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I have not found anything in Lobatchevski's 
work that is new to me, but the development is 
made in a different way from the way I had 
started and to be sure masterfully done by Lo­
batchevski in the pure spirit of geometry. 

- letter from Gauss to Schumacher (1846) 



Preface 

In recent years, I have been teaching a junior-senior-level course on the classi­
cal geometries. This book has grown out of that teaching experience. I assume 
only high-school geometry and some abstract algebra. The course begins in 
Chapter 1 with a critical examination of Euclid's Elements. Students are expected 
to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­
rately. The remainder of the book is an exploration of questions that arise natu­
rally from this reading, together with their modern answers. To shore up the 
foundations we use Hilbert's axioms. The Cartesian plane over a field provides 
an analytic model of the theory, and conversely, we see that one can introduce 
coordinates into an abstract geometry. The theory of area is analyzed by cutting 
figures into triangles. The algebra of field extensions provides a method for 
deciding which geometrical constructions are possible. The investigation of the 
parallel postulate leads to the various non-Euclidean geometries. And in the last 
chapter we provide what is missing from Euclid's treatment of the five Platonic 
solids in Book XIII of the Elements. 

For a one-semester course such as I teach, Chapters 1 and 2 form the core 
material, which takes six to eight weeks. Then, depending on the taste of the in­
structor, one can follow a more geometric path by going directly to non-Euclidean 
geometry in Chapter 7, or a more algebraic one, exploring the relation between 
geometric constructions and field extensions, by doing Chapters 3, 4, and 6. For 
me, one of the most interesting topics is the introduction of coordinates into an 
abstractly given geometry, which is done for a Euclidean plane in Section 21, 
and for a hyperbolic plane in Section 41. 

Throughout this book, I have attempted to choose topics that are accessible 
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viii Preface 

to undergraduates and that are interesting in their own right. The exercises are 
meant to be challenging, to stimulate a sense of curiosity and discovery in the 
student. I purposely do not indicate their difficulty, which varies widely. 

I hope this material will become familiar to every student of mathematics, 
and in particular to those who will be future teachers. 

lowe thanks to Marvin Greenberg for reading and commenting on large 
portions of the text, to Hendrik Lenstra for always having an answer to my 
questions, and to Victor Pambuccian for valuable references to the literature. 
Thanks to Faye Yeager for her patient typing and retyping of the manuscript. 
And special thanks to my wife, Edie, for her continual loving support. 

Of all the works of antiquity which have 
been transmitted to the present times, none are 
more universally and deservedly esteemed than 
the Elements of Geometry which go under the 
name of Euclid. In many other branches of 
science the moderns have far surpassed their 
masters; but, after a lapse of more than two 
thousand years, this performance still maintains 
its original preeminence, and has even acquired 
additonal celebrity from the fruitless attempts 
which have been made to establish a different 
system. 

- from the preface to 
Bonnycastle's Euclid 

London (1798) 
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Introduction 

little after the time of Plato, but before Archimedes, in 
ancient Greece, a man named Euclid wrote the Ele­
ments, gathering and improving the work of his pre­
decessors pythagoras, Theaetetus, and Eudoxus into 
one magnificent edifice. This book soon became the 
standard for geometry in the classical world. With the 
decline of the great civilizations of Athens and Rome, it 
moved eastward to the center of Arabic learning in the 
court of the caliphs at Baghdad. 

In the late Middle Ages it was translated from Arabic into Latin, and since 
the Renaissance it not only has been the most widely used textbook in the 
world, but has had an influence as a model of scientific thought that extends 
way beyond the confines of geometry. As Billingsley said in his preface to the 
first English translation (1570), "Without the diligent studie of Euclides Ele­
mentes, it is impossible to attaine unto the perfecte knowledge of Geometrie, and 
consequently of any of the other Mathematical Sciences." Even today, though 
few schools use the original text of Euclid, the content of a typical high-school 
geometry course is the same as what Euclid taught more than two thousand 
three hundred years ago. 

In this book we will take Euclid's Elements as the starting point for a study of 
geometry from a modern mathematical perspective. 

To begin, we will become familiar with the content of Euclid's work, at least 
those parts that deal with geometry (Books I-IV, VI, and XI-XIII). Here we find 
theorems that should be familiar to anyone who has had a course of high-school 
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2 Introduction 

geometry, such as the fact (1.4) that two triangles are congruent ifthey have two 
sides and the included angle equal, or the fact (II1.21) that a given arc of a circle 
subtends the same angle at any point of the circle from which it is seen. 
(Throughout this book, references such as (1.4) or (II1.21) refer to the corre­
sponding Book and Proposition number in Euclid's Elements.) 

Many of Euclid's propositions pose construction problems, such as (1.1), to 
construct an equilateral triangle, or (IV.ll), to construct a regular pentagon 
inscribed in a circle. Euclid means to construct the required figure using only 
the ruler, which can draw a straight line through two points, and the compass, 
which can draw a circle with given center and given radius. These ruler and 
compass constructions are often taught in high-school geometry. Note that 
Euclid casts these problems in the form of constructions, whereas a modern 
mathematician would be more likely to speak of proving the existence of the 
required figure. 

At a second level, we will study the logical structure of Euclid's presentation. 
Euclid's Elements has been regarded for more than two thousand years as the 
prime example of the axiomatic method. Starting from a small number of 
self-evident truths, called postulates, or common notions, he deduces all the 
succeeding results by purely logical reasoning. Euclid thus begins with the sim­
plest assumptions, such as Postulate 1, to draw a line through any two given 
points, or Postulate 3, to draw a circle with given center and radius. He then 
proceeds step by step to the culmination of the work in Book XIII, where he 
gives the construction of the five regular solids: the tetrahedron, the cube, the 
octahedron, the icosahedron, and the dodecahedron. 

Upon closer reading, we find that Euclid does not adhere to the strict axiom­
atic method as closely as one might hope. Certain steps in certain proofs depend 
on assumptions that, however reasonable or intuitively clear they may seem, 
cannot be justified on the basis of the stated postulates and common notions. So, 
for example, the fact that the two circles in the proof of (U) will actually meet 
at some point seems obvious, but is not proved. The method of superposition 
used in the proof of (1.4), which allows one to move the triangle ABC so that it 
lies on top of the triangle DEF, cannot be justified from the axioms. Also, various 
assumptions about the relative position of figures in the plane, such as which 
point lies between the others, or which ray lies in the interior of a given angle, 
are used without any previous clarification of what such notions should mean. 

These lapses in Euclid's logic lead us to the task of disengaging those implicit 
assumptions that are used in his arguments and providing a new set of axioms 
from which we can develop geometry according to modern standards of rigor. 
The logical foundations of geometry were widely studied in the late nineteenth 
century, which led to a set of axioms proposed by Hilbert in his lectures on the 
foundations of geometry in 1899. We will examine Hilbert's axioms, and we will 
see how these axioms can be used to build a solid base from which to develop 
Euclid's geometry pretty much according to the logical plan that he first laid out. 
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We will also cultivate an awareness of what additional axioms may be required 
for certain portions of the theory. 

Our third level of reading Euclid's Elements involves rather broader inves­
tigations than the first two levels mentioned above: We will consider various 
mathematical questions and subsequent developments that arise naturally from 
Euclid's presentation. 

For example, the modern reader quickly becomes aware that Euclid does not 
use numbers in his geometry. He speaks of equality of line segments, and a 
notion of one segment being added to another to form a third segment, but he 
does not mention the length of a line segment. When it comes to area (1.35 ff.), 
though Euclid does not say explicitly what he means by equality of area, we can 
infer from his proofs that he means a notion generated by cutting figures in 
pieces and adding or subtracting congruent figures. He does not use any number 
to measure the area of a triangle. So we may note with surprise that the famous 
Pythagorean theorem (1.47) does not state that the square of the length of the 
hypotenuse (a number) is equal to the sum of the squares ofthe lengths of the 
two sides of a right triangle; rather, it says that the area of a square built on 
the hypotenuse is equal to the area formed by the union of the two squares built 
on the sides. 

The absence of numbers may seem curious to a student educated in an era 
in which the real numbers are all-powerful, when an interval is measured by its 
length (which is a real number), and an area by a certain integral (another real 
number). In fact some modern educators have gone so far as to build the real 
numbers into the axioms for geometry with the "ruler postulate," which says 
that to each interval is assigned a real number, its length, and that two intervals 
are congruent if they have the same length. However, this use of the real num­
bers at the foundational level of geometry is far from the spirit of Euclid. 

So we may ask, what role do numbers play in the development of geometry? 
As one approach to this question we can take the modern algebraic structure of 
a field (which could be the real numbers, for example), and show that the Car­
tesian plane formed of ordered pairs of elements of the field forms a geometry 
satisfying our axioms. But a deeper investigation shows that the notion of num­
ber appears intrinsically in our geometry, since we can define purely geometri­
cally an arithmetic of line segments. We will show that (up to congruence) 
one can add two segments to get another segment, and one can multiply two 
segments (once a unit segment has been chosen) to get another segment. These 
operations satisfy the usual associative, commutative, and distributive laws, so 
that we obtain an ordered field, whose positive elements are the congruence 
equivalence classes of line segments. 

Thus we establish a connection between the abstract geometry based on 
axioms and the methods of modern algebra. 

I would like to emphasize throughout this course how methods of modern 
algebra help to understand classical geometry and its associated problems. 



4 Introduction 

For example, in the theory of area, one can formalize Euclid's notion of 
equality based on adding and subtracting congruent figures. However, we do not 
know any purely geometric proof that this theory of area is nontrivial, so that, 
for example, one figure properly contained in another will have a smaller area. 
Euclid just cites Common Notion 5, "the whole is greater than the part." But 
unless we are willing to accept this as an axiom, we should give a proof. Such 
a proof can be provided using algebraic arguments in the field of segment 
arithmetic. 

Concerning ruler and compass constructions, algebraic methods have led to 
notable results. For example, Gauss made an extraordinary discovery in 1796, 
when he used roots of unity to show that it is possible to construct a regular 17-
sided polygon-the first new polygon construction since Euclid's constructions 
of the pentagon, hexagon, decagon, and quindecagon. On the other hand, field 
theory, in particular the Galois theory of finite field extensions of <Q, has pro­
vided proofs of the impossibility of certain ruler and compass constructions such 
as the regular 7-sided polygon, the trisection of the angle, or the doubling of the 
cube. For in the algebraic interpretation, one can construct with ruler and com­
pass only those points whose coordinates lie in successive quadratic extensions 
of <Q, while the three problems just mentioned require the solution of cubic 
equations. We will see, however, that these three problems can be solved if one 
allows the use of a marked ruler. In fact, constructions using the marked ruler, 
in addition to ordinary straightedge and compass, correspond exactly to the solu­
tion of equations of degrees three and four. 

Euclid bases his treatment of similar triangles (Book VI) on a complicated 
theory of proportion (developed in Book V) where ratios of given quantities are 
compared by seeing whether arbitrary rational multiples of the one exceed or 
fall short of the other. This method foreshadows Dedekind's nineteenth-century 
definition of a real number as a division ("Dedekind cut") of the rational num­
bers into two subsets, namely those greater than and those less than the 
given real number. The theory of proportion depends on Archimedes' axiom, 
which states that given any two segments there is an integer multiple of the 
first that will exceed the second. Using the field of segment arithmetic men­
tioned above we can give (following Hilbert) an alternative development of the 
theory of similar triangles that is simpler and does not depend on Archimedes' 
axiom. 

In developing the theory of volume of three-dimensional figures in Books XI 
and XII, Euclid abandons, remarkably, the finite dissection methods used for the 
area of plane figures. Instead, he applies the "method of exhaustion" attributed 
to Eudoxus, which suggests the limiting process used to define the Riemann 
integral. Gauss (1844) expressed his regret that such an infinite method should 
be used for something so apparently elementary as the volume of a triangular 
pyramid (XII.S). Hilbert, in his famous list of problems stated in 1900, asked 
whether this infinite limiting process was really necessary, and Dehn in the 
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same year provided an answer by showing that a pyramid cannot be dissected 
into a finite number of pieces and reassembled into a cube. In Dehn's proof, 
abstract algebra again provides a solution to a geometric problem. 

While discussing the foundational and theoretical questions mentioned above, 
we also have a practical side to this course. We make a point of carrying out many 
ruler and compass constructions, for example, Euclid's elegant construction of 
the regular pentagon (IV.1l), and carefully counting our steps to heighten aware­
ness of the process. At the same time we will find explicit expressions for various 
lengths constructed using nested square roots to emphasize the connection with 
field extensions of <Q. When studying area, we will make explicit dissections of 
figures to show equality, such as for the Pythagorean theorem (1.47) or Dudeney's 
brilliant dissection in four pieces of an equilateral triangle into a square. When we 
come to Euclid's construction of the five regular solids, we will make models of 
these, and we will also explore the thirteen Archimedean solids and the other 
"face-regular" convex polyhedra made of regular polygons. 

Also on the practical side, we will study results that belong to the domain of 
"Euclidean geometry" although they do not appear in Euclid's Elements. Some of 
these were discovered long ago, such as the fact that the three altitudes of a tri­
angle meet in a point, which was known to Archimedes, while others were 
found more recently, such as the Euler line and the nine-point circle associated 
to a triangle. The technique of circular inversion, which became popular in the 
second quarter of the nineteenth century, provides an example of the modern 
transformational approach to geometry, and gives a convenient tool for the 
solution of classical problems such as the problem of Apollonius: to find a circle 
tangent to three given circles. 

Finally, the investigation of the role of the parallel postulate has led to some 
of the most important developments arising out of Euclid's geometry. Already 
from the time of Euclid onward, commentators noted that this postulate was less 
elementary than the others, and they questioned whether it might not be a con­
sequence of the other postulates. Two millennia of efforts to prove the parallel 
postulate by showing that its negation led to absurd (but not contradictory) results 
were considered failures until, in the mid-nineteenth century, a brilliant shift of 
perspective, with lasting consequences for the history of mathematics, admitted 
that these "absurd" conclusions were merely the first theorems in a new, strange, 
but otherwise consistent geometry. Thus were born the various non-Euclidean 
geometries that have been so valuable in the modern theory of topological 
manifolds, and in the development of Einstein's theory of relativity, to mention 
just two applications. In this course we will discuss the beginnings of neutral 
geometry, assuming no parallel axiom. We give an analytic model of non­
Euclidean geometry over a field due to Poincare. Then we give an axiomatic 
treatment of hyperbolic geometry based on the axiom of existence of limit­
ing parallel lines. The two approaches are brought together by constructing an 
abstract field out of the geometry, and showing that any abstract hyperbolic 
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plane is isomorphic to the Poincare model over its associated field. Once again, 
algebraic methods help us to understand geometry. 

A note on references: Propositions in Euclid's Elements are given by book and 
number, e.g., (1.47). Hilbert's axioms are given by initial and number, e.g., (11)­
(13) are the axioms of incidence. Books and articles are given by author and year, 
e.g., Hilbert (1971), and listed in the References at the end of the book. Internal 
references are given by section and number, e.g., (5.9) or (18.4.3). Exercises are 
labeled, e.g., Exercise 4.5. An exception to this system is that within the exercises, 
results of the main text are indicated by their full title, e.g., Proposition 20.10. 

A note on diagrams: Most of the diagrams in this book are drawn by hand, in 
keeping with the spirit of elementary geometry. I hope you will also draw your 
own diagrams as you read. 

As lines, so Loves oblique may well 
Themselves in every Angle greet: 

But ours so truly Parallel, 
Though infinite can never meet. 

- from The Definition of Love 
by Andrew Marvell (1621-1678) 



CHAPTER 

Euclid's Geometry 

n this chapter we create a common experience by 
reading portions of Euclid's Elements. We discuss the 
nature of proof in geometry. We introduce a particular 
way of recording ruler and compass constructions so 
that we can measure their complexity. We discuss 
what are presumably familiar notions from high school 
geometry as it is taught today. And then we present 
Euclid's construction of the regular pentagon and dis­

:.2=:::::::=!f cuss its proof. 
Throughout this chapter proofs are informal. We do not presuppose any 

particular knowledge, and yet we assume familiarity with everything in high­
school geometry. The purpose of this chapter is to create a common base and 
language with which to begin our more formal study of geometry in the follow­
ing chapters. 

In the last section of this chapter we present some newer results that do not 
appear in Euclid's Elements but nevertheless belong to the subject of "Euclidean 
geometry." 

Note: Reading this chapter should be concurrent with reading Euclid's Elements 
Books I-IV, so as to understand all proofs and constructions. Exercises given 
here will reinforce this reading. 

7 



8 1. Euclid's Geometry 

1 A First Look at Euclid's Elements 

When we first open Euclid's Elements to 
see what is in this famous book, we find 
familiar facts about the geometry of 
lines, triangles, and circles in the plane . 
I say familiar, because almost every 
elementary or high-school curriculum 
has some geometry in it, and what has 
been taught for thousands of years and 
still is commonly taught as "geometry" 
is material from Euclid's Elements. 

We find, for example, that a triangle is called isosceles if two of its sides are 
equal, and in that case it follows (1.5) that the two base angles of the triangle are 
also equal. 

We find the theorem (1.32) that says that the sum of the three angles of a 
triangle is 180°: r:J. + f3 + y = 180°. However, we note that Euclid does not use de­
gree measure for angles. Instead he says that the sum of the angles of a triangle 
is equal to two right angles. 

We find the famous "Pythagorean 
theorem" (1.47) , which says that in a 
right triangle the sum of the squares of 
the legs is equal to the square of the 
hypotenuse: 

We note, however, that Euclid does not 
use algebraic notation to express this 
result. Instead, he shows that the area 
of the square on the hypotenuse is 
equal to the combined area of the 
squares on the two sides. 

In Book III, which deals with circles, 
we find the result (III.21), which I hope 
will be familiar to most readers, that an 
arc of a circle subtends the same angle 
at different points of the circle from 
which it is viewed. 

Then in Book VI, which deals with 
similar triangles and the theory of pro-

c 
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portion, we find the familiar result 
(VI.2) that a line parallel to the base of a 
triangle will cut the sides proportion­
ately, namely, a : b = c : d. 

1. A First Look at Euclid's Elements 9 

Euclid's Elements, written circa 300 B.C. is a systematic account of the geom­
etry and number theory of his time. What is remarkable is that these same 
propositions still form the basis of teaching geometry today. 

Historically speaking, most of these results were known long before Euclid. 
Within the realm of Greek mathematics, the theorem on isosceles triangles is 
attributed to Thales, and the theorem on the sum of the angles of a triangle and 
the theorem on the sides of a right triangle are attributed to Pythagoras. Both 
men lived three hundred years before Euclid. 

Eves (1953) points out that before 
the Greeks, the theorem of pythagoras 
was known to the ancient Babylonians 
(1900-1600 B.C.). Also, there are reports 
that the ancient Egyptians used a rope 
knotted in twelve equal segments, which 
could be stretched out to form a triangle 
with sides 3, 4, 5, to construct right 
angles for laying out fields. 

3 

The great contribution of Euclid, for which he is justly renowned, is that he 
organized the geometrical knowledge of his time into a coherent logical frame­
work, whereby each result could be deduced from those preceding it, starting 
with only a small number of "postulates" regarded as self-evident. 

To appreciate Euclid's achievement, let us try to put this in perspective. 
The most naive approach to geometry is to regard it as a collection of facts, 

or truths, about the real world. Ancient geometry began as a set of useful rules 
for measuring fields, laying out cities, building buildings, or constructing altars. 

By the time of Euclid, we can detect two important changes in the percep­
tion of geometry. 

One concerns the nature of geometrical truth. There is a distinction between 
the real world with all its imperfections, and some kind of abstract or ideal exis­
tence that people in this world strive to attain. This point of view is evident in 
the writings of Plato, who was born about one hundred years before Euclid. 
Speaking of the geometers, he says (near the end of Book VI of The Republic): 

Although they make use of the visible forms and reason about them, they are not 
thinking of these, but of the ideals which they resemble; not the figures which 
they draw, but of the absolute square and the absolute diameter, and so on ... . 
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Thus geometry is elevated from the status of a practical science to the study of 
relationships in this ideal existence, with a consequent shift of emphasis to the 
mathematically exact solution of a problem as opposed to an accurate approxi­
mate solution that would be sufficient for practical purposes. Because geometry 
engages the mind in contemplation of these ideal relationships, Plato also rec­
ognizes its value in education, for we find a little later (Republic, Book VII) the 
following exchange: 

The knowledge at which geometry aims is knowledge of the eternal, and not of 
ought perishing and transient. 

That, he replied, may be readily allowed, and is true. 
Then, my noble friend, geometry will draw the soul toward truth, and create 

the spirit of philosophy; and raise up that which is now unhappily allowed to fall 
down. 

Nothing will be more likely to have such an effect. 
Then nothing should be more sternly laid down than that the inhabitants of 

your fair city should by all means learn geometry. 

Euclid's geometry is the geometry of this ideal world in the sense of Plato, 
with its emphasis on exact relationships. In this sense it can be regarded as 
abstract mathematics. From the point of view of the modern mathematician, 
however, Euclid's geometry is still tied to the real world because it concerns the 
unique ideal world of Plato's philosophy of which the real world is a reflection. 
For example, Euclid does not hesitate to use arguments from time to time (we 
will look at specific cases later) that seem perfectly acceptable in view of our 
experience of the real world, yet are not logical consequences of his initial 
assumptions. 

The modern mathematician goes one step further, by trying to make all as­
sumptions explicit and create a consistent mathematical structure that no 
longer derives its validity from the real world. The "truth" of a particular result 
in the real world is then no longer relevant. The only question is whether that 
result is consistent with or can be logically deduced from the assumptions of this 
particular theory. The modern point of view allows for many different equally 
valid abstract mathematical theories, whereas for Euclid there was only one 
geometry. 

Euclid's Elements also differs from the perspective of naive geometry in its 
emphasis on proofs. It is no longer sufficient to say such-and-such is true, or 
even to give many instances where its truth is evident. The Greeks since Pytha­
goras had been concerned with justifying their geometrical results, and Euclid's 
Elements is the ultimate expression of this trend, where all the propositions are 
proved in one grand logical sequence. 

So what exactly is a proof? 



The answer to this question depends 
on the context. Suppose, for example, 
we are discussing one of those famous 
hard problems that circulate informally 
among amateurs, such as the following: 
Let ABC be a triangle. Let BD and CE be 
the angle bisectors at Band C. Suppose 
that BD is equal to CE. Then show that 
the triangle ABC is isosceles. This state­
ment is eminently reasonable, but a 
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proof using the usual methods of high- 6 C 
school geometry is surprisingly elusive. 

With a hard problem like this, most people would accept as proof any dem­
onstration of its truth based on well-known results that can be found in books, 
whether the methods used were from geometry, trigonometry, analytic geome­
try, or even calculus. A purist might increase the difficulty of the problem by 
insisting on a purely geometric solution. Among experienced mathematicians, 
there would be little disagreement about what constituted a valid proof, once it 
was found. 

In another context, a proof can be characterized simply as a convincing argu­
ment. Suppose you are explaining a result to another person who has a similar 
general background, but who has not seen this particular result. For example, I 
wish to inscribe a hexagon with six equal sides in a circle with center O. 

I choose a point A on the circle, and 
with my compass centered at A, and 
radius AO, I mark off a point B on the 
circumference. Then with center Band 
radius BO I mark off another point C on 
the circumference. I repeat this process, 
always with radius equal to the radius of 
the original circle, to get further points J) 
D, E, and F. Then I draw AB, BC, CD, 
DE, EF, all of which have the same 
length, equal to OA, by construction. I 
claim that FA also has the same length, 
so that ABCDEF will be an equilateral 
hexagon inscribed in the circle. 

Why does this work? How would you explain this so as to convince another 
person? To get a real-life answer, I put this question to my seventeen-year-old 
son, then a high school senior. His first response was, "I have done it myself, so 
I know it works." "Yes," I said, "from a practical point of view it works. But how 
do you know this is an exact solution and not just a very good approximation?" 
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After a few minutes of thought he 
drew the lines from 0 to A, B, G, D, E, F, 
and then explained that OAB is an equi­
lateral triangle by construction. There­
fore, the angle LAOB at the center is 
600

• The same is true for the next four 
triangles BOG, ... , EOP. Thus we have 
five 600 angles, so the remaining angle 
LAOF must also be 600 • Then the tri­
angle AOF having two sides the same 
and the same central angles must be 
the same as the triangle AOB, and so 
FA =AB. 

A 

"Fine," I said, "that is very convincing, assuming that your listener knows 
that the angles of an equilateral triangle are 600 , and the angle of one total revo­
lution is 3600 • It seems your listener would have to know the theorem that the 
sum of the three angles of a triangle is 1800 • What if he asked you to explain why 
that is true?" 

I mentioned a proof of the sum of 
the angles by drawing a line parallel to 
one side AB of a triangle through the 
third vertex G. Then a = a' because of 
the parallel lines, and 13 = 13' because of 
the parallel lines, so a + 13 + y = a' + 
13' + y = 1800 because it is a straight 
angle. "But then you have to know the­
orems about the angles formed when ~ 
a line cuts two parallel lines." There 
ensued a discussion about proliferation 
of questions, like the endless "why"s of a 
three-year-old, and the danger of getting into circular arguments. 

So we see that while the notion of proof as a convincing argument may work 
well, it depends on who your listener is, and is also subject to the danger of infi­
nite regress if your listener is uncooperative. (At this point you might like to 
look at (IV. IS) to see how Euclid solves this same problem.) 

A third and much stricter notion of proof applies to the writer of a mathe­
matical treatise such as Euclid's Elements. A proof must deduce the result in 
question by a series of logical steps based only on those results that have already 
been proved earlier in the book, and on those definitions, postulates, and com­
mon notions that have been set out as self-evident at the beginning and that 
form the starting point for the logical chain of deductions. Even this notion of 
proof is not absolute, however, because what constitutes an acceptable proof 
for a given result will depend on where that result is situated in the logical 
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sequence. So for example, Proclus says that Euclid devised an entirely new 
proof of the theorem of Pythagoras (1.47). We can infer that he had to do so, 
because he placed it at the end of Book I and therefore could not use the well­
known proof by similar triangles (cf. (20.6)), (which was most likely the method 
used by Pythagoras), since similar triangles do not appear until Book VI. 

It is for this logical structure, perhaps even more than for its mathematical 
content, that Euclid's Elements is famous. The axiomatic method of sequential 
logical deduction, starting from a small number of initial definitions and assump­
tions, has become the basic structure of all subsequent mathematics. Euclid's 
Elements is the first great example of this method. The importance of the axio­
matic method in modern times was emphasized at the turn of the century by 
David Hilbert, whose work we will study later in this book. 

And now, dear reader, it is time for you to open your copy of Euclid and 
start reading. Abraham Lincoln, speaking of his scanty formal education, says 
"He studied and nearly mastered the six books of Euclid since he was a member 
of Congress." You need not go so far as that, but I do urge you to read at least as 
much as is suggested in the exercises below. 

A Note on the Exercises in This Book 

One of my students, in an essay discussing the suitability of Euclid's Elements as 
a text for teaching geometry today, suggested that it would be better to use no 
text at all, so that students could have the excitement of rediscovering geometry 
for themselves. If we lived in ancient Athens, when the study of geometry was 
synonymous with reading Euclid's Elements, then I would agree. But we do not 
live in ancient Athens, and mathematics, including geometry, has developed a 
great deal since the time of Euclid. 

So I propose instead that we take Euclid's Elements as a starting point, a 
touchstone to provoke questions and further investigation, and that we set out to 
rediscover modern mathematics for ourselves. 

My philosophy of mathematics is that you learn by doing. To study mathe­
matics is to do mathematics, not just to learn what other people have done. 
Many of the results in this book I discovered myself. In almost all cases I 
learned later that others had discovered them before me, but still I had the 
pleasure of exploring new territory. As Descartes (1637) says at one point in 
La Geometrie, 

But I will not stop to explain this in more detail, because I would deprive you of 
the pleasure of learning it yourself, and the utility of cultivating your spirit by the 
exercise, which in my opinion is the principal benefit one can draw from this 
science. 

Therefore, the exercises in this book are designed (to the best of my ability) 
to stimulate mathematical activity. There are very few routine exercises. Most 



14 1. Euclid's Geometry 

require some puzzling, some experimentation. Many offer a challenge of expo­
sition: Once you understand what is happening, how do you explain it clearly in 
writing? Many allow room for creativity. There may be several ways to give a 
correct proof or a correct construction. In fact, one of the pleasures of teaching 
this material has been to see the multitude of imaginative methods with which 
students have solved the more open-ended problems. I encourage students to 
work together in groups, to share ideas, and to defend to each other the solu­
tions they have found. 

So perhaps the best way to use this book is to treat it as no-text. Go directly to 
the exercises and start to work, collecting terminology and hints from the main 
text only as needed! 

Exercises 

1.1 See what you can remember from high-school geometry. Make a list of definitions 
and theorems. Do you remember the "side-angIe-side" criterion for congruent tri­
angles? Could you prove it? Can you prove that the three angle bisectors of a tri­
angle meet in a point? Can you prove that the three altitudes of a triangle meet in 
a point? Do you remember the definition of similar triangles and facts about them? 

1.2 Read Euclid's Elements, Book I, Propositions 1-34. Be prepared to explain the state­
ments and present the proofs of (1.4), (1.5), (1.8), (I.1S), (1.26), (1.27), (1.29), (1.30), 
and (1.32). 

1.3 Discuss the structure of Euclid's proofs. 

(a) Proclus describes six parts of a theorem (see Heath (1926), pp. 129 fr.): the enun­
ciation, which states what is given and what is sought, the exposition, which says 
again what is given, often in a more specific form; the specification, which makes 
clear what is sought; the construction, which adds what is needed; the proof, which 
infers deductively what is sought from what has been previously demonstrated; and 
the conclusion, which confirms what has been proved. Identify these parts (some of 
which maybe missing) in (I.1), (1.4), and (l.S). 

