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I have not found anything in Lobatchevski's
work that is new to me, but the development is
made in a different way from the way I had
started and to be sure masterfully done by Lo-
batchevski in the pure spirit of geometry.

- letter from Gauss to Schumacher (1846)



Preface

In recent years, I have been teaching a junior-senior-level course on the classi-
cal geometries. This book has grown out of that teaching experience. I assume
only high-school geometry and some abstract algebra. The course begins in
Chapter 1 with a critical examination of Euclid’s Elements. Students are expected
to read concurrently Books I-IV of Euclid’s text, which must be obtained sepa-
rately. The remainder of the book is an exploration of questions that arise natu-
rally from this reading, together with their modern answers. To shore up the
foundations we use Hilbert's axioms. The Cartesian plane over a field provides
an analytic model of the theory, and conversely, we see that one can introduce
coordinates into an abstract geometry. The theory of area is analyzed by cutting
figures into triangles. The algebra of field extensions provides a method for
deciding which geometrical constructions are possible. The investigation of the
parallel postulate leads to the various non-Euclidean geometries. And in the last
chapter we provide what is missing from Euclid’s treatment of the five Platonic
solids in Book XIII of the Elements.

For a one-semester course such as I teach, Chapters 1 and 2 form the core
material, which takes six to eight weeks. Then, depending on the taste of the in-
structor, one can follow a more geometric path by going directly to non-Euclidean
geometry in Chapter 7, or a more algebraic one, exploring the relation between
geometric constructions and field extensions, by doing Chapters 3, 4, and 6. For
me, one of the most interesting topics is the introduction of coordinates into an
abstractly given geometry, which is done for a Euclidean plane in Section 21,
and for a hyperbolic plane in Section 41.

Throughout this book, I have attempted to choose topics that are accessible
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viii Preface

to undergraduates and that are interesting in their own right. The exercises are
meant to be challenging, to stimulate a sense of curiosity and discovery in the
student. I purposely do not indicate their difficulty, which varies widely.

I hope this material will become familiar to every student of mathematics,
and in particular to those who will be future teachers.

I owe thanks to Marvin Greenberg for reading and commenting on large
portions of the text, to Hendrik Lenstra for always having an answer to my
questions, and to Victor Pambuccian for valuable references to the literature.
Thanks to Faye Yeager for her patient typing and retyping of the manuscript.
And special thanks to my wife, Edie, for her continual loving support.

Of all the works of antiquity which have
been transmitted to the present times, none are
more universally and deservedly esteemed than
the Elements of Geometry which go under the
name of Euclid. In many other branches of
science the moderns have far surpassed their
masters; but, after a lapse of more than two
thousand years, this performance still maintains
its original preeminence, and has even acquired
additonal celebrity from the fruitless attempts
which have been made to establish a different
system.

- from the preface to
Bonnycastle’s Euclid
London (1798)
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Introduction

little after the time of Plato, but before Archimedes, in
ancient Greece, a man named Euclid wrote the Ele-
ments, gathering and improving the work of his pre-
decessors Pythagoras, Theaetetus, and Eudoxus into
one magnificent edifice. This book soon became the
standard for geometry in the classical world. With the
decline of the great civilizations of Athens and Rome, it
moved eastward to the center of Arabic learning in the
court of the caliphs at Baghdad.

In the late Middle Ages it was translated from Arabic into Latin, and since
the Renaissance it not only has been the most widely used textbook in the
world, but has had an influence as a model of scientific thought that extends
way beyond the confines of geometry. As Billingsley said in his preface to the
first English translation (1570), “Without the diligent studie of Euclides Ele-
mentes, it is impossible to attaine unto the perfecte knowledge of Geometrie, and
consequently of any of the other Mathematical Sciences.” Even today, though
few schools use the original text of Euclid, the content of a typical high-school
geometry course is the same as what Euclid taught more than two thousand
three hundred years ago.

In this book we will take Euclid’s Elements as the starting point for a study of
geometry from a modern mathematical perspective.

To begin, we will become familiar with the content of Euclid’s work, at least
those parts that deal with geometry (Books I-1V, VI, and XI-XIII). Here we find
theorems that should be familiar to anyone who has had a course of high-school
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2 Introduction

geometry, such as the fact (1.4) that two triangles are congruent if they have two
sides and the included angle equal, or the fact (1I1.21) that a given arc of a circle
subtends the same angle at any point of the circle from which it is seen.
(Throughout this book, references such as (1.4) or (II1.21) refer to the corre-
sponding Book and Proposition number in Euclid’s Elements.)

Many of Euclid’s propositions pose construction problems, such as (1.1), to
construct an equilateral triangle, or (IV.11), to construct a regular pentagon
inscribed in a circle. Euclid means to construct the required figure using only
the ruler, which can draw a straight line through two points, and the compass,
which can draw a circle with given center and given radius. These ruler and
compass constructions are often taught in high-school geometry. Note that
Euclid casts these problems in the form of constructions, whereas a modern
mathematician would be more likely to speak of proving the existence of the
required figure.

At a second level, we will study the logical structure of Euclid’s presentation.
Euclid’s Elements has been regarded for more than two thousand years as the
prime example of the axiomatic method. Starting from a small number of
self-evident truths, called postulates, or common notions, he deduces all the
succeeding results by purely logical reasoning. Euclid thus begins with the sim-
plest assumptions, such as Postulate 1, to draw a line through any two given
points, or Postulate 3, to draw a circle with given center and radius. He then
proceeds step by step to the culmination of the work in Book XIII, where he
gives the construction of the five regular solids: the tetrahedron, the cube, the
octahedron, the icosahedron, and the dodecahedron.

Upon closer reading, we find that Euclid does not adhere to the strict axiom-
atic method as closely as one might hope. Certain steps in certain proofs depend
on assumptions that, however reasonable or intuitively clear they may seem,
cannot be justified on the basis of the stated postulates and common notions. So,
for example, the fact that the two circles in the proof of (I.1) will actually meet
at some point seems obvious, but is not proved. The method of superposition
used in the proof of (1.4), which allows one to move the triangle ABC so that it
lies on top of the triangle DEF, cannot be justified from the axioms. Also, various
assumptions about the relative position of figures in the plane, such as which
point lies between the others, or which ray lies in the interior of a given angle,
are used without any previous clarification of what such notions should mean.

These lapses in Euclid’s logic lead us to the task of disengaging those implicit
assumptions that are used in his arguments and providing a new set of axioms
from which we can develop geometry according to modern standards of rigor.
The logical foundations of geometry were widely studied in the late nineteenth
century, which led to a set of axioms proposed by Hilbert in his lectures on the
foundations of geometry in 1899. We will examine Hilbert's axioms, and we will
see how these axioms can be used to build a solid base from which to develop
Euclid’s geometry pretty much according to the logical plan that he first laid out.
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We will also cultivate an awareness of what additional axioms may be required
for certain portions of the theory.

Our third level of reading Euclid's Elements involves rather broader inves-
tigations than the first two levels mentioned above: We will consider various
mathematical questions and subsequent developments that arise naturally from
Euclid’s presentation.

For example, the modern reader quickly becomes aware that Euclid does not
use numbers in his geometry. He speaks of equality of line segments, and a
notion of one segment being added to another to form a third segment, but he
does not mention the length of a line segment. When it comes to area (1.35 ff.),
though Euclid does not say explicitly what he means by equality of area, we can
infer from his proofs that he means a notion generated by cutting figures in
pieces and adding or subtracting congruent figures. He does not use any number
to measure the area of a triangle. So we may note with surprise that the famous
Pythagorean theorem (1.47) does not state that the square of the length of the
hypotenuse (a number) is equal to the sum of the squares of the lengths of the
two sides of a right triangle; rather, it says that the area of a square built on
the hypotenuse is equal to the area formed by the union of the two squares built
on the sides.

The absence of numbers may seem curious to a student educated in an era
in which the real numbers are a'l-powerful, when an interval is measured by its
length (which is a real number), and an area by a certain integral (another real
number). In fact some modern educators have gone so far as to build the real
numbers into the axioms for geometry with the “ruler postulate,” which says
that to each interval is assigned a real number, its length, and that two intervals
are congruent if they have the same length. However, this use of the real num-
bers at the foundational level of geometry is far from the spirit of Euclid.

So we may ask, what role do numbers play in the development of geometry?
As one approach to this question we can take the modern algebraic structure of
a field (which could be the real numbers, for example), and show that the Car-
tesian plane formed of ordered pairs of elements of the field forms a geometry
satisfying our axioms. But a deeper investigation shows that the notion of num-
ber appears intrinsically in our geometry, since we can define purely geometri-
cally an arithmetic of line segments. We will show that (up to congruence)
one can add two segments to get another segment, and one can multiply two
segments (once a unit segment has been chosen) to get another segment. These
operations satisfy the usual associative, commutative, and distributive laws, so
that we obtain an ordered field, whose positive elements are the congruence
equivalence classes of line segments.

Thus we establish a connection between the abstract geometry based on
axioms and the methods of modern algebra.

I would like to emphasize throughout this course how methods of modern
algebra help to understand classical geometry and its associated problems.
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For example, in the theory of area, one can formalize Euclid’s notion of
equality based on adding and subtracting congruent figures. However, we do not
know any purely geometric proof that this theory of area is nontrivial, so that,
for example, one figure properly contained in another will have a smaller area.
Euclid just cites Common Notion 5, “the whole is greater than the part.” But
unless we are willing to accept this as an axiom, we should give a proof. Such
a proof can be provided using algebraic arguments in the field of segment
arithmetic.

Concerning ruler and compass constructions, algebraic methods have led to
notable results. For example, Gauss made an extraordinary discovery in 1796,
when he used roots of unity to show that it is possible to construct a regular 17-
sided polygon—the first new polygon construction since Euclid’s constructions
of the pentagon, hexagon, decagon, and quindecagon. On the other hand, field
theory, in particular the Galois theory of finite field extensions of @, has pro-
vided proofs of the impossibility of certain ruler and compass constructions such
as the regular 7-sided polygon, the trisection of the angle, or the doubling of the
cube. For in the algebraic interpretation, one can construct with ruler and com-
pass only those points whose coordinates lie in successive quadratic extensions
of @, while the three problems just mentioned require the solution of cubic
equations. We will see, however, that these three problems can be solved if one
allows the use of a marked ruler. In fact, constructions using the marked ruler,
in addition to ordinary straightedge and compass, correspond exactly to the solu-
tion of equations of degrees three and four.

Euclid bases his treatment of similar triangles (Book VI) on a complicated
theory of proportion (developed in Book V) where ratios of given quantities are
compared by seeing whether arbitrary rational multiples of the one exceed or
fall short of the other. This method foreshadows Dedekind’s nineteenth-century
definition of a real number as a division (“Dedekind cut”) of the rational num-
bers into two subsets, namely those greater than and those less than the
given real number. The theory of proportion depends on Archimedes’ axiom,
which states that given any two segments there is an integer multiple of the
first that will exceed the second. Using the field of segment arithmetic men-
tioned above we can give (following Hilbert) an alternative development of the
theory of similar triangles that is simpler and does not depend on Archimedes’
axiom.

In developing the theory of volume of three-dimensional figures in Books XI
and XII, Euclid abandons, remarkably, the finite dissection methods used for the
area of plane figures. Instead, he applies the “method of exhaustion” attributed
to Eudoxus, which suggests the limiting process used to define the Riemann
integral. Gauss (1844) expressed his regret that such an infinite method should
be used for something so apparently elementary as the volume of a triangular
pyramid (XIL.5). Hilbert, in his famous list of problems stated in 1900, asked
whether this infinite limiting process was really necessary, and Dehn in the
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same year provided an answer by showing that a pyramid cannot be dissected
into a finite number of pieces and reassembled into a cube. In Dehn’s proof,
abstract algebra again provides a solution to a geometric problem.

While discussing the foundational and theoretical questions mentioned above,
we also have a practical side to this course. We make a point of carrying out many
ruler and compass constructions, for example, Euclid’s elegant construction of
the regular pentagon (IV.11), and carefully counting our steps to heighten aware-
ness of the process. At the same time we will find explicit expressions for various
lengths constructed using nested square roots to emphasize the connection with
field extensions of Q. When studying area, we will make explicit dissections of
figures to show equality, such as for the Pythagorean theorem (1.47) or Dudeney’s
brilliant dissection in four pieces of an equilateral triangle into a square. When we
come to Euclid’'s construction of the five regular solids, we will make models of
these, and we will also explore the thirteen Archimedean solids and the other
“face-regular” convex polyhedra made of regular polygons.

Also on the practical side, we will study results that belong to the domain of
“Fuclidean geometry” although they do not appear in Euclid’s Elements. Some of
these were discovered long ago, such as the fact that the three altitudes of a tri-
angle meet in a point, which was known to Archimedes, while others were
found more recently, such as the Euler line and the nine-point circle associated
to a triangle. The technique of circular inversion, which became popular in the
second quarter of the nineteenth century, provides an example of the modern
transformational approach to geometry, and gives a convenient tool for the
solution of classical problems such as the problem of Apollonius: to find a circle
tangent to three given circles.

Finally, the investigation of the role of the parallel postulate has led to some
of the most important developments arising out of Euclid’s geometry. Already
from the time of Euclid onward, commentators noted that this postulate was less
elementary than the others, and they questioned whether it might not be a con-
sequence of the other postulates. Two millennia of efforts to prove the parallel
postulate by showing that its negation led to absurd (but not contradictory) results
were considered failures until, in the mid-nineteenth century, a brilliant shift of
perspective, with lasting consequences for the history of mathematics, admitted
that these “absurd” conclusions were merely the first theorems in a new, strange,
but otherwise consistent geometry. Thus were born the various non-Euclidean
geometries that have been so valuable in the modern theory of topological
manifolds, and in the development of Einstein’s theory of relativity, to mention
just two applications. In this course we will discuss the beginnings of neutral
geometry, assuming no parallel axiom. We give an analytic model of non-
Euclidean geometry over a field due to Poincaré. Then we give an axiomatic
treatment of hyperbolic geometry based on the axiom of existence of limit-
ing parallel lines. The two approaches are brought together by constructing an
abstract field out of the geometry, and showing that any abstract hyperbolic
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plane is isomorphic to the Poincaré model over its associated field. Once again,
algebraic methods help us to understand geometry.

A note on references: Propositions in Euclid’s Elements are given by book and
number, e.g., (1.47). Hilbert’s axioms are given by initial and number, e.g., (I11)-
(I3) are the axioms of incidence. Books and articles are given by author and year,
e.g., Hilbert (1971), and listed in the References at the end of the book. Internal
references are given by section and number, e.g., (5.9) or (18.4.3). Exercises are
labeled, e.g., Exercise 4.5. An exception to this system is that within the exercises,
results of the main text are indicated by their full title, e.g., Proposition 20.10.

A note on diagrams: Most of the diagrams in this book are drawn by hand, in
keeping with the spirit of elementary geometry. I hope you will also draw your
own diagrams as you read.

As lines, so Loves oblique may well
Themselves in every Angle greet:
But ours so truly Parallel,
Though infinite can never meet.

- from The Definition of Love
by Andrew Marvell (1621-1678)



Euclid's Geometry

CHAPTER

n this chapter we create a common experience by
reading portions of Euclid’s Elements. We discuss the
nature of proof in geometry. We introduce a particular
way of recording ruler and compass constructions so
that we can measure their complexity. We discuss
what are presumably familiar notions from high school
geometry as it is taught today. And then we present
Euclid’s construction of the regular pentagon and dis-
: cuss its proof.

Throughout this chapter proofs are informal. We do not presuppose any
particular knowledge, and yet we assume familiarity with everything in high-
school geometry. The purpose of this chapter is to create a common base and
language with which to begin our more formal study of geometry in the follow-
ing chapters.

In the last section of this chapter we present some newer results that do not
appear in Euclid’s Elements but nevertheless belong to the subject of “Euclidean
geometry.”

Note: Reading this chapter should be concurrent with reading Euclid’'s Elements
Books I-IV, so as to understand all proofs and constructions. Exercises given
here will reinforce this reading.



3 1. Euclid’s Geometry

1 A First Look at Euclid’s Elements

When we first open Euclid’'s Elements to

see what is in this famous book, we find

familiar facts about the geometry of

lines, triangles, and circles in the plane.

I say familiar, because almost every

elementary or high-school curriculum

has some geometry in it, and what has

been taught for thousands of years and NN
still is commonly taught as “geometry”

is material from Euclid’s Elements.

We find, for example, that a triangle is called isosceles if two of its sides are
equal, and in that case it follows (1.5) that the two base angles of the triangle are
also equal.

We find the theorem (I1.32) that says that the sum of the three angles of a
triangle is 180°: « + f + y = 180°. However, we note that Euclid does not use de-
gree measure for angles. Instead he says that the sum of the angles of a triangle
is equal to two right angles.

We find the famous “Pythagorean
theorem” (1.47), which says that in a
right triangle the sum of the squares of
the legs is equal to the square of the
hypotenuse:

a? +b?=c b

We note, however, that Euclid does not
use algebraic notation to express this o
result. Instead, he shows that the area

of the square on the hypotenuse is

equal to the combined area of the

squares on the two sides.

In Book III, which deals with circles,
we find the result (I111.21), which I hope
will be familiar to most readers, that an
arc of a circle subtends the same angle
at different points of the circle from
which it is viewed.

Then in Book VI, which deals with
similar triangles and the theory of pro-
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portion, we find the familiar result o c

(VI.2) that a line parallel to the base of a

triangle will cut the sides proportion- b —>
ately, namely,a:b=c:d. / N

L
rd

Euclid’s Elements, written circa 300 B.c. is a systematic account of the geom-
etry and number theory of his time. What is remarkable is that these same
propositions still form the basis of teaching geometry today.

Historically speaking, most of these results were known long before Euclid.
Within the realm of Greek mathematics, the theorem on isosceles triangles is
attributed to Thales, and the theorem on the sum of the angles of a triangle and
the theorem on the sides of a right triangle are attributed to Pythagoras. Both
men lived three hundred years before Euclid.

Eves (1953) points out that before
the Greeks, the theorem of Pythagoras
was known to the ancient Babylonians
(1900-1600 B.c.). Also, there are reports
that the ancient Egyptians used a rope
knotted in twelve equal segments, which
could be stretched out to form a triangle
with sides 3, 4, 5, to construct right —
angles for laying out fields. 4

The great contribution of Euclid, for which he is justly renowned, is that he
organized the geometrical knowledge of his time into a coherent logical frame-
work, whereby each result could be deduced from those preceding it, starting
with only a small number of “postulates” regarded as self-evident.

To appreciate Euclid’s achievement, let us try to put this in perspective.

The most naive approach to geometry is to regard it as a collection of facts,
or truths, about the real world. Ancient geometry began as a set of useful rules
for measuring fields, laying out cities, building buildings, or constructing altars.

By the time of Euclid, we can detect two important changes in the percep-
tion of geometry.

One concerns the nature of geometrical truth. There is a distinction between
the real world with all its imperfections, and some kind of abstract or ideal exis-
tence that people in this world strive to attain. This point of view is evident in
the writings of Plato, who was born about one hundred years before Euclid.
Speaking of the geometers, he says (near the end of Book VI of The Republic):

Although they make use of the visible forms and reason about them, they are not
thinking of these, but of the ideals which they resemble; not the figures which
they draw, but of the absolute square and the absolute diameter, and so on. ...
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Thus geometry is elevated from the status of a practical science to the study of
relationships in this ideal existence, with a consequent shift of emphasis to the
mathematically exact solution of a problem as opposed to an accurate approxi-
mate solution that would be sufficient for practical purposes. Because geometry
engages the mind in contemplation of these ideal relationships, Plato also rec-
ognizes its value in education, for we find a little later (Republic, Book VII) the
following exchange:

The knowledge at which geometry aims is knowledge of the eternal, and not of
ought perishing and transient.

That, he replied, may be readily allowed, and is true.

Then, my noble friend, geometry will draw the soul toward truth, and create
the spirit of philosophy; and raise up that which is now unhappily allowed to fall
down.

Nothing will be more likely to have such an effect.

Then nothing should be more sternly laid down than that the inhabitants of
your fair city should by all means learn geometry.

Euclid’s geometry is the geometry of this ideal world in the sense of Plato,
with its emphasis on exact relationships. In this sense it can be regarded as
abstract mathematics. From the point of view of the modern mathematician,
however, Euclid’s geometry is still tied to the real world because it concerns the
unique ideal world of Plato’s philosophy of which the real world is a reflection.
For example, Euclid does not hesitate to use arguments from time to time (we
will look at specific cases later) that seem perfectly acceptable in view of our
experience of the real world, yet are not logical consequences of his initial
assumptions.

The modern mathematician goes one step further, by trying to make all as-
sumptions explicit and create a consistent mathematical structure that no
longer derives its validity from the real world. The “truth” of a particular result
in the real world is then no longer relevant. The only question is whether that
result is consistent with or can be logically deduced from the assumptions of this
particular theory. The modern point of view allows for many different equally
valid abstract mathematical theories, whereas for Euclid there was only one
geometry.

Euclid’s Elements also differs from the perspective of naive geometry in its
emphasis on proofs. It is no longer sufficient to say such-and-such is true, or
even to give many instances where its truth is evident. The Greeks since Pytha-
goras had been concerned with justifying their geometrical results, and Euclid’s
Elements is the ultimate expression of this trend, where all the propositions are
proved in one grand logical sequence.

So what exactly is a proof?
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The answer to this question depends A
on the context. Suppose, for example,
we are discussing one of those famous
hard problems that circulate informally
among amateurs, such as the following:
Let ABC be a triangle. Let BD and CE be
the angle bisectors at B and C. Suppose
that BD is equal to CE. Then show that
the triangle ABC is isosceles. This state-
ment is eminently reasonable, but a
proof using the usual methods of high- B g (r C
school geometry is surprisingly elusive.

With a hard problem like this, most people would accept as proof any dem-
onstration of its truth based on well-known results that can be found in books,
whether the methods used were from geometry, trigonometry, analytic geome-
try, or even calculus. A purist might increase the difficulty of the problem by
insisting on a purely geometric solution. Among experienced mathematicians,
there would be little disagreement about what constituted a valid proof, once it
was found.

In another context, a proof can be characterized simply as a convincing argu-
ment. Suppose you are explaining a result to another person who has a similar
general background, but who has not seen this particular result. For example, I
wish to inscribe a hexagon with six equal sides in a circle with center O.

I choose a point A on the circle, and
with my compass centered at A, and
radius AO, I mark off a point B on the c B
circumference. Then with center B and
radius BO I mark off another point C on
the circumference. I repeat this process,
always with radius equal to the radius of _
the original circle, to get further points
D, E, and F. Then I draw AB, BC, CD,

DE, EF, all of which have the same

length, equal to OA, by construction. I

claim that FA also has the same length,

so that ABCDEF will be an equilateral £
hexagon inscribed in the circle.

Why does this work? How would you explain this so as to convince another
person? To get a real-life answer, I put this question to my seventeen-year-old
son, then a high school senior. His first response was, “I have done it myself, so
I know it works.” “Yes,” I said, “from a practical point of view it works. But how
do you know this is an exact solution and not just a very good approximation?”

<—_—F
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After a few minutes of thought he
drew the lines from Oto A, B, C, D, E, F,
and then explained that OAB is an equi-
lateral triangle by construction. There-
fore, the angle / AOB at the center is
60°. The same is true for the next four 7
triangles BOC, ..., EOF. Thus we have
five 60° angles, so the remaining angle
[ AOF must also be 60°. Then the tri-
angle AOF having two sides the same

and the same central angles must be = F
the same as the triangle AOB, and so
FA = AB.

“Fine,” I said, “that is very convincing, assuming that your listener knows
that the angles of an equilateral triangle are 60°, and the angle of one total revo-
lution is 360°. It seems your listener would have to know the theorem that the
sum of the three angles of a triangle is 180°. What if he asked you to explain why
that is true?”

I mentioned a proof of the sum of
the angles by drawing a line parallel to
one side AB of a triangle through the
third vertex C. Then a = o’ because of
the parallel lines, and f = B’ because of
the parallel lines, so a+f8+y=0o +
B’ +y=180° because it is a straight
angle. “But then you have to know the-
orems about the angles formed when ©
a line cuts two parallel lines.” There
ensued a discussion about proliferation
of questions, like the endless “why”’s of a
three-year-old, and the danger of getting into circular arguments.

So we see that while the notion of proof as a convincing argument may work
well, it depends on who your listener is, and is also subject to the danger of infi-
nite regress if your listener is uncooperative. (At this point you might like to
look at (IV.15) to see how Euclid solves this same problem.)

A third and much stricter notion of proof applies to the writer of a mathe-
matical treatise such as Euclid’'s Elements. A proof must deduce the result in
question by a series of logical steps based only on those results that have already
been proved earlier in the book, and on those definitions, postulates, and com-
mon notions that have been set out as self-evident at the beginning and that
form the starting point for the logical chain of deductions. Even this notion of
proof is not absolute, however, because what constitutes an acceptable proof
for a given result will depend on where that result is situated in the logical
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sequence. So for example, Proclus says that Euclid devised an entirely new
proof of the theorem of Pythagoras (1.47). We can infer that he had to do so,
because he placed it at the end of Book I and therefore could not use the well-
known proof by similar triangles (cf. (20.6)), (which was most likely the method
used by Pythagoras), since similar triangles do not appear until Book VI.

It is for this logical structure, perhaps even more than for its mathematical
content, that Euclid's Elements is famous. The axiomatic method of sequential
logical deduction, starting from a small number of initial definitions and assump-
tions, has become the basic structure of all subsequent mathematics. Euclid’s
Elements is the first great example of this method. The importance of the axio-
matic method in modern times was emphasized at the turn of the century by
David Hilbert, whose work we will study later in this book.

And now, dear reader, it is time for you to open your copy of Euclid and
start reading. Abraham Lincoln, speaking of his scanty formal education, says
“He studied and nearly mastered the six books of Euclid since he was a member
of Congress.” You need not go so far as that, but I do urge you to read at least as
much as is suggested in the exercises below.

A Note on the Exercises in This Book

One of my students, in an essay discussing the suitability of Euclid’s Elements as
a text for teaching geometry today, suggested that it would be better to use no
text at all, so that students could have the excitement of rediscovering geometry
for themselves. If we lived in ancient Athens, when the study of geometry was
synonymous with reading Euclid’s Elements, then I would agree. But we do not
live in ancient Athens, and mathematics, including geometry, has developed a
great deal since the time of Euclid.

So I propose instead that we take Euclid’'s Elements as a starting point, a
touchstone to provoke questions and further investigation, and that we set out to
rediscover modern mathematics for ourselves.

My philosophy of mathematics is that you learn by doing. To study mathe-
matics is to do mathematics, not just to learn what other people have done.
Many of the results in this book I discovered myself. In almost all cases I
learned later that others had discovered them before me, but still I had the
pleasure of exploring new territory. As Descartes (1637) says at one point in
La Géometrie,

But I will not stop to explain this in more detail, because 1 would deprive you of
the pleasure of learning it yourself, and the utility of cultivating your spirit by the
exercise, which in my opinion is the principal benefit one can draw from this
science.

Therefore, the exercises in this book are designed (to the best of my ability)
to stimulate mathematical activity. There are very few routine exercises. Most
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require some puzzling, some experimentation. Many offer a challenge of expo-
sition: Once you understand what is happening, how do you explain it clearly in
writing? Many allow room for creativity. There may be several ways to give a
correct proof or a correct construction. In fact, one of the pleasures of teaching
this material has been to see the multitude of imaginative methods with which
students have solved the more open-ended problems. I encourage students to
work together in groups, to share ideas, and to defend to each other the solu-
tions they have found.

So perhaps the best way to use this book is to treat it as no-text. Go directly to
the exercises and start to work, collecting terminology and hints from the main
text only as needed!

Exercises

1.1 See what you can remember from high-school geometry. Make a list of definitions
and theorems. Do you remember the “side-angle-side” criterion for congruent tri-
angles? Could you prove it? Can you prove that the three angle bisectors of a tri-
angle meet in a point? Can you prove that the three altitudes of a triangle meet in
a point? Do you remember the definition of similar triangles and facts about them?

1.2 Read Euclid’s Elements, Book I, Propositions 1-34. Be prepared to explain the state-
ments and present the proofs of (1.4), (1.5), (1.8), (I.15), (1.26), (1.27), (1.29), (1.30),
and (1.32).

1.3 Discuss the structure of Euclid’s proofs.

(a) Proclus describes six parts of a theorem (see Heath (1926), pp. 129 f.): the enun-
ciation, which states what is given and what is sought, the exposition, which says
again what is given, often in a more specific form; the specification, which makes
clear what is sought; the construction, which adds what is needed; the proof, which
infers deductively what is sought from what has been previously demonstrated; and
the conclusion, which confirms what has been proved. Identify these parts (some of
which may be missing) in (1.1), (1.4), and (1.5).

(b) Discuss Euclid’s habit of presenting only one case of a proposition and leaving
the others to the reader. For example, in (1.7) what other cases should we consider,
and how would you complete the proof in those other cases?

(c) Discuss the method of reductio ad absurdum (arguing to an absurdity) as a
method of proof. How does this work in (1.6)? Can you think of a direct proof of this
result (i.e., without assuming the contrary)?

For the following Exercises 1.4-1.10, present proofs in the style of Euclid, using any
results you like from Book I, 1-34 (excluding the theory of area, which starts with (1.35)).
Be sure to refer to Euclid’s definitions, postulates, common notions, and propositions by
number whenever you use one.
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PROP, VIL TH. IV.

Si des extremitez de quelque ligne droite, on
mene deux autres lignes droites , fe rencon-
trans 4 un point ; des mémes extremitez , on
n'en pourra pas mener deux autres ¢gales a
icélles, chacuned la fienne, & de méme part,
fe réngonuans 2 un autre point.

Soitla ligne AB,des extremitez de laquelle foient menées
deux ligues dioites Ac & Bc (e rencontrant quelconque

E
aq c D Q
D
iyl
I 2 3
A BA BA B

point c. Je dis que des memes extremitez A & B, & de
Ja,méme part que €, on ne peut mener deux autres lignes droi-
res égales aicelles Ac & Bc chacune a la fienne, qui {e ren—
contrent a un autre point que ¢ ; Ceft a dire que fi de l'extre-
mité A on menela ligne Ap égaled Ac,& de l'extremité B
laligne 81 égale a e, il ne peut &tre que le poinc de ren-
contre D , {oit autre que le point de rencontre c.

Car i faire fe peur, que le Point de rencontre D, tombe ail-
leurs qu awpoint C : ot iceluy point D. tombera fur I'une ou
I'autre des lignes AC, BC ; ou dans le triangle ACB; ou hors
iceluy.

Premierement, iceluy point de rencontre D, ne peut étre {ur
la ligne AC, comme en la premiere figure : car il faudroit que
les deux lignes AD, & AC fuflent égales entr’elles, fcavoir eft
la yastie au tout; ce qui eft abfurde : partant la rencontre D;ne
ie F;ra point fur AC; ny auffi fur B C, 3 caufe de la méme ab-

urdite.

Plate I. A page from Henrion'’s Euclid of (1677) showing three different cases of the proof
of (1.7).

15
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1.4

1.5

1.6

1.7

1.8

1.9

1.10

1. Euclid’s Geometry

A rhombus is a figure with four equal
sides. Show that the diagonals of a
rhombus meet at right angles, and that
the four small triangles thus formed are
congruent to each other.

A rectangle is a four-sided figure with
four right angles. Show that the two
diagonals of a rectangle are congruent
and bisect each other.

The exterior angles of a pentagon, with
sides extended, add up to four right
angles.

If two right triangles have one side and
the hypotenuse respectively congruent,
then the triangles are congruent. (We
call this the right-angle-side-side theo-
rem (RASS). Note in general that “ASS”
is false: If two triangles have an angle
and two sides equal, they need not be
congruent.)

Show that the three angle bisectors of
a triangle meet in a point. Be careful
how you make your construction, and
in what order you do the steps of
your proof. (If you need a hint, look at
(Iv.4).)

The three perpendicular bisectors of
the sides of a triangle meet in a single
point. Be sure to give a reason why
they should meet at all. For a hint, look
at (IV.5).

Still using only results from Book I,
show that if AB is the diameter of a
circle, and C lies on the circle, then the
angle / ACB is a right angle.




1. A First Look at Euclid’s Elements 17

1.11 Read the Elements, Book III, Propositions 1-34. Be prepared to present statements
and proofs of (I11.16), (I11.18), (I11.20), (I11.21), (I11.22), (IT1.31), and (II1.32).

For the following exercises, present proofs in the style of Euclid, using any results
you like from (1.1)-(1.34) and (II1.1)—(II1.34) (still excluding the theory of area).

B
1.12 Let AB and AC be two tangent lines
from a point A outside a given circle. A
Show that AB ~ AC.
&

1.13 Let two circles be tangent at a point A.
Draw two lines through A meeting the
circles at further points B, C, D, E. Show
that BC is parallel to DE.

1.14 Given a pentagon ABCDE. Assume that
all five sides are equal, and that the
angles at A, B, C are equal. Prove that
in fact all five angles are equal (so it is
a regular pentagon).

P

1.15 Let two circles y and J meet at a point P. Let the tangent to y at P meet J again at B,
and let the tangent to J at P meet y again at A. Let 0 be the circle through A, B, P. Let
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the tangent to 6 at P meet y and ¢ at C, D. Prove that PC =~ PD. Hint: Draw lines
joining P and the centers of the three circles, and look for a parallelogram.

A

2 Ruler and Compass Constructions

One of the notable features of Euclid’s Elements is his constructive approach to
geometry. Many of his propositions are not theorems in the usual sense, that
under certain hypotheses a certain result is true. Rather they are construction
problems: given certain data, to construct a certain figure. For example, the first
proposition of Book I is to construct an equilateral triangle. We could regard
these constructions as existence proofs. But they are existence proofs of a very
special kind: They are constructive, and the constructions are carried out with
specified tools, the ruler (or straightedge) and compass. Almost one-third of
the propositions in Book I, and all of the propositions in Book IV, are construc-
tions. The constructive approach is even embedded in the initial assumptions of
Euclid’s geometry, because Postulate 1 says “to draw a straight line from any
point to any point,” and Postulate 3 says “to describe a circle with any center
and distance.” A modern mathematician would be more likely to say that there
exists a line through any two points, and replace Postulate 3 by a definition of a
circle as the set of points equidistant from a given point.

This constructive approach pervades Euclid’s Elements. There is no figure in
the entire work that cannot be constructed with ruler and compass,! and this

! For the three-dimensional figures of Books XI-XIII we must allow also theoretical tools that can
draw a plane through three given points and that can rotate a semicircle about its diameter as axis to
construct a sphere.
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limits the world of subjects to be discussed to those that are constructible. So for
example, in Book IV, where Euclid discusses regular polygons inscribed in a
circle, we find the triangle, the square, the pentagon, the hexagon, and the reg-
ular 15-sided polygon, all of which can be constructed. But there is no mention
of a regular 7-sided polygon, for example, and there are no theorems about reg-
ular n-gons such as one might find in a modern text. A modern mathematician
would never doubt the existence of a regular 7-gon: Just take angles of 27/7 at
the center of the circle, and join corresponding points on the circumference.
The question would be rather, is it possible to construct the regular 7-gon with
ruler and compass? But for Euclid, it seems that he cannot discuss a figure until
he has shown how to construct it. Look, for example, at (1.46), to construct a
square on a given line segment. In terms of what is needed for the proof, this
result could have been placed immediately after (1.34). Why is it here? Presum-
ably, because in the next proposition, the famous Pythagorean theorem (1.47),
he needs to talk about the squares on the three sides of the right triangle, and he
does not want to do this until he has shown that a square can be constructed on
any given line-segment.

This brings us to the thorny question of what exactly it means to say that a
certain mathematical object exists. For some of the structures considered by
modern-day mathematicians, this is indeed a difficult question. But for Euclid
there was no doubt. I believe we will not be far from the truth if we say simply
that in Euclid’s geometry only those geometrical figures exist that can be con-
structed with ruler and compass. C

So now let us examine more closely
how these ruler and compass construc-
tions work. Look at (I.1), for example:
to construct an equilateral triangle on a
given line segment. We are given a line
segment AB. We draw a circle with cen- A
ter A and radius AB, and another circle
with center B and radius BA. These two
circles meet at a point C (and also at
another point D, which we do not need).

With the ruler we draw the lines AC and
BC. Then ABC is the required equilat- %
eral triangle.

Thus the construction consists of a finite number of lines and circles drawn
with the ruler and compass, starting from the initial data, obtaining new points
as intersections along the way, and ending with the desired figure.

We will distinguish the construction, which is a series of applications of the
ruler and compass to create a certain figure, from the proof that the figure con-
structed has the desired properties. The construction can be described, and
makes sense, independently of any other constructions or proofs we may have
made previously. But the proof that a certain construction gives the desired
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result depends on its position in the logical sequence of propositions. In the case
of (I.1), there are no previous propositions, so Euclid’'s proof depends only on
the definitions, postulates, and common notions set out at the beginning of Book
I. His proof says, in substance, that AC = AB because they are both radii of the
first circle, and BA = BC because they are radii of the second circle, so AB =
AC = BC and hence the triangle is equilateral.

Next, let us look at (1.2). Given a
point A and a line segment BC, we must
construct a line segment AF originating
at A, equal to BC. Euclid’s method is as
follows: Draw AB. Construct the equilat-
eral triangle ABD using the construction
of (I.1). Then with center B and radius
BC draw a circle to meet DB extended at
E. With center D and radius DE draw a
circle to meet DA extended at F. Then
AF is the required line segment.

The proof is natural enough: BC =
BE by construction; DE = DF by con-
struction; DB = DA by construction, so
by subtraction AF = BE = BC as required.

But the question that immediately arises is, why did Euclid go to all this
trouble when he could have made a much simpler construction: Set the compass
points to the distance BC, then draw a circle with center A and radius BC,
choose F any point on that circle, and join A to F? We must infer from the pres-
ence of this construction that Euclid allowed himself to use the compass only in
its narrow sense to draw a circle with a given center and passing through a
given point. It could not be lifted off the paper and used to transport a given
distance to another location. So some people call Euclid's compass a collapsible
compass: when you lift it off the paper the points fall together and do not pre-
serve the radius they were set at. However, the function of this construction
(I.2) is to show that with the collapsible compass one can still accomplish the
same result, as if the compass had not been collapsible, namely, to transport a dis-
tance to another point in the plane. So from now on, we will allow ourselves to
use the compass in this stronger sense, to draw a circle with given center and
radius equal to any given line segment.

Counting Steps

To increase our awareness of the process of ruler and compass constructions, let
us make precise exactly how the tools can be used, and let us set up a way of
counting our steps as a measure of the complexity of the construction. The
number of steps needed for a construction is not really important of itself, but
by counting our steps we become more conscious of the process. This is one of
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the practical aspects of this course, to have some fun while we are pondering the
deeper theoretical questions.

In any construction problem there are usually some points, lines, or circles
given at the outset. The ruler may be used to extend a given or previously con-
structed line in either direction. The ruler may be used to draw a new line
through two distinct points either given or constructed earlier. The ruler may
not be used to measure distances, and it may not have any markings on it
(hence the frequently used term straightedge to emphasize that it may be used
only to draw straight lines).

The compass may be used to draw a circle with center a given or previously
constructed point, and with radius equal to the distance between any two given
or previously constructed points.

In addition, at any time one may choose a point at random, or subject to
conditions such as that it should lie on a given line or circle, or be on the other
side of a line from a given point, etc.

Each time a new line or circle is drawn, those points in which it intersects
previously given or constructed lines and circles will be considered to be con-
structed also.

For counting, we consider each use of the ruler to construct a new line as
one step, and each use of the compass to construct a new circle as one step.
Extending lines previously given or constructed, choosing points at random, and
obtaining new points as intersections do not count as separate steps.

Thus for example, the construction of the equilateral triangle (I.1) above
takes four steps:

The line segment AB is given

1. Draw circle with center A and radius AB.

2. Draw circle with center B and radius BA. Get C.
3. Draw AC.

4. Draw BC.

Then ABC is the required triangle.

When performing more complicated constructions, we will count all of the
steps required to perform the entire construction, so that each construction is
self-contained and independent of other constructions (though inevitably each
construction will contain elements of other constructions). This imposes a dif-
ferent notion of economy of construction from Euclid’s. For while Euclid in his
sequential development of the propositions finds it most economical to utilize
previous constructions, we will find that minimizing the total number of steps
will often lead us to different constructions.

Look at (1.9), for example, to bisect a given angle. The angle is given by a
point A and two rays I, m emanating from A. Euclid’s method is this: Choose B
on I at random. Find C on m such that AB = AC (1.3). Draw BC. Construct the
equilateral triangle BCD (1.1). Join AD. Then AD is the angle bisector.
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Euclid’s method is economical for
him because it makes use of previously
described constructions (1.3) and (I.1). If
we count the number of steps to carry
out this construction, we find seven:

Choose B at random on [ (no step)
Circle center A radius AB, get C.
Draw BC.

Circle center B radius BC.

Circle center C radius CB, get D.
Draw BD. L B
Draw CD. _ b

Draw AD, which is the angle bisector.

NoO kb=

If we are concerned only with making an independent construction for the
angle bisector, there is no need to draw the lines BC, BD, CD. Thus the con-
struction reduces to four steps. In order to prove that this construction works,
we might want to draw the lines BC, BD, CD and argue as Euclid did. The lines
then become part of the proof. But they are not part of the construction, so the
construction still requires only four steps.

For another example, look at Euclid’s construction (I.10) to bisect a given
line segment. He first appeals to (1.1) to construct an equilateral triangle, and
then to (1.9) to bisect the angle at its vertex. This is an elegant method, making
use of what he has done before. But in terms of numbers of steps, it is not effi-
cient. If we add the numbers of steps used in the two previous results, we get 11
steps. If we make use of points already constructed in (1.1) when we do the
construction of (1.9), this reduces to 9. But it is possible to give a direct con-
struction of the midpoint of a segment in only three steps (see Exercise 2.2).

A Note About Accuracy and Exactness of Constructions

When carrying out ruler and compass constructions, we attempt to make our
drawings as accurate as possible. Using a sharp pencil we draw fine lines and
make them pass through given points as closely as possible. Nevertheless, there
is always a small error in each step, and those errors will compound throughout a
long construction, so that the final figure does not always do just what you want.
For example, in constructing the circle circumscribed about a given triangle
(Exercise 2.10), you may find that your circle passes nicely through two of the
points but misses the third one slightly. This error is inevitable in any drawings
we make.

But, to paraphrase the quotation from Plato in Section 1, it is not the line and
the circle drawn on the paper that we are thinking of, it is the absolute line and
the absolute circle. And in this sense, our construction must be mathematically
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exact. In other words, it must be possible to prove using the reasoning of abstract
geometry that this construction in its ideal form gives the exact result we are
seeking.

This distinction has caused considerable confusion among amateur mathe-
maticians through the ages, who were trying to make constructions, now known
to be impossible, of trisecting the angle or squaring the circle. For many of their
constructions are remarkably accurate, while failing to be mathematically exact.
(See the interesting book of Dudley (1987), as well as Sections 25, 28 below.)

Exercises

For each of the following problems, carry out a ruler and compass construction as accu-
rately as you can. Number and label each of your steps as in the text. Feel free to use
abbreviations such as “AB” for “draw a line AB”; “©OAB" to draw a circle with center A
and radius AB; or “OCArBC” to draw a circle with center A and radius BC. Label each new
point as it is constructed and mention it (e.g., “get F”) in the appropriate step. For the
time being, we are not concerned with the proofs. Just do the construction. You should,
however, be able to give an informal proof (convincing argument) of why it works, if
asked.

After you make your construction, locate the corresponding proposition in Euclid
(Book I, III, or IV) and compare. How many steps does his method require? What do you
think is the least number of steps possible? I will sometimes give a par value for a con-
struction, which is the typical number of steps an experienced constructor would need.
By trying harder, you can sometimes succeed with fewer steps.

