ordered in the sense

see N. Bourbaki, Theorie des Ensembles (Fascicule de
Resultants); Hermann et Cie, Paris.
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of Bourbaki, so by Zorn's Lemma E has a maximal element.

Let g be such a maximal element: g: T£/ —^ F. Since g

cannot be extended any further, we know b^ the preceding

discussion that: 1 ) !£/ is its own quotient ring by elements

with non-zero images, i.e., if &€ Xs,\ and if g(a)
=f 0,

then a"
X
(E U* .

2) If Q.&X>y $ the/i wc /.now that we cannot extend & to

(U^ [a] since g is maximal, but, as we Lnow, tlixs implies

that we can extend g to C^Ti" !• Hence, we must have

a" 6, £^ since g is maximal, 30 Jf a^ C^# then a"1^ 'C^\

i.e.,lS^'i s a valuation ring*

Now, we must show t'.iat the place <)» belonging to this

valuation ring is g up to isomorphism. This follows from

1) r.ince g(a) 4 0<^=5 bTX€. t^ , so the kernel-^ of g

is the set of non-units of Cs • Now, extend g to K

by mapping a into oo if a ^ Cr , and g equals 4 up to

isomorphism, and the proof of the extension theorem is

compieuea

82 • Applications to algebraic geometry : "e want now to

apply the extension theorem of places to ^et further results

in algebraic geometry. Ve contend:

Contention : Let (x)£J^ n
, and f (X) €. k[X], and suppose

that f(x) 4 0; then there exists an algebraic specializatior

(x) —

—

> (xo ) (i.e., all components of (x ) are algebraic)

such that f(x ) + 0.
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Proof i If (x) = (x,,x
2
,»«.,x ) is algebraic, then v/e

simply take (x ) = (x), and we are done. Thus, suppose

that x,,...,x
T>

are algebraically independent over k v/hile

all other x4 are algebraic over k(x,, • . . ,x_) » Let a

designate any of the x, or T-prr; then a is algebraic over

k(x..,.,.,x ). Kence, tnere exist equrtiona of the form:

(2.1) ao>a (x1
,...,x

r
)a + ... + a

g
^
a
(x

1 , . ..,x
p

) = 0,

i.e., for each different a we have an equation of this

type where the coefficients are in k[x-,, . . • ,x_J .
* Tow choose

x,,...,x fro.n the algebraic closure of k in -ft. in such a

way that a n (x?,...,x°) + ° for all a considered. Let

us show that such a choice is possible. It is cle; r, by

taking the product of all a n (x1
,...,x ), ti.au we need

o , o. i r

consider only a single polynomial; also, we obcerve that

we wish to choose elements from the algebraic closure which

is an infinite field. Thus our proble l reduces to the

following: If a non-zero polynomial m several variables

is riven with coefficients ...n an infinite field can --jc choose

valuos from this field such thtt the polynomial re lains

non-zero upon substitution of these values? l.e prove that

such a choice is po.. siblc bw induction on the number of

variables. The choice is trivial if there arr no vai iables.

Suppose such a choice is possible if tie polynomial contains

n-1 variables. Coneic.er now a non-zei o polynomial of n
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variables, l.rite the polynomial as one In terns of the n-th

variable whose coefficients are polynomials in the other

n-1 variables; not all these coefficients are 0, for then

the $iven polynomial would also be 0. By induction, we con

choose values in the iield so that after 3"he <--•*-•>••- » — -*-

leait one of th:se coefficients is not zero. Making this

substitution, we set a non-zero polynomial in one variable

which has at most as many roots in the field aj it? degr^r.

.

Since the field is infinite, we can choose a value such

that the polynomial remains non-zero upon substitution, and

the proof that such a choice of x?,...,x° is nos::ible is
l' ' r

completed.

Now let f be the substitution map:

f: k[x
1
,...,x ]

—*> f\

given by mapping x^—> x°, i = l,...,r. 3ince x^,,..,^

are algebraically independent, the mao is well -defined find,

consequently, a homomorphi

s

n . V\o\i extend, thii homo-

morphism to a place 4 of the field k(x.,.«..,x ), i.e.,

4: k(x
1
,...,xn ) —>0.u|coj .

Clearly, 4 is identity on 1: and 4( x ;i) = *?# i = l,...,r.

Put 4(x
A

) = x®, i = r + l,..,,n, so ^(x^) = x°,for i = l,...,n,

V/e claim that 4(a) 4 oo for any a. For oupno^e that

4(a) = oo ; then 4(^) = o. Prom (2.1), we hav e

(2 ' 2) a
o,a (xl'*-'» xr ) + al,a (xl""' x

r , a
, + *** *

a
s,a

(xl>--" x
r

)-T
= °'

a
a
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and, Applying 4i wo ret

&o,a (*l»"-' 3S )
a °

which contradicts the cloice of x? t< ««.xf. Therefore,

4( a )Ci~l for all a, and, applying 4 to (2.1), we see that

4(a) ic alfjcbraic o^er k(x° . . . ,x°), and, tfc rcfore, (Hi)

ic al -ebraic over It, Thus, (x ) = (x?,...,x°) is al' ubraie.

and (x) —-> (x^J la a specialization since (f is a ho;;o-

lOJ

i~ finite, and 4 since 4(a) 4 co for any a. Fence, the

contention has been completely established.

Prom the contention, we o tain immediately the

following theorem:

Theorem 2,1 ; Let V be an algebraic set of j2 n and V the

subset of alrrebraic points of V. Let f^kfX] be such t'lat

irphism on 4"1 (A). rinally, we have that 4(f(x)) = f(x°)

f(V
Q ) = (i.e. f vanishes on all of V

Q ), then f(V) = 0.

Proof t Suppose (x)€V, and f(x) 4 0; then, by the con-

tention, there exists an al -ebraic specialization

(x) —>(x )€V such that f(x ) 4 0» but this is a contra-

diction.

Before proceeding further, we must develop a little

more algebraic "background" material. Let X/^be any ring

(not necessarily containing an identity element), and let

S be a multiplicative semi-group contained in /J • Suppose

that /Jl is an ideal otjf such that ARC\ S = y (note:
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this implies that Ot S). Now consider the iiet I." of all

ideals containing /Jl which do not intersect S, E is partially-

ordered by inclusion, and tor any totally ordered subset

of Y; 9 the union is an ideal whieV. does not intersect S.

Consequently, ^ is inductively ordered a.tc', by Zorn's

Lemna, contains at least one maximal elo lent 4JL % Clearly,

any ideal containing AP will intersect S. ' e wish to show

that .<& is a prime ideal. °uppose a,b6E. ^LIL ; we must show

that B.b^L/f. • Suppose, on the contrary, that ab*£^ •

Let (a, 4JL ) and (b,/£ ) be the ideals generated respectively

by a and A& and by b and /£ • They neet the semigroup

3 in elements s, and Sp.

s, = n, + m, a + x, a,

and

s
2

s n
2

+ rrl2^ + x2^

where rc,, Tip^.^ • m,,mp are integers and TLy % yi~€L'Q •

Then

s,Sp = n,Sp +(m,a +x,a) %p + (m^a +x,a)(mpb +Xpb).

This shows that if abCXj? 9 then s.s- £!<*£ , so <4JL meets S

which is a contradiction.

We note, first of all, that if jf is i
Toetherian, then

we don't have to employ 2'orn's Lem ia for the existence of AJi. .

Secondly, we observe that ifM contains an identity element,

we ^et the existence of maximal ideals for Af by taking 3 = {lj •



Now let Ml be any ideal of 4f% Suppose b Gl/S has

the property that \**&/n for any positive Integer v

(hence, b 4 0), Take S s {bv , where v r^n^ss over the

positive integers}' • Then, as we've seen, there exists a

prime ideal /gZ>/Jl such that b
VGLML for any positive in-

. { ' X£ (where the jlO

ideals), /ft is, of course, an ideal, and b^L/jt since,

by the above, there exists a JJLO /JZ , and bi jlP • Thus

b €LjTL z^> b
v
C/(^ for some positive integer v. Suppose,

teger v« Let jOl = J- ' X£ (where the jiO designate pri.ne

conversely, that b has the property that some b £ /ft • If

j± is any pri^ie ideal such that JAO/ft , then b
v
£lx^ , so

b €-U& ; hence, b6£./rt. Therefore, we have established

that

MX, = bb£/ and b
v^ /J\ for some v

J
,

The ideal JJt is called the radic al of th? ideal /fl . If

fl^ = (0), then we see t-lift its radical.lt consists of the

totality of nilpotent elements of M* - called the radical

of the ring.

Now consider the sot P of all jrime ideals con-

taining /ft • This set is partially ordered under reverse

inclusion. Consider any totally ordered subset i£& r of

P. Let <*S =
* tya} we must 'how that AM- is a prime

ideal. Let ab£<4? , and aC^ » Then ai some

for** *$tf.t
aY* but abe every

f$>
so h€

f P

for all ^gC-¥ a . Thus b^^ > so ^ c
is a Prline ideal;
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consequently, the totally orderrd set i*^ a ]
has a lower

bound whence P is inductively ordered. Therefore, there

exists a minimal element in the set F, i.e., among the

primes containing /ft , there are certain minimal ones, and

all others contain one of these. Thus we see that it

suffices in the definition of the radical /ft to take only

the minimi ?ri *e ideals containing /ft- • Hence:

Theorem 2.2 : The radical of ar, ideal^ in the ring JT* is

the intersection of all minimal ;>riiie idecls containing j&t •

We also observe that our previous procedure {vivos

us the existence of minimal prime idecls of^' by taking

M = (o).

Now, we are ready to return to the discussion of

algebraic geometry. As usual, we let /> = k[X], and let

m be an ideal of /f which determines the algebraic set

V.

Ve ^contend: JK , the radical of /ft , is the ideal de-

tor> ained by V. For let V —1> /QZ , i.e.,

Jfi = [f|f e-^r, f(v) = oj .

Let 4/ be any prime ideal containing,^ ; then /j2 —<> W,

a variety, and WCV. But V;CV==^y.D^T, so JA *& ^^t t

i.e., AriZ)Ml . However, if £<?jFl > then f
n
<£ /Tl for

some n; hence, f
n
(V) = Or^:>f(v) = 0=} f£ >0£. , so ^C^,

Combining the two results, we get JfL - //I. %
and the

contention is established*
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We know that the radical of^At can be Given, for a

general ring tf , by | f f £ .^f/', £
V
€.JJl for some v

J
•

We now ask whether there is a Unit to the power one must

take. The answer is yes when *tf is Noetherian; in parti-

cular, when-//' 38 k[X]. To see this, write

n
where f * £ JJt • Let f be any element of Ml ; then

f = fj^ + ... + fyg,,

where the g*^r yf , and

n..+#..+n_ n1 +...+n
f = (*

1S1
+*"+f

rer )

1 r <r^K .

Now, let><^t be an ide^l and V its algebraic set,

And let V be the- algebraic points of V. Then we saw, by

Theorem 2.1, that f(V
Q

) 0^ f(V) J, but this implies,

by the previous contention, that f€T/>£, the radical of

s(JZ , i.e., f £, JXL for some positive integer n. Thus we

have established:

Theorem 2.3 : Hilber^s Nullstellensatz ( strong form)

:

Let jOI. be an ideal of the ring ^ = k[X]; suppose JJt —>V,

and V , the subset of algebraic points of V. If f GLAf is

not identically zero and is sucb that f(V ) = 0, then

f C^L for some positive integer n.

Thus we see that we can aliost characterise the poly-

no'iicls of the ideal ^t by just knowing V . If JJt = // ,
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a prime ideal, then the algebraic points characterize the

ideal, for if f(V
Q ) = 0, then f

nC^=£ f6^.
'.'e also can reconcile nov/ the tuo points of view

concerning whether the components of a zero of an ideal of

£, are taken from just an algebraically closed field or

from a field /"). of the tyoe we have been cone iderins

•

Tor let V —> h i by the Hilbert Null stellen sat z, we

have bC/H- whore jfrt > V, but since V (Z. V, we have

h O <dt , so i» </% . Consequently, we have V^ —> /Ft —>V,

i.e, the algebraic set is already chare cteri zed if we know

its algebraic points. Hence, if we started v;ith an alge-

braically closed field, w- could alvays enlarge it so as

to accomodate V which is already characterized by V .
" o

Finally, suppose that V = (p ; then V = ^> • There-

fore, it is vacuously true that all TfE./f' vanish on V

whence for all f^>^, f
n
<^.JTL for some n. In particular,

1 €>C7» so //( = /JT • Thus, wc have shown:

Theorem 2*l\.i Gilbert's Tullstellensatz (v;eak for.i) : Let

/fl be an ideal of the ring jf'= k[X]; then.w#? without zeros

§3. Integral Closure : Letx/'be a ring (with identity, as

usual), and let jf be a sub-ring of the field K. <'c will

first define what is meant by the integral closure of yff^xi

K without using places; then we will 3how the interconnection

of this concept with that of places.
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Definition 3,1s An ele-;<.-i»t a6K lo called integral over

jf If a satisfies an equation oi tl-o type:

a
n + a, a

11"1 + . . . + a ' =
j. n

where all a.€£^/''.

The totality of elements oi* , integral over A? , is

called the integral closure of ./if in K. If, for ex?. ">le,

jtf = the ring of inte -err , anc F - the field of complex

numbers, then an element a satisfying an equation of the

above type is called an algebraic inte^f.r.