(b) Discuss Euclid's habit of presenting only one case of a proposition and leaving 
the others to the reader. For example, in (1.7) what other cases should we consider, 
and how would you complete the proof in those other cases? 

(c) Discuss the method of reductio ad absurdum (arguing to an absurdity) as a 
method of proof. How does this work in (L6)? Can you think of a direct proof of this 
result (i.e., without assuming the contrary)? 

For the following Exercises 1.4-1.10, present proofs in the style of Euclid, using any 
results you like from Book 1,1-34 (excluding the theory of area, which starts with (1.35)). 
Be sure to refer to Euclid's definitions, postulates, common notions, and propositions by 
number whenever you use one. 
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Plate 1. A page from Henrion's Euclid of (1677) showing three different cases ofthe proof 
of (1.7). 
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1.4 A rhombus is a figure with four equal 
sides. Show that the diagonals of a 
rhombus meet at right angles, and that 
the four small triangles thus formed are 
congruent to each other. 

1.5 A rectangle is a four-sided figure with 
four right angles. Show that the two 
diagonals of a rectangle are congruent 
and bisect each other. 

1.6 The exterior angles of a pentagon, with 
sides extended, add up to four right 
angles. 

1.7 If two right triangles have one side and 
the hypotenuse respectively congruent, 
then the triangles are congruent. (We 
call this the right-angle-side-side theo­
rem (RASS). Note in general that "ASS" 
is false: If two triangles have an angle 
and two sides equal, they need not be 
congruent. ) 

1.8 Show that the three angle bisectors of 
a triangle meet in a point. Be careful 
how you make your construction, and 
in what order you do the steps of 
your proof. (If you need a hint, look at 
(IV.4) .) 

1.9 The three perpendicular bisectors of 
the sides of a triangle meet in a single 
point. Be sure to give a reason why 
they should meet at all . For a hint, look 
at (IV.S). 

1.1 0 Still using only results from Book I, 
show that if AB is the diameter of a 
circle, and C lies on the circle, then the 
angle LACB is a right angle. 

C><J 

A f"----~----4I 
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1.11 Read the Elements, Book III, Propositions 1-34. Be prepared to present statements 
and proofs of(III.16), (IIUB), (III.20), (III.21), (III.22), (III.31), and (III.32). 

For the following exercises, present proofs in the style of Euclid, using any results 
you like from (U)-(I.34) and (III.1)-(III.34) (still excluding the theory of area) . 

1.12 Let AB and AG be two tangent lines 
from a point A outside a given circle. A 
Show that AB ~ AG. 

1.l3 Let two circles be tangent at a point A. 
Draw two lines through A meeting the 
circles at further points B, G, D, E. Show 
that BG is parallel to DE. 

1.14 Given a pentagon ABGDE. Assume that 
all five sides are equal, and that the 
angles at A , B, G are equal. Prove that 
in fact all five angles are equal (so it is 
a regular pentagon). 

f 

c 

c... 

1.15 Let two circles y and b meet at a point P. Let the tangent to y at P meet b again at B, 
and let the tangent to bat P meet y again at A. Let e be the circle through A, B, P. Let 
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the tangent to e at P meet y and J at C, D. Prove that PC ~ PD. Hint: Draw lines 
joining P and the centers of the three circles, and look for a parallelogram. 

[ 

2 Ruler and Compass Constructions 

One of the notable features of Euclid's Elements is his constructive approach to 
geometry. Many of his propositions are not theorems in the usual sense, that 
under certain hypotheses a certain result is true. Rather they are construction 
problems: given certain data, to construct a certain figure. For example, the first 
proposition of Book I is to construct an equilateral triangle. We could regard 
these constructions as existence proofs. But they are existence proofs of a very 
special kind: They are constructive, and the constructions are carried out with 
specified tools, the ruler (or straightedge) and compass. Almost one-third of 
the propositions in Book I, and all of the propositions in Book IV, are construc­
tions. The constructive approach is even embedded in the initial assumptions of 
Euclid's geometry, because Postulate 1 says "to draw a straight line from any 
point to any point," and Postulate 3 says "to describe a circle with any center 
and distance." A modern mathematician would be more likely to say that there 
exists a line through any two points, and replace Postulate 3 by a definition of a 
circle as the set of points equidistant from a given point. 

This constructive approach pervades Euclid's Elements. There is no figure in 
the entire work that cannot be constructed with ruler and compass, 1 and this 

1 For the three-dimensional figures of Books XI-XIII we must allow also theoretical tools that can 
draw a plane through three given points and that can rotate a semicircle about its diameter as axis to 
construct a sphere. 
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limits the world of subjects to be discussed to those that are constructible. So for 
example, in Book IV, where Euclid discusses regular polygons inscribed in a 
circle, we find the triangle, the square, the pentagon, the hexagon, and the reg­
ular IS-sided polygon, all of which can be constructed. But there is no mention 
of a regular 7-sided polygon, for example, and there are no theorems about reg­
ular n-gons such as one might find in a modern text. A modern mathematician 
would never doubt the existence of a regular 7-gon: Just take angles of 2nj 7 at 
the center of the circle, and join corresponding points on the circumference. 
The question would be rather, is it possible to construct the regular 7-gon with 
ruler and compass? But for Euclid, it seems that he cannot discuss a figure until 
he has shown how to construct it. Look, for example, at (1.46), to construct a 
square on a given line segment. In terms of what is needed for the proof, this 
result could have been placed immediately after (1.34). Why is it here? Presum­
ably, because in the next proposition, the famous Pythagorean theorem (1.47), 
he needs to talk about the squares on the three sides of the right triangle, and he 
does not want to do this until he has shown that a square can be constructed on 
any given line-segment. 

This brings us to the thorny question of what exactly it means to say that a 
certain mathematical object exists. For some of the structures considered by 
modern-day mathematicians, this is indeed a difficult question. But for Euclid 
there was no doubt. I believe we will not be far from the truth if we say simply 
that in Euclid's geometry only those geometrical figures exist that can be con­
structed with ruler and compass. 

So now let us examine more closely 
how these ruler and compass construc­
tions work. Look at (I.1), for example: 
to construct an equilateral triangle on a 
given line segment. We are given a line 
segment AB. We draw a circle with cen­
ter A and radius AB, and another circle 
with center B and radius BA. These two 
circles meet at a point C (and also at 
another point D, which we do not need). 
With the ruler we draw the lines AC and 
BC. Then ABC is the required equilat­
eral triangle. 

t-----~B 

Thus the construction consists of a finite number of lines and circles drawn 
with the ruler and compass, starting from the initial data, obtaining new points 
as intersections along the way, and ending with the desired figure. 

We will distinguish the construction, which is a series of applications of the 
ruler and compass to create a certain figure, from the proof that the figure con­
structed has the desired properties. The construction can be described, and 
makes sense, independently of any other constructions or proofs we may have 
made previously. But the proof that a certain construction gives the desired 
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result depends on its position in the logical sequence of propositions. In the case 
of (I.1), there are no previous propositions, so Euclid's proof depends only on 
the definitions, postulates, and common notions set out at the beginning of Book 
I. His proof says, in substance, that AC = AB because they are both radii of the 
first circle, and BA = BC because they are radii of the second circle, so AB = 
AC = BC and hence the triangle is equilateral. 

Next, let us look at (I.2). Given a 
point A and a line segment BC, we must 
construct a line segment AF originating 
at A , equal to Be. Euclid's method is as 
follows: Draw AB. Construct the equilat­
eral triangle ABD using the construction 
of (U). Then with center B and radius 
BC draw a circle to meet DB extended at 
E. With center D and radius DE draw a 
circle to meet DA extended at F. Then 
AF is the required line segment. 

The proof is natural enough: BC = 

BE by construction; DE = DF by con­
struction; DB = DA by construction, so 
by subtraction AF = BE = BC as required. 

But the question that immediately arises is, why did Euclid go to all this 
trouble when he could have made a much simpler construction: Set the compass 
points to the distance BC, then draw a circle with center A and radius BC, 
choose F any point on that circle, and join A to F? We must infer from the pres­
ence of this construction that Euclid allowed himself to use the compass only in 
its narrow sense to draw a circle with a given center and passing through a 
given point. It could not be lifted off the paper and used to transport a given 
distance to another location. So some people call Euclid's compass a collapsible 
compass: when you lift it off the paper the points fall together and do not pre­
serve the radius they were set at. However, the function of this construction 
(I.2) is to show that with the collapsible compass one can still accomplish the 
same result, as if the compass had not been collapsible, namely, to transport a dis­
tance to another point in the plane. So from now on, we will allow ourselves to 
use the compass in this stronger sense, to draw a circle with given center and 
radius equal to any given line segment. 

Counting Steps 

To increase our awareness of the process of ruler and compass constructions, let 
us make precise exactly how the tools can be used, and let us set up a way of 
counting our steps as a measure of the complexity of the construction. The 
number of steps needed for a construction is not really important of itself, but 
by counting our steps we become more conscious of the process. This is one of 
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the practical aspects of this course, to have some fun while we are pondering the 
deeper theoretical questions. 

In any construction problem there are usually some points, lines, or circles 
given at the outset. The ruler may be used to extend a given or previously con­
structed line in either direction. The ruler may be used to draw a new line 
through two distinct points either given or constructed earlier. The ruler may 
not be used to measure distances, and it may not have any markings on it 
(hence the frequently used term straightedge to emphasize that it may be used 
only to draw straight lines). 

The compass may be used to draw a circle with center a given or previously 
constructed point, and with radius equal to the distance between any two given 
or previously constructed points. 

In addition, at any time one may choose a point at random, or subject to 
conditions such as that it should lie on a given line or circle, or be on the other 
side of a line from a given point, etc. 

Each time a new line or circle is drawn, those points in which it intersects 
previously given or constructed lines and circles will be considered to be con­
structed also. 

For counting, we consider each use of the ruler to construct a new line as 
one step, and each use of the compass to construct a new circle as one step. 
Extending lines previously given or constructed, choosing points at random, and 
obtaining new points as intersections do not count as separate steps. 

Thus for example, the construction of the equilateral triangle (1.1) above 
takes four steps: 

The line segment AB is given 
1. Draw circle with center A and radius AB. 
2. Draw circle with center B and radius BA. Get C. 
3. Draw AC. 
4. Draw BC. 

Then ABC is the required triangle. 
When performing more complicated constructions, we will count all of the 

steps required to perform the entire construction, so that each construction is 
self-contained and independent of other constructions (though inevitably each 
construction will contain elements of other constructions). This imposes a dif­
ferent notion of economy of construction from Euclid's. For while Euclid in his 
sequential development of the propositions finds it most economical to utilize 
previous constructions, we will find that minimizing the total number of steps 
will often lead us to different constructions. 

Look at (1.9), for example, to bisect a given angle. The angle is given by a 
point A and two rays l, m emanating from A. Euclid's method is this: Choose B 
on 1 at random. Find C on m such that AB = AC (1.3). Draw BC. Construct the 
equilateral triangle BCD (1.1). Join AD. Then AD is the angle bisector. 
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Euclid's method is economical for 
him because it makes use of previously 
described constructions (I. 3) and (I.l). If 
we count the number of steps to carry 
out this construction, we find seven: 

Choose B at random on I (no step) 
1. Circle center A radius AB, get C. 
2. Draw BC. 
3. Circle center B radius BC. 
4. Circle center C radius CB, get D. 
5. Draw BD. 
6. Draw CD. 
7. Draw AD, which is the angle bisector. 

A 

If we are concerned only with making an independent construction for the 
angle bisector, there is no need to draw the lines BC, BD, CD. Thus the con­
struction reduces to four steps. In order to prove that this construction works, 
we might want to draw the lines BC, BD, CD and argue as Euclid did. The lines 
then become part of the proof. But they are not part of the construction, so the 
construction still requires only four steps. 

For another example, look at Euclid's construction (1.10) to bisect a given 
line segment. He first appeals to (1.1) to construct an equilateral triangle, and 
then to (1.9) to bisect the angle at its vertex. This is an elegant method, making 
use of what he has done before. But in terms of numbers of steps, it is not effi­
cient. If we add the numbers of steps used in the two previous results, we get 11 
steps. If we make use of points already constructed in (1.1) when we do the 
construction of (1.9), this reduces to 9. But it is possible to give a direct con­
struction of the midpoint of a segment in only three steps (see Exercise 2.2). 

A Note About Accuracy and Exactness of Constructions 

When carrying out ruler and compass constructions, we attempt to make our 
drawings as accurate as possible. Using a sharp pencil we draw fine lines and 
make them pass through given points as closely as possible. Nevertheless, there 
is always a small error in each step, and those errors will compound throughout a 
long construction, so that the final figure does not always do just what you want. 
For example, in constructing the circle circumscribed about a given triangle 
(Exercise 2.10), you may find that your circle passes nicely through two of the 
points but misses the third one slightly. This error is inevitable in any drawings 
we make. 

But, to paraphrase the quotation from Plato in Section 1, it is not the line and 
the circle drawn on the paper that we are thinking of, it is the absolute line and 
the absolute circle. And in this sense, our construction must be mathematically 
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exact. In other words, it must be possible to prove using the reasoning of abstract 
geometry that this construction in its ideal form gives the exact result we are 
seeking. 

This distinction has caused considerable confusion among amateur mathe­
maticians through the ages, who were trying to make constructions, now known 
to be impossible, of trisecting the angle or squaring the circle . For many of their 
constructions are remarkably accurate, while failing to be mathematically exact. 
(See the interesting book of Dudley (1987), as well as Sections 25, 28 below.) 

Exercises 

For each of the following problems, carry out a ruler and compass construction as accu­
rately as you can. Number and label each of your steps as in the text. Feel free to use 
abbreviations such as "AB" for "draw a line AB"; "OAB" to draw a circle with center A 
and radius AB; or "ocArBC" to draw a circle with center A and radius BC. Label each new 
point as it is constructed and mention it (e.g., "get F") in the appropriate step. For the 
time being, we are not concerned with the proofs. Just do the construction. You should, 
however, be able to give an informal proof (convincing argument) of why it works, if 
asked. 

After you make your construction, locate the corresponding proposition in Euclid 
(Book I, III, or IV) and compare. How many steps does his method require? What do you 
think is the least number of steps possible? I will sometimes give a par value for a con­
struction, which is the typical number of steps an experienced constructor would need. 
By trying harder, you can sometimes succeed with fewer steps. 

2.1 Given an angle, construct the angle 
bisector (par = 4). 

2.2 Given a line segment, find the mid­
point of that segment (par = 3). 

2.3 Given a line I and a point A on I, con­
struct a line perpendicular to I through 
A (par = 4, possible in 3). 

A 

e 
B 
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2.4 Given a line 1 and a point A not on I, 
construct a line perpendicular to 1 pass­
ing through A (par = 4, possible in 3). 

lA 
I 

~ 

2.5 Given an angle at a point A, and given L 
a ray emanating from a point B, con-
struct an angle at B equal to the angle 
at A (par = 4). 

2.6 Given a line 1 and a point A not on I, 
construct a line parallel to I, passing 
through A (par = 3). 

2.7 Given a circumference of a circle, find 
the center ofthe circle (par = 5). 

2.8 Given a circle with its center 0, and 
given a point A outside the circle, con­
struct a line through A tangent to the 
circle. (Warning: You may not slide the 
ruler until it seems to be tangent to 
the circle. You must construct another 
point on the desired tangent line before 
drawing the tangent.) (Par = 6.) 

2.9 Construct a circle inscribed in a given 
triangle ABC (par = 13). 

A 

.... 
"-A 

A ---

o 

A 

/ 

\ , 
c.. 
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2.10 Construct a circle circumscribed about 
a given triangle ABC (par = 7). 

2.11 Given a line 1, a line segment d, and a 
point 0, construct a circle with center 
o that cuts off a segment congruent to d 
on the line 1 (par = 9). 

2.12 Given a point A, a line 1, and a point 
B on 1, construct a circle that passes 
through A and is tangent to the line 1 
at B (par = 8). 

A 

\ / 

./ 

~-,,-

t.. 

.0 

.- - -
/ 

I 

I 
A\ e / 

......... -. ,.. 

, ,t 

\ 
\ 
, 

I 

.,t 

2.13 Construct three circles, each one meeting the other two at right angles. (We say that 
two circles meet at right angles if the radii of the two circles to a point of inter­
section make right angles.) (Par = 10.) 

2.14 Given a line segment AB, divide it into 
three equal pieces (par = 6). 

A 
G 

6 

2.15 (The one-inch ruler.) Suzie's ruler broke into little pieces, so she can only draw lines 
one inch long. Fortunately, her compass is still working. She has two points on her 
paper approximately 3 inches apart. Help her construct the straight line joining 
those two points. 

2.16 (The rusty compass.) Joe's compass has rusted into a fixed position, so it can only 
draw circles whose radius is one inch. Fortunately, his ruler is still working. Help 
him construct an equilateral triangle on a s egment AB that is approximately 2! 
inches long (par = 6). 

2.17 Using a ruler and rusty compass (cf. Exercise 2.16), construct the perpendicular to 
a line 1 at a point A on 1 (par = 6). 

2.18 Using a ruler and rusty compass, given a line 1 and a point A more than 2 inches 
away from 1, construct the line through A and perpendicular to 1 (par = 12). 
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2.19 Using a ruler and rusty compass, given 
a segment AB and given a ray AC, con­
struct a point D on the ray AC such 
thatAB;::; AD. 

2.20 Using a ruler and rusty compass, given 
a line 1 and given a segment AB more 
than one inch long, construct one of the 
points C in which the circle of center A 

and radius AB meets 1. 

A 

B 

\ 
I 

t 

c. 

2.21 Discussion question: Is it possible with ruler and rusty compass to construct any 
figure that can be constructed with ruler and regular compass? What would you 
need to know in order to prove that this is possible? For starters, can you carry out 
all the constructions of Euclid, Book I, with ruler and rusty compass? 

2.22 (Back to regular ruler and compass con­
struction.) Given a segment AB, given a 
circle with center 0, and given a point 
P inside 0, construct (if possible) a line 
through P on which the circle cuts off a 
segment congruent to AB (par = 5). 

2.23 Given a segment AB, given an angle rx, 
and given another segment d, construct 
a triangle ABC with base equal to AB, 
angle rx at C, and such that AC + BC = d. 

2.24 Given two circles r, r', with centers 
0, 0', construct a line tangent to both 
circles. 

A 

i3 

\ 
\ 
A 

, 0 ' 
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3 Euclid's Axiomatic Method 
One of the remarkable features of Euclid's Elements is its orderly logical struc­
ture. Euclid took the great mass of geometrical material that had grown in the 
previous two or three centuries, and organized it into one coherent logical 
sequence. This is what we now call the axiomatic method: Starting from a small 
number of definitions and assumptions at the beginning, all the succeeding 
results are proved by logical deduction from what has gone before. Euclid's text 
has been a model of mathematical exposition, unchallenged for two thousand 
years, and only recently (in the last hundred years or so) replaced by newer 
mathematical systems that we consider more rigorous. As we read Euclid, let us 
observe how he organizes his material, let us be curious about why he does 
things the way he does, and let us explore the questions that come to mind 
when we as modern mathematicians read this ancient text. 

Definitions 

Euclid begins with definitions. Some of these definitions are akin to the modern 
notion of definition in mathematics, in that they give a precise meaning to the 
term being defined. For example, the tenth definition tells us that if a line seg­
ment meets a line so that the angles on either side are equal, then these are 
called right angles. This tells us the meaning of the term right angle, assuming 
that we already know what is meant by a line, a line segment, an angle, and 
equality of angles. Similarly, the fifteenth definition, rephrased, defines a circle 
to be a set of points C, such that the line segments OA from a fixed point 0 to 
any point A of the circle C, are all equal to each other, and the point 0 is called 
the center of the circle. This tells us what a circle is, assuming that we already 
know what a line segment is, and what is meant by equality of line segments. 

On the other hand, some of Euclid's other definitions, such as the first, "a 
point is that which has no part," or the second, "a line is breadthless length," or 
the third, "a straight line is a line which lies evenly with the points on itself," 
give us no better understanding of these notions than we had before. It seems 
that Euclid, instead of giving a precise meaning to these terms, is appealing to 
our intuition, and alluding to some concept we may already have in our own 
minds of what a point or a line is. Rather than defining the term, he is appealing 
to our common understanding of the concept, without saying what that is. This 
may have been very well in a society where there was just one truth and one 
geometry and everyone agreed on that. But the modern consciousness sees this 
as a rather uncertain way to set up the foundations of a rigorous discipline. What 
if we say now, oh yes, we agree on what points and lines are, and then later it 
turns out we had something quite different in mind? So the modern approach is 
to say these notions are undefined, that is, they can be anything at all, provided 
that they satisfy whatever postulates or axioms may be imposed on them later. 
In the algebraic definition of an abstract group, for example, you never say what 
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the elements of the group are, nor what the group operation is. Those are un­
defined. However, they must satisfy the group axioms that the operation is as­
sociative, there exists an identity, and that there exist inverses. The elements of 
the group can then be anything as long as they satisfy these axioms. They could 
be integers, or they could be cosets of a subgroup of the integers, or they could be 
rotations of a geometrical object such as a cube, or anything else. So in our read­
ing of Euclid, perhaps we should regard "point" and "line" as undefined terms. 

It may be worth noting some differences of language between Euclid's text 
and modern usage. By a line he means something that may be curved, which we 
would call a curve. He says straight line for what we call line. And then he says a 
finite straight line (as in the statement of (1.1)) for what we would call a line seg­
ment. For Euclid, a plane angle results where two curves meet, and a rectilineal 
plane angle is formed when two line segments meet. Note that Euclid requires 
the two sides of an angle not to lie in a straight line. So for Euclid there is no 
zero angle, and there is no straight angle (180°). So we should think of Euclid's 
concept of angle as meaning an angle of r:t. degrees, with 0 < r:t. < 1800 (though 
Euclid makes no mention of the degree measure of an angle). 

Euclid's notion of equality requires special attention. He never defines 
equality, so we must read between the lines to see what he means. In Euclid's 
geometry there are various different kinds of magnitudes, such as line segments, 
angles, and later areas. Magnitudes of the same kind can be compared: They can 
be equal, or they can be greater or lesser than one another. Also, they can be 
added and subtracted (provided that one is greater than the other) as is sug­
gested by the common notions. 

Euclid's notion of equality corresponds to what we commonly call congruence 
of geometrical figures. In high-school geometry one has the length of a line seg­
ment, as a real number, so one can say that two segments are congruent if they 
have the same length. However, there are no lengths in Euclid's geometry, so we 
must regard his equality as an undefined notion. Because of the first common 
notion, "things which are equal to the same thing are also equal to one another," 
we may regard equality (which we will call congruence to avoid overuse of the 
word equal) to be an equivalence relation on line segments. Similarly, we will 
regard congruence of angles as an equivalence relation on angles. 

Postulates and Common Notions 

The postulates and common notions are those facts that will be taken for granted 
and used as the starting point for the logical deduction of theorems. If you think 
of Euclid's geometry in the classical way as being the one true geometry that 
describes the real world in its ideal form, then you may regard the postulates 
and common notions as being self-evident truths for which no proof is required. 
If you think of Euclid's geometry in the modern way as an abstract mathematical 
theory, then the postulates and common notions are merely those statements 
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that are arbitrarily selected as the starting point of the theory, and from which 
other results will be deduced. There is no question of their "truth," because one 
can begin a mathematical theory from any hypotheses one likes. Later on, how­
ever, there may arise a question of relevance, or importance of the mathemati­
cal theory constructed. The importance of a mathematical theory is judged by 
its usefulness in proving theorems that relate to other branches of mathematics 
or to applications. If you begin a mathematical theory with weird hypotheses as 
your starting point, you may get a valid logical structure that is of no use. From 
that point of view the choice of postulates is not so arbitrary. In any case, we can 
regard Euclid's postulates and common notions collectively as the set of axioms 
on which his geometry is based. 

Some commentators say that the postulates (as in Heath's edition) are those 
statements that have a geometrical content, while the common notions are 
those statements of a more universal nature, which apply to all the sciences. 
Other commentators divide them differently, calling "postulates" those state­
ments that allow you to construct something, and calling "axioms" those state­
ments that assert that something is always true. One should also note that some 
editors give extra axioms not listed in Heath's edition, such as "halves of equals 
are equal," which is used by Euclid in the proof of (I.37), or "two straight lines 
cannot contain a space." 

We have already noted the constructive nature of Euclid's approach to 
geometry as expressed in Postulates 1-3. By the way, Euclid makes no explicit 
statement about the uniqueness of the line mentioned in Postulate 1, though he 
apparently meant it to be unique, because in the proof of (I.4) he says "other­
wise two straight lines will enclose a space: which is impossible." 

In the list of Postulates and Common Notions, Postulate 5 stands out as being 
much more sophisticated than the others. It sounds more like a theorem than an 
axiom. We will have more to say about this later. For the moment let us just 
observe that two thousand years of unsuccessful efforts to prove this statement 
as a consequence of the other axioms have vindicated Euclid's genius in realiz­
ing that it was necessary to include Postulate 5 as an axiom. 

Intersections of Circles and Lines 

As we read Euclid's Elements let us 
note how well he succeeds in his goal 
of proving all his propositions by pure 
logical reasoning from first principles. 
We will find at times that he relies on 
"intuition," or something that is obvious 
from looking at a diagram, but which is 
not explicitly stated in the axioms. For 
example, in the construction of the equi-

A fL--------~ B 
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lateral triangle on a given line segment AB (Ll) how does he know that the two 
circles actually meet at some point C? While the fifth Postulate guarantees that 
two lines will meet under certain conditions, there is nothing in the definitions, 
postulates, or common notions that says that two circles will meet. Nor does 
Euclid offer any reason in his proof that the two circles will meet. 

If you carry out the construction with ruler and compass on a piece of paper, 
you will find that they do meet. Or if you look at the diagram, it seems obvious 
that they will meet. However, that is not a proof, and we must acknowledge that 
Euclid is using something that is not explicitly guaranteed by his axioms and yet 
is essential to the success of his construction. 

There are two separate issues here. One is the relative position of the two 
circles. Two circles need not always meet. If they are far apart from each other, 
or if one is entirely contained in the other, they will not meet. In the present 
case, part of one circle is inside the other circle, and part outside, so it appears 
from the diagram that they must cross each other. 

The second issue is, assuming that 
they are in a position so that they ap-
pear to meet, does the intersection ~ 
point actually exist? Today we will im-
mediately think of continuity and the 
intermediate value theorem: If y = [(x) 
is a real-valued continuous function 
defined on the unit interval [0, 1] of 
the real numbers, and if [(0) < 0 and 0 1"X 
[(1) > 0, then there is some point a E 

[0,1] with [(a) = O. In other words, the 
graph of the function must intersect the 
x-axis at some point in the interval. 

However, we must bear in mind that the concepts of real numbers and con­
tinuous functions were not made rigorous until the late nineteenth century, and 
that this kind of mathematical thinking is foreign to the spirit of Euclid's Ele­
ments. 

To make the same point in a differ- d 
ent way, suppose we consider the Car-
tesian plane over the field of rational 
numbers <Q, where points are ordered 
pairs of rational numbers, and let AB 
be the unit interval on the x-axis. Then 
the vertex C of the equilateral triangle, ~ 

which would have to be the point 0 1 
(!, !J3), actually does not exist in this 
geometry. 

So later on, when we set up a new system of axioms for Euclidean geometry, 
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we will have to include some axiom that guarantees the existence of the inter­
section points of circles with other circles, or with lines, at least those that arise 
in the ruler and compass constructions of Euclid's Elements. Some modern 
axiom systems (such as Birkhoff (1932) or the School Mathematics Study Group 
geometry) build the real numbers into the axioms with a postulate of line mea­
sure, or include Dedekind's axiom that essentially guarantees that we are work­
ing over the real numbers. In this book, however, we will reject such axioms as 
not being in the spirit of classical geometry, and we will introduce only those 
purely geometric axioms that are needed to lay a rigorous foundation for 
Euclid's Elements. 

The issue of intersecting circles arises again in (1.22), where Euclid wishes to 
construct a triangle whose sides should be equal to three given line segments 
a, b, c. This requires that a circle with radius a at one endpoint of the segment b 
should meet a circle of radius c at the other end of the segment b. Euclid correctly 
puts the necessary and sufficient condition that this intersection should exist in 
the statement of the proposition, namely that any two of the line segments 
should be greater than the third. However, he never alludes to this hypothesis 
in his proof, so that we do not see in what way this hypothesis implies the exis­
tence of the intersection point. While some commentators have criticized Euclid 
for this, Simson ridicules them, saying "For who is so dull, though only begin­
ning to learn the Elements, as not to perceive ... that these circles must meet 
one another because FD and GH are together greater than FG." Still, Simson has 
only discussed the position of the circles and has not addressed the second issue 
of why the intersection point exists. (See Plate V, p. 109) 

The Method of Superposition 

Let us look at the proof of (1.4), the 
side-angIe-side criterion for congru­
ence of two triangles (SAS for short). 
Suppose that AB = DE, and AC = DF, 
and the included angle LBAC equals 
LEDF. We wish to conclude that the tri­
angles are congruent, that is to say, the 
remaining sides and pairs of angles are 
congruent to each other, respectively. 
Euclid's method is to "apply the tri­
angle" ABC to the triangle DEF. That 

A 

~ 
B c. 

is, he imagines moving the triangle ABC onto the triangle DEF, so that the point 
A lands on the point D, and the side AB lands on the side DE. Then he goes on 
to argue that the ray AC must land on the ray DF, because the angles are 
equal, and hence C must land on F because the sides are equal. From here he 
concludes that the triangles coincide entirely, hence are congruent. 
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Huius it.que Propolitionis veritatem non aliunde quam a communi iudicio pe­
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intelligere vero , id de mum dre Mathematicum. lam vero quum fuerit confelfum 
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fcd non aliam ob caufam,quam quod linea obliqua (ui copiam adeo aperte non fa­
cit vt reaa: Cuius menfuram facile capimus, ac per earn, obliquarum inter fe com­
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qui fequieur modo. 