2.1 Given an angle, construct the angle
bisector (par = 4).

2.2 Given a line segment, find the mid-

point of that segment (par = 3). — C‘
A B
2.3 Given a line I and a point A on I, con-
struct a line perpendicular to ! through

A (par = 4, possible in 3).

-2
—_ ——r = —~
b=}
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2.4

2.5

2.6

2.7

2.8

2.9

1. Euclid’s Geometry

Given a line I and a point A not on I,
construct a line perpendicular to ! pass-
ing through A (par = 4, possible in 3).

Given an angle at a point A, and given
a ray emanating from a point B, con-
struct an angle at B equal to the angle
at A (par = 4).

Given a line 1 and a point A not on I,
construct a line parallel to I, passing
through A (par = 3).

Given a circumference of a circle, find
the center of the circle (par = 5).

Given a circle with its center O, and
given a point A outside the circle, con-
struct a line through A tangent to the
circle. (Warning: You may not slide the
ruler until it seems to be tangent to
the circle. You must construct another
point on the desired tangent line before
drawing the tangent.) (Par = 6.)

Construct a circle inscribed in a given
triangle ABC (par = 13).

rd
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R
A
— — —ﬁ—;——ﬁ
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2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

Construct a circle circumscribed about
a given triangle ABC (par = 7).

Given a line 1, a line segment d, and a //d,/ L

point O, construct a circle with center

b
O that cuts off a segment congruent to d £ T 4
on the line I (par = 9). / D
- -
Vi bl
Given a point A, a line 1, and a point / \
B on I, construct a circle that passes | \
through A and is tangent to the line [ ;
at B (par = 8). Ar /
AN B y3
S~ -

Construct three circles, each one meeting the other two at right angles. (We say that
two circles meet at right angles if the radii of the two circles to a point of inter-
section make right angles.) (Par = 10.)

Given a line segment AB, divide it into I )
three equal pieces (par = 6). A = - B

(The one-inch ruler.) Suzie's ruler broke into little pieces, so she can only draw lines
one inch long. Fortunately, her compass is still working. She has two points on her
paper approximately 3 inches apart. Help her construct the straight line joining
those two points.

(The rusty compass.) Joe's compass has rusted into a fixed position, so it can only
draw circles whose radius is one inch. Fortunately, his ruler is still working. Help
him construct an equilateral triangle on a segment AB that is approximately 2}
inches long (par = 6).

Using a ruler and rusty compass (cf. Exercise 2.16), construct the perpendicular to
aline I at a point A on [ (par = 6).

Using a ruler and rusty compass, given a line [ and a point A more than 2 inches
away from I, construct the line through A and perpendicular to I (par = 12).
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2.19

2.20

2.21

2.22

2.23

2.24

1. Euclid’s Geometry

Using a ruler and rusty compass, given
a segment AB and given a ray AC, con-
struct a point D on the ray AC such
that AB =~ AD.

Using a ruler and rusty compass, given
a line I and given a segment AB more
than one inch long, construct one of the
points C in which the circle of center A
and radius AB meets I.

Discussion question: Is it possible with ruler and rusty compass to construct any
figure that can be constructed with ruler and regular compass? What would you
need to know in order to prove that this is possible? For starters, can you carry out
all the constructions of Euclid, Book I, with ruler and rusty compass?

(Back to regular ruler and compass con-
struction.) Given a segment AB, given a
circle with center O, and given a point
P inside O, construct (if possible) a line
through P on which the circle cuts off a
segment congruent to AB (par = 5).

Given a segment AB, given an angle «,
and given another segment d, construct
a triangle ABC with base equal to AB,
angle « at C, and such that AC + BC = d.

Given two circles I', I/, with centers
O, O', construct a line tangent to both
circles.

A

C
~
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\ ~
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3 Euclid’s Axiomatic Method

One of the remarkable features of Euclid's Elements is its orderly logical struc-
ture. Euclid took the great mass of geometrical material that had grown in the
previous two or three centuries, and organized it into one coherent logical
sequence. This is what we now call the axiomatic method: Starting from a small
number of definitions and assumptions at the beginning, all the succeeding
results are proved by logical deduction from what has gone before. Euclid’s text
has been a model of mathematical exposition, unchallenged for two thousand
years, and only recently (in the last hundred years or so) replaced by newer
mathematical systems that we consider more rigorous. As we read Euclid, let us
observe how he organizes his material, let us be curious about why he does
things the way he does, and let us explore the questions that come to mind
when we as modern mathematicians read this ancient text.

Definitions

Euclid begins with definitions. Some of these definitions are akin to the modern
notion of definition in mathematics, in that they give a precise meaning to the
term being defined. For example, the tenth definition tells us that if a line seg-
ment meets a line so that the angles on either side are equal, then these are
called right angles. This tells us the meaning of the term right angle, assuming
that we already know what is meant by a line, a line segment, an angle, and
equality of angles. Similarly, the fifteenth definition, rephrased, defines a circle
to be a set of points C, such that the line segments OA from a fixed point O to
any point A of the circle C, are all equal to each other, and the point O is called
the center of the circle. This tells us what a circle is, assuming that we already
know what a line segment is, and what is meant by equality of line segments.
On the other hand, some of Euclid’s other definitions, such as the first, “a
point is that which has no part,” or the second, “a line is breadthless length,” or
the third, “a straight line is a line which lies evenly with the points on itself,”
give us no better understanding of these notions than we had before. It seems
that Euclid, instead of giving a precise meaning to these terms, is appealing to
our intuition, and alluding to some concept we may already have in our own
minds of what a point or a line is. Rather than defining the term, he is appealing
to our common understanding of the concept, without saying what that is. This
may have been very well in a society where there was just one truth and one
geometry and everyone agreed on that. But the modern consciousness sees this
as a rather uncertain way to set up the foundations of a rigorous discipline. What
if we say now, oh yes, we agree on what points and lines are, and then later it
turns out we had something quite different in mind? So the modern approach is
to say these notions are undefined, that is, they can be anything at all, provided
that they satisfy whatever postulates or axioms may be imposed on them later.
In the algebraic definition of an abstract group, for example, you never say what
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the elements of the group are, nor what the group operation is. Those are un-
defined. However, they must satisfy the group axioms that the operation is as-
sociative, there exists an identity, and that there exist inverses. The elements of
the group can then be anything as long as they satisfy these axioms. They could
be integers, or they could be cosets of a subgroup of the integers, or they could be
rotations of a geometrical object such as a cube, or anything else. So in our read-
ing of Euclid, perhaps we should regard “point” and “line” as undefined terms.

It may be worth noting some differences of language between Euclid’s text
and modern usage. By a line he means something that may be curved, which we
would call a curve. He says straight line for what we call line. And then he says a
finite straight line (as in the statement of (I1.1)) for what we would call a line seg-
ment. For Euclid, a plane angle results where two curves meet, and a rectilineal
plane angle is formed when two line segments meet. Note that Euclid requires
the two sides of an angle not to lie in a straight line. So for Euclid there is no
zero angle, and there is no straight angle (180°). So we should think of Euclid’s
concept of angle as meaning an angle of a degrees, with 0 < « < 180° (though
Euclid makes no mention of the degree measure of an angle).

Euclid’s notion of equality requires special attention. He never defines
equality, so we must read between the lines to see what he means. In Euclid’s
geometry there are various different kinds of magnitudes, such as line segments,
angles, and later areas. Magnitudes of the same kind can be compared: They can
be equal, or they can be greater or lesser than one another. Also, they can be
added and subtracted (provided that one is greater than the other) as is sug-
gested by the common notions.

Euclid’s notion of equality corresponds to what we commonly call congruence
of geometrical figures. In high-school geometry one has the length of a line seg-
ment, as a real number, so one can say that two segments are congruent if they
have the same length. However, there are no lengths in Euclid’s geometry, so we
must regard his equality as an undefined notion. Because of the first common
notion, “things which are equal to the same thing are also equal to one another,”
we may regard equality (which we will call congruence to avoid overuse of the
word equal) to be an equivalence relation on line segments. Similarly, we will
regard congruence of angles as an equivalence relation on angles.

Postulates and Common Notions

The postulates and common notions are those facts that will be taken for granted
and used as the starting point for the logical deduction of theorems. If you think
of Euclid’s geometry in the classical way as being the one true geometry that
describes the real world in its ideal form, then you may regard the postulates
and common notions as being self-evident truths for which no proof is required.
If you think of Euclid’s geometry in the modern way as an abstract mathematical
theory, then the postulates and common notions are merely those statements
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that are arbitrarily selected as the starting point of the theory, and from which
other results will be deduced. There is no question of their “truth,” because one
can begin a mathematical theory from any hypotheses one likes. Later on, how-
ever, there may arise a question of relevance, or importance of the mathemati-
cal theory constructed. The importance of a mathematical theory is judged by
its usefulness in proving theorems that relate to other branches of mathematics
or to applications. If you begin a mathematical theory with weird hypotheses as
your starting point, you may get a valid logical structure that is of no use. From
that point of view the choice of postulates is not so arbitrary. In any case, we can
regard Euclid’s postulates and common notions collectively as the set of axioms
on which his geometry is based.

Some commentators say that the postulates (as in Heath's edition) are those
statements that have a geometrical content, while the common notions are
those statements of a more universal nature, which apply to all the sciences.
Other commentators divide them differently, calling “postulates” those state-
ments that allow you to construct something, and calling “axioms” those state-
ments that assert that something is always true. One should also note that some
editors give extra axioms not listed in Heath's edition, such as “halves of equals
are equal,” which is used by Euclid in the proof of (1.37), or “two straight lines
cannot contain a space.”

We have already noted the constructive nature of Euclid’'s approach to
geometry as expressed in Postulates 1-3. By the way, Euclid makes no explicit
statement about the uniqueness of the line mentioned in Postulate 1, though he
apparently meant it to be unique, because in the proof of (1.4) he says “other-
wise two straight lines will enclose a space: which is impossible.”

In the list of Postulates and Common Notions, Postulate 5 stands out as being
much more sophisticated than the others. It sounds more like a theorem than an
axiom. We will have more to say about this later. For the moment let us just
observe that two thousand years of unsuccessful efforts to prove this statement
as a consequence of the other axioms have vindicated Euclid’s genius in realiz-
ing that it was necessary to include Postulate 5 as an axiom.

Intersections of Circles and Lines

As we read Euclid’s Elements let us C
note how well he succeeds in his goal
of proving all his propositions by pure
logical reasoning from first principles.
We will find at times that he relies on
“intuition,” or something that is obvious A \ B

from looking at a diagram, but which is
not explicitly stated in the axioms. For
example, in the construction of the equi-
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lateral triangle on a given line segment AB (I.1) how does he know that the two
circles actually meet at some point C? While the fifth Postulate guarantees that
two lines will meet under certain conditions, there is nothing in the definitions,
postulates, or common notions that says that two circles will meet. Nor does
Euclid offer any reason in his proof that the two circles will meet.

If you carry out the construction with ruler and compass on a piece of paper,
you will find that they do meet. Or if you look at the diagram, it seems obvious
that they will meet. However, that is not a proof, and we must acknowledge that
Euclid is using something that is not explicitly guaranteed by his axioms and yet
is essential to the success of his construction.

There are two separate issues here. One is the relative position of the two
circles. Two circles need not always meet. If they are far apart from each other,
or if one is entirely contained in the other, they will not meet. In the present
case, part of one circle is inside the other circle, and part outside, so it appears
from the diagram that they must cross each other.

The second issue is, assuming that
they are in a position so that they ap-
pear to meet, does the intersection '8
point actually exist? Today we will im-
mediately think of continuity and the
intermediate value theorem: If y = f(x)
is a real-valued continuous function g
defined on the unit interval [0,1] of |
the real numbers, and if f(0) <0 and 0 / 1 x
f(1) > 0, then there is some point a €
[0,1] with f(a) = 0. In other words, the
graph of the function must intersect the
x-axis at some point in the interval.

However, we must bear in mind that the concepts of real numbers and con-
tinuous functions were not made rigorous until the late nineteenth century, and
that this kind of mathematical thinking is foreign to the spirit of Euclid’s Ele-
ments.

To make the same point in a differ- (?
ent way, suppose we consider the Car-
tesian plane over the field of rational
numbers Q, where points are ordered
pairs of rational numbers, and let AB
be the unit interval on the x-axis. Then
the vertex C of the equilateral triangle,
which would have to be the point
(3,5V/3), actually does not exist in this
geometry.

So later on, when we set up a new system of axioms for Euclidean geometry,
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we will have to include some axiom that guarantees the existence of the inter-
section points of circles with other circles, or with lines, at least those that arise
in the ruler and compass constructions of Euclid’s Elements. Some modern
axiom systems (such as Birkhoff (1932) or the School Mathematics Study Group
geometry) build the real numbers into the axioms with a postulate of line mea-
sure, or include Dedekind’s axiom that essentially guarantees that we are work-
ing over the real numbers. In this book, however, we will reject such axioms as
not being in the spirit of classical geometry, and we will introduce only those
purely geometric axioms that are needed to lay a rigorous foundation for
Euclid’s Elements.

The issue of intersecting circles arises again in (1.22), where Euclid wishes to
construct a triangle whose sides should be equal to three given line segments
a, b, c. This requires that a circle with radius a at one endpoint of the segment b
should meet a circle of radius c at the other end of the segment b. Euclid correctly
puts the necessary and sufficient condition that this intersection should exist in
the statement of the proposition, namely that any two of the line segments
should be greater than the third. However, he never alludes to this hypothesis
in his proof, so that we do not see in what way this hypothesis implies the exis-
tence of the intersection point. While some commentators have criticized Euclid
for this, Simson ridicules them, saying “For who is so dull, though only begin-
ning to learn the Elements, as not to perceive ... that these circles must meet
one another because FD and GH are together greater than FG.” Still, Simson has
only discussed the position of the circles and has not addressed the second issue
of why the intersection point exists. (See Plate V, p. 109)

The Method of Superposition

Let us look at the proof of (1.4), the A
side-angle-side criterion for congru-

ence of two triangles (SAS for short).

Suppose that AB= DE, and AC = DF, >a
and the included angle / BAC equals B

L EDF. We wish to conclude that the tri- D

angles are congruent, that is to say, the

remaining sides and pairs of angles are

congruent to each other, respectively.

Euclid’s method is to “apply the tri- "€

angle” ABC to the triangle DEF. That €

is, he imagines moving the triangle ABC onto the triangle DEF, so that the point
A lands on the point D, and the side AB lands on the side DE. Then he goes on
to argue that the ray AC must land on the ray DF, because the angles are
equal, and hence C must land on F because the sides are equal. From here he
concludes that the triangles coincide entirely, hence are congruent.
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Huius itaque Propofitionis veritatem nor aliunde quim 3 communi judicio pe-
temus: cogitabimusq; Figuras Figuris fuperponere , Mechanicum quippiam effe:
intelligere vero ; id demum effe Mathematicum. Tam verd quum fuerit confeffum
duo Triangula inuicem efle zquilatera , ipfa quoque inter fe zqualia fateri erit ne-
ceflarium. Etenim nulla euidentiori fpecic zqualitas Figurarum dignofcitur , quiam
ex laterum zqualitate : quanquam Circulorum zqualitas ex diametris definitur:
fed non aliam ob caufam,quim qudd linea obliqua fai copiam aded aperte non fa-
cit vt reta : Cuius menfuram facilé capimus, ac per eam, obliquarum inter fe com-
parationem facimus.

Atfi hzc fuperpofitio aliqua ratione admittenda fit : tolerabilior Tane fuerit hoc
qui fequitur modo.

Manente duorum Triangulorum A 5 ¢ & b E ¥ conditione,continuabo E b

B c A —

Plate II. The commentary on (I1.4) from Peletier's Euclid of (1557). He says the truth of
this proposition belongs among the common notions, because to superimpose one figure
on another is mechanics, not mathematics.

32



3. Euclid’s Axiomatic Method 33

This is another situation where Euclid is using a method that is not explicitly
allowed by his axioms. Nothing in the Postulates or Common Notions says that
we may pick up a figure and move it to another position. We call this the method
of superposition.

Euclid uses this method again in the proof of (1.8), but it appears that he was
reluctant to use it more widely, because it does not appear elsewhere. If it were
a generally accepted method, for example, then Postulate 4, that all right angles
are equal to each other, would be unnecessary, because that would follow easily
from superposition.

If we think about the implications of this method, it has far-reaching con-
sequences. It implies that one can move figures from one part of the plane to
another without changing their sides or angles. Thus it implies a certain homo-
geneity of the geometry: The local behavior of figures in one part of the plane
is the same as in another part of the plane. If you think of modern theories of
cosmology, where the curvature of space changes depending on the presence of
large gravitational masses, this is a nontrivial assumption about our geometry.

To state more precisely what assumptions the method of superposition is
based on, let us define a rigid motion of the plane to be a one-to-one transforma-
tion of the points of the plane to itself that preserves straight lines and such that
segments and angles are carried into congruent segments and angles. To carry
out the method of superposition, we need to assume that there exist sufficiently
many rigid motions of our plane that

(a) we can take any point to any other point,

(b) we can rotate around any given point, so that one ray at that point is taken
to any other ray at that point, and

(c) we can reflect in any line so as to interchange points on opposite sides of the
line.

If we were working in the real Cartesian plane R? with coordinates x, y, we
could easily show the existence of sufficient rigid motions by using translations,
rotations, and reflections defined by suitable formulas in the coordinates.

For example, a translation taking the
point (0, 0) to (a, b) is given by

7
{ X =x+a,
Yy =y+b,
and a rotation of angle o around the " (a,b)

origin is given by

{x’:xcosa—ysina,
y' =xsina+ ycosa.
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Thus we can easily justify the use of the method of superposition in the real
Cartesian plane. However, since there are no coordinates and no real numbers
in Euclid’s geometry, we must regard his use of the method of superposition as
an additional unstated postulate or axiom.

To formalize this, we could postulate the existence of a group of rigid motions
acting on the plane and satisfying the conditions (a), (b), (c) mentioned above.
Indeed, there is an extensive modern school of thought, exemplified by Felix
Klein’s Erlanger Programm in the late nineteenth century, which bases the study
of geometry on the groups of transformations that are allowed to act on the
geometry. This point of view has had wide-ranging applications in differential
geometry and in the theory of relativity, for example.

We will discuss the rigid motions in Euclidean geometry in greater detail
later (Section 17). For the moment let us just note that the proof of the (SAS)
criterion for congruence in (I.4) requires something more than what is in Euclid’s
axiom system. Hilbert's axioms for geometry actually take (SAS) as an axiom in
itself. This seems more in keeping with the elementary nature of Euclid’s geome-
try than postulating the existence of a large group of rigid motions.

Finally let us note that Euclid’s use of the method of superposition in the
proof of (1.4) gives us some more insight into his concepts of “equality” for line
segments and angles. In Common Notion 4 he says that things that coincide
with one another are equal (congruent) to one another. In the proof of (I.4) he
also uses the converse, namely, if things (line segments or angles) are equal to
one another (congruent), then they will coincide when one is moved so as to be
superimposed on the other. So it appears that Euclid thought of line segments or
angles being congruent if and only if they could be moved in position so as to
coincide with each other.

Betweenness

Questions of betweenness, when one point is between two others on a line, or
when a line through a point lies inside an angle at that point, play an important,
if unarticulated, role in Euclid’s Elements. To explain the notion of points on a
line lying between each other, one could simply postulate the existence of a
linear ordering of the points. Similarly, for angles at a point one could talk of
a circular ordering.

But when a hypothesis of relative position of points and lines in one part of a
diagram implies a relationship for other parts of the figure far away, it seems
clear that something important is happening, and it may be dangerous to rely on
intuition.

For example, how do you know that the angle bisector at a vertex A of a tri-
angle ABC meets the opposite side BC between the points BC and not outside?
Of course, it is obvious from the picture, but what if you had to explain why
without drawing a picture?
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We have already seen that the relative position of two circles may affect
whether they meet or not. Let us look at some other instances where between-

ness plays an important role in a proof.

Consider (1.7), which is used in the
proof of the side-side-side (SSS) crite-
rion for congruence of triangles (1.8). In
(1.7) Euclid shows that it is not possible
to have two distinct triangles ABC and
ABD on the same side of a segment AB
and having equal sides AC = AD and
BC = BD.

The proof goes like this. Since AC =
AD, the triangle ACD is isosceles, and
so the base angles are equal (1.5). In the
diagram (1 = /4. On the other hand,
since BC = BD, the triangle BCD is isos-
celes, so its base angles are equal (1.5)—
in our diagram / 2 = / 3. But now /2 is
less than /1, which is equal to ,4,
which is less than /3. So /2 is much
less than /3. But they are also equal,
and this is impossible.

A

Note that this proof depends in an essential way on the relative position of
the lines meeting at C and D, which determines the inequalities between the
angles. If the line AD should reach the point D outside of the triangle BCD, as in
our second (impossible) picture, then 22 < /1 and /3 < .4, and there is no
contradiction. Thus the original proof depends on a certain configuration of
lines being inside certain angles, which in turn depends on some global proper-
ties of the entire two-dimensional figure, and these relationships would be hard
to explain convincingly without using a diagram. So as soon as we realize that
we are depending on a diagram for part of our proof, a mental red flag should
pop up to alert us to the question, What exactly is going on here, and what

unstated assumptions are we using?
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For another example where similar
duestions arise, look at the proof of
(I1.16) to show that an exterior angle of A
a triangle is greater than the opposite F
interior angle.

Let ABC be the given triangle. Bisect
AC at E, draw BE, and extend that line
to F so that BE = EF. Draw CF. Then
by SAS (1.4), Euclid shows that the tri-
angle BEA is congruent to the triangle
FEC, and so the angle at A is equal to
the angle / ACF. He then says that the
angle / ACF is less than the exterior
angle /. ACD, which proves the result.

How do we know this relation among the angles? Because the line CF lies
inside the angle ACD. But why is it inside? Since the line CF was constructed
using the point F, which in turn was constructed using the point E, this is a
global property of the whole figure, which is clear from the diagram, but would
be hard to explain without a diagram.

To illustrate the danger of relying on diagrams in geometrical proofs, we will
present a well-known fallacy due to W.W. Rouse Ball (1940). The following pur-
ports to be a proof that every triangle is isosceles. See if you can find the flaw in
the argument.

@
o
A

Example 3.1

Let ABC be any triangle. Let D be the A
midpoint of BC. Let the perpendicular

to BC at D meet the angle bisector at A

at the point E. Drop perpendiculars EF

and EG to the sides of the triangle, and

draw BE, CE. The triangles AEF and

AEG have the side common and two F

angles equal, so they are congruent by

AAS (1.26). Hence AF = AG and EF =

EG. The triangles BDE and CDE have

DE common, two other sides equal, and

the included right angles equal. Hence B c
they are congruent by SAS (1.4). In par-

ticular BE = CE.

Now, the triangles BEF and CEG are right triangles with two sides equal, so
they are congruent (see lemma below), and hence BF = CG. Adding equals to
equals, we find AB = AF + FB is equal to AC = AG + GC. So the triangle ABC is
isosceles.

@
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There are several other cases to
consider. If the point E lies outside the
triangle, one can use this second figure
and exactly the same proof to conclude
that AB and AC are the differences of
equal segments AF = AG and BF = CG,
hence equal.

If E lands at the point D, or if the
angle bisector at A is parallel to the per-
pendicular to AB at D, the proof be-
comes even easier, and we leave it to
the reader.

We still need to prove the following lemma.

Lemma 3.2 (Right-Angle-Side-Side) (RASS)
If two right triangles have two sides equal, not containing the right angle, they are

still congruent.

Proof This result, though not stated by
Euclid, is often useful. We give two
proofs. The first method is to use (1.47)
to conclude that the square on BC is
equal to the square on EF. Then BC =
EF, and we can apply (SSS) (1.8).

The second proof does not make use
of (1.47) and the theory of area. Extend
FE to G and make EG = BC. Then the
triangles ABC and DEG are congruent
by SAS (1.4). Therefore, AC = DG. It
follows that DF = DG, so the triangle
DFG is isosceles. Therefore, the angles
at F and G are equal. Then the triangles
DEG and DEF are congruent by AAS
(1.26). But DEG is congruent to ABC, so
the two original triangles are congruent.

The Theory of Parallels

A D
h &F
b ¢ €

Book I of Euclid’s Elements can be divided naturally into three parts. The first
part, (1.1)-(1.26), deals with triangles and congruence. The second part, (1.27)-
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(1.34), deals with parallel lines and their applications, including the well-known
(1.32) that the sum of the angles of a triangle is two right angles. The third part,
(1.35)-(1.48), deals with the theory of area.

Two lines are parallel if they never meet, even if extended indefinitely in
both directions (Definition 23). The fifth postulate gives a criterion for two lines
to meet under certain conditions, hence to be not parallel, so we often refer to
the fifth postulate as the parallel postulate. Euclid postponed using this postulate
as long as possible so that in fact, the first part of Book I about triangles and
congruence does not use the parallel postulate at all. It is first used in (1.29).
Let us examine closely Euclid’s theory of parallels and his use of the parallel
postulate.

The first result about parallel lines,

(1.27), says that if a line falling on two

other lines makes the alternate interior /
angles equal, then the lines are par-

allel. This is proved using (1.16): If not,

the lines would meet on one side or

the other, and would form a triangle )

having an exterior angle equal to one /

of its opposite interior angles, which is

impossible.

The next result (1.28) is similar, and follows directly from this one using
vertical angles (1.15) or supplementary angles (1.13).

The fifth postulate is used to prove the converse of (1.27), which is (1.29): If
the lines are parallel, then the alternate interior angles will be equal. For if
not, then one would be greater than the other, and so the sum of the interior
angles on one side of the transversal would be less than two right angles. In
this situation, the fifth postulate applies and forces the lines to meet, which is a
contradiction.

As for the existence of parallel lines,
Euclid gives a construction in (1.31) for
a line through a point P, parallel to a
given line I. Draw any line through P,
meeting [, and then reproduce the angle

it makes with [ at the point P (1.23). It 2
follows from (1.27) that this line is par- /
allel to I.

Why does Euclid place this construction after (1.29), even though it does not
depend on (1.29) and does not make use of the parallel postulate? Presumably,
the answer, although Euclid does not say so, is that using (1.29) one can show
that this parallel just constructed is unique. If there were any other line parallel
to I through P, it would make the same angle with the transversal (by (1.29)) and
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hence would be equal to this one. Thus using the parallel postulate we can
prove the following statement:

P. For each point P and each line I, there exists at most one line through P par-
allel to L.

This statement (P) is often called “Playfair's axiom,” after John Playfair
(1748-1819), even though it already appears in the commentary of Proclus. Of
course, in Euclid’s development of geometry, this is not an axiom, but a theorem
that can be proved from the axioms. Some authors, however, like to take the
statement (P) as an axiom instead of using Euclid’s fifth postulate. So I would
like to explain in what sense we can say that Euclid’s fifth postulate is equivalent
to Playfair’s axiom (P).

Since the parallel postulate plays such a special role in Euclid’s geometry, let
us make a special point of being aware when we use this postulate, and which
theorems are dependent on its use. Let us call neutral geometry the collection of
all the postulates and common notions except the fifth postulate together with all
theorems that can be proved without using the fifth postulate. Thus (1.1)-(1.28)
and (1.31) all belong to neutral geometry, while for example, (1.32) and (1.47) do
not belong to neutral geometry.

If we take neutral geometry and add back the fifth postulate, then we
recover ordinary Euclidean geometry, and we can prove (P) as a theorem as we
did above.

But now suppose we take neutral geometry and add (P) as an extra axiom.
We will show that in this geometry we can prove Euclid’s fifth postulate as a
theorem.

Indeed, suppose we are given two
lines I, m and a transversal n such that "
the two interior angles 1, 2 on the same
side are less than two right angles. Let
P be the intersection of the lines m and
n, and draw a line I’ through P, making
the alternate angle 3 equal to 1. This
is possible by (1.23), which belongs to
neutral geometry. Then by (1.27), which
also belongs to neutral geometry, I’ is
parallel to 1.

Now, since 1+ 2 is less than two
right angles, it follows that 2 + 3 is less
than two right angles, and hence the
line I is different from m (1.13). Now we
can apply (P). Since I’ passes through P
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and is parallel to [, it must be the only line through P that is parallel to . In par-
ticular, the line m, which is different from ', cannot be parallel to I, and so by
definition it must meet . This proves the fifth postulate.

Thus in the presence of all the results of neutral geometry, we can use
Euclid’s fifth postulate to prove Playfair's axiom, or we can use Playfair's axiom
to prove Euclid’s fifth postulate. In this sense we can say that in neutral geome-
try, Euclid’s fifth postulate is equivalent to Playfair’'s axiom. This means that
adding either one of them as an additional assumption to neutral geometry will
give the same body of theorems as consequences.

The Theory of Area

In (1.35), Euclid says that two parallelo-
grams on the same base and in the same
parallels (this means their top sides lie
on the same line parallel to the base)
are equal to each other. In the figure,
the parallelogram ABCD is equal to the
parallelogram BCEF. Clearly, the paral-
lelograms are not congruent.

Looking at the proof, which is ac-
complished by adding and subtract-
ing congruent figures, we conclude that
Euclid must be referring to the area of
the parallelograms when he says they
are equal. But he has not said what the
area of a figure is, so we must reflect a bit to see what he means.

Our intuitive understanding of area comes from high-school geometry,
where we learn that the area of a rectangle is the product of the lengths of two
perpendicular sides, the area of a triangle is one half the product of the lengths
of the base and the altitude, etc. The “area” of high-school geometry is a func-
tion that attaches to each plane figure a real number; the area of a nonover-
lapping union of figures is the sum of the areas, and so forth. Most likely no one
ever told you the definition of area, nor did they prove that such an area function
exists. Using calculus, you can define the area of a figure in the real Cartesian
plane using definite integrals, and in that way it is possible to prove that a suit-
able area function exists. But in Euclid’s geometry there are no real numbers,
and we certainly do not want to use calculus to define the concept of area in
elementary geometry.

So what did Euclid have in mind? Since he does not define it, we will con-
sider this new equality as an undefined notion, just as the notions of congruence
for line segments and angles were undefined. We will call this new notion equal
content, to avoid confusion with other notions of equality or congruence. We do
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not want to use the word area, because this notion is quite different from our
common understanding of area as a function associating a real number to each
figure.

From the way Euclid treats this notion, it is clear that he regards it as an
equivalence relation, satisfying the common notions. In particular:

(a) Congruent figures have equal content.

(b) If two figures each have equal content with a third, they have equal content.

(c) If pairs of figures with equal content are added in the sense of being joined
without overlap to make bigger figures, then these added figures have equal
content.

(d) Ditto for subtraction, noting that equality of content of the difference does
not depend on where the equal pieces were removed.

(e) Halves of figures of equal content have equal content (used in the proof
of (1.37)). (Also, doubles of equals are equal, as a consequence of (c)
above.)

(f) The whole is greater than the part, which in this case means that if one
figure is properly contained in another, then the two figures cannot have
equal content (used in the proof of (1.39)).

In terms of the axiomatic development of the subject, at this point Euclid is
introducing a new undefined relation, and taking all the properties just listed as
new axioms governing this new relation. Later in this book (Section 22), we will
discuss Hilbert's reinterpretation of the theory of area where the relationship of
having equal content is defined, and all its properties proved, so that it does not
require the introduction of new axioms.

Now let us see what Euclid does with this purely geometric notion of equal
content of plane figures. In (1.35) he proves that the two parallelograms have
equal content (see diagram on previous page) by first showing that the triangle
ABE is congruent to the triangle DCF, so they have equal content. Then by sub-
tracting the triangle DGE from each (in different positions!) and adding the tri-
angle BGC to each, he obtains the two parallelograms, which therefore have
equal content.

In (1.37) he shows that two triangles
ABC and DBC on the same base and in
the same parallels have equal content.
The method is to double ABC to get a
parallelogram EABC, and to double DBC \‘
to get a parallelogram DFBC. \

By (1.35) the two parallelograms
have equal content, and then he applies
the axiom that halves of equals are
equal to conclude the triangles have
equal content.

M
r
\v
m
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This is all that is needed to explain
Euclid’s beautiful proof of (1.47), the H
theorem of Pythagoras. The statement
of the theorem is that if ABC is a right
triangle, then the squares on the two K
legs together have equal content to the
square on the hypotenuse. The proof A
goes like this. The triangle ABF is one
half of the square ABFG. This triangle
ABF has equal content with the triangle
BFC by (1.37). The triangle BFC is con- B M <
gruent to the triangle BAD. And BAD
has equal content to the triangle BMD
by (1.37). This latter triangle is equal to
one-half of the rectangle BDLM. Hence
the square ABFG has equal content to
the rectangle BDLM. Doing the same
construction on the other side and add- b L
ing, one has the result.

Euclid’'s statement of (1.47) in terms of equal content of the squares con-
structed on the sides of the triangle may come as a surprise to the modern
student who remembers the formula a? + b? = ¢* (which I suppose in the minds
of the general public is rivaled in fame only by Einstein’s famous formula
E = mc?). We are used to thinking of a, b, ¢ as the lengths of the sides of the tri-
angle, in which case the theorem becomes an equation among real numbers.
How can we reconcile these two points of view?

The modern answer to this question, which we will discuss in more detail
later (Section 23), is that after introducing coordinates in our geometry we can
prove the existence of an area function. The area of a square of side a will be a?.
Furthermore, we will show that having equal content in the sense of Euclid is
equivalent to having equal area in the sense of the area function. Then the two
formulations of the theorem of Pythagoras become equivalent.

This answer makes sense only when we are able to assign numerical lengths
to arbitrary line segments, which the Greeks could not do. Yet there is ample
evidence that the Greeks did know special cases of this formula when a, b, ¢ are
integers. The equation 32 + 42 = 52 was known to the Egyptians, and Proclus in
his note on (1.47) mentions two general formulas for generating such “Pythagor-
ean triples” of integers, which he ascribes to Plato and to Pythagoras. So we can
presume that the Greeks knew some particular right triangles with integer sides,
in which case (1.47) can be represented by the equation among integers
a’ + b? = ¢%. But the geometrical proof given by Euclid is then more general,
because it applies to all triangles, and not just those for which one can find
integers to fit the sides.

m
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Euclid’s theory of area plays an important role in the succeeding books of the
Elements. It appears not only in results that correspond to our modern notion of
area, but also in results, such as the construction of the regular pentagon (IV.11),
which at first sight appear to have nothing to do with area. Roughly speaking,
Euclid uses arguments involving areas in places where we would expect to see a
quadratic equation in analytic geometry. He can add two line segments to get
another line segment, but there is no way to multiply line segments so as to
get another line segment. Instead, one can regard the rectangle with sides
equal to segments AB, CD as a product of these two segments. The results
(1.42)-(1.45) on application of areas and all the results of Book II give a certain
flexibility in manipulating and comparing different areas. This creates a sort
of “algebra of areas,” and one can regard results such as (II.14) as equivalent
to the solution of certain quadratic equations. Note also the essential use of
area in the proof of (V1.1), which is the cornerstone of Euclid’s theory of similar
triangles.

Exercises

3.1 Explain what is wrong with the “proof” in (Example 3.1). (Hint: Draw an accurate
figure.)

3.2 Read Euclid (I1.35)-(1.48), Book II, and (III.35)-(II1.37). Be prepared to present
proofs of (1.35), (1.41), (1.43), (1.47), (11.6), (1I.11), and (II1.36).

D
3.3 Given a triangle ABC and given a seg- A
ment DE, construct a rectangle with
content equal to the triangle ABC, and c
with one side equal to DE.
B ol

3.4 Given a rectangle, construct a square with the same content.

3.5 Given aline I and given two points A, B
not on I, construct a circle passing A
through A, B and tangent to I (Hint: '
Use (I11.36) and/or (I11.37).) (Par = 14.)
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3.6

3.7

3.8

3.9

3.10

1. Euclid’s Geometry

Given two lines [, m and a point P not
on either line, construct a circle pass-
ing through P and tangent to both I
and m.

Q
<
W

In the following exercises, give proofs based on results of Euclid, Books I-III only.

Given a triangle ABC, let DE be a line
parallel to the base BC, let F be the
midpoint of DE, and let AF meet BC in
G. Prove that G is the midpoint of BC.
(Hint: Draw some extra lines to make
parallelograms, and use (1.43).)

Let " be a circle with center O. Let AB
and AC be tangents to I' from a point A
outside the circle. Let BC meet OA at
D. Prove that OA x OD = OB? (mean-
ing the rectangle on OA and OD has
equal content to the square on OB).

Let ABC be a right triangle, and let AD
be the altitude from the right angle A to
the hypotenuse BC. Prove that AD? =
BD x DC (in the sense of content).

Problem: Given a triangle ABC, and
given a point D on BC, to draw a line
through D that will divide the triangle
into two pieces of equal content.

Solution (Peletier): Let E be the mid-
point of BC. Draw AD; draw EF parallel
to AD. Then DF divides the triangle in
half.

Prove that the content of the quadrilat-
eral ABDF is equal to the content of the
triangle DFC.
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A

3.11 (Campanus). Use the theory of content
to show that the line DE joining the
midpoint of two sides of a triangle is D €
parallel to the third side. (Hint: Draw
BE and DC. Show that the triangles
BDC and BEC have the same content
and then apply (1.39).)

4 Construction of the Regular Pentagon

One of the most beautiful results in all of Euclid’s Elements is the construction of
a regular pentagon inscribed in a circle (IV.11). The proof of this construction
makes use of all the geometry he has developed so far, so that one could say that
to understand fully this single result is tantamount to understanding all of the
first four books of Euclid's geometry. It also raises questions of exposition that are
central to our modern examination of Euclid’s methods. For example, why does
Euclid use the theory of area in proving a result about the sides of a polygon?

In this section we will present Euclid’s construction of the regular pentagon,
and begin discussing the issues raised by its proof. Later (see (13.4), Exercise
20.10, (29.1)), we will give other proofs using similar triangles or the complex
numbers. Euclid’s original geometric proof must be regarded as a tour de force
of classical geometry. It depends on the theory of area, which we will discuss in
more detail in Section 22. So this section can be regarded as a taste of things to
come: a first meeting with one of the deeper topics that is central to Euclid’s
geometry.

The key point of the construction of the pentagon is the following problem.

Problem 4.1
To construct an isosceles triangle whose base angles are equal to twice the vertex
angle.

Construction ((II.11), (IV.10))
Let A, Bbe two points chosen at random.
1. Draw line AB.

Next, construct a perpendicular to AB at A, as follows:
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. Circle AB, get C.

2
3. Circle BC.
4. Circle CB, get D. T
5. Line AD, get E. ]
Next, we bisect AE as follows
6. Circle EA, get F, G. c A ¢ 3

7. Line FG, get H.

Now comes the unusual part of the
construction:

m G
8. Circle HB, get J. F ' -
9. Circle AJ, get K.
10. Circle center B, radius AK, get L.

11. Line AL.
<

12. Line BL.

Proof From a modern point of view, it would seem that some theory of qua-
dratic equations is essential for the proof. Euclid did not have any algebra avail-
able to him, but he was able to deal with quantities essentially equivalent to
quadratic expressions via the theory of area. We can think of a rectangle as rep-
resenting the product of its sides, or a square as the square of its side. These
areas, without even assigning a numerical value to them, can be manipulated
by cutting up and adding or subtracting congruent pieces. In this way Euclid
establishes a “geometrical algebra” for manipulating these quantities (always by
geometrical methods), which acts as a substitute for our modern algebraic
methods.

Let us then trace the steps by which Euclid proves (IV.10), which is the key
point in the construction of the regular pentagon. In Book I, especially (1.35)-
(1.47) he discusses the areas of triangles and parallelograms, leading up to the
famous Pythagorean theorem (1.47), which is stated in terms of area: The square
built on the hypotenuse of a right triangle has area equal to the combined areas of
the squares on the two sides. The theorem is proved by cutting these areas into
triangles, and proving equality of areas using the cutting and pasting methods
just developed. Here area is understood in the sense of content—cf. Section 3.

Book II contains a number of results of geometrical algebra, as described
above, all stated and proved geometrically in terms of areas. In particular, (IL.5),
(11.6), and (I11.11) are used in the proof of (IV.10). Note that (II.11), which is
sometimes called the division of a segment in extreme and mean ratio, states

Then AABL is the required triangle. The
angles at B and at L will be equal to
twice the angle at A.
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that the interval AB is divided by a point K (in our notation (4.1) above) such
that the rectangle formed by BK and AB has area equal to the square on AK. In
this way the property of extreme and mean ratio is expressed using area.

From Book III we need (II1.36) and
its converse (I11.37). Proposition (II1.36)
says that if a point A lies outside a cir-
cle, and if AB is tangent to the circle at
B, and if ACD cuts the circle at C and D,
then the rectangle formed by AC and
AD has area equal to the square on AB.
This result is proved by several applica-
tions of (11.6) and (1.47).

Now Euclid can prove (IV.10) by
a brilliant application of (II1.37). Let
A, K, B, L be as in the construction (4.1)
above. Then by (II.11), the rectangle
with sides BK and BA has area equal to
the square on AK. Since BL was con-
structed equal to AK, this is also equal
to the square on BL.

Now consider the circle passing
through the three points A, K, L. Since
the rectangle on BK and BA is equal to
the square on BL, it follows that BL is
tangent to this circle (I1I1.37)!

Hence the angle /. BLK formed by the tangent BL and the line LK is equal to
the angle a at A, which subtends the same arc (I1I1.32). Let /. KLA =4. Then
[ BKL is an exterior angle to the triangle AAKL, so ./ BKL = a+J (1.32). But
/ BLK =a, so a+0J =/ BLA, and this angle is f because AABL is isosceles.
Hence [ BKL = f. Now it follows that ABKL is isosceles, so KL = BL = AK.
Hence AAKL is also isosceles, so d = a. Now = £ BLA = 2a as required.

Once we have the isosceles triangle constructed in (4.1), the construction of
the pentagon follows naturally. The idea is to inscribe in the circle a triangle
equiangular with the given triangle, and then to bisect its two base angles.

Problem 4.2

Given an isosceles triangle whose base angles are equal to twice its vertex angle,
and given a circle with its center, to construct a regular pentagon inscribed in
the circle.
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Construction ((IV.2) and (IV.11))

Let AABC be the given triangle and let O be the center of the given circle. The
first part of the construction is to obtain a tangent line to the circle. Let D be any
point on the circle.

Line OD.

Circle DO, get E.
Circle EO.

Circle OE, get F.
5. Line DF.

Ll e

Then DF will be a tangent line. Next, we reproduce the angle f# from the base of
the isosceles triangle at D, on both sides.

6. Circle BC, get G.
7. Circle at D with radius equal to BC, get H, I.
8. Circle center H, radius CG, get K.
9. Circle center I, radius CG, get L.
10. Line DK, get M.
11. Line DL, get N.
12. Line MN.

m

——
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Then ADMN is a triangle inscribed in the circle, equiangular with AABC. Next
we bisect the angles at M, N. Let P be the intersection of MN with DO.

13. Circle MP, get Q.
14. Circle NP, get R.
15. Circle PR.

16. Circle RP, get S.
17. Circle QP, get T.
18. Line NS, get U.
19. Line MT, get V.

Then D, M, N, U, V will be the vertices of the pentagon.

20. Line DU.
21. Line UM.
22. Line DV.
23. Line VN.

Then DUMNYV is the required pentagon.

Proof We follow the geometric proof given by Euclid. First of all, the line DF is
constructed perpendicular to a diameter of the circle, so it is a tangent line to
the circle (I11.16). Next, the triangles ADHK and ADLI are constructed so that
their three sides are equal to the three sides of ABCG. Hence by (SSS) = (1.8), it
follows that /£ KDH and / LDI are both equal to the angle § of the triangle AABC
at B. From there it follows that the angles of ADMN at M and N are both equal to
B, because they subtend the same arcs cut off by the tangent line and the angles
B just constructed (I111.32). Since the sum of the three angles of a triangle is con-
stant = 180° (1.32), it follows that the triangle ADMN is equiangular with the tri-
angle AABC. In particular, if o is the angle at D, then f = 2a.