Now, let S denote the set of all -places of K whic:'

are finite on >^*(i.e., all places of \\ whose valuation

rin^s contain Jf)*

We prove, first, that:

Theorem 3*1 : If a ^ K is integral over^/^$ and if <^«r S,

then 4 is finite on a.

Proof : If <Ka) = oo , then ^t?)
= °» 3ince a satisfies

(3.1) a
11

+ a.a11"1
+ ... + & =

l n

where all a,^^/', dividing by an , we get

(3.2) 1 + a.i + ... + a i = 0.id n„n
a

Applying 4^3 to (3.2), we have

1 * <KD -

•which is a contradiction.
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Thus any place of K which is finite on^^is finite

on any element of K integral over U* •

Prom Theorem 3.1, we obtain the following:

Corollary 3.1 1 If P is a subfield of K, and if I\ iii al-

gebraic over F, and if 4 is a place of ft which is an iso-

morphism on F (i.e., a trivial place on P since the

valuation rinp of 4lF is F)# then 4 is an isomorphism on

K (i.e., a trivial place of X.)

.

Proof : \le can, of course-, view P as a subrinj;. of K, and,

since K is al ebraic over P, ail elements of K are integral

over P, so 4 i £ finite on all elenents of K which estab-

lishes the corollary.

Ve can also 3tate the corollary in a slirrhtly diff-

erent manner. If 4 is an isomorphism of P, then by the

extension theorem we can extend 4 to a olace of X which,

by the corollary, is a trivial place. Thus we can say!

any place trivial on F 1 p.s only trivial extensions bo K.

Now, we wish to prove ti.c. converse of theorem 3«1«

Actually, we v.ill prove more. Let S^ C 3 consist of those' o

places 4^S whose Kernel in sO* is a maximal ideal of -4f «

Theorem 3>2 : Let a ^ K, and suppose 4( a ) 4 oo for any

4 €l S ; then a is integral over <tf' (and consequently

4(a) 4 oo for any 4^3 by Theorem 3.1).

Pi-oof: If a » 0, then a^LUf and satisfies the equation

x = 0, po we are done in this case. Thus we may assume that
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a 4 °« Consider the ring <4f* * M [i) . The theorem will

be proved if we show that i is a unit of ^.^ f<>r this

would mean that a € 4f^ » ^(^} whence

a
o

+ alH
+ •- + a

r 7
where all a,6T X/^» Multiplying by a

r
# we get

„r+l _ „r - - aa - a a - ••• - «L, = 0,o r *

so a is integral over XTm lience, we must just show that

i is a unit of jf^ • Suppose = is not a unit of -//• ; then
a 2. a. l*

the idea? i >^! is not ^/C . But we know that we can
a 1 1

find a maximal ideal jp of ^\ such that — Xf\ <Z. >JP •

Now consider the nap:

Jfy/Jp is a field w ich ire inject into jfy/JO , its

algebraic closure. Thus we have a homomorphic map of

the ring *&.* into an algebraically closed field, and the

homomorphism is non-trivial since Jp 4 4J\ 9 Extend this

homomorphism to a place cf of K, '.ince <J is finite on ^- -\>

4 is finite on Jj • But i €^JP, so 4(^) = °» ftnd, conse-

quently, <J(a) « co which Tives a contradiction if we ute

the set 5 in place of S in the statement of Tl-eorem 3.2.

V.'e must finally ahow that the *st S suffices, 'x'hc kernel

of 4 in ^C is >y]P \7hich is a maximal icleul. The kernel
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of $ in /f is Mf). )0 = */ i wo nuat 3hovr that
-tf-^

a rna?:i -

mal ideal. «;e will ehou thmt if a<r.//"', and a <£ A Q. , then

a has an inverse r\o&.4£. , i.e., 4f/*A is a field, and,

therefore, ^ is a maximal ideal. Thus if a £. -cT, end

a ^$.ap % then aE^l, and *&Jp . 'ince /^ is a iiaxi-

mal ideal of >/.^n, we know that a has an i.werte in 4f ,

mod Jy , i.e.,

(3.3) a(b
Q

+ b
x| + •.. + bi) s 1 mod JO •

a

But — s modJO , so (3»3) reduces to

ab = 1 mod y^ ,

i.e., ab - \<E. JP , and, of course, ab - \GLAT % so

ab - 1 €E jr . Kence ab = 1 mod^/. which establishes the

contention and finishes the proof of the theorem.

Prom Theorems 3.1 and 3.2, wc know that the inte.'jral

closure of^dT'in 11 con^i^ts of all those elo tent 1
, of I.

tr'liich are finite on all places of -; . Prom thl3, v/c obtain

i-unediateiy that the integral closure, \J¥ > ofM in K

for.ns a ring,

Nov;, let us show that the terminology integral

closure is justified, i.e., we wish to show that the

integral closure of L' in K is \J itself. Let S denote

the set of all places of K which are finite on C/ • If

<t> €L S , then 4 is finite on XT , and, therefore, finite
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on </f\ so <J €E S. Conversely, if 4 €L S, then 4 is finite

on C/ since(^ is the integral closure of /f in K, so 4 ^ s •

Thus 3 = S , and to see if any clement a belon f s to the

integral closure of C' in Y 9 we must juit test it on S»

Hence the integral closure of C^in K is precisely £'

•

Finallv, we observe that the integral closure C' of

sO in II can be tvritten as follows: O'* / i4T where the

intersection is ta- e-i over all valuation rin s 4f of K

such that jfO/f.
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Chapter III

Absolutely Irreducible Varieties

jjV, Introduction : Let V be an al^ebraio set over k, i.e # ,

V consists of the zeros in Jln of an ideal Jji of k[X],

Now suppose we replace k by a larger field F, still con-

tained in 1*2, and such that, over F,j"i has the usual

properties, i.e., IT. is an universal domain for F. Then

one can view V as an algebraic set over F. For we take

the ideal generated by/£ in F[X], i.e., F^ . This ideal

has the same zeros as UJCt because /^oF^t, so if an ele*

ment of jQ_
n annihilates Fj/Z. , then it surely annihilates

ATI , and, conversely, if an element annihilates JTL, then,

by the definition of P^l, it annihilates it, Thur V is

an algebraic set associated wxth the ideal F^tCPfX], or,

in other words, V is also an algebraic set over F.

Now suopose that V is a variety over k. If we

extend k to F as before, it is not necessarily true that

V remains a variety over F. To see this, we consider the

following example. Let k = Q, the field of rational

numbers, and let V * S tUl^? \ % i.e., the zero dimensional

variety consisting of the two points \/2. and -t/2, V

consists of the zeros of the ideal (X - 2), Let I
? =Q(>/2),

or, for that matter, any field containing /2, Then V,

over F, splits into two varieties <>J?.k){-j2 j ; since

now
j fz\ is a variety consisting of the zeros of the
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ideal (X'-/2)# and similarly \T^J is a variety consist-

ing of the zeros of the ideal (X + /§).

Definition 1,1 : A variety V over k is called absolutely

Irreducible if it remains a variety over any extension

field P of k.

In this chapter, we intend to consider absolutely

irreducible varieties and determine conditions under which

a variety is absolutely irreducible • Before proceeding

to this discussion, we want first to consider the follow-

ing problem: we notice in the example just given that the

variety over the extended field split into two varieties

of the same dimension; we want to show thct this is true

in general. We have also seen in Chapter I that the

product of two varieties is not necessarily a variety.

A/^ain, we want to show that the product splits into com-

ponents each of the same dimension.

32. Algebraically free fielCs : In order to prove the

above 3tated conjectures, we must introduce a new concept.

Definition 2«1 : Let E and P be two fields over k. If <y)

is a transcendence base of P over k, and if (y) i3 alge-

braically independent over E, then we say that P is alge-

braically free over E.

It can readily be seen that this is a symmetric

property, and we say sim;ly, for two such fields E and P,

that E and P are algebraically free over k.
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All fields that we will talk about are meant to lie

in Jl. we denote by EP the smallest field containing

both L and F, and we will denote the algebraic closure of

a given field by placing a bar over it. V/e want to prove

now the following important lemma.

Lemma 2,1 : Let 4 °s given place of E —^Xlc oo sucl- that

<|>L = 1. (i.e., the restriction of 4 to k).

I
,F

/

Moreover, let Z and P be algebraically free over k.

Then there exists a place
ty

of EF where 4IF
e lp* and

where 4 acts on CE, where (f £ is a field isomorphic to

E, as 4 does on E.

Proof ; Let/tf be the valuation rin<* of 4* and let (y) be

a given transcendence base of P over k. Extend 4 to

J? [y] "—>&- by lettin~ this map act on// as 4 does and

letting it take (y) —•> (y) (i.e., each component is left

fixed). Since P is algebraically free over 1., this map

is well-defined and, consequently, a honomorphism. Nov:,

by the Extension Theorem, we can extend this homomorpLi3m

to a place 4~ of 2F;T o
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4 : SF —>flU oo,

and clearly

f k(y)
= 1#

In particular, <L Is trivial on !:(y). But P is alge-

braic over k(y) -itid P is algebraic over F f
so P is al e-

braic over k(y). Applying Corollary 3»1 of Chapter II, we

know that 6 is trivial on P. i.e., an Isomorphism on P.

This isomorphism rasps P into the algebraic closure of the

image of k(y): consequently, into P« Thus

where -^ is an automorphism of F|.# \ (i.e., an automorphism

of P which leaves k(y) fixed).

Now extend this automorphism 1' to an automorphism

6 of W In the following manner: select a transcendence

base (x) of B over k and extendi to P(x) by letting

(x) —> (x)» This extended mto is obviously an automorphism

since (x) is independent over P. Now EP is algebraic

over P(x) and we have an automorphism of F(x), we can

extend this automorphism to an isomorphism of F(x)(a)

where a£'lF by the usual procedure of modern al -ebra.

We order all these, extensions as was done in the Inten-

sion Theorem, Applying Zorn's lemma to the inductively

ordered set, we obtain a maximal element which it is easy

See, for example, Van der VJaerden, "odern Algebra,
Volume 1, p. 108, Unn-ar Publishing Co.
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to see must be an automorphism of ffl, for otherwise we

could extend this maximal element to a larger field. The

interested reader should really supply the full details to

this argument.

Hence, v/e have extended f to an automorphism Cf of

W, and, of course,

", wmcn is cj.earj.y a p^ace

-1

Now, we define 4> = iQ
&~

» which is clearly a place of

EF. Also, <HF
= lp, so <Hp

* lp . Finally <H^E
= <Jd" , so

$ acts on (fE as 4 does on L, and the lemma has been

established in full.

We can now answer the first conjecture posed at

the end of section 1 of this chapter. Nanely,

Theorem 2.1 : Let V be a variety over k and let P be an

extension field of k svch that f\ is an universal domain

for F. If, over F, V splits into component varieties, then

all these varieties have the same dimension.

Proof : Let (x) be generic point of V over k, and such

that (x) is algebraically free over F, i.e., the trans-

cendental part of (x) over k is algebraically independent

over F. Such a choice is possible since Pi is an universal

domain for F. Let L = k(x), and let (£)£V; then (x) ->(£),

i.e., k[xl —>k[£] is a homomorphism. V/e know, by the

example in section 1, that we cannot conclude that

(x) —> (£) since, as we saw, -/2 is a specialization of
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Jz over Q but not over <%(/?)• However, let us extend

the homomorphism k[x] —*>k[£] to a place 4 of ~« Then

by lemma 2.1, we can find an automorphism <f such that

4 » 4 ^" is identity on F and acts on E = k(C'x)

as 4 does on E, nanely, ( <fx) -£-*(£)> and, by the proof

of lemma 2.1, we can insist that Cf leaves a trenscondence

base of (x) fixed. But (x) and ( <Sx) are equivalent

generic points of V over k since rf is an automorphism

which is identity on k; of course, (x) and (tf *) are not

necessarily equivalent over P since (S does not necessarily

leave P fixed. Therefore, (<fx) is now possibly the

generic point of another variety, and (£ } lies over F

in the component variety whose reneric point is (d x)

•

Now

dim
p (x) = dim

k
(x) = dim^tfx) s dimp(Cfx).

The first equality follows from the fact that (x) is

algebraically free over F; the second from the fact

that (x) and {(fx) are equivalent generic Doints over k;

and the third from the fact that <$ keeps the transcen-

dence base fixed. Hence, we see that all components of

V over P have the same dimension as that of V over k,

and the proof is completed.

Furthermore, we can now say that the number of

components that a variety splits into over an extension
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field is bounded since the number of possible C» s is

bounded, for 6 leaves the transcendence base of (x)

fixed, and, thus, can only act non-identically on the

algebraic part of (x), and, therefore from basic theorems

in modern algebra on the extensions of an isomorphism ,

we know that the number of (5's is bounded.

Finally, let us prove the second conjecture of

section 1.

Theorem 2.2 : Let V be a variety over k and W a variety

over k. Then if VXW over k splits into component

varieties, all of them are of the same dimension, namely,

dimV -KdimW.

Proof ; Let (x) be a generic point of V over k, and

let (y) be a generic point of W over k, and select (x)

and (y) so that they are algebraically free which is,

of course, possible by the nature of Pi • Suppose

(x) -£*>(£) and (y) -^ (tj), i.e., U^)€VxW, V'e

know that it is false that (x,y) -£-* (£,*)) since the

product of two varieties is not necessarily a variety.