Manente duorum Triangulorum ABC & D E F conditionc,continuabo E D 

Plate II. The commentary on (1.4) from Peletier's Euclid of (1557). He says the truth of 
this proposition belongs among the common notions, because to superimpose one figure 
on another is mechanics, not mathematics. 

32 
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This is another situation where Euclid is using a method that is not explicitly 
allowed by his axioms. Nothing in the Postulates or Common Notions says that 
we may pick up a figure and move it to another position. We call this the method 
of superposition. 

Euclid uses this method again in the proof of (1.8), but it appears that he was 
reluctant to use it more widely, because it does not appear elsewhere. If it were 
a generally accepted method, for example, then Postulate 4, that all right angles 
are equal to each other, would be unnecessary, because that would follow easily 
from superposition. 

If we think about the implications of this method, it has far-reaching con­
sequences. It implies that one can move figures from one part of the plane to 
another without changing their sides or angles. Thus it implies a certain homo­
geneity of the geometry: The local behavior of figures in one part of the plane 
is the same as in another part of the plane. If you think of modern theories of 
cosmology, where the curvature of space changes depending on the presence of 
large gravitational masses, this is a nontrivial assumption about our geometry. 

To state more precisely what assumptions the method of superposition is 
based on, let us define a rigid motion of the plane to be a one-to-one transforma­
tion of the points of the plane to itself that preserves straight lines and such that 
segments and angles are carried into congruent segments and angles. To carry 
out the method of superposition, we need to assume that there exist sufficiently 
many rigid motions of our plane that 

(a) we can take any point to any other point, 
(b) we can rotate around any given point, so that one ray at that point is taken 

to any other ray at that point, and 
(c) we can reflect in any line so as to interchange points on opposite sides of the 

line. 

If we were working in the real Cartesian plane lR 2 with coordinates x, y, we 
could easily show the existence of sufficient rigid motions by using translations, 
rotations, and reflections defined by suitable formulas in the coordinates. 

For example, a translation taking the 
point (0,0) to (a, b) is given by 

{
X' =x+a, 
y' = y+b, 

and a rotation of angle IX around the 
origin is given by 

{
X' = XCOSIX - y sin IX, 

y' = X sin IX + ycoslX. 
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Thus we can easily justifY the use of the method of superposition in the real 
Cartesian plane. However, since there are no coordinates and no real numbers 
in Euclid's geometry, we must regard his use of the method of superposition as 
an additional unstated postulate or axiom. 

To formalize this, we could postulate the existence of a group of rigid motions 
acting on the plane and satisfYing the conditions (a), (b), (c) mentioned above. 
Indeed, there is an extensive modern school of thought, exemplified by Felix 
Klein's Erlanger Programm in the late nineteenth century, which bases the study 
of geometry on the groups of transformations that are allowed to act on the 
geometry. This point of view has had wide-ranging applications in differential 
geometry and in the theory of relativity, for example. 

We will discuss the rigid motions in Euclidean geometry in greater detail 
later (Section 17). For the moment let us just note that the proof of the (SAS) 
criterion for congruence in (I.4) requires something more than what is in Euclid's 
axiom system. Hilbert's axioms for geometry actually take (SAS) as an axiom in 
itself. This seems more in keeping with the elementary nature of Euclid's geome­
try than postulating the existence of a large group of rigid motions. 

Finally let us note that Euclid's use of the method of superposition in the 
proof of (1.4) gives us some more insight into his concepts of "equality" for line 
segments and angles. In Common Notion 4 he says that things that coincide 
with one another are equal (congruent) to one another. In the proof of (I.4) he 
also uses the converse, namely, if things (line segments or angles) are equal to 
one another (congruent), then they will coincide when one is moved so as to be 
superimposed on the other. So it appears that Euclid thought ofline segments or 
angles being congruent if and only if they could be moved in position so as to 
coincide with each other. 

Betweenness 

Questions of betweenness, when one point is between two others on a line, or 
when a line through a point lies inside an angle at that point, play an important, 
if unarticulated, role in Euclid's Elements. To explain the notion of points on a 
line lying between each other, one could simply postulate the existence of a 
linear ordering of the points. Similarly, for angles at a point one could talk of 
a circular ordering. 

But when a hypothesis of relative position of points and lines in one part of a 
diagram implies a relationship for other parts of the figure far away, it seems 
clear that something important is happening, and it may be dangerous to rely on 
intuition. 

For example, how do you know that the angle bisector at a vertex A of a tri­
angle ABC meets the opposite side BC between the points BC and not outside? 
Of course, it is obvious from the picture, but what if you had to explain why 
without drawing a picture? 
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We have already seen that the relative position of two circles may affect 
whether they meet or not. Let us look at some other instances where between­
ness plays an important role in a proof. 

Consider (1.7), which is used in the 
proof of the side-side-side (SSS) crite-
rion for congruence of triangles (1.8). In 
(1. 7) Euclid shows that it is not possible 
to have two distinct triangles ABC and 
ABD on the same side of a segment AB 
and having equal sides AC = AD and 
BC=BD. 

The proof goes like this. Since AC = 
AD, the triangle ACD is isosceles, and 
so the base angles are equal (1.5). In the 
diagram Ll = L4. On the other hand, 
since BC = BD, the triangle BCD is isos­
celes, so its base angles are equal (1.5)­
in our diagram L2 = L3. But now L2 is 
less than Ll, which is equal to L4, 
which is less than L3. So L2 is much 
less than L3. But they are also equal, 
and this is impossible. 

c.. 

Note that this proof depends in an essential way on the relative position of 
the lines meeting at C and D, which determines the inequalities between the 
angles. If the line AD should reach the point D outside of the triangle BCD, as in 
our second (impossible) picture, then L2 < Ll and L3 < L4, and there is no 
contradiction. Thus the original proof depends on a certain configuration of 
lines being inside certain angles, which in turn depends on some global proper­
ties of the entire two-dimensional figure, and these relationships would be hard 
to explain convincingly without using a diagram. So as soon as we realize that 
we are depending on a diagram for part of our proof, a mental red flag should 
pop up to alert us to the question, What exactly is going on here, and what 
unstated assumptions are we using? 
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For another example where similar 
questions arise, look at the proof of 
(U6) to show that an exterior angle of 
a triangle is greater than the opposite F 
interior angle. 

Let ABC be the given triangle. Bisect 
AC at E, draw BE, and extend that line 
to F so that BE = EF. Draw CF. Then 
by SAS (1.4), Euclid shows that the tri­
angle BEA is congruent to the triangle 
FEC, and so the angle at A is equal to 
the angle LACF. He then says that the " 1> 
angle LACF is less than the exterior 
angle LACD, which proves the result. 

How do we know this relation among the angles? Because the line CF lies 
inside the angle ACD. But why is it inside? Since the line CF was constructed 
using the point F, which in turn was constructed using the point E, this is a 
global property of the whole figure, which is clear from the diagram, but would 
be hard to explain without a diagram. 

To illustrate the danger of relying on diagrams in geometrical proofs, we will 
present a well-known fallacy due to W.W. Rouse Ball (1940). The following pur­
ports to be a proof that every triangle is isosceles. See if you can find the flaw in 
the argument. 

Example 3.1 
Let ABC be any triangle. Let D be the 
midpoint of Be. Let the perpendicular 
to BC at D meet the angle bisector at A 
at the point E. Drop perpendiculars EF 
and EG to the sides of the triangle, and 
draw BE, CEo The triangles AEF and 
AEG have the side common and two 
angles equal, so they are congruent by 
AAS (1.26). Hence AF = AG and EF = 
EG. The triangles BDE and CDE have 
DE common, two other sides equal, and 
the included right angles equal. Hence 
they are congruent by SAS (1.4). In par­
ticular BE = CEo 

A 

c.. 

Now, the triangles BEF and CEG are right triangles with two sides equal, so 
they are congruent (see lemma below), and hence BF = CG. Adding equals to 
equals, we find AB = AF + FB is equal to AC = AG + Ge. So the triangle ABC is 
isosceles. 



There are several other cases to 
consider. If the point E lies outside the 
triangle, one can use this second figure 
and exactly the same proof to conclude 
that AB and AC are the differences of 
equal segments AF = AC and BF = CC, 
hence equal. 

If E lands at the point D, or if the 
angle bisector at A is parallel to the per­
pendicular to AB at D, the proof be­
comes even easier, and we leave it to 
the reader. 
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We still need to prove the following lemma. 

Lemma 3.2 (Right-Angle-Side-Side) (RASS) 
If two right triangles have two sides equal, not containing the right angle, they are 
still congruent. 

Proof This result, though not stated by 
Euclid, is often useful. We give two 
proofs. The first method is to use (I.47) 
to conclude that the square on BC is 
equal to the square on EF. Then BC = 
EF, and we can apply (SSS) (1.8). 

The second proof does not make use 
of (1.47) and the theory of area. Extend 
FE to C and make EC = BC. Then the 
triangles ABC and DEC are congruent 
by SAS (1.4). Therefore, AC = DC. It 
follows that DF = DC, so the triangle 
DFC is isosceles. Therefore, the angles 
at F and C are equal. Then the triangles 
DEC and DEF are congruent by AAS 
(1.26). But DEC is congruent to ABC, so 
the two original triangles are congruent. 

The Theory of Parallels 

Book I of Euclid's Elements can be divided naturally into three parts. The first 
part, (1.1)-(1.26), deals with triangles and congruence. The second part, (I.27)-
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(1.34), deals with parallel lines and their applications, including the well-known 
(1.32) that the sum of the angles of a triangle is two right angles. The third part, 
(1.35)-(1.48), deals with the theory of area. 

Two lines are parallel if they never meet, even if extended indefinitely in 
both directions (Definition 23). The fifth postulate gives a criterion for two lines 
to meet under certain conditions, hence to be not parallel, so we often refer to 
the fifth postulate as the parallel postulate. Euclid postponed using this postulate 
as long as possible so that in fact, the first part of Book I about triangles and 
congruence does not use the parallel postulate at all. It is first used in (1.29). 
Let us examine closely Euclid's theory of parallels and his use of the parallel 
postulate. 

The first result about parallel lines, 
(1.27), says that if a line falling on two 
other lines makes the alternate interior 
angles equal, then the lines are par­
allel. This is proved using (U6): If not, 
the lines would meet on one side or 
the other, and would form a triangle 
having an exterior angle equal to one 
of its opposite interior angles, which is 
impossible. 

The next result (1.28) is similar, and follows directly from this one using 
vertical angles (US) or supplementary angles (I.l3). 

The fifth postulate is used to prove the converse of (1.27), which is (1.29): If 
the lines are parallel, then the alternate interior angles will be equal. For if 
not, then one would be greater than the other, and so the sum of the interior 
angles on one side of the transversal would be less than two right angles. In 
this situation, the fifth postulate applies and forces the lines to meet, which is a 
contradiction. 

As for the existence of parallel lines, 
Euclid gives a construction in (1.31) for 
a line through a point P, parallel to a 
given line 1. Draw any line through P, 
meeting 1, and then reproduce the angle 
it makes with 1 at the point P (1.23). It 
follows from (1.27) that this line is par­
allel to I. 

Why does Euclid place this construction after (1.29), even though it does not 
depend on (1.29) and does not make use of the parallel postulate? Presumably, 
the answer, although Euclid does not say so, is that using (1.29) one can show 
that this parallel just constructed is unique. If there were any other line parallel 
to I through P, it would make the same angle with the transversal (by (1.29)) and 
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hence would be equal to this one. Thus using the parallel postulate we can 
prove the following statement: 

P. For each point P and each line I, there exists at most one line through P par­
allel to I. 

This statement (P) is often called "Playfair's axiom," after John Playfair 
(1748-1819), even though it already appears in the commentary of Proclus. Of 
course, in Euclid's development of geometry, this is not an axiom, but a theorem 
that can be proved from the axioms. Some authors, however, like to take the 
statement (P) as an axiom instead of using Euclid's fifth postulate. So I would 
like to explain in what sense we can say that Euclid's fifth postulate is equivalent 
to Playfair's axiom (P). 

Since the parallel postulate plays such a special role in Euclid's geometry, let 
us make a special point of being aware when we use this postulate, and which 
theorems are dependent on its use. Let us call neutral geometry the collection of 
all the postulates and common notions except the fifth postulate together with all 
theorems that can be proved without using the fifth postulate. Thus (1.1)-(1.28) 
and (1.31) all belong to neutral geometry, while for example, (1.32) and (1.47) do 
not belong to neutral geometry. 

If we take neutral geometry and add back the fifth postulate, then we 
recover ordinary Euclidean geometry, and we can prove (P) as a theorem as we 
did above. 

But now suppose we take neutral geometry and add (P) as an extra axiom. 
We will show that in this geometry we can prove Euclid's fifth postulate as a 
theorem. 

Indeed, suppose we are given two 
lines I, m and a transversal n such that 
the two interior angles 1, 2 on the same 
side are less than two right angles. Let 
P be the intersection of the lines m and 
n, and draw a line I' through P, making 
the alternate angle 3 equal to 1. This 
is possible by (1.23), which belongs to 
neutral geometry. Then by (1.27), which 
also belongs to neutral geometry, I' is 
parallel to I. 

Now, since 1 + 2 is less than two 
right angles, it follows that 2 + 3 is less 
than two right angles, and hence the 
line I' is different from m (U3) . Now we 
can apply (P). Since I' passes through P 

I 

------:r--k-----L 
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and is parallel to 1, it must be the only line through P that is parallel to 1. In par­
ticular, the line m, which is different from I', cannot be parallel to 1, and so by 
definition it must meet l. This proves the fifth postulate. 

Thus in the presence of all the results of neutral geometry, we can use 
Euclid's fifth postulate to prove Playfair's axiom, or we can use Playfair's axiom 
to prove Euclid's fifth postulate. In this sense we can say that in neutral geome­
try, Euclid's fifth postulate is equivalent to Playfair's axiom. This means that 
adding either one of them as an additional assumption to neutral geometry will 
give the same body of theorems as consequences. 

The Theory of Area 

In (I.35), Euclid says that two parallelo­
grams on the same base and in the same 
parallels (this means their top sides lie A 1) t:= F 
on the same line parallel to the base) 
are equal to each other. In the figure, 
the parallelogram ABCD is equal to the 
parallelogram BCEF. Clearly, the paral­
lelograms are not congruent. 

Looking at the proof, which is ac­
complished by adding and subtract-
ing congruent figures, we conclude that B C 
Euclid must be referring to the area of 
the parallelograms when he says they 
are equal. But he has not said what the 
area of a figure is, so we must reflect a bit to see what he means. 

Our intuitive understanding of area comes from high-school geometry, 
where we learn that the area of a rectangle is the product of the lengths of two 
perpendicular sides, the area of a triangle is one half the product of the lengths 
of the base and the altitude, etc. The /I area" of high-school geometry is a func­
tion that attaches to each plane figure a real number; the area of a nonover­
lapping union of figures is the sum of the areas, and so forth. Most likely no one 
ever told you the definition of area, nor did they prove that such an area function 
exists. Using calculus, you can define the area of a figure in the real Cartesian 
plane using definite integrals, and in that way it is possible to prove that a suit­
able area function exists. But in Euclid's geometry there are no real numbers, 
and we certainly do not want to use calculus to define the concept of area in 
elementary geometry. 

So what did Euclid have in mind? Since he does not define it, we will con­
sider this new equality as an undefined notion, just as the notions of congruence 
for line segments and angles were undefined. We will call this new notion equal 
content, to avoid confusion with other notions of equality or congruence. We do 
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not want to use the word area, because this notion is quite different from our 
common understanding of area as a function associating a real number to each 
figure. 

From the way Euclid treats this notion, it is clear that he regards it as an 
equivalence relation, satisfying the common notions. In particular: 

(a) Congruent figures have equal content. 
(b) If two figures each have equal content with a third, they have equal content. 
( c) If pairs of figures with equal content are added in the sense of being joined 

without overlap to make bigger figures, then these added figures have equal 
content. 

(d) Ditto for subtraction, noting that equality of content of the difference does 
not depend on where the equal pieces were removed. 

( e) Halves of figures of equal content have equal content (used in the proof 
of (1.37)). (Also, doubles of equals are equal, as a consequence of ( c) 
above.) 

(f) The whole is greater than the part, which in this case means that if one 
figure is properly contained in another, then the two figures cannot have 
equal content (used in the proof of (1.39)). 

In terms of the axiomatic development of the subject, at this point Euclid is 
introducing a new undefined relation, and taking all the properties just listed as 
new axioms governing this new relation. Later in this book (Section 22), we will 
discuss Hilbert's reinterpretation of the theory of area where the relationship of 
having equal content is defined, and all its properties proved, so that it does not 
require the introduction of new axioms. 

Now let us see what Euclid does with this purely geometric notion of equal 
content of plane figures. In (1.35) he proves that the two parallelograms have 
equal content (see diagram on previous page) by first showing that the triangle 
ABE is congruent to the triangle DCF, so they have equal content. Then by sub­
tracting the triangle DGE from each (in different positions!) and adding the tri­
angle BGC to each, he obtains the two parallelograms, which therefore have 
equal content. 

In (1.37) he shows that two triangles 
ABC and DBC on the same base and in 
the same parallels have equal content. 
The method is to double ABC to get a 
parallelogram EABC, and to double DBC 
to get a parallelogram DFBC. 

By (1.35) the two parallelograms 
have equal content, and then he applies 
the axiom that halves of equals are 
equal to conclude the triangles have 
equal content. 

fAD F 

c. 
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This is all that is needed to explain 
Euclid's beautiful proof of (1.47), the 
theorem of Pythagoras. The statement 
of the theorem is that if ABC is a right 
triangle, then the squares on the two 
legs together have equal content to the 
square on the hypotenuse. The proof 
goes like this. The triangle ABF is one 
half of the square ABFG. This triangle F 
ABF has equal content with the triangle 
BFC by (1.37). The triangle BFC is con­
gruent to the triangle BAD. And BAD 
has equal content to the triangle BMD 
by (1.37). This latter triangle is equal to 
one-half of the rectangle BDLM. Hence 
the square ABFG has equal content to 
the rectangle BDLM. Doing the same 
construction on the other side and add-
ing, one has the result. 

L---'----~E 
t> l.-

K 

Euclid's statement of (1.47) in terms of equal content of the squares con­
structed on the sides of the triangle may come as a surprise to the modern 
student who remembers the formula a2 + b2 = c2 (which I suppose in the minds 
of the general public is rivaled in fame only by Einstein's famous formula 
E = mc2 ). We are used to thinking of a, b, c as the lengths of the sides of the tri­
angle, in which case the theorem becomes an equation among real numbers. 
How can we reconcile these two points of view? 

The modern answer to this question, which we will discuss in more detail 
later (Section 23), is that after introducing coordinates in our geometry we can 
prove the existence of an area function. The area of a square of side a will be a2 • 

Furthermore, we will show that having equal content in the sense of Euclid is 
equivalent to having equal area in the sense of the area function. Then the two 
formulations of the theorem of pythagoras become equivalent. 

This answer makes sense only when we are able to assign numerical lengths 
to arbitrary line segments, which the Greeks could not do. Yet there is ample 
evidence that the Greeks did know special cases of this formula when a, b, care 
integers. The equation 32 + 42 = 52 was known to the Egyptians, and Proclus in 
his note on (1.47) mentions two general formulas for generating such "Pythagor­
ean triples" of integers, which he ascribes to Plato and to Pythagoras. So we can 
presume that the Greeks knew some particular right triangles with integer sides, 
in which case (1.47) can be represented by the equation among integers 
a2 + b2 = c2 . But the geometrical proof given by Euclid is then more general, 
because it applies to all triangles, and not just those for which one can find 
integers to fit the sides. 
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Euclid's theory of area plays an important role in the succeeding books of the 
Elements. It appears not only in results that correspond to our modern notion of 
area, but also in results, such as the construction of the regular pentagon (IV.ll), 
which at first sight appear to have nothing to do with area. Roughly speaking, 
Euclid uses arguments involving areas in places where we would expect to see a 
quadratic equation in analytic geometry. He can add two line segments to get 
another line segment, but there is no way to multiply line segments so as to 
get another line segment. Instead, one can regard the rectangle with sides 
equal to segments AB, CD as a product of these two segments. The results 
(1.42) -(1.45) on application of areas and all the results of Book II give a certain 
flexibility in manipulating and comparing different areas. This creates a sort 
of "algebra of areas," and one can regard results such as (11.14) as equivalent 
to the solution of certain quadratic equations. Note also the essential use of 
area in the proof of (V1.1), which is the cornerstone of Euclid's theory of similar 
triangles. 

Exercises 
3.1 Explain what is wrong with the "proof" in (Example 3.1). (Hint: Draw an accurate 

figure.) 

3.2 Read Euclid (1.35)-(1.48), Book II, and (III.35)-(III.37). Be prepared to present 
proofs of(1.35), (1.41), (1.43), (1.47), (II.6), (II.ll), and (III.36). 

3.3 Given a triangle ABC and given a seg­
ment DE, construct a rectangle with 
content equal to the triangle ABC, and 
with one side equal to DE. 

I) 

A 

B~C 
3.4 Given a rectangle, construct a square with the same content. 

3.5 Given a line 1 and given two points A, B 
not on 1, construct a circle passing 
through A, B and tangent to 1. (Hint: 
Use (III.36) and/or (III.37).) (Par = 14.) 

Po 
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3.6 Given two lines 1, m and a point P not 
on either line, construct a circle pass­
ing through P and tangent to both 1 
andm. 

Q. 

In the following exercises, give proofs based on results of Euclid, Books I-III only. 

3.7 Given a triangle ABC, let DE be a line 
parallel to the base BC, let F be the 
midpoint of DE, and let AF meet BC in 
G. Prove that G is the midpoint of BC. 
(Hint: Draw some extra lines to make 
parallelograms, and use (I.43).) 

3.8 Let r be a circle with center O. Let AB 
and AC be tangents to r from a point A 
outside the circle. Let BC meet OA at 
D. Prove that OA x OD = OBz (mean­
ing the rectangle on OA and OD has 
equal content to the square on OB). 

3.9 Let ABC be a right triangle, and let AD 
be the altitude from the right angle A to 
the hypotenuse BC. Prove that ADZ = 
BD x DC (in the sense of content). 

3.10 Problem: Given a triangle ABC, and 
given a point D on BC, to draw a line 
through D that will divide the triangle 
into two pieces of equal content. 

Solution (Peletier): Let E be the mid­
point of BC. Draw AD; draw EF parallel 
to AD. Then DF divides the triangle in 
half. 

131-------+----~ 

A 

Prove that the content of the quadrilat­
eral ABDF is equal to the content of the 
triangle DFC. 13 

c. 
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3.11 (Campanus). Use the theory of content 
to show that the line DE joining the 
midpoint of two sides of a triangle is 
parallel to the third side. (Hint: Draw 
BE and DC. Show that the triangles 
BDC and BEC have the same content 
and then apply (I.39).) 

4 Construction of the Regular Pentagon 

One of the most beautiful results in all of Euclid's Elements is the construction of 
a regular pentagon inscribed in a circle (IV.ll). The proof of this construction 
makes use of all the geometry he has developed so far, so that one could say that 
to understand fully this single result is tantamount to understanding all of the 
first four books of Euclid's geometry. It also raises questions of exposition that are 
central to our modern examination of Euclid's methods. For example, why does 
Euclid use the theory of area in proving a result about the sides of a polygon? 

In this section we will present Euclid's construction of the regular pentagon, 
and begin discussing the issues raised by its proof. Later (see (13.4), Exercise 
20.10, (29.1)), we will give other proofs using similar triangles or the complex 
numbers. Euclid's original geometric proof must be regarded as a tour de force 
of classical geometry. It depends on the theory of area, which we will discuss in 
more detail in Section 22. So this section can be regarded as a taste of things to 
come: a first meeting with one of the deeper topics that is central to Euclid's 
geometry. 

The key point of the construction of the pentagon is the following problem. 

Problem 4.1 
To construct an isosceles triangle whose base angles are equal to twice the vertex 
angle. 

Construction ((lUI), (IV.IO)) 
Let A, B be two points chosen at random. 

1. Draw line AB. 

Next, construct a perpendicular to AB at A, as follows: 
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2. Circle AE, get G. 
3. Circle EG. 
4. Circle GE, get D. 
5. Line AD, get E. 

Next, we bisect AE as follows 

6. Circle EA, get F, G. 
7. Line FG, get H. 

Now comes the unusual part of the 
construction: 

8. Circle HE, get J. 
9. Circle AI, get K. 

10. Circle center E, radius AK, get L. 
11. Line AL. 
12. Line EL. 

Then MEL is the required triangle. The 
angles at E and at L will be equal to 
twice the angle at A. 

Proof From a modern point of view, it would seem that some theory of qua­
dratic equations is essential for the proof. Euclid did not have any algebra avail­
able to him, but he was able to deal with quantities essentially equivalent to 
quadratic expressions via the theory of area. We can think of a rectangle as rep­
resenting the product of its sides, or a square as the square of its side. These 
areas, without even assigning a numerical value to them, can be manipulated 
by cutting up and adding or subtracting congruent pieces. In this way Euclid 
establishes a "geometrical algebra" for manipulating these quantities (always by 
geometrical methods), which acts as a substitute for our modern algebraic 
methods. 

Let us then trace the steps by which Euclid proves (IV.IO), which is the key 
point in the construction of the regular pentagon. In Book I, especially (1.35)­
(1.47) he discusses the areas of triangles and parallelograms, leading up to the 
famous Pythagorean theorem (1.47), which is stated in terms of area: The square 
built on the hypotenuse of a right triangle has area equal to the combined areas of 
the squares on the two sides. The theorem is proved by cutting these areas into 
triangles, and proving equality of areas using the cutting and pasting methods 
just developed. Here area is understood in the sense of content-cf. Section 3. 

Book II contains a number of results of geometrical algebra, as described 
above, all stated and proved geometrically in terms of areas. In particular, (II.5), 
(II.6), and (1I.11) are used in the proof of (IV.IO). Note that (11.11), which is 
sometimes called the division of a segment in extreme and mean ratio, states 
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that the interval AB is divided by a point K (in our notation (4.1) above) such 
that the rectangle formed by BK and AB has area equal to the square on AK. In 
this way the property of extreme and mean ratio is expressed using area. 

From Book III we need (III.36) and 
its converse (II1.37) . Proposition (III.36) 
says that if a point A lies outside a cir­
cle, and if AB is tangent to the circle at 
B, and if ACD cuts the circle at C and D, 
then the rectangle formed by AC and 
AD has area equal to the square on AB. 
This result is proved by several applica­
tions of (II.6) and (1.47). 

Now Euclid can prove (IV.I0) by 
a brilliant application of (II1.37). Let 
A, K, B, L be as in the construction ( 4.1) 
above. Then by (ILl 1), the rectangle 
with sides BK and BA has area equal to 
the square on AK. Since BL was con­
structed equal to AK, this is also equal 
to the square on BL. 

Now consider the circle passing 
through the three points A, K , L. Since 
the rectangle on BK and BA is equal to 
the square on BL, it follows that BL is 
tangent to this circle (III.37)! 

A 

Hence the angle LBLK formed by the tangent BL and the line LK is equal to 
the angle IX at A , which subtends the same arc (III.32) . Let LKLA = J. Then 
LBKL is an exterior angle to the triangle MKL, so LBKL = IX + J (1.32). But 
LBLK = IX, so IX +J = LBLA, and this angle is fl because MBL is isosceles. 
Hence LBKL = fl . Now it follows that M3KL is isosceles, so KL = BL = AK. 
Hence MKL is also isosceles, so J = IX. Now fl = LBLA = 21X as required. 

Once we have the isosceles triangle constructed in (4 .1), the construction of 
the pentagon follows naturally. The idea is to inscribe in the circle a triangle 
equiangular with the given triangle, and then to bisect its two base angles. 

Problem 4.2 
Given an isosceles triangle whose base angles are equal to twice its vertex angle, 
and given a circle with its center, to construct a regular pentagon inscribed in 
the circle. 
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Construction ((lV.2) and (lV.1l)) 
Let MBG be the given triangle and let 0 be the center of the given circle. The 
first part of the construction is to obtain a tangent line to the circle. Let D be any 
point on the circle. 

l. Line OD. 
2. Circle DO, get E. 
3. Circle EO. 
4. Circle OE, get F. 
5. Line DF. 

Then DF will be a tangent line. Next, we reproduce the angle fJ from the base of 
the isosceles triangle at D, on both sides. 

6. Circle BG, get G. 
7. Circle at D with radius equal to BG, get H, I. 
8. Circle center H, radius GG, get K. 
9. Circle center I, radius GG, get L. 

10. Line DK, get M. 
11. Line DL, get N. 
12. Line MN. 

u 

6 __ --.... c 

F 
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Then WMN is a triangle inscribed in the circle, equiangular with MBG. Next 
we bisect the angles at M, N. Let P be the intersection of MN with DO. 

13. Circle MP, get Q. 
14. Circle NP, get R. 
15. Circle PRo 
16. Circle RP, get S. 
17. Circle QJ?, get T. 
18. Line NS, get U. 
19. Line MT, get V. 

Then D, M, N, U, V will be the vertices of the pentagon. 

20. Line DU. 
21. Line UM. 
22. Line DV. 
23. Line VN. 

Then DUMNV is the required pentagon. 