The points U, V are constructed by taking the angle bisectors of ADMN at M
and N. Since the angles at M and N are f, their halves are equal to a. Thus the
arcs DU, UM subtend angles o at N; the arc MN subtends an angle o at D; and
the arcs DV, VN subtend angles o at M. Hence these five arcs are all equal
(I11.26), and the line segments on them are also equal. So we have constructed
an equilateral pentagon inscribed in the circle. The angle subtended by each
side at the center of the circle will be 2a = f. It follows that the angles of the
pentagon are also equal, so the pentagon is regular in the sense that its sides are
all equal and its angles are all equal.

This completes the presentation of Euclid’s construction of the pentagon. As
usual, his method is adapted to economy of proof, not economy of steps used.
The whole construction, as we have presented it here, takes 12 + 23 = 35 steps.
By collapsing separate parts of the construction, in particular, by constructing
the triangle of (4.1) on a radius of the given circle, one can make a construction
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with fewer than half as many steps (cf. (4.3)). Note also that Euclid’s construc-
tion of the points U, V by bisecting the angles at M, N makes possible his elegant
proof that the five sides of the pentagon are equal. However, in retrospect we
see that MN is actually one side of the pentagon, so U and V could have been
constructed in a single step by a circle with center D and radius MN.

If there is such a thing as beauty in a mathematical proof, I believe that this
proof of Euclid’s for the construction of the regular pentagon sets the standard
for a beautiful proof. In the words of Edna St. Vincent Millay, “Euclid alone has
looked on beauty bare.”

Now let us use the ideas of Euclid’s method to construct a pentagon in as few
steps as possible.

Problem 4.3
Given a circle with center O, construct a regular pentagon inscribed in the circle
in as few steps as possible.

lé-—-—-—"‘"—'—-&
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1. Draw any line through O. Get A, B.
2. Circle AB.
3. Circle BA, get C. 8 0 A
4. OC, get D.
5. Circle DO. Get E, F. \/
6. EF, get G. - G
7. Circle GA, get H. ) F
8. Circle center A, radius OH, get I, J. \ /’?
9. Circle center B, radius IJ, get K, L. /
10-14. Draw BK, KJ, JI, IL, LB. L 15
Then BKJIL is the required pentagon.

K

Exercises

4.1 Read Euclid, Book IV.
4.2 Explain why the construction of (Problem 4.3) gives a regular pentagon.

4.3 Given a circle, but not given its center, construct an inscribed equilateral triangle in
as few steps as possible (par = 7).
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4.4 Construct a square in as few steps as possible (par = 9).

4.5 Given a line segment AB, construct a regular pentagon having AB as a side
(par = 11).

4.6 Given a circle I' and given its center O, construct inside I" three equal circles, each
one tangent to I and to the other two (par = 13).

A

4.7 Let ABC be an equilateral triangle in-
scribed in a circle. Let D, E be the mid-
points of two sides, and extend DE to
meet the circle at F. Prove that E divides
the segment DF in extreme and mean .
ratio, i.e. the rectangle EF x DF equals
the square DE?. Hint: Use (II1.35).

4.8 Take a long thin piece of paper. Tie a simple overhand knot in the paper, and fold the
knot flat. Explain why the flat knot makes a regular pentagon.

5 Some Newer Results

In this section we mention some results of plane geometry that do not appear in
Euclid’s Elements but that can be proved using the methods developed in Books
I-IV. Some of these, such as the three altitudes of a triangle meeting in a point,
were known to the Greeks. Others, such as the Euler line and the nine-point
circle, were discovered only in the eighteenth and nineteenth centuries.

In some textbooks these results are proved using similar triangles. In Euclid’s
Elements, similar triangles do not appear until Book VI, using the theory of pro-
portion developed in Book V. In modern texts, similar triangles are defined by
comparing the lengths of the sides. Since we have not yet discussed either of
these techniques, we will use only the pure geometric methods of Books I-IV in
this section.

Two theorems taught in modern high-school geometry are that the angle
bisectors of a triangle meet in a point (the incenter of the triangle), and the per-
pendicular bisectors of the sides of a triangle meet in a point (the circumcenter
of the triangle). Although not explicitly stated by Euclid, these two results are
implicitly contained in (IV.4) and (IV.5).
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On the other hand, the theorems about the three medians and the three alti-
tudes of a triangle do not appear in Euclid, though they were known to Archi-
medes, so we will start with them.

Proposition 5.1 A
Let ABC be a triangle, and let D, E be
the midpoints of AB and AC, respectively.
Then the line DE is parallel to the base

D
BC, and equal to one-half of it. In other
words, if F is the midpoint of BC, then
B

DE = BF.

Proof We begin with a slightly different
construction. Let D be the midpoint of
AB, and draw lines through D parallel to
AC and BC. Let them meet the opposite A
sides in points E’, F'. Since DE' is paral-
lel to BC, the angles at B and D are con-
gruent ((1.29): Here we use the parallel
postulate). Similarly, since AC is paral- D

E
F \\C
(_'—!
lel to DF’, the angles at A and D are 2 ! >
) ¥ C

equal.

Now AD = DB, and the angles of the B
triangle ADE’ and DBF’ at A and D are
equal to those at D and B, respectively, \,
so by (ASA) (1.26), the triangles ADE’
and DBF' are congruent. We conclude
that AE' ~ DF’ and DE’ =~ BF'.

Now look at the parallelogram DE’F'C. By (1.34) the opposite sides are equal.
So DF’ @ E'C and DE' =~ F'C. Thus we see that E’ and F’ are the midpoints of the
sides AC and BC. So E' = E, the line DE’ is equal to the line DE, and therefore
DE is parallel to BC as claimed. Furthermore, we have seen that DE’ = BF’, and
F' is the midpoint of BC, so DE is equal to one-half of BC.

Corollary 5.2 A
Let ABC be a triangle, and let D, E, F be
the midpoints of the three sides. Then the
sides of the triangle DEF are parallel to the
sides of ABC, and the four small triangles
formed are all congruent to each other.

Proof From the proposition it follows
that each side of the triangle DEF is par-
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allel to and equal to one-half of a side of the triangle ABC. Then by (SSS) (1.8) all
four small triangles are congruent.

Definition

We say a triangle ABC is congruent to the double of a triangle FED, in symbols
ABC =~ 2FED, if as in the diagram above, the three sides of ABC are double the
sides of FED, and the three angles of ABC are equal to the three angles of FED.

Proposition 5.3 (2ASA)

Let ABC and A'B'C’' be two triangles, and
assume that the angles at B and C are
equal to the angles at B' and C’, and that
BC =~ 2B'C’. Then the triangle ABC is
congruent to the double of A'B'C’.

Proof Let D, E, F be the midpoints of
the sides of ABC, and draw the triangle
DEF. Then from (5.2) we see that DE =~
%BC ~ B'C’. Furthermore, because DE
is parallel to BC, the angles of the tri-
angle ADE at D and E are equal to the
angles at B’ and C’. Now by (ASA), the
triangle ADE is congruent to A'B'C’. But
ABC is a double of ADE, so ABC
2A'B'C'.

Remark

One can easily prove other double congruence theorems corresponding to (SAS)
and (SSS) (see Exercises 5.1, 5.2). Of course, these are special cases of more
general theorems on similar triangles that we will discuss in Section 20.

Proposition 5.4
The medians (lines from a vertex to the midpoint of the opposite side) of a triangle
meet in a single point (called the centroid of the triangle).

Proof Let ABC be the triangle, let D, E

be the midpoints of AB and AC, and A

draw DE. Let the two medians BE and

CD meet at a point G. Since DE is par-

allel to BC (5.1), we find that / DEG = d £
L CBG and [ EDG=/BCG. On the

other hand, BC = 2DE (5.1). Therefore, G

we can apply the previous result (5.3)
and find that ABGC = 2AEGD.
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In particular, BG = 2GE. Thus G can be described as the point on the median
BE that is % of the way from B to E. Reversing the roles of A and C would there-
fore show that the third median AF also passes through G. Thus all three me-

dians meet in the point G.

Corollary 5.5
The centroid G lies on each median 2 of the way from the vertex to the midpoint of
the opposite side.

Proof Follows from the proof of (5.4).

Proposition 5.6
The three altitudes (lines through a vertex, perpendicular to the opposite side) of a
triangle meet in a single point (the orthocenter of the triangle).

Proof Let ABC be the given triangle.
Draw lines through the vertices A, B, C,
parallel to the opposite sides, to form a
new triangle A’B’C’. By (1.34) applied to
the parallelograms BCAC’ and BCB’A
we see that C'A = BC = AB'. Thus A is
the midpoint of B'C’, and similarly for
the other two sides of A'B'C’.

On the other hand, the altitude AM
of the triangle ABC is perpendicular to
BC, and hence also perpendicular to
B'C’. Thus we see that the altitudes of
the triangle ABC are equal to the per-
pendicular bisectors of the sides of the
triangle A'B’C’. Hence they meet in a
single point ((IV.5), cf. Exercise 1.9).

Proposition 5.7 (The Euler line)

In a triangle ABC, let O be the circumcenter, let G be the centroid, and let H be
the orthocenter. Then O, G, H lie on a line (called the Euler line of the triangle) and
GH = 20G.

Proof For the proof, let F be the midpoint of BC, draw the median AF, and let
the line OG meet the altitude AM in a point H'. Note that OF is perpendicular to
BC, since O is the circumcenter. Hence OF is parallel to AM. Therefore,
LGAH' = [ GFO. Also, / AGH' = / FGO, since they are vertical angles (1.15). By
our previous result on the medians (5.5), AG = 2GF. Thus we can apply (2ASA)
(5.3) to conclude that AAGH’ =~ 2AFGO. 1t follows that GH' = 20G.
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Thus the point H’ is characterized A
as that point on the ray OG such that
GH' = 20G. Now permuting the roles of
A, B, C, it follows that H' also lies on the 'Y ¢
other altitudes of ABC, so H' = H is the 6
orthocenter and our conclusions O, G, H g C
collinear and GH =~ 20G follow. M =

By the way, this argument provides another independent proof of the fact
that the three altitudes meet in a point (5.6).

For our next results, we will introduce the very useful method of cyclic
quadrilaterals.

Definition
A cyclic quadrilateral is a set of four

B

points A, B, C, D lying in that order on A
a circle, together with the lines AB,
BC, CD, DA joining them. The lines AC
and BD are the diagonals of the cyclic c
quadrilateral.

The importance of cyclic quadrilat-
erals comes from the relationships be-
tween the various angles of the figure,
which characterize the property of the N

four points A, B, C, D lying on a circle.

Proposition 5.8

Let A, B, C, D be four points in the plane, with A, B both on the same side of the
line CD. Then A, B, C, D lie on a circle if and only if the angles / DAC and [/ DBC
are equal.

Proof If A, B, C, D lie on a circle, then Py B
Euclid’s (III.21) tells us that the angles
at A and B are the same, since they both A
subtend the same arc DC.
Conversely, suppose the angles at A
and B are equal. Draw the circle through
A, D, C (IV.5) and let it meet the line
BD at B'. (In our figure, B lies outside D v C

the circle, but the argument will be
similar if B lies inside the circle.)
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Plate III. The frontispiece to Archimedes (Oxford edition of 1792). When the Socratic
philosopher Aristippus was shipwrecked on the shores of Rhodes, he saw geometrical fig-
ures in the sand and exclaimed to his comrades: “There is hope: I see traces of men”.
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Then by (I11.21), the angle at B’ is also equal to the angles at A and at B. If
B # B’, this contradicts (1.16), because the angle /£ DB'C at B’ is an exterior angle
to the triangle BCB’, and so must be greater than the opposite interior angle at B.
Hence B = B’, and all four points lie on the circle.

Theorem 5.9 (The nine-point circle)

In any triangle, the midpoints of the three sides, the feet of the three altitudes, and the
midpoints of the segments joining the three vertices to the orthocenter all lie on a
circle.

Proof Let ABC be the given triangle. Let D, E, F be the midpoints of the sides,
let K, L, M be the feet of the altitudes, let H be the orthocenter, and let P, Q, R
be the midpoints of the segments joining the three vertices to H. We must show
that D, E, F, K, L, M, P, Q, R all lie on a circle.

We make several uses of (5.1). Applied to the triangle ABC, we find that DE
is parallel to the base BC. Applied to the triangle BCH, we find that RQ is parallel
to the base BC. Hence DE is parallel to RQ. Now apply (5.1) to the triangle ACH.
We find that EQ is parallel to the base AH. Similarly, using the triangle ABH, DR
is parallel to AH. Hence EQ and DR are parallel. Furthermore, EQ and DR are
perpendicular to DE and RQ, since AH is perpendicular to BC. Thus DEQR is a
rectangle. If X is the center of this rectangle, then X is equidistant from the four
corners. Thus D, E, Q, R lie on a circle I with center X. We will show that this
circle contains the other required points.

By (5.8), DLER is a cyclic quadrilateral, because the angles at D and L sub-
tending ER are both right angles. Since a circle is determined by three points
(II1.10), this circle is the same as the circle T in other words, L also lies on T'.

A

L

P
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A similar argument shows that DKEQ is a cyclic quadrilateral, and so K lies
on I'.

Now, shifting perspective so that AC is regarded as the base of the triangle,
the same argument shows that DPQF is a rectangle, with the same center X,
since X is the midpoint of DQ. Therefore, P and F also lie on T

Finally, MDPF is a cyclic quadrilateral for the same reasons as above, so M is
alsoon I.

Proposition 5.10 (The orthic triangle)
Let ABC be any acute triangle, and let K, A
L, M be the feet of the altitudes of ABC.
Then the altitudes of ABC are the angle
bisectors of the orthic triangle KLM.

Proof We use cyclic quadrilaterals.
First, LMAB is a cyclic quadrilateral, K [~
because the angles at L and M are
right. Hence a=/AML is equal to
f =/ ABL. E N\ N

Next, KLCB is a cyclic quadrilateral
because the angles at K and L are right. M
Hence f is equal to y = £ KCL.

Finally, MKAC is a cyclic quadrilateral because the angles at M and K are
right, so y is equal to 6 = /. AMK.

Thus o =, so that the altitude AM of ABC is the angle bisector of the angle
£ KML in the orthic triangle. The same argument of course applies to the other
two altitudes.

Since the angle bisectors of AKLM meet in a point, this gives another proof
that the altitudes of AABC meet in a point.

We end this section with an ingenious construction given by Pappus in his
commentary on the lost book of Apollonius On Tangencies.

Problem 5.11
Given a circle I' and two points A, B, find a point C on the circle such that if the
lines CA, CB meet I' in further points D, E, then DE is parallel to AB.

Construction
Let I" be the given circle, with center O, and let A, B be the given points.

1. Line AB.
2. Circle AB, get F.
3. Line AF, get G.
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The proof of this construction is Exer-

cise

. Line CB, get E.
. Line DE is parallel to AB, as re-

Circle AG, get H.

Line OH.

Circle O, any radius.

Circle H, same radius, get I, J.
Line IJ, get K.

Circle KO, get D.

Line AD, get C.

quired.

5.11.

Exercises

5.1

5.2

5.3

5.4

5.5

5.6

(2SAS) Suppose we are given two triangles ABC and A’B'C’. Assume that AB = 2A'B’
and AC = 2A’C’, and the angles at A and A’ are equal. Prove that AABC =~ 2AA’B'C’.

(28SS) Suppose we are given two triangles ABC and A’B’C’ and assume that
AB ~2A'B’, AC =~ 2A'C’, and BC = 2B’C’. Prove that AABC =~ 2AA’'B'C’.

Al A\ £
Let I, m, n be three parallel lines. Sup-
pose they cut off equal segments AB = 'y [ -

BC on a transversal line. Show that the
segments DE, EF cut off by any other
transversal line are equal.

C F n

f \

Given three line segments, make a ruler and compass construction of a triangle
whose medians are congruent to the three given segments. What condition on the
segments is necessary for this to be possible?

Let ABCD be a quadrilateral. Show that the figure formed by joining the midpoints
of the four sides is a parallelogram.

In any triangle, show that the center X of the nine-point circle lies on the Euler line
(Proposition 5.7), and is the midpoint of the segment OH joining the circumcenter O
to the orthocenter H.
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A

5.7 Use cyclic quadrilaterals to give another
proof of Proposition 5.6, as follows. Let
ABC be the given triangle. Let the alti- L
tudes BL and CK meet at H. Let AH
meet the opposite side at M. Then show
that AM L BC. (This proof is probably
the one known to Archimedes.)

M

B

5.8 Show that the opposite angles o, y of a
quadrilateral ABCD add to two right
angles if and only if A, B, C, D lie on a
circle.
D

C

[

c

C

r
5.9 Let AB be the diameter of a circle T.
Show that a triangle ABC has a right A 0 6
c
B

€

angle at C if and only if C lies on the
circle I'.

510 Let B, C and D, E lie on two rays A
emanating from a point A. Show that
B, C, D, E lie on a circle if and only if
AB X AC = AD x AE (in the sense of P
content).
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5.11

5.12

5.13

5.14

In the construction to Problem 5.11, prove that DE is parallel to AB.
Hint: First show that BCDH is a cyclic quadrilateral. Then draw DH, and compare
angles using (1I1.22) and (II1.32).

In the construction to Problem 5.11, show that the circle through A, B, C is tangent
to I'. Thus this construction solves the problem, “given a circle I' and given two
points A, B, to find a circle passing through A, B, and tangent to I'.”” This is a special
case of the problem of Apollonius (Section 38).

(The Simson line). Let ABC be any tri-
angle. Let P be a point on the circum-
scribed circle of ABC. Let D, E, F be
the feet of the perpendiculars from P to
the sides of the triangle (extended as
necessary). Then D, E, F lie on a line.
(First proved by W. Wallace, 1799.)

(The Miquel point). Let ABC be a triangle. Let D, E, F be points on the sides of the
triangle. Show that the circles through ADE, BDF, and CEF all meet in a common
point G. Hint: Let G be the intersection of the first two circles, then show that CEGF
is a cyclic quadrilateral (due to A. Miquel, 1838).

A
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5.15

5.16

517

5.18

5.19

1. Euclid’s Geometry

(Pappus's theorem). Let A, B, C be
points on a line I, and let A’, B/, C'
be points on a line m. Assume that
AC'|A’C and B'C||BC’. Show that
AB'||A'B. Hint: Draw a circle through
A,B’,C' meeting I in D. Then use cyclic
quadrilaterals (cf. Hilbert, Foundations,
Section 14).

L)
p~—¢’ A"\
Construct three circles of different radii, each one tangent to the other two, with
noncollinear centers, in as few steps as possible (par = 7).

Let A, B, C, D be four points on a circle
I'. Let four more circles pass through
AB, BC, CD, DA, respectively, meeting
in further points A/, B’,C’, D'. Show that
A'B'C'D’ is a cyclic quadrilateral.

(Painting the plane). If the plane has been colored so that each point has one of
three colors (red, yellow, blue), prove that for any interval AB there exist two points
C, D of the same color, with AB = CD. (It is an unsolved problem whether the same
result is true for four colors.)

A

Given an angle with vertex O and a

point P inside the angle, drop perpen-

diculars PA, PB to the two sides of the C P
angle, draw AB, and drop perpendicu-

lars OC, PD to the line AB. Then show

that AC = BD. o) D




5. Some Newer Results 63

5.20 Given any triangle ABC, let D, E, F be the feet of the altitudes. Show that the
six projections G, H, I, ], K, L of D, E, F onto the other sides of the triangle lie on a
circle.

5.21 (Wentworth). Let ABC be a triangle. Construct with ruler and compass a line parallel
to BC, meeting AB in D and AC in E, such that DE = DB + EC.

In England the text-book of Geometry con-
sists of the Elements of Euclid; for nearly every
official programme of instruction or examina-
tion explicitly includes some portion of this
work. Numerous attempts have been made to
find an appropriate substitute for the Elements
of Euclid; but such attempts, fortunately, have
hitherto been made in vain. The advantages at-
tending to a common standard of reference in
such an important subject, can hardly be over-
estimated; and it is extremely improbable, if
Euclid were once abandoned, that any agree-
ment would exist as to the author who should
replace him.

- from the preface to
Todhunter’s Euclid
London (1882)



Hilbert's Axioms

CHAPTER

5 ur purpose in this chapter is to present (with minor
Il modifications) a set of axioms for geometry proposed
8 by Hilbert in 1899. These axioms are sufficient by
§ modern standards of rigor to supply the foundation
for Euclid’'s geometry. This will mean also axiomatiz-
ing those arguments where he used intuition, or said
nothing. In particular, the axioms for betweenness,
4 based on the work of Pasch in the 1880s, are the most
striking innovation in this set of axioms.

Another choice has been to take the SAS theorem as an axiom, and thus
bypass the method of superposition. It is possible to go the other route, and use
motions of figures as a basic building block of geometry. This is what Hadamard
does in his Legons de Geomeétrie Elémentaire (1901-06), but the result is a step
backward in logical clarity, because he never makes precise exactly what kind of
motions he is allowing. See, however, Section 17 for a fuller discussion of rigid
motions and SAS.

The first benefit of establishing the new system of axioms is, of course, to
vindicate Euclid’s Elements, and thus establish “Euclidean” geometry as a rigo-
rous mathematical discipline. A second benefit is to pose carefully those prob-
lems that have bothered geometers for centuries, such as the question of the
independence of the parallel postulate. Unless one has an exact understanding
of precisely what is assumed and what is not, one risks going around in circles
discussing these questions. In the development of our geometry with the new

65
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axioms, we will keep the parallel postulate separate and note carefully what
depends on it and what does not.

Besides presenting the axioms, this chapter will also contain the first con-
sequences of the axioms, including different proofs of some of Euclid’s early
propositions, until we have established enough so that Euclid’s later results can
be deduced without difficulty from the new foundations we have established. In
Sections 10, 11, 12, we show how to recover all the results of Euclid, Books I-1V,
except for the theory of area, whose proof is postponed until Chapter 5.

6 Axioms of Incidence

The axioms of incidence deal with points and lines and their intersections. The
points and lines are undefined objects. We simply postulate a set, whose ele-
ments are called points, together with certain subsets, which we call lines. We do
not say what the points are, nor which subsets form lines, but we do require that
these undefined notions obey certain axioms:

I1. For any two distinct points A, B, there exists a unique line I containing A, B.

I2. Every line contains at least two points.

I3. There exist three noncollinear points (that is, three points not all contained
in a single line).

Definition
A set whose elements are called points, together with a set of subsets called
lines, satisfying the axioms (I1), (12), (13), will be called an incidence geometry.
If a point P belongs to a line I, we will say that P lies on [, or that I passes
through P.

From this modest beginning we cannot expect to get very interesting results,
but just to illustrate the process, let us see how one can prove theorems based
on these axioms.

Proposition 6.1
Two distinct lines can have at most one point in common.

Proof Let I, mbe two lines, and suppose they both contain the points A, B, with
A # B. According to axiom (I1), there is a unique line containing both A and B,
so I must be equal to m.

Note that this fact, which was used by Euclid in the proof of (I1.4) with the
rather weak excuse that “two lines cannot enclose a space,” follows here from
the uniqueness part of axiom (I1). This should indicate the importance of stat-
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ing explicitly the uniqueness of an object, which was rarely done in Euclid’s
Elements.

Now we have an axiom system, consisting of the undefined sets of points
and lines, and the axioms (11)-(I3). A model of that axiom system is a realization
of the undefined terms in some particular context, such that the axioms are sat-
isfied. You could also think of the model as an example of the incidence geometry
defined above.

Example 6.1.1 (The real Cartesian
plane).

Here the set of points is the set IR? of
ordered pairs of real numbers. The lines ( b,,h}
are those subsets of points P = (¥, y) that
satisfy a linear equation ax+ by +c =0 (a,,av)
in the variables x, y. To verify that the
axioms hold, for (I1) think of the “two-
point formula” from analytic geometry:
Given two points A = (a;,az) and B =
(b1, b,). They lie on the line

if a1 # by; if a1 = by, they lie on the line x = a;. To verify (12), take any linear
equation involving y. Substitute two different values of x, and solve for y. This
gives two points on the line. If the equation did not involve y, say x = c, take
the points (c,0) and (c,1). To verify (I3), consider the points (0,0),(0,1),
(1,0). One sees easily that there is no linear equation with all three points as
solutions.

Example 6.1.2

One can also make models out of finite A
sets. For example, let the set of points

be a set of three elements {A, B,C}, and

take for lines the subsets {A, B}, {A,C},

and {B,C}. We represent this symboli-

cally by the diagram, where the dots B C
represent the elements of the set, and
the lines drawn on the page show which A

subsets are to be taken as lines.

This diagram should be understood as purely symbolic, however, and has
nothing to do with a triangle in the ordinary Cartesian plane. The verification of
the axioms in this case is trivial.
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Definition
Two distinct lines are parallel if they have no points in common. We also say
that any line is parallel to itself.

The parallel postulate, in its equivalent form given by Playfair, can be stated
as a further axiom about incidence of lines. However, we do not include this
axiom in the definition of incidence geometry. Thus we may speak of an inci-
dence geometry that does or does not satisfy Playfair’s axiom.

P. (Playfair's axiom, also called the parallel axiom). For each point A and each
line I, there is at most one line containing A that is parallel to I.

Note that the real Cartesian plane (6.1.1) satisfies (P), as you know, and the
three-point geometry (6.1.2) satisfies (P) vacuously, because there are no distinct
parallel lines at all. Next we give an example of an incidence geometry that does
not satisfy (P).

Example 6.1.3 A

Let our set consist of five points A, B, C,

D, E, and let the lines be all subsets of £

two points. It is easy to see that this ge-

ometry satisfies (I1)-(I3). However, it

does not satisfy (P), because, for exam-

ple, AB and AC are two distinct lines

through the point A and parallel to the

line DE. D C

—

Remember that the word parallel simply means that two lines have no points
in common or are equal. It does not say anything about being in the same
direction, or being equidistant from each other, or anything else.

We say that two models of an axiom system are isomorphic if there exists a
1-to-1 correspondence between their sets of points in such a way that a subset
of the first set is a line if and only if the corresponding subset of the second
set is a line. For short, we say ‘“the correspondence takes lines into lines.”
So for example, we see that (6.1.1), (6.1.2), and (6.1.3) are nonisomorphic models
of incidence geometry, for the simple reason that their sets of points have dif-
ferent cardinality: There are no 1-to-1 correspondences between any of these
sets.

On the other hand, we can show that any model of incidence geometry
having just three points is isomorphic to the model given in (6.1.2). Indeed, let
{1, 2,3} be a geometry of three points. By (I3), there must be three noncollinear
points. Since there are only three points here, we conclude that there is no
line containing all three. But by (I1), each subset of two points must be con-
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tained in a line. Thus {1,2},{2,3}, and {1, 3} are lines. Now by (12), every line
contains at least two points, so these are all the possible lines. In other words,
the lines are just all subsets of two elements. Since (6.1.2) also has this property,
any 1-to-1 correspondence between the sets {A,B,C} and {1,2,3} will give an
isomorphism.

By the way, this proof shows that the isomorphism just found is not unique.
There are six choices. This leads to the notion of automorphism.

Definition

An automorphism of an incidence geometry is an isomorphism of the geometry
with itself, that is, it is a 1-to-1 mapping of the set of points onto itself, preserving
lines.

Note that the composition of two automorphisms is an automorphism, and
so is the inverse of an automorphism. Thus the set of automorphisms forms a
group. In the example above, any 1-to-1 mapping of the set of three elements
onto itself gives an automorphism of the geometry, so we see that the group of
automorphisms of this geometry is the symmetric group on three letters, Ss.

An important question about a set of axioms is whether the axioms are inde-
pendent of each other. That is to say, that no one of them can be proved as a
consequence of the others. For if one were a consequence of the others, then we
would not need that one as an axiom. To try to prove directly that axiom A is
not a consequence of axioms B,C, D, ... is usually futile. So instead, we search
for a model in which axioms B, C, D, ... hold but axiom A does not hold. If such
a model exists, then there can be no proof of A as a consequence of B,C, D, ...,
so we conclude that A is independent of the others. This process must be re-
peated with each individual axiom, to show that each one is independent of
all the others. With a long list of axioms this can become tedious and difficult,
so we will forgo the process with our full list of axioms. But as an illustra-
tion of what is involved, let us show that the axioms (11), (12), (I3), and (P) are
independent.

Proposition 6.2
The axioms (11), (12), (13), (P) are independent of each other.

Proof We have already seen that (6.1.3) is a model satisfying (I1), (12), (13), and
not (P). Hence (P) is independent of the others.

For a model satisfying (I1), (12), (P), and not (13), take a set of two points and
the one line containing both of them.
Note that (P) is satisfied trivially, be- A‘ B_

cause there are no points not on the v v
line I.
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For a model satisfying (11), (I3), (P), A

and not (I2), take a set of three points

A,B,C, and for lines take the subsets

{A,B},{A,C},{B,C}, and {A}. The ex-

istence of the one-point line {A} con- B C
tradicts (12). Yet (P) is still fulfilled, " A
because that one-point line is then the

unique line through A parallel to {B, C}.

For a model satisfying (12), (13), (P) A .
and not (I1), just take a set of three
points and no lines at all. e o C

While we are discussing axiom systems, there are a few more concepts we
should mention. An axiom system is consistent if it will never lead to a contra-
diction. That is to say, if it is not possible to prove from the axioms a statement
A and also to prove its negation not A. This is obviously a highly desirable
property of a system of axioms. We do not want to waste our time proving theo-
rems from a system of axioms that one day may lead to a contradiction. Un-
fortunately, however, the logician Kurt Godel has proved that for any reasonably
rich set of axioms, it will be impossible to prove the consistency of that system.
So we will have to settle for something less, which is relative consistency. As soon
as you can find a model for your axiom system within some other mathematical
theory T, it follows that if T is consistent, then also your system of axioms is
consistent. For any contradiction that might follow from your axioms would
then also appear in the theory T, contradicting its consistency. So for example,
if you believe in the consistency of the theory of real numbers, then you must
accept the consistency of Hilbert's axiom system for geometry, because all of his
axioms will hold in the real Cartesian plane. That is the best we can do about the
question of consistency.

Another question about a system of axioms is whether it is categorical. This
means, does it describe a unique mathematical object? Or in other words, is
there a unigque model (up to isomorphism) for the system of axioms? In fact, it
will turn out that if we take the entire list of Hilbert's axioms, including the par-
allel axiom (P) and Dedekind’s axiom (D), the system will be categorical, and the
unique model will be the real Cartesian plane. (We will prove this result later
(21.3).) Also, if we take all of Hilbert's axioms, together with (D) and the hyper-
bolic axiom (L) (see Section 40), we will have another categorical system, whose
unique model is the non-Euclidean Poincaré model over the real numbers (Ex-
ercise 43.2).

However, from the point of view of this book, it is more interesting to have
an axiom system that is not categorical, and then to investigate the different
possible geometries that can arise. Therefore, we will almost never assume
Dedekind’s axiom (D), and we will only sometimes assume Archimedes’ axiom
(A), or the parallel axiom (P).
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Finally, one can ask whether the axiom system is complete, which means, can

every statement that is true in every model of the axiom system be proved as a
consequence of the axioms? Again, Godel has shown that any axiomatic system
of reasonable richness cannot be complete. For a fuller discussion of these
questions, see Chapter 51 of Kline (1972) on the foundations of mathematics.

Exercises

6.1

6.2

6.3

6.4

6.5

Describe all possible incidence geometries on a set of four points, up to iso-
morphism. Which ones satisfy (P)?

The Cartesian plane over a field F. Let F be any field (see definition in §14). Take the
set F? of ordered pairs of elements of the field F to be the set of points. Define lines
to be those subsets defined by linear equations, as in Example 6.1.1. Verify that the
axioms (I1), (12), (I3), and (P) hold in this model. (See Section 14 for more about
Cartesian planes over fields.)

A projective plane is a set of points and subsets called lines that satisfy the following
four axioms:

P1. Any two distinct points lie on a unique line.
P2. Any two lines meet in at least one point.
P3. Every line contains at least three points.
P4. There exist three noncollinear points.

Note that these axioms imply (11)-(I3), so that any projective plane is also an inci-
dence geometry. Show the following:

(a) Every projective plane has at least seven points, and there exists a model of a
projective plane having exactly seven points.

(b) The projective plane of seven points is unique up to isomorphism.
(c) The axioms (P1), (P2), (P3), (P4) are independent.

Let Fbe a field, and let V = F® be a three-dimensional vector space over F. Let II be
the set of 1-dimensional subspaces of V. We will call the elements of II “points.” So a
“point” is a 1-dimensional subspace P < V. If W < V is a 2-dimensional subspace of
V, then the set of all “points” contained in W will be called a “line.” Show that the set
II of “points” and the subsets of “lines” forms a projective plane (Exercise 6.3).

An affine plane is a set of points and subsets called lines satisfying (11), (12), (I3), and
the following stronger form of Playfair's axiom.

P’. For every line I, and every point A, there exists a unique line m containing A
and parallel to L

(a) Show that any two lines in an affine plane have the same number of points (i.e.,
there exists a 1-to-1 correspondence between the points of the two lines).
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6.6

6.7

6.8

6.9

2. Hilbert’s Axioms

(b) If an affine plane has a line with exactly n points, then the total number of
points in the plane is n%.

(c) If Fis any field, show that the Cartesian plane over F (Exercise 6.2) is a model of
an affine plane.

(d) Show that there exist affine planes with 4, 9, 16, or 25 points. (The nonexistence
of an affine plane with 36 points is a difficult result of Euler.)

In an incidence geometry, consider the relationship of parallelism, “1 is parallel to
m,” on the set of lines.

(a) Give an example to show that this need not be an equivalence relation.
(b) If we assume the parallel axiom (P), then parallelism is an equivalence relation.

(c) Conversely, if parallelism is an equivalence relation in a given incidence geom-
etry, then (P) must hold in that geometry.

Let IT be an affine plane (Exercise 6.5). A pencil of parallel lines is the set of all the
lines parallel to a given line (including that line itself). We call each pencil of paral-
lel lines an “ideal point,” or a “point at infinity,” and we say that an ideal point “lies
on" each of the lines in the pencil. Now let I’ be the enlarged set consisting of IT
together with all these new ideal points. A line of I1’ will be the subset consisting of
a line of IT plus its unique ideal point, or a new line, called the “line at infinity,”
consisting of all the ideal points.

(a) Show that this new set I1’ with subsets of lines as just defined forms a projective
plane (Exercise 6.3).

(b) If I is the Cartesian plane over a field F (Exercise 6.2), show that the associated
projective plane I1’ is isomorphic to the projective plane constructed in Exercise
6.4.

If there is a line with exactly n+ 1 points in a projective plane II, then the total
number of points in IT is n2 +n + 1.

Kirkman's schoolgirl problem (1850) is as follows: In a certain school there are 15
girls. It is desired to make a seven-day schedule such that each day the girls can
walk in the garden in five groups of three, in such a way that each girl will be in the
same group with each other girl just once in the week. How should the groups be
formed each day?

To make this into a geometry problem, think of the girls as points, think of the
groups of three as lines, and think of each day as describing a set of five lines, which
we call a pencil. Now consider a Kirkman geometry: a set, whose elements we call
points, together with certain subsets we call lines, and certain sets of lines we call
pencils, satisfyirg the following axioms:

K1. Two distinct points lie on a unique line.
K2. All lines contain the same number of points.
K3. There exist three noncollinear points.

K4. Each line is contained in a unique pencil.
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K5. Each pencil consists of a set of parallel lines whose union is the whole set of
points.

(a) Show that any affine plane gives a Kirkman geometry where we take the pencils
to be the set of all lines parallel to a given line. (Hence by Exercise 6.5 there exist
Kirkman geometries with 4, 9, 16, 25 points.)

(b) Show that any Kirkman geometry with 15 points gives a solution of the original
schoolgirl problem.

(c) Find a solution for the original problem. (There are many inequivalent solutions
to this problem.)

6.10 In a finite incidence geometry, the number of lines is greater than or equal to the
number of points.

7 Axioms of Betweenness

In this section we present axioms to make precise the notions of betweenness
(when one point is in between two others), on which is based the notion of
sidedness (when a point is on one side of a line or the other), the concepts of
inside and outside, and also the concepts of order, when one segment or angle is
bigger than another. We have seen the importance of these concepts in reading
Euclid’s geometry, and we have also seen the dangers of using these concepts
intuitively, without making their meaning precise. So these axioms form an
important part of our new foundations for geometry. At the same time, these
axioms and their consequences may seem difficult to understand for many
readers, not because the mathematical concepts are technically difficult, but
because the notions of order and separation are so deeply ingrained in our daily
experience of life that it is difficult to let go of our intuitions and replace them
with axioms. It is an exercise in forgetting what we already know from our inner
nature, and then reconstituting it with an open mind as an external logical
structure.

Throughout this section we presuppose axioms (I1)-(I3) of an incidence
geometry. The geometrical notions of betweenness, separation, sidedness, and
order will all be based on a single undefined relation, subject to four axioms. We
postulate a relation between sets of three points A, B, C, called “B is between A
and C.” This relation is subject to the following axioms.

B1. If B is between A and C, (written A * B* C), then A, B, C are three distinct
points on a line, and also C x B * A.

B2. For any two distinct points A, B, there exists a point C such that A x B x C.

B3. Given three distinct points on a line, one and only one of them is between
the other two.
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B4. (Pasch). Let A,B,C be three non- A
collinear points, and let I be a line ¢
not containing any of A,B,C. If [
contains a point D lying between
A and B, then it must also contain
either a point lying between A and
C or a point lying between B and C,
but not both.

Definition

If A and B are distinct points, we define the line segment AB to be the set con-
sisting of the points A, B and all points lying between A and B. We define a tri-
angle to be the union of the three line segments AB,BC, and AC whenever
A, B, C are three noncollinear points. The points A, B, C are the vertices of the
triangle, and the segments AB, BC, AC are the sides of the triangle.

Note: The segments AB and BA are the same sets, because of axiom (B1). The
endpoints A, B of the segment AB are uniquely determined by the segment AB
(Exercise 7.2). The vertices A, B, C, and the sides AB, AC, BC of a triangle ABC
are uniquely determined by the triangle (Exercise 7.3).

With this terminology, we can rephrase (B4) as follows: If a line [ that does
not contain any of the vertices A, B, C of a triangle meets one side AB, then it
must meet one of the other sides AC or BC, but not both.

From these axioms together with the axioms of incidence (11)-(13) we will
deduce results about the separation of the plane by a line, and the separation of
a line by a point.

Proposition 7.1 (Plane separation)
Let I be any line. Then the set of points not lying on | can be divided into two non-
empty subsets Sy, S, with the following properties:

(a) Two points A, B not on 1 belong to the B
same set (81 or Sp) if and only if the A
segment AB does not intersect 1.
(b) Two points A, C not on 1 belong to the
opposite sets (one in Sy, the other in
S;) if and only if the segment AC in- A
tersects | in a point.

We will refer to the sets S1,S; as the
two sides of I, and we will say “A and B
are on the same side of I,” or “A and C
are on opposite sides of 1.” C
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Proof We start by defining a relation ~ among points not on I. We will say
A ~ B if either A = B or if the segment AB does not meet . Our first step is to
show that ~ is an equivalence relation. Clearly, A ~ A by definition, and A ~ B
implies B ~ A because the set AB does not depend on the order in which we
write A and B. The nontrivial step is to show the relation is transitive: If A ~ B
and B ~ C, we must show A ~ C.

Case 1 Suppose A,B,C are not col-
linear. Then we consider the triangle
ABC. Since A ~ B, | does not meet AB.
Since B ~ C, I does not meet BC. Now
by Pasch’s axiom (B4), it follows that I
does not meet AC. Hence A ~ C.

Case 2 Suppose A, B, C lie on a line m.
Since A, B, C do not lie on [, the line m is
different from I. Therefore I and m can
meet in at most one point (6.1). But by
(I2) every line has at least two points.
Therefore, there exists a point D on I, D
not lying on m.

Now apply axiom (B2) to find a point E such that D* A xE. Then D,A,E
are collinear (B1); hence E is not on [, since A is not on I, and the line DAE
already meets [ at the point D. Furthermore, the segment AE cannot meet . For
if it did, the intersection point would be the unique point in which the line AE
meets I, namely D. In that case D would be between A and E. But we con-
structed E so that D* A xE, so by (B3), D cannot lie between A and E. Thus
AENI= {, so A ~ E. Note also that E does not lie on the line m, because if E
were on m, then the line AE would be equal to m, so D would lie on m, contrary
to our choice of D. Therefore, A,B,E are three noncollinear points. Then by
Case 1 proved above, from A ~ E and A ~ B we conclude B~ E. By Case 1
again, from B ~ E and B ~ C we conclude C ~ E. Applying Case 1 a third time to
the three noncollinear points A, C,E, from A ~ E and C ~ E we conclude A ~ C
as required.

Thus we have proved that ~ is an equivalence relation. An equivalence
relation on a set divides that set into a disjoint union of equivalence classes,
and these equivalence classes will satisfy property (a) by definition. To complete
the proof it will be sufficient to show that there are exactly two equivalence
classes Sy, S, for the relation ~. Then to say that AC meets [, which is equivalent
to A + C, will be the same as saying that A, C belong to the opposite sets.

By (I3) there exists a point not on I, so there is at least one equivalence class
S;. Given A € 81, let D be any point on I, and choose by (B2) a point C such that
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A*DxC. Then A and C do not satisfy ~, so there must be at least two equiva-
lence classes S; and S,.

The last step is to show that there are at most two equivalence classes. To do
this, we will show that if A + C and B + C, then A ~ B.

Case 1 If A,B,C are not collinear, we A

consider the triangle ABC. From A + C ; {
we conclude that AC meets I. From

B+ C we conclude that BC meets 1.

Now by Pasch’s axiom (B4) it follows C
that AB does not meet I. So A ~ B as

required.

Case 2 Suppose A, B, C lie on a line m. €
As in Case 2 of the first part of the proof 8
above, choose a point D on [, not on m, A
and use (B2) to get a point E with £
DxAxE. Then A ~E as we showed / )
above. c

Now, A + C by hypothesis, and A ~ E, so we conclude that C + E, since ~ is
an equivalence relation (if C ~ E, then A ~ C by transitivity: contradiction).
Looking at the three noncollinear points B,C,E, from E + C and B £ C we
conclude using Case 1 that B ~ E. But also A ~ E, so by transitivity, A ~ B as
required.

Proposition 7.2 (Line separation)
Let A be a point on a line |. Then the set of points of 1 not equal to A can be divided
into two nonempty subsets 8y, S,, the two sides of A on 1, such that

(a) B, C are on the same side of A if and
only if A is not in the segment BC; D A B c
(b) B, D are on opposite sides of A if
and only if A belongs to the segment
BD.

> > - -

Proof Given the line [ and a point A on

I, we know from (I3) that there exists a €

point E not on I. Let m be the line con-

taining A and E. Apply (7.1) to the line

m. If m has two sides 87, S5, we define A A
and S to be the intersections of §; and

8, with 1. Then properties (a) and (b)

follow immediately from the previous

proposition.
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The only mildly nontrivial part is to show that S; and S, are nonempty. By
(12), there is a point B on [ different from A. And by (B2) there exists a point D
such that B * A x D. Then D will be on the opposite side of A from B, and will lie
on [, so both sides are nonempty.

Now that we have some basic results on betweenness, we can define rays
and angles.

Definition
leen two distinct points A, B, the ray
AB is the set consisting of A, plus all
points on the line AB that are on the A B
same side of A as B. The point A is the — ’
origin, or vertex, of the ray. / An anglﬁ
the union of two rays AB and AC g
originating at the same point, its vertex,
and not lying on the same line. (Thus A
there is no “zero angle,” and there is no
“straight angle” (180°).) Note that the
vertex of a ray or angle is uniquely de-
termined by the ray or angle (proof
similar to Exercises 7.2, 7.3).