Let us see what wc can achieve. Clearly, we can't

achieve (£,y) £U1» (£/{), for this would mean (y)^i-> (r^);

however, from the proof of Theorem 2.1, we knov; that we

# •

See van der Waerden, Modern Algebra, Vol. I, p. 108 and
W. 121-122.
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achieve

V

where <f is an automorphism , and where we must choose

(y) algebraically free from (£)•

Similarly , we know that we can't achieve

(x, 6j) '

' ^ (gjfl'y) since this is the same as

(x)
k*?yl (£), but we can achieve

where (f is an automorphism, and where (x) and (y)

must be algebraically free.

Thus, we have

(cf^tfy) -^(C^y) -^(€,7),

so

(tf'x^y) —*(C,^>,

and we can conclude as in Theorem 2.1 that each com-

ponent of the product variety is of the same dimension,

namely, dimV + dimVJ.

e3« Linear Pis jointne ss; In this and the following

sections of this chapter, we want to analyze absolutely

irreducible varieties. First, we want to obtain criteria

for a variety to be absolutely irreducible. To this

end, we introduce the concept of linear disjointness
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of two fields which is much stronger than being alge-

braically free.

All fields are f,?ain meant to lie infi. Ue define:

Defiui i lon 3.1 : Two fields 5 and F are called linearly

disjoint over k if elements qt# •••»%,£*' are linearly

independent over E whenever they are linear 1 7 independent

over k.

First, ve wish to show that this is a symmetric

property. Thus let E and F be linearly disjoint, and

suppose PT,«»«>Pm^-E are linearly independent over k.

V?e v;ish to show that they are linearly independent over F.

Suppose this is false; then

Vl + •" + ampm " °

with all a €P and non-trivially (i.e., not all a = C).

Let ^^ t •••,6l) €.F be linearly independent over k, and

such that

a
1
,...,amCk<01

+ ... + kCc>p .

Then

a
i
= 21 a

iva> v
V=l

m
where all a. a k. Since T^ ajPi

= °» we 6et

r m

^i
(

^i
a
ivpi

)w
v " °
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m
where JP' aiv^i^"^ ^or a^ v * ^ince tne **•> f s are Inde-

pendent over k and since E and P are linearly disjoint,

we get

m

~1
aiA 3 °

for all v # But the P T s are linearly independent over k.

Consequently, a. = for all i and v, which implies that

all j = which is a contradiction, and the proof is

completed.

It is immediately apparent that if two fields

are linearly disjoint, then any two subfields of then

are linearly disjoint.

Now, we want to see if there is an easy criterion

for two fields to be linearly disjoint, V*e first show;

Theorem 3*1 ? If P and E are linearly disjoint ovesr k,

and E and P are algebraically free over k, then E' and P

are linearly disjoint over k.

Proof:

Construct a place <\'.E —^Icvoo

which is identity on k. This

can clearly be done b^ applying

the Lxtension Theorem to the

homomorphism k —> 5c where i

is the injection map. Since

L and 7 are algebraically free,
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we can construct 4 &nd <$ according to the proof of

lemma 2.1 such that <L
I

3 4 and 4,J * * •
It? °\V

Suppose that

(3.1) P^ + ... + p^ =

where all P*^E, and not all p. = 0, and where all a.€P

and are linearly Independent over k. Let be the

valuation belonging to the place 4rt
. L*t» say#o

lpx l
= Max (|p L) 4 0.

v
v

From (3.1) 9 we get

Po P
(3.2) «! +

pj
a2

+ — +
PJ Si" °

Pil Pl •
where, for all i, £- < 1 but this Implies that *= ^ «£/,

1
Pi

1

the associated valuation ring. Hence 4~(— ) 4 oo for
Pi

all i. Applying 4 to (3.2), we get

(3.3) rf(a
x ) + \2

<f(a
2

) + ... + \^(\) s

where all X,^.!:. Finally, applying d to (3.3) we have

(3.10 1 -c^ + (f'
ml

(\2
)a

2
+ ... + cr

"1Um )am
= 0.

But 0*1
: Ic —*Ic, so all the coefficients of (3«U) belong

to 1c, and not all are 0, but this contradicts the fact

that F and Ic were assumed linearly disjoint over k.
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Next, let us see if there is a good criterion for

E and P to be linearly disjoint. If k is algebraically

closed in P (i.e., F contains no elements algebraic over

k other than k itself), and k is of characteristic 0,

then we can show that F and Jc are linearly disjoint*

If k is not of characteristic 0, then we must add another

condition, namely

i

Theorem 3*2 : If k, of characteristic p, is algebraically

closed in F # and if P and k ' p are linearly disjoint, then

P and E are linearly disjoint.

Proof ; We first observe that whenever a-,...,a £F

are linearly independent over k, then a?,«««,cip are also

linearly independent over k. For if

c,a? + ... + e ap =ix n n

with all c^€k and not all c* = 0, then

o*/pa. + ... + cjAi =11 n n

where all o^P€kly/p and not all c^/p « 0, but this

contradicts the fact that k ' p and F are linearly disjoint.

Now suppose p,, ...,p clc, and suppose a-,...,a eP

are linearly independent over k and such that
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with not all 0, * 0. Then we have

P? «5 * ... (g aP -

8 8

where a? #...#c£ are still linearly independent over k

by the previous argument. By taking s big enough we can

ns
assume that all

(3
J are separable with respect to k,

Thus, changing notation, we can assume that Pn, •••»£_

are separable, and now the proof proceeds as in the case

of characteristic 0. Namely, the field k(£L,...,P ) can

be generated by one element x$ !•©•# k(P-,.«.,Pn )
= k(r)«

Thus we have

(3.5) g^r)^ + •••&n(r)*n
s o

where the g, are polynomials in y# ftnd where, for all i,

deg«g,(x) < deg«Y« Of course, (3*5) can be viewed as an

equation y satisfies over P, and it is not possible for

all coefficients to be zero since the a's are linearly

independent over k; thus we get

(3.6) deg.pY < deg.
kY

where deg»„ indicates the degree over P. Now we will

show that (3.6) yields a contradiction. Let P « Irr.(Y*k)
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(i.e., the irreducible equation satisfied by y over k),

and let Q « Irr.(r#P). Then Q(x) |P(x) properly by (3.6).

But this implies that all roots of Q(x) are algebraic

over k, and, consequently, the coefficients of Q(x) are

algebraic over k since they are formed by algebraic

combinations of the roots. Hence the coefficients of

Q(x), which belong to P are algebraic over k and, there-

fore, belong to k. This plus the fact that Q(x) |P(x)

properly implies that P(x) is not irreducible which is

a contradiction, and the theorem has finally been

established.

We will now apply these results to the question

of when a variety is absolutely irreducible.

Let V be a variety over k with the generic point

(x), and the prime ideal ^-i , i.e.,
XV

1fx\
* }f(X)|f(X)ek[X] and f(x) = 0} .

We want to see what y • = If (X) |f (X)£F[X] and f(x) * o}

is. That is, we want to see what the connection between

X^
x j

an<i>^T| * s * under the assumption that P and k(x)

are linearly disjoint over k.

Suppose f(X)£_ jfi.x , so f(X)€F[X], and f(x) 0.
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Let ai #•••»% De tne maximal number of coefficients of

f(;0 which are linearly independent over k. Then all

coefficients of f (X) are linear combinations of the <u

with coefficients in k. This leads to a formula:

f(X) « a^tt) + ... + cy*m(X)

where all <f1
(X)e.k(X]. Now

f(x) « a^U) + ... + am4ro
(x),

but F and k(x) are linearly disjoint; whence, each

<J 1
(x) « 0, i.e., 4 1

(X)^^ X |
. Thus f(X)€:^ x |

P,

and we have -4* x |
<C/4^X |

F« Trivially, we have

(3 - 7)
t*\*'f*tf-

Especially, >^-x j
and ^ x |

have the same zeros; hence,

V is also a variety over P. Also, (3.7) is equivalent

to the fact that ^--.i has a basis consisting of poly-

nomials in k[X]» The implication one way is trivial

since if ^x j
* <j£ x j

F, then it suffices to have a

basis for ^ x j
and P.
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For the converse , we consider In general an Ideal

ftCF[X], Lettffc sfitOkW, so #L
o
C0fc # Suppose

tfit has a basis in k[X]. Let ^(X), ...,i|>
r
(X) be a busis

of% ; then t\(X) f •••,$ (X) is also a basis for £fe , and

Now, employing the same notation, we have:

Lemma 3.1 ; Suppose^ * % P. Let <^(X)£ C%? f and

suppose that

£ (x)
J^

a
i
p
i
(x)

where the a* are linearly independent over k, and where

the P*(X)€-k[X] (we have seen previously that such a

form can be achieved)* Then each ?AX)€. iJt 9 and hence

to *% o
.

Proof: We can write

(3.8) (£(X) * T~ PjQj(X)

where the Qj(X)£^
Q , and the Pj€P since #fc a t% JF*

We assume that n is minimal, i.e., of all such ways of

expressing (p(X), (3«8) is the shortest. Then the (3,

are linearly independent over k, for if not, we could

express u?(X) in a shorter form. Now, let us study
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(3 -9)
ft *iPlU) " 5Wx)-

Comparing coefficients, wo get a system of linear equa«

tlons with coefficients in k, namely

,

(3.10) L(pj) » M(a
± ).

Of course, the system (3*10) has one solution, but we

claim that it can f t have more than one solution, i.e.,

for given a. , we claim the system has at most one solu«

tlon, for otherwise the system

L(pj) «

would have a non-trivial solution. This non-trivial

solution would come from the case where all cu « 0,

i.e., from the case

zj: Pj^x) - o

.

but this would Imply that the p* are dependent over k

which is a contradiction. Thus the system (3.10) has

only one solution, so

where all a,,Ck« Substituting this in (3*9)* we have
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m m

£ olPl (X) - JT^^ a^X)

n
where T"" a,jQ,(X)gk[X]« But the o^ are independent

over k; whence

for each i which finishes the proof*

We saw previously that if F and k(x) are linearly

disjoint over k that then^ i * J^VI F » We a*6 now in

a position to prove the converse of this, namely:

Theorem 3*3 : If ^ x |

s ^ x \

F# then k^ ^^ F are

linearly disjoint over k.

Proof t If k(x) and P were not linearly disjoint over k #

then we could find elements a-, # .. f a 6iF which are in-

dependent over k but not independent over k(x), i.e.,

(3.11) a^U) + ... + an<Jn (x) =

where all <L(x)^k(x) and not all 4<(x) - 0. Clearing

the denominations in (3.11), we may assume that all

41
(x)ek(x]. Then
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and, applying lemma 3»1# we get that each $AX)€. *£-
x \

which means that each $Ax) m which is a contradiction*

Now let us apply the concept of linear disjointness

to the question of when the product of two varieties is

a variety* Suppose that k(x) and k(y) are linearly dis-

joint. We want to see how we can then express 4p tx v \ |
•

Let f(X,Y)€.^/ x \i , so f(x #y) = 0, and the

coefficients of f(X,Y) belong to k. Consider f(X,y).

Let <K(y),.*«4m(y)^.k[y] be the maximal number of co-

efficients of f (X # y) linearly independent over k. Then

(x,y) = 4x (y) ^ 1
(x) + ... + 4

ra
(y)^>

TO
(x)

where each
<fy ±

{X)€ k[X) . But
i

= f(x,y) ^(y) &
x
(x) + ... + <Jm(y) <j> mU),

and since 4^(y)#«««#4m(y) ar© linearly independent over

k, we get by the linear disjointess of k(x) and k(y)

that each Cp 1 (x)
= 0, so each

(
f

,

.i<
x)e

f«ik
-

Now put

g(X,Y) = f(X,Y) - (41
(Y)<b

1
(X) + ... + 4m(Y)^ ra

(X)).
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Then g(X,y) * 0. Write

g(X,Y) = T" |i(X)#(Y)

where ^i(X) ranges over the monomials of X (i.e.,

li(X) * X^Xj, ••• Xn
n

). Thea

nCXj^y) =
tTOc

which implies that ^(y) 0, so (Y)^ ^ y |
• Thus

g(X#Y)€k[X]^ y |
,

and, consequently,

Hence,

The reverse inclusion is trivial, for clearly any poly-

nomial of k[X]y<A I + ^tY]^ x i vanishes for (X) = (x),

and (Y) = (y)# Therefore, we have obtained

(3 -12) ^(x,y )lk
Bk[X]yylk

+lcCYl
f,|k
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Finally, let (x) be a generic point of V, which

consists of the zeros of ^ i , and let (y) be a generic
Mm

point of W, which consists of the zeros of AJl i • If

k(x) and k(y) are linearly disjoint, then we claim that

(x,y) is a generic point of VXW. For, since k(x) and

k(y) are linearly disjoint, (3.12) is valid. Thus

#*l k
C
f(xj)lk (J *~""k

and

/y'L ° ^.y)l.

so a zero of AP. , %i raust make all of <£ i vanish

and also all of 4A i vanish so it must be of the form

(4,>7) where (£)£V, and Of)€U, and, conversely, any

element of VXW is a zero for *£!- v \ |
• Thus

{(x,y)j
1ft**y>k TT VXW,

'k

so if k(x) and k(y) are linearly disjoint where (x) is

a generic point of V, and where (y) is a generic point

of W, thenVXW remains a variety.

Mow let us collect some of these results. Let V

be a variety over k, and let F be an extension field of
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k (withil.still a universal domain for it). We ask:

Is V a variety over P? We select a generic point (x)

in such a way that P and k(x) are algebraically free

which is, of course, possible by the nature off\ » Now

v/e must assume that:

1) k is algebraically closed in k(x),

2) k
'p and k(x) are linearly disjoint over k.