Proof We follow the geometric proof given by Euclid. First of all, the line DF is 
constructed perpendicular to a diameter of the circle, so it is a tangent line to 
the circle (III.l6). Next, the triangles WHK and WLI are constructed so that 
their three sides are equal to the three sides of MGG. Hence by (SSS) = (1.8), it 
follows that LKDH and LLDI are both equal to the angle p of the triangle MBG 
at B. From there it follows that the angles of WMN at M and N are both equal to 
p, because they subtend the same arcs cut offby the tangent line and the angles 
p just constructed (III.32). Since the sum of the three angles of a triangle is con­
stant = 1800 (1.32), it follows that the triangle WMN is equiangular with the tri­
angle MBG. In particular, if oe is the angle at D, then p = 2oe. 

The points U, V are constructed by taking the angle bisectors of WMN at M 
and N. Since the angles at M and N are p, their halves are equal to oe. Thus the 
arcs DU, UM subtend angles oe at N; the arc MN subtends an angle oe at D; and 
the arcs DV, VN subtend angles oe at M. Hence these five arcs are all equal 
(III.26), and the line segments on them are also equal. So we have constructed 
an equilateral pentagon inscribed in the circle. The angle subtended by each 
side at the center of the circle will be 20e = p. It follows that the angles of the 
pentagon are also equal, so the pentagon is regular in the sense that its sides are 
all equal and its angles are all equal. 

This completes the presentation of Euclid's construction of the pentagon. As 
usual, his method is adapted to economy of proof, not economy of steps used. 
The whole construction, as we have presented it here, takes 12 + 23 = 35 steps. 
By collapsing separate parts of the construction, in particular, by constructing 
the triangle of(4.1) on a radius of the given circle, one can make a construction 



50 1. Euclid's Geometry 

with fewer than half as many steps (cf. (4.3)). Note also that Euclid's construc­
tion of the points U, V by bisecting the angles at M, N makes possible his elegant 
proof that the five sides of the pentagon are equal. However, in retrospect we 
see that MN is actually one side of the pentagon, so U and V could have been 
constructed in a single step by a circle with center D and radius MN. 

If there is such a thing as beauty in a mathematical proof, I believe that this 
proof of Euclid's for the construction of the regular pentagon sets the standard 
for a beautiful proof. In the words of Edna St. Vincent Millay, "Euclid alone has 
looked on beauty bare." 

Now let us use the ideas of Euclid's method to construct a pentagon in as few 
steps as possible. 

Problem 4.3 
Given a circle with center 0 , construct a regular pentagon inscribed in the circle 
in as few steps as possible. 

l. Draw any line through O. Get A, B. 
2. Circle AB. 
3. Circle BA, get C. 
4. OC, get D. 
5. Circle DO. Get E, F. 
6. EF, get G. 
7. Circle GA, get H. 
8. Circle center A, radius OH, get I, J. 
9. Circle center B, radius II, get K, L. 
10-14. Draw BK, KI, II, IL, LB. 

Then BKIIL is the required pentagon. 

Exercises 

4.1 Read Euclid, Book IV. 

4.2 Explain why the construction of(Problem 4.3) gives a regular pentagon. 

4.3 Given a circle, but not given its center, construct an inscribed equilateral triangle in 
as few steps as possible (par = 7). 
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4.4 Construct a square in as few steps as possible (par = 9). 

4.S Given a line segment AB, construct a regular pentagon having AB as a side 
(par = 11). 

4.6 Given a circle I' and given its center 0, construct inside r three equal circles, each 
one tangent to r and to the other two (par = 13). 

4.7 Let ABC be an equilateral triangle in­
scribed in a circle. Let D, E be the mid­
points of two sides, and extend DE to 
meet the circle at F. Prove that E divides 
the segment DF in extreme and mean 
ratio, i.e. the rectangle EF x DF equals 
the square DE2. Hint: Use (III.3S). 

A 

F 

4.8 Take a long thin piece of paper. Tie a simple overhand knot in the paper, and fold the 
knot flat. Explain why the flat knot makes a regular pentagon. 

5 Some Newer Results 
In this section we mention some results of plane geometry that do not appear in 
Euclid's Elements but that can be proved using the methods developed in Books 
I - IV. Some of these, such as the three altitudes of a triangle meeting in a point, 
were known to the Greeks. Others, such as the Euler line and the nine-point 
circle, were discovered only in the eighteenth and nineteenth centuries. 

In some textbooks these results are proved using similar triangles. In Euclid's 
Elements, similar triangles do not appear until Book VI, using the theory of pro­
portion developed in Book V. In modern texts, similar triangles are defined by 
comparing the lengths of the sides. Since we have not yet discussed either of 
these techniques, we will use only the pure geometric methods of Books I - IV in 
this section. 

Two theorems taught in modern high-school geometry are that the angle 
bisectors of a triangle meet in a point (the incenter of the triangle), and the per­
pendicular bisectors of the sides of a triangle meet in a point (the circumcenter 
of the triangle). Although not explicitly stated by Euclid, these two results are 
implicitly contained in (IV.4) and (IV.S). 
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On the other hand, the theorems about the three medians and the three alti­
tudes of a triangle do not appear in Euclid, though they were known to Archi­
medes, so we will start with them. 

Proposition 5.1 
Let ABC be a triangle, and let D, E be 
the midpoints of AB and AC, respectively. 
Then the line DE is parallel to the base 
BC, and equal to one-half of it. In other 
words, if F is the midpoint of BC, then 
DE ~ BF. 

Proof We begin with a slightly different 
construction. Let D be the midpoint of 
AB, and draw lines through D parallel to 

1> ;--___ *-__ 

8 F 

AC and BG. Let them meet the opposite A 
sides in points E', F' . Since DE' is paral­
lel to BC, the angles at Band D are con­
gruent ((1.29): Here we use the parallel 
postulate). Similarly, since AG is paral­
lel to DF', the angles at A and Dare 
equal. 

c 

Now AD ~ DB, and the angles of the 13 C 
triangle ADE' and DBF' at A and Dare 
equal to those at D and B, respectively, 
so by (ASA) (1.26), the triangles ADE' 
and DBF' are congruent. We conclude 
that AE' ~ DF' and DE' ~ BF'. 

Now look at the parallelogram DE'F'e. By (1.34) the opposite sides are equal. 
So DF' ~ E' C and DE' ~ F' C. Thus we see that E' and F' are the midpoints of the 
sides AC and BG. So E' = E, the line DE' is equal to the line DE, and therefore 
DE is parallel to BC as claimed. Furthermore, we have seen that DE' ~ BF', and 
F' is the midpoint of BC, so DE is equal to one-half of BC. 

Corollary 5.2 
Let ABC be a triangle, and let D, E, F be 
the midpoints of the three sides. Then the 
sides of the triangle DEF are parallel to the 
sides of ABC, and the four small triangles 
formed are all congruent to each other. 

Proof From the proposition it follows 
that each side of the triangle DEF is par-

c 
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allel to and equal to one-half of a side of the triangle ABC. Then by (SSS) (1.8) all 
four small triangles are congruent. 

Definition 
We say a triangle ABC is congruent to the double of a triangle FED, in symbols 
ABC ~ 2FED, if as in the diagram above, the three sides of ABC are double the 
sides of FED, and the three angles of ABC are equal to the three angles of FED. 

Proposition 5.3 (2ASA) 
Let ABC and A' B' C' be two triangles, and 
assume that the angles at Band Care 
equal to the angles at B' and C', and that 
BC ~ 2B' C'. Then the triangle ABC is 
congruent to the double of A'B'C'. 

Proof Let D, E, F be the midpoints of B C 
the sides of ABC, and draw the triangle ~---#---_---J.>.---'C>o 

DEF. Then from (5.2) we see that DE ~ 
! BC ~ B' C'. Furthermore, because DE 
is parallel to BC, the angles of the tri­
angle ADE at D and E are equal to the 
angles at B' and C'. Now by (ASA), the 
triangle ADE is congruent to A'B'C'. But 
ABC is a double of ADE, so ABC ~ 
2A'B'C'. 

Remark 

A' 

B'~C' , 

One can easily prove other double congruence theorems corresponding to (SAS) 
and (SSS) (see Exercises 5.1, 5.2). Of course, these are special cases of more 
general theorems on similar triangles that we will discuss in Section 20. 

Proposition 5.4 
The medians (lines from a vertex to the midpoint of the opposite side) of a triangle 
meet in a single point (called the centroid of the triangle). 

Proof Let ABC be the triangle, let D, E 
be the midpoints of AB and AC, and 
draw DE. Let the two medians BE and 
CD meet at a point G. Since DE is par­
allel to BC (5.1), we find that LDEG = 
LCBG and LEDG = LBCG. On the 
other hand, BC = 2DE (5.1). Therefore, 
we can apply the previous result (5.3) 
and find that 6BGC ~ 26.EGD. 

B 
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In particular, BG = 2GE. Thus G can be described as the point on the median 
BE that is ~ of the way from B to E . Reversing the roles of A and C would there­
fore show that the third median AF also passes through G. Thus all three me­
dians meet in the point G. 

Corollary 5.5 
The centroid G lies on each median ~ of the way from the vertex to the midpoint of 
the opposite side. 

Proof Follows from the proof of ( 5.4). 

Proposition 5.6 
The three altitudes (lines through a vertex, perpendicular to the opposite side) of a 
triangle meet in a single point (the orthocenter of the triangle) . 

Proof Let ABC be the given triangle. 
Draw lines through the vertices A, B, C, 
parallel to the opposite sides, to form a 
new triangle A'B'C'. By (I.34) applied to 
the parallelograms BCAC' and BCB'A 
we see that C' A = BC = AB' . Thus A is 
the midpoint of B' C', and similarly for 
the other two sides of A'B'C'. 

On the other hand, the altitude AM 
of the triangle ABC is perpendicular to 
BC, and hence also perpendicular to 
B' C'. Thus we see that the altitudes of 
the triangle ABC are equal to the per­
pendicular bisectors of the sides of the 
triangle A' B' C'. Hence they meet in a 
single point ((IV.5), cf. Exercise l.9) . 

Proposition 5.7 (The Euler line) 

c ' A 
~--~~--;r----~---7 B' 

~--_-ll---¥ C. 

In a triangle ABC, let 0 be the circumcenter, let G be the centroid, and let H be 
the orthocenter. Then 0, G, H lie on a line (called the Euler line of the triangle) and 
GH~ 20G. 

Proof For the proof, let F be the midpoint of BC, draw the median AF, and let 
the line OG meet the altitude AM in a point H'. Note that OF is perpendicular to 
BC, since 0 is the circumcenter. Hence OF is parallel to AM. Therefore, 
LGAH' ~ LGFO. Also, LAGH' ~ LFGO, since they are vertical angles (US). By 
our previous result on the medians (5.5), AG ~ 2GF. Thus we can apply (2ASA) 
(5.3) to conclude that MGH' ~ 2D.FGO. It follows that GH' = 20G. 



Thus the point HI is characterized 
as that point on the ray OG such that 
GHI = 20G. Now permuting the roles of 
A, B, C, it follows that HI also lies on the 
other altitudes of ABC, so HI = H is the 
orthocenter and our conclusions 0, G, H ~ 
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G 
collinear and GH ~ 20G follow. L-__ ..Jl-__ ~ _____ --"" 

By the way, this argument provides another independent proof of the fact 
that the three altitudes meet in a point (5.6). 

For our next results, we will introduce the very useful method of cyclic 
quadrilaterals. 

Definition 
A cyclic quadrilateral is a set of four 
points A, B, C, D lying in that order on 
a circle, together with the lines AB, 
BC, CD, DA joining them. The lines AC 
and BD are the diagonals of the cyclic 
quadrilateral. 

The importance of cyclic quadrilat­
erals comes from the relationships be­
tween the various angles of the figure, 
which characterize the property of the 
four points A, B, C, D lying on a circle. 

Proposition 5.8 

c 

Let A, B, C, D be four points in the plane, with A, B both on the same side of the 
line CD. Then A, B, C, D lie on a circle if and only if the angles LDAC and LDBC 
are equal. 

Proof If A, B, C, D lie on a circle, then 
Euclid's (111.21) tells us that the angles 
at A and B are the same, since they both 
subtend the same arc DC. 

Conversely, suppose the angles at A 
and B are equal. Draw the circle through 
A, D, C (IV.5) and let it meet the line 
BD at BI. (In our figure, B lies outside 
the circle, but the argument will be 
similar if B lies inside the circle.) 

B 
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Plate III. The frontispiece to Archimedes (Oxford edition of 1792). When the Socratic 
philosopher Aristippus was shipwrecked on the shores of Rhodes, he saw geometrical fig­
ures in the sand and exclaimed to his comrades: "There is hope: I see traces of men". 

56 
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Then by (111.21), the angle at B' is also equal to the angles at A and at B. If 
B =1= B', this contradicts (I.l6), because the angle LDB'C at B' is an exterior angle 
to the triangle BCB', and so must be greater than the opposite interior angle at B. 
Hence B = B', and all four points lie on the circle. 

Theorem 5.9 (The nine-point circle) 
In any triangle, the midpoints of the three sides, the feet of the three altitudes, and the 
midpoints of the segments joining the three vertices to the orthocenter all lie on a 
circle. 

Proof Let ABC be the given triangle. Let D, E, F be the midpoints of the sides, 
let K, L, M be the feet of the altitudes, let H be the orthocenter, and let P, Q, R 
be the midpoints of the segments joining the three vertices to H. We must show 
that D, E, F, K, L, M, P, Q, R all lie on a circle. 

We make several uses of (5.1). Applied to the triangle ABC, we find that DE 
is parallel to the base BC. Applied to the triangle BCH, we find that RQ is parallel 
to the base Be. Hence DE is parallel to RQ. Now apply (5.1) to the triangle ACH. 
We find that EQis parallel to the base AH. Similarly, using the triangle ABH, DR 
is parallel to AH. Hence EQ and DR are parallel. Furthermore, EQ and DR are 
perpendicular to DE and RQ, since AH is perpendicular to BC. Thus DEQR is a 
rectangle. If X is the center of this rectangle, then X is equidistant from the four 
corners. Thus D, E, Q, R lie on a circle r with center X. We will show that this 
circle contains the other required points. 

By (5.8), DLER is a cyclic quadrilateral, because the angles at D and L sub­
tending ER are both right angles. Since a circle is determined by three points 
(IIUO), this circle is the same as the circle r; in other words, L also lies on r. 

A 

c. 
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A similar argument shows that DKEQ is a cyclic quadrilateral, and so K lies 
on r. 

Now, shifting perspective so that AC is regarded as the base of the triangle, 
the same argument shows that DPQF is a rectangle, with the same center X, 
since X is the midpoint of DQ. Therefore, P and F also lie on r. 

Finally, MDPF is a cyclic quadrilateral for the same reasons as above, so M is 
also on r. 

Proposition 5.10 (The orthic triangle) 
Let ABC be any acute triangle, and let K, 
L, M be the feet of the altitudes of ABC. 
Then the altitudes of ABC are the angle 
bisectors of the orthic triangle KLM. 

Proof We use cyclic quadrilaterals. 
First, LMAB is a cyclic quadrilateral, 
because the angles at Land Mare 
right. Hence r:t. = LAML is equal to 
f3 = LABL. 

Next, KLCB is a cyclic quadrilateral 
because the angles at K and L are right. 
Hence f3 is equal to y = LKCL. 

A 

B c 

Finally, MKAC is a cyclic quadrilateral because the angles at M and K are 
right, so y is equal to J = L AMK. 

Thus a = J, so that the altitude AM of ABC is the angle bisector of the angle 
LKML in the orthic triangle. The same argument of course applies to the other 
two altitudes. 

Since the angle bisectors of MLM meet in a point, this gives another proof 
that the altitudes of MBC meet in a point. 

We end this section with an ingenious construction given by Pappus in his 
commentary on the lost book of Apollonius On Tangencies. 

Problem 5.11 
Given a circle l' and two points A, B, find a point C on the circle such that if the 
lines CA, CB meet l' in further points D, E, then DE is parallel to AB. 

Construction 
Let r be the given circle, with center 0, and let A, B be the given points. 

1. Line AB. 
2. Circle AB, get F. 
3. Line AF, get G. 



4. Circle AG, get R. 
5. Line OR. 
6. Circle 0, any radius. 
7. Circle H, same radius, get I, J. 
8. Line If, get K. 
9. Circle KO, get D. 

10. Line AD, get G. 
11. Line GB, get E. 
12. Line DE is parallel to AB, as re­

quired. 

The proof of this construction is Exer­
cise 5.11. 

Exercises 
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5.1 (2SAS) Suppose we are given two triangles ABC and A'B'C'. Assume that AB ~ 2A'B' 
and AC ~ 2A'C', and the angles at A and A' are equal. Prove that MBC ~ 2M'B'C'. 

5.2 (2SSS) Suppose we are given two triangles ABC and A'B'C' and assume that 
AB ~ 2A'B', AC ~ 2A'C', and BC ~ 2B'C'. Prove that MBC ~ 2M'B'C'. 

5.3 Let 1, m, n be three parallel lines. Sup­
pose they cut off equal segments AB ~ 
BC on a transversal line. Show that the 
segments DE, EF cut off by any other 
transversal line are equal. 

5.4 Given three line segments, make a ruler and compass construction of a triangle 
whose medians are congruent to the three given segments. What condition on the 
segments is necessary for this to be possible? 

5.5 Let ABCD be a quadrilateral. Show that the figure formed by joining the midpoints 
of the four sides is a parallelogram. 

5.6 In any triangle, show that the center X of the nine-point circle lies on the Euler line 
(Proposition 5.7), and is the midpoint of the segment OH joining the circumcenter 0 
to the orthocenter H. 
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5.7 Use cyclic quadrilaterals to give another 
proof of Proposition 5.6, as follows. Let 
ABC be the given triangle . Let the alti­
tudes BL and CK meet at H. Let AH 
meet the opposite side at M. Then show 
that AM 1- BC. (This proof is probably 
the one known to Archimedes.) 

5.8 Show that the opposite angles (1. , y of a 
quadrilateral ABCD add to two right 
angles if and only if A, B, C, D lie on a 
circle. 

5.9 Let AB be the diameter of a circle f. 
Show that a triangle ABC has a right 
angle at C if and only if C lies on the 
circle f. 

5.10 Let B, C and D, E lie on two rays 
emanating from a point A. Show that 
B, C, D, E lie on a circle if and only if 
AB x AC = AD x AE (in the sense of 
content). 

c. 

c 

c. 

A 
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5.11 In the construction to Problem 5.11 , prove that DE is parallel to AB. 
Hint: First show that BCDH is a cyclic quadrilateral. Then draw DH, and compare 
angles using (1II.22) and (III.32). 

5.12 In the construction to Problem 5.11, show that the circle through A, B, C is tangent 
to r. Thus this construction solves the problem, "given a circle f and given two 
points A , B, to find a circle passing through A , B, and tangent to f." This is a special 
case of the problem of Apollonius (Section 38). 

5.13 (The Simson line) . Let ABC be any tri­
angle. Let P be a point on the circum­
scribed circle of ABC. Let D, E, F be 
the feet of the perpendiculars from P to 
the sides of the triangle (extended as 
necessary). Then D, E, F lie on a line . 
(First proved by W. Wallace, 1799.) 

~ __ ~ __ +-________ ~c 

5.14 (The Miquel point). Let ABC be a triangle . Let D, E, F be points on the sides of the 
triangle. Show that the circles through ADE, BDF, and CEF all meet in a common 
point G. Hint: Let G be the intersection of the first two circles, then show that CEGF 
is a cyclic quadrilateral (due to A. Miquel, 1838). 

A 
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5.15 (Pappus's theorem). Let A, B, C be 
points on a line l, and let A', B', C' 
be points on a line m. Assume that 
AC'IIA'C and B'cIIBC'. Show that 
AB'IIA'B. Hint: Draw a circle through 
A, B', C' meeting 1 in D. Then use cyclic 
quadrilaterals (cf. Hilbert, Foundations, 
Section 14). 

\ 

\ 

5.16 Construct three circles of different radii, each one tangent to the other two, with 
noncollinear centers, in as few steps as possible (par = 7). 

5.17 Let A, B, C, D be four points on a circle 
r. Let four more circles pass through 
AB, BC, CD, DA, respectively, meeting 
in further points A', B', C', D'. Show that 
A'B'C'D' is a cyclic quadrilateral. 

5.18 (Painting the plane). If the plane has been colored so that each point has one of 
three colors (red, yellow, blue), prove that for any interval AB there exist two points 
C, D of the same color, with AB ~ CD. (It is an unsolved problem whether the same 
result is true for four colors.) 

5.19 Given an angle with vertex D and a 
point P inside the angle, drop perpen­
diculars PA, PB to the two sides of the 
angle, draw AB, and drop perpendicu­
lars DC, PD to the line AB. Then show 
thatAC=BD. o 

p 

B 
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5.20 Given any triangle ABC, let D, E, F be the feet of the altitudes. Show that the 
six projections G, H, I, I, K, L of D, E, F onto the other sides of the triangle lie on a 
circle. 

A 

B~ __ ~~~~~ __________ C 

5.21 (Wentworth). Let ABCbe a triangle. Construct with ruler and compass a line parallel 
to BC, meeting AB in D and AC in E, such that DE = DB + EC. 

In England the text-book of Geometry con­
sists of the Elements of Euclid; for nearly every 
official programme of instruction or examina­
tion explicitly includes some portion of this 
work. Numerous attempts have been made to 
find an appropriate substitute for the Elements 
of Euclid; but such attempts, fortunately, have 
hitherto been made in vain. The advantages at­
tending to a common standard of reference in 
such an important subject, can hardly be over­
estimated; and it is extremely improbable, if 
Euclid were once abandoned, that any agree­
ment would exist as to the author who should 
replace him. 

- from the preface to 
Todhunter's Euclid 

London (1882) 



CHAPTER 

Hilbert's Axioms 

ur purpose in this chapter is to present (with minor 
modifications) a set of axioms for geometry proposed 
by Hilbert in 1899. These axioms are sufficient by 
modern standards of rigor to supply the foundation 
for Euclid's geometry. This will mean also axiomatiz­
ing those arguments where he used intuition, or said 
nothing. In particular, the axioms for betweenness, 

111~~~e~~~ based on the work of Pasch in the 1880s, are the most 
striking innovation in this set of axioms. 

Another choice has been to take the SAS theorem as an axiom, and thus 
bypass the method of superposition. It is possible to go the other route, and use 
motions offigures as a basic building block of geometry. This is what Hadamard 
does in his Leyons de Geometrie Elementaire (1901-06), but the result is a step 
backward in logical clarity, because he never makes precise exactly what kind of 
motions he is allowing. See, however, Section 17 for a fuller discussion of rigid 
motions and SAS. 

The first benefit of establishing the new system of axioms is, of course, to 
vindicate Euclid's Elements, and thus establish "Euclidean" geometry as a rigo­
rous mathematical discipline. A second benefit is to pose carefully those prob­
lems that have bothered geometers for centuries, such as the question of the 
independence of the parallel postulate. Unless one has an exact understanding 
of precisely what is assumed and what is not, one risks going around in circles 
discussing these questions. In the development of our geometry with the new 

65 
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axioms, we will keep the parallel postulate separate and note carefully what 
depends on it and what does not. 

Besides presenting the axioms, this chapter will also contain the first con­
sequences of the axioms, including different proofs of some of Euclid's early 
propositions, until we have established enough so that Euclid's later results can 
be deduced without difficulty from the new foundations we have established. In 
Sections 10,11,12, we show how to recover all the results of Euclid, Books I-IV, 
except for the theory of area, whose proof is postponed until Chapter 5. 

6 Axioms of Incidence 
The axioms of incidence deal with points and lines and their intersections. The 
points and lines are undefined objects. We simply postulate a set, whose ele­
ments are called points, together with certain subsets, which we call lines. We do 
not say what the points are, nor which subsets form lines, but we do require that 
these undefined notions obey certain axioms: 

11. For any two distinct points A, B, there exists a unique line 1 containing A, B. 
12. Every line contains at least two points. 
13. There exist three noncollinear points (that is, three points not all contained 

in a single line). 

Definition 
A set whose elements are called points, together with a set of subsets called 
lines, satisfying the axioms (11), (12), (13), will be called an incidence geometry. 
If a point P belongs to a line 1, we will say that P lies on 1, or that 1 passes 
through P. 

From this modest beginning we cannot expect to get very interesting results, 
but just to illustrate the process, let us see how one can prove theorems based 
on these axioms. 

Proposition 6.1 
Two distinct lines can have at most one point in common. 

Proof Let 1, m be two lines, and suppose they both contain the points A, B, with 
A i= B. According to axiom (II), there is a unique line containing both A and B, 
so 1 must be equal to m. 

Note that this fact, which was used by Euclid in the proof of (1.4) with the 
rather weak excuse that "two lines cannot enclose a space," follows here from 
the uniqueness part of axiom (II). This should indicate the importance of stat-
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ing explicitly the uniqueness of an object, which was rarely done in Euclid's 
Elements. 

Now we have an axiom system, consisting of the undefined sets of points 
and lines, and the axioms (11)-(13). A model ofthat axiom system is a realization 
of the undefined terms in some particular context, such that the axioms are sat­
isfied. You could also think of the model as an example of the incidence geometry 
defined above. 

Example 6.1.1 (The real Cartesian 
plane). 
Here the set of points is the set lR.z of 
ordered pairs of real numbers. The lines 
are those subsets of points P = (x, y) that 
satisfy a linear equation ax + by + c = 0 
in the variables x, y. To verify that the 
axioms hold, for (Il) think of the "two-
point formula" from analytic geometry: 
Given two points A = (aI, az) and B = 
(bI , bz). They lie on the line 

bz - az 
y - az = --(x - aI) 

b -al 

if al i= b l ; if al = b l , they lie on the line x = al. To verify (12), take any linear 
equation involving y. Substitute two different values of x, and solve for y. This 
gives two points on the line. If the equation did not involve y, say x = c, take 
the points (c,O) and (c,l). To verify (13), consider the points (0,0),(0,1), 
(1, 0). One sees easily that there is no linear equation with all three points as 
solutions. 

Example 6.1.2 
One can also make models out of finite 
sets. For example, let the set of points 
be a set ofthree elements {A,B, e}, and 
take for lines the subsets {A, B}, {A, C}, 
and {B, e}. We represent this symboli­
cally by the diagram, where the dots 
represent the elements of the set, and 
the lines drawn on the page show which 
subsets are to be taken as lines. 

c.. 

This diagram should be understood as purely symbolic, however, and has 
nothing to do with a triangle in the ordinary Cartesian plane. The verification of 
the axioms in this case is trivial. 
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Definition 
Two distinct lines are parallel if they have no points in common. We also say 
that any line is parallel to itself. 

The parallel postulate, in its equivalent form given by Playfair, can be stated 
as a further axiom about incidence of lines. However, we do not include this 
axiom in the definition of incidence geometry. Thus we may speak of an inci­
dence geometry that does or does not satisf'y Playfair's axiom. 

P. (Playfair's axiom, also called the parallel axiom). For each point A and each 
line I, there is at most one line containing A that is parallel to 1. 

Note that the real Cartesian plane (6.1.1) satisfies (P), as you know, and the 
three-point geometry (6.1.2) satisfies (P) vacuously, because there are no distinct 
parallel lines at all. Next we give an example of an incidence geometry that does 
not sa tiSf'y (P). 

Example 6.1.3 
Let our set consist of five points A, B, C, 
D, E, and let the lines be all subsets of 
two points. It is easy to see that this ge­
ometry satisfies (11)-(13). However, it 
does not satisf'y (P), because, for exam­
ple, AB and AC are two distinct lines 
through the point A and parallel to the 
line DE. 

Remember that the word parallel simply means that two lines have no points 
in common or are equal. It does not say anything about being in the same 
direction, or being equidistant from each other, or anything else. 

We say that two models of an axiom system are isomorphic if there exists a 
1-to-1 correspondence between their sets of points in such a way that a subset 
of the first set is a line if and only if the corresponding subset of the second 
set is a line. For short, we say lithe correspondence takes lines into lines." 
So for example, we see that (6.1.1), (6.1.2), and (6.1.3) are nonisomorphic models 
of incidence geometry, for the simple reason that their sets of points have dif­
ferent cardinality: There are no 1-to-1 correspondences between any of these 
sets. 

On the other hand, we can show that any model of incidence geometry 
having just three points is isomorphic to the model given in (6.1.2). Indeed, let 
{I, 2, 3} be a geometry of three points. By (13), there must be three noncollinear 
points. Since there are only three points here, we conclude that there is no 
line containing all three. But by (11), each subset of two points must be con-
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tained in a line. Thus {I, 2}, {2, 3}, and {I, 3} are lines. Now by (12), every line 
contains at least two points, so these are all the possible lines. In other words, 
the lines are just all subsets of two elements. Since (6.1.2) also has this property, 
any 1-to-1 correspondence between the sets {A, B, C} and {I, 2, 3} will give an 
isomorphism. 

By the way, this proof shows that the isomorphism just found is not unique. 
There are six choices. This leads to the notion of automorphism. 

Definition 
An automorphism of an incidence geometry is an isomorphism of the geometry 
with itself, that is, it is a 1-to-1 mapping of the set of points onto itself, preserving 
lines. 

Note that the composition of two automorphisms is an automorphism, and 
so is the inverse of an automorphism. Thus the set of automorphisms forms a 
group. In the example above, any 1-to-1 mapping of the set of three elements 
onto itself gives an automorphism of the geometry, so we see that the group of 
automorphisms ofthis geometry is the symmetric group on three letters, S3. 

An important question about a set of axioms is whether the axioms are inde­
pendent of each other. That is to say, that no one of them can be proved as a 
consequence of the others. For if one were a consequence of the others, then we 
would not need that one as an axiom. To try to prove directly that axiom A is 
not a consequence of axioms B, C, D, ... is usually futile. So instead, we search 
for a model in which axioms B, C, D, ... hold but axiom A does not hold. If such 
a model exists, then there can be no proof of A as a consequence of B, C, D, ... , 
so we conclude that A is independent of the others. This process must be re­
peated with each individual axiom, to show that each one is independent of 
all the others. With a long list of axioms this can become tedious and difficult, 
so we will forgo the process with our full list of axioms. But as an illustra­
tion of what is involved, let us show that the axioms (11), (12), (13), and (P) are 
independent. 