The inside (or interior) of an angle
[/ BAC consists of all points D such that
D and C are on the same side of the line
AB, and D and B are on the same side of
the line AC. If ABC is a triangle, the in-
side (or interior) of the triangle ABC is
the set of points that are simultaneously
in the insides of the three angles
[ BAC,/ ABC,/ ACB.

4

Proposition 7.3 (Crossbar theorem)

Let / BAC be an angle, and let D be a
point in, the interior of the angle. Then the A
ray AD must meet the segment BC. c

Proof This is similar to Pasch’s axiom (B4), except that we must consider a
line AD that passes through one vertex of the triangle ABC. We will prove it
with Pasch’s axiom and several applications of the plane separation theorem

(7.1).
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Let us label the lines AB=1, AC=
m, AD = n. Let E be a point on m such
that E * A x C (B2). We will apply Pasch’s
axiom (B4) to the triangle BCE and the
line n. By construction n meets the side
CE at A. Also, n cannot contain B, be-
cause it meets the line [ at A. We will A c
show that n does not meet the segment 4
BE, so as to conclude by (B4) that it
must meet the segment BC.

So we consider the segment BE. This segment meets the line [ only at B, so
all points of the segment, except B, are on the same side of I. By construction, C
is on the opposite side of I from E, so by (7.1) all points of BE, except B, are on
the opposite side of I from C. On the other hand, since D is in the interior of the
angle / BAC, all the points of the ray AD except 4, are on the same side of I as
C. Thus the segment BE does not meet the ray AD.

A similar reasoning using the line m shows that all points of the segment BE,
except E_lif)a on the same side of m as B, while the points of the ray of n, opposite
the ray AD, lie on the other side of m. Hence the segment BE cannot meet the
opposite ray to AD. Together with the previous step, this shows that the seg-
ment BE does not meet the line n. We conclude by (B4) that n meets the seg-
ment BC in a point F.

It remains only to show that F is on the ray AD of the line n. Indeed, B and
F are on the same side of m, and also B and D are on the same side of m, so (7.1)
D and F are on the same side of m, and so D and F are on the same side of A on
the line n. In other words, F lies on the ray AD.

Example 7.3.1
We will show that the real Cartesian plane (6.1.1), with the “usual” notion of
betweenness, provides a model for the axioms (B1)-(B4).

First, we must make precise what we mean by the usual notion of between-
ness. For three distinct real numbers a,b,c € R, let us define a x b * ¢ if either
a<b<cor c<b<a. Then it is easy to see that this defines a notion of
betweenness on the real line R that satisfies (B1), (B2), and (B3).

If A= (a1,a;), B= (by,b;), and C = (c1,c;) are three points in R?, let us
define A * BxC to mean that A,B,C are three distinct points on a line, and
that either a; x by x ¢; or az * by x c;, or both. In fact, if either the x- or the y-
coordinates satisfy this betweenness condition, and if the line is neither hori-
zontal nor vertical, then the other coordinates will also satisfy it, because the
points lie on a line, and linear operations (addition, multiplication) of real num-
bers either preserve or reverse inequalities. Thus linear operations preserve be-
tweenness. So we can verify easily that this notion of betweenness in R? sat-
isfies (B1), (B2), and (B3).
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For (B4), let I be a line, and let A, B, C be three noncollinear points not on L

The line [ is defined by some linear equation ax + by + ¢ = 0. Let ¢ : R*? — R be
the linear function defined by ¢(x, y) = ax + by + c. Since ¢ is a linear function,
¢ will preserve betweenness. For example, if | meets the segment AB, then 0 will
lie between ¢(A) and ¢(B). In other words, one of ¢(A), ¢(B) will be positive and
the other negative. Suppose ¢(A) > 0 and ¢(B) < 0. Consider ¢(C). If ¢(C) > 0,
then [ will meet BC but not AC. If ¢(C) < 0, then I will meet AC but not BC. This
proves (B4).

Exercises

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Using the axioms of incidence and betweenness and the line separation property,
show that sets of four points A,B,C,D on a line behave as we expect them to with
respect to betweenness. Namely, show that

(a) A*BxCand Bx CxD imply A*Bx*D and A xC*D.
(b) AxBxDand B* Cx D imply A*B+C and A %« CxD.

Given a segment AB, show that there do not exist points C,D e AB such that
C x A * D. Hence show that the endpoints A, B of the segment are uniquely deter-
mined by the segment.

Given a triangle ABC, show that the sides AB, AC, and BC and the vertices A,B,C
are uniquely determined by the triangle. Hint: Consider the different ways in which
a line can intersect the triangle.

Using (11)-(I3) and (B1)-(B4) and their consequences, show that every line has
infinitely many distinct points.

Show that the line separation property (Proposition 7.2) is not a consequence of
(B1), (B2), (B3), by constructing a model of betweenness for the set of points on
a line, which satisfies (B1), (B2), (B3) but has only finitely many points. (Then by
Exercise 7.4, line separation must fail in this model.) For example, in the ring
{0,1,2,3,4} of integers (mod 5), define ax b c if b=1(a+c).

Prove directly from the axioms (I1)-(I3) and (B1)-(B4) that for any two distinct
points A, B, there exists a point C with A % C x B. (Hint: Use (B2) and (B4) to con-
struct a line that will be forced to meet the segment AB but does not contain A or B.)

Be careful not to assume without proof statements that may appear obvious. For
example, prove the following:

(a) Let A, B, C-be three points on a line A - B
with C in between A and B. Then show . -
that ACU CB = ABand AC N CB = {C}. A

(b) Suppose we are given two distinct
p__)oints A,B ona line_l; Show that AB U
BA =land AB N BA = AB. B

L'
-
b
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7.8

7.9

7.10

7.11

7.12

7.13
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Assume AxBxC on one line, and

A * D * E on another line. Show that the M
segment BE must meet the segment CD

at a point M. A

Show that the interior of a triangle is nonempty.

Suppose that a line I contains a point D

that is in the inside of a triangle ABC. ]
Then show that the line I must meet (at D
least) one of the sides of the triangle.

A C

A set U of points in the plane is a convex set if whenever A, B are distinct points in U,
then the segment AB is entirely contained in U. Show that the inside of a triangle is
a convex set.

A subset W of the plane is segment-connected if given any two points A, B € W, there
is a finite sequence of points A = A}, A;,...,A, = B such that for eachi=1,2,...,
n — 1, the segment A;A;;, is entirely contained within W.

If ABC is a triangle, show that the exterior of the triangle, that is, the set of all points of
the plane lying neither on the triangle nor in its interior, is a segment-connected set.

Let A, B, C,D be four points, no three collinear, and assume that the segments AB,
BC, CD, DA have no intersections except at their endpoints. Then the union of these
four segments is a simple closed quadrilateral. The segments AC and BD are the diag-
onals of the quadrilateral. There are two cases to consider.

Case 1 AC and BD meet at a point M. B
In this case, show that for each pair
of consecutive vertices (e.g., A, B), the
remaining two vertices (C,D) are on
the same side of the line AB. Define A
the interior of the quadrilateral to be =
the set of points X such that for each '
side (e.g., AB), X is on the same side of ¢
the line AB as the remaining vertices
D

(C,D). Show that the interior is a con-
vex set.
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Case 2 AC and BD do not meet. In
this case, show that one of the diago-
nals (AC in the picture) has the prop-
erty that the other two vertices B, D are
on the same side of the line AC, while
the other diagonal BD has the property
that A and C are on the opposite sides
of the line BD. Define the interior of the
quadrilateral to be the union of the
interiors of the triangles ABD and CDB
plus the interior of the segment BD.
Show in this case that the interior is
a segment-connected set, but is not
convex.

(For a generalization to n-sided fig-
ures, see Exercise 22.11.)

7.14 (Linear ordering) Given a finite set of distinct points on a line, it is possible to label
them A, A;,...,A, in such a way that A; x A; * Ay if and only if either i < j < k or
k<j<i.

7.15 Suppose that lines a,b,c through the
vertices A,B,C of a triangle meet at

three points inside the triangle. Label %)
them

X=a-c,

Y=a-b,

Z=b-c.

Show that one of the two following
arrangements must occur:

() AxX+xYand BxY+*Zand CxZxX A [/ C
(shown in diagram), or ’ '

(i) AxY*Xand BxZxY and Cx X * Z.

8 Axioms of Congruence for Line Segments

To the earlier undefined notions of point, line, and betweenness, and to the
earlier axioms (I1)-(13), (B1)-(B4), we now add an undefined notion of congru-
ence for line segments, and further axioms (C1)-(C3) regarding this notion. This
congruence is what Euclid called equality of segments. We postulate an un-
defined notion of congruence, which is a relation between two line segments AB
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and CD, written AB =~ CD. For simplicity we will drop the bars over AB in the
notation for a line segment, so long as no confusion can result. This undefined
notion is subject to the following three axioms

C1. Given a line segment AB, and given A
a ray r originating at a point C, there /

exists a unique point D on the ray r c
D

such that AB = CD. -\9\—)

C2. If AB =~ CD and AB = EF, then CD =~ EF. Every line segment is congruent to
itself.

C3. (Addition). Given three points A, B, c
C on a line satisfying A *Bx*C, and B

three further points D,E,F on a line A D
satisfying D*ExF, if AB~DE and *\f\‘r_’
BC ~ EF, then AC = DF.

Let us observe how these axioms are similar to Euclid’s postulates and how
they are different. First of all, while Euclid phrases some of his postulates in
terms of constructions (“to draw a line through any two given points,” and “to
draw a circle with any given center and radius”), Hilbert's axioms are existen-
tial. (I1) says for any two distinct points there exists a unique line containing
them. And here, in axiom (C1), it is the existence of the point D (corresponding
to Euclid’s construction (1.3)) that is taken as an axiom. Hilbert does not make
use of ruler and compass constructions. In their place he puts the axiom (C1) of
the existence of line segments and later (C4) the existence of angles. If you like,
you can think of (C1) and (C4) as being tools, a “transporter of segments” and a
“transporter of angles,” and consider some of Hilbert's theorems as construc-
tions with these tools.

The second congruence axiom (C2) corresponds to Euclid’s common notion
that “things equal to the same thing are equal to each other.” This is one part of
the modern notion of an equivalence relation, so to be comfortable in using
congruence, let us show that it is indeed an equivalence relation.

Proposition 8.1
Congruence is an equivalence relation on the set of line segments.

Proof To be an equivalence relation, congruence must satisfy three properties.

(1) Reflexivity: Every segment is congruent to itself. This is explicitly stated in
(C2). And by the way, this corresponds to Euclid’s fourth common notion that
“things which coincide with each other are equal to each other.”



EYKAEIAOY XTOI-

XEIONNIITPQTON:
EVCLIDIS ELEMENTORVM GEO-

metricorum liber primus.

St hicliber primus totus feré elementarius,nontantum
adreliquosfequentes huius Operislibros,fed etiamad
3| aliorum Geometrarum fcripta intelligenda neceffarius,
$A| Namin hoclibro communium uocabulorum,qugfub.
| indein geometriauerfanti occurrunt, definitiones con’

—— tinentur. Pregceptionesdeindeducendiperpendicula.
rem, quomodo item Trilatere figure, fecundum latera uel angulos dis
uerfee, & Quadrilatere, formari debeant. Figuraitemaliqua propofita,
quomodoilla in alterius formz figuram permutanda fit,praceptiones,
utdiximus, tradunatur, Cum igitur taliadoceantur,& plura etiamalia,
quam hoc loco commemorare uoluimus, fagile erit cuinis, non folum
quim {it neceffarius,fed etiam ad reliqua perdifcendaliber ifte quam uti-
lis,perfpicere,

oPoOL
, Supeopisip, ov usp®@ dulip. Toapund, uinos ¥mals. Tpauufedt
wigaTe, onpéic. Evidia ypappd tsip, ime $ibv 7ois 1 i) onpeione
w73
DEFINITIONE S,

Pun&tumeft, cuius parsnulla, 2, Linea uerd, longitudo latitu.
dinis expers, Linegautem terminipun&a. 3. Re&alineaceft, quggqua-
biliterinter fua pun&a jacet.

v
Prima defini. A g

Ewmipivéaisiy,d uin® wei w?\oh‘@‘ quop’e'xs. Emiganiae J’é:w{z
e, ypappci. Ewraidbs iwigodua isip, ins iy aisie’ ) vl
n&i7oy,

4 Superficies eft, que longitudinem 8¢ ltitudinem ta;ntumsh::::::

Plate IV. The beginning of the Elements in the edition of Scheubel (1550), showing the
Greek text of the first few definitions.




84 2. Hilbert’s Axioms

(2) Symmetry: If AB = CD, then CD =~ AB. This is a consequence of (C2):
Given AB = CD, and writing AB = AB by reflexivity, we conclude from (C2) that
CD =~ AB.

(3) Transitivity: If AB =~ CD and CD = EF, then AB = EF. This follows by first
using symmetry to show CD =~ AB, and then applying (C2). Notice that Hilbert's
formulation of (C2) was a clever way of including symmetry and transitivity in a
single statement.

The third axiom (C3) is the counterpart of Euclid’s second common notion,
that “equals added to equals are equal.” Let us amplify this by making a precise
definition of the sum of two segments, and then showing that sums of congruent
segments are congruent.

Definition

Let AB and CD be two given segments.
Choose an ordering A,B of the end- A 1Y) € v
points of AB. Let r be the ray on the line s

I = AB consisting of B and all the points

A\

of I on the other side of B from A. Let E e D
be the unique point on the ray r (whose —
existence is given by (Cl)) such that

CD = BE.

We then define the segment AE to be the sum of the segments AB and CD,
depending on the order A, B, and we will write AE = AB + CD.

Proposition 8.2 (Congruence of sums)
Suppose we are given segments AB =~ A'B’ and CD =~ C'D’'. Then AB+ CD
A'B'+C'D'.

Proof Let E' be the point on the line A’B’ defining the sum A’E’ = A'B' + C'D’.
Then A x B+ E by construction of the sum AB+ CD, because E is on the ray
from B opposite A. Similarly, A’ B’ x E’. We have AB =~ A’B’ by hypothesis.
Furthermore, we have CD =~ C’'D’ by hypothesis, and CD =~ BE and C'D’ =
B'E' by construction of E and E’. From (8.1) we know that congruence is an
equivalence relation, so BE =~ B'E’. Now by (C3) it follows that AE =~ A’E’ as
required.

Note: Since the segment AB is equal to the segment BA, it follows in particular
that the sum of two segments is independent of the order A,B chosen, up to
congruence. Thus addition is well-defined on congruence equivalence classes of
line segments. So we can speak of addition of line segments or congruent seg-
ments without any danger (cf. also Exercise 8.1, which shows that addition of
line segments is associative and commutative, up to congruence). Later (Section
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19) we will also define multiplication of segments and so create a field of seg-
ment arithmetic.

Euclid’s third common notion is that “equals subtracted from equals are
equal.” Bearing in mind that subtraction does not always make sense, we can
interpret this common notion as follows.

Proposition 8.3
Given three points A,B,C on a line such

that A * B x C, and given points E,F on a D ¢

ray originating from a point D, suppose V/

that AB =~ DE and AC = DF. Then E will D

be between D and F, and BC =~ EF. (We £ E

regard BC as the difference of AC and \\\)
AB)

Proof Let F' be the unique point on the ray originating at E, opposite to D, such
that BC ~ EF'. Then from AB= DE and BC = EF’ we conclude by (C3) that
AC =~ DF’. But F and F' are on the same ray from D (check!) and also AC = DF,
so by (C2) and the uniqueness part of (C1), we conclude that F = F'. It follows
that D x E x F and BC =~ EF, as required.

Note the role played by the uniqueness part of (Cl1) in the above proof. We
can regard this uniqueness as corresponding to Euclid’s fifth common notion,
“the whole is greater than the part.” Indeed, this statement could be interpreted
as meaning, if A * B C, then AB cannot be congruent to AC. And indeed, this
follows from (C1), because B and C are on the same ray from A, and if AB =~ AC,
then B and C would have to be equal by (C1).

So we see that Euclid’s common notions, at least in the case of congruence of
line segments, can be deduced as consequences of the new axioms (C1)-(C3).
Another notion used by Euclid without definition is the notion of inequality of
line segments. Let us see how we can define the notions of greater and lesser
also using our axioms.

Definition
Let AB and CD be given line segments. {)(/- B
We will say that AB is less than CD,

written AB < CD, if there exists a point

E in between C and D such that AB ~ T
CE. In this case we say also that CD is
greater than AB, written CD > AB.
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In the next proposition, we will see that this notion of less than is compatible
with congruence, and gives an order relation on congruence equivalence classes
of line segments.

Proposition 8.4

(a) Given line segments AB =~ A'B’ and CD =~ C'D’, then AB < CD if and only if
A'B' < C'D".

(b) The relation < gives an order relation on line segments up to congruence, in
the following sense:

(i) If AB < CD, and CD < EF, then AB < EF.
(ii) Given two line segments AB, CD, one and only one of the three following condi-
tions holds: AB < CD, AB = CD, AB > CD.

Proof (a) Given AB=~ A'B’ and CD
C'D’, suppose that AB < CD. Then

there is a point E such that AB =~ CE ,A,/’//‘

and C*ExD. Let E' be the unique C £ D)
—
point on the ray C'D’ such that CE = —_—

C'E’. 1t follows from (8.3) that C’' x E' x A !
D'. Furthermore, by transitivity of con- '\? /
gruence, A'B' = C'E’, so A'B' < C'D’ as D’
required. The “if and only if” statement E°
follows by applying the same argument c
starting with A'B’ < C'D’.

(b) (i) Suppose we are given AB <
CD and CD < EF. Then by definition,
there is a point X € CD such that AB~ A B
CX, and there is a po_i& Y € EF such
that CD =@ EY. Let Z € EF be such that C X D
CX =~ EZ. Then by (8.3) we have E * Z x ¢ *
Y. 1t follows that E x Z x F (Exercise 7.1)
and that AB~ EZ. Hence AB < EF as . .
required.

(ii) Given line segments AB and CD,
let E be the unique point on the ray D 2
for which AB =~ CE. Then either D = E Lf_______
or CxExD or CxDxE. We cannot
have D x C x E because D and E are on C.
the same side of C. These conditions are *“‘-———-—-.-.D
equivalent to AB =~ CD, or AB < CD, or
AB > CD, respectively, and one and
only one of them must hold.

m
L]
-~
n




8. Axioms of Congruence for Line Segments 87

Example 8.4.1
Let us define congruence for line seg- B =(h,,b3_)
ments in the real Cartesian plane R, so
that it becomes a model for the axioms
(11)-(13), (B1)-(B4), and (C1)-(C3) that
we have introduced so far. We have
already seen how to define lines and .
betweenness (7.3.1). Given two points A = (6,6)
A = (m,az) and B = (by,b;), we define
the distance d(A, B) by

d(A,B) = \/(al - bl)z + (az - bz)z.

This is sometimes called the Euclidean distance or the Euclidean metric on R
Note that d(A,B) > 0, and d(A,B) = 0 only if A = B.

Now we can give an interpretation of the undefined notion of congruence in
this model by defining AB =~ CD if d(A, B) = d(C, D). Let us verify that the axioms
(C1), (C2), (C3) are satisfied.

For (Cl), we suppose that we are
given a segment AB, and let d = d(A, B).
We also suppose that we are given a
point C = (ci,c;) and a ray emanat- D
ing from C. For simplicity we will
assume that the ray has slope m >0
and that it is going in the direction of mE\
increasing x-coordinate (we leave the S
other cases to the reader). Then any ?
point D on this ray has coordinates D = C=la,a)

(¢1 +h,c; + mh) for some h>0. The
corresponding distance is

d(C,D) = hv/1 + m2.

To find a point D with AB =~ CD is then equivalent to solving the equation
(in a variable h > 0)

hvl+m?2=d,

where m and d > 0 are given. Clearly, there is a unique solution he R, h > 0,
for given d, m. This proves (C1).

The second axiom (C2) is trivial from the definition of congruence using a
distance function.
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To prove (C3), it will be sufficient to

prove that the distance function is addi- C
tive for points in a line: If A *BxC, B
then

d(A,B) + d(B,C) = d(4, C). A

Suppose the line is y=mx+b, and -~
A = (a1,a;) is the point with smallest
x-coordinate.

Then there are h,k > 0 such that

B = (a + h,a; + mh),
C= (a1 +h+k,a;+m(h+k)).

In this case

d(A,B) = hV/1 +m?,
d(B,C) = kV1 +m?,
d(A,C) = (h+k)V1+m?,

so the additivity of the distance function follows.

We will sometimes call this model, the real Cartesian plane with congruence
of segments defined by the Euclidean distance function, the standard model of
our axiom system.

Exercises

The following exercises (unless otherwise specified) take place in a geometry with
axioms (11)-(I3), (B1)-(B4), (C1)-(C3).

8.1 (a) Show that addition of line segments is associative: Given segments AB, CD, EF,
and taking A, B in order, then (AB + CD) + EF = AB + (CD + EF). (This means that
we obtain the same segment as the sum, not just congruent segments.)

(b) Show that addition of line segments is commutative up to congruence: Given
segments AB, CD, then AB+ CD =~ CD + AB.

8.2 Show that “halves of equals are equal” in the following sense: if AB =~ CD, and if E is
a midpoint of AB in the sense that A x E x B and AE =~ EB, and if F is a midpoint of
CD, then AE =~ CF. (Note that we have not yet said anything about the existence of a
midpoint: That will come later (Section 10).) Conclude that a midpoint of AB, if it
exists, is unique.

8.3 Show that addition preserves inequalities: If AB < CD and if EF is any other seg-
ment, then AB+ EF < CD + EF.
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8.4

8.5

8.6

8.7

8.8

8.9

Let r be a ray originating at a point A,

and let s be a ray originating at a point r

B. Show that there is a 1-to-1 mapping ‘:./’/
@ : v — s of the set r onto the set s that

preserves congruence and between-

ness. In other words, if for any X € r we

let X' =¢(X)es, then for any X,Y, % s

Zer, XY=XY, and X*xY*Z&

X' xY'x2Z.

Given two distinct points O, A, we define the circle with center O and radius OA to be

the set T of all points B such that OA = OB.
(a) Show that any line through O meets the circle in exactly two points.
(b) Show that a circle contains infinitely many points.

(Warning: It is not obvious from this definition whether the center O is uniquely de-
termined by the set of points T that form the circle. We will prove that later (Propo-
sition 11.1).)

Consider the rational Cartesian plane Q@? whose points are ordered pairs of rational
numbers, where lines are defined by linear equations with rational coefficients and
betweenness and congruence are defined as in the standard model (Examples 7.3.1
and 8.4.1). Verify that (11)-(13) and (B1)-(B4) are satisfied in this model. Then show
that (C2) and (C3) hold in this model, but (C1) fails.

Consider the real Cartesian plane R?, with lines and betweenness as before (Exam-
ple 7.3.1), but define a different notion of congruence of line segments using the
distance function given by the sum of the absolute values:

d(A,B) = |a1 - b]l + 'az - bz',
where A = (a;,a;) and B = (b;,b;). Some people call this “taxicab geometry” be-
cause it is similar to the distance by taxi from one point to another in a city where
all streets run east-west or north-south. Show that the axioms (C1), (C2), (C3) hold,
so that this is another model of the axioms introduced so far. What does the circle
with center (0, 0) and radius 1 look like in this model?

Again consider the real Cartesian plane R?, and define a third notion of congruence
for line segments using the sup of absolute values for the distance function:

d(A,B) = sup{|a; — b1|,|az — b2|}.
Show that (C1), (C2), (C3) are also satisfied in this model. What does the circle with
center (0,0) and radius 1 look like in this case?

Following our general principles, we say that two models M, M’ of our geometry are
isomorphic if there exists a 1-to-1 mapping ¢ : M — M’ of the set of points of M onto
the set of points of M', written ¢(A) = A/, that sends lines into lines, preserves
betweenness, i.e., A*B*C in M« A’ x B’ xC' in M, and preserves congruence of
line segments, i.e., AB~CDin M < A'B'~C'D' in M'.

Show that the models of Exercise 8.7 and Exercise 8.8 above are isomorphic to each
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other, but they are not isomorphic to the standard model (Example 8.4.1). Note: To
show that the two models of Exercise 8.7 and Exercise 8.8 are isomorphic, you do
not need to make the distance functions correspond. It is only the notion of congru-
ence of line segments that must be preserved. To show that two models are not iso-
morphic, one method is to find some statement that is true in one model but not
true in the other model.

8.10 Nothing in our axioms relates the size of a segment on one line to the size of a con-
gruent segment on another line. So we can make a weird model as follows. Take the
real Cartesian plane R? with the usual notions of lines and betweenness. Using the
Euclidean distance function d(A, B), define a new distance function

d(A,B) if the segment AB is either horizontal or vertical,
2d(A,B) otherwise.

d'(A,B) = {

Define congruence of segments AB =~ CD if d’(A, B) = d'(C, D).
Show that (C1), (C2), (C3) are all satisfied in this model. What does a circle with
center (0,0) and radius 1 look like?

8.11 The triangle inequality is the statement that if A, B, C are three distinct points, then
AC < AB+ BC.

(a) The triangle inequality always holds for collinear points.

(b) The triangle inequality holds for any three points in the standard model (Exam-
ple 8.4.1) and also in taxicab geometry (Exercise 8.7).

(c) The triangle inequality does not hold in the model of Exercise 8.10. Thus the tri-
angle inequality is not a consequence of the axioms of incidence, betweenness, and
congruence of line segments (C1)-(C3). (However, we will see in Section 10 that the
triangle inequality, in the form of Euclid (I.20), is a consequence of the full set of
axioms of a Hilbert plane.)

9 Axioms of congruence for Angles

Recall that we have defined an angle to be the union of two rays originating
at the same point, and not lying on the same line. We postulate an undefined
notion of congruence for angles, written =, that is subject to the following three
axioms:

C4. Given an angle / BAC and given a /
- . . freen g
ray DF, there exists a unique ray DE, 7 4
on a given side of the line DF, such that A & 2
[ BAC = [ EDF. —3

C5. For any three angles o,f,y, if a = f and o =y, then f = y. Every angle is
congruent to itself.
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C6. (SAS) Given triangles ABC and DEF,

suppose that AB~ DE and AC~DF, A c
and / BAC =~ / EDF. Then the two tri- )
angles are congruent, namely, BC = EF,
L ABC =~ / DEF and / ACB =~ / DFE. D F

A —

m

Note that Hilbert takes the existence of an angle congruent to a given one
(C4) as an axiom, while Euclid proves this by a ruler and compass construc-
tion (I.23). Since Hilbert does not make use of the compass, we may regard
this axiom as a tool, the “transporter of angles,” that acts as a substitute for the
compass.

As with (C2), we can use (C5) to show that congruence is an equivalence
relation.

Proposition 9.1
Congruence of angles is an equivalence relation.

Proof The proof is identical to the proof of (8.1), using (C5) in place of (C2).

As in the case of congruence of line segments, we would like to make sense
of Euclid's common notions in the context of congruence of angles. This propo-
sition (9.1) is the analogue of the first common notion, that “things equal to the
same thing are equal to each other.” The second common notion, that “equals
added to equals are equal,” becomes problematic in the case of angles, because
in general we cannot define the sum of two angles.

?

If £ BAC is an angle, and if a ray
AD lies in the interior of the angle
/. BAC, then we will say that the angle
L BAC is the sum of the angles /. DAC
and / BAD.

A C

However, if we start with the two given angles, there may not be an angle
that is their sum in this sense. For one thing, they may add up to a straight line,
or “two right angles” as Euclid says, but this is not an angle. Or their sum may
be greater than 180°, in which case we get an angle, but the two original angles
will not be in the interior of the new angle. So we must be careful how we state
results having to do with sums of angles.

Note that we do not have an axiom about congruence of sums of angles
analogous to the axiom (C3) about addition of line segments. That is because we
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can prove the corresponding result for angles. But in order to do so, we will
need (C6).

Hilbert's use of (C6) = (SAS) as an axiom is a recognition of the insufficiency
of Euclid’s proof of that result (I.4) using the method of superposition. To justify
the method of superposition by introducing axioms allowing motion of figures in
the plane would be foreign to Euclid’s approach to geometry, so it seems pru-
dent to take (C6) as an axiom. However, we will show later (17.5) that the (SAS)
axiom is essentially equivalent to the existence of a sufficiently large group of
rigid motions of the plane. The axiom (C6) is necessary, since it is independent
of the other axioms (Exercise 9.3). This axiom is essentially what tells us that our
plane is homogeneous: Geometry is the same at different places in the plane.

Now let us show how to deal with sums of angles and inequalities among
angles based on these axioms.

Definition

If /. BAC is an angle, and if D is a point B
on the line AC on the other side of A
from C, then the angles /£ BAC and
[ BAD are supplementary. . .

Proposition 9.2
If . BAC and [ BAD are supplementary angles, and if / B'A'C’ and [ B'A'D’ are
supplementary angles, and if / BAC =~ / B'A'C’, then also / BAD = [/ B'A'D’.

Proof Replacing B',C’,D’ by other
points on the same rays, we may as-
sume that AB=~ A’'B’, AC=~A'C’, and
AD =~ A'D’. Draw the lines BC, BD,
B'C’, and B'D’.

First we consider the triangles ABC
and A’B'C’. By hypothesis we have
AB =~ A'B’ and AC >~ A'C' and /. BAC =~
L B'A’C'. So by (C6) we conclude that
the triangles are congruent. In particu-
lar, BC =~ B'C' and / BCA = / B'C'A’.

Next we consider the triangles BCD
and B'C’D’. Since AC = A'C’ and AD =~
A'D', and CxAxD and C' x A’ x D', we
conclude from (C3) that CD = C'D’.
Using BC ~ B'C' and /. BCA =~/ B'C'A’
proved above, we can apply (C6) again
to see that the triangles BCD and B'C’D’
are congruent. In particular, BD =~ B'D’
and /. BDA =~/ B'D'A’.
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Now we consider the triangles BDA and B'D’A’. From the previous step we
have BD =~ B'D’ and /. BDA =~ / B'D'A’. But by hypothesis we have DA >~ D'A’.
So a third application of (C6) shows that the triangles BDA and B'D’A’ are con-
gruent. In particular, / BAD =~ / B'A’D’, which was to be proved.

Note: We may think of this result as a replacement for (1.13), which says that
the angles made by a ray standing on a line are either right angles or are equal
to two right angles. We cannot use Euclid’s statement directly, because in our
terminology, the sum of two right angles is not an angle. However, in applica-
tions, Euclid’s (I.13) can be replaced by (9.2). So for example, we have the fol-
lowing corollary.

Corollary 9.3
Vertical angles are congruent.

Proof Recall that vertical angles are de-
fined by the opposite rays on the same
two lines. The vertical angles o and o’
are each supplementary to f, and f is
congruent to itself, so by the proposi-
tion, « and o are congruent.

Proposition 9.4 (Addition of angles) .

Suppose [ BAC is an angle, and the ray AD is in the interior of the angle / BAC.
Suppose [ D'A'C' = [/ DAC, and [ B'A'D' =~ [/ BAD, and the rays A'B' and A'C’
are on opposite sides of the line A'D’. Then the rays A'B' and A'C' form an angle,
and [ B'A'C' = / BAC, and the ray A'D is in the interior of the angle / B'A’C’. For
short, we say “sums of congruent angles are congruent.”

Proof Draw the line BC. Then the ray
AD must meet the segment BC, by the
crossbar theorem (7.3). Replacing the
original D by this intersection point, we
may assume that B,D,C lie on a line
and B*D=x*C. On the other hand, re-
placing B’,C’, D’ by other points on the
same rays, we may assume that AB =
A'B’, and AC = A'C’, and AD = A'D’.
We also have / BAD =~/ B'A’'D’ and
L. DAC = [/ D'A'C’ by hypothesis.

By (C6) we conclude that the tri-
angles ABAD and AB’A'D’ are con-
gruent. In particular, BD =~ B'D’ and
[/ BDA =~ B'D'A’.

3
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Again by (C6) we conclude that the triangles ADAC and AD’A’C’ are congru-
ent. In particular, DC = D'C’ and /, ADC =~ [/ A'D'C’.

Let E' be a point on the line B’D’ with B’ x D' x E'. Then £ A’D'E’ is supple-
mentary to /. A’'D’B’, which is congruent to £ ADB. So by (9.2) and transitivity of
congruence, we find that £ A'D'E’ =~ / A'D'C’. Since these angles are on the
same side of the line A'D’, we conclude from the uniqueness part of (C4) that
they are the same angle. In other words, the three points B’,D’, and C’ lie on a
line.

Then from (C3) we conclude that BC =~ B'C’. Since /. ABD =~ / A'B'D’ by the
first congruence of triangles used in the earlier part of the proof, we can apply
(C6) once more to the triangles ABC and A'B’C’. The congruence of these tri-
angles implies /. BAC =~ / B’A’C’ as required. Since B’,D’, and C’ are collinear
and D'A’C’ is an angle, it follows that A’, B, C’ are not collinear, so B’A’C’ is an
angle. Since B’ and C’' are on opposite sides of the line A’D’, it follows that
B'xD'xC', and so the ray A'D' is in the interior of the angle /. B'A'C’, as
required.

Next, we will define a notion of inequality for angles analogous to the
inequality for line segments in Section 8.

Definition

Suppose we are given angles / BAC and

[ EDF. We say that / BAC is less than ?

[ EDF, Written_éBAC < [_EDF, if there

exists a ray DG in the interior of the

angle [/ EDF such that / BAC =~ / GDF. A C
In this case we will also say that / EDF

is greater than [/ BAC.

Proposition 9.5
(a) Ifaxo and =B thena < f o o < f.
(b) Inequality gives an order relation on angles, up to congruence. In other words:
(i) Ifa < pand f <y, then o < y.
(ii) For any two angles a and B, one and only one of the following holds: o < f;
axpfa>p.

Proof The proofs of these statements are essentially the same as the correspond-
ing statements for line segments (8.4), so we will leave them to the reader.

Definition

A right angle is an angle o« that is con-
gruent to one of its supplementary

angles f. (5
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Note: In this definition, it does not matter which supplementary angle to o we
consider, because the two supplementary angles to a are vertical angles, hence
congruent by (9.3). Two lines are orthogonal if they meet at a point and one,
hence all four, of the angles they make is a right angle.

Proposition 9.6
Any two right angles are congruent to each other.

Proof Suppose that « =/ CAB and o' =
[/ C'A’B’ are right angles. Then they will C
be congruent to their supplementary
angles f,f’, by definition. Suppose «
and «’ are not congruent. Then by (9.5)
either a <o’ or o <oa. Suppose, for 6|«
example, a < «’. Then by definition of |
inequality there is a ray A'E' in the in- D A 8
terior of angle ' such that « =~ / E'A'B’,

It follows (check!) that the ray A’C’ c’ el
is in the interior of L E’A'D’, so that
B < LE'A'D'. But LE'A'D' is supple-
mentary to L E’A’B’, which is congruent
to a, so by (9.2), LE'A'D’' ~ . There- (4 o
fore, B/ < B. But a =~ f and o’ =~ f’, so ! ;
we conclude that o' < «, which is a D/ A’ ®
contradiction.

Note: Thus the congruence of all right angles can be proved and does not need
to be taken as an axiom as Euclid did (Postulate 4). The idea of this proof already
appears in Proclus.

Example 9.6.1
We will show later that the real Cartesian plane IR? provides a model of all the
axioms listed so far. You are probably willing to believe this, but the precise
definition of what we mean by congruence of angles in this model, and the proof
that axioms (C4)-(C6) hold, requires some work. We will postpone this work
until we make a systematic study of Cartesian planes over arbitrary fields, and
then we will show more generally that the Cartesian plane over any ordered
field satisfying a certain algebraic condition gives a model of Hilbert's axioms
(17.3).

The other most important model of Hilbert's axioms is the non-Euclidean
Poincaré model, which we will discuss in Section 39.
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Exercises

9.1 (Difference of angles). Suppose we
are given congruent angles / BAC
L B'A'C’. C'. Suppose also that we are given
aray AD in the interjor of / BAC. Then
there exists a ray A'D’ in the interior of
[ B'A’C' such that /L DAC=~/D'A'C’
and / BAD ~/ B'A'D’. This statement
corresponds to Euclid’s Common Notion
3: “Equals subtracted from equals are
equal,” where “equal” in this case
means congruence of angles.

B
D
A C A!
B
D
9.2 Suppose the ray AD is in the interior of
the angle / BAC, and the ray AE is in €
the interior of the angle /£ DAC. Show
that AE is also in the interior of / BAC. A

9.3 Consider the real Cartesian plane where congruence of line segments is given by the
absolute value distance function (Exercise 8.7). Using the usual congruence of angles
that you know from analytic geometry (Section 16), show that (C4) and (C5) hold in
this model, but that (C6) fails. (Give a counterexample.)

9.4 Provide the missing betweenness argu-

C

ments to complete Euclid’s proof of (1.7) D
in the case he con51ders Namely, as-

suming that the ray AD is in the inte-

rior of the angle /£ CAB, and assuming

that Dis outside the triangle ABC, prove

that CB is in the interior of the angle

L ACD and DA is in the interior of the

angle /. CDB.

A B

10 Hilbert Planes

We have now introduced the minimum basic notions and axioms on which to
found our study of geometry.
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Definition

A Hilbert plane is a given set (of points) together with certain subsets called lines,
and undefined notions of betweenness, congruence for line segments, and con-
gruence for angles (as explained in the preceding sections) that satisfy the axioms
(11)-(13), (B1)—(B4), and (C1)-(C6). (We do not include the parallel axiom (P).)

We could go on immediately and introduce the parallel axiom and axioms of
intersection of lines and circles, so as to recover all of Euclid’s Elements, but it
seems worthwhile to pause at this point and see how much of the geometry we
can develop with this minimal set of axioms. The main reason for doing this is
that the axioms of a Hilbert plane form the basis for non-Euclidean as well as
Euclidean geometry. In fact, some people call the Hilbert plane neutral geometry,
because it neither affirms nor denies the parallel axiom.

In this section we will see how much of Euclid’s Book I we can recover in a
Hilbert plane. With two notable exceptions, we can recover everything that does
not make use of the parallel postulate.

Let us work in a given Hilbert plane. Euclid’s definitions, postulates, and
common notions have been replaced by the undefined notions, definitions, and
axioms that we have discussed so far (excluding Playfair's axiom). We will now
discuss the propositions of Euclid, Book I.

The first proposition (I.1) is our first exception! Without some additional
axiom, it is not clear that the two circles in Euclid’s construction will actually
meet. In fact, the existence of an equilateral triangle on a given segment does
not follow from the axioms of a Hilbert plane (Exercise 39.31). We will partially
fill this gap by showing (10.2) that there do exist isosceles triangles on a given
segment.

Euclid’s Propositions (1.2) and (1.3) about transporting line segments are
effectively replaced by axiom (C1). Proposition (1.4), (SAS), has been replaced by
axiom (C6).

Proposition (1.5) and its proof are ok as they stand. In other words, every
step of Euclid’s proof can be justified in a straightforward manner within the
framework of a Hilbert plane. To illustrate this process of reinterpreting one of
Euclid’s proofs within our new axiom system, let us look at Euclid’s proof step
by step.

Proof of (I.5) Let ABC be the given isosceles triangle, with AB =~ AC (congruent
line segments). We must prove that the base angles / ABC and / ACB are con-
gruent. “In BD take any point F.” This is possible by axiom (B2). “On AE cut off
AG equal to AF.” This is possible by (C1). Now AC =~ AB and AF = AG, and the
enclosed angle / BAC is the same, so the triangles AAFC and AAGB are congru-
ent by a direct application of (C6). So FC =~ GB and [/ AFC =/ AGB and
L ACF = [/ ABG.

Since “equals subtracted from equals are equal,” referring in this case to
congruence of line segments, we conclude from (8.3) that BF =~ CG. Then by
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another application of (C6), the triangles AFBC and AGCB are congruent. It fol-
lows that / CBG = / BCF. Now by subtraction of congruent angles (Exercise 9.1),
the base angles / ABC and /. ACB are congruent, as required. (We omit the proof
of the second assertion, which follows similarly.)

A

D

At certain steps in this proof we need to know something about between-
ness, which can also be formally proved from our axioms. For example, in order
to subtract the line segment AB from AF, we need to know that B is between A
and F. This follows from our ¢ choice of F. At the last step, subtracting angles, we
need to know that the ray BC is in the interior of the angle / ABG. This follows
from the fact that C is between A and G.

So in the following, when we say that Euclid’s proof is ok as is, we mean that
each step can be justified in a natural way, without having to invent additional
steps of proof, from Hilbert’s axioms and the preliminary results we established
in the previous sections.

Looking at (1.6), the converse of (1.5), everything is ok except for one doubt-
ful step at the end. Euclid says, “the triangle DBC is equal to the triangle ACB,
the less to the greater; which is absurd.” It is not clear what this means, since we
have not defined a notion of inequality for triangles. However, a very slight
change will give a satisfactory proof. Namely, from the congruence of the tri-
angles ADBC =~ AACB, it follows that / DCB =~ / ABC. But also /. ABC =~ / ACB
by hypothesis. So /. DCB = / ACB, “the less to the greater,” as Euclid would say.
For us, this is a contradiction of the uniqueness part of axiom (C4), since there
can be only one angle on the same si side of _tge ray CB congruent to the angle
[ ACB. We conclude that the rays CA and CD are equal, so A = D, and the tri-
angle is isosceles, as required.
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Proposition (1.7), as we have mentioned before, needs some additional justi-
fication regarding the relative positions of the lines, which can be supplied from
our axioms of betweenness (Exercise 9.4).

For (1.8), (SSS), we will need a new proof, since Euclid’s method of super-
position cannot be justified from our axioms. The following proof is due to
Hilbert.

Proposition 10.1 (SSS)
If two triangles ABC and A'B’'C’ have their respective sides equal, namely AB =~ A'B’,
AC = A'C’, and BC = B'C’, then the two triangles are congruent.

Proof Using (C4) and (C1), construct an
angle £ C’A’B" on the other side of the B
ray A'C' from B’ that is congruent
to /. BAC, and make A'B” congruent to
AB. Then AB =~ A’'B” by construction,
AC = A’C’ by hypothesis, and / BAC = A
/L B"A'C’ by construction, so by (C6), ¢
the triangle AABC is congruent to the
triangle AA'B”C’. 1t follows that BC =
B"C'. -

Draw the line B'B”. Now A'B' =~ B’
AB = A'B", so by transitivity, A’B’
A’B”. Thus the triangle A’B’B” is isos-
celes, and so by (I.5) its base angles ’ /
L A'B'B" and / A'B"B’ are congruent. A ¢
Similarly, B'C’ = B”C’, so the triangle /
C'B'B” is isosceles, and its base angles
[ B"B'C’ and [ B'B"C’' are congruent.
By addition of congruent angles (9.4) it y
follows that / A'B'C’ = / A'B"C'. 1

This latter triangle was shown congruent to AABC, so /L A'B"C’ =~/ ABC.
Now by transitivity of congruence, / ABC =~ / A'B'C’, so we can apply (C6)
again to conclude that the two triangles are congruent.

o

Note: This proof and the accompanying figure are for the case where A’ and C’
are on opposite sides of the line B'B”. The case where they are on the same side
is analogous, and the case where one of A’ or C’ lies on the line B'B” is easier,
and left to the reader.

Starting with the next proposition (1.9) we have a series of constructions with
ruler and compass. We cannot carry out these constructions in a Hilbert plane,
because we have not yet added axioms to ensure that lines and circles will meet
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when they ought to (cf. Section 11). However, we can reinterpret these proposi-
tions as existence theorems, and these we can prove from Hilbert's axioms.
Since we do not have the equilateral triangles that Euclid constructed in (1.1), we
will prove the existence of isosceles triangles, and we will use them as a substi-
tute for equilateral triangles in the following existence proofs.

Proposition 10.2 (Existence of isosceles triangles)
Given a line segment AB, there exists an isosceles triangle with base AB.