Then applying Theorems 3*2 and 3»1 we know tSu»t F and

k(x) are linearly disjoint over k, and, therefore, as

we've seen, V is a variety over F # Thus if the generic

point (x) satisfies conditions 1) and 2) (which are

independent of P since k(x) 0£ k(y) where y is another

generic point), then the variety is absolutely irreducible.

A variety having such a generic point i3 called a

regular variety , and the cleric point is called a

regular point .

If the ground field k is algebraically closed,

then conditions 1) and 2) are automatically satisfied

(since k
'p = k for k algebraically closed), so in this

case, all varieties are regular*

Let us now consider the produot of two varieties

V xv, Let (x) be a generic point of v, and let (y) bo a
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generic point of W, and choose them so that k(x) and k(y)

are algebraically free. If one of the factors, say, V

is regular, then k(x) is linearly disjoint from any field

of which it is algebraically free, so k(x) and k(y) are

linearly disjoint; then, as we f ve seen, VXW is a variety.

Thus if one factor of the product is regular, then the

product remains a variety.

Before proceeding to the next section, we want

to investigate a little more thoroughly the concept of

linear dis jointness; the results obtained will be applied

in the following section.

The first thing that we want to show is that linear

dlsjointness is transitive, l,e.

Lemma 3*2 : E and P are linearly disjoint over k if and

only if:

a) E and P are linearly

b) E and E F are linearly

£
disjoint over k and

%/ disjoint over E •
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Proof : Suppose E, P are linearly disjoint over k.

Then a) Is, of course, satisfied* Let us show that b)

is also satisfied* Let cu,.,»,a 6.E be linearly inde-

pendent over E • Suppose

(3.13) a^ + ... + a
ta
Am *

non-trivially, and where all A,€ E P. E P consists of

CP Y
the totality of -=

—

t
i where the sums are finite, and

v:here all p. P, ^.E and y„« Y,£F« Clearing denominators

in (3»13), we can assume that

Aj, - 71 P lwriv

where all Plv
£E and all Ylv

^P. Let y1 # • ••*Yy
€:2l be

the maximal number of linearly independent y< v
over k.

Expressing each y« v
in terms of them, we get

where all p4 V
^E . Now, since 2_ a

i
A
i

= °» we bave
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f

But the yv are independent over k, and J~ aJfr* €Z;

hence by the linear disjointness of £ and P, we obtain

? a4 piKiv

for each v. But the <u were taken linearly indeoendent

over E . Consequently |3, =* for all i and v, and this

implies that each A. = which is a contradiction*

Conversely, let us assume that a) and b) are

satisfied; we wish to show that then E, F aro linearly

disjoint over k. Let a, ,»»« # aYn
€F be linearly indepen-

dent over k. Suppose T~ *ia4 s ° non-trivially with each

6iCG* Let the maximal number of linearly independent

e. over E be e,,»..,e « Then e* * > g^e where each

gA
GE . Then we have

but, since the e.. are independent over E^. by condition
jx o* "

b), we get

n a
i«isi

°

for each iw Finally since the a4 are independent over

k, we get by condition a) that g, « for all i and ix
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which Implies that each e, s 0, and this gives a contra-

diction.

Next, we want to show that to establish whether

two fields are linearly disjoint it suffices to test a

basis. Namely:

Lemma 3.3 > E and P are linearly disjoint over k if and

only if a basis of P over k remains linearly independent

over E*

Proof : Let {(^j\ be a basis of F over k. If E and P are

linearly disjoint, then, of course, [<^]is linear inde-

pendent over E.

Suppose, conversely, that \u)) is linearly independent

over E. Take cu,...,an£F and linearly independent over k.

Then

a
i
s I>i,o^

<<)

where each a.co £.k and where the sum is finite. Suppose

=£ b
i
a
i

with each b-CE. Then

£ £VW " °
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.

which Implies that

£ b
i

for all U) In question since the CaJ are linearly inde-

pendent over E. Thus we get a system of linear equations

with coefficients a,w€k and unknowns b. €• E. Hence, if

the b* are non-trivial, we can also solve for them in

k» Call tnese solutions BT« Then we have T" La. =

which contradicts the fact that the a^ are linearly inde-

pendent over k, and the lemma is established in full*

If the F of lemma 3*3 should be the quotient field

of a ring >C/"containing k, then it suffices to test a

basis /cof of J^* For suppose a, ,«t»,a„ €F are linearly

independent over k. Let fcov be a basis of A/'• a
i
Smm^'
a
i

where a^, a* €.-£/# Suppose

r b lttl - o

a'
where each b*£Ej then JZ N""^ "• °# or 2Z biai " °

where each a^ <= ,6'"', so a^ » JZ ftia)^ with frjrj^-k* Thus

Vied*" " °»
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and, arguing as before, we get d\€ k such that Y~ F.a. =0;

hence Jj~ ^iai
= ° wn*cn * s a contradiction.

Slj.. Separably generated fields ; In analyzing sufficient

conditions for a variety to be absolutely irreducible,

one of the conditions we needed fulfilled was that k /l

and k(x) are linearly disjoint over k. In this section,

we want to see, in reneral, what P and k '** being linearly

disjoint over k means. The first theorem, in this respect,

which we want to establish is the following:

Theorem lul l If P and k ' ^ are linearly disjoint over k,

and if P = k(a) where a is algebraic over k, then a is

separable, and, conversely, if P = k(a) where a is

separable with respect to k, then F and k /l are linearly

disjoint over k.

Proof ; Supoose P = k(a), where a is algebraic over k.

Let P = Irr.(a,k), and let n * de^.P. Then l,a,...,a

is a basis of P/k. If P and k ' ? are not linearly disjoint,

then this basis becomes algebraically dependent over k '•

Hence, over k '**, a satisfies an irreducible equation

Q = Irr.(a,k1/P ) where deg.Q < deg.P. Now, (Q(X)) p^k[7j

and has a as a root. Therefore, P(X) | (Q(X)

)

p
. If ?U)



91.

were separable, then P(X) |Q(X) which Is a contradiction

since deg.Q < deg.P. Thus we have shown that if P and

k ' p are not linearly disjoint then a i3 not separable.

Now, suppose that a is not separable. Then P(X)

can be expressed as a polynomial In X^, namely, P(X) =

4(XP ) where deg.4 = |. But ^p {a) = since i(aP) - 0,

so extracting the p-th root we clearly get the result.

Thus l,a,...,an' p are linearly dependent over k ' p
, and,

consequently, P and k ' p are not linearly disjoint, and

the proof is completed.

Continuing in this manner, we now show:

Theorem lj..2 ; Suppose P = k(x) is 8 purely transcendental

extension (i.e., (x) is a transcendence base of P);

then F and k ^p are linearly disjoint over k.

Proof : P is the quotient field of ?f » k[x]Dk. A

basis of /J'/k is the monomials v. If we had J^ a
vv

s ^
v

with a £ k ' p
, then £ *Svp = 0, but the vp range over

5
distinct monomials. Thus each ap 0, so each a = 0,

and using the comment following lemma 3.3 of the pre- -

ceding section, we get that P and k ' p are linearly dis-

joint.

V'e observe at this point that k ' p and P are linearly
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disjoint over k if and only if k ' p and every finitely

generated subfield of P are linearly disjoint over k.

For if k ' p and P are linearly disjoint, then, of course,

any subfield of F and k ' p are linearly disjoint. Con-

versely, let k '^ and every finitely generated subfiold

of P be linearly disjoint. Let a^.-.jG g P be linearly

independent over k. Then

Hhere all p\ ' CP, so

CL-^f • • ** an€MP£ ••••»"
s '

** #,
"sIn

which is linearly disjoint from k '**; hence, cu,...,^

satisfy no linear equation over k '^j whence, k ' p and P

are linearly disjoint.

Thus in considering linear disjointness it suffices

to consider finitely generated subfields.

We nou introduce an important definition:

Definition l|..l ; P is called separably generated (over k)

provided plk is finitely generated, and if P has a

transcendence base (x) such that Flk(x) is a separable

extension.
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Consider, for example, k(x,y) over k where x and

y are transcendental elements with x = 3r-l> ftnd where

k Is oi characteristic two. Then k(x,y) over k(y) is

not separable, but k(x,y) over k(x) is separable.

The field k(x,y) over k where x and y are trans-

9 5 p
cendental elements with x = y + u (u£Lk and u + s ,

s€k), and where k is of characteristic two gives an

example of a field which is not separably generated.

This will be made immediately apparent after the next

two theorems.

Theorem U«3 i If P is separably generated over k, then

F and k ' p are linearly disjoint over k.

Proof j Let (x) denote a transcendence base of P such that

,1/p P/k(x) is a separable exten-

sion. Then k(x) and k ' p are

linearly disjoint over k by

Theorem lw2. Since P is a

separable extension of k(x)

and finite over k(x), P is

k / generated over k(x) by a

primitive element which is separable over k(x). Conse-

quently, using Theorem l|..l, we have that (k(x)) ' p and

P are linearly disjoint over k(x). But k^UJCUU) )VP.
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therefore, k ' p (x) and P are linearly disjoint over k(x).

Finally, applying lemma 3»2 of the preceding section,

we ,;et that P and k ' p are linearly disjoint over k.

Now, we contend that among the finitely generated

fields that these are all, i.e., if PA is finitely

generated, and P and k ' p are linearly disjoint over k,

then P is separably generated over k. Actually, we will

prove even more, namely:

Theorem h*k i Suppose P is finitely generated over k

where P = k(x) ((x) is not necessarily purely trans-

cendental) is a given finite generation. Suppose, also,

that P and k ' p are linearly disjoint over k; then P is

separably generated, and there exists a subset (y) of (x)

such that k(y) is purely transcendental, and P/k(y) is

a separable extension*

Proof : If (x) (x,,...,x ) is purely transcendental,

then we are, of course, done, so we assume now that

algebraic relations are satisfied by them. Let

Let P(X, ,...,Xn fek[X] be a polynomial of smallest total

degree such that F(x-,...,x ) = 0. 3uppose every

monomial, v, occurring in P with non-zero coefficients

is a p-th power; then P has the form: 4(X?,...,XP ) where
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4 has lower degree than F« Then

where 4 has coefficients in k 'P. But this means

that a linear relation holds between the monomial values

in the Xj with coefficients in k '**; hence, by the linear

disjointness, a relation between these monomials holds with

coefficients in k, but this contradicts the fact that P

is the lowest degree equation satisfied by the x,*

Therefore, some x«. say x. occurs in F with exponents not

all divisible by p* This means that x is separable over

k(x
1
,,..,xn_1 ). Now, either k(x

1 ,,.
# ,xn-1 ) is purely

transcendental! in which case, we are done, or, arguing

as before, we get that, say, X- * is separable over

k(x,, # ,.,x p)» Proceeding in this manner, the theorem

is established*

VJe defined separably generated fields only in the

case where F/k is finitely generated. If F is not

finitely generated over k, we can define it to be sep»

arably generated if and only if every finitely generated

subfield of it Is separably generated*

If F is an arbitrary field over k, suppose F is

separably generated) then all finitely generated subflelds
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P are separably generated consequently all P and k ' p

l/r>
are linearly disjoint. Conversely, If all P and k '*

are linearly disjoint, then all P are separably gene-

rated, so F is separably generated. Thus P is separably

generated if and only if P and k
'p are linearly disjoint

for all finitely generated subfields P
fl

of P.

Also we note that if an arbitrary field P is

separably generated, then all P are separably generated.,

so all F and k ^p are linearly disjoint, hence F and

k1/P are linearly disjoint. Conversely, if P and k ' p

are linearly disjoint, then all P and k ' p are linearly

disjoint; whence, all F are separably generated, so P

is separably generated. Thus Theorem !j..3 and its con-

verse are valid for an arbitrary field P, i.e., not

necessarily finitely generated over k.

§5. Fields of definition for an ideal ; Let K be a

field, and let Z?l be a proper ideal of K[X]. Then we

know that 5fc has a finite basis in K[X). We now ask

whether or not ftfc has a basis in k[X] where k is a

subfield of K.

Definition 5*1 ; k is called a field of definition for

tl.e ideal ££ if K£ has a basis in k[X].
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In this section, we want to relate the concepts of

linear disjointness and field of definition* We first

prove the following important theorem:

Theorem 5*1 : There is a smallest field of definition.

Proof : K[X] can be viewed as a vector space over K

with the set N = {vl of all monomials as a basis. &[

can also be viewed as a vector space over K, and, conse-

quently, K[X]/*% also can be looked on as a vector

space over K. It is certainly generated by $ m0£ g£ $ but

this is not a basis for K[X]/^£ since certain relations

may hold. Let M * {nJCN be a basis mod 5% of K[X]/'£# •

For the existence of such a basis, one needs to employ

Zorn's Lemma (see, e.g#, Jacobson, Lectures in Abstract

Algebra , Vol. II, Chapt. IX, Van Nostrand). Now, let

N = MUP where P = \n}9 Suppose rc^P; then n+%e K[X]/#fc •

Hence it can be expressed in terms of the basis M of

K[X]/£?t, namely:

* 5 J2 \ U.M-
(raod#fc)

u-
,H*

with a^
a€-

K # and where the representation is unique, and

where almost all a^ * (i.e., all but a finite number
tt, H '

equal 0).
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Now, let k be the field obtained by adjoining to

the prime field all such a„ . We show first that k^

is a field of definition. Let f£lC% ; then, since f

is a polynomial of K[X], we can write

f = £ b it + £ c a
it H

*

where all b .c ^K, and where almost all b^ and c eoual

0. Then

t = e v* - e s,^) + rv
but f£% and (it - F a_ u,)<£%, so T" d iieSfc, i.e.,

23 dM^S (raodC^).