Proposition 6.2 
The axioms (11), (12), (13), (P) are independent of each other. 

Proof We have already seen that (6.1.3) is a model satisfying (11), (12), (13), and 
not (P). Hence (P) is independent of the others. 

For a model satisfying (11), (12), (P), and not (13), take a set of two points and 
the one line containing both of them. 
Note that (P) is satisfied trivially, be­
cause there are no points not on the 
line 1. 

A 
• 

B 
• 
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For a model satisfying (11), (13), (P), 
and not (12), take a set of three points 
A, B, e, and for lines take the subsets 
{A,B}, {A, e}, {B, e}, and {A}. The ex­
istence of the one-point line {A} con­
tradicts (12). Yet (P) is still fulfilled, 
because that one-point line is then the 
unique line through A parallel to {B, e}. 

For a model satisfying (12), (13), (p) 
and not (n), just take a set of three 
points and no lines at all. 

A • 
I? • • C 

While we are discussing axiom systems, there are a few more concepts we 
should mention. An axiom system is consistent if it will never lead to a contra­
diction. That is to say, if it is not possible to prove from the axioms a statement 
A and also to prove its negation not A. This is obviously a highly desirable 
property of a system of axioms. We do not want to waste our time proving theo­
rems from a system of axioms that one day may lead to a contradiction. Un­
fortunately, however, the logician Kurt Godel has proved that for any reasonably 
rich set of axioms, it will be impossible to prove the consistency of that system. 
So we will have to settle for something less, which is relative consistency. As soon 
as you can find a model for your axiom system within some other mathematical 
theory T, it follows that if T is consistent, then also your system of axioms is 
consistent. For any contradiction that might follow from your axioms would 
then also appear in the theory T, contradicting its consistency. So for example, 
if you believe in the consistency of the theory of real numbers, then you must 
accept the consistency of Hilbert's axiom system for geometry, because all of his 
axioms will hold in the real Cartesian plane. That is the best we can do about the 
question of consistency. 

Another question about a system of axioms is whether it is categorical. This 
means, does it describe a unique mathematical object? Or in other words, is 
there a unique model (up to isomorphism) for the system of axioms? In fact, it 
will turn out that if we take the entire list of Hilbert's axioms, including the par­
allel axiom (P) and Dedekind's axiom (D), the system will be categorical, and the 
unique model will be the real Cartesian plane. (We will prove this result later 
(21.3).) Also, if we take all of Hilbert's axioms, together with (D) and the hyper­
bolic axiom (L) (see Section 40), we will have another categorical system, whose 
unique model is the non-Euclidean Poincare model over the real numbers (Ex­
ercise 43.2). 

However, from the point of view of this book, it is more interesting to have 
an axiom system that is not categorical, and then to investigate the different 
possible geometries that can arise. Therefore, we will almost never assume 
Dedekind's axiom (D), and we will only sometimes assume Archimedes' axiom 
(A), or the parallel axiom (P). 
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Finally, one can ask whether the axiom system is complete, which means, can 
every statement that is true in every model of the axiom system be proved as a 
consequence of the axioms? Again, Godel has shown that any axiomatic system 
of reasonable richness cannot be complete. For a fuller discussion of these 
questions, see Chapter 51 of Kline (1972) on the foundations of mathematics. 

Exercises 

6.1 Describe all possible incidence geometries on a set of four points, up to iso­
morphism. Which ones satisfY (P)? 

6.2 The Cartesian plane over a field F. Let F be any field (see definition in §14). Take the 
set F2 of ordered pairs of elements of the field F to be the set of points. Define lines 
to be those subsets defined by linear equations, as in Example 6.1.1. VerifY that the 
axioms (11), (12), (13), and (P) hold in this model. (See Section 14 for more about 
Cartesian planes over fields.) 

6.3 A projective plane is a set of points and subsets called lines that satisfY the following 
four axioms: 

Pl. Any two distinct points lie on a unique line. 

P2. Any two lines meet in at least one point. 

P3. Every line contains at least three points. 

P4. There exist three noncollinear points. 

Note that these axioms imply (11)-(13), so that any projective plane is also an inci­
dence geometry. Show the following: 

(a) Every projective plane has at least seven points, and there exists a model of a 
projective plane having exactly seven points. 

(b) The projective plane of seven points is unique up to isomorphism. 

(c) The axioms (PI), (P2), (P3), (P4) are independent. 

6.4 Let Fbe a field, and let V = F3 be a three-dimensional vector space over F. Let II be 
the set of I-dimensional subspaces of V. We will call the elements of II "points." So a 
"point" is a I-dimensional subspace P s; V. If W S; V is a 2-dimensional subspace of 
V, then the set of all "points" contained in W will be called a "line." Show that the set 
II of "points" and the subsets of "lines" forms a projective plane (Exercise 6.3). 

6.5 An affine plane is a set of points and subsets called lines satisfYing (11), (12), (13), and 
the following stronger form of Playfair's axiom. 

p'. For every line I, and every point A, there exists a unique line m containing A 
and parallel to l. 

(a) Show that any two lines in an affine plane have the same number of points (Le., 
there exists a I-to-l correspondence between the points of the two lines). 
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(b) If an affine plane has a line with exactly n points, then the total number of 
points in the plane is n 2 . 

(c) If F is any field, show that the Cartesian plane over F (Exercise 6.2) is a model of 
an affine plane. 

(d) Show that there exist affine planes with 4,9, 16, or 25 points. (The nonexistence 
of an affine plane with 36 points is a difficult result of Euler.) 

6.6 In an incidence geometry, consider the relationship of parallelism, "I is parallel to 
m," on the set of lines. 

(a) Give an example to show that this need not be an equivalence relation. 

(b) Ifwe assume the parallel axiom (p), then parallelism is an equivalence relation. 

(c) Conversely, if parallelism is an equivalence relation in a given incidence geom­
etry, then (P) must hold in that geometry. 

6.7 Let n be an affine plane (Exercise 6.5). A pencil of parallel lines is the set of all the 
lines parallel to a given line (including that line itself). We call each pencil of paral­
leI lines an "ideal point," or a "point at infinity," and we say that an ideal point "lies 
on" each of the lines in the pencil. Now let n' be the enlarged set consisting of n 
together with all these new ideal points. A line of n' will be the subset consisting of 
a line of n plus its unique ideal point, or a new line, called the "line at infinity," 
consisting of all the ideal points. 

(a) Show that this new set n' with subsets oflines as just defined forms a projective 
plane (Exercise 6.3). 

(b) If n is the Cartesian plane over a field F (Exercise 6.2), show that the associated 
projective plane n' is isomorphic to the projective plane constructed in Exercise 
6.4. 

6.8 If there is a line with exactly n + 1 points in a projective plane n, then the total 
number of points in n is n2 + n + 1. 

6.9 Kirkman's schoolgirl ,problem (1850) is as follows: In a certain school there are 15 
girls. It is desired to make a seven-day schedule such that each day the girls can 
walk in the garden in five groups of three, in such a way that each girl will be in the 
same group with each other girl just once in the week. How should the groups be 
formed each day? 

To make this into a geometry problem, think of the girls as points, think of the 
groups of three as lines, and think of each day as descnbing a set offive lines, which 
we call a pencil. Now consider a Kirkman geometry: a set, whose elements we call 
points, together with certain subsets we call lines, and certain sets of lines we call 
penci18, satisfYing the following axioms: 

Kl. Two distinct points lie on a unique line. 

D. All lines contain the same number of points. 

Kl. There exist three noncollinear points. 

K4. Each line is contained in a unique pencil. 
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K5. Each pencil consists of a set of parallel lines whose union is the whole set of 
points. 

(a) Show that any affine plane gives a Kirkman geometry where we take the pencils 
to be the set of all lines parallel to a given line. (Hence by Exercise 6.5 there exist 
Kirkman geometries with 4, 9, 16, 25 points.) 

(b) Show that any Kirkman geometry with 15 points gives a solution of the original 
schoolgirl problem. 

(c) Find a solution for the original problem. (There are many inequivalent solutions 
to this problem.) 

6.10 In a finite incidence geometry, the number of lines is greater than or equal to the 
number of points. 

7 Axioms of Betweenness 

In this section we present axioms to make precise the notions of betweenness 
(when one point is in between two others), on which is based the notion of 
sidedness (when a point is on one side of a line or the other), the concepts of 
inside and outside, and also the concepts of order, when one segment or angle is 
bigger than another. We have seen the importance of these concepts in reading 
Euclid's geometry, and we have also seen the dangers of using these concepts 
intuitively, without making their meaning precise. So these axioms form an 
important part of our new foundations for geometry. At the same time, these 
axioms and their consequences may seem difficult to understand for many 
readers, not because the mathematical concepts are technically difficult, but 
because the notions of order and separation are so deeply ingrained in our daily 
experience of life that it is difficult to let go of our intuitions and replace them 
with axioms. It is an exercise in forgetting what we already know from our inner 
nature, and then reconstituting it with an open mind as an external logical 
structure. 

Throughout this section we presuppose axioms (Il)-(I3) of an incidence 
geometry. The geometrical notions of betweenness, separation, sidedness, and 
order will all be based on a single undefined relation, subject to four axioms. We 
postulate a relation between sets of three points A, B, C, called liB is between A 
and C." This relation is subject to the following axioms. 

Bl. If B is between A and C, (written A * B * C), then A,B, C are three distinct 
points on a line, and also C * B * A. 

B2. For any two distinct points A, B, there exists a point C such that A * B * C. 
B3. Given three distinct points on a line, one and only one of them is between 

the other two. 
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B4. (Pasch). Let A,B, C be three non­
collinear points, and let 1 be a line 
not containing any of A, B, C. If 1 
contains a point D lying between 
A and B, then it must also contain 
either a point lying between A and 
C or a point lying between Band C, 
but not both. 

Definition 

c 

If A and B are distinct points, we define the line segment AB to be the set con­
sisting of the points A, B and all points lying between A and B. We define a tri­
angle to be the union of the three line segments AB,BC, and AC whenever 
A,B, C are three noncollinear points. The points A,B, C are the vertices of the 
triangle, and the segments AB, BC, AC are the sides of the triangle. 

Note: The segments AB and BA are the same sets, because of axiom (Bl). The 
endpoints A, B of the segment AB are uniquely determined by the segment AB 
(Exercise 7.2). The vertices A,B,C, and the sides AB,AC,BC of a triangle ABC 
are uniquely determined by the triangle (Exercise 7.3). 

With this terminology, we can rephrase (B4) as follows: If a line 1 that does 
not contain any of the vertices A,B, C of a triangle meets one side AB, then it 
must meet one of the other sides AC or BC, but not both. 

From these axioms together with the axioms of incidence (Il)-(I3) we will 
deduce results about the separation of the plane by a line, and the separation of 
a line by a point. 

Proposition 7.1 (Plane separation) 
Let 1 be any line. Then the set of points not lying on 1 can be divided into two non­
empty subsets S1, S2 with the following properties: 

(a) Two points A, B not on 1 belong to the 
same set (S1 or S2) if and only if the 
segment AB does not intersect 1. 

(b) Two points A, C not on 1 belong to the 
opposite sets (one in SI, the other in 
S2) if and only if the segment AC in­
tersects 1 in a point. 

We will refer to the sets SI, S2 as the 
two sides of 1, and we will say "A and B 
are on the same side of 1," or "A and C 
are on opposite sides of/." 
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Proof We start by defining a relation ~ among points not on 1. We will say 
A ~ B if either A = B or if the segment AB does not meet 1. Our first step is to 
show that ~ is an equivalence relation. Clearly, A ~ A by definition, and A ~ B 
implies B ~ A because the set AB does not depend on the order in which we 
write A and B. The nontrivial step is to show the relation is transitive: If A ~ B 
and B ~ C, we must show A ~ C. 

Case 1 Suppose A,B, C are not col­
linear. Then we consider the triangle 
ABC. Since A ~ B, 1 does not meet AB. 
Since B ~ C, 1 does not meet BC. Now 
by Pasch's axiom (B4), it follows that 1 
does not meet AC. Hence A ~ C. 

Case 2 Suppose A, B, C lie on a line m. 
Since A, B, C do not lie on 1, the line m is 
different from 1. Therefore 1 and m can 
meet in at most one point (6.1). But by 
(12) every line has at least two points. 
Therefore, there exists a point D on 1, D ;., 
not lying on m. 

Now apply axiom (B2) to find a point E such that D * A * E. Then D,A,E 
are collinear (Bl); hence E is not on 1, since A is not on 1, and the line DAE 
already meets 1 at the point D. Furthermore, the segment AE cannot meet 1. For 
if it did, the intersection point would be the unique point in which the line AE 
meets 1, namely D. In that case D would be between A and E. But we con­
structed E so that D * A * E, so by (B3), D cannot lie between A and E. Thus 
AE n 1 = 0, so A ~ E. Note also that E does not lie on the line m, because if E 
were on m, then the line AE would be equal to m, so D would lie on m, contrary 
to our choice of D. Therefore, A, B, E are three noncollinear points. Then by 
Case 1 proved above, from A ~ E and A ~ B we conclude B ~ E. By Case 1 
again, from B ~ E and B ~ C we conclude C ~ E. Applying Case 1 a third time to 
the three noncollinear points A, C,E, from A ~ E and C ~ E we conclude A ~ C 
as required. 

Thus we have proved that ~ is an equivalence relation. An equivalence 
relation on a set divides that set into a disjoint union of equivalence classes, 
and these equivalence classes will satisfY property (a) by definition. To complete 
the proof it will be sufficient to show that there are exactly two equivalence 
classes S1, S2 for the relation ~. Then to say that AC meets 1, which is equivalent 
to A + C, will be the same as saying that A, C belong to the opposite sets. 

By (13) there exists a point not on 1, so there is at least one equivalence class 
S1. Given A E S1, let D be any point on 1, and choose by (B2) a point C such that 
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A * D * C. Then A and C do not satisty ~, so there must be at least two equiva­
lence classes S1 and S2. 

The last step is to show that there are at most two equivalence classes. To do 
this, we will show that if A + C and B + C, then A ~ B . 

Case 1 If A, B, C are not collinear, we 
consider the triangle ABC. From A + C 
we conclude that AC meets 1. From 
B + C we conclude that BC meets 1. 
Now by Pasch's axiom (B4) it follows 
that AB does not meet 1. So A ~ B as 
required. 

Case 2 Suppose A, B, C lie on a line m. 
As in Case 2 of the first part of the proof 
above, choose a point D on I, not on m, 
and use (B2) to get a point E with 
D * A * E. Then A ~ E as we showed 
above. 

Now, A + C by hypothesis, and A ~ E, so we conclude that C + E, since ~ is 
an equivalence relation (if C ~ E, then A ~ C by transitivity: contradiction). 
Looking at the three noncollinear points B, C, E, from E + C and B + C we 
conclude using Case 1 that B ~ E. But also A ~ E, so by transitivity, A ~ B as 
required. 

Proposition 7.2 (Line separation) 
Let A be a point on a line 1. Then the set of points of 1 not equal to A can be divided 
into two non empty subsets S1, S2, the two sides of A on I, such that 

(a) B, C are on the same side of A if and 
only if A is not in the segment BC; 

(b) B, D are on opposite sides of A if 
and only if A belongs to the segment 
BD. 

Proof Given the line 1 and a point A on 
I, we know from (13) that there exists a 
point E not on 1. Let m be the line con-
taining A and E. Apply (7.1) to the line 
m. If m has two sides S~, S~, we define S1 
and S2 to be the intersections of S~ and 
S~ with 1. Then properties (a) and (b) 
follow immediately from the previous 
proposition. 

J) A c 
• 
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The only mildly nontrivial part is to show that Sl and S2 are nonempty. By 
(12), there is a point B on I different from A. And by (B2) there exists a point D 
such that B * A * D. Then D will be on the opposite side of A from B, and will lie 
on I, so both sides are nonempty. 

Now that we have some basic results on betweenness, we can define rays 
and angles. 

Definition 
Given two distinct points A, B, the ray 
-----AB is the set consisting of A, plus all 

points on the line AB that are on the 
same side of A as B. The point A is the 
origin, or vertex, of the ray. An angle is 

'---> -----the union of two rays AB and AC 
originating at the same point, its vertex, 
and not lying on the same line. (Thus 
there is no "zero angle," and there is no 
"straight angle" (180°).) Note that the 
vertex of a ray or angle is uniquely de­
termined by the ray or angle (proof 
similar to Exercises 7.2,7.3). 

The inside (or interior) of an angle 
LBAC consists of all points D such that 
D and C are on the same side of the line 
AB, and D and B are on the same side of 
the line AG. If ABC is a triangle, the in­
side (or interior) of the triangle ABC is 
the set of points that are simultaneously 
in the insides of the three angles 
LBAC, LABC, LACB. 

Proposition 7.3 (Crossbar theorem) 
Let LBAC be an angle, and let D be a 
point in the interior of the angle. Then the 

----- -ray AD must meet the segment BG. 

A B 
) 

A 

c 

Proof This is similar to Pasch's axiom (B4), except that we must consider a 
line AD that passes through one vertex of the triangle ABC. We will prove it 
with Pasch's axiom and several applications of the plane separation theorem 
(7.1). 
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Let us label the lines AB = 1, AC = 
m, AD = n. Let E be a point on m such 
that E * A * C (B2). We will apply Pasch's 
axiom (B4) to the triangle BCE and the 
line n. By construction n meets the side 
CE at A. Also, n cannot contain B, be­
cause it meets the line 1 at A. We will 
show that n does not meet the segment 
BE, so as to conclude by (B4) that it 
must meet the segment BC. 

E 
--~----~~------------~~~~ 

c 

So we consider the segment BE. This segment meets the line 1 only at B, so 
all points of the segment, except B, are on the same side of 1. By construction, C 
is on the opposite side of 1 from E, so by (7.1) all points of BE, except B, are on 
the opposite side of 1 from C. On the other hand, since D is in the interior of the 

-> 
angle LBAC, all the points ofthe ray AD, except A, are on the same side of 1 as 

-- -> 
C. Thus the segment BE does not meet the ray AD. 

A similar reasoning using the line m shows that all points of the segment BE, 
except E, lie on the same side of m as B, while the points of the ray of n, opposite 

-> --
the ray AD, lie on the other side of m. Hence the segment BE cannot meet the 

-> 
opposite ray to AD. Together with the previous step, this shows that the seg-
ment BE does not meet the line n. We conclude by (B4) that n meets the seg­
ment BC in a point F. 

-> 
It remains only to show that F is on the ray AD of the line n. Indeed, Band 

F are on the same side of m, and also Band D are on the same side of m, so (7.1) 
D and F are on the same side of m, and so D and F are on the same side of A on 

-> 
the line n. In other words, F lies on the ray AD. 

Example 7.3.1 
We will show that the real Cartesian plane (6.1.1), with the "usual" notion of 
betweenness, provides a model for the axioms (B1)-(B4). 

First, we must make precise what we mean by the usual notion of between­
ness. For three distinct real numbers a, b, C E lR, let us define a * b * C if either 
a < b < c or c < b < a. Then it is easy to see that this defines a notion of 
betweenness on the real line lR that satisfies (Bl), (B2), and (B3). 

If A = (a],az), B = (b],bz), and C = (c],cz) are three points in lRz, let us 
define A * B * C to mean that A, B, C are three distinct points on a line, and 
that either a] * b] * c] or az * bz * cz, or both. In fact, if either the x- or the y­
coordinates satisfY this betweenness condition, and if the line is neither hori­
zontal nor vertical, then the other coordinates will also satisfY it, because the 
points lie on a line, and linear operations (addition, multiplication) of real num­
bers either preserve or reverse inequalities. Thus linear operations preserve be­
tweenness. So we can verifY easily that this notion of betweenness in lRz sat­
isfies (B1), (B2), and (B3). 
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For (B4), let 1 be a line, and let A,B, G be three noncollinear points not on 1. 
The line 1 is defined by some linear equation ax + by + c = O. Let rp : 1R2 -> IR be 
the linear function defined by cp(x, y) = ax + by + c. Since cp is a linear function, 
cp will preserve betweenness. For example, if 1 meets the segment AB, then 0 will 
lie between rp(A) and cp(B). In other words, one of rp(A), cp(B) will be positive and 
the other negative. Suppose cp(A) > 0 and cp(B) < O. Consider cp(G). If rp(G) > 0, 
then 1 will meet BG but not AG. If rp( G) < 0, then 1 will meet AG but not BG. This 
proves (B4). 

Exercises 
7.1 Using the axioms of incidence and betweenness and the line separation property, 

show that sets of four points A, B, C, D on a line behave as we expect them to with 
respect to betweenness. Namely, show that 

(a) A * B * C and B * C * D imply A * B * D and A * C * D. 

(b) A * B * D and B * C * D imply A * B * C and A * C * D. 

7.2 Given a segment AB, show that there do not exist points C, DE AB such that 
C * A * D. Hence show that the endpoints A, B of the segment are uniquely deter­
mined by the segment. 

7.3 Given a triangle ABC, show that the sides AB, AC, and BC and the vertices A, B, C 
are uniquely determined by the triangle. Hint: Consider the different ways in which 
a line can intersect the triangle. 

7.4 Using (Il)-(I3) and (B1)-(B4) and their consequences, show that every line has 
infinitely many distinct points. 

7.5 Show that the line separation property (Proposition 7.2) is not a consequence of 
(B1), (B2), (B3), by constructing a model of betweenness for the set of points on 
a line, which satisfies (Bl), (B2), (B3) but has only finitely many points. (Then by 
Exercise 7.4, line separation must fail in this model.) For example, in the ring 
{O, 1, 2, 3, 4} of integers (mod 5), define a * b * c if b = ~ (a + c). 

7.6 Prove directly from the axioms (Il)-(I3) and (B1)-(B4) that for any two distinct 
points A, B, there exists a point C with A * C * B. (Hint: Use (B2) and (B4) to con­
struct a line that will be forced to meet the segment AB but does not contain A or B.) 

7.7 Be careful not to assume without proof statements that may appear obvious. For 
example, prove the following: 

(a) Let A,B, C.be three points on a line 
with C in between A and B. Then show 
thatAC U CB = ABandAC n CB = {C}. 

(b) Suppose we are given two distinct 
---> 

points A,B on a line 1. Show that AB U 
EX = 1 and AB n BA = AB. 

A B 

A 
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7.8 Assume A * B * C on one line, and 
A * D * E on another line. Show that the 
segment BE must meet the segment CD 
at a point M. A 

7.9 Show that the interior of a triangle is nonempty. 

7.10 Suppose that a line I contains a point D 
that is in the inside of a triangle ABC. 
Then show that the line I must meet (at 
least) one of the sides of the triangle . 

A c 

7.11 A set U of points in the plane is a convex set if whenever A,B are distinct points in U, 
then the segment AB is entirely contained in U. Show that the inside of a triangle is 
a convex set. 

7.12 A subset W of the plane is segment-connected if given any two points A, B E W, there 
is a finite sequence of points A = AI, A z, . .. ,An = B such that for each i = 1, 2, ... , 
n - 1, the segment AiAi+1 is entirely contained within W. 

If ABC is a triangle, show that the exterior of the triangle, that is, the set of all points of 
the plane lying neither on the triangle nor in its interior, is a segment-connected set. 

7.1 3 Let A,B,C,D be four points, no three collinear, and assume that the segments AB, 
BC, CD, DA have no intersections except at their endpoints. Then the union of these 
four segments is a simple closed quadrilateral. The segments AC and BD are the diag­
onals of the quadrilateral. There are two cases to consider. 

Case 1 AC and BD meet at a point M. 
In this case, show that for each pair 
of consecutive vertices (e.g. , A, B), the 
remaining two vertices (C ,D) are on 
the same side of the line AB. Define 
the interior of the quadrilateral to be 
the set of points X such that for each 
side (e.g. , AB) , X is on the same side of 
the line AB as the remaining vertices 
(C ,D) . Show that the interior is a con­
vex set. 

A 

c 
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Case 2 AC and ED do not meet. In 
this case, show that one of the diago-
nals (AC in the picture) has the prop- A 
erty that the other two vertices E, Dare 
on the same side of the line AC, while 
the other diagonal ED has the property 
that A and C are on the opposite sides 
of the line ED. Define the interior ofthe 
quadrilateral to be the union of the 
interiors of the triangles AED and CDE \ 
plus the interior of the segment ED. \ 
Show in this case that the interior is 
a segment-connected set, but is not 
convex. 

(For a generalization to n-sided fig­
ures, see Exercise 22.1l.) 

7.14 (Linear ordering) Given a finite set of distinct points on a line, it is possible to label 
them Aj ,Az, ... ,An in such a way that Ai * Aj * 4k if and only if either i < j < k or 
k < j < i. 

7.15 Suppose that lines a, b, c through the 
vertices A, E, C of a triangle meet at 
three points inside the triangle. Label 
them 

X=a·c, 

Y=a·b, 

Z=b·c. 

Show that one of the two following 
arrangements must occur: 

(i) A * X * Y and E * Y * Z and C * Z * X A c. 
(shown in diagram), or II-----------~ 

(ii) A * Y * X and E * Z * Y and C * X * Z. 

8 Axioms of Congruence for Line Segments 

To the earlier undefined notions of point, line, and betweenness, and to the 
earlier axioms (Il)-(I3), (Bl)-(B4), we now add an undefined notion of congru­
ence for line segments, and further axioms (Cl)-(C3) regarding this notion. This 
congruence is what Euclid called equality of segments. We postulate an un­
defined notion of congruence, which is a relation between two line segments AB 
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and CD, written AB ~ CD. For simplicity we will drop the bars over AB in the 
notation for a line segment, so long as no confusion can result. This undefined 
notion is subject to the following three axioms 

Cl. Given a line segment AB, and given 
a ray r originating at a point C, there 
exists a unique point D on the ray r 
such that AB ~ CD. 

C2. If AB ~ CD and AB ~ EF, then CD ~ EF. Every line segment is congruent to 
itself. 

C3. (Addition). Given three points A,B, 
C on a line satisfYing A * B * C, and 
three further points D, E, F on a line 
satisfYing D * E * F, if AB ~ DE and 
BC ~ EF, then AC ~ DF. 

Let us observe how these axioms are similar to Euclid's postulates and how 
they are different. First of all, while Euclid phrases some of his postulates in 
terms of constructions (lito draw a line through any two given points," and lito 
draw a circle with any given center and radius"), Hilbert's axioms are existen­
tial. (II) says for any two distinct points there exists a unique line containing 
them. And here, in axiom (Cl), it is the existence of the point D (corresponding 
to Euclid's construction (1.3)) that is taken as an axiom. Hilbert does not make 
use of ruler and compass constructions. In their place he puts the axiom (Cl) of 
the existence ofline segments and later (C4) the existence of angles. If you like, 
you can think of(Cl) and (C4) as being tools, a "transporter of segments" and a 
"transporter of angles," and consider some of Hilbert's theorems as construc­
tions with these tools. 

The second congruence axiom (C2) corresponds to Euclid's common notion 
that "things equal to the same thing are equal to each other." This is one part of 
the modern notion of an equivalence relation, so to be comfortable in using 
congruence, let us show that it is indeed an equivalence relation. 

Proposition 8.1 
Congruence is an equivalence relation on the set ofline segments. 

Proof To be an equivalence relation, congruence must satisfY three properties. 
(1) Reflexivity: Every segment is congruent to itself. This is explicitly stated in 

(C2). And by the way, this corresponds to Euclid's fourth common notion that 
"things which coincide with each other are equal to each other." 
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(2) Symmetry: If AB ~ CD, then CD ~ AB. This is a consequence of (C2): 
Given AB ~ CD, and writing AB ~ AB by reflexivity, we conclude from (C2) that 
CD~AB. 

(3) Transitivity: If liB ~ CD and CD ~ EF, then AB ~ EF. This follows by first 
using symmetry to show CD ~ AB, and then applying (C2). Notice that Hilbert's 
formulation of(C2) was a clever way of including symmetry and transitivity in a 
single statement. 

The third axiom (C3) is the counterpart of Euclid's second common notion, 
that "equals added to equals are equal." Let us amplify this by making a precise 
definition of the sum of two segments, and then showing that sums of congruent 
segments are congruent. 

Definition 
Let AB and CD be two given segments. 
Choose an ordering A, B of the end­
points of AB. Let rbe the rayon the line 
1 = AB consisting of B and all the points 
of 1 on the other side of B from A. Let E 
be the unique point on the ray r (whose 
existence is given by (C 1)) such that 
CD ~ BE. 

A e , , 

We then define the segment AE to be the sum of the segments AB and CD, 
depending on the order A,B, and we will write AE = AB + CD. 

Proposition 8.2 (Congruence of sums) 
Suppose we are given segments AB ~ A' B' and CD ~ C'D l Then AB + CD ~ 
A'B' + C'D'. 

Proof Let E' be the point on the line A'B' defining the sum A'E' = A'B' + C'D'. 
Then A * B * E by construction of the sum AB + CD, because E is on the ray 
from B opposite A. Similarly, A' * B' * E'. We have AB ~ A'B' by hypothesis. 
Furthermore, we have CD ~ C'D' by hypothesis, and CD ~ BE and C'D' ~ 
B'E' by construction of E and E'. From (8.1) we know that congruence is an 
equivalence relation, so BE ~ B'E' . Now by (C3) it follows that AE ~ A'E' as 
required. 

Note: Since the segment AB is equal to the segment BA, it follows in particular 
that the sum of two segments is independent of the order A , B chosen, up to 
congruence. Thus addition is well-defined on congruence equivalence classes of 
line segments. So we can speak of addition of line segments or congruent seg­
ments without any danger (cf. also Exercise 8.1, which shows that addition of 
line segments is associative and commutative, up to congruence). Later (Section 
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19) we will also define multiplication of segments and so create a field of seg­
ment arithmetic. 