Proof Let AB be the given line seg-

ment. Let C be any point not on the line

AB (axiom (I3)). Consider the triangle

AABC. If the angles at A and B are

equal, then AABC is isosceles (1.6). If

not, then one angle is less than the D
other. Suppose [ CAB < £ CBA. Then

there is a ray BE in the interior of the

angle / CBA such that / CAB =~ [/ EBA.

By the crossbar theorem (7.3) this A B
ray must meet the opposite side AC in a
point D. Now the base angles of the tri-
angle DAB are equal, so by (1.6) it is
isosceles.

Note: It would not suffice to construct

equal angles at the two ends of the inter-
val, because without the parallel axiom,
even if the angles are small, there is no

guarantee that the two rays would meet.

Now let us return to Euclid. We interpret (1.9) as asserting the existence of an
angle bisector. We use the same method as Euclid, except that we use (10.2) to
give the existence of an isosceles triangle ADEF where Euclid used an equilat-
eral triangle. We may assume that this isosceles triangle is constructed on the
opposite side of DE from A. Then Euclid's proof, using (SSS), shows that
L DAF = / EAF. Tt is not obvious from the construction that the ray AF is in
the interior of the angle / DAE, but it does follow from the conclusion: For if
AF were not in in the interior of the angle, then AD and AE would be on the
same side of AF and in that case the congruence of the angles / DAF =~ / EAF
would contradict the uniqueness in axiom (C4).

For (1.10) to bisect a given line segment, we again use (10.2) to construct an
isosceles triangle instead of an equilateral triangle. The rest of Euclid’'s proof
then works to show that a midpoint of the segment exists.

For (1.11) we can also use (10.2) to construct a line perpendicular to a line at
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a point. By the way, this also proves the existence of right angles, which is not
obvious a priori.

For (1.12), to drop a perpendicular from a point C to a line not containing C,
Euclid’s method using the compass does not work in a Hilbert plane. We need a
new existence proof (see Exercise 10.4).

Proposition (1.13) has been replaced by the result on congruence of supple-
mentary angles (9.2), and (1.14) is an easy consequence (Exercise 10.7). The
congruence of vertical angles (I.15) has already been mentioned above (9.3).
The theorem on exterior angles (1.16) is sufficiently important that we will re-
produce Euclid’s proof here, with the extra justifications necessary to make it
work.

Proposition 10.3 (Exterior angle theorem (1.16))
In any triangle, the exterior angle is greater than either of the opposite interior angles.

Proof Let ABC be the given triangle.
We will show that the exterior angle
[/ ACD is greater than the opposite inte- A F
rior angle at A. Let E be the midpoint of

AC (1.10), and extend BE to F so that E

BE =~ EF (axiom (C1)). Draw the line

CF. Now the vertical angles at E are
equal (1.15), so by SAS (C6), the tri- P
angles AABE and ACFE are congruent. ¢
Hence L A = [/ ECF.

c P

To finish the proof, that is, to show that £ ECF is less than / ACD, we need to
know that the ray CF is in the interior of the angle / ACD. This we can prove
based on our axioms of betweenness. Since D is on the side BC of the triangle
extended, B and D are on opposite sides of the line AC. Also, by construction of
F, we have B and F on opposite sides of AC. So from the plane separation prop-
erty (7.1) it follows that D and F are on the same side of the line AC.

Now consider sides of the line BC. Since B * E x F, it follows that E and F are
on the same side of BC. Since A * E x C, it follows that A and E are on the same
side of AC. By transitivity (7.1) it follows that A and F are on the same side of the
line BC =CD. So by definition, F is in the interior of the angle 2 ACD, and hence
the ray CF is also. Therefore, by definition of inequality for angles, / BAC is
less than /. ACD, as required.

Propositions (1.17)-(1.21) are all ok as is, except that we should reinterpret
the statement of (1.17). Instead of saying “any two angles of a triangle are less
than two right angles,” which does not make sense in our system, since “two
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right angles” is not an angle, we simply say; if « and f are any two angles of a
triangle, then « is less than the supplementary angle of f.

Proposition (1.22) is our other exception. Without knowing that two circles
intersect when they ought to, we cannot prove the existence of the triangle re-
quired in this proposition. In fact, we will see later (Exercise 16.11) that there
are Hilbert planes in which a triangle with certain given sides satisfying the
hypotheses of this proposition does not exist!

The next proposition (1.23), which Euclid proved using (1.22), is replaced by
Hilbert’s axiom (C4), the “transporter of angles.”

The remaining results that Euclid proved without using the parallel postulate
are ok as is in the Hilbert plane: (1.24), (1.25), (1.26) = (ASA) and (AAS), (1.27)
“alternate interior angles equal implies parallel,” and even the existence of par-
allel lines (1.31).

Summing up, we have the following theorem.

Theorem 10.4
All of Euclid’s propositions (1.1) through (1.28), except (1.1) and (1.22), can be proved
in an arbitrary Hilbert plane, as explained above.

Constructions with Hilbert’s Tools

Euclid used ruler and compass constructions to prove the existence of various
objects in his geometry, such as the midpoint of a given line segment. We used
Hilbert's axioms to prove corresponding existence results in a Hilbert plane.
However, we can reinterpret these existence results as constructions if we
imagine tools corresponding to certain of Hilbert’s axioms. Thus (I1), the exis-
tence of a line through two points, corresponds to the ruler. For axiom (C1),
imagine a tool, such as a compass with two sharp points (also called a pair of di-
viders), that acts as a transporter of segments. For axiom (C4), imagine a new
tool, the transporter of angles, that can reproduce a given angle at a new point.
It could be made of two rulers joined with a stiff but movable hinge.

We call these three tools, the ruler, the dividers, and the transporter of
angles, Hilbert's tools. We also allow ourselves to pick points (using (13) and (B2))
as required.

Now we can regard (10.2) as a construction of an isosceles triangle using
Hilbert's tools. Counting steps, with one step for each use of a tool, we have the
construction as follows:

Given a line segment AB. Pick C not on the line AB.

1. Draw line AC.
2. Draw line BC. Suppose /. CAB is less than / CBA.
3. Transport /. CAB to /. ABE, get point D.

Then ABD is the required isosceles triangle.
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Exercises

10.1
10.2
10.3

10.4

10.5

10.6

10.7

10.8

10.9

10.10

10.11

Construct with Hilbert's tools the angle bisector of a given angle (par = 4).
Construct with Hilbert’s tools the midpoint of a given segment (par = 4).

Construct with Hilbert's tools a line perpendicular to a given line I at a given point
A €l(par =5).

Construct with Hilbert’s tools a line perpendicular to a given line I from a point A
not on I (par = 4).

Construct with Hilbert's tools a line parallel to a given line I, and passing through a
given point A not on I (par = 2).

Write out a careful proof of Euclid (1.18), justifying every step in the context of
a Hilbert plane, and paying especial attention to questions of betweenness and
inequalities.

Rewrite the statement (1.14) so that it makes sense in a Hilbert plane, and then
give a careful proof.

Write a careful proof of (1.20) in a Hilbert plane.
A A7

Show that the right-angle-side-side
congruence theorem (RASS) holds in a
Hilbert plane: If ABC and A'B'C' are % T
triangles with right angles at B and B’,
and if AB=~ A’B’ and AC @ A'C’, then
the triangles are congruent.

In a Hilbert plane, suppose that we c " s D
are given a quadrilateral ABCD with

AB = CD and AC = BD. Prove that CE

is parallel to AB (without using the

parallel axiom (P)). Hint: Join the

midpoints of AB and CD; then use .

(1.27). A n

L
B

Given a finite set of points Aj,..., A,
in a Hilbert plane, prove that there
exists a line I for which all the points
are on the same side of 1.
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11 Intersections of Lines and Circles

In this section we will discuss the intersections of lines and circles in the Hilbert
plane, and we will introduce the further axiom (E), which will guarantee that
lines and circles will intersect when they “ought” to. With this axiom we can
justify Euclid’s ruler and compass constructions in Book I and Book III. We work
in a Hilbert plane (Section 10) without assuming the parallel axiom (P). Because
of (10.4) we can use Euclid’s results (1.2)-(1.28) (except (1.22)) in our proofs.

Definition

Given distinct points O, A, the circle T’

with center O and radius OA is the set

of all points B such that OA =~ OB. The

point O is the center of the circle. The

segment OA is a radius. A

From this definition it is clear that a
circle always has points. The point A is B
on the circle. Moreover, if [ is any line
through O, then by axiom (Cl) there
will be exactly two points on the line I,
one on each side of O, lying on the cir-
cle. However, it is not obvious from the
definition that the center is uniquely
determined by the set of points of the
circle.

Proposition 11.1

Let T be a circle with center O and radius OA, and let T’ be a circle with center O’
and radius O'A’. Suppose T'=T" as point sets. Then O = O'. In other words the
center of a circle is uniquely determined.

Proof Suppose O # O’. Then we con- 2
sider the line I through O and O’. Since s —— ’
it passes through the center O of T, it C o 0’ D

must meet I in two points C, D, satisfy-
ing C* O % D and OC =~ OD.

Since T =T1", the points C,D are also on I, so we have O'C ~ O'D and
C x O’ x D. We do not know which of O or O’ is closer to C, but the two cases are
symmetric, so let us assume C x O * O’. In this case we must have O x O’ x D by
the properties of betweenness(!). Then OC < O'C = O’'D < OD, which is impos-
sible, since OC = OD. Hence O = O'.
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Now that we know that the center of a circle is uniquely determined, it
makes sense to define the inside and the outside of a circle.

Definition

Let T be a circle with center O and radius OA. A point B is inside T' (or in the
interior of T) if B = O or if OB < OA. A point C is outside T' (or exterior to T) if
OA < OC.

Definition

We say that a line [ is tangent to a circle I" if  and T’ meet in just one point A. We
say that a circle T is tangent to another circle A if ' and A have just one point in
common.

This definition of tangent circles is a little different from Euclid’s: His defini-
tion of two circles touching is that they meet in a point but do not cut each other.
Since it is not clear what he means by “cut,” we prefer the definition above, and
we will prove that these notions of tangency have the usual properties.

Proposition 11.2

Let T be a circle with center O and radius OA. The line perpendicular to the radius
OA at the point A is tangent to the circle, and (except for the point A) lies entirely
outside the circle. Conversely, if a line 1 is tangent to T' at A, then it is perpendicular
to OA. In particular, for any point A of a circle, there exists a unique tangent line to
the circle at that point.

Proof First, let | be the line perpendic-
ular to OA at A. Let B be any other
point on the line I. Then in the triangle

OAB, the exterior angle at A is a right Ji
angle, so the angles at O and at B are
less than a right angle (1.16). It follows B

(I.19) that OB > OA, so B is outside the
circle. Thus I meets I' only at the point
A, so it is a tangent line.

Now suppose that [ is a line tangent
to I' at A. We must show that [ is per-
pendicular to OA. It cannot be equal
to OA, because that line meets I" in an-
other point opposite A. So consider the
line from O, perpendicular to I, meeting
[ at B. If B # A, take a point C on the
other side of B from A, so that AB =~ BC
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4
(axiom (C1)). The AOBA = AOBC by ¢
SAS, so we have OA =~ OC, and hence C
is also on I'. Since C # A, this is a con- ®
tradiction. We conclude that B = A, and
so [ is perpendicular to OA. 0
A
\\D

Corollary 11.3
If a line | contains a point A of a circle I, but is not tangent to T', then it meets I' in
exactly two points.

Proof 1Iflis not tangent to I at A, then X

it is not perpendicular to OA, in which c
case, as we saw in the previous proof, it

meets ' in another point C. We must )
show that I cannot contain any further

points of T'. For if D were another point 0

of l on I', then OD =~ OA, OB is congru- A

ent to itself, so by (RASS) (Exercise 10.9)
we would have AODB =~ AOAB. Then )
AB = BD, so by axiom (C1) D must be

equal to A or C.

Proposition 11.4

Let O,0', A be three distinct collinear points. Then the circle T' with center O and
radius OA is tangent to the circle T with center O’ and radius O'A. Conversely, if
two circles T', I are tangent at a point A, then their centers O, O’ are collinear with
A.

Proof Let 0O,0’,A be collinear. We
must show that the circles I' and T
have no further points in common be-
sides A. The argument of (11.1) shows 0o 0 A

that there is no other point on the line
OO’ that lies on both T and I". So sup-
pose there is a point B not on OO’ lying
on both I' and I'. We divide into two
cases depending on the relative position
of 0,0, and A.




11. Intersections of Lines and Circles 107

Case 2 Ox A% O'. Again using (1.5) we
find that / OAB =~ / OBA and /. O'AB =~
[ O'BA. But the two angles at A are
supplementary, so it follows that the
two angles at B are supplementary (9.2).
But then O, B, and O’ would be collinear

A
Of

/[ OAB =~ / OBA. Also, since O’'A = O'B,
[ O'AB = / O'BA, using (1.5). It follows
that /. OBA = / O'BA, which contradicts
axiom (C4). ( This argument also applies
ifO'*OxA))

0

(1.14), which is a contradiction.

Conversely, suppose that I'" and I
are tangent at A, and suppose that A

(]

0,0',A are not collinear. Then we let

AC be perpendicular to the line OO’, i
and choose B on the line AC on the 0 c
other side of OO’ with AC = BC. 1t fol-

lows by congruent triangles that OA = I
OB and O’A = O'B, so B also lies on T’ i
and 1", contradicting the hypothesis T’ | B

tangent to I'. We conclude that O,0', A
are collinear.

Of
B
Al
A
ol’

Case 1 Ox0O'xA. Since OA = OB, B
b

Corollary 11.5
If two circles meet at a point A but are not tangent, then they have exactly two points
in common.

Proof We have seen above that if they are not tangent, then O,0’, A are not
collinear, and they meet in an additional point B. We must show there are no
further intersection points. If D is a third point on I" and I", then OD =~ OA and
O'D = O'A, so by (1.7), D must be equal to A or B.

In the above discussion of lines and circles meeting, we have seen that a line
and a circle, or two circles, can be tangent (meeting in just one point), or if they
meet but are not tangent, they will meet in exactly two points. There is nothing
here to guarantee that a line and a circle, or two circles, will actually meet if
they are in a position such that they “ought” to meet according to the usual
intuition. For this we need an additional axiom (and we will see later (17.3) that
this axiom is independent of the axioms of a Hilbert plane).
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E. (Circle-circle intersection property).
Given two circles T, A, if A contains at
least one point inside T, and A contains
at least one point outside T, then I' and
A will meet. (Note: It follows from Exer-
cise 11.3 and (11.5) that they will then
meet in exactly two points.)

Proposition 11.6 (Line-circle intersection property LCI)
In a Hilbert plane with the extra axiom (E), if a line 1 contains a point A inside a
circle T, then 1 will meet T" (necessarily in two points, because of (11.2) and (11.3)).

Proof Suppose we are given the line 1
with a point A inside the circle I'. Our
strategy is to construct another circle A,

show that A meets T, and then show €

that the intersection point also lies on .

Let OB be the perpendicular from O to [

(if O is on the line I, we already know A D

on the other side of [ from O, on the line
OB, with O'B = OB. Let A be the circle
with center O’ and radius r = radius of
I'. (Here we denote by r the congruence
equivalence class of any radius of the
circle T".)

Now the line OO’ meets A in two points C, D, labeled such that O, C are on
the same side of O’, and D on the opposite side.

By hypothesis, A is a point on I, inside I'. Hence OA < r. In the right triangle
OAB, using (1.19) we see that OB < OA, so OB < r. It follows that O'B < r = O'C,
so O’ and C are on opposite sides of . Hence O, C are on the same side of I. We
wish to show that C is inside I". There are two cases.

that I meets I" by (C1)). Find a point O’ o C\b o’
T\

Case1 IfOxCxB, then OC < OB< 1, so C is inside I

Case2 IfCx*OxB, then also C* O x 0’, s0 OC < O'C = r, and again we see that
C is inside T".

On the other hand, the point D satisfies O * O’ * D, so OD > O'D =7v, so D is
outside I
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N OT E s

PROP. XXII. B. L

Some Authors blame Euclid becaufe he does not demontftrate that
the two circles made ufe of in the conftru&ion of this Problem fhall
cut one another. but this is very plain from the determination he has

given, viz. that any two of the ftraight lines DF, FG, GH muft be
greater than the third. for who is fo dull, tho’ only beginning to learn
the Elements, as not to perceive that the circle defcribed from the centre
F, at the diftance FD, muft meet FH betwixt F and H, becaufe FD
is lefler than FH; and that, for the like reafon, the circle defcribed
from the centre G, at the diftance GH or GM muft meet DG betwixt
D and G; and that thefe circles muft meet one another, becaufe FD
and GH are together greater than FG? and

this determination is eafier to be underftood
than that which Mr. Thomas Simpfon de-

rives from it, and puts inftead of Euclid’s, -
in the 49. page of his Elements of Geo- LE R H
metry, that he may fupply the omiffion he blames Euclid for; which
determination is, that any of the three ftraight lines muft be leffer than
the fum, but greater than the difference of the other two. from this
he fhews the circles muft meet one another, in one cafe; and fays that
it may be proved after the fame manner in any other cafe. but the
firaight line GM which he bids take from GF may be greater than
it, as in the figure here annexed, in which cafe his demonftration muft
be changed into another.

Plate V. Simson’s commentary on (1.22) from his English translation of Euclid (1756).

109
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Now we can apply the axiom (E) to
conclude that I' meets A at a point E.
We must show that E lies on I. We know
that OE~r=~ O'E and OB= O'B by
construction, and BE is equal to itself,
so by (SSS) AOEB =~ AO’EB. 1t follows
that the angles at B are equal, so they
are right angles, so BE is equal to the
line I, and so E lies on [ and I, as
required.

Remark 11.6.1

We will see later (16.2) that in the Cartesian plane over a field, the circle-circle
intersection property is equivalent to the line-circle intersection property. In an
arbitrary Hilbert plane, the equivalence of these two statements follows from
the classification theorem of Pejas (cf. Section 43), but I do not know any direct
proof.

Using the new axiom (E) we can
now justify Euclid’s first construction P c
(I.1), the equilateral triangle. Given the
segment AB, let I' be the circle with
center A and radius AB. Let A be the
circle with center B and radius BA.
Then A is on the circle A, and it is
inside I' because it is the center of I A B
The line AB meets A in another point D,
such that A x Bx D. Hence AD > AB, so
D is outside T'. A

Thus A contains a point inside I'and
a point outside I, so it must meet [' in a
point C. From here, Euclid’s proof shows
that AABC is an equilateral triangle.

In a similar way one can justify Euclid’s other ruler and compass construc-
tions in Book I. Several of them depend only on using the equilateral triangle
constructed in (I.1). For (1.12) and (1.22) see Exercise 11.4 and Exercise 11.5.
Thus we have the following theorem.

Theorem 11.7
Euclid's constructions (1.1) and (1.22) are valid in a Hilbert plane with the extra
axiom (E).

We can also justify the results of Euclid, Book III, up through (II1.19) (note
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that (I11.20) and beyond need the parallel axiom). The statements (IIL.10),
(IIL.11), (II1.12) about circles meeting and (1I1.16), (II1.18), (II1.19) about tangent
lines can be replaced by the propositions of this section. (We omit the contro-
versial last phrase of (III.16) about the angle of the semicircle, also called a
horned angle or angle of contingency, because in our treatment we consider
only angles defined by rays lying on straight lines.) In (II1.14) Euclid uses (1.47)
to prove (RASS), but that is not necessary: One can prove it with only the axioms
of a Hilbert plane (Exercise 10.9). For (II1.17), to draw a tangent to a circle from
a point outside the circle, we need the line-circle intersection property (11.6)
and hence the axiom (E). (Note that the other popular construction of the tan-
gent line using (I11.31) requires the parallel axiom!) The other results of Book III,
up to (II1.19) (except (111.17)), are valid in any Hilbert plane, provided that we
assume the existence of the intersection points of lines and circles used in the
statement and proofs, and their proofs are ok as is, except as noted.

Theorem 11.8
Euclid’s propositions (111.1) through (111.19) are valid in any Hilbert plane, except
that for the constructions (111.1) and (111.17) we need also the additional axiom (E).

Exercises

11.1 (a) The interior of a circle T is a convex set: Namely, if B, C are in the interior of T,
and if D is a point such that B * D  C, then D is also in the interior of I.

(b) Assuming the parallel axiom (P), show that if B, C are two points outside a circle
I', then there exists a third point D such that the segments BD and DC are entirely
outside I'. (This implies that the exterior of I' is a segment-connected set. See also
Exercise 12.6.)

11.2 Two circles I', I that meet at a point A are tangent if and only if the tangent line to
I at A is equal to the tangent line to I at A.

11.3 If two circles I and A are tangent to each other at a point A, show that (except for
the point A) A lies either entirely inside I" or entirely outside I'.

11.4 Use the line-circle intersection property (Proposition 11.6) to give a careful justifi-
cation of Euclid’s construction (1.12) of a line from a point perpendicular to a given
line.

11.5 Given three line segments such that any two taken together are greater than the
third, use (E) to justify Euclid’s construction (1.22) of a triangle with sides congruent
to the three given segments.

11.6 Show that Euclid’s construction of the circle inscribed in a triangle (IV.4) is valid in
any Hilbert plane. Be sure to explain why two angle bisectors of a triangle must
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meet in a point. Conclude that all three angle bisectors of a triangle meet in the
same point.

11.7 Using (E), show that Euclid’s construction of a hexagon inscribed in a circle (IV.15)
makes sense. Without using (P) or results depending on it, which sides can you show
are equal to each other?

12 Euclidean Planes

Let us look back at this point and see how well Hilbert’s axioms have fulfilled
their goal of providing a new solid base for developing Euclid’s geometry. The
major problems we found with Euclid’s method have been settled: Questions of
relative position of figures have been clarified by the axioms of betweenness; the
problematic use of the method of superposition has been replaced by the device
of taking SAS as an axiom; the existence of points needed in ruler and compass
constructions is guaranteed by the circle-circle intersection property stated as
axiom (E). Also, in the process of rewriting the foundations of geometry we have
formulated a new notion, the Hilbert plane, which provides a minimum context
in which to develop the beginnings of a geometry, free from the parallel axiom.
Hilbert planes serve as a basis both for Euclidean geometry, and also later, for
the non-Euclidean geometries.

In this section we will complete the work of earlier sections by showing
how the addition of the parallel axiom allows us to recover almost all of the
first four books of Euclid’s Elements. We will also mention two more axioms,
those of Archimedes and of Dedekind, which will be used in some parts of later
chapters.

Definition

A Euclidean plane is a Hilbert plane satisfying the additional axioms (E), the
circle-circle intersection property, and (P), Playfair's axiom, also called the par-
allel axiom. In other words, a Euclidean plane is a set of points with subsets
called lines, and undefined notions of betweenness and congruence satisfying
the axioms (I1)-(I3), (B1)-(B4), (C1)-(C6), (E), and (P). The Euclidean plane rep-
resents our modern formulation of the axiomatic basis for developing the
geometry of Euclid's Elements.

We have already seen in Section 10 and Section 11 how to recover those
results of Euclid’s Books I and III that do not depend on the parallel axiom. The
first use of the parallel axiom is in (1.29). Since we have replaced Euclid’s fifth
postulate by Playfair's axiom, we need to modify Euclid’s proofs of a few early
results in the theory of parallels.
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So for example, to prove (1.29) we
proceed as follows. Given two parallel n
lines I, m, and a transversal line n, we /
must show that the alternate interior NA ’Q
angles o and § are equal. If not, con- (; g
struct a line I’ through A making an
angle a with n (axiom (C4)). By (1.27), I
will be parallel to m. But then I and ' B
are two lines through A parallel to m, so /
by (P), we must have I =1, hence o = f.

Proposition (1.30) is essentially equivalent to (P). The existence of parallel
lines (1.31) follows from (C4) and (1.27) as mentioned before, so now we can
reinterpret (1.31) in the stronger form that given a point A not on a line I,
there exists a unique parallel to I passing through A. The remaining propositions
using (P), namely (1.32)-(1.34), follow without difficulty. In particular, we have
the famous (1.32), that “the sum of the angles of a triangle is equal to two right
angles,” though if we want to be scrupulous, we would have to say that sum is
not defined, and rephrase the theorem by saying that the sum of any two angles
of a triangle is supplementary to the third angle.

A m

Theorem 12.1
Euclid's theory of parallels, that is, propositions (1.29)-(1.34), hold in any Hilbert
plane with (P), hence in any Euclidean plane.

Starting with (1.35), and continuing to the end of Book I and through Book II,
is Euclid’s theory of area. Since Euclid does not define what he means by this
new equality, we must presume that he takes it as another undefined notion,
which we call equal content, just as the notion of congruence for line segments
and angles were taken as undefined notions. Since Euclid freely applies the
common notions to this concept, we may say that he has taken the common
notions applied to equal content as further axioms, for example, “figures having
equal content to a third figure have equal content to each other,” or “halves of
figures of equal content have equal content.”

Hilbert showed that it is not necessary to regard the notion of equal content
as an undefined notion subject to further axioms. He shows instead that it is
possible to define the notion of equal content for figures (by cutting them up,
rearranging, and adding and subtracting), and then prove the properties sug-
gested by Euclid’s common notions. To be more precise, we have the following
theorem.

Theorem 12.2 (Theory of area)
In a Hilbert plane with (P) there is an equivalence relation called equal content for
rectilineal figures that has the following properties:
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) Congruent figures have equal content.

) Sums of figures with equal content have equal content.

) Differences of figures with equal content have equal content.
) Halves of figures with equal content have equal content.

) The whole is greater than the part.

) If two squares have equal content, their sides are congruent.

(1
(2
(3
(4
(5
(6

We will prove this theorem in Chapter 5, (22.5), (23.1), (23.2). For the present
you can either accept this result as something to prove later, or (as Euclid im-
plicitly did) you can regard equal content of figures as another undefined notion,
subject to the axioms that it is an equivalence relation and has these properties
(1)-(6). For further discussion and more details about the exact meaning of a
figure, the notions of sum and difference, etc., see Section 22 and Section 23.

Using this theory of area, the remaining results (1.35)-(1.48) of Book I follow
without difficulty. Note in particular the Pythagorean theorem (1.47), which says
that the sum of the squares on the legs of a right triangle have equal content
with the square on the hypotenuse. Also, the results of Book II, (I1.1)-(I1.14),
phrased as results about equal content, all follow easily. Proposition (I1.11), how
to cut a line segment in extreme and mean ratio, is used later in the construc-
tion of the regular pentagon. Only (I1.14), to construct a square with content
equal to a given rectilineal figure, uses the axiom (E).

Theorem 12.3

In a Hilbert plane with (P), using the theory of area (12.2), Euclid’s propositions
(1.35)-(1.48) and (11.1)-(11.14) can all be proved as he does, using the extra axiom (E)
only for (11.14). In particular, all these results hold in a Euclidean plane.

In Book III, the first use of the parallel axiom is in (III.20), that the angle at
the center of a circle subtending a given arc is twice the angle on the circumfer-
ence subtending the same arc. This result uses (1.32), that the exterior angle of a
triangle is equal to the sum of the two opposite interior angles, and thus depends
on the parallel axiom (P). The following propositions (II1.21), (II1.22), and then
(I11.31)—-(I11.34) follow with no further difficulties. For the propositions (I11.23)-
(I11.30) we need a notion of “equal” segments of circles, a congruence notion
that has not been defined by Euclid, though we can infer from the proof of
(II1.24) that it means being able to place one segment on the other by a rigid
motion. Indeed, if we take this as a definition of congruence, then the proofs of
these results are all ok (Exercise 17.13). The final propositions (111.35)-(111.37)
make use of the theory of area for their statements, and depend on the earlier
area results from Books I and II.

Theorem 12.4
In Book 111, Euclid’s propositions (I11.20)-(111.37) hold in any Euclidean plane. The
last three (111.35)-(111.37) make use of the theory of area (12.2).



12. Euclidean Planes 115

Most of the results of Book IV require the parallel axiom (P), some need
circle-circle intersection (E), and some, notably (IV.10), (IV.11), require (P),
(E), and the theory of area. Thus we may regard the construction of the regular
pentagon as the crowning result of the first four books of the Elements, making
use of all the results developed so far.

Theorem 12.5
All the propositions (1V.1)-(1V.16) of Euclid’s Book IV hold in a Euclidean plane.

We end this section with a discussion of two further axioms that are not
needed for Books I-1V, but will be used later. The first is Archimedes’ axiom.

A. Given line segments AB and CD, there is a natural number n such that n
copies of AB added together will be greater than CD.

This axiom is used implicitly in the theory of proportion developed in Book
V, for example in Definition 4, where Euclid says that quantities have a ratio
when one can be multiplied to exceed the other. It appears explicitly in (X.1), in
a form reminiscent of the e-arguments of calculus: Given two quantities AB and
CD, if we remove from AB more than its half, and again from the remainder
remove more than its half, and continue in this fashion, then eventually we
will have a quantity less than CD. In modern texts this would appear as the
statement “‘given any ¢ > 0, there is an integer n sufficiently large that 1/2" < ¢&.”
Euclid applies this “method of exhaustion” to the study of the volume of three-
dimensional figures in Book XII. When he cannot compare solids by cutting
into a finite number of pieces and reassembling, he uses a limiting process
where the solid is represented as a union of a sequence of subsolids so that the
remainder can be made as small as you like. See Sections 26, 27 for Euclid’s
theory of volume.

Archimedes’ axiom is independent of all the axioms of a Hilbert plane or a
Euclidean plane, so we will see examples of Archimedean geometries that satisfy
(A) and non-Archimedean geometries that do not (Section 18).

The other axiom we would like to consider is Dedekind’s axiom, based on
Dedekind’s definition in the late nineteenth century of the real numbers:

D. Suppose the points of a line [ are divided into two nonempty subsets S, T in
such a way that no point of S is between two points of T, and no point of T is
between two points of S. Then there exists a unique point P such that for any
A e Sand any Be T, either A = P or B = P or the point P is between A and B.

This axiom is very strong. It implies (A) and (E), and a Euclidean plane with
(D) is forced to be isomorphic to the Cartesian plane over the real numbers. (See
Exercise 12.2, Exercise 12.3, (15.5), and (21.3).) So if you want a categorical
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axiom system, just add (D) to the axioms of a Euclidean plane. From the point
of view of this book, however, there are two reasons to avoid using Dedekind’s
axiom. First of all, it belongs to the modern development of the real numbers
and notions of continuity, which is not in the spirit of Euclid’s geometry. Second,
it is too strong. By essentially introducing the real numbers into our geometry, it
masks many of the more subtle distinctions and obscures questions such as
constructibility that we will discuss in Chapter 6. So we include this axiom only
to acknowledge that it is there, but with no intention of using it.

Exercises

12.1

12.2

12.3

12.4

12.5
12.6

Show that in a Hilbert plane with (P), the perpendicular bisectors of the sides of a
triangle will meet in a point, and thus justify Euclid’s construction of the circum-
scribed circle of a triangle (IV.5). Note: In a non-Euclidean geometry, there may be
triangles having no circumscribed circle: cf. Exercise 18.4, Exercise 39.14, and Prop-
osition 41.1.

Show that in a Hilbert plane Dedekind’s axiom (D) implies Archimedes’ axiom | (A).
Hint: Given segments AB and CD, let T be the set of all points E on the ray CD for
which there is no integer n with n- AB > CE. Let S be the set of points of the line CD
not in T, and apply (D).

Show that in a Hilbert plane (D) implies (E). Hint: Follow the discussion in Heath
(1926), vol. I, p. 238.

For the construction and proof of (IV.2), to inscribe a triangle equiangular with a
given triangle in a given circle (assume also that you are given the center of the
circle), is axiom (E) necessary? Is (P) necessary?

Same question for (IV.6), to inscribe a square in a given circle.

In a Hilbert plane with (A), show that the exterior of a circle is a segment-connected
set (cf. Exercise 11.1). Without assuming either (P) or (A), this may be false (Exercise
43.17).

To each book are appended explanatory
notes, in which especial care has been taken to
guard the student against the common mistake
of confounding ideas of number with those of
magnitude.

- Preface to Potts’ Euclid,
London (1845)



Geometry over
- Fields

CHAPTER

eginning with the familiar example of the real Carte-
sian plane, we show how to construct a geometry sat-
isfying Hilbert's axioms over an abstract field. The
axioms of incidence are valid over any field (Section
14). For the notion of betweenness we need an ordered
field (Section 15). For the axiom (C1) on transferring a
line segment to a given ray, we need a property (*) on
the existence of certain square roots in the field F. To

- carry out Euclidean constructions, we need a slightly
stronger property () —see Section 16.

To prove the (SAS) axiom over a field F, we revert to Euclid’s method of
superposition. In the case of the geometry over a field this can be justified by
showing the existence of sufficiently many rigid motions (Section 17).

We end the chapter with some examples of geometries that do not satisfy
Archimedes' axiom (Section 18).

We have seen that the geometry developed in Euclid’'s Elements does not
make use of numbers to measure lengths or angles or areas. It is purely geo-
metric in that it deals with points, lines, circles, triangles, and the relationships
among these.

In the centuries after Euclid, geometers began using numbers more and
more. At first number theory (arithmetic) and geometry were kept strictly apart.
Number theory dealt with positive whole numbers and their ratios, i.e., rational
numbers. Any other magnitude was considered geometrically. Thus v/2 was not
regarded as a number. The fact that /2 is irrational was expressed by saying
that the diagonal of a square (a geometrical quantity) is not commensurable

117
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with the side of the square. This means that no integer multiple of the diagonal
is equal to any integer multiple of the side. As algebraic notation developed in
the Renaissance, the concept of number was enlarged, and geometric quantities
were treated more like numbers. A big step was taken by René Descartes (1596~
1650), who showed in his book La Géométrie how to construct the product, quo-
tient, and square root of line segments, having once fixed a unit line segment. He
was thus able to apply algebraic operations to line segments and write algebraic
equations relating an unknown line segment to given line segments. Descartes’s
use of algebra in geometry led to the idea of representing points in the plane by
pairs of numbers, and thus to the modern discipline called analytic geometry.

Meanwhile, the concept of numbers was expanded from rational numbers to
include irrational numbers and then transcendental numbers as they were dis-
covered. By the end of the nineteenth century, considerations of limits and con-
tinuity made the real numbers R into the standard to be used in analytic geom-
etry, calculus, and topology. Also at the end of the nineteenth century, the
formalization of abstract structures in mathematics led to the concept of a field,
so that by analogy with the standard model over R, one could also consider a
geometry over any abstract field.

The geometry taught today in high schools and colleges has become a sort
of hybrid between the purely geometric methods of Euclid and the algebraic
methods of Descartes, with occasional notions of continuity thrown in. One of
the purposes of this book is to clarify the blurred distinctions between these dif-
ferent approaches. Therefore, we will pursue two different logical tracks. One is
the axiomatic approach of Euclid and Hilbert, starting with geometrical postu-
lates and proving results in logical sequence from them. This theory is built on
the platform of the axioms of geometry. The other track is a geometry over a
field. In this case the theory is built on a logical platform given by the algebraic
definition of a field, or as we may say, the field axioms. The geometrical notions
of point, line, betweenness, and congruence are defined in terms of field prop-
erties, and all proofs go back to the algebraic foundations. These geometries
built from fields will be models of the axiomatic geometries.

In this chapter we start with an informal section on the real Cartesian plane.
Then, in the following sections, we develop a rigorous theory of Cartesian
planes over an abstract field. In Chapter 4 we will make the two tracks converge
by the introduction of coordinates into an abstract geometry (at least in the case
where the parallel axiom (P) holds).

13 The Real Cartesian Plane

In this section we will make clear what we mean by the real Cartesian plane,
which is the plane geometry over the real numbers. Our proofs will be informal,
using well-known results from high-school geometry and analytic geometry.
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We accept as given the field of real [7’
numbers R. We call a point an ordered P=(ab)
pair (a,b) of real numbers, and the set S S
of all such ordered pairs is the Cartesian {
plane. As usual, we call the set of points
(a,0) the x-axis, and the set of points
(0,b) the y-axis, and their intersection
(0,0) the origin. (00

|
{
|

} [~

A line in this plane is the subset defined by a linear equation ax + by + ¢ = 0,
with a, b not both zero. Among these are the vertical lines, which can be written
as x = a, and every other line can be written in the form y = mx + b. In this case
we call m the slope of the line, and b its y-intercept. For completeness, we will
say that a vertical line has slope 0.

Two lines are called parallel if they are equal or if they have no points in
common. By looking at the equations of two lines, and solving those equations
simultaneously, we see that the lines are parallel if and only if they have
the same slope. It follows immediately that if [, l;, I3 are three distinct lines, and
Li||l; and L||l3, then L ||l3. Indeed, all three must have the same slope. In Euclid’s
Elements, this result appears as (1.30) and is proved there using the parallel pos-
tulate plus earlier results from Book 1. Here in the Cartesian plane, we have a
trivial proof just by looking at the equations of the lines.

Let us give another, less trivial, example of how useful the analytic method
can be for proving geometric results. We will show that the three altitudes of a
triangle meet at a point. (Compare this with the geometric proofs given earlier
in Section 5.)

Proposition 13.1
In the real Cartesian plane, the three altitudes of any triangle all meet at a single
point.

Proof Recall that an altitude of a triangle is the line through one vertex that is
perpendicular to the opposite side. First let us move the triangle so that one
edge lies along the x-axis, and the opposite vertex lies on the y-axis.

The we can call the vertices A = (a,0), B = (0, b), and C = (¢, 0). The y-axis is
by construction one of the altitudes of the triangle. Our strategy is to find the
equations of the other two altitudes, see where they meet the y-axis, and verify
that they meet it at the same point.

The line AB has slope —b/ a, so the altitude through C, which is perpendicu-
lar to this line, will have slope a/b. (Here we use the fact that if two perpendic-
ular lines have slopes m; and m;, then m;m; = —1.) So the equation of the alti-
tude through C, using the point-slope formula, is
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yz—g(x—c).

To intersect this with the y-axis, we set
x = 0 and obtain y = —ac/b. B=(0,b)
Now consider the line BC. It has
slope —b/c, so the altitude through A will
have slope ¢/b. Its equation becomes

c
¥=3 (x—a).
Setting x =0, we obtain y= —ac/b. L
Since this is the same point as the pre- C =(c,0) Az (2,0)

vious calculation, we find that the three
altitudes meet at a point.

Let us reflect a moment on the significance of this proof.

First of all, the reader may object that we have used some facts without
proof, such as the result about the slopes of perpendicular lines, or the possibil-
ity of moving the triangle into the special position of the proof. However, I am
assuming that anyone who has studied some analytic geometry could fill in
those missing arguments satisfactorily.

The more serious question is, how do we respond to someone who says, with
a simple analytic proof like that, why bother with geometric proofs from axioms?
If you believe that there is only one true geometry, then indeed this proof would
be sufficient. But modern mathematics has abandoned the naive position that
there is only one truth. Instead it asks, what can be proved within each logical
framework, within each separate mathematical theory? This proof shows that
the result is true within the logical framework of the real Cartesian plane, using
algebra of the real numbers as a logical base. Having found the result to be true
in this framework, we certainly expect it to be true in the framework of axiom-
atic Euclidean geometry. However, this proof gives no hint at all about how to
find a proof in the abstract axiomatic geometry. In other words, if an analytic
proof shows that a result is true in the geometry of the real Cartesian plane, that
does not imply a proof, or even guarantee the existence of a proof, in the
abstract axiomatic geometry. For example, think of Archimedes’ axiom (18.4.2).

For these reasons we will preserve two separate logical tracks, the abstract
axiomatic approach, and the analytic-geometric approach, until such time as we
can prove that the two tracks converge again, using abstract ordered fields.

Next we turn to one of the great insights provided by the algebraic perspec-
tive, namely Descartes’s discovery that the ruler and compass constructions of
Euclid’s geometry correspond to the solution of quadratic equations in algebra.
To be more precise, let us regard a construction problem as giving certain points
in the plane, and requiring the construction of certain other points.
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Theorem 13.2 (Descartes)

Suppose we are given points Py = (aj,b1),..., Py = (an,bn) in the real Cartesian
plane. (We also assume that we are given the points (0,0) and (1,0).) Then it is pos-
sible to construct a point Q = (a, f) with ruler and compass if and only if o and f§ can
be obtained from ay, . ..,ay, by,...,b, by field operations +, —, -, —~ and the solution
of a finite number of successive linear and quadratic equations, involving the square
roots of positive real numbers.

Proof A ruler and compass construction consists of drawing lines through given
points, constructing circles with given center and radius, and finding inter-
sections of lines and circles.

Given two points P; = (a;,b;) and P, = (az,b;), the line passing through
them has equation

_by—h

X—0ay).
az—al( 1)

y—b
Its coefficients are obtained by field operations from the initial data a;, az, by, b,.
A circle with center (a,b) and radius r has equation

(x—a)l’+y—-b)?=r2

This is a quadratic equation whose coefficients depend on a, b, and r2. Note that
r may be determined as the distance between two points P, = (a;,b;) and P, =
(az,b), in which case

r2 = (a1 —az)’ + (b1 — by)*.

To find the intersection of two lines, we solve two linear equations, which
can be done using only field operations.

To intersect a line with a circle, we solve the equations simultaneously,
which requires solving a quadratic equation in x. Assuming that the line meets
the circle, we will need to take square roots of positive numbers only —cf. Exer-
cise 16.6.

To intersect two circles, we first subtract the two equations, which elimi-
nates the x? and y? terms. Then we must solve a quadratic with a linear equa-
tion, leading to another quadratic equation in x.

In other words, to find the coordinates of a point Q = (a,ff) obtained by a
ruler and compass construction from the initial data Py, ..., P,, we must solve a
finite number of linear and quadratic equations whose coefficients depend on
the coordinates (a;, b;) and on quantities constructed in earlier steps.

Conversely, the roots of any linear or quadratic equation can be constructed
by ruler and compass, given lengths corresponding to the coefficients of the
equations, and given a standard length 1. Indeed, such equations can be solved
(using the quadratic formula) by a finite number of applications of field oper-
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ations +, —, -, = and extractions of square roots of positive numbers, and each of
these five operations can be accomplished using ruler and compass.

For the sum and difference of two line segments, simply lay them out on the
same line, end to end for the sum, or overlapping for the difference.

For the product, lay the segment a on
the x-axis, and the segments 1, b on the b
y-axis. Draw the line from 1 to a, which
will have equation y = —(1/a)x + 1. The
parallel line through b has equation |
y= —(1/a)x+b. This intersects the x-
axis in the point (ab,0), and thus we
construct the segment ab out of the seg-
ments 1,a,b.

a o®
For the quotient, put 1 on the x-axis,
and a, b on the y-axis. A similar construc- @
tion gives the point b/a on the x-axis. \

To construct the square root of a
segment a, lay out a on the positive x-
axis, and —1 on the negative x-axis.
Bisect the segment from —1 to a, and
draw the semicircle having that seg-
ment as diameter. A brief computation
with the equation of the circle shows — 0 .
that it meets the y-axis at the point /a. l o

So here we have an algebraic criterion for deciding the possibility of a ruler
and compass construction. The method of proof may not lead to an elegant con-
struction, but at least one can determine the possibility of such a construction in a
systematic manner. This theorem is a striking example of the insight into geo-
metrical questions given by the algebraic point of view. As Descartes (1637) says:

One can construct all the problems of ordinary geometry without doing anything
more than what little is contained in the four figures which I have explained;
which is something I do not believe the ancients had noticed: for otherwise they
would not have taken the trouble to write so many fat books, where already the
order of their propositions makes it clear that they did not have the true method for
finding them all, but merely collected those which they happened to come across.
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As a practical application of this result, we will find expressions using nested
square roots for some lengths that are constructible with ruler and compass,
such as the sides of regular polygons inscribed in a circle. Note that if a particu-
lar angle « is constructible, then its trigonometric functions, in particular sin«
and cosa, can be expressed using square roots.