Since Mmodt^t, is a basis of i>[X]/€\., we get that d * 0.

Hence

,

f *CV'-E s f|i
i*>.

Therefore, S>t has as a basis all (it - T" a_ ,,n.)€.Cfc where the

coefficients are in k which shows that k is a field ofo O

definition. Although all (it - T" a p.) do not consti-
^ U-

,M>

tute a finite basis for *-*% , we can easily get a finite

subset of them which do constitute a basis by employing

the Hllbert Basis Theorem.
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Now. let us show that k is the smallest field of
o

definition. Suppose k is a field of definition for &C

,

and suppose that f- , « ••«f_£k[X] constitute a basis for
x r

£% • Take a fl^P* Then n - £ ft
ir u.

^^t * eo

1C
O •nv ,g

i'i
+ ••• +gpfi

where all g«(X)€K[X]« Replace each non-zero coefficient

D °f £j(X) by an indeterminant, b , and denote the

corresponding polynomials by g*(x). Then

where X (b ), X (b ) are linear functions of the b with

coefficients in k. Now, consider the system of linear

equations

A^tb*) =0 for « 4 n .

This system has a solution b « b in K for then each

6 i
= g i*

Consequently, it has a solution in k. We

denote the solution in k by F and the corresponding poly*

nomials by g7. Then
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«l
f
l

+ — * Vr " E VF)lt + £ \i
(F)^

rc it
**

* + z: y*>i*.

but gx
f
x

+ . . . + gpf
pe £%. • Thus

K« S - ZZ \ t
(F)|i (mod &£),

and, by the uniqueness of the representation, we get

- y*> - \„*
Therefore,

but g,f, + ... + 5Lx>„£k[X]j whence a ,<Sk, and this
X J. ^P T

O* ^

is true for each n , so k Ck which completes the proof.

We can now easily show that k is finitely gene-

rated over tne prime field. Since^ has a finite basis

from k [X], let f.(X),...,fy(X) designate this basis.

Now adjoin to the prime field all the coefficients of the

f
i
(X). This cives a field, k,, which is finitely gene-

rated over the prime field, and where k,Ck • However,

since k, is clearly a field of definition, we must have
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k, 3k . Thus k, = k_, and the contention has been
l o 10'
established*

Hence, we obtain a refinement of the Hilbert Basis

Theorem for K[X] ; namely, we can obtein a finite basis

for an ideal, of K[X] where the basis is taken from k [X]

where k is finitely generated over the prime field*

Let C£ «>1P be a prime Ideal of K[X] f and let

(x) be a generic point of the variety determined by JO •

Denote byjvj #{?} *{*J tne result °f substituting

(x) for (X) in {v| , f \lJ , f%\ respectively. Since /^Vmod^p

is a basis of K[X]/^Q , we see that JT is a basis of

Kfx] over K, and also that

(5.1) ««£•»/
Now, let k be a field of definition for Jp •

Then £V*k[X] =^ where 10 Is a prime ideal of k(X).

But we also have that yp=4£ K, forJO has a basis in

k[X]; therefore, a basis of JP Is in^, and to get an

arbitrary element of ^0 , we must form f
1
(X)g,(X) +••• +

f
s
(X)g

fl

(X) where the g^Xje^, and the f^XjilW.
But f^X) = ]P o^'v, and multiplying g^X) by v does not
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take us out of <*•£-> and multiplying by a* ' leads Into

K>^ # Therefore, JO o^vk, and, consequently,^ defines

the same variety as jQ •

Let us now see what a basis of kfxj over k is*

I
vj = I^jO^ti} will certainly generate k[x] since ^vj

gives all monomials, but (5»D and the fact that all

a
n u.^^ since k is a field of definition show that the

% are unnecessary, Thus-fjlJ spans k[x] over k, and since

the £ are independent over K, they are independent over k«

Therefore, Vyil is a basis of k[x] over k. Hence, K and

k(x) are linearly disjoint since k(x) is the quotient

field of k[x], whose basis stays independent over K.

Thus we've shown

t

Theorem 5>«2 t If k is a field of definition for the

prime ideal jO of K[X], then K and k(x) are linearly

disjoint where (x) is a generic point of the variety

determined by ^0 •

Now let us show that the converse of Theorem 5*2

is true. Let (x) be a point and ^D the prime ideal

belonging to it in X[X], and let kCK be such that K

and k(x) are linearly disjoint. We wish to show that k

is a field of definition for JO

•
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If/* is the prime ideal belonging to (x) in k[X],

then, by the linear dis jointness, JO =[^ K which shows

thatyy has a basis in k[X], namely, that of ^, so

k is a field of definition.

Thus we can see the relation between the concepts

of linear dlsjointness and field of definition*
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Chapter IV

Projective Varieties

5 1, Introduction : In this introductory section, we want

to inter-connect the concepts of a homogeneous ideal, a

homogeneous algebraic set, a homogeneous point, and projective

varieties. We denote throughout by k, a given ground field,

and we add a new variable X^i (X) (X - X, , • •••, X ).
o o* 1* * n

Definition 1.1 : JK. is called a homogeneous ideal (of k [X])

if every polynomial belonging to it is a sum of homogeneous

polynomials each of th ich belong to j&C

To elaborate a bit further, we associate with each

^o ^n
monomial a degree, namely, if y « X . • • X , then deg.

[i * |x + ... +ji • Then a given polynomial, f, can be written
d

as f « V" ' f where each term in f is of degree v. If

v=o
^-Cis homogeneous, and if f £<e-c, then each f must belong

to >0<.

We observe, first of all, that the ideal U*% is homo-

geneous if and only if^K has a basis consisting of forms

(i.e., homogeneous polynomials). For if -^C is homogeneous,

take each member of its finite basis and write it as a sum

of homogeneous polynomials each of which belong to ^OX 9 so

clearly we get that -AX. has a basis consisting of forms.

Conversely, let>0\« (f,, ...,f ) where f, is a form of

degree d*. Let h e >0-C , then h = St/i+ ••• + Sp^r * Decom"

pose each g, into its homogeneous parts, i.e., g* = Y g.

,
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where deg. g^j * J. Thus h = T~ Sj4fi
where gj*^ is a

form of degree J + d*. Hence any homogeneous part of h lias

the form > fi>n^i€ XTC where tne sum is over those i,j

that give a certain fixed degree, so -4TL is homogeneous.

We now introduce the next important concept of this

section, namely, that of a homogeneous algebraic :;et #

Definition 1.2 ; A is called a homogeneous algebraic set

if (x) € A =^ (tx) £ A for any t^.TL>here (tx) =

Theorem 1*1 1 If -^M is a homogeneous ideal, then its assoc-

iated algebraic set is a homogeneous algebraic set.

Proof ; A basis of *?z. consists of f,, ..., f where each

f, is a form. The associated algebraic set, A, consists of

the zeros of^Or. Hence A consists of the set of zeros of the

f
A

. If (x) 6 A, then f
j[
(x) a for each i. Thus t

1
f
1
(x)

ss^f^tx) a for each i, so (tx)€ A.

The converse of Theorem 1*1 is not true unless we

specify the ideal; namely, let A be a homogeneous algebraic

set (possibly not obtained from a homogeneous ideal ), and

let o-t be the ideal defined by A; then ^z. is a homogeneous

ideal. To prove this, we let f£ jtx. $ and (x)€A. Select

any t fe IX such that t is transcendental over k(x). Cf course,

# For example, the ideal (x£, X, + X*) determines the alge-

braic set |(0)} which is homogeneous, but the ideal is not

LoTioffeneous.
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(tx) 6 A since A is homogeneous, Nov; decompose f into
s

its homogeneous parts: f = C~ r

f . Since f(tx) = 0, we get
v

8 V
t
v
fv (x) = ,

but this is an equation in t with coefficients from k(x)»

Consequently, all f
y
(x) « 0. Thus each f vanishes on A

since (x) was any point of A; therefore, each f £ jd%

which shows that -^t. is homogeneous.

The next concept which we want to introduce and to

inter-connect with the previous two concepts is that of a

homogeneous point.

Definition l»3 s (x) is called a homogeneous point if

(x) —> (tx) is a specialization for any tei\»

Let JS be the prime ideal determined by (x) vhere (x)

is a homogeneous point. Let te jTL be transcendental over

k(x), and let f ^ -^ • Then since f(x) 0, we get that

f(tx) = which implies that ^ tvf
y
(x) = where

J~~
f
y
(x)

V =0 V
is a decomposition of f into homogeneous parts* Thus we

must have f (x) = for each v, so f ^^ for each v which

shows that ^L is homogeneous, and, consequently, its variety,

V, is homogeneous. Thus we've shown that if (x) is a homo-

geneous point, then the variety of which it is a generic

point is homogeneous.
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Conversely, let V be a homogeneous variety and (x) a

generic point; then (tx)eV for any t£j"Lsince V is homo-

geneous; hence, (x) —•> (tx) is a specialization for any

tf-iv # Thus (x) is a homogeneous point*

Now, suppose that A is a homogeneous algebraic set;

we want to see what can be said about its component varieties

Let V be a component of A, and (x) a generic point of V,

Let t< A be transcendental over k(x); then (tx) 6 A, and (tx)

is a generic point of a variety W^a. Now, we claim that

(tx) —> (x), i.e., we must show that if f(tx) - 0, then

f(x) = 0. Let f V" f
y

be a decomposition of f into

homogeneous parts. Then

= f(tx) = <T~t
v
f
v
(x)

which implies that each fv (x) s 0, and, therefore, f(x) = 0.

Thus (tx) —> (x), but this means that VCWCA. But V is

a component of A, and is, therefore, not contained in any

bigger subvariety of A. Hence V = Y/, and (tx) is a generic

point of V, and if JUL is the prime ideal determined by (tx),

then since fv (x)
= O'for each v , we get that f (tx) e 0,

so each fv € JJL, whence, .^.is homogeneous, and, therefore,

V is homogeneous.

If in the homoeeneous space, fX. , we omit the

origin and view the ray (tx) as a single point, then we

Where f

€

#'
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obtain the projective space. A homogeneous variety, so

viewed, In the projective space is called a projective

variety . The dimension of the projective space Is one

less than that of the homogeneous space.

5 2* Solutions of homogeneous problems ; In this section,

we want to prove the important theorem due to Hilbert and

Zariski which yields necessary and sufficient conditions

for certain homogeneous problems to have non-trivial

solutions.

Theorem 2.1 (Hllbert-Zarlski ) i Let V be a homogeneous

variety, and let A be an algebraic set defined by an

Ideal /y\= (^i #•••#£-) where f. Is a form of deg. d- >

(consequently, A is homogeneous). Let (x) be a generic

point of V. Then V O A = £ o\ if and only if (x) is

integral (i.e., each x^) over k[f(x)] = k[f. (x), . ..,f
r
(x)].

Proof ; Suppose V A = ^oj , but suppose that (x) is not

integral over k[f(x)]. Thus there exists a place, &>
,

which is finite on k[f(x)], and, consequently, can be

taken as identity on k, but cp is not finite on some x,»

Let
|

| be the valuation associated with C£ , and say

K*.x UxJ) = I*J>1. Now

(2.1) f,(x)

*n
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Applying c£ to the left side of (2.1), we get since C£

is finite on k[f(x)] and since Cf (x ) * co . Applying ip

to the right side of (2.1), we get f
±(^( §-))# flnd this

x, n
can be done since each |

—
| < 1, and, consequently, L+ is

x
±

xn x
finite on each — • Hence, we havexn

.0 -f 1 (C^( £-))1 xn

x
i x,

where C£ ( — ) =* Si * s finite, and we can write fA 4 ) = 0,
n

and this is true for any i. Thus we have found a common

zero of these forms which is non-trivial since €_ * 1.n

Hence, (£ ) is a non-zero point of A. Furthermore, since

(x) is a generic point of the homogeneous variety V we get

that (x) —> ( g— ) is a specialization, and since <^ is

x,
n

finite on each _±. and a homomorphlsm on its valuationxn x
ring, we get that (£-) —> ( £ ), so (x) > ( € ). There-

xn

fore, ( £ ) £ V, and we have shown that ( € ) 6A^V where ( £ )

is non-zero« This gives a contradiction; whence, (x) must

be integral over k[f(x)].

Conversely, suppose that (x) is integral over k[f(x)].

Then for each i there exists an equation

(2.2) x™ + ^(fU))*?"1
+ ••• + a

Q
(f(x)) =

which implies that
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(2.3) xj + am-1 (f (X))X™-
1-f...+a

o
(f(X)) €^,

where -^ is the ideal defined by V. M is homogeneous;

hence, the homogeneous parts of (2.3) belong to M .

f. (X) ^(X) ....f (X)
r

is a term in the coefficient
1 c. r

of x\ i f
x
(X) ^(X) ...f

p
(X)

r
is a form of degree

v,d, + ••• + v d.. which we take equal m - s; thenii r r *

v v
(f

x
(X)

X
.... f

r
(X)

r
) X® is a form of degree m. We may

therefore, assume that (2.3) is of this form (i.e., homo-

geneous of degree m). That is, we split (2.3) into its

homogeneous components which belong to ML • Take the one

of degree m and call it (2.3)» Thus no a,(f(X)) has a

constant term. Now substitute for (X) any (£ )fcVOA#

Then the left side of (2.3) becomes equal since ( € ) €. V,

and since (£ ) € A, the left side becomes £?• Thus we have

C
m =0, so 5i s for any i; hence, (£) = 0, and the

theorem has been completely established.