Euclid's third common notion is that "equals subtracted from equals are 
equal." Bearing in mind that subtraction does not always make sense, we can 
interpret this common notion as follows. 

Proposition 8.3 
Given three points A,B, C on a line such 
that A * B * C, and given points E, F on a 
ray originating from a point D, suppose 
that AB ~ DE and AC ~ DF. Then E will 
be between D and F, and BC ~ EF. (We 
regard BC as the difference of AC and 
AB.) 

n c. 

~ 
D f 

Proof Let F' be the unique point on the ray originating at E, opposite to D, such 
that BC ~ EF'. Then from AB ~ DE and BC ~ EF' we conclude by (C3) that 
AC ~ DF'. But F and F' are on the same ray from D (check!) and also AC ~ DF, 
so by (C2) and the uniqueness part of (C1), we conclude that F = F'. It follows 
that D * E * F and BC ~ EF, as required. 

Note the role played by the uniqueness part of (C1) in the above proof. We 
can regard this uniqueness as corresponding to Euclid's fifth common notion, 
"the whole is greater than the part." Indeed, this statement could be interpreted 
as meaning, if A * B * C, then AB cannot be congruent to AC. And indeed, this 
follows from (Cl), because Band C are on the same ray from A, and if AB ~ AC, 
then Band C would have to be equal by (C1). 

So we see that Euclid's common notions, at least in the case of congruence of 
line segments, can be deduced as consequences of the new axioms (Cl)-(C3). 
Another notion used by Euclid without definition is the notion of inequality of 
line segments. Let us see how we can define the notions of greater and lesser 
also using our axioms. 

Definition 
Let AB and CD be given line segments. 
We will say that AB is less than CD, 
written AB < CD, if there exists a point 
E in between C and D such that AB ~ 
CE. In this case we say also that CD is 
greater than AB, written CD > AB. 
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In the next proposition, we will see that this notion ofless than is compatible 
with congruence, and gives an order relation on congruence equivalence classes 
of line segments. 

Proposition 8.4 
(a) Given line segments AB ;;: A'B' and CD ;;: C'D', then AB < CD if and only if 

A'B' < C'D'. 
(b) The relation < gives an order relation on line segments up to congruence, in 

the following sense: 

(i) If AB < CD, and CD < EF, then AB < EF. 
(ii) Given two line segments AB, CD, one and only one of the three following condi­

tions holds: AB < CD, AB ;;: CD, AB > CD. 

Proof (a) Given AB ;;: A'B' and CD;;: 
C'D', suppose that AB < CD. Then 
there is a point E such that AB ;;: CE 
and C * E * D. Let E' be the unique 

-----> 
point on the ray C'D' such that CE;;: 
C'E'. It follows from (8.3) that C' * E' * 
D'. Furthermore, by transitivity of con­
gruence, A'B' ;;: C'E', so A'B' < C'D' as 
required. The "if and only if" statement 
follows by applying the same argument 
starting with A'B' < C'D'. 

(b) (i) Suppose we are given AB < 
CD and CD < EF. Then by definition, 
there is a point X E CD such that AB ;;: 
CX, and there is a point Y E EF such 
that CD ;;: EY. Let Z E EF be such that 
CX;;: EZ. Then by (8.3) we have E * Z* 
Y. It follows that E * Z * F (Exercise 7.1) 
and that AB ;;: EZ. Hence AB < EF as 
required. 

(ii) Given line segments AB and CD, 
~ 

let E be the unique point on the ray CD 
for which AB ;;: CE. Then either D = E 
or C * E * D or C * D * E. We cannot 
have D * C * E because D and E are on 
the same side of C. These conditions are 
equivalent to AB ;;: CD, or AB < CD, or 
AB > CD, respectively, and one and 
only one of them must hold. 

A 

c , 

.. D 

E y F 

D -
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Example 8.4.1 
Let us define congruence for line seg­
ments in the real Cartesian plane JR2, so 
that it becomes a model for the axioms 
(Il )-(13), (Bl )-(B4), and (Cl )-( C3) that 
we have introduced so far . We have 
already seen how to define lines and 
betweenness (7.3.1) . Given two points 
A = (al,a2) and B = (b1,b2), we define 
the distance d(A, B) by 

This is sometimes called the Euclidean distance or the Euclidean metric on JR2. 
Note that d(A, B) ~ 0, and d(A, B) = 0 only if A = B. 

Now we can give an interpretation of the undefined notion of congruence in 
this model by defining AB ~ CD if d(A, B) = d( C, D). Let us verify that the axioms 
(Cl), (C2), (C3) are satisfied. 

For (Cl), we suppose that we are 
given a segment AB, and let d = d(A, B). 
We also suppose that we are given a 
point C = (Cl,C2) and a ray emanat­
ing from C. For simplicity we will 
assume that the ray has slope m > 0 
and that it is going in the direction of *'~ 
increasing x-coordinate (we leave the .t.. 
other cases to the reader). Then any 
point D on this ray has coordinates D = C =( (,, (~J 
(Cl + h, C2 + mh) for some h ~ O. The 
corresponding distance is 

d(C,D) = hV1 + m2 . 

To find a point D with AB ~ CD is then equivalent to solving the equation 
(in a variable h > 0) 

hV1 +m2 = d, 

where m and d > 0 are given. Clearly, there is a unique solution h E JR, h > 0, 
for given d, m . This proves (C1) . 

The second axiom (C2) is trivial from the definition of congruence using a 
distance function. 
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To prove (C3), it will be sufficient to 
prove that the distance function is addi­
tive for points in a line: If A * B * C, 
then 

d(A, B) + d(B, C) = d(A, C). 

Suppose the line is y = mx + b, and 
A = (aI, az) is the point with smallest 
x-coordinate. 

Then there are h, k > 0 such that 

B = (al + h,az + mh), 

C = (a1 + h + k, az + m(h + k)). 

In this case 

d(A,B) = hv'l + m Z, 

d(B, C) = kv'l + m Z, 

A 

d(A, C) = (h + k)v'l + m Z, 

so the additivity of the distance function follows. 
We will sometimes call this model, the real Cartesian plane with congruence 

of segments defined by the Euclidean distance function, the standard model of 
our axiom system. 

Exercises 

The following exercises (unless otherwise specified) take place in a geometry with 
axioms (Il)-(I3), (B1)-(B4), (C1)-(C3). 

8.1 (a) Show that addition of line segments is associative: Given segments AB, CD, EF, 
and taking A, B in order, then (AB + CD) + EF = AB + (CD + EF). (This means that 
we obtain the same segment as the sum, not just congruent segments.) 

(b) Show that addition of line segments is commutative up to congruence: Given 
segments AB, CD, then AB + CD ~ CD + AB. 

8.2 Show that "halves of equals are equal" in the following sense: if AB ~ CD, and if E is 
a midpoint of AB in the sense that A * E * Band AE ~ EB, and if F is a midpoint of 
CD, then AE ~ CF. (Note that we have not yet said anything about the existence of a 
midpoint: That will come later (Section 10).) Conclude that a midpoint of AB, if it 
exists, is unique. 

8.3 Show that addition preserves inequalities: If AB < CD and if EF is any other seg­
ment, then AB + EF < CD + EF. 
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8.4 Let r be a ray originating at a point A, 
and let s be a ray originating at a point 
B. Show that there is a 1-to-1 mapping 
rp : r -+ s of the set r onto the set s that 
preserves congruence and between­
ness. In other words, iff or any X E r we 
let X' = rp(X) E s, then for any X, Y, 
Z E r, XY~ X'y', and X* Y* Z <=> 
X' * y' *Z'. 

8.5 Given two distinct points a,A, we define the circle with center a and radius aA to be 
the set I' of all points B such that aA ~ DB. 

(a) Show that any line through a meets the circle in exactly two points. 

(b) Show that a circle contains infinitely many points. 

(Warning: It is not obvious from this definition whether the center D is uniquely de­
termined by the set of points I' that form the circle. We will prove that later (Propo­
sition 11.1).) 

8.6 Consider the rational Cartesian plane ~2 whose points are ordered pairs of rational 
numbers, where lines are defined by linear equations with rational coefficients and 
betweenness and congruence are defined as in the standard model (Examples 7.3.1 
and 8.4.1) . Verify that (Il)-(I3) and (B1)-(B4) are satisfied in this model. Then show 
that (C2) and (C3) hold in this model, but (C1) fails. 

8.7 Consider the real Cartesian plane IR?, with lines and betweenness as before (Exam­
ple 7.3.1), but define a different notion of congruence of line segments using the 
distance function given by the sum of the absolute values: 

d(A, B) = ial - bd + ia2 - b2 i, 
where A = (al,a2) and B = (bl ,b2). Some people call this "taxicab geometry" be­
cause it is similar to the distance by taxi from one point to another in a city where 
all streets run east-west or north-south. Show that the axioms (C1), (C2), (C3) hold, 
so that this is another model of the axioms introduced so far. What does the circle 
with center (0,0) and radius 1 look like in this model? 

8.8 Again consider the real Cartesian plane IR?, and define a third notion of congruence 
for line segments using the sup of absolute values for the distance function: 

d(A,B) = sup{ial - bli, ia2 - b2 i}. 
Show that (C1), (C2), (C3) are also satisfied in this model. What does the circle with 
center (0,0) and radius 1100k like in this case? 

8.9 Following our general principles, we say that two models M, M' of our geometry are 
isomorphic if there exists a 1-t0-1 mapping rp : M -+ M' of the set of points of M onto 
the set of points of M', written rp(A) = A', that sends lines into lines, preserves 
betweenness, i.e., A * B * C in M <=> A' * B' * C' in M', and preserves congruence of 
line segments, i.e., AB ~ CD in M <=> A'B' ~ C'D' in M' . 

Show that the models of Exercise 8.7 and Exercise 8.8 above are isomorphic to each 
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other, but they are not isomorphic to the standard model (Example 8.4.1). Note: To 
show that the two models of Exercise 8.7 and Exercise 8.8 are isomorphic, you do 
not need to make the distance functions correspond. It is only the notion of congru­
ence of line segments that must be preserved. To show that two models are not iso­
morphic, one method is to find some statement that is true in one model but not 
true in the other model. 

8.10 Nothing in our axioms relates the size of a segment on one line to the size of a con­
gruent segment on another line. So we can make a weird model as follows. Take the 
real Cartesian plane JRZ with the usual notions of lines and betweenness. Using the 
Euclidean distance function d(A,B), define a new distance function 

dAB = 
'( ) {d(A, B) if the segment AB is either horizontal or vertical, 

, 2d(A,B) otherwise. 

Define congruence of segments AB ~ CD if d'(A,B) = d'(C,D). 
Show that (C1), (C2), (C3) are all satisfied in this model. What does a circle with 
center (0,0) and radius 1 look like? 

8.11 The triangle inequality is the statement that if A, B, C are three distinct points, then 
AC :0; AB + Be. 

(a) The triangle inequality always holds for collinear points. 

(b) The triangle inequality holds for any three points in the standard model (Exam­
ple 8.4.1) and also in taxicab geometry (Exercise 8.7). 

(c) The triangle inequality does not hold in the model of Exercise 8.10. Thus the tri­
angle inequality is not a consequence of the axioms of incidence, betweenness, and 
congruence ofline segments (C1)-(C3). (However, we will see in Section 10 that the 
triangle inequality, in the form of Euclid (1.20), is a consequence of the full set of 
axioms of a Hilbert plane.) 

9 Axioms of congruence for Angles 
Recall that we have defined an angle to be the union of two rays originating 
at the same point, and not lying on the same line. We postulate an undefined 
notion of congruence for angles, written ~, that is subject to the following three 
axioms: 

C4. Given an angle LBAC and given a L 
---+ ---+ 

ray DF, there exists a unique ray DE, 
on a given side of the line DF, such that A C 
LBAC ~ LEDF. 

F . ) 

CS. For any three angles a,p, y, if a ~ p and a ~ y, then p ~ y. Every angle is 
congruent to itself. 
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e6. (SAS) Given triangles ABC and DEF, 
suppose that AB ~ DE and AC ~ DF, 
and LBAC ~ LEDF. Then the two tri­
angles are congruent, namely, BC ~ EF, 
LABC ~ LDEF and LACB ~ LDFE. 

Note that Hilbert takes the existence of an angle congruent to a given one 
(C4) as an axiom, while Euclid proves this by a ruler and compass construc­
tion (1.23). Since Hilbert does not make use of the compass, we may regard 
this axiom as a tool, the "transporter of angles," that acts as a substitute for the 
compass. 

As with (C2), we can use (CS) to show that congruence is an equivalence 
relation. 

Proposition 9.1 
Congruence of angles is an equivalence relation. 

Proof The proof is identical to the proof of (8.1), using (CS) in place of (C2). 

As in the case of congruence of line segments, we would like to make sense 
of Euclid's common notions in the context of congruence of angles. This propo­
sition (9.1) is the analogue of the first common notion, that "things equal to the 
same thing are equal to each other." The second common notion, that "equals 
added to equals are equal," becomes problematic in the case of angles, because 
in general we cannot define the sum of two angles. 

If LBAC is an angle, and if a ray 
---+ 
AD lies in the interior of the angle 
LBAC, then we will say that the angle 
LBAC is the sum of the angles LDAC 
and LBAD. 

A 

However, if we start with the two given angles, there may not be an angle 
that is their sum in this sense. For one thing, they may add up to a straight line, 
or "two right angles" as Euclid says, but this is not an angle. Or their sum may 
be greater than 180°, in which case we get an angle, but the two original angles 
will not be in the interior of the new angle. So we must be careful how we state 
results having to do with sums of angles. 

Note that we do not have an axiom about congruence of sums of angles 
analogous to the axiom (C3) about addition ofline segments. That is because we 
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can prove the corresponding result for angles. But in order to do so, we will 
need (C6). 

Hilbert's use of (C6) = (SAS) as an axiom is a recognition of the insufficiency 
of Euclid's proof of that result (I.4) using the method of superposition. To justify 
the method of superposition by introducing axioms allowing motion of figures in 
the plane would be foreign to Euclid's approach to geometry, so it seems pru­
dent to take (C6) as an axiom. However, we will show later (17.5) that the (SAS) 
axiom is essentially equivalent to the existence of a sufficiently large group of 
rigid motions of the plane. The axiom (C6) is necessary, since it is independent 
of the other axioms (Exercise 9.3). This axiom is essentially what tells us that our 
plane is homogeneous: Geometry is the same at different places in the plane. 

Now let us show how to deal with sums of angles and inequalities among 
angles based on these axioms. 

Definition 
If LBAC is an angle, and if D is a point 
on the line AC on the other side of A 
from C, then the angles LBAC and 
L BAD are supplementary. 

Proposition 9.2 

c 

If LBAC and LBAD are supplementary angles, and if LB'A'C' and LB'A'D' are 
supplementary angles, and if LBAC ~ LB'A'C', then also LBAD ~ LB'A'D'. 

Proof Replacing B', C', D' by other 
points on the same rays, we may as­
sume that AB ~ A'B', AC ~ A'C', and 
AD ~ A' D'. Draw the lines BC, BD, 
B'C', and B'D'. 

First we consider the triangles ABC 
and A' B' C'. By hypothesis we have 
AB ~ A'B' and AC ~ A'C' and LBAC ~ 
L B' A' C'. So by (C6) we conclude that 
the triangles are congruent. In particu­
lar, BC ~ B'C' and LBCA ~ LB'C'A'. 

N ext we consider the triangles BCD 
and B'C'D'. Since AC ~ A'C' and AD ~ 
A'D', and C*A*D and C'*A'*D', we 
conclude from (C3) that CD ~ C'D'. 
Using BC ~ B'C' and LBCA ~ LB'C'A' 
proved above, we can apply (C6) again 
to see that the triangles BCD and B'C'D' 
are congruent. In particular, BD ~ B'D' 
and LBDA ~ LB'D'A'. 

~ 
J) A G 

~, 
C. 1)' A' 
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Now we consider the triangles BDA and B'D'A'. From the previous'step we 
have BD ~ B'D' and LBDA ~ LB'D'A'. But by hypothesis we have DA ~ D'A'. 
So a third application of (C6) shows that the triangles BDA and B' D' A' are con­
gruent. In particular, LBAD ~ LB'A'D' , which was to be proved. 

Note: We may think of this result as a replacement for (I.13), which says that 
the angles made by a ray standing on a line are either right angles or are equal 
to two right angles. We cannot use Euclid's statement directly, because in our 
terminology, the sum of two right angles is not an angle. However, in applica­
tions, Euclid's (I.13) can be replaced by (9.2). So for example, we have the fol­
lowing corollary. 

Corollary 9.3 
Vertical angles are congruent. 

Proof Recall that vertical angles are de­
fined by the opposite rays on the same 
two lines. The vertical angles a and a' 
are each supplementary to (1, and (1 is 
congruent to itself, so by the proposi­
tion, a and a' are congruent. 

Proposition 9.4 (Addition of angles) 
---+ 

Suppose LBAC is an angle, and the ray AD is in the interior of the angle LBAC. 
---+ ---+ 

Suppose LD'A'C' ~ LDAC, and LB'A'D' ~ LBAD, and the rays A'B' and A'C' 
---+ ---+ 

are on opposite sides of the line A'D' . Then the rays A'B' and A'C' form an angle, 
---+ 

and LB'A'C' ~ LBAC, and the ray A'D' is in the interior of the angle LB'A'C'. For 
short, we say "sums of congruent angles are congruent." 

Proof Draw the line BC. Then the ray 
---+ -
AD must meet the segment BC, by the 
crossbar theorem (7.3). Replacing the 
original D by this intersection point, we 
may assume that B, D, C lie on a line 
and B * D * C. On the other hand, re­
placing B', C', D' by other points on the 
same rays, we may assume that AB ~ 
A'B', and AC ~ A'C', and AD ~ A'D'. 
We also have LBAD ~ LB'A'D' and 
LDAC ~ LD'A'C' by hypothesis. 

By (C6) we conclude that the tri­
angles !li3AD and !li3'A'D' are con­
gruent. In particular, BD ~ B'D' and 
LBDA ~ B'D'A'. 

c.. 

t' 

c' 
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Again by (C6) we conclude that the triangles WAC and W'A'C' are congru­
ent. In particular, DC ~ D'C' and LADC ~ LA'D'C'. 

Let E' be a point on the line B'D' with B' * D' * E'. Then LA'D'E' is supple­
mentary to LA'D'B', which is congruent to LADB. So by (9.2) and transitivity of 
congruence, we find that LA'D'E' ~ LA'D'C'. Since these angles are on the 
same side of the line A'D', we conclude from the uniqueness part of (C4) that 
they are the same angle. In other words, the three points B',D', and C' lie on a 
line. 

Then from (C3) we conclude that BC ~ B'C'. Since LABD ~ LA'B'D' by the 
first congruence of triangles used in the earlier part of the proof, we can apply 
(C6) once more to the triangles ABC and A'B'C'. The congruence of these tri­
angles implies LBAC ~ LB'A'C' as required. Since B',D', and c' are collinear 
and D'A'C' is an angle, it follows that A',B', C' are not collinear, so B'A'C' is an 
angle. Since B' and C' are on opposite sides of the line A' D', it follows that 

----+ 
B' * D' * C', and so the ray A'D' is in the interior of the angle LB'A'C', as 
required. 

Next, we will define a notion of inequality for angles analogous to the 
inequality for line segments in Section 8. 

Definition 
Suppose we are given angles LBAC and 
LEDF. We say that LBAC is less than L 
LEDF, written LBAC < LEDF, if there 

---t 
exists a ray DG in the interior of the 
angle LEDF such that LBAC ~ LGDF. A c. 
In this case we will also say that LEDF 
is greater than LBAC. 

Proposition 9.5 
(a) If a ~ a' and /3 ~ /3', then a < /3 {=} a' < /3'. 
(b) Inequality gives an order relation on angles, up to congruence. In other words: 

(i) Ifa < /3 and/3 < y, then a < y. 
(ii) For any two angles a and /3, one and only one of the following holds: a < /3; 

a ~ /3; a > /3. 

Proof The proofs of these statements are essentially the same as the correspond­
ing statements for line segments (8.4), so we will leave them to the reader. 

Definition 
A right angle is an angle a that is con­
gruent to one of its supplementary 
angles /3. 
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Note: In this definition, it does not matter which supplementary angle to rx we 
consider, because the two supplementary angles to rx are vertical angles, hence 
congruent by (9.3). Two lines are orthogonal if they meet at a point and one, 
hence all four, of the angles they make is a right angle. 

Proposition 9.6 
Any two right angles are congruent to each other. 

Proof Suppose that rx = L CAB and rx' = 
L C' A' B' are right angles. Then they will 
be congruent to their supplementary 
angles fJ,fJ', by definition. Suppose rx 
and rx' are not congruent. Then by (9.5) 
either rx < rx' or rx' < rx. Suppose, for 
example, rx < rx'. Then by definition of 

----7 

inequality there is a ray A'E' in the in-
terior of angle rx' such that rx ~ LE'A'B'. 

----7 

It follows (check!) that the ray A' C' 
is in the interior of LE'A'D', so that 
fJ' < LE'A'D'. But LE'A'D' is supple­
mentary to LE'A'B', which is congruent 
to rx, so by (9.2), LE'A'D' ~ fJ. There­
fore, fJ' < fJ· But rx ~ fJ and rx' ~ fJ', so 
we conclude that rx' < rx, which is a 
contradiction. 

D' 

c 

A' 

Note: Thus the congruence of all right angles can be proved and does not need 
to be taken as an axiom as Euclid did (Postulate 4). The idea ofthis proof already 
appears in Proclus. 

Example 9.6.1 
We will show later that the real Cartesian plane ]R2 provides a model of all the 
axioms listed so far. You are probably willing to believe this, but the precise 
definition of what we mean by congruence of angles in this model, and the proof 
that axioms (C4)-(C6) hold, requires some work. We will postpone this work 
until we make a systematic study of Cartesian planes over arbitrary fields, and 
then we will show more generally that the Cartesian plane over any ordered 
field satisfying a certain algebraic condition gives a model of Hilbert's axioms 
(17.3). 

The other most important model of Hilbert's axioms is the non-Euclidean 
Poincare modeL which we will discuss in Section 39. 
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Exercises 

9.1 (Difference of angles). Suppose we 
are given congruent angles LBAC::::; 
LB'A'C'. Suppose also that we are given 

-----> 
a ray AD in the inter~or of LBAC. Then 
there exists a ray A'D' in the interior of 
LB'A'C' such that LDAC::::; LD'A'C' 
and LBAD::::; LB'A'D'. This statement 
corresponds to Euclid's Common Notion 
3: "Equals subtracted from equals are 
equal," where "equal" in this case 
means congruence of angles. 

-----> 
9.2 Suppose the ray AD is in the interior of 

the angle LBAC, and the ray JUt is in 
the i~rior of the angle LDAG. Show 
that AE is also in the interior of LBAC. 

A 

/ 
I' ;DI 

/ 

c c' -----

c... 

9.3 Consider the real Cartesian plane where congruence ofline segments is given by the 
absolute value distance function (Exercise 8.7). Using the usual congruence of angles 
that you know from analytic geometry (Section 16), show that (C4) and (C5) hold in 
this model, but that (C6) fails. (Give a counterexample.) 

9.4 Provide the missing betweenness argu­
ments to complete Euclid's proof of (1. 7) 
in the case he consi~s. Namely, as­
suming that the ray AD is in the inte­
rior of the angle L CAB, and assuming 
that D ~ outside the triangle ABC, prove 
that CB is ~ the interior of the angle 
LACD and DA is in the interior of the 
angle LCDB. 

10 Hilbert Planes 

A 

c.. 

B 

We have now introduced the minimum basic notions and axioms on which to 
found our study of geometry. 
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Definition 
A Hilbert plane is a given set (of points) together with certain subsets called lines, 
and undefined notions of betweenness, congruence for line segments, and con­
gruence for angles (as explained in the preceding sections).that satisfy the axioms 
(Il)-(I3), (B1)-(B4), and (C1)-(C6). (We do not include the parallel axiom (P).) 

We could go on immediately and introduce the parallel axiom and axioms of 
intersection of lines and circles, so as to recover all of Euclid's Elements, but it 
seems worthwhile to pause at this point and see how much of the geometry we 
can develop with this minimal set of axioms. The main reason for doing this is 
that the axioms of a Hilbert plane form the basis for non-Euclidean as well as 
Euclidean geometry. In fact, some people call the Hilbert plane neutral geometry, 
because it neither affirms nor denies the parallel axiom. 

In this section we will see how much of Euclid's Book I we can recover in a 
Hilbert plane. With two notable exceptions, we can recover everything that does 
not make use of the parallel postulate. 

Let us work in a given Hilbert plane. Euclid's definitions, postulates, and 
common notions have been replaced by the undefined notions, definitions, and 
axioms that we have discussed so far (excluding Playfair's axiom). We will now 
discuss the propositions of Euclid, Book 1. 

The first proposition (U) is our first exception! Without some additional 
axiom, it is not clear that the two circles in Euclid's construction will actually 
meet. In fact, the existence of an equilateral triangle on a given segment does 
not follow from the axioms of a Hilbert plane (Exercise 39.31). We will partially 
fill this gap by showing (10.2) that there do exist isosceles triangles on a given 
segment. 

Euclid's Propositions (1.2) and (1.3) about transporting line segments are 
effectively replaced by axiom (C1). Proposition (1.4), (SAS), has been replaced by 
axiom (C6). 

Proposition (1.5) and its proof are ok as they stand. In other words, every 
step of Euclid's proof can be justified in a straightforward manner within the 
framework of a Hilbert plane. To illustrate this process of reinterpreting one of 
Euclid's proofs within our new axiom system, let us look at Euclid's proof step 
by step. 

Proof of (l.S) Let ABC be the given isosceles triangle, with AB ~ AC (congruent 
line segments). We must prove that the base angles LABC and LACB are con­
gruent. "In BD take any point F." This is possible by axiom (B2). "On AE cut off 
AG equal to AF." This is possible by (C1). Now AC ~ AB and AF ~ AG, and the 
enclosed angle LBAC is the same, so the triangles MFC and MGB are congru­
ent by a direct application of (C6). So FC ~ GB and LAFC ~ LAGB and 
LACF~LABG. 

Since "equals subtracted from equals are equal," referring in this case to 
congruence of line segments, we conclude from (8.3) that BF ~ CG. Then by 
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another application of (C6), the triangles MBC and !1GCB are congruent. It fol­
lows that LCBG ~ LBCF. Now by subtraction of congruent angles (Exercise 9.1), 
the base angles LABC and LACB are congruent, as required. (We omit the proof 
of the second assertion, which follows similarly.) 

At certain steps in this proof we need to know something about between­
ness, which can also be formally proved from our axioms. For example, in order 
to subtract the line segment AB from AF, we need to know that B is between A 
and F. This follows from our choice of F. At the last step, subtracting angles, we 

--+ 
need to know that the ray BC is in the interior of the angle LABG. This follows 
from the fact that C is between A and G. 

So in the following, when we say that Euclid's proof is ok as is, we mean that 
each step can be justified in a natural way, without having to invent additional 
steps of proof, from Hilbert's axioms and the preliminary results we established 
in the previous sections. 

Looking at (I.6), the converse of (I.5), everything is ok except for one doubt­
ful step at the end. Euclid says, lithe triangle DBC is equal to the triangle ACB, 
the less to the greater; which is absurd." It is not clear what this means, since we 
have not defined a notion of inequality for triangles. However, a very slight 
change will give a satisfactory proof. Namely, from the congruence of the tri­
angles WBC ~ !).ACB, it follows that LDCB ~ LABC. But also LABC ~ LACB 
by hypothesis. So LDCB ~ LACB, lithe less to the greater," as Euclid would say. 
For us, this is a contradiction of the uniqueness part of axiom (C4), since there 

--+ 
can be only one angle on the same side of the ray CB congruent to the angle 

--+ --+ 
LACB. We conclude that the rays CA and CD are equal, so A = D, and the tri-
angle is isosceles, as required. 
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Proposition (1.7), as we have mentioned before, needs some additional justi­
fication regarding the relative positions of the lines, which can be supplied from 
our axioms of betweenness (Exercise 9.4). 

For (1.8), (SSS), we will need a new proof, since Euclid's method of super­
position cannot be justified from our axioms. The following proof is due to 
Hilbert. 

Proposition 10.1 (SSS) 
If two triangles ABC and A'B'C' have their respective sides equal, namely AB ~ A'B', 
AC ~ A'C', and BC ~ B'C', then the two triangles are congruent. 

Proof Using (C4) and (Cl), construct an 
angle L C' A' B" on the other side of the 
~ 

ray A'C' from B' that is congruent 
to LBAC, and make A'B" congruent to 
AB. Then AB ~ A' B" by construction, 
AC ~ A'C' by hypothesis, and LBAC ~ 
LB"A'C' by construction, so by (C6), 
the triangle MBC is congruent to the 
triangle M' B" C'. It follows that BC ~ 
B"C'. 

Draw the line B'B". Now A'B' ~ 
AB ~ A'B", so by transitivity, A'B' ~ 
A'B". Thus the triangle A'B'B" is isos­
celes, and so by (1.5) its base angles 
LA'B'B" and LA'B"B' are congruent. 
Similarly, B' C' ~ B" C', so the triangle 
C'B'B" is isosceles, and its base angles 
LB"B'C' and LB'B"C' are congruent. 
By addition of congruent angles (9.4) it 
follows that LA'B'C' ~ LA'B"C'. 

8' 

c' 

This latter triangle was shown congruent to MBC, so LA'B"C' ~ LABC. 
Now by transitivity of congruence, LABC ~ LA'B'C', so we can apply (C6) 
again to conclude that the two triangles are congruent. 