For example, from the right isosceles
triangle with sides 1,1, /2 we obtain (z—

1
sin 45° = cos 45° = 5 V2.

From the 30°-60°-90° triangle with
sides 1, /3, and 2 we obtain

c0s 60° = sin30° =1,

sin 60° = cos 30° = 1+/3. (~
3

Proposition 13.3

The length of the chord d of a circle of
radius 1 subtending an angle o at the
center of the circle is given by

d=+/2—2cosa.

Proof The law of cosines gives d? =
12+ 12 — 2cosa, from which the result
follows immediately.
So for example, the side of the regular octagon inscribed in the unit circle
will be

d=+/2—=2c0s45° = /2 — /2.

Proposition 13.4
In a circle of radius 1, the length of the side of a regular decagon is % (vV5-1).

Proof Let us consider the triangle ABC formed by two radii and one side of the
decagon. Then AB = AC =1, and BC = x is the side of the decagon. The angle at
A is 21/10 or 36°, so the angles at B and C are 72° each. Let BD bisect the angle
at B. Then the two halves are both 36° angles. From this it follows that AABD is
an isosceles triangle, and ABCD 1is an isosceles triangle similar to the original
triangle AABC.
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Therefore, BD = x and AD = x and
CD =1 — x. Writing the ratios of corre-
sponding sides of the similar triangles
ABCD and AABC we have

1—-x

x
x 1

Hence x*+x—1=0, and solving
with the quadratic formula gives x =
1(v/5—1), as required.

Remark 13.4.1

This result allows us to give an analytic proof of the construction of the regular
pentagon (4.3). Indeed, letting the radius OA be 1, then OG =1, GA =1+/5, and
OH = %(\/5 —1). Thus A,I,] are vertices of the regular decagon, and so IJ is a
side of the regular pentagon. For another proof using complex numbers, see
(29.1).

Proposition 13.5
In a circle of radius 1, the side of the regular pentagon is % V10 — 2+/5.

Proof Applying the law of cosines to the triangle AABC of (13.4), we get
12 =124 x? — 2xcos 72°.

From this we obtain cos72° = i(\/g —1). Since a side of the regular pentagon
subtends an angle of 72° at the center of the circle, from (13.3) we have that the
side of the pentagon is

d=+/2—-2c0s72° =1+/10 — 21/5.

Exercises

13.1 Given AB = 1, construct segments of length v2, v/3, v/5, V6, v/7, v/10 in 5 steps or
fewer each, making the constructions independent of each other.

13.2 Show that any quantity obtainable from the rational numbers by a finite number of
operations +, —, -, =, v, can be written in a standard form r - A, where re Q is a
rational number and A is an expression involving only integers, +, —, -, and v/ .
In the following problems, please express your answers always in standard form.
(Unfortunately, this standard form is not unique —see Exercises 13.7, 13.12 below.)

13.3 Express (v/5 +1)/v/10 + 2+/5 in standard form.
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13.4

13.5
13.6
13.7

13.8-
13.9

13.10

13.11

13.12

13.13

13.14

13.15

13.16

13.17

3. Geometry over Fields

Find sin224° and cos221° as expressions involving square roots in standard form.
Check your result by finding the decimal equivalent with a calculator.

Find the side of a regular 16-gon inscribed in the unit circle is standard form.
Find sin11}° and cos 11}° in standard form.

Three students working on the same problem came up with the following answers.
a. —v5+ V11 + 6v2.

b. 3+1/7 - 2/10.

c. V2414 —65.

Two answers were correct, and one false. Find which two were correct, and prove
that they are equal. Can you express the correct answer in a simpler form? How
can you modify the third student’s answer so that it becomes correct?

Find the length of the edge of a regular tetrahedron inscribed in a unit sphere.

Find the area of the largest equilateral triangle that is contained in a square of
side 1.

If a,beZ, and if a + bv/2 has a square root in Q(v/2), then the square root is actu-
ally in Z[v/2].

If a,b e Z, give a method for deciding whether v/a + byv/2 € Z[y/2]. Are the follow-
ing squares in Z[+/2]? If so, find the square root.

a. 627 + 442V/2.
b. 1507 + 1024v/2.
c. 2107 + 1470v/2.
Verify

V5+2v5 — /5 —-25 = /10 — 21/5.
Also, show that none of these three nested radicals is in Q(+/5). This is another
example of nonuniqueness of the standard form.

Express sin72° as nested radicals in standard form. Check by computing decimal
equivalents with a calculator.

Same problem for cos 36°, sin 36°.

Find cos 24°, sin 24°, cos12°, sin12°, and the side of the regular 15-sided polygon
inscribed in the unit circle. Express in standard form, and check decimal equiva-
lents with the calculator.

Find the side of a regular pentagon circumscribed around a unit circle in standard
form.

Given a regular pentagon of side 1, find the distance from the center to a vertex, in
standard form.
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)
P
13.18 Given a right angle at O, a point B on /
one arm, and a point A, construct with
ruler and compass a circle with center
O, meeting the arms of the right angle A
at C, D, such that AD is parallel to BC - C

(par = 9 steps, not counting lines AD, J
BC).

13.19 Given segments of lengths 1,a,b in the plane, construct with ruler and compass
a length x satisfying x> — ax — b = 0. (If you use the quadratic formula, par = 21;
using geometrical ideas from Exercise 13.18, par = 14.)

13.20 Prove Euclid’s (XIIL.5), which says that the triangle formed of the sides of a penta-
gon, a hexagon, and a decagon inscribed in the same circle is a right triangle. Con-
clude that the segment AH in the construction of Problem 4.3 is equal to the side of
the pentagon.

T

13.21 Verify the following construction of a % L

regular pentagon in 13 steps, due to

H. Lenstra. The circle and its center O

are given. ‘.
. line OA. F-’ 0
. circle AO, get B,C. / _
. line BC, get D. / \/ _ /"
. circle DO, get E. 1 B : ) X €

line AE, get F.

. circle DF, get G, H! b
. circle FG, get I, K.
. circle FH, get L, M. K A

9-13. ines FI, IL, LM, MK, KF.

H

O NS U WN e

13.22 Find the field extension of @ obtained by adjoining the coordinates of the point
P = (a,b), the center of the inscribed circle of the triangle with vertices A = (0, 0),
B=(-1,2), and C = (2,3). Answer: Q(v/2,v/65).
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14 Abstract Fields and Incidence

In this section we start with the algebraic structure of a field, and based on this
field we will obtain a geometry. Thus, using a field, we obtain a model of the
abstract geometry determined by Hilbert's axioms. Different fields will give dif-
ferent geometries, so we will obtain many different models and many different
Euclidean geometries. We will investigate what properties of the field are needed
to make each of Hilbert’s axioms hold. This will help demonstrate the indepen-
dence of the axioms.

Hilbert’'s axiom system is based on the undefined notions of point, line,
betweenness, and congruence for line segments and for angles. These undefined
notions are limited only by having to satisfy all the axioms.

To make a model of the geometry within another mathematical frame-
work, in this case algebra, we must say what the interpretation of the undefined
notions is to be in our model, and then we must prove that the axioms hold in
this interpretation.

We start then, with a field, and to fix the ideas we recall the definition of

a field.

Definition

A field is a set F, together with two operations, +, -, i.e., for each a,b € F there
are given a+ b e F and a - b € F, subject to the following conditions:

(1) The set F, together with the operation +, forms an abelian group, namely,
() (a+by+c=a+ (b+c) for any a,b,c € F,
(i) a+ b=b+a for any a,b € F,
(iii) there is an element 0 € F such thata+ 0 = a for all a € F,
(iv) for each a € F there is an element —a € F such that a + (—a) = 0.
(2) The set F* = F — {0}, together with the operation - forms an abelian group,
namely,
(i) (ab)c = a(bc) for all a,b,c € F*,
(ii) ab = ba for all a,b € F*,
(iii) there is an element 1 € F* such thata-1=a for all a € F*,
(iv) for all a € F*, there is ana™! € F* such thata-a™! = 1.
(3) The operations + and - are related by the distributive laws
a(b+c)=ab+ac and (a+b)c=ac+ bc.

Note in particular that in our definition of a field 0 # 1, and multiplication is
always commutative. We leave to the reader to verify other elementary prop-
erties of a field, such as 0-a = 0 for all a € F. The characteristic of the field F is
the least positive integer p for which 1+1+---+1 (p times) is equal to 0, or
zero if there is no such integer.

Our first step in making a geometry is to say what we mean by points and
lines. Of course, we take our cue from the “standard” model of Euclidean ge-



14. Abstract Fields and Incidence 129

ometry, the real Cartesian plane, given by ordered pairs of real numbers. This is
the geometry we might call “high-school geometry,” where the axiomatic and the
analytic approaches are not clearly distinguished, and we assume that every-
thing is over the real numbers. In that model we suppose that everyone already
“knows” what points, lines, angles, betweenness, and congruence mean.

But now, since we are starting with an arbitrary field F, which may not be
the real numbers, we need to make our definitions precise.

Definition

The plane II (or IIf if we want to indi-
cate the field), called the Cartesian plane
over the field F, is the set F? of ordered
pairs of elements of the field F, which
we call the points of I1. A line is a subset
defined by a linear equation

ax+by+c=0

for some a,b,c e F, with a,b not both

ZEero. /

Any line can also be written in
either the form x = ¢, in which case we X

call it vertical, or the form y = mx + b.
In the latter case we say that the line
has slope m, and for the line x = ¢, we
say it has slope co. Here oo is just a
symbol (it is not an element of the field
F).

Example 14.0.1

Let F be the field of two elements F = (o, (1,1)
{0,1} with addition and multiplication
(mod2). Then the plane IT over F has
exactly four points and six lines, shown
schematically in the diagram. Note in (0,9 (1,00
particular that the two “diagonal” lines
do not meet in this geometry.

Proposition 14.1
If F is any field, the Cartesian plane Ilp satisfies Hilbert's incidence axioms (I1),
(12), (13), and the parallel axiom (P).

Proof (I1) says that any two points lie on a line. Since we can perform rational
operations +, —, -, = in the field F, the usual “two-point formula” of analytic ge-
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ometry shows that we can find a linear equation, with coefficients in the field F,
that determines a line containing the two given points.

(I2) says that every line has at least two points. Since any field F has at least
the two distinct elements 0,1, by putting x = 0,1 if the line has the form
y = mx+ b, or by putting y = 0, 1, if the line is x = ¢, we obtain two points on
any line.

(I3) says that there exist three noncollinear points. Indeed, we can always
take (0,0), (0,1), (1,0), and we can see easily that these do not lie on any line.

(P) says that there is at most one parallel to a given line I through a given
point P. In fact, the stronger statement holds that there is exactly one line paral-
lel to I through P, so that 11 will be an affine plane, in the terminology of Exer-
cise 6.5. Recall that parallel means that two lines do not meet unless they are
equal. In the plane IIr, we see immediately that two lines are parallel if and
only if they have the same slope. So given a line 1, let its slope be m. Then the
familiar “point-slope” formula of analytic geometry shows that there is a unique
line of slope m passing through the point P. This will be the parallel to I.

Before introducing the further notions of betweenness and congruence into
our Cartesian plane over a field F, there are already some interesting con-
nections between algebraic properties of the field F and incidence properties in
the plane IIr. To investigate these, it is useful to be able to change coordinates.

Proposition 14.2
In the Cartesian plane 11 over a field F, it is possible to make a linear change of
variables
{ X' =ax+by+ec,
y' =dx+ey+f,
such that the new coordinate axes are any two given intersecting lines, and the new
unit points are any given points P, Q on them not equal to their intersection point E.

Proof Since a composition of linear changes of variables is again one, we can
proceed one step at a time. First, a change of the form

X' =x—a, 9
y/ =Y - b7
will move the origin (0,0) to the point
E = (a,b).
Next, a transformation of the form
{ X' = ax, (01 1) ¢
y' = by, X
will move the unit points to any other (6,0) {‘l 0)
points on the same axes. !
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Then, a change of the form u&_ 9 /
{ X =x—ay,
Yy =y ? (xfb)

other such transformation, interchang-

will keep the x-axis fixed, but replace

the y-axis by another line through the (011) ~/7
origin. The x-axis may be moved by an- !

ing the roles of x and y.

Xz X

(1,0

Combining all these gives a transformation that moves the original axes and
unit points to any other desired axes and unit points.

Remark

Since the change of coordinates is linear, lines in the new coordinate system are
still given by linear equations, so it is equivalent to describe the geometry of the
plane Ilr using either the old or the new coordinates.

Now we give some applications.

Proposition 14.3
There exists a configuration in the plane TlIr of four points A,B,C,D such that
AB||CD, AC||BD, and AD||BC if and only if the characteristic of F is 2.

Proof We have already seen the existence (14.0.1), since any field F of charac-
teristic 2 contains the subfield {0,1} of two elements with addition and multipli-
cation (mod 2).

For the converse, suppose that such a configuration exists in I1r. Then make
a linear change of coordinates such that C becomes the new origin, and A, D are
the unit points. Then B will be the point (1,1); BC will be the line x =y, and AD
will be the line x + y = 1. In this configuration, AD||BC, so the equations x = y
and x + y = 1 must have no common solution. Solving, we obtain 2x = 1, which
has a solution in F as long as 2 # 0. We conclude that this configuration exists
only if 2 = 0, i.e., the charactistic of F is 2.

Proposition 14.4 (Pappus’s theorem)

In the Cartesian plane over a field F, suppose we are given lines I,m and
points A,B,Cel and A',B',C’' e m such that AC'|A’C and BC'||B'C. Then also
AB'||A'B.
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Proof Suppose that I, m meet at a point
O (we leave the case I|jm as Exercise
14.1). Choose coordinates such that O is
the origin, and A, B’ are the unit points.
Let C be the point (0,a) and let C’ be
the point (b,0). Then writing the equa-
tions of the lines involved, we find that
B=(0,ab) and A’ = (ab,0). Thus the
line BA’ has slope —1, hence is parallel
to AB'.

Remark 14.4.1

B
\
\
\
Y
C AN
N
hY
AN
\
B’ c’ A

It is possible to define a Cartesian plane over a skew field F (which is an al-
gebraic structure the same as a field, except that the multiplication need not
be commutative). Then Hilbert (1971) has shown that the skew field F is
commutative if and only if Pappus's theorem holds in the associated plane

M.

Example 14.4.2

In the Cartesian plane over the field F,
assuming characteristic 0, there is a
configuration such as the one shown
(where all lines that appear parallel are
assumed to be parallel, namely DE||BC,
DF||AC, EF||AB, GH||BC, and BH||GE) if
and only if /2 € F.

Indeed, to analyze this situation,
take B to be the origin, BC and BA the
axes, and D, F the unit points. Then A =
(0,2), E=(1,1), C=(2,0). Let G have
coordinates (0,a). Then H = (2 — a,a).
The line BH will have slope a/(2 — a),
and the line GE will have slope 1 —a.
The parallelism BH||GE then requires
a/(2 —a) = 1 — a, or, equivalently, a* —
4a+ 2 = 0. Solving with the quadratic
formula gives a = 2 + v/2.

For this configuration to exist, it is
necessary and sufficient that a € F, and
this is clearly equivalent to v/2 € F, as
required.

@
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Exercises

14.1 Show that Pappus's theorem (Proposition 14.4) still holds in Iy in the case that
I|jm.

14.2 Show that Desargues’s theorem holds
in the Cartesian plane over a field
F: Given a configuration as shown,
with ACJ||A’C’ and AB||A’B’, prove that
BC||B'C'.

14.3 We define a skew field (also called a division ring) to be the same as a field, but
without assuming property 2(ii), that multiplication is commutative.

(a) Using the same definition of points and lines, show that the Cartesian plane
over a skew field F still satisfies the incidence axioms (11)-(I3) and (P), as in Prop-
osition 14.1.

(b) Show that a skew field is commutative (i.e., is a field) if and only if Pappus’s
theorem (Proposition 14.4) holds in the Cartesian plane over F.

For each of the following problems, assume that you are working in the Cartesian
plane I1 over a field F of characteristic 0. Give necessary and sufficient conditions on the
field F for the given configuration to exist. Assume that all lines that appear to be parallel
are parallel, and apparent right angles are right angles.

14.4 Ans: V3 €F. 14.5 Ans: V13 e F.
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14.6 \ ﬂ 14.7

14.8

14.9

In each of the following four problems, suppose that you are given the triangle ABC.
Make a_ruler and compass construction of the diagram shown. In the first three, D,E,F
are the midpoints of the sides. In the last, they are one-third of the way along each side.
(Par = 20 to 25 steps each.)

14.10

A
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14.11 A
D €
11 J c
F
14.12 A
) €
B ) '
F
14.13 A
D
E
B C
=

15 Ordered Fields and Betweenness

The next undefined notion we need to interpret in the Cartesian plane over a
field is betweenness. It turns out that this is not possible over an arbitrary field.
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We will have to impose some additional structure on the field to make a defini-
tion of betweenness possible. To see why this is so, suppose we had a notion of
betweenness in our geometry. Then the x-axis (whose points are in one-to-one
correspondence with the elements of our field F) could be divided into subsets
consisting of the “positive x-axis” meaning all points on the same side of 0 as 1,
the origin 0, and the ‘“negative x-axis” consisting of all points on the other side of
0 from 1. In this way we can define a notion of “positive” elements of the field F,
analogous to the usual notion of positive real numbers.
This leads to the concept of an ordered field.

Definition
An ordered field is a field F, together with a subset P, whose elements are called
positive, satisfying:

(i) Ifa,be P, thena+be Pand ab e P.
(ii) For any a € F, one and only one of the following holds: a € P, a = 0; —a € P.

Here are a few elementary properties of an ordered field.

Proposition 15.1
Let F, P be an ordered field. Then:

(a) 1 €P, ie, 1isa positive element.

(b) F has characteristic 0.

(c) The smallest subfield of F containing 1 is isomorphic to the rational numbers Q).
(d) Foranya #0€F, a’eP.

Proof (a) In any field, 1 # 0, so either 1 e P or —1 € P. If 1 € P we are done. If
—1 € P, then by (i), also (—1) - (—1) = 1 € P, which contradicts (ii). Hence 1 € P.

(b) Since 1€ P, 14+1+1+---+1 any number of times is also in P. In par-
ticular, such a sum is never 0, so F has characteristic 0.

(c) The natural map of the positive integers N to F given by n goes to
141+ ---+1 (ntimes) is injective, by (b), and extends to an injective map of Q
to F whose image is (1) isomorphic to @ and (2) the smallest subfield of F con-
taining 1. Whenever no confusion can arise, we will identify @ with its image
in F. So for example, if n € Z, then n will also denote the corresponding element
of F.

(d) If a # 0, then either ae P or —a € P. If a € P, then a? € Pby (i). If —a € P,
then (—a)(—a) = a® € P.

Proposition 15.2
In an ordered field F,P, we define a>b ifa—beP, and a<b if b—aeP. This
notion of inequality satisfies the usual properties, namely:

(i) Ifa>bandceF, thena+c > b +c.
(i) Ifa>Dbandb > c, then a > c.
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(iil) Ifa > b and c > 0, then ac > bc.
(iv) Given a,b € F, one and only one of the following holds: a > b; a = b; a < b.

Examples 15.2.1
The rational numbers Q form an ordered field, where we take for P the positive
rational numbers, in the usual sense.

15.2.2 The field of real numbers R is an ordered field with the usual notion
of positive elements.

15.2.3 The field of complex numbers € cannot be an ordered field (i.e.,
there is no subset P of € satisfying the definition) because i = —1 < 0, which
contradicts (15.1d).

15.2.4 Since an ordering on a field is extra structure, in general there may
be more than one way to make a given abstract field into an ordered field. For
example, let F = Q(v/2). Then F is a subfield of IR, so we can make it into an
ordered field by taking P to be the subset of elements of F that are positive in IR.
But there is another embedding ¢ : F — R given by ¢(a + b/2) = a — by/2 for all
a,b e @, and we can put another ordering on F by taking P to be the set of ele-
ments x € F for which ¢(x) > 0 in R.

Proposition 15.3

If F is a field, and if there is a notion of betweenness in the Cartesian plane Ilg sat-
isfying Hilbert's axioms (B1)-(B4), then F must be an ordered field. Conversely, if
F, P is an ordered field, we can define betweenness in 1l so as to satisfy (B1)-(B4).

Proof First suppose that F is a field and that there is a notion of betweenness in
the plane [l satisfying (B1)-(B4). We define the subset P < F to consist of all
a € F, a # 0, such that the point (a,0) of the x-axis is on the same side of 0 as 1.
Since addition in the field corresponds to laying out line segments consecutively
on the x-axis, one can show easily thata,be P=>a+beP.

For multiplication, given a,be P,
put a on the x-axis, put 1,b on the y-
axis, draw the line from (0,1) to (a,0),
and draw the line parallel to this one
through (0,b). It will meet the x-axis in b
the point (ab,0). Now clearly, 1,a,be
P=abeP (we leave to the reader to [
see exactly how this follows from (B1)-
(B4)!), so P satisfies the first property of
the definition of an ordered field. By > >
construction, F is the disjoint union of 0] 78 ab
PU{0}U—P, so that F,P is an ordered
field.
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Now suppose conversely that F,P is a given ordered field. We define be-
tweenness for points on a line as follows: Let A = (a3, a;), B= (b1, b;), C = (c1,¢2)
be three distinct points on a line y = mx +b. We say that B is between A and
C(AxB=xC)if

eithera; < b; <c¢; or a>bh >aq.

If the line is vertical, we use instead the second coordinates in the same way.

We must verify the axioms (B1)-(B4).

(B1) is obvious from our definition.

(B2) follows from the corresponding fact, true in any ordered field, that
given b < d € F, there exist a,c,e € F such that a < b < ¢ < d < e. Indeed, we can
always take, for example, a=b—1, c=1(b+d), and e = d + 1. Note that since
F has characteristic 0, by (15.1), 3 € F.

(B3) follows from the fact that in an ordered field F, if a, b, ¢ are three distinct
elements, then one and only one of the following six possibilities can occur:

a<b<c
a<c<b
b<a<cg
b<c<a
c<a<bpb
c<bh<a.

(B4). Suppose we are given a triangle ABC and a line [ that meets the side
AB. Assuming A, B, C ¢ I, we must show that [ also meets either AC or BC, but
not both. A

First suppose that the line I is verti- ! L
cal, with equation, say, x = d. Let a,b,c B
be the x-coordinates of A,B,C. By hy- >
pothesis, either a<d<b or b<d> a. C

By symmetry, let us assume a < d < b.
Then it is clear if ¢ < d (as in the pic-
ture), then I will meet BC but not AC. If 1
¢ > d, then I will meet AC and not BC, 0
as required.

If I is not vertical, we make a change of coordinates (14.2) such that [
becomes vertical. Since linear changes of variables either preserve or reverse
inequalities, this does not affect the notion of betweenness, and so we are
reduced to the previous case.

To complete this section, we will discuss Archimedes’ axiom (A) and Dede-
kind’s axiom (D) —cf. Section 12.
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Proposition 15.4
Let F,P be an ordered field. Then the Cartesian plane 1l will satisfy (A) or (D) if
and only if the field F satisfies the corresponding property for a field, namely:

(A") (Archimedes’ axiom for a field). For any a > 0 in F, there is an integer n such
that n > a.

(D’) (Dedekind’s axiom for a field). Suppose we can write the field F as the disjoint
union of two nonempty subsets F = SU T, and assume that for allae Sand allbe T
we have a < b. Then there exists a unique element ¢ € F such that for all a € S and all
be Twehavea<c<bh.

Proof For (A), we can choose coordinates such that the first segment AB is a
unit segment. If C and D on the same line correspond to elements ¢ < d € F,
then n copies of AB will exceed CD if and only if n > d — c.

For (D), choose coordinates such that the line in question is the x-axis, and
identify its points with elements of F. Then the statements are the same.

Proposition 15.5

Let F be an ordered field satisfying Archimedes’ axiom (A’). Then F is isomorphic,
with its ordering, to a subfield of R. Furthermore, in this case, F satisfies Dedekind's
axiom (D’) if and only if this subfield is equal to R.

Proof We saw earlier (15.1) that F contains a subfield F, isomorphic to @. This
gives us a unique isomorphism ¢, : Fp — Q < R. We will extend ¢, to an iso-
morphism of F into R. Let « € F. Because of Archimedes’ axiom, there are in-
tegers both smaller and bigger than «. So let ag be the unique integer n such that
n<a<n+1. Next define a; € ll—OZ to be the unique one-tenth integer such
that a; <o <a; +1/10. Similarly, define a; € (1/100)Z such that a; < a <
az +1/100. Continuing in this way we obtain a sequence ay < a, <a; < --- of
rational numbers with the property that for each n, a, <« < a, +107". In the
field of real numbers R, these converge to a certain real number, which we call
¢(a). This defines a map ¢:F—R. It is easy to verify that
oo+ B) = p(a) + ¢(B) and p(¢ff) = ¢() - p(B). So ¢ is a homomorphism of fields,
which is necessarily an isomorphism onto its image. One checks also that
a < f= o) < @(f), so it is an order isomorphism of F onto ¢(F) < R.

Now, condition (D’) on F is equivalent to (D’) on ¢(F), since the fields are
order-isomorphic. Each real number r € R is characterized by the sets I; =
{aeR|a < r} and Z; = {ae R|a > r}, so clearly (D’) holds in ¢(F) if and only
if p(F) = R.

Remark 15.5.1
As a converse to this result, note that any subfield F of R becomes an ordered
field if we take for P < F those elements of F that are positive (in the usual
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sense) in R. Thus the study of Archimedean ordered fields is equivalent to the
study of subfields of R.

See Section 18 for some examples of non-Archimedean ordered fields.

Exercises

15.1
15.2

15.3

15.4

15.5
15.6

If a > 0 in an ordered field F, show that a~! > 0 also.

Let F be an ordered field, and let a > 0. Show that if a has a square root in F, i.e., an
element b € F such that b? = a, then a has exactly two square roots in F, one of
which is positive and the other negative. We use the notation /a to denote the posi-
tive square root.

Let F be an ordered field, let d > 0, and suppose that d does not have a square root
in F. Let F(v/d) denote the set of all a + bv/d, with a, b € F, where V/d is a square root
in some extension field of F.

(a) Show that F(/d) is a field.

(b) Show how to define an ordering on F(v/d), with v/d > 0, such that it becomes an
ordered field.

In an ordered field F, show that Dedekind’s axiom (D’) implies Archimedes’ axiom
(A'). Hint: If F did not satisfy (A'), let S= {a e F|Ine Z, with « < n}, and let T =
F— 8. Then apply (D).

In the proof of Proposition 15.5, verify that ¢(af) = ¢(«) - o(f).

If F is a skew field (Exercise 14.3), together with an ordering defined as in this sec-
tion that satisfies Archimedes’ axiom (A’), then in fact F is a field. Hint: Show that
the proof of Proposition 15.5 still works.

16 Congruence of Segments and Angles

Next, we need to define the notion of congruence for line segments and for
angles. We assume from now on that we are starting from an ordered field F, P,
so that we have betweenness as studied above. Then we can define the line seg-
ment AB to be the set of all points on the line AB that are between A and B, plus
the endpoints A, B. We would like to define congruence of line segments using
the usual Euclidean distance function (motivated by the theorem of Pythagoras
(1.47)) for two points A = (a1,4az), B = (b1, bz), namely,

diSt(A,B) B \/(al - bl)z + ((12 — bz)z.
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However, our field F may not have square roots in it, so we will use instead the
“distance-squared” function

diStz(A,B) = (a1 — bl)z + (az — bz)z.
This will give the same notion of congruence.

Definition
Two line segments AB and CD in the Cartesian plane over an ordered field F are
congruent if

dist?(A, B) = dist?(C, D).
Since congruence is defined using the function dist? from line segments to the

field, the axiom (C2), transitivity of congruence, will be obvious. Notice that
because of the ordering on F, if A, B are distinct points, then dist?(A, B) > 0.

Next we will define congruence for angles, by defining a function tano € F
for any angle «. This is motivated by the usual tangent function of trigonometry,
but since we are working over an abstract field, you should not assume any
properties of this function until they have been proved.

Recall that a ray is a subset of a line

consisting of a point plus all the points ’?',//’7

of the line on one side of that point. An A
angle is the union of two rays emanating
from the same point and not lying on
the same line. The interior of the angle «
consists of all points of the plane that / //
are on the same side of I as v’ and on /
the same side of I as 7.

We say that an angle is a right angle
if the slopes of the lines its rays lie on

satisfy mm’ = —1. Then we say that an
angle is acute if it is contained in the
interior of a right angle; it is obtuse if it
contains a right angle in its interior.

Definition
If « is an angle formed by two rays 7,7’

lying on lines of slopes m, m’, we define v’
the tangent of a to be
m' —m \a
tano = +|— |,
11+ mm’ A LA
where we take + if the angle is acute

and — if the angle is obtuse.
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The awkwardness of this definition is due to the fact that the slopes depend
only on the lines and do not distinguish the rays on those lines. So any formula
using slopes cannot distinguish an angle from its supplement. We cannot use the
usual definition of tangent, as side opposite over side adjacent, because that
needs square roots (Exercise 16.3).

Note also that by this definition, the tangent of a strictly acute or strictly
obtuse angle is an element of the field F, while the tangent of a right angle we
take to be the symbol c. In case one of the slopes m or m’ in the definition is oo,
we can still make sense of the formula by using rules (Exercise 16.2) such as

00 —m 1

1+m-0 m

Definition
Two angles in the Cartesian plane over an ordered field F are congruent if they
have the same tangent, considered as an element of the set F U {o0}.

Because congruence is defined by a function with values in FU {0}, axiom
(C5), transitivity of congruence, becomes obvious.

Proposition 16.1
Let F be an ordered field, and let TIg be the associated Cartesian plane. Then Il
satisfies axioms (C2)—(C5). Furthermore, (C1) holds if and only if F satisfies the
condition

(%) For any element a € F, the element 1 + a® has a square root in F (in which
case we say that the field F is Pythagorean).

Proof (C2) is transitivity of congruence of segments, which follows immedi-
ately from our definition of congruence using the dist? function.
(C3) is left as an exercise (Exercise 16.1).
(C4) is the axiom about laying off
angles. So suppose we are given an an-
gle a and a ray emanating from a point
A with slope m. We must find a line
passing through A with slope m’ such
that A

m —m
tano = +|——
1+ mm/’

L . . o L
where the sign is adjusted according to - ‘p\ A

whether « is acute or obtuse. This gives
equations that are linear in m’, and so
can be solved in F. We obtain

b
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, m+ tana

1 F mtana’
The two solutions give angles on either side of the given line through A, so that
we can construct the new angle o’ on the desired side of the line.

(C5) is the transitivity of congruence of angles, which is immediate from our
definition of congruence using the tangent function.

Now let us consider the axiom (C1)
about laying off line segments. This
does not hold over an arbitrary field. (0,1) (1)
For example, let @ be the field of ratio-
nal numbers. Then the segment from
(0,0) to (1,1) cannot be laid off on the x-
axis, because its length, v/2, is not in the
field.

Over an arbitrary field F, if ae F is
any element, let us consider the seg-
ment from (0,0) to (a,1). There will be
a segment congruent to this one, laid off
on the x-axis starting from 0, only if ( at)
there is an element b € F such that

dist?((0,0), (a,1)) = dist?((0,0), (b, 0)).
This says that x © b
1+a® =D~
Thus we need b € F that is a square root of 1 + a?. In other words, if (C1) holds
in I1F, we must have the condition () on the field F.

Conversely, suppose that F satisfies (*), namely, for any c e F, we have
V1 +c? e F. Then for any a,b € F, with a # 0, we can write

b 2
a* + b? =a2(1 + (—) )
a
Now letting ¢ = b/a we see that
va?+b?=la|-V1+c?

is also in F. From this is follows that for any two points A, B € IIr, the distance
between A, B is also in F, so we have the distance function

diSt(A,B) = \/(al — bl)Z + (az - bz)z e F.

Now suppose that we are given a line y = mx + b and a point A on the line,
and suppose we wish to lay off a segment of length d. We can write A =
(a,ma + b), and we are looking for a point C = (¢, mc + b) on the same line such
that

(0,0) 1,0
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dist(A,C) = d.
This says that

V(a—c)2+(ma+b— (mc+b))?=d,
which becomes

la—c|-vV1+m?=d.

Since F satisfies (*), the quantity v/1 + m? is in F, so we can solve this equation
for c. Note that there will be two solutions, corresponding to the two directions
from A along the line I.

Remark
We defer consideration of (C6), the (SAS) axiom, to the next section, where we
discuss rigid motions and Euclid’s method of superposition.

To complete this section, we discuss the intersections of lines and circles.
Recall from Section 11 the circle-circle intersection property, which we called
axiom (E), and the line-circle intersection property (LCI), which was proved in
(11.6) as a consequence of (E).

Proposition 16.2
Let 11 be the Cartesian plane over an ovdered field F. Then the following conditions
are equivalent:

(i) 11 satisfies the circle-circle intersection property (E).
(i) I1 satisfies the line-circle intersection property (LCI).

(ili) the field F satisfies (xx): For any a € F, a > 0, there is a square root of a in F
(in which case we say that the field F is Euclidean).

Proof (i) = (ii). Let f= 0 be the equation of a circle, and let g = 0 be the equa-
tion of a line. Then f+ g = 0 is another circle, whose intersections with the first
circle are the same as the intersections of the first circle with the line. Thus (E)
implies (LCI).
(ii) = (iii). Now we assume (LCI)

and we must prove that F has square T
roots of positive elements. Given an ele- B
ment a€F, a> 0, consider the points
0 =(0,0), A = (a,0),and A’ = (a +1,0).
Let I' be the circle with center 0 A VA’
(3(a+1),0) and radius 1(a+1). Con-
sider the vertical line I through the
point A. Clearly, A is inside the circle,
so by (LCI), the line I must meet the cir-
cle I' in a point B. Solving the equations,
we find that B = (a,+/a), so ya e F.
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(iii) = (i). This time we assume the existence of square roots of positive ele-
ments in F, and must prove (E). If I' and I are circles in II, their equations can
be written

(x—a)’+(y—b)? =1
(x—0)’+(y—ad)?’=s

where (a,b) and (c,d) are the centers of the two circles, and r,s their radii
(which are elements of F because of our hypothesis (**) on existence of square
roots).

Normally, solving two quadratic equations simultaneously would lead to a
fourth-degree equation, but in this case, the coefficients of ¥? and y? in both
equations are 1. Thus we can subtract one equation from the other to get a linear
equation. This can be solved simultaneously with one of the quadratic equations
using only square roots, and so, using (*x), the intersection points of the circles
have coordinates in F, so they exist in the plane 1. We leave to the reader the
troublesome verification that if I' and I satisfy the hypothesis of (E), then the
square roots we need will be square roots of positive elements of F, so will exist
by (*x); cf. Exercise 16.6.

Remark 16.2.1
This shows that (E) and (LCI) are equivalent in the Cartesian plane over any
ordered field F; cf. (11.6.1).

Proposition 16.3

Let Q be the set of all real numbers that can be expressed starting from the rational
numbers and using a finite number of operations +,—, -, =, and ¢ — /1 + ¢%. (Note
that for any ce R,1+c¢% > 0, so V1 +c? € R.) Then Q is an ordered Pythagorean
field.

Proof To show that Q is a field, let a,b € Q. Then each of a, b can be expressed
in a finite number of steps using rational numbers and operations +, —, -, =,
¢ — /1 + c¢%. Hence the same is true of a + b, a - b, and a/b, provided that b # 0.
If ¢ is any element of Q, then ¢ can be expressed in a finite number of such
steps, so V1 + ¢% can also, and so V1 + ¢? € Q. Hence Q is Pythagorean. Q is an
ordered field, because it is a subfield of R, so we can take P to be those elements

of Q that are positive as real numbers.

Remark 16.3.1

Clearly, Q is the smallest Pythagorean ordered field. We call it Hilbert's field,
since he studied it in his Foundations of Geometry (1971). It is also the smallest
field over which all of Hilbert's axioms of betweenness and congruence will hold
(17.3).
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Proposition 16.4

Let K be the set of all real numbers that can be obtained from the rational numbers
by a finite number of operations +,—,-, +, and a > 0 — +/a. Then K is a Euclidean
ordered field.

Proof Similar to the proof to (16.3). Note that we may take square roots only of
positive elements. Since K is also a subfield of IR, we get the ordering on K from
R as above.

Remark 16.4.1

We call this the constructible field because it is the smallest field over which we
can carry out ruler and compass constructions. Note also that Q < K, since
1+ ¢? > 0 for any c € Q. To show Q # K, see Exercise 16.10.

Exercises

16.1 If I is the plane over an ordered field F, show that (C3), congruence of added line
segments, holds. Do not assume that F is Pythagorean.

16.2 Make up a set of rules for dealing with co so that we can do arithmetic in F U {0}
and get the results we want with slopes and tangents of angles.

16.3 Let ABC be a triangle with a right angle at C in the Cartesian plane over an ordered
field F satisfying (). If a is the angle at A, show that

__ dist(B,C)

tano = .
* = dist(4, C)

16.4 If F is a Pythagorean ordered field, prove the triangle inequality in the correspond-
ing plane II, namely, if A, B, C are three points in II, then

dist(A, C) < dist(A, B) + dist(B, C),
and equality holds if and only if A, B, C are collinear and B is between A and C.

16.5 Using the definition of the tangent of an angle given in the text, verify that for any
two acute angles a, f,

tano + tan f

tan(o = .
(@+h) 1 —tanatanf

16.6 Let Il be the plane over a Euclidean ordered field F. Verify that a circle I' meets a
line [ in two points if and only if [ has a point inside I'. Hint: Compute the shortest
distance from the center O of the circle to the line I. Show that this is less than the
radius of the circle if and only if the square roots needed to solve the equations are
square roots of positive elements.
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16.7

16.8

16.9

16.10

16.11

16.12

Let F be an ordered field (without assuming Pythagorean or Euclidean).

(a) Show that the associated plane II contains an equilateral triangle if and only if

V3eF.

(b) Show that there exists an equilateral (but not necessarily equiangular) penta-

gon in I if F = Q(v/3), Q(v/11), or Q(V/15), but not if F = Q.

Let F be an ordered field (without assuming Pythagorean or Euclidean). Let A, B be
points of the associated plane II. Show that the circle I' with center A and passing
through B has infinitely many points on it. Hint: First do the case of the circle of
radius 1 and center (0,0) over Q.

(a) Show that cos72° and sin72° are in Hilbert's field Q.

(b) Prove that a regular pentagon inscribed in a unit circle exists in the Cartesian
plane over the field Q.

Totally real field extensions (this exercise requires some knowledge of field theory).
We consider algebraic numbers, which are complex numbers satisfying some poly-
nomial equation with rational coefficients. We denote the set of algebraic numbers
by @Q. An algebraic number a € @ is totally real if it and all its conjugates are real. A
subfield F < @ is totally real if all its elements are totally real. We say thata € Qis
totally positive if it and all its conjugates are real and positive. Show the following:

(a) If F < @ is a totally real subfield, and if a € F is a totally positive element, then
the extension field F' = F(/a) is totally real.

(b) If 4y, ...,a, are elements of a totally real field F, then Za? is a totally positive
element of F.

(c) Hilbert's field Q (Proposition 16.3) is a totally real field.

(d) The number a = v/1 + /2 is in the constructible field K (Proposition 16.4) but
not in Q. Thus Q < K.

Use ideas from (Exercise 16.10) to give an example of three line segments in the
Cartesian plane over Q, any two exceeding the third, but such that the triangle with
sides equal to those segments does not exist. Thus (I1.22) fails in this plane.

The converse of Exercise 16.10b is a theorem of Emil Artin: If b is a totally positive
element of a subfield F < @, then there exist elements ay,...,a, € F such that
b = Za?. Fill in the details of the following outline of a proof of this theorem.

(a) Replacing F by Q(b), we may assume that F is a finite totally real extension

of Q.
(b) Let
8 = {Za? | a; € F, not all zero}.

Show that the set S is closed under addition, multiplication, and multiplicative
inverses, and that 0 ¢ 8. Hint: Write $™' = (§71)?S.
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(c) Now let b be a totally positive element of F, and suppose that b ¢ S. We will
show that this leads to a contradiction. Let S’ = S — bS, and show that S’ is closed
under +, -, inverses, and that 0 ¢ S’.

(d) Let 2 be the set of all subsets P < F such that 0 ¢ P,S' < P, and P is closed
under +, -, inverses. Use Zorn's lemma to show that £ has a maximal element.

(e) If Pe 2 is a maximal element, show that F, P is an ordered field. You only have
to check the trichotomy: If a # 0, and —a ¢ P, consider P’ = P+ aP and use maxi-
mality to show P’ = P, so a € P.

(f) Use the fact that F is algebraic over @ to show that the ordering is Archimedean.

(g) Now use Proposition 15.5 to get an embedding ¢ : F — R with ¢(b) < 0, yield-
ing a contradiction.

16.13 Verify the result of Exercise 16.12 directly for the field Q(v/2), without using its
proof.

16.14 Using Exercise 16.12, show that Hilbert's field Q is equal to the set of totally real
elements in the constructible field K.

17 Rigid Motions and SAS

Our first goal in this section is to show that Hilbert’s axiom (C6), the “side-
angle-side” criterion for congruence of triangles, holds in the geometry over an
ordered field F. This will complete the proof that all of Hilbert's axioms hold in
the Cartesian plane over a field. After that we will study the properties of rigid
motions in an arbitrary Hilbert plane.

One could criticize Hilbert for taking a statement as complicated as (SAS) for
an axiom, just as one could criticize Euclid for his fifth postulate, which is so
much less elementary than his others. The response in both cases is the same:
One cannot avoid including a statement as an axiom if one cannot prove it from
the other axioms. Now, Euclid did not include (SAS) as an axiom, but “proved”
it as (1.4). His proof has been justly criticized, because he used the “method of
superposition,” which involves moving one triangle and placing it on top of the
other. This cannot be justified on the basis of Euclid’s postulates and common
notions. In fact, if you think about it, the possibility of moving figures around,
without distorting their shapes, is a rather strong statement about homogeneity:
The geometry is similar in different parts of the space. This is a deep fact not to
be taken lightly or assumed without proof.

Curiously enough, in order to show that (SAS) holds in the geometry over a
field, we will use Euclid’s method of superposition, but only after proving that it
makes sense. We will define the notion of rigid motion of a plane and show that
there are enough of them to make Euclid’s method work.
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Conversely, we will prove the existence of rigid motions in an arbitrary Hil-
bert plane. Thus the existence of enough rigid motions is essentially equivalent
to the statement (SAS), in the presence of the other axioms. This gives a satis-
factory modern understanding of the meaning of Euclid’s method of super-
position. It also introduces us to the group of rigid motions of the plane and val-
idates Felix Klein's point of view, expressed in his “Erlanger Programm” in the
late nineteenth century, that one should classify different geometries according
to the groups of motions that act on them.

To start with, we define the notion of a rigid motion.

Definition

If 1 is a geometry consisting of the undefined notions of point, line, between-
ness, and congruence of line segments and angles, which may or may not sat-
isfy various of Hilbert's axioms, we define a rigid motion of Il to be a mapping
@ : 11 — 11 defined on all points, such that:

(1) ¢ is a 1-to-1 mapping of the points of II onto itself.
(2) ¢ sends lines into lines.

(3) ¢ preserves betweenness of collinear points.

(4) For any two points A, B, we have AB = ¢p(A)p(B).
(5) For any angle o, we have /o = /L ¢(a).

In other words, ¢ preserves the structures determined by the undefined
notions in our geometry.

Remark 17.0.1

For example, the identity transformation of II to itself, which leaves every point
fixed, is a (trivial) rigid motion. It is clear that the set G of all rigid motions
forms a group, because the composition of any two is another one. We will use
functional notation for composition: gy/(A) = ¢(¥(A)). However, it is not obvi-
ous in general that there are any other rigid motions besides the identity.