Now, let us take the case V *sfL n with generic point

(x) = (x^, . .., xn ) wnere the x^ are algebraically inde-

pendent. Then V>A = A, so our question becomes whether

A (o), i.e., whether
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t
2m - o

f
r
(x) -

have a common non-trivial solution* Prom the theorem we

see that they have a common non-trivial solution if (x)

is not integral over kff(x)]. If (x) is not even algebraic

over k(f(x)), then (x) certainly cannot be integral over

k[f(x)] # If r < n, then since the degree of transcendence

of k(f(x)) is less or equal r vhile the degree of trans-

cendence of (x) is n, we see that (x) cannot be algebraic

over k(f(x))* Thus we have:

Theorem 2*2 : Given a finite number of for^.s of positive

degree. If there are fewer forms than variables, then the

forms have a common non-trivial zero*

§ 3* Intersection of varieties : We can see clearly that

the dimension of the union of two varieties is equal to the

maximum of the two dimensions. We have previously analyzed

the dimension of subvarieties and the dimension of the pro-

duct of two varieties* It remains for us to analyze the

dimension of the intersection of two varieties. We pro-

pose to do that in this section after extablishing some

preparatory material.

Let (x) be a generic point of the variety V, and
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suppose that (x) —> (x
1

) is a specialization. The

totality of all ?**' where g, h are polynomials of k[x]
h(x)

and where h(x !

) 4 is called the local ring of the

specialization. Clearly, the local ring of the specializa-

tion (x) —* (x) is the whole field k(x). We see further

that any specialization can be extended to its local ring,

and that if we extend the specialization to a place of

the field, then the place is finite on the local ring.

V is called normal at (x f
) if the local rin'r, ,*r,

of (x) —*• (xf
) is integrally closed (i.e., Integrally

closed in it3 quotient field). We will also say simply

that (x !
) is normal , V is called normal if it is normal

at each of its points.

Theorem 3*1 : Let (x 1
) be normal, and let^- be the local

ring of (x) —> (x 1

). Let (y) be any other point such

that (y) is integral over jr- , Suppose (x,y)—* (x',yf) , and sup-

pose that (x) ——> (x) —> (x')» Then there exists a (y)

such that (x,y) —> (x,y) > (x f

,y
! ).

Proof : We observe that (y) is algebraic over k(x), and we

extend k(x,y) to a field K which is normal over k(x) (i.e.,

we go to the splitting field; we note that K|k(x) need not

be a separable extension since k(x) is not necessarily of

characteristic o). Let G be the Galois Group of K|k(x).

(x) —> (x) is a homomorphism of k[x] —> k[x] C i"L«
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Extend this to a place (^ :K —>A ^co, Let<r€ G; then
«- to

U, (r Is also a place of K —

—

> £\xsCO , and x —> x —> x.

Thus^c": x —> x.

Now, consider the point (x,<£o- y). We must first see

if C(> cry is finite. Let ffl*- l fe xr$ since h(x) = =^
h(x* ) = 0, we get that h(x» ) + ==^ h(x) + 0. Thus fir is

contained in the local rin? of (x) > (x). Since y is

integral over /*r , we know that y is integral over the local

ring of (x) —> (x). Therefore, <r y is also integral over

this ring. Since C( is finite on this local rin/, and since

O" y is integral over this local ring, we r/et that^cxy is

finite. Hence, we know that (x,y) «*—> (x,^y) is a

specialization.

Let us suppose now that for no <r € G will (x,(^ T̂ y)

—> (x T

,y f
) be a specialization. Then for all cr

$ there

exists a polynomial g £r (X,Y) such that g^lx^^y) «= 0,

but g^U'^y 1

) + 0. Let

(3.1)

a(X,Y) »Tr(g>r(x*Y))P
V

T€ G

where p will be chosen large enough to make certain ele-

ments, to be introduced presently, separable. If k(x) has

characteristic o, we omit the p
v

in (3.1) • Now, let us

consider a(x,y). For any c-,

<fcra(x,y) = a(x,(^c7y)
v

- TT(g.j£,f y)) p

*
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since g *(x,A?<ry) = 0, but

a(x\y f

) = TT (e^(x ,

,y
,

))

pV
* 0.

Z r

Thus, we have that a>o~a(-x,y) = ^{x,iPcry) = 0, while

a (x f

,y
!

) 4 0, and from this, we will get a contradiction.

Let XT be any element of G; Then any Ta(x,y) has

the property:

<pcr(ra(x,y)) = f ((Tt)a(x,y) =

Now, let a* be an elementary symmetric function of the

ta(x,y). Then

(3.2) fcrisi^) =

since each fa(x,y) hns that property. In particular,

(3.3) f(*t ) = 0.

Since ci(x,y) is integral over jjr
9
each ta(x,y) is

inte^rcl over jx , and, hence, a. is integral over jf* But

era. = a. for any ore G viiich implies that a. belongs to

the ground field provided it is separable, but a. is

separable if p
v

is large enough. Consequently, a.€ k(x)

•

However, jjr is integrally closed in k(x) , so vie have that

h± (x)
• Thus a^^ =

-

x
i

x
-
i where &Ax ) f 0* and, therefore,

Gl (x) 4 0. But, by (3.3),

a
i
€ V

fh.±
(x) h

±
(X)
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whence hAx) = 0, vhich implies that hWx 1
) =0, Hence,

we know that a^fx 1
) = 0. However, a(x,y) satisfies the

equation

a
ra
(x # y) + a

1
(x)a(x,y)m

-1 + ... + am(x) =

where a,(x) * >
y

• Clearing denominators and noting

that (x,y) —*>(x f

,y
f

)f and that S^x 1

) + 0, we n;et

M.(x
t )a(x t

,y
,

)

m =

there n(x') + 0, so a(x f ,y') = which gives the desired

contradiction and finishes the proof of the theorem.

Before proceeding further, T re want to generalize

the notion of local ring and obtain same important con-

sequences.

Let R be an integral domain and j& any prime ideal

of R. The elements of R not contained in J& form a semi-

group (not containing o) which we denote by S^ • Ue form

now >ur which consists of the totality of |- where ac R, and

scr^ . We will denote /f^ also by S"r"R| jX^ is called
f T V 7

the local ring of *2 • This procedure clearly generalizes

"hat we previously did in the specific case: R = k[x] •

•*e v/ish to show first that there is a connection

between R and certain local rin^s, namely,

Theorem 3»2 : R = iftfa where a£ ranges over the maximal

ideals of R. °
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Proof ; 1) Clecrly, R c C\AfjL+ 8 ince any a£R can be

written as \ and 1 belongs to all S^- , so ^ belongs to all

t
2) Now, suppose that a CX^*, for all maximal HX.

This means that we can write a = *--2. where &IC 6 R and

b^ ^ aa for all maximal jlP. Let h be the ideal generated

by all b^- • lie contend that h = R. If this were not so,

then we can find a maximal ideal m ;>&• Hence, on the

one hand, b AO ci since o is the ideal generated by

all b^a, and, on the other hand, b^ £ 4J » and, hence

b, a 4 &• Thus 0= R, but l€R, so there exists

D
lj> 9 •••* ^^ anc* C i^ * •••> c ii? ^ R such that
71 ' s Jri 7 s

However, b^ a = a^ • Multiplying this by c^ , and

adding over i, and using (3.1+), we &et

a = ^» e K '

wnich concludes the proof of the theoreiiu

Now, let S denote any semi-group, not containing o,

and contained in R. Then we claim:

Theorem 3«3 > If R is integrally cloned, then S R is

integrally closed*
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Proof : Let a belong to the quotient field (note: the

quotient field of R and S R is the same, so there is no

ambiguity), and suppose a is integral over S" R. Then a

satisfies an equation of the form

s
l

sm

Multiplying by s » a, •.»« s
ffl

f S # we get

aam+b,am
~1+ ... + b - ,

j. in *

and multiplying this by s
m

, we finally get

(sa)
m + b

1
(sa)w

-1 + ... + b^™"1 » ,

which implies that sa 6 R since R is integrally closed.

Hence a 6 S*Tt •

As a special case of theorem 3*3# we get that if R

is integrally closed, then any local ring of A* is integrally

closed.

The converse of theorem 3*3 Is true also, but we can

prove an even stronger statement, namely: If all s"J^ R are
T

integrally closed for all maximal jlp , then R is integrally

closed. For let a belong to the quotient field, and let

a be integral over R. Then a is integral over each S*]J* R,

-1_ **

so a belongs to each S.rR. Hence, using Theorem 3«2, we

get that a € R. Thus we can say that R is integrally
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closed If and only if each loc^l ring of a maximal ideal

is integrally closed.

Now, let us return to the main considerations of

this section. We recall that a variety, V, was called

normal if it is normal at each of its points. VJe first want

to show that it suffices to consider only the algebraic

points. To show this, <.

re observe that the algebraic points

correspond to maximal primes, for let (y) be a generic

point of V and let (x) be any algebraic point of V. Let

xu, and jjl be the corresponding prime ideals. Then if c ^x •

Suppose there exists a j6?* such that M c^ Cif
w

; let

<^x
—>VX and /p*—>V*. Then VdVx :>V* and (y)—>(x)—> (z)

where z is a generic point of V'"", so f(x) = implies that

f(z) = 0, but if ^X C/A properly, then ther^ exists a g€/£,

but Z4*fx »^»
& »$ S( z )

" Dut S(x) + 0. However, thi3 is a

contradiction, for since (x) is algebraic, every specializa-

tion is an equivalent generic point. Now, a variety V, with

generic point (x) is normal at each of its algebraic points if

and only if the associated local rings are integrally closed,

but, by the remarks after Theorem 3.3, and by the previous

remarks, this is true if and only if R = k[x] is integrally

closed, in which case V is then normal at all of its points

by Theorem 3«3«

Me wish to shew now that the entire space V = ,fl
n

is normal. Let (x) = (x,, ..., x ) where :the x. are alge-

braically independent be a generic point. To show that
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Si is normal, we must just show thet k[x] is integrally

closed. But k[x] is just the polynomials in n variables,

and, therefore, a unique faotorization ring# However, any

unique factorization ring is integrally closed, for let

| = aC k(x), where p, qek[x] and where we may asrume

that p and q are relatively prime since k[x] is an unioue

factorization domain. Now suppose that a satisfies the

equation

a
n + a,an-1 + ... + a,, *

i n

where all a. ek[x]. Then we have

p
n

+ a
;i

-p
n"1

q + ... + a
nq
n a 0.

Let n be a prime such that n/q; then ^/p
n

, which implies

that tt/p since we are in a domain of unique fectorization,

but this contradicts the fact that p and q are relatively

prime. Hence, it follows that no prime divides q, so q is

a unit. Thus a = pq € k[x].

Consequently, k[x] is integrally closed, and SI i8

normal.

If (x) is a generic point of V where the x. are

algebraically independent, then, as '»e»ve just seen k[x]

is integrally closed whence V i« normal; in particular, it

it: norrial at (x f
) where (x) —^(x 1

)* Also, let (y) be

integral over k[xj; then (y) is certainly integral over the

local ring of (x) —*(x !
)» Thus, by Theorem 3*1, we

can say: If (x) is such that all x. are algebraically

independent, and if (y) is integral over k[x], then if
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(x,y) —*(x',y. v
), and If (x) —o (x) —» (x») , then there

exists a (y) auoh that (x # y) —*> (x,y) —* (x
f

,y
f

)

.

Let the ideal (f^,...,fr ) determine tie algebraic set

km Instead of writing V A A where V is some variety, we

will also write V H (f1# ...,fr ) (i.e., V intersect the

algebraic set determined by (f-,..., f )).

Nov, let A be an algebraic .'jet, and let a£,, ..., jla

be the prime ideals belonging to the component varieties

of A. If A is a homogeneous algebraic net, then each AU.

is homogeneous since, as we»ve soon, each component of a

homogeneous algebraic set ia homogeneous. Also, i fe note

that there are no inclusion relations between the /?..

«ie wish to 3how that there exists a polynomial (fox»m of

positive degree in the case where A is homogeneous) not

contained in any of the Jf* % To do this, we first note

t>.at

for select i^G *4^ t
and n^ £ *4± ; rc

2 * k}z* and *2^ ^i'

etc. Then

7[
1

7i2
....r.1-1ii1+1 ....7i

8€y1 .... yi.iyi+i-«- ^ 8 »

and

^1*2 * #
* •*i-l1ti+l # *

# ,7Cs£ ^i

since A£* is a prime ideal.
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flow select g^e Jjiy .... ^#t.xVi+i* ,s "^a such that

g*^ /£, • If A Is homogeneous, g, can be s lected as a

form of positive degree, since we can make rc^Ttp,... forms

since the if* are generated by foiras. g* has the property

of being in each aJ> for J ^ i and not in /^j. Let

f = > g.
A (where \l, is chosen so as to make f a form

in the case uhere A is homogeneous). Then f ^ l&* for any

i, since f is a sum of terms all of .diich are in il. ex-

cept one. We observe that the previous »roof goo." through

provided that we have at least tiro prime ideals. If there

is only one prime ideal, then the contention is clearly true

except in the case in which the variety of this prime is

(o), for then every form of positive degree is contained in

the prime ideal.