Note: This proof and the accompanying figure are for the case where A' and C' 
are on opposite sides of the line B'B". The case where they are on the same side 
is analogous, and the case where one of A' or C' lies on the line B'B" is easier, 
and left to the reader. 

Starting with the next proposition (1.9) we have a series of constructions with 
ruler and compass. We cannot carry out these constructions in a Hilbert plane, 
because we have not yet added axioms to ensure that lines and circles will meet 
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when they oUght to (cf. Section 11). However, we can reinterpret these proposi­
tions as existence theorems, and these we can prove from Hilbert's axioms. 
Since we do not have the equilateral triangles that Euclid constructed in (1.1), we 
will prove the existence of isosceles triangles, and we will use them as a substi­
tute for equilateral triangles in the following existence proofs. 

Proposition 10.2 (Existence of isosceles triangles) 
Given a line segment AB, there exists an isosceles triangle with base AB. 

Proof Let AB be the given line seg­
ment. Let G be any point not on the line 
AB (axiom (13)). Consider the triangle 
MBG. If the angles at A and Bare 
equal, then MBG is isosceles (1.6). If 
not, then one angle is less than the 
other. Suppose LGAB < LGBA. Then 

---+ 
there is a ray BE in the interior of the 
angle LGBA such that LGAB ~ LEBA. 

By the crossbar theorem (7.3) this A 
ray must meet the opposite side AG in a 
point D. Now the base angles of the tri-
angle DAB are equal, so by (1.6) it is 
isosceles. 

Note: It would not suffice to construct 
equal angles at the two ends of the inter­
val, because without the parallel axiom, 
even if the angles are small, there is no 
guarantee that the two rays would meet. 

Now let us return to Euclid. We interpret (1.9) as asserting the existence of an 
angle bisector. We use the same method as Euclid, except that we use (10.2) to 
give the existence of an isosceles triangle WEF where Euclid used an equilat­
eral triangle. We may assume that this isosceles triangle is constructed on the 
opposite side of DE from A. Then Euclid's proof, using (SSS), shows that 

--> 
LDAF ~ LEAF. It is not obvious from the construction that the ray AF is in 
the interior of the angle L DAE, but it does follow from the conclusion: For if 
~ . . . ---+ -----+ 
AF were not m the mtenor of the angle, then AD and AE would be on the 

--> 
same side of AF, and in that case the congruence of the angles LDAF ~ LEAF 
would contradict the uniqueness in axiom (C4). 

For (UO) to bisect a given line segment, we again use (10.2) to construct an 
isosceles triangle instead of an equilateral triangle. The rest of Euclid's proof 
then works to show that a midpoint of the segment exists. 

For (I.l1) we can also use (10.2) to construct a line perpendicular to a line at 
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a point. By the way, this also proves the existence of right angles, which is not 
obvious a priori. 

For (U2), to drop a perpendicular from a point C to a line not containing C, 
Euclid's method using the compass does not work in a Hilbert plane. We need a 
new existence proof (see Exercise 10.4). 

Proposition (U3) has been replaced by the result on congruence of supple­
mentary angles (9 .2), and (U4) is an easy consequence (Exercise 10.7). The 
congruence of vertical angles (US) has already been mentioned above (9.3). 
The theorem on exterior angles (U6) is sufficiently important that we will re­
produce Euclid's proof here, with the extra justifications necessary to make it 
work. 

Proposition 10.3 (Exterior angle theorem (U6)) 
In any triangle, the exterior angle is greater than either of the opposite interior angles. 

Proof Let ABC be the given triangle. 
We will show that the exterior angle 
LACD is greater than the opposite inte-
rior angle at A . Let E be the midpoint of 
AC (I.l0), and extend BE to F so that 
BE ~ EF (axiom (Cl)). Draw the line 
CF. Now the vertical angles at E are 
equal (US), so by SAS (C6), the tri- 'B 

F 

angles MBE and flCFE are congruent. "---------¥.------;> 
Hence LA ~ LECF. C 

To finish the pr~ that is, to show that LECF is less than LACD, we need to 
know that the ray CF is in the interior of the angle LACD. This we can prove 
based on our axioms of betweenness. Since D is on the side BC of the triangle 
extended, Band D are on opposite sides of the line AG. Also, by construction of 
F, we have Band F on opposite sides of AC. So from the plane separation prop­
erty (7.1) it follows that D and F are on the same side of the line AC. 

Now consider sides of the line BC. Since B * E * F, it follows that E and Fare 
on the same side of BC. Since A * E * C, it follows that A and E are on the same 
side of AC. By transitivity (7.1) it follows that A and F are on the same side of the 
line BC = CD. So by definition, Fis in the interior of the angle LACD, and hence 

---+ 
the ray CF is also. Therefore, by definition of inequality for angles, LBAC is 
less than LACD, as required. 

Propositions (U7) -( 1.21) are all ok as is, except that we should reinterpret 
the statement of (I.l7). Instead of saying "any two angles of a triangle are less 
than two right angles," which does not make sense in our system, since "two 
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right angles" is not an angle, we simply say; if iY. and p are any two angles of a 
triangle, then iY. is less than the supplementary angle of p. 

Proposition (1.22) is our other exception. Without knowing that two circles 
intersect when they ought to, we cannot prove the existence of the triangle re­
quired in this proposition. In fact, we will see later (Exercise 16.11) that there 
are Hilbert planes in which a triangle with certain given sides satisfYing the 
hypotheses of this proposition does not exist! 

The next proposition (I.23), which "Euclid proved using (1.22), is replaced by 
Hilbert's axiom (C4), the "transporter of angles." 

The remaining results that Euclid proved without using the parallel postulate 
are ok as is in the Hilbert plane: (1.24), (I.25), (I.26) = (ASA) and (AAS), (1.27) 
"alternate interior angles equal implies parallel," and even the existence of par­
allel lines (I.31). 

Summing up, we have the following theorem. 

Theorem 10.4 
All of Euclid's propositions (1.1) through (1.28), except (U) and (1.22), can be proved 
in an arbitrary Hilbert plane, as explained above. 

Constructions with Hilbert's Tools 

Euclid used ruler and compass constructions to prove the existence of various 
objects in his geometry, such as the midpoint of a given line segment. We used 
Hilbert's axioms to prove corresponding existence results in a Hilbert plane. 
However, we can reinterpret these existence results as constructions if we 
imagine tools corresponding to certain of Hilbert's axioms. Thus (II), the exis­
tence of a line through two points, corresponds to the ruler. For axiom (C 1), 
imagine a tool, such as a compass with two sharp points (also called a pair of di­
viders), that acts as a transporter of segments. For axiom (C4), imagine a new 
tool, the transporter of angles, that can reproduce a given angle at a new point. 
It could be made of two rulers joined with a stiff but movable hinge. 

We call these three tools, the ruler, the dividers, and the transporter of 
angles, Hilbert's tools. We also allow ourselves to pick points (using (13) and (B2)) 
as required. 

Now we can regard (10.2) as a construction of an isosceles triangle using 
Hilbert's tools. Counting steps, with one step for each use of a tool, we have the 
construction as follows: 

Given a line segment AB. Pick C not on the line AB. 

1. Draw line AC. 
2. Draw line BC. Suppose LCAB is less than LCBA. 
3. Transport L CAB to LABE, get point D. 

Then ABD is the required isosceles triangle. 



10. Hilbert Planes 

Exercises 

10.1 Construct with Hilbert's tools the angle bisector of a given angle (par = 4). 

10.2 Construct with Hilbert's tools the midpoint of a given segment (par = 4). 
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10.3 Construct with Hilbert's tools a line perpendicular to a given line 1 at a given point 
AE1(par=5). 

10.4 Construct with Hilbert's tools a line perpendicular to a given line 1 from a pOint A 
not on 1 (par = 4). 

10.5 Construct with Hilbert's tools a line parallel to a given line 1, and passing through a 
given point A not on 1 (par = 2). 

10.6 Write out a careful proof of Euclid (U8), justifying every step in the context of 
a Hilbert plane, and paying especial attention to questions of betweenness and 
inequalities. 

10.7 Rewrite the statement (U4) so that it makes sense in a Hilbert plane, and then 
give a careful proof. 

10.8 Write a careful proof of (1.20) in a Hilbert plane. 

10.9 Show that the right-angle-side-side 
congruence theorem (RASS) holds in a 
Hilbert plane: If ABC and A'B'C' are 
triangles with right angles at Band B', 
and if AB :;:::: A'B' and AC :;:::: A'C', then 
the triangles are congruent. 

10.10 In a Hilbert plane, suppose that we 
are given a quadrilateral ABCD with 
AB = CD and AC = BD. Prove that CE 
is parallel to AB (without using the 
parallel axiom (P)). Hint: Join the 
midpoints of AB and CD; then use 
(1.27). 

10.11 Given a finite set of points Aj, ... ,An 

in a Hilbert plane, prove that there 
exists a line 1 for which all the points 
are on the same side of 1. 

A 

• 
• A ... 

AI 

c ~' c' 

A • A) 
I 

• 
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11 Intersections of Lines and Circles 

In this section we will discuss the intersections oflines and circles in the Hilbert 
plane, and we will introduce the further axiom (E), which will guarantee that 
lines and circles will intersect when they "ought" to. With this axiom we can 
justify Euclid's ruler and compass constructions in Book I and Book III. We work 
in a Hilbert plane (Section 10) without assuming the parallel axiom (P). Because 
of(10.4) we can use Euclid's results (1.2)-(1.28) (except (1.22)) in our proofs. 

Definition 
Given distinct points 0, A, the circle r 
with center 0 and radius OA is the set 
of all points B such that OA ~ OB. The 
point 0 is the center of the circle. The 
segment OA is a radius. 

From this definition it is clear that a 
circle always has points. The point A is 
on the circle. Moreover, if l is any line 
through 0, then by axiom (C1) there 
will be exactly two points on the line l, 
one on each side of 0, lying on the cir­
cle. However, it is not obvious from the 
definition that the center is uniquely 
determined by the set of points of the 
circle. 

Proposition 11.1 
Let r be a circle with center 0 and radius OA, and let r' be a circle with center 0' 
and radius O'A'. Suppose r = r' as point sets. Then 0 = 0'. In other words the 
center of a circle is uniquely determined. 

Proof Suppose 0 =I 0'. Then we con­
sider the line l through 0 and 0'. Since 
it passes through the center 0 of r, it 
must meet r in two points e, D, satisfy­
ing e * 0 * D and oe ~ OD. 

___ - _ ----",_ t - ____ - 1. 

c o 0' 

Since r = r', the points e,D are also on r', so we have o'e ~ O'D and 
e * 0' * D. We do not know which of 0 or 0' is closer to e, but the two cases are 
symmetric, so let us assume e * 0 * 0'. In this case we must have 0 * 0' * D by 
the properties ofbetweenness(!). Then oe < o'e ~ O'D < OD, which is impos­
sible, since oe ~ OD. Hence 0 = 0'. 



11. Intersections of Lines and Circles 105 

Now that we know that the center of a circle is uniquely determined, it 
makes sense to define the inside and the outside of a circle. 

Definition 
Let r be a circle with center 0 and radius ~A. A point B is inside r (or in the 
interior of r) if B = 0 or if OB < OA . A point C is outside r (or exterior to r) if 
OA < OC. 

Definition 
We say that a line 1 is tangent to a circle r if land r meet in just one point A. We 
say that a circle r is tangent to another circle ~ if r and ~ have just one point in 
common. 

This definition of tangent circles is a little different from Euclid's: His defini­
tion of two circles touching is that they meet in a point but do not cut each other. 
Since it is not clear what he means by "cut," we prefer the definition above, and 
we will prove that these notions of tangency have the usual properties. 

Proposition 11.2 
Let r be a circle with center 0 and radius ~A. The line perpendicular to the radius 
OA at the point A is tangent to the circle, and (except for the point A) lies entirely 
outside the circle. Conversely, if a line 1 is tangent to r at A, then it is perpendicular 
to OA. In particular, for any point A of a circle, there exists a unique tangent line to 
the circle at that point. 

Proof First, let 1 be the line perpendic­
ular to OA at A. Let B be any other 
point on the line l. Then in the triangle 
OAB, the exterior angle at A is a right 
angle, so the angles at 0 and at Bare 
less than a right angle (U6). It follows 
(U9) that OB> OA, so B is outside the 
circle. Thus 1 meets r only at the point 
A, so it is a tangent line. 

Now suppose that 1 is a line tangent 
to r at A . We must show that 1 is per­
pendicular to OA. It cannot be equal 
to OA, because that line meets r in an­
other point opposite A. So consider the 
line from 0, perpendicular to l, meeting 
1 at B. If B =I A, take a point C on the 
other side of B from A. so that AB ~ BC 

.:--_ _ ... A 
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(axiom (C1)). The !lOBA ~ !lOBC by 
SAS, so we have OA ~ OC, and hence C 
is also on r. Since C =I A, this is a con­
tradiction. We conclude that B = A, and 
so 1 is perpendicular to OA. 0 

Corollary 11.3 
If a line 1 contains a point A of a circle r, but is not tangent to r, then it meets r in 
exactly two points. 

Proof If I is not tangent to r at A, then 
it is not perpendicular to OA, in which 
case, as we saw in the previous proof, it 
meets r in another point C. We must 
show that 1 cannot contain any further 
points of r. For if D were another point 
of Ion r, then OD ~ OA, OB is congru­
ent to itself, so by (RASS) (Exercise 10.9) 
we would have !lODB ~ !lOAB. Then 
AB ~ BD, so by axiom (C1) D must be 
equal to A or C. 

Proposition 11.4 

o 

Let O,O',A be three distinct collinear points. Then the circle r with center 0 and 
radius OA is tangent to the circle r' with center 0' and radius O'A. Conversely, if 
two circles r, r' are tangent at a point A, then their centers 0,0' are collinear with 
A. 

Proof Let O,O',A be collinear. We 
must show that the circles rand 1" 
have no further points in common be­
sides A. The argument of (11.1) shows 
that there is no other point on the line 
00' that lies on both rand 1". So sup­
pose there is a point B not on 00' lying 
on both rand 1". We divide into two 
cases depending on the relative position 
of 0, 0', and A. 

A 
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Case 1 0 * 0' * A. Since OA = OB, 
LOAB ~ LOBA. Also, since O'A = O'B, 
LO'AB ~ LO'BA, using (l.S). It follows 
that LOBA ~ LO'BA, which contradicts 
axiom (C4). (This argument also applies 
if 0' * 0 * A.) 

Case 2 0 * A * 0'. Again using (I.5) we 
find that L OAB ~ L OBA and L 0' AB ~ 
LO'BA. But the two angles at A are 
supplementary, so it follows that the 
two angles at B are supplementary (9.2). 
But then 0, B, and 0' would be collinear 
(I.14) , which is a contradiction. 

Conversely, suppose that rand 1" 
are tangent at A , and suppose that 
O,O',A are not collinear. Then we let 
AC be perpendicular to the line 00', 
and choose B on the line AC on the 
other side of 00' with AC ~ BC. It fol­
lows by congruent triangles that OA ~ 
OB and O'A ~ O'B, so B also lies on r 
and 1", contradicting the hypothesis I' 
tangent to 1". We conclude that O,O',A 
are collinear. 

Corollary 11.5 

o A 

~o, 
o A 

If two circles meet at a point A but are not tangent, then they have exactly two points 
in common. 

Proof We have seen above that if they are not tangent, then O, O' ,A are not 
collinear, and they meet in an additional point B. We must show there are no 
further intersection points. If D is a third point on rand 1", then OD ~ OA and 
a 'D ~ a'A, so by (I.7), D must be equal to A or B. 

In the above discussion of lines and circles meeting, we have seen that a line 
and a circle, or two circles, can be tangent (meeting in just one point), or if they 
meet but are not tangent, they will meet in exactly two points. There is nothing 
here to guarantee that a line and a circle, or two circles, will actually meet if 
they are in a position such that they "ought" to meet according to the usual 
intuition. For this we need an additional axiom (and we will see later (17.3) that 
this axiom is independent of the axioms of a Hilbert plane). 
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E. (Circle-circle intersection property). 
Given two circles r,l1, if 11 contains at 
least one point inside r, and 11 contains 
at least one point outside r, then rand 
11 will meet. (Note: It follows from Exer­
cise 11.3 and (11.5) that they will then 
meet in exactly two points.) 

Proposition 11.6 (Line-circle intersection property LCI) 
In a Hilbert plane with the extra axiom (E), if a line 1 contains a point A inside a 
circle r, then 1 win meet r (necessarily in two points, because of(l1.2) and (11.3)). 

Proof Suppose we are given the line 1 
with a point A inside the circle r. Our 
strategy is to construct another circle 11, 
show that 11 meets r, and then show 
that the intersection point also lies on 1. 
Let OB be the perpendicular from 0 to 1 
(if 0 is on the line 1, we already know 
that 1 meets r by (Cl)). Find a point 0' 
on the other side ofl from 0, on the line 
OB, with O'B ~ OB. Let 11 be the circle 
with center 0' and radius r = radius of 
r. (Here we denote by r the congruence 
equivalence class of any radius of the 
circle r.) 

T-----__ ~~--__ ----4D 
Of 

Now the line 00' meets 11 in two points e, D, labeled such that 0, e are on 
the same side of 0', and D on the opposite side. 

By hypothesis, A is a point on 1, inside r. Hence OA < r. In the right triangle 
OAB, using (I.l9) we see that OB < OA, so OB < r. It follows that O'B < r = o'e, 
so 0' and e are on opposite sides of 1. Hence 0, e are on the same side of 1. We 
wish to show that e is inside r. There are two cases. 

ease 1 If 0 * e * B, then oe < OB < r, so e is inside r. 

ease 2 If e * 0 * B, then also e * 0 * 0', so oe < o'e = r, and again we see that 
e is inside r. 

On the other hand, the point D satisfies 0 * 0' * D, so OD > O'D = r, so D is 
outside r. 



NOT E s. 

PROP. XXII. B. I. 

Some Author's blame Euclid becaufe he does not dcmonfirate that 
the two circles made ure of in the coni1rul9:ion of this Problem ih:.ll 
cut one another. bllt this is very pbin from the determination he has 

given, viz. that any two of the flraight lines DF, FG, GH muA: be 
greater than the third. for who is fo dull, tho' only beginning to learn 
the Elements, as not to perceive that the circle defcribed from the centre 
F, at the difiance FD, mufl: meet FH betwixt F and H, b.ecau[e. FD 
is !eIrer than FH; and that, for the like rearon, the circle defcribed 
from the centre G, at the difiance GH or GM mufi meet DG betwixt 
D and G; and that thefe drcles mufi meet one another, becaufe FD 
and GH are together greater than FG? and 
this determination is eauer to be underfrood 
than that which Mr. Thomas Simpfonde­
rives from it, and puts infiead of Euclid's., 
in the 49. page of his Elements of Gecr D M F G 
metry, that he may fupply the omiffioll he blames Euclid for; which 
determination is, that any of the three fl:raight lines mufi be leIrer than 
the fum, but greater than the difference of the other two. from this 
he fhews the circles mufi meet one another, in one cafe; and fays that 
it may be proved after the fame manner in any other cafe. but the 
flraight line GM which he bids take from GF may be greater than 
it, as in the figure here annexed, in which cafe his demonfl:ration muft 
be changed into another. 

Plate V. Simson's commentary on (I.22) from his English translation of Euclid (1756). 
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Now we can apply the axiom (E) to 
conclude that r meets ~ at a point E. 
We must show that E lies on 1. We know 
that OE ~ r ~ O'E and OB ~ O'B by 
construction, and BE is equal to itself, 
so by (SSS) ~OEB ~ ~O'EB. It follows 
that the angles at B are equal, so they 
are right angles, so BE is equal to the 
line 1, and so E lies on 1 and r, as 
required. 

Remark 11.6.1 

~ 
o 0' 

We will see later (16.2) that in the Cartesian plane over a field, the circle-circle 
intersection property is equivalent to the line-circle intersection property. In an 
arbitrary Hilbert plane, the equivalence of these two statements follows from 
the classification theorem of Pejas (cf. Section 43), but I do not know any direct 
proof. 

Using the new axiom (E) we can 
now justifY Euclid's first construction 
(I.l), the equilateral triangle. Given the 
segment AB, let f be the circle with 
center A and radius AB. Let ~ be the 
circle with center B and radius BA. 
Then A is on the circle ~, and it is 

.,... ... ---

inside r because it is the center of f. A 
The line AB meets ~ in another point D, 
such that A * B * D. Hence AD > AB, so 
D is outside f. 

Thus ~ contains a point inside [' and 
a point outside I', so it must meet r in a 
point C. From here, Euclid's proof shows 
that MBG is an equilateral triangle. 

r 

In a similar way one can justifY Euclid's other ruler and compass construc­
tions in Book I. Several of them depend only on using the equilateral triangle 
constructed in (u). For (U2) and (I.22) see Exercise 1l.4 and Exercise 1l.5. 
Thus we have the following theorem. 

Theorem 11.7 
Euclid's constructions (U) and (I.22) are valid in a Hilbert plane with the extra 
axiom (E). 

We can also justifY the results of Euclid, Book III, up through (III.19) (note 
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that (III.20) and beyond need the parallel axiom). The statements (IIUO), 
(IIUl), (IIU2) about circles meeting and (III.16), (IIU8), (IIU9) about tangent 
lines can be replaced by the propositions of this section. (We omit the contro­
versial last phrase of (IIU6) about the angle of the semicircle, also called a 
horned angle or angle of contingency, because in our treatment we consider 
only angles defined by rays lying on straight lines.) In (IIU4) Euclid uses (1.47) 
to prove (RASS), but that is not necessary: One can prove it with only the axioms 
of a Hilbert plane (Exercise 10.9). For (IIU7), to draw a tangent to a circle from 
a point outside the circle, we need the line-circle intersection property (11.6) 
and hence the axiom (E). (Note that the other popular construction of the tan­
gent line using (II1.3l) requires the parallel axiom!) The other results of Book III, 
up to (HU9) (except (III.17)), are valid in any Hilbert plane, provided that we 
assume the existence of the intersection points of lines and circles used in the 
statement and proofs, and their proofs are ok as is, except as noted. 

Theorem 11.8 
Euclid's propositions (IIU) through (III.19) are valid in any Hilbert plane, except 
that for the constructions (IIU) and (III.l7) we need also the additional axiom (E). 

Exercises 

11.1 (a) The interior of a circle f is a convex set: Namely, if E, C are in the interior of 1', 
and if D is a point such that E * D * C, then D is also in the interior of I'. 

(b) Assuming the parallel axiom (P), show that if E, C are two points outside a circle 
1', then there exists a third point D such that the segments ED and DC are entirely 
outside f. (This implies that the exterior of I' is a segment-connected set. See also 
Exercise 12.6.) 

11.2 Two circles 1',1" that meet at a point A are tangent if and only if the tangent line to 
I' at A is equal to the tangent line to 1" at A. 

11.3 If two circles rand 6. are tangent to each other at a point A, show that (except for 
the point A) 6. lies either entirely inside f or entirely outside f. 

11.4 Use the line-circle intersection property (Proposition 11.6) to give a careful justifi­
cation of Euclid's construction (I.l2) of a line from a point perpendicular to a given 
line. 

11.5 Given three line segments such that any two taken together are greater than the 
third, use (E) to justify Euclid's construction (1.22) of a triangle with sides congruent 
to the three given segments. 

11.6 Show that Euclid's construction of the circle inscribed in a triangle (IV.4) is valid in 
any Hilbert plane. Be sure to explain why two angle bisectors of a triangle must 
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meet in a point. Conclude that all three angle bisectors of a triangle meet in the 
same point. 

11.7 Using (E), show that Euclid's construction of a hexagon inscribed in a circle (IV.IS) 
makes sense. Without using (P) or results depending on it, which sides can you show 
are equal to each other? 

12 Euclidean Planes 

Let us look back at this point and see how well Hilbert's axioms have fulfilled 
their goal of providing a new solid base for developing Euclid's geometry. The 
major problems we found with Euclid's method have been settled: Questions of 
relative position of figures have been clarified by the axioms of betweenness; the 
problematic use of the method of superposition has been replaced by the device 
of taking SAS as an axiom; the existence of points needed in ruler and compass 
constructions is guaranteed by the circle-circle intersection property stated as 
axiom (E). Also, in the process of rewriting the foundations of geometry we have 
formulated a new notion, the Hilbert plane, which provides a minimum context 
in which to develop the beginnings of a geometry, free from the parallel axiom. 
Hilbert planes serve as a basis both for Euclidean geometry, and also later, for 
the non-Euclidean geometries. 

In this section we will complete the work of earlier sections by showing 
how the addition of the parallel axiom allows us to recover almost all of the 
first four books of Euclid's Elements. We will also mention two more axioms, 
those of Archimedes and of Dedekind, which will be used in some parts of later 
chapters. 

Definition 
A Euclidean plane is a Hilbert plane satisfying the additional axioms (E), the 
circle-circle intersection property, and (P), Playfair's axiom, also called the par­
allel axiom. In other words, a Euclidean plane is a set of points with subsets 
called lines, and undefined notions of betweenness and congruence satisfying 
the axioms (11)-(13), (Bl)-(B4), (Cl)-( C6), (E), and (P). The Euclidean plane rep­
resents our modern formulation of the axiomatic basis for developing the 
geometry of Euclid's Elements. 

We have already seen in Section 10 and Section 11 how to recover those 
results of Euclid's Books 1 and III that do not depend on the parallel axiom. The 
first use of the parallel axiom is in (1.29). Since we have replaced Euclid's fifth 
postulate by Playfair's axiom, we need to modify Euclid's proofs of a few early 
results in the theory of parallels. 
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So for example, to prove (1.29) we 
proceed as follows. Given two parallel l1 
lines 1, m, and a transversal line n, we J.. 
must show that the alternate interior 
angles rx and p are equal. If not, con­
struct a line I' through A making an 
angle rx with n (axiom (C4)). By (1.27), I' 
will be parallel to m. But then 1 and I' It'! 

are two lines through A parallel to m, so 
by (P), we must have 1 = I', hence rx = p. 

Proposition (1.30) is essentially equivalent to (P). The existence of parallel 
lines (1.31) follows from (C4) and (1.27) as mentioned before, so now we can 
reinterpret (1.31) in the stronger form that given a point A not on a line 1, 
there exists a unique parallel to 1 passing through A. The remaining propositions 
using (P), namely (1.32)-(1.34), follow without difficulty. In particular, we have 
the famous (1.32), that "the sum of the angles of a triangle is equal to two right 
angles," though if we want to be scrupulous, we would have to say that sum is 
not defined, and rephrase the theorem by saying that the sum of any two angles 
of a triangle is supplementary to the third angle. 

Theorem 12.1 
Euclid's theory of parallels, that is, propositions (1.29)-(1.34), hold in any Hilbert 
plane with (P), hence in any Euclidean plane. 

Starting with (1.35), and continuing to the end of Book I and through Book II, 
is Euclid's theory of area. Since Euclid does not define what he means by this 
new equality, we must presume that he takes it as another undefined notion, 
which we call equal content, just as the notion of congruence for line segments 
and angles were taken as undefined notions. Since Euclid freely applies the 
common notions to this concept, we may say that he has taken the common 
notions applied to equal content as further axioms, for example, "figures having 
equal content to a third figure have equal content to each other," or "halves of 
figures of equal content have equal content." 

Hilbert showed that it is not necessary to regard the notion of equal content 
as an undefined notion subject to further axioms. He shows instead that it is 
possible to define the notion of equal content for figures (by cutting them up, 
rearranging, and adding and subtracting), and then prove the properties sug­
gested by Euclid's common notions. To be more precise, we have the following 
theorem. 

Theorem 12.2 (Theory of area) 
In a Hilbert plane with (P) there is an equivalence relation called equal content for 
rectilineal figures that has the following properties: 



114 2. Hilbert's Axioms 

(1) Congruent figures have equal content. 
(2) Sums offigures with equal content have equal content. 
( 3) Differences of figures with equal content have equal content. 
(4) Halves offigures with equal content have equal content. 
(5) The whole is greater than the part. 
(6) If two squares have equal content, their sides are congruent. 

We will prove this theorem in Chapter 5, (22.5), (23.1), (23.2). For the present 
you can either accept this result as something to prove later, or (as Euclid im­
plicitly did) you can regard equal content of figures as another undefined notion, 
subject to the axioms that it is an equivalence relation and has these properties 
(1) -( 6). For further discussion and more details about the exact meaning of a 
figure, the notions of sum and difference, etc., see Section 22 and Section 23. 

Using this theory of area, the remaining results (1.35) -(1.48) of Book I follow 
without difficulty. Note in particular the Pythagorean theorem (1.47), which says 
that the sum of the squares on the legs of a right triangle have equal content 
with the square on the hypotenuse. Also, the results of Book II, (11.1)-(11.14), 
phrased as results about equal content, all follow easily. Proposition (11.11), how 
to cut a line segment in extreme and mean ratio, is used later in the construc­
tion of the regular pentagon. Only (11.14), to construct a square with content 
equal to a given rectilineal figure, uses the axiom (E). 

Theorem 12.3 
In a Hilbert plane with (p), using the theory of area (12.2), Euclid's propositions 
(1.35)-(1.48) and (11.1)-(11.14) can all be proved as he does, using the extra axiom (E) 
only for (11.14). In particular, all these results hold in a Euclidean plane. 

In Book III, the first use of the parallel axiom is in (111.20), that the angle at 
the center of a circle subtending a given arc is twice the angle on the circumfer­
ence subtending the same arc. This result uses (1.32), that the exterior angle of a 
triangle is equal to the sum of the two opposite interior angles, and thus depends 
on the parallel axiom (P). The following propositions (111.21), (III.22), and then 
(1II.31)-(111.34) follow with no further difficulties. For the propositions (111.23)­
(111.30) we need a notion of "equal" segments of circles, a congruence notion 
that has not been defined by Euclid, though we can infer from the proof of 
(III.24) that it means being able to place one segment on the other by a rigid 
motion. Indeed, if we take this as a definition of congruence, then the proofs of 
these results are all ok (Exercise 17.13). The final propositions (III.35)-(III.37) 
make use of the theory of area for their statements, and depend on the earlier 
area results from Books I and II. 