Now we can express what is needed to justify Euclid’s method of super-
position in the following principle

ERM (Existence of Rigid Motions)

(1) For any two points A,A’ € Il, there is a rigid motion ¢ € G such that
p(A) = A

(2) For any three points O, A, A’, there iwigid motion ¢ € G such that ¢(0) =
O and ¢ sends the ray OA to the ray OA'.

(3) For any line [, there is a rigid motion ¢ € G such that ¢(P) = P for all P e l and
@ interchanges the two sides of L.
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Proposition 17.1
In a plane satisfying the incidence and betweenness axioms, and assuming (C2), (C5),
and the uniqueness portions of (C1) and (C4) only, (ERM) implies (C6) = (SAS).

Proof We are now assuming the exis-

tence of rigid motions (ERM) and will B/
prove (SAS) by Euclid's method. So

suppose we are given two triangles ABC A
and A'B'C’, and suppose AB= A'B’,

AC=A'C’, and /. BAC = /. B’A'C'. Then 8

we must show that AABC =~ AA'B'C,

namely, that BC =~ B’C’ and the angles A

at B, C are congruent to the angles at B’ " c

and C', respectively.

By (ERM) (1), there is a rigid motion ¢ that takes A to A’. Let B” = ¢(B).
Then AB = A’'B”, since ¢ is a rigid motion and AB = A’B’ by hypothesis, so
A'B' = A'B" by (C2).

Next, by (ERM) (2), there is a rigid motion y that leaves A’ fixed and
sends the ray A’B” to the ray A’B’. Since A’'B” =~ A’B’, and ¥ preserves congru-
ence, we conclude from the uniqueness portion of (C1) that y(B”) = B’. Let
C" = yp(C).

Then we consider the line I = A’B’, and the two rays A’C’' and A’C". If they
are on the same side of I, we do nothing, but if on opposite sides, then by (ERM)
(3) there is a rigid motion o leaving the points of I fixed and interchanging the
sides.

Let us denote by 6 € G the composition Yg, or oy if we used ¢. Then 0
has the following properties: §(A) = A’, 8(B) = B/, and C" = 6(C) is on the same
side of A'B’ as C'.

Since 6 is a rigid motion, £/ BAC~ ([ B'A'C". But also L BAC =~/ B'A'C’
by hypothesis, so by (C5), L B'A'C' =~ [ B'A’C". Furthermore, C’ and C" are on
the same side of A'B’. So by the uniqueness portion of (C4) we conclude that the
rays A'C' and A’C" are equal.

Now, A'C' ~ AC by hypothesis, and AC = A'C", since 6 is a rigid motion, so
by (C2) A’C' = A'C". Furthermore, C’ and C" are on the same side of A’. So by
the uniqueness portion of (C1) we conclude that C’ = C".

Thus §(B) = B’ and 6(C) = C'. Since 6 is a rigid motion, BC = B'C’ as re-
quired. Similarly, for the angles, § takes /£ ABC to £ A'B'C’. So 6 being a rigid
motion, we conclude / ABC = / A’B’C’'. The same method shows [/ ACB =~
L A’B'C'. This concludes the proof of (SAS).

CJ

Next we will show that (ERM) holds in the Cartesian plane over a field.
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Theorem 17.2
Let F be an ordered Pythagorean field, and let 11 be the associated Cartesian plane.
Then (ERM) holds in I1.

Proof We think of II as having coordinates (x,y). We will consider certain
transformations of II defined by functions of x and y, we will show that these
are rigid motions, and then we will see that there are enough of them to prove
(ERM).

First of all, consider a point A =
(a,b) and the transformation 7 (called a
translation) given by

{x’=x+a, 'A:(‘?r”

y=y+bh.

Clearly, 7 is 1-to-1 and onto, because it
has an inverse

{x:x’—a,
y=y -b

A line y = mx + k under this transformation becomes

Yy —b=mx —a)+k

In particular, its image is a line, so we see that ¢ takes lines into lines. Next,
we notice that the slope of the new line is the same as the slope of the old line,
so 1 preserves angles. Clearly, T preserves betweenness, because this reduces to
questions of inequalities in the field F, which are unchanged by adding con-
stants.

Finally, we must check that t preserves the dist? function to get congruence
of segments. This is obvious, since we add the same constant to the coordinates
of two points A, B, so in computing the dist? function we get the same value.

Thus the mapping 7 is a rigid motion. Given two points B, C, we can take a,b
to be the difference of their x- and y-coordinates, so 7(B) = C, and we have sat-
isfied condition (1) of (ERM).

To prove condition (2) of (ERM) we will consider rotations. A rotation of the
plane II is a transformation p defined by

X' = cx — sy,
Yy =sx+cy,
where ¢,s € F and c¢? + s? = 1. The inverse of this transformation is given by

{x:cx’+sy’,
y=-sx'+cy'.
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Therefore, p is 1-to-1 and onto. Being linear, p takes lines to lines, and a brief
calculation shows that a line with slope m is transformed to a new line with
slope
, _cm+s
Cc—sm’

Since linear transformations either preserve or reverse inequalities, 6 preserves
betweenness.

Next, we show that p preserves angles. Given two lines with slopes m; and
mz, let m] and m) be the new slopes. Since congruence of angles is determined
by their tangents, it will be enough to show that

mp—m;,  m—m
1+mimy  1+mmy

This is an elementary calculation (left to the reader).
Finally, let us see what happens to the distance function. Let A and B be two
points. Then another amusing little calculation, left to the reader, shows that

dist(p(A), p(B)) = dist(A, B).

Hence p is a rigid motion.

Now we can verify condition (2) of (ERM). Given three points O,A,A;) we
must shoi) that there is a rigid motion leaving O fixed and taking the ray OA to
the ray OA’. By using a translation, we can reduce to the case O = origin. Let
y =mx and y = m'x be the lines containing A and A’. Any rotation leaves O
fixed, so to send the first line to the second, we have only to find c,s € F with
c? +s? =1 such that

, cm+s
m =
c—S8Sm

according to the formula above. Solving for s we obtain

m —m
=——c.
1+mm

Let k be the coefficient (m’ —m)/(1 +mm'). Then we can solve s =kc and
s?2 4+ ¢? =1by ¢ =+1/1 + k2, using the Pythagorean property of F.

So we have two rotations taking the first line to the second differing by the
rotation ¥’ = —x, y’ = —y. One of these will send the ray OA to the ray OA
as desired.

To complete the proof of (ERM), we must verify condition (3), that for every
line I, there is a rigid motion (called a reflection) leaving I pointwise fixed and
interchanging the two sides of I. Using a translation from a point of [ to the
origin O, we may assume that O € l. Let A be any (@fzr point of I, and let p be
the rotation that sends the positive x-axis to the ray OA. Let o be the reflection in
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the x-axis defined by

{ x =x,

y=-y

Clearly, this is a rigid motion that leaves the x-axis pointwise fixed and inter-
changes the two sides. Now ¢ = pap~! is the required reflection in the line L.

Theorem 17.3

If F is any Pythagorean ordered field, then the Cartesian plane 11 over F is a Hilbert
plane satisfying the parallel axiom (P). The plane 11 will be Euclidean if and only if
Fis Euclidean.

Proof We have previously verified the incidence axioms (I1)-(I13) and (P) in
(14.1), the betweenness axioms (B1)-(B4) in (15.3), and the congruence axioms
(C1)-(C5) in (16.1). Now, from (17.2) we know that (ERM) holds in II, and
therefore by (17.1) also (C6) holds. For the plane to be Euclidean, i.e., to satisfy
(E), it is necessary and sufficient that the field F be Euclidean (16.2).

Next we will prove a sort of converse to (17.1), namely that (ERM) holds in
any Hilbert plane.

Proposition 17.4
In any Hilbert plane (cf. Section 10), there are enough rigid motions: (ERM) holds.

Proof First we will show the existence of reflections. Then we will build other
rigid motions out of these.
Suppose we are given a line I. We
will construct a rigid motion o, called
the reflection in I, that leaves the points
of I fixed and interchanges the two sides A ®
of I. For any point P € I we define a(P) = 1
P. For any point A ¢ I, drop the perpen-
dicular AAp to I, and extend it on the T
far side of I so that AAy = ApA’. Then Ao 1?’9
we set 6(A) = A'. Clearly 0% = id, so o is
1-to-1 and onto. .
Let A, B be any two points not on .
We will show that AB=~ A'B’, where A
ag(A) = A', and o(B) =B'. If A,B lie on d
the same line perpendicular to I, this is
immediate from subtracting congruent
line segments. If A,B are on different
perpendiculars, as in the figure, let
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Ag,By be the feet of those perpendiculars. Then AA(ABy is congruent to
AAoA'By, using the right angles at A, by (SAS). Therefore, the angles / AByA,
and /. A'ByAq are congruent. Subtracting from the right angles at By, we find that
L ABoB = / A’ByB’. On the other hand, ABy =~ A’B, from the first triangles. Now
we can apply (SAS) again to conclude that AAByB = AA’ByB’. In particular,
AB =~ A’B’ as claimed.

B
Now suppose A, B,C are three non-
collinear points whose images by o are
A',B’,C’. Then by (SSS) we conclude
that AABC =~ AA’B'C’, and in particular, £
L BAC =~/ B'A’C’. Thus o preserves

angles. From here it is easy to verify

that o preserves lines and betweenness, A
so in fact, o is a rigid motion (details left ¢’
to reader).

To verify that (ERM) holds, we have just established property (3) by the
existence of reflections. If A, A’ are any two points, let [ be the perpendicular
bisector of the segment AA’. Then g; will send A to A’. Thus condition (1) of
(ERM) holds. For condition (2), let O, A, A’ be three points. Let [ be the bisector
of the angle / AOA’. Then the reflection ¢; will leave O fixed and send the ray

—_—

OA to the ray OA’. Thus (ERM) holds. Note that for this proof we need the exis-
tence of the perpendicular bisector of a line segment (1.10) and (I.11), and the
bisector of an angle (1.9), which exist in a Hilbert plane by (10.4).

Corollary 17.5
In the presence of all the axioms of a Hilbert plane except (C6), the axiom (C6) is
equivalent to (ERM).

Proof Combine (17.1) and (17.4).

Remark 17.5.1

One can give the rigid motions an even more prominent position in the founda-
tions of geometry by using them to define congruence, as follows. Suppose we are
given a set of points with undefined notions of lines and betweenness satisfying
axioms (11)-(13) and (B1)-(B4) as before. Suppose also that we are given a group
G of transformations of this set, called motions, that preserve lines and between-
ness and suppose further that G satisfies the following axioms (similar to (ERM)):

(1) Given two rays, and given a side of each line containing one of the rays,
there is a unique motion ¢ € G that takes one ray to the other and the given
side to the given side.

(2) For any two distinct points A, B, there exists a motion of G that interchanges
the two points.
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(3) For any two rays emanating from the same point, there exists a motion of G
that interchanges the two rays.

Then one can define congruence of segments and angles by requiring the
existence of a motion in G that sends one to the other, and one can prove that
this notion of congruence satisfies the axioms (C1)-(C6) and so makes a Hilbert
plane. See Hessenberg-Diller (1967), Sections 37-39. Bachmann (1959) carries
this idea a step further, by eliminating points and lines altogether and giving a
set of axioms for geometry based on the group G above (cf. discussion in Section

43).

Exercises

17.1

17.2

17.3

17.4

17.5

In the proof of Theorem 17.2 verify that:
(a) Rotations preserve angles.
(b) Rotations preserve distances.

Let ¢ : I1 — T be a map of a Hilbert plane into itself. For any point A, denote ¢(A)
by A’. Assume AB = A'B’ for any two points A, B.

(a) Prove that ¢ is 1-to-1 and onto.
(b) Show that in fact, ¢ is a rigid motion.
In a Hilbert plane I1, show:

(a) Any rigid motion with at least three noncollinear fixed points must be the
identity.
(b) Any rigid motion is equal to the product of at most three reflections.

In a Hilbert plane I1, define a rotation around a point O to be a rigid motion p, not
equal to the identity, leaving O fixed and such that for any two points A, B, the
angles / AOA’ and £/ BOB' are equal, where p(A) = A', p(B) = B'. Show:

(a) For any two distinct points A, A’ with OA = OA’, there exists a unique rotation
around O sending A to A'.

(b) The set of rotations around a fixed point O, together with the identity, is an
abelian subgroup of the group of all rigid motions.

(c) Any rotation can be written as the product of two reflections.
(d) A rigid motion having exactly one fixed point must be a rotation.

In a Euclidean plane I, define a translation to be a rigid motion 7 such that for any
two points A, B, we have AA’ =~ BB’, where 1(A) = A’, ©(B) = B'. Show:

(a) For any two points A, A’, there exists a unique translation 7 such that 7(4) = A".
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(b) If 7 is a translation, then for any two points A,B, we have AB||A’B’ and
AA'||BB.

(c) The set of translations forms an abelian subgroup T of the group of all rigid
motions.

(d) Any translation is a product of two reflections.

(€) Is the group T of translations a normal subgroup of the group G of all rigid
motions? Prove yes or no.

In this exercise we establish an alge-
braic interpretation of the group of
rotations around a point in a Cartesian
plane. Let F be an ordered field. In the
Cartesian plane II over F, let I be the T A=lc¢s)
unit circle, and let E = (—1,0). Let a

line I through E meet the circle at a {
point A.

(a) If the line I has slope t, show that \ 0 /

m
~
fa

the coordinates of the point A are
(c,s), where
1-1¢2 s 2t
c= , = .
1+1¢2 1+¢2

(Note: We use this notation because if F= R, and if « is the angle that OA makes
with the positive x-axis, then by trigonometry, we obtain t = tan %a, € =cosa,
s = sina, and these are the usual formulas for expressing c,s in terms of t. Do you
remember those substitutions used in calculus classes for rationalizing trigono-
metric integrals?)

(b) Let p, be the corresponding rotation
X' =cx — sy,
pt : { 12
Y =sx+cy,

as defined in the text. Show that p, is also a rotation in the sense of Exercise 17.4,
and show that the mapping t — p, gives a 1-to-1 correspondence between the set
F U {0} and the group R of rotations of Il with center O.

(c) Under the correspondence in (b), show that the group operation in R corre-
sponds to the operation

tot/—t+t/
11—t

in the set F'U {c0}. We call the set F U {co} with the operation o the circle group of
the field F.

(d) If F=TR, show that the circle group of F is isomorphic to the abstract group
(R/Z,+).
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17.7

17.8

17.9

17.10

17.11

17.12

17.13

Let F be a field (not necessarily an ordered field) that does not contain a square
root of —1. In analogy to the situation above, we define the circle group of F to be
the set C(F) = F U {c0} with the operation

aOb:——a— for a,be C(F).

(a) Verify directly that C(F), o is an abelian group by verifying the group axioms.
Make clear your rules for treating oo (cf. Exercise 16.2), and point out where you
use the hypothesis v/—1 ¢ F.

(b) Show that +1,—1 are elements of finite order in C(F).

(c) If F= @, show that +1, 00 are the only elements of finite order different from
the identity.

(d) If F=1IR, find explicitly four elements of order 5 in C(F).

With F a field as in Exercise 17.7, consider an extension field F(i) with i = /—1.
Elements of F(i) can then be written as « = a + bi, a,b € F. Define the norm of an
element o« by N(a) = a? + b

(a) For any a, B € F(i) verify that N(af) = N(¢)N(f).
(b) Let S = {o e F(i) | N(ax) = 1}. Then S is a group under multiplication. Show that
the map S — C(F) defined by

i b
a=a+bi— ——
a+1

is an isomorphism of (S, -) with the circle group (C(F), o).

Note: This mysterious isomorphism is motivated by the figure in Exercise 17.6, in
which t = tan Jo = s/(c +1).

Let F be a finite field of p elements, p = 3(mod 4).
(a) Show that —1 does not have a square root in F.
(b) Show that the circle group C(F) is cyclic of order p + 1.

Let ABC and A’B’C’ be two congruent triangles in a Hilbert plane. Show that there
exists a rigid motion ¢ of the plane with ¢p(A) = A’, ¢(B) = B’, and ¢(C) = C'.

In a Euclidean plane, show that the product of two rotations around different points
is equal to either a rotation around a third point or a translation. Hint: Show that it
has at most one fixed point.

In a Euclidean plane, show that the product of an odd number of reflections cannot
be equal to the identity. Hint: Use Exercise 17.11 to reduce products of four reflec-
tions to products of two reflections, and proceed by induction.

In a Hilbert plane, let us define one segment of a circle to be congruent to another
segment of a circle if there exists a rigid motion of the plane that makes the first
coincide with the second. Using this notion of congruence of segments, show that
Euclid’s results (I1I1.23)-(I11.30) and their proofs are all ok in a Euclidean plane.
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17.14 (Theorem of three reflections).

(a) Given three lines a,b,c through a point O, show that there exists a unique
fourth line d such that

0c0p0q = 04,

where ¢ denotes the reflection in a given line. Hint: Let A be a point of a, and take
d to be the perpendicular bisector of AC, where C = g,05(A). (See Proposition 41.2
for an analogous result in hyperbolic geometry.)

(b) Given three lines a,b,c perpendicular to a line I, show that there exists a
unique fourth line d such that g.6,6, = 74.

18 Non-Archimedean Geometry

The Archimedean principle, that given two line segments, some multiple of the
first will exceed the second, is so embedded in our experience of the world that
it is hard to imagine a geometry in which this would not hold. Even the farthest
star has a distance from the earth that can be measured in light years, and even
if we take the inch as our standard unit of length, some number of inches, albeit
a very large number, will exceed the distance to that farthest star. As long as we
retain the notion that geometry somehow represents the real world, we are
bound to accept Archimedes’ principle as a truth.

In abstract mathematics, on the other hand, a geometry is a theory that sat-
isfies a certain set of axioms. In this chapter we have seen how to construct a
geometry over an abstract ordered field. The elements of the field need not be
numbers or distances. Any abstract field will do.

We will take advantage of this abstraction to construct some non-
Archimedean geometries. These examples will serve two functions. One is to
show the independence of Archimedes’ axiom (A) and Playfair’s axiom (P) from
the axioms of a Hilbert plane. The other is to free our minds from the con-
straints of habit by studying the properties of a logically constructed geometry
in which Archimedes’ axiom (A) does not hold. Such geometries are called non-
Archimedean geometries.

Proposition 18.1

Let R be the field of real numbers, let t be an indeterminate, and let R(t) be the field
of all rational functions of t, that is, all quotients f(t)/g(t) where f and g are polyno-
mial functions of t with real coefficients and g(t) is not identically zero. Then the field
F = R(t) has a natural ordering that makes it into a non-Archimedean ovdered field.

Proof 1If g € F, we think of ¢ as a function ¢(t) = f(t)/g(t) from R to R, defined
everywhere except at the finite number of points where g(t) = 0. We define the
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set P of “positive” elements of F to be the set of those functions ¢ that are posi-
tive for all large enough values:

P={¢p e F|3ap € R such that ¢(b) > 0 for all b > aq}.

Note that ¢ > 0 if and only if the quotient of the leading coefficients of fand g is
positive in IR. Now, F is a field, because any sum, difference, product, or quo-
tient of rational functions is again a rational function. The set P is closed under
sums and products, because the sum and product of two eventually positive
functions is again eventually positive. To show that (F, P) is an ordered field, it
remains to show that if g € F, ¢ # 0, then either ¢ € P or —¢ € P, but not both.
Indeed, if ¢ # 0, then it is the quotient of two nonzero polynomials ¢ = f(t)/g(t).
Each of these has a finite number of zeros. If we take ay € R larger than all the
zeros of f(t) and g(t), then ¢ is continuous and never 0 for all b > a,. Thus by
the intermediate value theorem, ¢ is either always positive for b > ay, or always
negative for b > ay. In the first case ¢ € P; in the second case —¢ € P.

Now consider the element t € F. For any integer n > 0, we have t > n as ele-
ments of F. Indeed, for b > n, the function ¢(t) =t — n is positive. Thus the field
F is non-Archimedean. Note that in this field we have

0<1<2< - <t<t+1<t+2< --<t2<t3< -,

Definition

Let F be a non-Archimedean ordered field. We will say that an element a € F is
finitely bounded if there exists a positive integer n for which —n < a < n. Other-
wise, we say that a is infinite. We say that an element a € F is infinitesimal if for
every positive integer n, we have —1/n < a < 1/n. An element of F is finite if it
is finitely bounded but not infinitesimal.

Next we will construct non-Archimedean fields satisfying the Pythagorean
property (*) of (16.1) and the Euclidean property (**) of (16.2).

Proposition 18.2
There is a (non-Archimedean) Pythagorean ordered field Q' containing the field R(t).

Proof We start with the field R(t) of rational functions in an indeterminate t,
described above, and we consider IR(t) as a subset of the set € of all continuous
real-valued functions from R to R, defined at all except a finite number of
points, and having only a finite number of zeros (except for the identically 0
function). Beware that % is not a field(!) because, for example, the functions 2
and 2 + sint are in €, but their difference sint is not in €, because it has infi-
nitely many zeros. Nevertheless, € has a nice order, because we can define the
subset Py of positive functions as before: ¢(t) € € is positive if day € R for which
@(b) > 0 for all b > a,. Then Py satisfies properties (i) and (ii) of the definition of
an ordered field, even though ¥ is not a field. We use the fact that a continuous
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function on an interval (ao, c0) that has no zeros is either always positive or
always negative.

Now let Q' be the set of all elements of % that can be obtained from R(t) by a
finite number of operations +, —, -, =, and ¢ — /1 + ¢2. The hard part is to show
that Q' is a field. Once we know that Q' is a field, the Pythagorean property is
easy, because for any ¢ € €, 1+ ¢? is a function that is strictly positive whenever
it is defined (at all except the finite number of points where ¢ is not defined), so
V1 +¢? is another such function, hence also in 4. Thus if ce Q/, V1 +c2e Q'
also. We make Q' into an ordered field by taking as the positive elements
P' =Py NQ’, and P’ satisfies (i) and (ii) because Pg does.

Lemma 18.3
Let F be a subset of Q' that is a field, and let w € F,v/1 + w? ¢ F. Then

F'={a+pV1+w?|la,feF}

is also a subset of Q' that is a field.

Proof First we show that every element of F’ is in Q. Since a, 8, ® are obtained
from R(t) by a finite number of operations +, —, -, =, ¢+ V1 +¢2, so are the
elements of F'. The elements of F' are defined except at the finite number of
points where «, f, w may fail to be defined. They are continuous because «, 8, @
are. The only problem is to show that o+ fv1 + w? has only finitely many
zeros. Any zero ty of this function satisfies

a(to) + B(to) /1 + (to)? = 0.

Separating the two pieces, squaring, and combining again we obtain
x(to)? — B(t0)*(1 + w(to)?) = 0.
In other words, t; is a zero of the function
«? — f*(1 + w?®) e F.

Hence there are only finitely many such zeros, since F < Q'. Note that
a+pV1+w? is not identically zero because then +/1+w?eF. Thus
o + fv1 + w? has only finitely many zeros, and so F' < Q'.

To show that F' is a field is standard. It is clearly closed under +, —, -. And to
show closure under + one rationalizes the denominator by multiplying by its
conjugate:

a+bVf c—dVf _(a+Db/f)c—aVf)
c+df c—df c* —d*f '

Proof of 18.2 (continued) To show that Q' is a field, suppose o, € Q'. We must
show that « + f, a- f, a/f € Q' (provided that f # 0). Since « is obtained from
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R(t) by a finite number of operations +, —, -, +, w — V1 + @?, by applying the
lemma each time we take a square root, we obtain a subfield F < Q' that con-
tains «. Now, starting from F, and applying the lemma again each time we use a
square root in the description of f, we obtain a field F < G < Q', with o, f € G.
Then clearly, « + 8, «- B, a/f e G = Q.

Proposition 18.4
There is a (non-Archimedean) Euclidean field K' containing R(t).

Proof We follow the same plan of proof as for (18.2), except that now we con-
sider the space €’ as follows: €’ consists of continuous real-valued functions de-
fined on some interval (ag, 00) of R that are never 0. Two functions f on (ag, )
and g on (a;, ) are equivalent if Ja; > ag,a; such that f= g on (az, ). We say
that f is positive if for some ay, f(b) > 0 for all b > ay. The set Py of positive
functions clearly satisfies (i) and (ii) of the definition of ordered field. Note again
that ¢’ is not a field. Butif p € €', ¢ > 0, then \/p € ¢’ also.

Now we take K to be the set of all elements of ¢’ that can be obtained from
RR(t) by a finite number of operations +, —,-, +, and ¢ > 0 — /9.

The proof that K’ is a field can be carried out exactly as in the proof of (18.2).
Clearly, K’ is Euclidean, and taking P’ = K’ N Py makes K’ into an ordered field.

Example 18.4.1

Let Il be the Cartesian plane over the field Q' of (18.2). Then II is a Hilbert
plane satisfying (P) but not (A). In particular, this shows that (A) is independent
of the axioms of a Hilbert plane.

Example 18.4.2
Let Il be the Cartesian plane over the field K’ of (18.4). Then II is a Euclidean
plane that does not satisfy (A).

Example 18.4.3

Let I be the non-Archimedean geometry described in (18.4.2). Let 1l be the
subset consisting of all points of Il whose distance from the origin is finitely
bounded. A line of Il will be the intersection of a line of I with [1y, whenever
that intersection is nonempty. Take betweenness and congruence to have the
same meaning as in I1. Then Il, is a Hilbert plane satisfying neither (A) nor (P)
(Exercise 18.3). In particular, this shows that (P) is independent of the axioms of
a Hilbert plane.

To help visualize a non-Archimedean geometry, let us imagine for a moment
that we live in a non-Archimedean universe. What we perceive with our tele-
scopes are very large, but still finite, distances; what we observe with our cyclo-
trons and particle accelerators are very small, but still finite, quantities. And yet
out beyond the farthest stars are other parallel universes, and inside each ele-
mentary particle are infinitesimal worlds unknown to us. Perhaps they exert
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some subliminal influence on our lives? How could we determine whether our
universe is indeed non-Archimedean when we see only the finite part of it?

Exercises

18.1

18.2
18.3

18.4

18.5

18.6

18.7

18.8

In the ordered field IR(t), arrange the following elements in increasing order:
0,1,5,t,1/t,t + 1,1/(t+1),t = 1,3, — ;62 — 1, t+ 1, (1 = 1)/(t + 1).

Show that the field Q' of Proposition 18.2 is not Euclidean, by showing that v/t ¢ Q'.

Show that the plane II, of Example 18.4.3 satisfies the axioms for a Hilbert plane.
Pay special attention to (12), (B2), and (C1).

Again let I be the plane of Example 18.4.3.
(a) Show that I does not satisfy (P).

(b) Show that I, does satisfy (I1.32): The angle sum of every triangle is two right
angles.

(c) Show that I, does not satisfy (IV.5), by giving an example of a triangle that has
no circumscribed circle.

Let II be the non-Archimedean plane of Example 18.4.2. Define a subset I1; of II to
be all the points of IT whose distance from the origin is infinitesimal.

(a) Show that I1; is a Hilbert plane.

(b) Show that II; does not satisfy (P). Thus II; gives another example of the inde-
pendence of (P) from the axioms of a Hilbert plane.

We say that a Hilbert plane is finitely bounded if there exists a segment AB such that
for every other segment CD, there exists an integer n, depending on CD, for which
CD <n-AB.

(a) Any Archimedean Hilbert plane is finitely bounded.
(b) The plane I1, of Example 18.4.3 is finitely bounded but not Archimedean.

(c) The plane I1; of Exercise 18.5 is not finitely bounded. In particular, the planes
Iy and II, are not isomorphic Hilbert planes.

We say that the rectangle axiom holds in a Hilbert plane if whenever a quadrilateral
has three right angles, then the fourth angle is also a right angle.

(a) The rectangle axiom holds in any Hilbert plane with (P).

(b) The rectangle axiom holds in the examples I1y and I1; above. Thus the rectangle
axiom does not imply (P).

Let F be any ordered field. Generalize the proof of Proposition 18.1 to show that the



18. Non-Archimedean Geometry 163

18.9

field F(t) of rational functions in an indeterminate t is a non-Archimedean ordered
field. (Be careful not to use continuity.)

Let F be any ordered field. Let F((¢)) be the set of Laurent series

0
p=> at', a,#0,

i>n

where the a; € F and n € Z can be positive, zero, or negative. Define ¢ > 0 if its
leading coefficient a, > 0 in F.

(a) show that F((t)) is a field.
(b) Show that F((t)) is a non-Archimedean ordered field.

(c) An element ¢ € F((t)) is a square if and only if its order n is even and its leading
coefficient a, is a square in F.

(d) If F is Pythagorean, show that F((t)) is also Pythagorean. This gives another
method of constructing Pythagorean non-Archimedean ordered fields.

Let man and woman form a circle

From which grows a square;

Around these put a triangle,

Embed them all in a sphere:

Then you will have the philosopher’s stone.
If in your mind this does not soon appear,
Geometry, well learned, will make it clear.

- from Atalanta Fugiens
by Michael Maier (1618),
Epigramma XXI.



Segment
~ Arithmetic

CHAPTER

egment arithmetic allows us to complete the chain of
logical connections between an abstract geometry sat-
isfying axioms studied in Chapter 2 with the geo-
metries over fields studied in Chapter 3. We will show
how to define addition and multiplication of line seg-
ments in a Hilbert plane satisfying the parallel axiom
(P). In this way, the congruence equivalence classes
of line segments become the positive elements of an
ordered field F (Section 19). Using this field F we can
recover the usual theory of similar triangles (Section 20).

To complete the circle, we show that if you start with a Hilbert plane II sat-
isfying (P), and if F is the associated field of segment arithmetic, then II is iso-
morphic to the Cartesian plane over the field F (Section 21).

19 Addition and Multiplication of Line
Segments

In studying Euclid’s Elements, we have noted the absence of numbers in his de-
velopment. There is no notion of the length of a line segment, for example.
There is an undefined notion of congruence of segments, which we can think of
as the segments being the same size. This is in contrast to ordinary high-school
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geometry, where each segment has a length, based on some chosen “unit” seg-
ment, which is thought of as a real number, and two segments are congruent if
they have the same length.

Similarly, in the case of angles, there is no degree measure attached to an
angle, although there is a notion of congruence of angles.

In the study of area, Euclid does not assign a number to a plane figure, in
contrast, for example, to high-school geometry, where one takes a triangle and
assigns to it the number 1 bh as its area, where b is the length of the base and h is
the length of the altitude. Instead, Euclid treats area by adding and subtracting
congruent figures.

For the material of Books I-1V of the Elements, we have also seen that Euclid
succeeds remarkably well in developing a beautiful theory of “pure” geometry
without numbers. Hilbert has reinforced this by providing a set of purely geo-
metric axioms on which to base Euclid’s geometry in a way that will satisfy
modern criteria of rigor.

Just for contrast, you might look at some other twentieth-century proposals
for a set of axioms on which to base the study of geometry, where the real
numbers are presupposed from the beginning in the axioms. (See, for example,
Birkhoff (1932), or the School Mathematics Study Group postulates. Both can be
found as appendices to Cederberg (1989).)

For me this is unsatisfactory because it is not purely geometric, and the con-
cept of a real number is a rather sophisticated modern notion, dating from the
nineteenth-century, and is not in the elementary spirit of Euclid's geometry.
While Euclid was clearly aware of irrational numbers, and studies them ex-
tensively in Book X of the Elements, I find it difficult to support any argument
that Euclid had a concept of the totality of real numbers.

While Euclid was able to develop the material of Books I-IV without any no-
tion of number, it is a different matter when we come to the concept of similar
triangles as taught in high school. These are triangles whose sides are not equal,
but have some common ratio to each other. If that ratio is 2, it is not difficult to
develop a theory of triangles that are doubles of each other, as we did in Section
5. With a little more effort, one could extend this theory to triangles whose sides
are integer multiples of each other, or (with even a little more effort), rational
number multiples of each other. But if the ratio is not rational, as for example in
comparing an isosceles right triangle to its half formed by drawing an altitude,
how can one even express the notion of sides being proportional to each other
without having numbers? One would like to say that the ratios of the lengths of
the sides are equal, but this is difficult if one has no notion of length as a number
and does not have the ability to divide one such number by another.

Euclid handles this difficulty with the theory of proportion developed in Book
V of the Elements. The key concept is in Book V, Definition 5, where he says that
magnitudes (which could be line segments, areas, or whatever) are in the same
ratio (in symbols a : b = ¢ : d) if whenever equal integer multiples (say n times)
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be taken of a and ¢, and whenever equal integer multiples (say m times) be
taken of b and d, then na > mb or na = mb or na < mb if and only if nc > md, or
nc = md, or nc < md, respectively. If a, b, c,d are numbers, this is equivalent to
saying that a rational number m/n is less than, equal to, or greater than a/b if
and only if that same rational number is less than, equal to, or greater than c/d.
If furthermore a, b, c, d are real numbers, this is equivalent, as we know, to say-
ing that a/b and c/d are equal as real numbers, since the rational numbers are
dense in the set of real numbers. In fact, this is word for word the same notion
used by Dedekind in constructing the real numbers by his so-called Dedekind
cuts (cf. Dedekind (1872)).

Aha!, you may say, so Euclid did know about the real numbers, and wrote
their definition 2000 years before Dedekind! But here is the difference. Euclid
used this criterion only to distinguish between ratios that arose naturally in his
geometry, such as the ratios of line segments that might be obtained by ruler
and compass constructions, and that might be irrational. But I see no evidence
that he conceived of the existence of any other real numbers (such as e, for
example), whereas Dedekind could conceive of the totality of all Dedekind cuts
of rational numbers, and take this set to be a new mathematical object called the
set of real numbers. It is this process of creating a new mathematical object as a
set of all subsets of another set with certain properties that seems very modern
to me.

Even in the classical problem of the trisection of the angle it seems that the
emphasis was on finding a construction that would produce an angle equal to
one-third of a given angle, and there is no evidence that the ancients believed in
the existence of such an angle before it was constructed.

Note also that for Euclid's theory of proportion to work, we implicitly need
Archimedes’ axiom. This is clear from Book V, Definition 4, which says that
magnitudes have a ratio to each other if each, when multiplied, is capable of
exceeding the other. Without Archimedes’ axiom, some quantities would be in-
comparable. Also, one would fail to distinguish unequal quantities. For example,
if F is a non-Archimedean ordered field with an infinite element ¢, then Euclid’s
test would fail to distinguish between v/2 and /2 + 1/t.

Having developed the theory of proportion abstractly in Book V, Euclid pro-
ceeds to apply his theory to geometry in Book VI, and develops what we recog-
nize as the familiar theory of similar triangles. The key result here, which forms
the basis of the subsequent development, is (V1.2), which says that a line parallel
to the base of a triangle, if it cuts the sides, cuts them proportionately, and con-
versely. Euclid's proof is a tour de force, using the theory of area previously
developed in Book I to establish this result.

There are two reasons for us to seek an alternative development of the
theory of similar triangles: One is to free ourselves from dependence on Archi-
medes’ axiom, and the other is to avoid Euclid’s use of the theory of area, which
we have not yet treated satisfactorily (cf. Chapter 5).
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So now, after this rather lengthy introduction, we come to the main point of
this section, which is to create an arithmetic of line segments. We will define
notions of addition and multiplication for line segments up to congruence, that is,
the sum or product of congruent segments will be congruent. Or if you prefer,
the operations + and - will be defined on the set P of equivalence classes of line
segments modulo congruence. We will show that these operations obey all the
usual rules of arithmetic for positive numbers. And then, by a natural construc-
tion that introduces an element 0 and negatives of line segments, we will con-
struct an ordered field whose positive elements are the congruence classes of
line segments. Here is where the concepts of modern abstract algebra play an
essential role, because instead of using some preexisting notion of number, such
as the rational numbers or the real numbers, we create a set that occurs natu-
rally in our geometry and give this set the structure of an abstract field.

Using this field we will then in the next section be able to define the notion
of length of a segment (as an element of this field) and to develop the theory of
similar triangles, where ratios are quotients of lengths in the field. Thus we will
replace Euclid’s theory of proportion as developed in Book V by the use of alge-
braic relations in the field of segment arithmetic.

We will now define the arithmetic operations on congruence equivalence
classes of line segments, following the ideas of Hilbert (1971), with simplifica-
tions suggested by material in the supplements to that book, apparently due to
Enriques. We will work in a Hilbert plane satisfying the parallel axiom (P).

Definition

Given congruence equivalence classes

of line segments a,b, we define their @ b
sum as follows. Choose points A, B such + - -
that the segment AB represents the A B C
class a.

Then on the line AB choose a point C with A * B x C, such that the segment
BC represents the class b. Then we define a + b to be represented by the seg-
ment AC.

Proposition 19.1
In any Hilbert plane, addition of line segment classes has the following properties:

(1) a+ bis well-defined, i.e., different choices of A, B, C in the definition will give rise
to congruent segments.

(2) a+b=Db+a, ie., the corresponding line segments are congruent.

(3) (a+b)+c=a+ (b+c).
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(4) Given any two classes a, b, one and only one of the following holds:

(i) a="0.

(i) There is a class ¢ such that a+c = b.
(iii) There is a class d such that a = b + d.

Proof (1) If we choose a different rep-
resentative A'B’ of the class a, and lay
off C’ on the line A’B’ such that B'C’
represents b, then AC = A'C’ by axiom
(C3); cf. (8.2).

(2) Let AB represent a, and choose C
such that A * B C and BC represents b,
as in the definition. Then AC represents
a+ b. Now take DE to represent b, and
lay off F such that D x E x F and EF rep-
resents a. Then DF represents b+ a.
But AB =~ FE and BC ~ ED, so AC =~ FD
by (C3). This shows thata+b=b + a.

(3) To get (a + b) + ¢ we first choose
AB € a, then find C such that AxBx*C
and BCeb, then find D such that
AxCxD and CDec. Then AD repre-
sents (a+b) +c.

On the other hand, let EFeb and
choose G such that FGec. Then EG
represents b+ c. To get a+ (b+c) we
need to find a point H with A*BxH
and BH =~ EG. But BD =~ EG by (C3), so
H = D by the uniqueness part of (C1).
Therefore, (a+b) +c=a+ (b+c).

(4) Given two classes a,b on a ray
from a point A, lay off points B, C such
that ABea and ACeb. If B= C, then
a=b. If AxBxC, then a+ [BC|=b.
If A% CxB, then a=b+ [CB|. By (B3)
these are the only possibilities, and this
proves (4).

A/ ?’ C’
A c
D € F
b«
A c D
C
—_—
(-

Before we define multiplication, we need a standard unit segment. So choose
arbitrarily, and then fix once and for all, a segment class we call the unit seg-
ment, and denote it by 1. We also need the parallel axiom (P), even for the defi-

nition of the product (Exercise 19.1).
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Definition
Given two segment classes a,b, we C

define their product ab as follows. First
make a right triangle ABC with ABe 1l B
and BC € a, where the right angle is at

B. Let a be the angle / BAC. Now make A [ 8 g
a new right triangle DEF with DE€b ab
and having the same angle « at D. Then

we define ab to be the class of side EF of L !
this new triangle. D b €

Proposition 19.2
In any Hilbert plane with (P), multiplication of segment classes has the following
properties:

2) a-1=aforalla.

3) ab = ba for all a,b.

4) a(bc) = (ab)c for all a, b, c.

5) For any a, there is a unique b such that ab = 1.
6) a(b+c) =ab+ ac for all a,b,c.

Proof (1) The product is well-defined. If A'B’C’ is another right triangle with
sides 1,a, then it is congruent to ABC by (SAS). Hence we get a congruent angle
o. If D'E'F’ is another right triangle with angle « and side b, then it is congruent
to DEF by (ASA). So we get a congruent segment E'F’.

(2) To compute a - 1, we take the triangle DEF to have side b = 1 and angle «.
Then DEF =~ ABC by (ASA),soa-1 =a.

(3) Given a,b, first make a right tri- C
angle ABC with sides 1,a. This deter-
mines the angle « = / BAC. Now extend o b
CB on the other side of AB to D, so that A4 18 E
BD € b, and draw a line through D mak- E’ | ab
ing an angle o with BD, on the far side
of BD from A. Let this line meet AB ex- b
tended to E. Then DBE is a right tri-
angle with side b and angle «, so the
segment BE represents ab by definition. o

Now consider the four points ACDE.

We will use the method of cyclic quad-
rilaterals developed in Section 5. Be-
cause the angles / CAE and /. CDE are
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de cesdeux, comme I'vnité eft a I’autre, ce qui eft le mef-
me que la Divifion ; ou enfin trouuer vne, oudeux, ou
pluficurs moyennes proportionnelles entre I'vnité , &
quelque autre ligne ; ce qui eft le mefme que tirer la raci-
ne quarrée ,oucubique, &c. Etienecraindray pasd’in-
troduire ces termes d’Arithmetique en la Geometrie ,
afinde me rendre plusintelligible.

La Muli. Soit parexemple A B
plication. Pvnité , & qu’il faille
E multiplier BD parBC,
ie n’ay qu’a ioindre les
= poins A & C, puis tirer
DE parallelea CA, &
BE eft le produit de
N — s cette'Multiplication.
. :.: Divi- Oubienss'il faut diuifer
: BE par BD, ayantioint les poins E & D , ietire A C pa-
rallelea DE ,& BC eftle produit de cette diuifion.
&kf;tcrg , Ou s’il faut tirer la racine

racine quarrée de G H, ie luy ad-
quarrée. ioufte en ligne droite FG,
qui eft I'vnité, & divifant FH
en deux parties ‘égales au

F ¢ X point K, du centre Kie tire
le cercle FIH, puis efleuant du point G vne ligne droite
iufquesd I, aanglesdroits fur FH, c’eft GI la racine
cherchée. Ie ne disrienicy dela racine cubique , ny des
autres, d caufe que i'en parleray plus commodement cy-
aprés.

F Mais fouuenton n’a pas befoin de tracerainfi ces li-

Comment
on pent

Plate VII. A page from La Géométrie of Descartes (1664), showing how he multiplies two
line segments to get another, and how he finds the square root of a line segment.
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both equal to «, they satisfy the hypotheses of (5.8), so the points ACDE form
a cyclic quadrilateral. Applying (5.8) to the same points in a different order, it
follows that the angles /. DAE and / DCE are equal; call this class . To compute
the product ba we first use the triangle ABD, obtaining the angle f, and then use
the triangle CBE, which has angle f and side a. This shows that BE represents

the product ba. Thus ab = ba.

(4) For the associative law, we pro-
ceed as follows. Make right triangles
with 1,a to define the angle a, and with
1, ¢ to define the angle y. Make a right
triangle ABC with angle a« and side b to
determine ab.

Extend CB on the other side of AB to
meet a line from A making an angle y
with AB. Then BD represents cb. Now
make a line at D with angle o to meet
AB extended at E. Then BE will repre-
sent a(cb).

As in the previous proof, the angles
o at A and D show that ACDE is a cyclic
quadrilateral. Then by (5.8) again we
conclude that / BCE = y. It follows that
BE also represents the segment c(ab).
Thus a(cb) = c(ab). Then using the com-
mutative law already proved, we get
a(bc) = (ab)c.

(5) Given a, make a right triangle
with sides 1,a to define «, and let f be
the other acute angle in that triangle.
Then make a right triangle with angle f
and side 1 to determine a new segment
b. Since the other angle in this triangle
is o (1.32), this second triangle shows
that ab = 1.

(6) Given a,b,c, let a be determined
by the right triangle with sides 1,a.
Make a right triangle ABC with side
b and angle a to determine BC € ab.
Choose D on the line AB such that
A*BxD and BD € c. Draw CE parallel
to AB, and DEF perpendicular to AB.
Then / ECF = o, and CE € ¢, so EF rep-
resents ac.
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|

=
PN
[~

=

\

Aa

/

a(ch) ::
LL

)

Y q
0
C
ab
) E
ch
ol
D
*
¢
(

a
F
ac
ah ab
ol
b 8 ¢ 9D



19. Addition and Multiplication of Line Segments 173

Because BCDE is a rectangle, DE € ab. Now by definition of sum, AD repre-
sents b + ¢ and DF represents ab + ac. On the other hand, the triangle ADF has
side b + ¢ and angle a, so DF also represents a(b + c). Hence a(b + ¢) = ab + ac.