Now, let V, be the variety of U.% then f £ U\ 9
for

any i, implies that V^ (f), for any i, where (f) denotes,

now, the algebraic set determined by the ideal (f). Thus we

have that dim (AH(f)) < dim A.

This result will help us in establishing the following

theorem:

Theorem 3.1;. : Let V be a homogeneous variety, and suppose

dim V = r, then each component of (VO(f)) has dimension

greater than or equal r-1 where f is a form of positive

degree*

Proof : We must prove if dim V ~ r, an:l if f is a form of

I>of itive degree, then each component of Vfl(f) has dimension
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greater than or equal r-l« Hence, we nay assume that

V<t(f), for if VC(f), the dimension statement is trivial.

Then dim (VO(f)) < r-1. By our previous result, we

know that we can find a form, fp, of positive decree such

that dim ( (V ft (f ) ) A (f^) ) < r-2. Continuing in this manner,

ire get that there exists forms of positive decree; fp, f~,

••• f_, where s < r, such that

dim (vof nr
2
n ,..nf

s ) = o,

setcing f = f-, we have that

VOffp f
2 , ...., f

s
) = (0),

since VfV(f,, fp, . ,., f ) is a homogeneous algebraic set,

so if it contained a point (x) \ (0), then it would contain

the whole ray (tx), for any t'cfl, and, consequently, would

have dimension greater than 0,
,T
e also note that we can»t

go below dimension by our orevious remarks in establish-

ing the existence of f ^ xfi., for any i.

Ve now want to show that we actually need r steps,

i.e., s = r. Applying Theorem 2.1 of this chapter, we

get that (x) is integral over k[f-(x), ..., f
g
(x)], where

(x) is a generic point of V. This, of course, implies

th t (x) icalgebraic over lr(f,(s), ..., f
g
(x)). But

dim (x) = r; therefore, the decree of transcendence of

k(f,(x), . .., f (x)) o -er k is greater than or equal r,
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so s > r. Thus 8 s r. Hence, we need r steps, so

dim (VO (f)) is at least r - 1, which tells us that at

least one component of V O(f) has dimension at least

r - 1 # Me must show, however, that this is true for each

component

•

Let us recapitulate what has boen done so far. Let

f = f,, and let (x) be a generic point of V. >/e have ob-

tained forms of positive degree: f,, •••, f such that

V O (f,, ..., f ) = (0).
* r

We then know that (x) is integral over k[y] where y, =

f,(x) i = 1, ..., r. Since dim (x) = r, and since (>.)

is algebraic over k(y), we knov; that dira(y) > r. Hence

dim (y) = r. Thus the y, are algebraically independent.

Now let (p)£ VO (f
x ), i.e., (x) —> (p), and

^(p) = 0. Consider the point (y,x) where (y) =(f(x)).

Then (y,x) —•> (f(p),p) since (x) ——> (p) is a speciali-

zation which sends f(x) —> f(p). Hence, (y) —> (f(p))

(This also follows from the fact that the y* are alge-

braically independent). Let (y) = (0,Vp, •••, yp ); tJ en

(y) > (?) > (f(p)) since the y2,..., yp
are alge-

braically independent, and since f^Cp) s 0. Thus we know

that there exists an (x) such that (y,x) —> (y, x) —

>

(f(p),p). Since (y) = (f(x)), we have (y) m (f(x)), but

y.^0, so f
x
(x) = 0. This means that (x) £ (f^. VJe alno
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have that (x) —> (x) since (y,x) —My,x). Hence, (x)eV,

and, therefore, (x)€Vn(f
1 ).

From (y) = (f(x)), vie get

r-1 = dim (y) < din (x)

,

so dim (x) > r-1. Thus we have conr-oructed an (x) such

that (x)(Vn(f,), and dim (x) > r-1. 3ince (x)—*-(p),

(p) is a point of the v riety of which (x) is the generic

point. Consequently, every noint of V n (f, ) lies in a

variety of at least dimension r-1, "hich finally completes

the proof of Theorem 3«^«

Before considering the general problem of the inter-

section of any tuo varieties, we must consider more closely

tl-e connection between the varieties we originally con-

sidered — affine varieties— and the varieties introduced

in this chapter —homogeneous varieties.

Let X = (X
1 , ..., Xn ), and let jf= k[X], and t^ k[XQ ,X].

With a polynomial f€>tr, we will a3-.ociaco a form f**€ Xs

in the following way: let d = deg f; then

X*f(<£-) = f*(x x >

o

is a form.

Now, let g be a form of L^ We will associate with

g a polynomial g
f €>r as follows;

g'(X) = g(l,X).
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It is clear that (f") = f , but the reverse procedure

Is not true; namely, suppore that f is a form of degree

d. Then f'(X) = f(l,X) is of degree d 1 < d. Hence

if
1

)* x2
f

«iir'

= x^-d
f(x ,x).

Let SK. be an ideal of /j\ then j&l shall be the

idenl in L^ generated by those forris f for which f'c/JL.

If (x) is any zero of /j\, and t£,fl, then (t,tx)

is a zero of jm* . To prove thi3, it suffices to show

that (t,tx) in a zero of the -cner.tors of JJX.* * If f is

one of the generators, then f\ jtK 9
so

f(t,tx) = t
d
f(l,x)

=td
f'(x)

= 0.

Now suppose tfaht (x ,x) is a zero of Ml~'"' and that

* + 0. If f€>ot, then f*i /**, since (f*)
f

=* f€/n.

Hence,

= f*(x
Q
,x) = x

d
f (iL)

o

which imolies that ^- Is a zero of JJ\*
x
o

Ve now su pose that V is an affine variety (i.e.,

V consists of the zeros of a prime ideal Jjb> of /jr)

of dimension r and with generic point (x) . Take t c .0-
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—> V •

and t algebraically independent over k(x)« Ve wish to

show that (t,tx) is a generic point of V where Jj£-

Let jljp be the prime ideal of Hf belonging to (t,tx)« VJe

must show that Jjl. - u^. •

1) Since, by the preceding discussion, (t,tx) £ V' , we

get that JUL* c ^ .

2) tn is homogeneous. For let F£ jlO-- , and let F =

F be a decomposition of F into homogeneous parte of
v

degree v» Then

= F(t,tx) - TT t
VF

y
(l #x),

V

which implies that each F (l,x) * 0, so, multiplying by

t , we get that each F (t,tx) = # But this means that

all F
y

€. A& 9 so ^£ is homogeneous* Hence, to show that

Ij^C A4- 9 we mxxst just show that if f is a form of +*£-* $

* * * -^ ^
then t t Ap • Now, f 6 -(£ where f is a form means that

f(t,tx) = m This implies that f(l,x) = 0, so f ! (x) = 0.

Hence, f ! 6 XP , whence f 6 ^^ •

Thus to an affine variety, V, of dimension r and

generic point (x), there corresponds a homogeneous variety

V", with generic point (t,tx) and of dimension r + 1.

Viewed as a projective variety, V has the same dimension

as V since the dimension of the projective variety is one

lower than that of the homogeneous variety.

Let V be an affine variety of dimension r, and
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suppose that f c/r # We must make the added assumption,

which was not needed in the homogeneous case, that Vfi(f) ^ p .

Suppose (p)cvn(f). Then (t,tp)€ V* for t € A, so (l,p)fV*,

and (l,p)£(f*), since f*(l,p) = f*' (p) » f (p) = 0, Also,

note that f is a form. Applying Theorem 3»k, r?a Get that

there exists a point (x
Q
,x)i V (f ) such that dim (x

Q
,x) > r,

and such that (x ,x) —->(l,p). Since x
Q 4 0, wo have that

(f)6V, and f^) = x^V(x
Q
,x) = 0. Thus (-5-) € VO(.f),

o
and dim (~-) > r-1. Furthermore, (~-) —*>(p), so we obtain

*o
"" x

o
Theorem 3*^4- in the case of affine varieties with the added

assumption that V A (f ) £ $ .

Finally, let us consider the general case of the inter-

section of any two varieties. Let V and W be varieties in

S\. with dim V = r and dim W » s. Then VxW is an algebraic
,^2n

set of it , and is of dimension r + s in each component. Let

(x) be a point of V and (y) a point of W; then (x,y) € VxW.

il oonsists, of course, of the totality of points

|(x
1
,...,xn,y1 ,...,yn )^ where %,** € fl. Let £± be the

diagonal set in ft ; i.e., /\ consists of the totality of

elements of £1 of the form {(3C^,...,x ,x^,...,x )| • ^ is

an algebraic set determined by the Ideal

Now, (VxW)nA = {(x,x)|(x)€V and (x)€V/| , i.e.,

(VxW)0A s {(x,x)|(x)€ VAW}.
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Applying our previous result n times, we get that

the dimension of (V x VO/")^ is greater than or equal

r + s - n in each component; whence each component of VOW

has dimension greater than or equal r + s - n, so

(3.5) dim(V.OW) > r + s - n

provided that VHv; $ <}.

This result is also true for homogeneous varieties,

since the case of homogeneous varieties is just a special

case of this, and, for homogeneous varieties, we need no

added condition since they always intersect; namely, they

always have (o) in common.

Now, let V and W be projective varieties of dimensions

r and s respectively. The corresponding homogeneous varieties

have dimensions r + 1, s + 1 respectively, and the whole

space dimension n + 1. Applying (3»5) to these homogeneous

varieties, we r
5
et that tneir intersection has dimension

> (r+1) + (s+1) - (n+1) = r+s - n+1 in each component. Going

back now to the projective variety, we get the desired result

for projective varieties. Thus (3«5) is true for projective

varieties if it i3 significant, i.e., in projective space,

if the right side of (3«5) is significant, then the two

projective varieties intersect, and (3*5) gives the rele-

vant information concerning the dimension of the inter-

section.
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Chapter V

Applications to Elimination Theory

5 Introduction ; We now want to apply some of the results

which we»ve obtained to elimination theory. We note that

the procedure could be reversed j namely, one can obtain

results in elimination theory independently of remits in

algebraic geometry, and then apply these results to alge-

braic geometry.

The central problem in elimination theory is to

determine what conditions must be put on the coefficients

so that a number of farms have a non-trivial solution.

Thus, let us assume that we are given positive integers

d
l*

d2* •*•• d
r # Let *1* f2* -##,^r

^e forma of degree

d
l*

d2* * * * * d
r*

an<^# finally, let X», X«, •••» X be the

variables of tlie forms* Denote the coefficients of

f
x

by (at

)

f
2
by (bi

)

f
r
by (e»)

We now view the forms as given by a point (a«, b 1
, •••, e f

)

In a space of dimension N (where N equals the sum of the

number coefficients of all the forms)* We take the subset

of the totality of all (a», b», ••*, e») such that the
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related forms have a non-trivial common solution* We wish

to show that this subset forms a variety* To demonstrate

this, we will obtain a generic point*

We pick one of the X,, say X 9 and write

f
l(
X) - a

ft
X^ + f*(X)

f
2
(X) = Vn2 + f

2
(X)

f_(X) = oJCn
r + f*(X).

r n n r

We will denote the coefficients of f,, fp, • ••, f by

(a), (b), ..., (e). We replace (at), (b« ),•••, (e» ) by

(a
n
,a), (b ,b), . ## , ( en# e ) so tnat our point in the space

of dimension N is now (a , a, b , b, • ••, e , e). Select

a, b, • ••, e algebraically independent over k, and choose

(x) = (x,, • ••, x ) algebraically independent over k(a, b,. # , e)

Then the desired generic point will be

rftx) fg(x) f*(x)
Pn

= (- -5— , a, - -j— , b, ..., - -3—- , e )

xn xn xn

We note, before proving the above assertions, that we could

have singled out any one of tne variables other than X •

This procedure would lead to equivalent generio points P,»

To prove the preceding assertions, we show first that

the forms with the coefficients
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f,*(x) f*(x)
(- ^ , a, • ••, - •* , e) « P have a common non-

1 r
n n

trivial solution* This is clear since

f,*(x) d,

^•--J— X^+f^X)
xn

* f„(x) d

xn

f*(x) d. „

fr«--V- Xn fr<X >

xn

have (X) * (x) + (0) as a coimuon solution*

Now. we must show that if Q = (a. a , B\ , S,»», eV, e)* n* * n* 9 w Xir

Is a system of forms

* *1
h « 5nXn

+ ^<X >

e_A + t*iK 5nX« + C<X >r n n r

which has a common non-trivial solution (x), then P«— Q»
* n

To prove this, we assume, at first, that 5L 4 0» Then, by

assumption,

a 5 X + ?*(x) =
n n x

SnV + f
r (5) " ?•
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so

a
n

« - -g-— ,...., en
- - -3 . Hence,

x 1 x„r
n n

r*(x) ?*(x) .
'

n n

Now, (x, a, b, • •», e) —«> (x, a, S, •••, e) is certainly

a specialization since (x, a, •••, e) are algebraically

independent. However, this specialization induces P -** Q,

which is the contention provided x 4 0«

In particular, we cet P —•> P. for all i. Since Q

yields forms having a non-trivial solution, some x. 4 0«

Then P 4 —^ <L so P^ —*• Qf and the contention has been
i w n *

completely established.

Finally, we must show that if Q is a specialization

of P that then Q comes from a set of forms with a common

non-trivial solution. To prove this, we »*ill simply show

that if a certain system of forms has a common non-trivial

solution, then specializing the related point leads to forma

with common non-trivial solutions.

Thus, suppose that P £ives a system of forme f,

1 = 1, ,.., r which has a common non-trivial zero, (£):

f^S) =0, 1*1, .,., r. Let P —* Q, and let T
±
be the

forms belonging to Q. We want to show that the ?, have a

common non-trivial zero. We extend the homomor£hi«ni P —* Q

to a place <$ applicable to £. Denote by
| j the associated
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valuation. Assume that \e\ > |€4 I for all i. Then

f,«) - => -T-f4(C) => *«($-) s 0. Since |«£| < 1,
1

£
a
i

x x *n ^n
^n

we can apply <} to f4(§— ); therefore,
^n

*«(4(f-))
3 for all i.

^n

Thus we have obtained a common solution of the f , , which is

non-trivial since <KpS) =4(1) 1«
*n

Combining the previous results, we now have that the

points of this space of dimension N which lead to forms

having a common non-trivial solution form a variety with

PM as a generic point, „

* f
i
(x)

Since tAx) is a form of degree d*, we have a

f^(f-). Now,
**

3 w^#y2* *
•

* '^n-l'^n
s

=» (y)

where y,, y«, •••, yn * are algebraically independent over

k(a, b, •••, e). Therefore, we can say that P is a generic

point of the variety where

p <-ffJ<y)# »» - ^(y)» b, ..., -f*(y), e),

and dim ? < N - r + s where s = Min (r,n-l).

We contend that this is the precise dimension.
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Thus, we have to prove that dim P > M - r + s; i.e., we

must show that, say, f-^y), f^y)* ••» f
g
(y) ( s = Min(r,n-1))

are algebraically independent over k(a,b,.«,e). To this end,

we prove:

Lemma 1,1 : Let (a) denote elements which are algebraically

independent over k, and let (y) be algebraically independent

over k(a). Furthermore, let g^y), g?(y)#«« •»6
s
(y) (s<n-l)

be polynomials whose coefficients are in k[a]« Suppose there

is a non-2ero polynomial 4(X,Y) e k[X,Y] such that

4( a »g(y)) = 0» Then if one of the coefficients a- is special-

ized to a e k, and if g(y) is the corresponding specialisation

°f £(y)> find if, furthermore, (a» ) are the remaining co-

efficients (which are not specialized), then there exists a

polynomial, \|/ + 0, such that ^(a»,g(y)) = 0.

Proof : Write 4(X,Y) = 4(X',X
]L
,Y).

Then
<Kat, ai ,g(y)) - 0;

hence,

<Ka»,a,g(y)) = 0,

so it would seem that ty
» 4(X',a,Y) is the desired poly-

nomial, but it is possible that <fr(Xt,a,Y) is identically

zero. If <Kx«,a,Y) is zero, then <|>(X«,X
1
,Y) has the factor

X,-a. We write

4(X«,X
1
,Y) = (Xj-oj'VtXi^.Y)

where m is maximal. Then, since 4( a? »ai #6(y) )
s °# we

have
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(a
x

- c)
n
t(a»,a

1 ,C (y)) -

but (a- -a) 4 since a- is algebraically independent over k,

while a e k. Thus

so

(at,a,g(y)) » ,

and \jf(X»,a,Y) £ 0, so \|r 5s the required polynomial.

now, if f*(y), fgCy), • ••# fg(y) (« < 21-D

were algebraically dependent over k(a,b, • • . ,e) , then special*

izlng
+*t ^ *

d
l

f
x (y)

to
y-i

d «
fg(y) to ys

s
(s < n-1) ,

we would obtain by repeated applications of the lemma that
d
l

d
s

y, , .., y. (s < n-1) are algebraically dependent over k

which is a contradiction. Thus dim P = K-r+s, and o(t*

variety is of dimension N-r+s.

We define the codimenaion of a point or variety as N

minus the dimension of the point or variety, so codim P *

r-s, and the codimension of our variety is r-s«

If r < n-1, then s = r, and codim P 0, so our variety

is then the whole space, and we have another proof of Theorem

2.2 of Chapter IV,

If r > n, then s = n-1, and codim P = r-n+1. In

^articular, if r = n, then codim P = 1, and our variety
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is a hypersurface* Hence, In this case, there exists an

irreducible polynomial in the coefficients of f,, f?***' fn

which we denote by Rv(£t* • •» fn )# and which is determined

up to a factor of k, such that Rk (F,, • •• F ) = (where

?,, ... F are specialized forms) is a necessary and

sufficient condition for

r
x
-o

r
2

= o

fn
= o

to have a common non-trivial solution* R. is called the

resultant of the n forms. If there are more forms than

variables, then we get more than one resultant since a

variety consists of the points annihilating an ideal.

*ie note that in the case of linear equations R. is

the determinant.
d #

Now, we write f = e_X + f„(X): we contend that
n n n n *

R. depends on e (similarly, on a , b , •••)• For suppose

it did not depend on e_. Since R. must vanish for our
n k

generic point P (r = n now), this would mBan that

f^(y), • •» ^n.i(y) are dependent over k(a, b, .., e),

but we've already seen that this can't happen.

Let F^, . ., F have a common non-trivial zero. Then

multiplying F, by any element X, we see that XF, has the
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same zero* Similarly, \tlp where u- is any element has the

same zero, etc* But this means that our variety is multiple

homogeneous; i.e , it is

homogeneous in the coefficients of f,

ii •• ft tt tt f»*2

it ii ii i. ii
f»

r

(i.e., homogeneous in each separately).

Now, we can duplicate the proofs we did in Chapter IV

for homogeneous varieties in the case of multiple homogeneous

varieties. Instead of forms, we would now take multiforms,

i.e., polynomials in (a» ), (b 1 ), #•, (e f
) which are homo-

geneous in (a 1 ), (b»), .., (c !
) separately. We would

then get that if a variety is multiple homogeneous, then,

its defining ideal is generated by multi-forms. Thus we

get that the resultant is a multi-form, or, as we will

also say, a multiple homogeneous polynomial.

9 2. The resultant of n forms ; We want now to give a

method, at least in principle, for calculating R. • We

know that R^ is homogeneous in (e»)» We will show that it

is homogeneous of degree d^dp. . •<*„ n in (e»). Similarly,

it is homogeneous of degree dp^V'^n ^ ^
al ^» homogeneous

of degree did3«««<in
In (b»), etc.

t «
Let d^ = d^ + d, , and let g, be a generic form (i.e.,

with general coefficients) of degree d, and h, a generic

form of degree d, • Put ?, = g^h, , and suppose that f. is
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a specialization of f,(i.e., specialized coefficients of

f,)« We want to see if there is a relationship between

Rk
(r

i'
f2' ## 'fn ) and Rk(Si»f2»*'' fn )# Let {fk^l'^^^n^

(i.e., the generated ideal) determine the variety V, and

Rk (sl'
f2* #, 'fn }

?
<~ > * 9 ** (^) c % then for this <£>'

Rk (g1,?2»**^n ) " °' 1,e#
' &L

= °» *2
= °» ••' /fn

= ° have

a common non-trivial solution, so T\ = 0, f « = 0,..., f =

have a common non-trivial solution. Thus R, (f-^fp,..,r ) = 0#

Hence any (4) e V annihilates Rk (f;i> ^ ••• f
n^'

w^ence

Rk (?
l'

f2* •*' fn ) e
j
Rk (£l'f2' ## * fn )

'v •
so

Hk (g
1 #

f
2 * ••» f

n^ I
R
k.^l*

f2» •*' f
n^

# In the saxae manner *

we get that \(\, f
2 , .., fR ) I Rfc^i* f2' *** f

n* # But

R
k* 6l*

f2* *•» *n^
and R

k^
n
l f f2' ••» f

n^
are irreducible #

and they are distinct since the first depends on the coeffi-

cients of g-, while the second depends on the coefficients of

h.. , and these coefficients are distinct. Since we are in a

unique factorization domain we have

R
k^ sl»

f2* •*» f
n^

R
k^

h
l»

f2* '*' f
n^ '

R
(6i

h
i» *2* *** f

n^*

Now specialize f, into a product of linear forms. Then,apply«

ing the preceding result, we get that Rj
c
(f
1 # fp# ••# f„) is

divisible by d, resultants. Specializing fp into a product

of linear forms, we get that Rj^fi* £?' ••' f
n^

is divisible

by d,dg resultants. Continuing in this manner to fn_i> w©

get that Rj^f^ f
2 f ••» ^n ) is divisible by d

1
d2-»» dn-i

resultants, each of which depends on the coefficients of f •
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Therefore, the degree of R^Cf^, f
2 # ••» fn ) in (® f

)

is at least d,d ,«,d
-i • Thus we have obtained a lower

estimate*

To show that this is the precise degree in (e f ), it

suffices to give one element of the prime ideal of this degree*

That is, we must obtain an element F(a, a - b, b , ... e, ©,)* * n* n n

which is zero whenever the related forms have a common non-

trivial solution, and which is of decree di d2** -d
n-l

*n ^ e? ^»

for we then know that P is in the prime ideal, and, hence,

divisible by the resultant, so the resultant must have de&ree

less than or equal d
i
dp* ##dn-l *** ^ e? ^*

We now proceed to construct such an F. We set
n

d = > (d*-l)+l« Let \u range over all monomials such

d
ithat ix-x, has degree d. Let u-p range over all monomials

dp d2such that M-pXp has degree d and such that jApXp does

not equal any of the preceding monomials; similarly for

Ho# ••» Hn « We claim that in this way we have exhausted

all monomials of degree d. For otherwise, a monomial would

vl v
2

vn
have to be of the form x

i
xp n w^ere a^ v

i £ ^i*!,
n

so > v, < d, and our contention is established.

Now, let us calculate the number of u , which we will

denote by #(nn ).

u x n = x*x 2 t n"xx n
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where V, + Vg * ••• v * d, and where v^ < d^-1,

v < d -l, • .., v_ , < d ,-1 (so that the monomial did
d mm

c.
w w n-j. • n—

1

not appear earlier). Thus we see that

#(^n ) d
i
d
2
,,#dn-l '

and, clearly,

$.{\l- 9 |i«, ,., \l ) = the number of coefficients in

a general form of degree d.

We now express all f^tu (where f, is a form of degree

d, ) as a sum of monomials of degree d, where we write as

a coefficient for a monomial which doesn't occur • We do

the same thing for all foUp, etc » Thus we have

*l^l
= sum °^ monom^al s °? degree d

f2^2
s ti n « it n ii

f ii =
nrn

it ii ii ti it ii

The totality of terms occurring on the left hand side is

$.(\u 9 a.-, ••, u- ) in number. Hence, we can view the co-

efficients of the right hand side as a square matrix

( #(^1# ••# ^n ) * $(l*i# ••» M-n ) )• We claim that the

desired polynomial, F, is the determinant of this matrix*

Assume, for the moment, that we have shown that this poly-

nomial is not identically zero* Then let us show that this
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polynomial has the desired properties. Since the (e*

)

occur only in the f-^n# and since ^(y^) * d
i*2

#,#d
n-l # we

know that the (e» ) appear only in the last d
i
d2*'* <in-l

rows, so that the degree of the polynomial is d
i
d2* # * dn-l

in (e«)» Now, let us show that this polynomial is divisible

by the resultant. Suppose f,, fp • •, fn (specialized forms

of degree d,, .., d ) have a common non-trivial solution.

Substitute, on the left side of (2.1), in the f, these

coefficients and the solution. Then on the left hand side

of (2.1) we get all zeros. On the right hand side, we get

sums of specialized coefficients times monomials. Viewing

this as a system of linear equations (not identically zero),

we see that we have a system of linear equations with a non-

trivial solution. Hence, the determinant vanishes, but this

determinant is just the original determinant with specialized

values substituted. Thus we get the desired result.

Consequently, it only remains for us to show that the

determinant is not identically zero. If it were Identically

zero, then it would be zero for every specialized choice of
d- d2 d

the forms. Choose f, = x, , f^ = Xp , ••., f x n
• Then

the totality of terms on the left hand side of (2.1) is just

the set of all monomials of degree d. Thus the determinant,

in this case, is just

10
10
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so for this particular- choice, the determinant equals

1 4 °» which is a contradiction ana* completes the proof.

We now have a computational method of obtaining the

resultant; namely, calling the determinant that we obtained

D
t
, we may form D ,, Dhi# ••• by rearranging the forms in

(2.1) so that first f
1

then fp etc. occupy the last place.

We then would get that D
,
has degree cUd^...d ^ ^

af ^» ^b»

has degree ^d^.^.d in (b» ), etc. Also, we get that

D ff D.
f , .., D

t
are each divisible by the resultant, and

finally that the resultant has degree <*pd-...d *n ( a? )*

degree di^**» dn in (b ! ), etc. Finally, since the resultant has

the highest degree which any common divisor of D
f
, D,

r , .., D
r

can have, we get that the resultant is the greatest common

divisor of the polynomials D
t , D.

t , .., D .. We can also see

now that the resultant is independent of the field k since it

is the greatest common divisor of the polynomials D ,, Dvi# ..,

D . in the ring Z[a,a .b,b . • • ,e,e ] where Z designates the
e 1 * n* n * * n

ring of integers.

This concludes our introduction to the elements of

algebraic geometry, but the interested reader is strongly

urged to read A. Weil f s Foundations of Algebraic Geometry

(A. M.S. Colloquium Publications) for further considerations.
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