Remark 19.2.1

Let us examine carefully the hypotheses needed for the validity of these two
results, (19.1) and (19.2). The first, concerning addition of line segments, is valid
in any Hilbert plane (Exercise 8.1). On the other hand, even for the definition of
the product, we need (P), or its equivalent, Euclid’s fifth postulate, to guarantee
that the point F exists. For the proof of (19.2) you might feel more comfortable
assuming the hypotheses of a Euclidean plane, in which case we have justified
the needed results from Book III (12.4). But if you look closely, we do not need
the Euclidean axiom (E) on intersection of circles for (5.8): See Exercise 19.2. We
also need (1.32), which uses (P) but not (E). Thus these two results hold in a
Hilbert plane with (P). We do not need (E), nor did we ever use Archimedes’
axiom (A).

Proposition 19.3

Given a Hilbert plane satisfying (P), and a unit segment 1 having been chosen, there
is a unique (up to isomorphism) ordered field F whose set of positive elements P is the
set of congruence equivalence classes of line segments with operations +,- defined
above.

Proof This is a consequence of the purely algebraic lemma that follows.

Lemma 19.4

Let P be a set, with two operations +, - defined on it that satisfy the properties listed in
(19.1) and (19.2). Then there is a unique ordered field F whose positive elements form
the set P.

Proof One is tempted to define F to be the set PU {0} U—P, for intuitively, this
is what is happening. F will consist of the original set P, plus a 0 element, plus
another set of “negative” elements that is in 1-to-1 correspondence with the set
of positive elements. However, I believe that we can obtain a cleaner proof by
imitating the definition of the quotient field of an integral domain using ordered
pairs, except that this time our ordered pairs will represent differences of ele-
ments of P.

So here is the formal construction. Let F be the set of equivalence classes
(a,b) of ordered pairs (think of (a,b) as being a — b) of elements of P, where

(a,b) ~ (a',b") ifa+b' =a +b.
Define addition by
(a,b) + (¢c,d) = (a+c¢,b+4d)
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and multiplication by
(a,b)(c,d) = (ac + bd,ad + bc).

We must verify that these operations are well-defined, i.e., if we replace an
ordered pair by an equivalent ordered pair, the result is equivalent (!). (The
symbol (!) means a trivial verification left to the reader. There will be lots of
these, and all will result by using properties of + and - in the set P.)

Then we let 0 denote the equivalence class of (a,a) for any a € P, and note
that 0 acts as an additive identity (!). Also note that addition is commutative (!)
and associative (!). For any pair (a,b) note that (b, a) acts as an additive inverse
(1). Thus the set F together with the operation + is an abelian group.

Next verify that multiplication is associative (!), commutative (!), and dis-
tributive over addition (!). Let 1 be the class of (1 + a,a) for any a € P. Thus 1
acts as a multiplicative identity (!), and there exist multiplicative inverses (!).
Hence F together with +, - is a field.

We define a mapping ¢ : P — F by a € P goes to (a + b,b) for any b € P. This
mapping is 1-to-1 onto its image (!), which we therefore identify with P. Also, ¢
preserves +, - (!), so that P has already two of the three properties required for P
to be the set of positive elements of an ordered field. It remains to verify the tri-
chotomy, namely, for any x = (a,b) in F, eitherxe Porx=0o0r —xe P. Ifa= b,
then x=0. We will use property (4) of (19.1). If there exists a ¢ such that
a+c=D»b, then x = (a,b) = (a,a +c), and the negative of this element satisfies
—x = (a+c,a) € P. If on the other hand there is a d such that a = b +d, then
x = (a,b) = (b+d,b) € P.

This concludes the proof modulo a million tedious verifications (!) left to the
reader!

Remark 19.4.1
We will see in the next section (20.7) that F is necessarily Pythagorean.

Exercises

19.1 Explain where and how (P) is needed in the definition of the product.

19.2 Show that the result (Proposition 5.8) about cyclic quadrilaterals holds in any Hilbert
plane with (P).

19.3 Supply the missing verifications in the proof of (Lemma 19.4).

19.4 If we start with the Cartesian plane over a Pythagorean ordered field Fy, show that

the field F of segment arithmetic constructed in Proposition 19.3 is naturally iso-
morphic to the original field Fy.
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19.5 Is Lemma 19.4 still true if we omit property (4) of Proposition 19.1, but keep all
the other properties of Proposition 19.1 and Proposition 19.2? Give a proof or
counterexample.

19.6 In Proposition 19.3, show that if we choose a different unit segment 1’, the resulting
field F’ is isomorphic to F.

20 Similar Triangles

We continue to work in a Hilbert plane satisfying (P).

Now that we have defined the arithmetic of line segments and have con-
structed a field F whose positive elements correspond to congruence classes of
line segments, we can establish a theory of proportion and similar triangles. The
results are the same as Euclid’s in Book VI, but our methods are different.

For any line segment AB, its congruence equivalence class a is an element of
the field F. We will call a the length of AB, to conform with the usual terminol-
ogy. If AB and CD are two segments with lengths a, b, we can speak of their ratio
as the quotient a/b € F. We say that four segments with lengths a, b, ¢,d are pro-
portional if a/b = c/d as elements of the field F.

Definition ( VI, Definition 1)

Two triangles ABC and A’B'C’ are simi-
lar if the three angles of one are respec-
tively equal to the three angles of the
other, and the corresponding sides are
proportional, i.e.,

a/a’ =b/b" =c/c'.

Proposition 20.1 (Sim AAA) (V1.4)
If two triangles ABC and DEF have their three angles respectively equal, then the two
triangles are similar.

Proof Our definition of multiplication in the field of segment arithmetic was
based on a special case of the notion of similar triangles, namely, comparing
the legs of equal-angled right triangles. So we will prove this result, following
Hilbert, by reducing to this case.

In the first triangle, draw the angle bisectors of the three angles, and let
them meet at the point I (cf. Exercise 1.8 or (IV.4)). Recall from the proof of
(IV.4) that I is equidistant from the three sides of the triangle: If we drop per-
pendiculars from I to the three sides, we obtain three congruent segments h.
Also, in the course of the proof we obtained congruent triangles about each ver-
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tex: AFI =~ AEI, etc. Thus we get congruent segments AE =~ AF, which we call x,
BD =~ BF = y, and CD =~ DE = z.

Make a similar construction in the second triangle A’B’'C’, obtaining points
D' E',F',I and segments x', y',z' i’

Let a be one-half of the angle at A,
draw a right triangle with one leg equal
to 1, and let r be the other leg. Then by
the definition of segment multiplica-
tion, h = rx. In the second triangle, the r
angle at A’ is equal to the angle at A by
hypothesis, so one-half of it is also «, so
we find similarly that h’ = rx’. Dividing (
one equation by the other, we find that
x/x' =h/W.

In the same way, working from the other two vertices of the triangle, we
obtain y/y’ = h/h’' and z/z’' = h/h'. If we let h/h’' = k, then we can write these
results as

x = kx/,
y=ky,
z=kz.

The sides of the original triangle are formed of sums of these. Thusa = y + z
and a’ = y’' + Z'. It follows from the distributive law that

a=ka,
and by the same reasoning also

b=kb',

c=kc'.

Then a/a’ =b/b' = ¢/c’, so the two triangles are similar.
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While this proof has an entirely different basis from Euclid’s, the other
results on similar triangles in Book VI will now follow easily, but in a different

order.

Proposition 20.2 (VI.2)

In any triangle ABC, let B'C’ be drawn
parallel to BC. Then the sides AB and AC
are proportional to AB' and AC'. Con-
versely, if the sides are divided by points
B', D such that AB, AC are proportional to
AB',AD, then B'D is parallel to BC.

Proof Since B'C’ is parallel to BC, the
angles at B, C’ are equal to the angles at
B, C, respectively (1.29). Since the angle
at A is common, the triangles ABC and
AB'C’' have their three angles equal,
and so they are similar (20.1). It follows
that the sides are proportional.

Conversely, suppose we are given B’, D such that AB, AC are proportional to
AB',AD. Draw B'C’ parallel to BC. Then also AB,AC are proportional to
AB',AC'. Since we are working in a field F, the fourth proportional to three
given quantities is uniquely determined. Hence AD =~ AC’. Since the points
D, C' lie on the same ray from A, the points D, C’ are equal (axiom (C1)). Hence

B'D is parallel to BC.

Proposition 20.3 (Sim SSS) (VI1.5)

Suppose two triangles ABC and A'B'C’ have their three sides respectively propor-
tional to each other. Then the two triangles are similar.

Proof Supposing the sides of the second
triangle to be larger, find a point D on
the segment B’A’ such that B'D =~ BA.
Then draw a line through D parallel to
A'C'. Tt follows (20.2) that the triangles
A'B'C' and DB'E are similar, and in
particular, their sides are proportional.
But the sides of ABC are also propor-
tional to the sides of A’B’C’, so it follows
(from field arithmetic) that the sides of
ABC are proportional to the sides of
DB'E.
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On the other hand, B’D was chosen congruent to BA. So the proportionality
factor is 1, and it follows that all three sides of ABC are congruent to all three
sides of DB'E. Then by the congruence criterion (SSS) = (1.8), the triangle ABC
is congruent to DB'E. In particular, the three angles of ABC are equal to the
three angles of DB’E, which in turn are equal to the three angles of A’'B'C’, since
the latter two are similar. Thus we have proved that the angles of ABC are equal
to the angles of A’B'C’, and so the two triangles are similar.

Proposition 20.4 (Sim SAS) (VI.6)

Suppose that two triangles ABC and A'B'C’ have the angles at A and A’ equal, and
the two sides AB, AC are proportional to the two sides A'B',A'C’. Then the two tri-
angles are similar.

Proof (Exercise 20.1).

Theorem 20.5
In a Hilbert plane with (P), the results of Euclid's theory of similar triangles (V1.2)-
(V1.13) all hold.

Proof The propositions (V1.2)-(V1.6) appear as results in this section, or Exer-
cises 20.1, 20.2. Also, (V1.8) is covered in the proof of (20.6) below. The remain-
ing results follow easily, replacing Euclid’s references to Book V by algebraic
reasoning in the field of segment arithmetic.

Remark 20.5.1

Proposition (VI.1) and most of the latter part of Book VI, namely Propositions
(V1.14)-(VL.31), deal with the connection between proportionality of figures
and their area, so we postpone discussion of these until Chapter 5 (Exercise
23.7).

Next, using our segment arithmetic and the theory of similar triangles, we
can prove some analogues of theorems that Euclid stated in terms of area, but
that we will state as equations in the field F.

Proposition 20.6

If ABC is a right triangle with legs a, b and hypotenuse c, then
a? +b? =c?

in the field F of segment arithmetic.

Proof This, of course, is another version of the Pythagorean theorem (1.47),
which Euclid proved in terms of the areas of the squares built on the sides of the
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triangle. The present statement in terms of segment arithmetic is of a totally
different nature, and neither implies, nor is implied by, the previous statement,
until we have made some connection between area and segment arithmetic (cf.
Chapter 5).

To prove the current statement, drop
a perpendicular CD from the vertex with
the right angle to the hypotenuse. Then
we find that the original triangle ABC
has the same angles as the two new tri-
angles ACD and CBD. Hence all three
triangles are similar, by (20.1). (This
statement is (VI.8) in Euclid.) Then cor-
responding sides are proportional, and
we obtain D c

X a

using CBD similar to ABC, and we obtain

c—x_b
b c
using ACD similar to ABC. Cross multiplying, we obtain
cx=a’,
c? —cx =1,
from which by substituting we obtain
a’+b? =c2.

Corollary 20.7
In a Hilbert plane satisfying (P), the field of segment arithmetic (19.3) is Pythagorean.

Proof We must show for any a € F that

V1+a?eF. If a=0, this is trivial; if a

is negative, we can replace a by —a, so

we may assume that a is positive. Then =
a is the length of a certain segment. If
we construct a right triangle with legs 1
and a, then by (20.6) the hypotenuse
will be a segment whose class in F is
V1 + a?. Thus F is Pythragorean.
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Proposition 20.8 (cf. (111.35))
If two chords of a circle meet, cutting each
other in segments of lengths a, b, c,d, then

ab=cd
in the field F of segment arithmetic.

Proof Draw the lines AB and CD. Then
by (I11.21) the angles at B and D are
equal, and the angles at A and C are
equal. Hence the triangles ABE and
CDE have the same angles, so are simi-
lar (20.1). It follows that corresponding
sides are proportional: a/c = d/b. Cross
multiplying, we obtain ab = cd. 3

Proposition 20.9 (cf. (111.36))

Let A be a point outside a circle, let the line
AB be tangent to the circle at B, and let the D
line ACD cut the circle at C and D. Then,

in the field of segment arithmetic,

(AB)? = (AC) - (AD).

Proof Draw the lines BC and BD. Then / ABC = / ADB by (111.32). Since the
angle at A is common, the triangles ABC and ADB have two (and hence three)
angles equal, so they are similar (20.1). It follows that corresponding sides are
proportional, namely,

AB _AD

AC  AB’
Cross multiplying gives

(AB)® = (AC) - (AD).

As applications of similar triangles, we give some other well-known theo-
rems here and in the exercises.

Proposition 20.10 (Menelaus's theorem)
Let ABC be any triangle, and let a line 1 cut the sides of the triangle (extended if nec-
essary) in points D, E, F. Then

AD BF CE _

BD CF AE



20. Similar Triangles

Proof Draw a line through A parallel to
BC, and let it meet | at G. Then the tri-
angle ADG is similar to BDF, and the
triangle AEG is similar to CEF. From
this we obtain

AD _BD

AE CE
AG BF

a 2=
and A6 CF

Eliminating AG from these equations
and rearranging gives the result.

Exercises

These exercises take place in a Hilbert plane with (P).

20.1 Prove (Sim SAS) (Proposition 20.4).

20.2 (VL.3) Let ABC be any triangle, and let
AD be the angle bisector at A. Prove
that AB and AC are proportional to BD
and DC.

20.3 Let A be a point outside a circle, and
draw any two lines through A cutting
the circle at B, C and D, E. Then show
that

(AB) - (AC) = (AD) - (AE).

The product (AB) - (AC), which thus
depends only on A, is called the power
of the point A with respect to the cir-
cle. If A is inside the circle, we use
signed lengths, so that the power of A
will be positive if A is outside the
circle, and negative if A is inside the
circle.
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20.4

20.5

20.6

20.7

4. Segment Arithmetic

If two circles intersect in two points, A
the line through those points is called D
the radical axis of the two circles. B
Show that the radical axis is equal to
the set of those points A in the plane
for which the power of A with respect
to the first circle is equal to the power
of A with respect to the second circle.
(Even when the two circles do not
intersect, this latter property defines a
straight line that is taken to be the
radical axis in that case.)

If three circles each meet the other
two in two points, and their centers
are not collinear, show that the three
radical axes of the circles, taken two
at a time, meet in a single point. (We
will see later (Exercise 39.20) that this
result also holds in the Poincaré model
of non-Euclidean geometry. So we can
ask, is it true in any Hilbert plane?)

In a Hilbert plane with (P), given two
circles by their centers and one point
each, but without being given their
intersection points, show that the fol-
lowing construction (which can be
done with Hilbert's tools) gives the
radical axis of the two circles.

Let the two circles be defined by
their centers O;,0, and their points
A1, A;. Let B be the midpoint of A;A;.
Drop a perpendicular from A; to O;B,
and a perpendicular from A; to O;B,
and let these two lines meet at P.
Then the perpendicular from P to
0,0, is the required radical axis of the
two circles.

(Ceva’s theorem). Let ABC be any triangle, and let P be any point inside the trian-
gle. Draw lines from the vertices through P meeting the opposite sides at D, E, F.
Then show that

AD BF CE _

BD CF AE
Hint: Imitate the proof of Proposition 20.10.
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20.8

20.9

20.10

(Desargues'’s theorem). Let ABC and
A'B'C' be two triangles. Assume that
AA' BB',CC' all pass through a single
point O (we can say that ABC and
A'B'C' are perspective from O). As-
sume further that AB is parallel to
A'B’, and BC is parallel to B'C’. Prove
that AC is parallel to A’C’. (Compare
Exercise 14.2, where the same result
is proved in a different situation.)

Prove the field analogue of (II.11), as
follows. Let AB be a given line seg-
ment. Construct AC =~ AB and per-
pendicular to it. Let D be the midpoint
of AC. Then find E on AC such that
DE ~DB. Find F on AB such that
AE =~ AF. Prove that

(AF)* = (AB)(BF)

in the field of segment arithmetic.
Hint: Use Proposition 20.6. We say
that AB has been divided in extreme
and mean ratio.

Give a new proof of (IV.10) as follows.
Let the segment AB be divided in ex-
treme and mean ratio as in Exercise
20.9 above: (AF)* = (AB) - (BF). Con-
struct a triangle ABC such that AC =
AB and BC = AF. Prove that the base
angles of the isosceles triangle ABC are
each equal to twice the vertex angle at
A. Hint: Use (Sim SAS) (Proposition
20.4) to obtain similar triangles.
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20.11

20.12

20.13

20.14

20.15

4. Segment Arithmetic

€ _—
Let OA and OB be two perpendicular
radii of a circle. Let C be the midpoint
of OB. Let CD be the angle bisector of
L ACO. Let DE be perpendicular to A D 0
OA. Then prove that AE is a side of N -

the regular pentagon inscribed in the
circle. Hint: Use Exercise 20.2.

How many steps would it take to c
construct the pentagon by this method
(given the circle and its center)?

Prove that in a Hilbert plane with (P) (without assuming (E)), there exists an equi-
lateral triangle with given side AB. Hint: First show that the field F of segment
arithmetic contains an element %\/5

Given a triangle ABC with acute A
angles at B and C, make a ruler and
compass construction for a square
with one edge along the side BC, and
the other two vertices on the sides
AB,AC. We call this an inscribed B C
square (par = 17). ¢

Match wits with the great nineteenth-century geometer Jakob Steiner: This is one
of his many theorems published without any indication of proof (Werke (1881)
vol. I, p. 128). Suppose you are given four lines in the plane, no two parallel, and
no three concurrent. Taken three at a time, they make four triangles. Show that the
orthocenters (intersection of the altitudes) of these four triangles are collinear.

(Trigonometry). In a Hilbert plane

with (P), suppose that you are given a B
right triangle ABC with sides a,b,c

and angle a at A. Define C

sina = a cosa = b tana = 4

T’ T’ b p, 2
as elements of the field of segment ! b ’ C
arithmetic F.

(a) Show that the functions sina, cosa, tana depend only on the angle «, and not
on the particular triangle chosen.

(b) Prove the identity

sin® o 4 cos®a = 1.
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20.16

20.17

20.18

20.19

20.20

(Law of cosines). Let ABC be any tri-

angle, with sides a, b, c, and angle « at

A. Using the cosine function defined A

in Exercise 20.15, prove the law of

cosines L b

a® = b? 4+ ¢ — 2bccosa.

Hint: Draw an altitude to make two ]
right triangles, and use Proposition B (7 C

:20.6. How does this result relate to

Euclid (11.13)?

(Law of sines). With the same notation as in Exercise 20.16, prove the law of
sines:

a b c

sina  sinf siny

Let ABC be a triangle, and let D,E, F

be points on the sides such that

AF,BE, and CD are concurrent. Show

that DE is parallel to BC if and only D €
if F is the midpoint of BC. Hint: Use

Ceva’s theorem (Exercise 20.7).

B = C
F.'

(a) Given a line segment BC and its midpoint F, construct with ruler alone a line
through a given point D parallel to the line BC (par = 6).

(b) Given a segment BC and given a line m parallel to the line BC and distinct from
it, construct with ruler alone the midpoint of BC (par = 5).

Verify the following construction due
to Hilbert. Given a line I, to construct
a line perpendicular to ! (at an un-
specified point) using only ruler and
dividers (cf. Section 10). Take any two
points A, B on I and any two rays m, n
emanating from A. Lay off segments
AC, AD, AE equal to AB. Let BD meet
CE at F, let CD meet BE at G. Then
the line FG is perpendicular to I (10
steps).
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20.21 In a Hilbert plane with (P), given an
angle a, given a ray v, and given a side

of r, construct with ruler and dividers g
only an angle equal to « on the given s
side of the ray r (par = 30). Hint: Em- ol -— Y 5

bed « in a right triangle and transport
its legs, using Exercises 20.19, 20.20.

It follows that any construction possible with Hilbert’s tools (Section 10) is
actually possible using only the ruler and the dividers: The present construction
makes the transporter of angles superfluous.

21 Introduction of Coordinates

In this section we will complete a logical circle by showing that if IT is an
abstract geometry satisfying the axioms of a Hilbert plane plus (P) and if F is the
field of segment arithmetic for II (19.3), then II is isomorphic to the Cartesian
plane over the field F.

Let me explain this in greater detail. We started our study of geometry from
two different perspectives. On the one hand we considered a purely geometric
development, where points, lines, congruence, etc., were undefined notions
subject to certain axioms, from which we prove theorems. This is Euclid’s
approach, improved by Hilbert, who gave us a set of axioms including Euclid’s
unstated assumptions, so that we could develop his geometry on a rigorous basis.

On the other hand, we constructed examples, or models, of this abstract ge-
ometry, based on the logical foundations of modern algebra, by starting with an
ordered field F (for example the real numbers), and making a geometry whose
points are ordered pairs of elements of the field F. This is the Cartesian
approach (cf. Section 13). In this model we defined lines and congruence, using
linear equations and a distance function, and then proved, by algebraic meth-
ods, that the axioms of abstract geometry are true.

For any particular field F, it may happen that certain things are true that do
not hold in every geometry: For the plane F? is just one of many possible models
of an abstract geometry. For example, if F =R, then Dedekind’s axiom (D)
holds, but it does not hold in the field of constructible numbers (16.4).

Perhaps more interesting is that we can prove certain results in the geome-
try over any field F, though we do not know how to prove the corresponding
statement in abstract geometry. For example, over any field F, the line-circle
intersection property (LCI) is equivalent to the circle-circle intersection prop-
erty (E), because we have shown that both of these are equivalent to the Eucli-
dean condition on the field F, (16.2). We do not know any purely geometric
proof of this equivalence.

Of course, it might be that the geometries constructed over fields were only
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some possible geometries, and that there were other abstract geometries, not
corresponding to any field, with properties different from the geometries over
fields. If we drop the parallel axiom, this is indeed the case, as we will see with
the non-Euclidean geometries (Chapter 7). However, we will show that any
abstract geometry with (P) is isomorphic to a geometry over a field.

To understand this, we need to be clear what we mean by an isomorphism of
geometries. The Greek roots iso + morph mean ‘“the same form.” Intuitively,
both geometries behave the same way. Their outer structures may be different,
but there is no way that they can be distinguished internally.

The formal definition of isomorphism of geometries is as follows.

Definition

Let IT and 11’ be two Hilbert planes. An isomorphism between II and 11’ is a one-
to-one mapping ¢ : [I — I’ of Il onto I’ that is compatible with the undefined
notions. This means:

(1) A subset L < II is a line if and only if ¢(L) = Il' is a line.

(2) Three points A,B,C € II satisfy the betweenness property A * B« C if and
only if (A) * ¢(B) * ¢(C) in ",

(3) Given four points A, B, C, D € II, the line segments AB and CD are congruent
if and only if the line segments ¢(A)¢(B) and ¢(C)¢(D) are congruent in I1’.

(4) If o is an angle formed by the rays AB and AC in II, we denote by ¢(«) the
angle formed by the rays ¢(A)p(B) and ¢(A)p(C) in II'. If « and B are two
angles in II, then o and f are congruent if and only if ¢(«) and ¢(f) are con-
gruent in I1'.

Theorem 21.1 (Introduction of coordinates)

Let 11 be a Hilbert plane satisfying the parallel axiom (P). Let F be the ordered field of
segment arithmetic in 11 (19.3). Then F is Pythagorean (20.7), and 11 is isomorphic to
the Cartesian plane F? over the field F.

Proof We start by fixing two perpen-
dicular lines in the plane II, which we l?,
call the x-axis and the y-axis. We call
their intersection point O the origin. On B P
each axis choose a point 1, and 1, such
that the segments Ol, and Ol, both ‘7 [
represent 1 in the field F. These then
define the positive rays on the x-axis and .
the y-axis. 0 lx
Now for any point P in the plane, we
drop perpendicular PA to the x-axis and
PB to the y-axis. Let the segment OA
represent a€ F and let OB represent
beF.




F1c. 1.

Plate VIII. Figures from Gregory’s Treatise of Practical Geometry (1751).
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Now we can define a mapping ¢: Il — F? by ¢(P) = (+a, +b), where we
choose the + sign if A (resp. B) is on the positive x-axis (resp. y-axis) and the —
sign if not. Clearly, this construction gives a bijective correspondence between
the set of points of II and the set of ordered pairs of the field F; so ¢ is 1-to-1 and
onto.

We must verify that ¢ is compatible with the notions of line, betweenness,
congruence of segments, and congruence of angles. And remember that in II
these are undefined notions, whose properties are known only through the axi-
oms and propositions of the geometry, while in F? they were defined in terms of
algebraic conditions (Chapter 3).

Step 1 Let I be a line in II. (For simplicity we will consider a general line, and
let the reader check the special cases of horizontal and vertical lines(!).) Let [
meet the x-axis at A. Measure off AB € 1, let BC be a perpendicular, and let me F
be the class of BC. We call m the slope of the line.

Let I meet the y-axis at D, and let b € F represent that point (i.e., b = OD if D
is on the positive y-axis; otherwise, b = —OD).

Now consider an arbitrary point P = (x, y) in the plane. Make a triangle DPE
using horizontal and vertical lines. Then DE = x and PE = y — b (in the case
shown; otherwise, adjust signs + as needed (!)). This point P will lie on the line I
if and only if the angle PDE = a. Because of the definition of our segment arith-
metic, this condition is equivalent to saying y — b = mx. In other words, P =
(%, y) lies on the line ! if and only if y = mx + b. Since lines in F? were defined
by linear equations, this establishes the first property of an isomorphism: L < I
is a line < ¢(L) < 11’ is a line.

¢ 9 6= (%)
3-|a

cD X E
m b

A

AV og|O £ -

Step 2 Let A, B, C be three collinear points in [1 (which by Step 1 will guarantee
that their images in I1’ are collinear). Let A’, B’, C’ be their projections on the x-
axis (and again for simplicity we will treat the special case that A, B, C are in the
first quadrant, leaving other cases to the reader (!)).
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Since the lines AA’, BB’,CC’ are par-
allel, A and C will be on opposite sides
of the line BB’ if and only if A’ and C’ are
on opposite sides of the line BB’ (7.2),
so AxBxC if and only if A’xB' xC'. ?
Let the segments OA’,OB’,OC’ repre- C
sent a,b,c, € F. Then A’ *x B’ x C' means R
that either the segments are related A
OA’ < OB’ <0OC’ or vice versa OC’' <
OB’ < OA’. This is equivalent to saying —]
a<b<corc<b<a, by the way we X
defined inequality in the field F of seg- y v
ment arithmetic. And this, in turn, is O
equivalent to saying @(A)* @(B) * ¢(C)
because of the definition of between-
ness in F? (Section 15).

Step 3 Let A, B be two points in I1, and J
let the segment AB represent d € F. On B
the other hand, let ¢(A) = (a;,a;) and r
@(B) = (b1,bz). Then if we draw the d
right triangle ABC with legs parallel to
the axes, we find that AC = b; — a; and A
BC = b, — a; by construction. We use b, -4, C
the field version of the Pythagorean
theorem (20.6) to conclude that x.

= (b1 —a)* + (br — @)’

in F.

Now let A’B’ be another segment, with length d’' € F. Then similarly, if
9(A’) = (a},a3) and ¢(B') = (by, b3), we have

a* = (b - a)* + (b — a).

Now AB = A'B’ if and only if d = d’, because F was constructed from the set
P of congruence equivalence classes of line segments. On the other hand, d = d’
if and only if d?> = d'?, because both are positive elements of F. But the equations
above show that d? and d’? are equal to the “distance squared” function that we
used to define congruence of segments in F? (Section 16). Thus AB =~ A’B’ if and

only if p(A)p(B) = ¢(A")p(B).
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Step 4 We show that two angles a, o’ in I1 are congruent if and only if ¢(«) and
p(a') are congruent in I1’. For economy of exposition, we give an indirect proof,
though a direct proof is also possible (see Exercise 21.2).

Suppose we are given angles a and
o' in II. Let the vertices be A and A/,
and choose any two points B,C on the
two rays of a. Then find B’,C’ on the
rays of o' such that AB~ A'B’ and
AC = A’C’. Draw the lines BC and B'C’
to make triangles.

If « >~ o', then by (SAS) it follows
that the triangles ABC and A’'B'C’ are
congruent, and in particular, BC =~ B'C’.
Conversely, if BC = B'C’, then by (SSS)
the two triangles are congruent, and so
a~o'. Hence a =~ o’ < BC = B'C'.

Apply ¢ to the six points A,B,C,A’,B’,C’. Then ¢(A)p(B) = ¢(A")p(B’) and
@(A)p(C) = p(A")p(C') by Step 3. Furthermore, we have shown that the geome-
try F? satisfies Hilbert's axioms (Section 17), and in particular, (SAS) and (SSS)
hold also in F?. So by the same argument in F? we see that ¢(a) = ¢(a’) if and
only if ¢(B)p(C) = ¢(B")p(C").

Combining this result with Step 3 for the segments BC and B'C’, we see that
a~oa < BCxB'C' < ¢(B)p(C) = ¢(B)o(C') < ¢(a) = p(a’).

Corollary 21.2
In any Hilbert plane 11 satisfying (P), (LCI) is equivalent to (E), and both are equiv-
alent to saying that the field F of segment arithmetic is Euclidean.

Proof Indeed, we have shown that this is true over a field (16.2), so by the
theorem it is true in II also.

Corollary 21.3
A Hilbert plane 11 satisfying (P) and (D) is isomorphic to the real Cartesian plane.

Proof By (21.1), II is isomorphic to the Cartesian plane over a Pythagorean
ordered field F. By (15.4), the plane I satisfies (D) if and only if the field F sat-
isfies (D’). And then by (15.5), F =~ R.
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Exercises

21.1 Given two adjacent nonoverlapping
angles a,f at a point A, use the dia- B
gram shown, plus similar triangles
and Proposition 20.6, to show that

tana + tan f ¢

t =
an(a+ ) 1 —tanatanf

in F (cf. Exercise 20.15 for the defini-
tion of tana).

AL 4 D

21.2 Use Exercise 21.1 above to give a direct proof of step (4) of Theorem 21.1, namely,
that two angles a,a’ in II are congruent if and only if ¢(«) and ¢(a') are congruent
in F2, using the definition of congruence we gave for angles in F? (Section 16).

21.3 Give another proof that (LCI) is equivalent to (E) in a Hilbert plane with (P) by
using the construction of Exercise 20.6.

21.4 In this and the following exercises we
consider, in a Hilbert plane with (P),
constructions with a ruler alone, but
we are given a fixed circle ' and its
center O, and we are allowed to inter-
sect lines with this circle. The key ob-
servation is that any line through O
cuts off a diameter, with O as its mid-
point, and this allows us to draw par-
allel lines (Exercise 20.19).

Given T' and O, construct with
ruler alone the midpoint of a given
segment (par = 15). The diagram is
given as a hint of one possible con-
struction.

21.5 Given I' and O, construct with ruler
alone a line parallel to a given line
I and passing through a given point
P (par = 16). Hint: First construct a
bisected segment on I, as shown.
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21.6 Given I' and O, and given a segment
OA and a ray r originating at O, con-
struct with ruler alone a point B on r
with OA =~ OB (par = 17). b

=
v

to I through P (par = 33).

~
21.7 Given I and O, and given a point P ,
and a line I, construct a perpendicular

21.8 Given I' and O, and given a circle A defined by its center A and a point B, and
given a line [, construct with ruler alone an intersection point of A and I (par = 54).
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21.9

21.10

4. Segment Arithmetic

Now prove the theorem of Poncelet-Steiner, that any ruler and compass construc-
tion can be accomplished with ruler alone if we are given a single circle I" and its
center O. Hint: Use the construction of Exercise 20.6 to reduce the problem of
intersecting two circles to intersecting a circle and a line. Or else proceed algebrai-
cally and show first that the operations +,—,-, =,/ can be carried out on line
segments; then use Theorem 13.2.

(Extra credit) Given a circle and its center, construct with ruler alone an inscribed
regular pentagon (par = about 50).

But when the sceptre devolved to Almamon,
the seventh of the Abbassides, he completed the
designs of his grandfather, and invited the
Muses from their ancient seats. His ambassadors
at Constantinople, his agents in Armenia, Syria,
and Egypt, collected the volumes of Grecian
science: at his command they were translated
by the most skillful interpreters into the Arabic
language: his subjects were exhorted assidu-
ously to peruse these instructive writings; and
the successor of Mahomet assisted with pleasure
and modesty at the assemblies and disputations
of the learned ...

The sages of Greece were translated and
illustrated in the Arabic language, and some
treatises, now lost in the original, have been
recovered in the version of the East, which pos-
sessed and studied the writings of Aristotle and
Plato, of Euclid and Apollonius, of Ptolemy,
Hippocrates, and Galen.

- from The History of the Decline and Fall
of the Roman Empire

by Edward Gibbon, vol V, ch 52
Bigelow, NY (1845)



 Area

CHAPTER

ooking at Euclid’s theory of area in Books I-1V, Hilbert
saw how to give it a solid logical foundation. We define
the notion of equal content by saying that two figures
have equal content if we can transform one figure into
the other by adding and subtracting congruent tri-
angles (Section 22). We can prove all the properties of
area that Euclid uses, except that “the whole is greater
than the part.” This is established only when we relate
the geometrical notion of equal content to the notion
of a measure of area function (Section 23).

In an Archimedean Euclidean plane, we prove the theorem of Bolyai
and Gerwien, that figures of equal area are equivalent by dissection (Section
24). We also investigate the practical problem of dissecting one figure into
another.

We briefly discuss the classical problem of squaring the circle (Section 25)
and its influence.

In comparing the volumes of three-dimensional figures, Euclid uses a limit-
ing process, the “method of exhaustion” (Section 26). We give Dehn'’s solution of
Hilbert's third problem, that solid figures of equal volume are not necessarily
equivalent by dissection (Section 27), thus vindicating Euclid’s use of an infinite
limiting process in the study of volume.

195
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22 Area in Euclid’s Geometry

Starting with (1.35), Euclid introduces a new notion of equality between figures,
which corresponds to what we would call “equal area.” The area we are familiar
with from high school attaches a number to each figure. So the area of a rectan-
gle with sides a and b is the number ab; the area of a triangle with base b and
height h is %bh. In Euclid’s geometry, there are no numbers, so we cannot
explain his concept of area this way.

Euclid does not define this new notion of equality, but we can infer from his
proofs that he considers it another undefined notion, like congruence of seg-
ments or angles, that satisfies certain properties similar to the common notions.
In particular, he assumes that:

. Congruent figures are “equal.”

. Sums of “equal” figures are “equal.”

. Differences of “equal” figures are “equal.”

. Halves of “equal” figures are “equal.”

. The whole is greater than the part.

. If squares are “equal,” then their sides are equal.

O W N

Properties 1, 2, and 3 are used in the proof of (1.35). Property 4 appears in
the proof of (1.37), and property 5 appears in the proof of (1.39). Property 6,
which is actually a consequence of 5, is used in the proof of (1.48).

We could accept this notion of “equality” between figures as another un-
defined notion, with these properties as additional axioms. However, one is
reluctant to encumber the foundations of geometry with unnecessary undefined
notions and axioms. So instead, following Hilbert, we will show that one can
define a suitable notion of “equal area” and prove its properties, thus providing
a new foundation for the theory of area. To avoid overuse of the word “equal,”
we introduce a new terminology and will say that certain figures have “equal
content.”

To begin with, let us be precise about our terminology. We presuppose the
axioms of a Hilbert plane. When we speak of a triangle ABC in this chapter, we
mean that subset of the plane consisting of the three line segments AB, AC, BC,
the sides of the triangle, plus all the points in the interior of the triangle.

Recall (Section 7) that the interior of a triangle ABC is the set of points that
are on the same side of the line AB as C, on the same side of AC as B, and on the
same side of BC as A. Two triangles are nonoverlapping if they have no interior
points in common. They may have common vertices or parts of edges.

Definition

A rectilineal figure (or figure for short) is a subset of the plane that can be ex-
pressed as a finite nonoverlapping union of triangles. A point D is in the interior
of a figure P if there is a triangle ABC entirely contained in P such that D is in
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the interior of the triangle ABC. Two figures are nonoverlapping if they have no
interior points in common. Note that our definition of a figure includes its edges
and all its interior points.

Proposition 22.1

The intersection of any two figures is a figure. The union of any two figures is a
figure. The complement of one figure inside another figure (plus the line seg-
ments that form its sides) is a figure. In particular, any finite union of triangles is a
figure.

Proof The basic idea is to deal with one
triangle at a time. For example, if a tri-
angle ABC is cut by a line I, then that
portion of the triangle that lies on one
side of the line is a figure. One side BDE

in this example is a triangle. The other
side is a union of two triangles, after we ’ \
draw the line DC. We leave details to E

the reader (Exercises 22.1, 22.2, 22.3).

Definition
Two figures P, P’ are equidecomposable if it is possible to write them as non-
overlapping unions of triangles

P=T1U---UTy,,
P'=TiU---UT),
where for each i, the triangle T; is congruent to the triangle T'.

Two figures P, P’ have equal content if there are other figures Q, Q' such that:

(1) P and Q are nonoverlapping.

(2) P’ and Q' are nonoverlapping.

(3) Qand Q' are equidecomposable.

(4) PUQ and P'UQ’ are equidecomposable.
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Example 22.1.1

If P is the union of two congruent
squares in a Euclidean plane, and P’ is a
square built on the diagonal of one of
the squares of P, then P and P’ are equi-
decomposable. Indeed, we cut P and P’
into four congruent triangles each, as
shown in the diagram.

Example 22.1.2
In a Euclidean plane, let ABCD and
CDEF be two parallelograms on the
same base CD and lying in the same
parallels. The Euclid’s proof of (1.35)
shows that ABCD and CDEF have equal
content.

Indeed, if we let P=ABCD and
P’ = CDEF, take Q = Q' = triangle BGE.
Then PUQ and P’ U Q' are the unions of
the congruent triangles ACE and BDF
and the equal triangles CDG and CDG.

Example 22.1.3

If two figures P and P’ are equidecom-
posable, then they have equal content,
but the converse is not necessarily true.
For example, consider the Cartesian
plane over a non-Archimedean field F
(Section 18). Let t be an infinite element
of the field F. Consider the unit square
ABCD and the parallelogram with base
CD and top side EF, where E = (t,1)
and F= (t+1,1).

&S
C D
B € c
/ ]
i + 1

Then according to (1.35), ABCD and CDEF have equal content. However,
they are not equidecomposable. Indeed, any triangle contained in the unit
square has sides of length less than or equal to /2. Any finite number of
these sides, placed end to end, still has finite length in the field F. But the side
CE of the parallelogram has length /t?+1 > t, which is infinite. Thus no
finite number of triangles contained in ABCD can ever fill up the parallelogram

CDEF.
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Remark 22.1.4

This example suggests the following question: If we assume Archimedes’ axiom
(A) in addition, are the notions of equidecomposable and equal content equiva-
lent? We will see that the answer is yes in any Hilbert plane with (P) and (A),
by using a measure of area function with values in the field of segment arith-
metic (24.7.3). I do not know any purely geometric proof of this fact. In the non-
Euclidean case, we obtain the same result using the defect of a triangle as a
measure of area function (36.7.1).

Proposition 22.2
In a Hilbert plane, the relation of two figures being equidecomposable is an equivalence
relation. Nonoverlapping unions of equidecomposable figures are equidecomposable.

Proof The relation is obviously reflexive (“P is equidecomposable with P") and
symmetric (“if P and P’ are equidecomposable, then P’ and P are equidecom-
posable”). The nontrivial part is transitivity. So suppose that P and P’ are equi-
decomposable, and P’ and P” are equidecomposable. Let

P=TyU - UTy,
PP=TyU---UTy,

where T; and T] are congruent triangles, for each i. Also let
PlP=8§uU---Us,,
P"=8'U---U8",

where §; and S/ are congruent triangles, for each j. We must show that P and P”
are equidecomposable.

To do this, we will refine the decompositions of P and P” in order to express
them both as unions of congruent triangles. For each i,j consider the inter-
section T; NS/ in P'. It may be empty, or may consist of points or line segments
only. We ignore those. When the intersection has a nonempty interior, it will be
a figure (Exercise 22.1) that can be written as a union of triangles

1
/NS = | Up.
k=1
Now let ¢, : T; — T/ be a rigid motion (Exercise 17.10) taking the triangle T;

to the congruent triangle T]. We use ¢; to transport the triangles i’jk to new tri-
angles Uy, = ¢; ! (U};) contained in T;. Then

Y
T = U Uijka
Ji.k

and each Uy is congruent to Uy.
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Similarly, for each j, let y; be a rigid motion taking Sj’ to the congruent trian-
gle 8. Let Ujy = ;(Ujy). Then

"o "
§ = Uk Uje
15

and each U} is congruent to Uy.
By construction, the U and the ng are nonoverlapping triangles, and we
can write

P =, ; kUi,

P’ = i,j,kUi;lk?
where Uy is congruent to Uy for each i, j, k. Thus P and P" are equidecompos-
able.

If P and P’ are equidecomposable, and Q and Q' are equidecomposable, and
if P does not overlap Q and P’ does not overlap Q’, then it is obvious that PUQ

and P’'U Q' are equidecomposable.

Proposition 22.3
In a Hilbert plane, the relation of two figures having equal content has the following
properties:

(a) Equal content is an equivalence relation.

(b) Equidecomposable figures have equal content.

(c) Nonoverlapping unions of figures of equal content have equal content.

(d) If Qs Pand Q' < P/, and if Q and Q' have equal content, and P and P’ have
equal content, then P — Q and P’ — Q' have equal content.

Lemma 22.4

Suppose P and P’ are equidecomposable figures, and suppose P is expressed as a
nonoverlapping union of subfigures P = P; U P,. Then there are subfigures Py, P} of
P’ such that P' is the nonoverlapping union of P| and P, and P; and P| are equi-
decomposable for i =1, 2.

Proof Suppose

P=T1U---UTy,

PP=T/U---UT,
where T; and T] are congruent triangles for each i. As in the proof of (22.2) we
will refine decompositions appropriately.

For each i, consider the intersections T; N P; and T; N P,. We can write each
as unions of triangles (22.1)

T;NP, = U]- S
T;NP, =, Spa.
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Use rigid motions ¢; : T; — T to transport these triangles and define

i/jk = ¢:(Six)
for each i, j, k. Let

Pl =8},

Py =JSi,.

Then Py, P} satisfy the requirements of the lemma.

Proof of 22.3 (a) The relation of equal content is obviously reflexive and sym-
metric. The nontrivial part is to show that it is transitive. So suppose figures P
and P’ have equal content, and P’ and P” have equal content. Then there are
equidecomposable figures Q and Q' such that PUQ and P’UQ’ are equidecom-
posable, and there are further equidecomposable figures R’ and R” such that
P'UR’ and P"UR" are equidecomposable.

The difficulty is that while the unions mentioned above are all nonover-
lapping, it may happen that Q' and R’ overlap. To avoid this situation, we apply
the lemma to the equidecomposable figures P’UR’ and P”UR” and the given
decomposition of the first of these. Thus we may assume that the triangulation
of P' UR’arises from separate triangulations of P’ and R’. Once this is so, we can
move R’ to some other position in the plane R* and still have P'UR* equi-
decomposable with P” UR”. In particular, we may choose R* in such a way that<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>