Theorem 12.4 
In Book III, Euclid's propositions (111.20)-(111.37) hold in any Euclidean plane. The 
last three (111.35)-(111.37) make use of the theory of area (12.2). 
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Most of the results of Book IV require the parallel axiom (p), some need 
circle-circle intersection (E), and some, notably (IV.I0), (IV.ll), require (P), 
(E), and the theory of area. Thus we may regard the construction of the regular 
pentagon as the crowning result of the first four books of the Elements, making 
use of all the results developed so far. 

Theorem 12.5 
All the propositions (IV.l)-(IV.16) of Euclid's Book IV hold in a Euclidean plane. 

We end this section with a discussion of two further axioms that are not 
needed for Books I-IV, but will be used later. The first is Archimedes' axiom. 

A. Given line segments AB and CD, there is a natural number n such that n 
copies of AB added together will be greater than CD. 

This axiom is used implicitly in the theory of proportion developed in Book 
V, for example in Definition 4, where Euclid says that quantities have a ratio 
when one can be multiplied to exceed the other. It appears explicitly in (X. 1 ), in 
a form reminiscent of the 8-arguments of calculus: Given two quantities AB and 
CD, if we remove from AB more than its half, and again from the remainder 
remove more than its half, and continue in this fashion, then eventually we 
will have a quantity less than CD. In modern texts this would appear as the 
statement "given any 8> 0, there is an integer n sufficiently large that 1/2n < 8." 
Euclid applies this "method of exhaustion" to the study of the volume of three­
dimensional figures in Book XII. When he cannot compare solids by cutting 
into a finite number of pieces and reassembling, he uses a limiting process 
where the solid is represented as a union of a sequence of subsolids so that the 
remainder can be made as small as you like. See Sections 26, 27 for Euclid's 
theory of volume. 

Archimedes' axiom is independent of all the axioms of a Hilbert plane or a 
Euclidean plane, so we will see examples of Archimedean geometries that satisfY 
(A) and non-Archimedean geometries that do not (Section 18). 

The other axiom we would like to consider is Dedekind's axiom, based on 
Dedekind's definition in the late nineteenth century of the real numbers: 

D. Suppose the points of a line 1 are divided into two nonempty subsets S, Tin 
such a way that no point of S is between two points of T, and no point of T is 
between two points of S. Then there exists a unique point P such that for any 
A E S and any BET, either A = P or B = P or the point P is between A and B. 

This axiom is very strong. It implies (A) and (E), and a Euclidean plane with 
(D) is forced to be isomorphic to the Cartesian plane over the real numbers. (See 
Exercise 12.2, Exercise 12.3, (15.5), and (21.3).) So if you want a categorical 
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axiom system, just add (D) to the axioms of a Euclidean plane. From the point 
of view of this book, however, there are two reasons to avoid using Dedekind's 
axiom. First of all, it belongs to the modern development of the real numbers 
and notions of continuity, which is not in the spirit of Euclid's geometry. Second, 
it is too strong. By essentially introducing the real numbers into our geometry, it 
masks many of the more subtle distinctions and obscures questions such as 
constructibility that we will discuss in Chapter 6. So we include this axiom only 
to acknowledge that it is there, but with no intention of using it. 

Exercises 
12.1 Show that in a Hilbert plane with (P), the perpendicular bisectors of the sides of a 

triangle will meet in a point, and thus justifY Euclid's construction of the circum­
scribed circle of a triangle (IV.5). Note: In a non-Euclidean geometry, there may be 
triangles having no circumscnbed circle: cf. Exercise 18.4, Exercise 39.14, and Prop­
osition 41.1. 

12.2 Show that in a Hilbert plane Dedekind's axiom (D) implies Archimedes' axiom (A). 
----+ 

Hint: Given segments AB and CD, let T be the set of all points E on the ray CD for 
which there is no integer n with n . AB > CEo Let S be the set of points of the line CD 
not in T, and apply (D). 

12.3 Show that in a Hilbert plane (D) implies (E). Hint: Follow the discussion in Heath 
(1926), vol. I, p. 238. 

12.4 For the construction and proof of (IV.2), to inscribe a triangle equiangular with a 
given triangle in a given circle (assume also that you are given the center of the 
circle), is axiom (E) necessary? Is (P) necessary? 

12.5 Same question for (IV.6), to inscribe a square in a given circle. 

12.6 In a Hilbert plane with (A), show that the exterior of a circle is a segment-connected 
set (cf. Exercise 11.1). Without assuming either (P) or (A), this may be false (Exercise 
43.17). 

To each book are appended explanatory 
notes, in which especial care has been taken to 
guard the student against the common mistake 
of confounding ideas of number with those of 
magnitude. 

- Preface to Potts' Euclid, 
London (1845) 



CHAPTER 

Geometry over 
Fields 

eginning with the familiar example of the real Carte­
sian plane, we show how to construct a geometry sat­
isfying Hilbert's axioms over an abstract field. The 
axioms of incidence are valid over any field (Section 
14). For the notion of betweenness we need an ordered 
field (Section 15). For the axiom (C1) on transferring a 
line segment to a given ray, we need a property ( *) on 
the existence of certain square roots in the field F. To 
carry out Euclidean constructions, we need a slightly 

stronger property (**)-see Section 16. 
To prove the (SAS) axiom over a field F, we revert to Euclid's method of 

superposition. In the case of the geometry over a field this can be justified by 
showing the existence of sufficiently many rigid motions (Section 17). 

We end the chapter with some examples of geometries that do not satisfy 
Archimedes' axiom (Section 18). 

We have seen that the geometry developed in Euclid's Elements does not 
make use of numbers to measure lengths or angles or areas. It is purely geo­
metric in that it deals with points, lines, circles, triangles, and the relationships 
among these. 

In the centuries after Euclid, geometers began using numbers more and 
more. At first number theory (arithmetic) and geometry were kept strictly apart. 
Number theory dealt with positive whole numbers and their ratios, i.e., rational 
numbers. Any other magnitude was considered geometrically. Thus V2 was not 
regarded as a number. The fact that V2 is irrational was expressed by saying 
that the diagonal of a square (a geometrical quantity) is not commensurable 
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with the side of the square. This means that no integer multiple of the diagonal 
is equal to any integer multiple of the side. As algebraic notation developed in 
the Renaissance, the concept of number was enlarged, and geometric quantities 
were treated more like numbers. A big step was taken by Rene Descartes (1596-
1650), who showed in his book La Geometrie how to construct the product, quo­
tient, and square root ofline segments, having once fixed a unit line segment. He 
was thus able to apply algebraic operations to line segments and write algebraic 
equations relating an unknown line segment to given line segments. Descartes's 
use of algebra in geometry led to the idea of representing points in the plane by 
pairs of numbers, and thus to the modern discipline called analytic geometry. 

Meanwhile, the concept of numbers· was expanded from rational numbers to 
include irrational numbers and then transcendental numbers as they were dis­
covered. By the end of the nineteenth century, considerations of limits and con­
tinuity made the real numbers JR. into the standard to be used in analytic geom­
etry, calculus, and topology. Also at the end of the nineteenth century, the 
formalization of abstract structures in mathematics led to the concept of a field, 
so that by analogy with the standard model over JR., one could also consider a 
geometry over any abstract field. 

The geometry taught today in high schools and colleges has become a sort 
of hybrid between the purely geometric methods of Euclid and the algebraic 
methods of Descartes, with occasional notions of continuity thrown in. One of 
the purposes of this book is to clarifY the blurred distinctions between these dif­
ferent approaches. Therefore, we will pursue two different logical tracks. One is 
the axiomatic approach of Euclid and Hilbert, starting with geometrical postu­
lates and proving results in logical sequence from them. This theory is built on 
the platform of the axioms of geometry. The other track is a geometry over a 
field. In this case the theory is built on a logical platform given by the algebraic 
definition of a field, or as we may say, the field axioms. The geometrical notions 
of point, line, betweenness, and congruence are defined in terms of field prop­
erties, and all proofs go back to the algebraic foundations. These geometries 
built from fields will be models of the axiomatic geometries. 

In this chapter we start with an informal section on the real Cartesian plane. 
Then, in the following sections, we develop a rigorous theory of Cartesian 
planes over an abstract field. In Chapter 4 we will make the two tracks converge 
by the introduction of coordinates into an abstract geometry (at least in the case 
where the parallel axiom (P) holds). 

13 The Real Cartesian Plane 

In this section we will make clear what we mean by the real Cartesian plane, 
which is the plane geometry over the real numbers. Our proofs will be informal, 
using well-known results from high-school geometry and analytic geometry. 



We accept as given the field of real 
numbers IR. We call a point an ordered 
pair (a, b) of real numbers, and the set 
of all such ordered pairs is the Cartesian 
plane. As usual, we call the set of points 
(a,O) the x-axis, and the set of points 
(0, b) the y-axis, and their intersection 
(0,0) the origin. 
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A line in this plane is the subset defined by a linear equation ax + by + c = 0, 
with a, b not both zero. Among these are the vertical lines, which can be written 
as x = a, and every other line can be written in the form y = mx + b. In this case 
we call m the slope of the line, and bits y-intercept. For completeness, we will 
say that a vertical line has slope CfJ. 

Two lines are called parallel if they are equal or if they have no points in 
common. By looking at the equations of two lines, and solving those equations 
simultaneously, we see that the lines are parallel if and only if they have 
the same slope. It follows immediately that if/I, 12 , 13 are three distinct lines, and 
111112 and 121113 , then 111113 . Indeed, all three must have the same slope. In Euclid's 
Elements, this result appears as (1.30) and is proved there using the parallel pos­
tulate plus earlier results from Book 1. Here in the Cartesian plane, we have a 
trivial proof just by looking at the equations of the lines. 

Let us give another, less trivial, example of how useful the analytic method 
can be for proving geometric results. We will show that the three altitudes of a 
triangle meet at a point. (Compare this with the geometric proofs given earlier 
in Section 5.) 

Proposition 13.1 
In the real Cartesian plane, the three altitudes of any triangle all meet at a single 
point. 

Proof Recall that an altitude of a triangle is the line through one vertex that is 
perpendicular to the opposite side. First let us move the triangle so that one 
edge lies along the x-axis, and the opposite vertex lies on the y-axis. 

The we can call the vertices A = (a, 0), B = (0, b), and C = (c, 0). The y-axis is 
by construction one of the altitudes of the triangle. Our strategy is to find the 
equations of the other two altitudes, see where they meet the y-axis, and verifY 
that they meet it at the same point. 

The line AB has slope -bl a, so the altitude through C, which is perpendicu­
lar to this line, will have slope alb. (Here we use the fact that if two perpendic­
ular lines have slopes ml and m2, then ml mz = -l.) So the equation of the alti­
tude through C, using the point-slope formula, is 
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a 
y = b(x - e). 

To intersect this with the y-axis, we set 
x = 0 and obtain y = -aelb. 

Now consider the line BG. It has 
slope -ble, so the altitude through A will 
have slope elb. Its equation becomes 

e 
y = b(x - a). 

Setting x = 0, we obtain y = -aelb. 
Since this is the same point as the pre­
vious calculation, we find that the three 
altitudes meet at a point. 

c ~ (c,o) 

Let us reflect a moment on the significance of this proof. 

A:: (o,D} 

First of all, the reader may object that we have used some facts without 
proof, such as the result about the slopes of perpendicular lines, or the possibil­
ity of moving the triangle into the special position of the proof. However, I am 
assuming that anyone who has studied some analytic geometry could fill in 
those missing arguments satisfactorily. 

The more serious question is, how do we respond to someone who says, with 
a simple analytic prooflike that, why bother with geometric proofs from axioms? 
If you believe that there is only one true geometry, then indeed this proof would 
be sufficient. But modern mathematics has abandoned the naive position that 
there is only one truth. Instead it asks, what can be proved within each logical 
framework, within each separate mathematical theory? This proof shows that 
the result is true within the logical framework of the real Cartesian plane, using 
algebra of the real numbers as a logical base. Having found the result to be true 
in this framework, we certainly expect it to be true in the framework of axiom­
atic Euclidean geometry. However, this proof gives no hint at all about how to 
find a proof in the abstract axiomatic geometry. In other words, if an analytic 
proof shows that a result is true in the geometry of the real Cartesian plane, that 
does not imply a proof, or even guarantee the existence of a proof, in the 
abstract axiomatic geometry. For example, think of Archimedes' axiom (18.4.2). 

For these reasons we will preserve two separate logical tracks, the abstract 
axiomatic approach, and the analytic-geometric approach, until such time as we 
can prove that the two tracks converge again, using abstract ordered fields. 

Next we turn to one of the great insights provided by the algebraic perspec­
tive, namely Descartes's discovery that the ruler and compass constructions of 
Euclid's geometry correspond to the solution of quadratic equations in algebra. 
To be more precise, let us regard a construction problem as giving certain points 
in the plane, and requiring the construction of certain other points. 
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Theorem 13.2 (Descartes) 
Suppose we are given points PI = (aI, bl ), ... ,Pn = (an, bn) in the real Cartesian 
plane. (We also assume that we are given the points (0,0) and (1,0).) Then it is pos­
sible to construct a point Q = (ri, fJ) with ruler and compass if and only if ri and fJ can 
be obtained from aI, ... ,an, bl , ... ,bn by field operations +, -, ., -:- and the solution 
of a finite number of successive linear and quadratic equations, involving the square 
roots of positive real numbers. 

Proof A ruler and compass construction consists of drawing lines through given 
points, constructing circles with given center and radius, and finding inter­
sections of lines and circles. 

Given two points PI = (aI, h) and P2 = (a2' b2), the line passing through 
them has equation 

Its coefficients are obtained by field operations from the initial data aI, a2, bl , b2. 
A circle with center (a, b) and radius r has equation 

This is a quadratic equation whose coefficients depend on a, b, and r2. Note that 
r may be determined as the distance between two points PI = (aI, bl ) and P2 = 
(a2' b2), in which case 

To find the intersection of two lines, we solve two linear equations, which 
can be done using only field operations. 

To intersect a line with a circle, we solve the equations simultaneously, 
which requires solving a quadratic equation in x. Assuming that the line meets 
the circle, we will need to take square roots of positive numbers only - cf. Exer­
cise 16.6. 

To intersect two circles, we first subtract the two equations, which elimi­
nates the x2 and y2 terms. Then we must solve a quadratic with a linear equa­
tion, leading to another quadratic equation in x. 

In other words, to find the coordinates of a point Q = (ri, fJ) obtained by a 
ruler and compass construction from the initial data PI, ... ,Pn , we must solve a 
finite number of linear and quadratic equations whose coefficients depend on 
the coordinates (ai, bi) and on quantities constructed in earlier steps. 

Conversely, the roots of any linear or quadratic equation can be constructed 
by ruler and compass, given lengths corresponding to the coefficients of the 
equations, and given a standard length 1. Indeed, such equations can be solved 
(using the quadratic formula) by a finite number of applications of field oper-
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ations +, -, ., -:- and extractions of square roots of positive numbers, and each of 
these five operations can be accomplished using ruler and compass. 

For the sum and difference of two line segments, simply lay them out on the 
same line, end to end for the sum, or overlapping for the difference. 

For the product, lay the segment a on 
the x-axis, and the segments 1, b on the b 
y-axis. Draw the line from 1 to a, which 
will have equation y = -(l/a)x + l. The 
parallel line through b has equation 
y = -(l/a)x + b. This intersects the x-
axis in the point (ab,O), and thus we 
construct the segment ab out of the seg-

b Cl. Cl-b ments l,a, . 

For the quotient, put 1 on the x-axis, 
and a, b on the y-axis. A similar construc- a... 
tion gives the point b/a on the x-axis. 

To construct the square root of a 
segment a, layout a on the positive x­
axis, and -1 on the negative x-axis. 
Bisect the segment from -1 to a, and 
draw the semicircle having that seg­
ment as diameter. A brief computation 
with the equation of the circle shows 
that it meets the y-axis at the point Fa. 

bllA 

So here we have an algebraic criterion for deciding the possibility of a ruler 
and compass construction. The method of proof may not lead to an elegant con­
struction, but at least one can determine the possibility of such a construction in a 
systematic manner. This theorem is a striking example of the insight into geo­
metrical questions given by the algebraic point of view. As Descartes (1637) says: 

One can construct all the problems of ordinary geometry without doing anything 
more than what little is contained in the four figures which I have explained; 
which is something I do not believe the ancients had noticed: for otherwise they 
would not have taken the trouble to write so many fat books, where already the 
order oftheir propositions makes it clear that they did not have the true method for 
finding them all, but merely collected those which they happened to come across. 



124 3. Geometry over Fields 

As a practical application of this result, we will find expressions using nested 
square roots for some lengths that are constructible with ruler and compass, 
such as the sides of regular polygons inscribed in a circle. Note that if a particu­
lar angle rI. is constructible, then its trigonometric functions, in particular sin rI. 
and cos rI., can be expressed using square roots. 

For example, from the right isosceles 
triangle with sides 1, 1 , ~ we obtain 

. 1 
sm 45° = cos 45° = "2 Vz. 

From the 30°-60°-90° triangle with 
sides 1, y'3, and Z we obtain 

cos 60° = sin 30° = 1 
2 ' 

sin 60° = cos 30° = ~ y'3. 

Proposition 13.3 
The length of the chord d of a circle of 
radius 1 subtending an angle rI. at the 
center of the circle is given by 

d = viz - Z cos rI. . 

Proof The law of cosines gives d2 = 
12 + 12 - Z cos rI., from which the result 
follows immediately. 

So for example, the side of the regular octagon inscribed in the unit circle 
will be 

d = viz - Zcos45° = VZ -~. 

Proposition 13.4 
In a circle of radius 1, the length of the side of a regular decagon is ~ ( vis - 1). 

Proof Let us consider the triangle ABC formed by two radii and one side of the 
decagon. Then AB = AC = 1, and BC = x is the side of the decagon. The angle at 
A is Zn/ 10 or 36°, so the angles at Band Care 72° each. Let BD bisect the angle 
at B. Then the two halves are both 36° angles. From this it follows that MBD is 
an isosceles triangle, and MCD is an isosceles triangle similar to the original 
triangle MBC. 



Therefore, BD = x and AD = x and 
GD = 1 - x. Writing the ratios of corre­
sponding sides of the similar triangles 
MGD and MBG we have 

I-x x 

x 1 

Hence x2 + x-I = 0, and solving 
with the quadratic formula gives x = 
! (vis - 1), as required. 

Remark 13.4.1 
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B"'-----C 

This result allows us to give an analytic proof of the construction of the regular 
pentagon (4.3). Indeed, letting the radius OA be 1, then OG =!, GA =! vis, and 
OR = ! ( vis - 1). Thus A, I, T are vertices of the regular decagon, and so IT is a 
side of the regular pentagon. For another proof using complex numbers, see 
(29.1). 

Proposition 13.5 
In a circle of radius 1, the side of the regular pentagon is! VlO - 2 vis. 

Proof Applying the law of cosines to the triangle MBG of (13.4), we get 

12 = 12 + x2 - 2x cos 72° . 

From this we obtain cos 72° = ~ ( vis - 1). Since a side of the regular pentagon 
subtends an angle of 72° at the center of the circle, from (13.3) we have that the 
side of the pentagon is 

d = y'2 - 2 cos 72° = hilo - 2v1s. 

Exercises 
13.1 Given AB = 1, construct segments oflength .,[2, v'3, VS, yI6, 0, v'1O in 5 steps or 

fewer each, making the constructions independent of each other. 

13.2 Show that any quantity obtainable from the rational numbers by a finite number of 
operations +, -, " -:--, V, can be written in a standard form r· A, where r E <Q is a 
rational number and A is an expression involving only integers, +, -, " and V. 
In the following problems, please express your answers always in standard form. 
(Unfortunately, this standard form is not unique-see Exercises 13.7, 13.12 below.) 

13.3 Express (VS + 1)/ vllo + 2VS in standard form. 
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13.4 Find sin22!0 and cos22to as expressions involving square roots in standard form. 
Check your result by finding the decimal equivalent with a calculator. 

13.5 Find the side of a regular 16-gon inscnbed in the unit circle is standard form. 

13.6 Find sin nto and cos nto in standard form. 

13.7 Three students working on the same problem came up with the following answers. 

a. -VS + vn + 6v'2. 

b. 3 + V7 - 2JIO. 
c. v'2 + V14 - 6VS. 

Two answers were correct, and one false. Find which two were correct, and prove 
that they are equal. Can you express the correct answer in a simpler form? How 
can you modify the third student's answer so that it becomes correct? 

13.8' Find the length of the edge of a regular tetrahedron inscnbed in a unit sphere. 

13.9 Find the area of the largest equilateral triangle that is contained in a square of 
side 1. 

13.10 If a, bE Z, and if a + bv'2 has a square root in CQ( v'2), then the square root is actu­
ally in Z[v'2]. 

13.11 If a, bE Z, give a method for deciding whether Va + bv'2 E Z[v'2]. Are the follow­
ing squares in Z[v'2]? If so, find the square root. 

a. 627 + 442v'2. 

b. 1507 + 1024v'2. 

c. 2107 + 1470v'2. 

13.12 Verify 

V5+2VS - V5 -2VS = VlO -2VS. 

Also, show that none of these three nested radicals is in CQ(VS). This is another 
example of nonuniqueness of the standard form. 

13.13 Express sin 72° as nested radicals in standard form. Check by computing decimal 
equivalents with a calculator. 

13.14 Same problem for cos 36°, sin 36°. 

13.15 Find cos 24°, sin24°, cosI2°, sinI2°, and the side of the regular IS-sided polygon 
inscribed in the unit circle. Express in standard form, and check decimal equiva­
lents with the calculator. 

13.16 Find the side of a regular pentagon circumscnbed around a unit circle in standard 
form. 

13.17 Given a regular pentagon of side 1, find the distance from the center to a vertex, in 
standard form. 



13.18 Given a right angle at 0, a point Bon 
one arm, and a point A, construct with 
ruler and compass a circle with center 
0, meeting the arms of the right angle 
at e, D, such that AD is parallel to Be 
(par = 9 steps, not counting lines AD, 
Be). 
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13.19 Given segments of lengths 1,a,b in the plane, construct with ruler and compass 
a length x satisfYing x 2 - ax - b = o. (If you use the quadratic formula, par = 21; 
using geometrical ideas from Exercise 13.18, par = 14.) 

13.20 Prove Euclid's (XIII.5), which says that the triangle formed of the sides of a penta­
gon, a hexagon, and a decagon inscribed in the same circle is a right triangle. Con­
clude that the segment AH in the construction of Problem 4.3 is equal to the side of 
the pentagon. 

13.21 VerifY the following construction of a 
regular pentagon in 13 steps, due to 
H. Lenstra. The circle and its center 0 
are given. 

l. line OA. 
2. circle AO, get B, C. 
3. line Be, get D. 
4. circle DO, get E. 
5. line AE, get F. 
6. circle DF, get G, H! 
7. circle FG, get I, K. 
8. circle FH, get L, M. 
9-13. ines Fl, IL, LM, MK, KF. 

r 

13.22 Find the field extension of ~ obtained by adjoining the coordinates of the point 
P = (a, b), the center of the inscribed circle of the triangle with vertices A = (0,0), 
B = (-1,2), and e = (2,3). Answer: ~(J2, v'65). 
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14 Abstract Fields and Incidence 
In this section we start with the algebraic structure of a field, and based on this 
field we will obtain a geometry. Thus, using a field, we obtain a model of the 
abstract geometry determined by Hilbert's axioms. Different fields will give dif­
ferent geometries, so we will obtain many different models and many different 
Euclidean geometries. We will investigate what properties of the field are needed 
to make each of Hilbert's axioms hold. This will help demonstrate the indepen­
dence of the axioms. 

Hilbert's axiom system is based on the undefined notions of point, line, 
betweenness, and congruence for line segments and for angles. These undefined 
notions are limited only by having to satisfY all the axioms. 

To make a model of the geometry within another mathematical frame­
work, in this case algebra, we must say what the interpretation of the undefined 
notions is to be in our model, and then we must prove that the axioms hold in 
this interpretation. 

We start then, with a field, and to fix the ideas we recall the definition of 
a field. 

Definition 
A field is a set F, together with two operations, +, " i.e., for each a, bE F there 
are given a + b E F and a . b E F, subject to the following conditions: 

(1) The set F, together with the operation +, forms an abelian group, namely, 

(i) (a + b) + c = a + (b + c) for any a, b, c E F, 
(ii) a + b = b + a for any a, b E F, 

(iii) there is an element 0 E F such that a + 0 = a for all a E F, 
(iv) for each a E F there is an element -a E F such that a + (-a) = O. 

(2) The set F* = F- {O}, together with the operation· forms an abelian group, 
namely, 

(i) (ab)c = a(bc) for all a, b, c E PO, 
(ii) ab = ba for all a, bE F*, 

(iii) there is an element 1 E po such that a . 1 = a for all a E F*, 
(iv) for all a E F*, there is an a-I E F* such that a· a-I = 1. 

(3) The operations + and· are related by the distributive laws 

a(b + c) = ab + ac and (a + b)c = ac + bc. 

Note in particular that in our definition of a field 0 =F 1, and multiplication is 
always commutative. We leave to the reader to verifY other elementary prop­
erties of a field, such as 0 . a = 0 for all a E F. The characteristic of the field F is 
the least positive integer p for which 1 + 1 + ... + 1 (p times) is equal to 0, or 
zero if there is no such integer. 

Our first step in making a geometry is to say what we mean by points and 
lines. Of course, we take our cue from the "standard" model of Euclidean ge-
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ometry, the real Cartesian plane, given by ordered pairs of real numbers. This is 
the geometry we might call "high-school geometry," where the axiomatic and the 
analytic approaches are not clearly distinguished, and we assume that every­
thing is over the real numbers. In that model we suppose that everyone already 
"knows" what points, lines, angles, betweenness, and congruence mean. 

But now, since we are starting with an arbitrary field F, which may not be 
the real numbers, we need to make our definitions precise. 

Definition 
The plane n (or nF if we want to indi­
cate the field), called the Cartesian plane 
over the field F, is the set F2 of ordered 
pairs of elements of the field F, which 
we call the points of n. A line is a subset 
defined by a linear equation 

ax+by+c=O 

for some a, b, c E F, with a, b not both 
zero. 

Any line can also be written in 
either the form x = c, in which case we 
call it vertical, or the form y = mx + b. 
In the latter case we say that the line 
has slope m, and for the line x = c, we 
say it has slope 00. Here 00 is just a 
symbol (it is not an element of the field 
F). 

Example 14.0.1 
Let F be the field of two elements F = 
{O, I} with addition and multiplication 
(mod2). Then the plane n over F has 
exactly four points and six lines, shown 
schematically in the diagram. Note in 
particular that the two "diagonal" lines 
do not meet in this geometry. 

Proposition 14.1 

• (a,b) 

(0,1 ( 1,1) 
--.: ..... ---~~ 

If F is any field, the Cartesian plane I1F satisfies Hilbert's incidence axioms (11), 
(12), (13), and the parallel axiom (P). 

Proof (11) says that any two points lie on a line. Since we can perform rational 
operations +, -, " -:- in the field F, the usual "two-point formula" of analytic ge-
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ometry shows that we can find a linear equation, with coefficients in the field F, 
that determines a line containing the two given points. 

(12) says that every line has at least two points. Since any field F has at least 
the two distinct elements 0,1, by putting x = 0,1 if the line has the form 
y = mx + b, or by putting y = 0,1, if the line is x = c, we obtain two points on 
any line. 

(13) says that there exist three noncollinear points. Indeed, we can always 
take (0,0), (0,1), (1,0), and we can see easily that these do not lie on any line. 

(P) says that there is at most one parallel to a given line l through a given 
point P. In fact, the stronger statement holds that there is exactly one line paral­
lel to l through P, so that n will be an affine plane, in the terminology of Exer­
cise 6.5. Recall that parallel means that two lines do not meet unless they are 
equal. In the plane IIF , we see immediately that two lines are parallel if and 
only if they have the same slope. So given a line l, let its slope be m. Then the 
familiar "point-slope" formula of analytic geometry shows that there is a unique 
line of slope m passing through the point P. This will be the parallel to l. 

Before introducing the further notions of betweenness and congruence into 
our Cartesian plane over a field F, there are already some interesting con­
nections between algebraic properties of the field F and incidence properties in 
the plane Ih. To investigate these, it is useful to be able to change coordinates. 

Proposition 14.2 
In the Cartesian plane n over a field F, it is possible to make a linear change of 
variables 

{
X' = ax + by + c, 
y' = dx + ey + f, 

such that the new coordinate axes are any two given intersecting lines, and the new 
unit points are any given points P, Q on them not equal to their intersection point E. 

Proof Since a composition of linear changes of variables is again one, we can 
proceed one step at a time. First, a change of the form 

{:: ::= ~', 
will move the origin (0,0) to the point 
E=(a,b). 

Next, a transformation of the form 

{
X' = ax 
y' = bY', 

will move the unit points to any other 
points on the same axes. 

Q b' 

(0,1 ) 



Then, a change of the form 

{
X' = x- ay, 

y' =y, 

will keep the x-axis fixed, but replace 
the y-axis by another line through the 
origin. The x-axis may be moved by an­
other such transformation, interchang­
ing the roles of x and y. 
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~ I 

1.% X' 

( I, () 1 

Combining all these gives a transformation that moves the original axes and 
unit points to any other desired axes and unit points. 

Remark 
Since the change of coordinates is linear, lines in the new coordinate system are 
still given by linear equations, so it is equivalent to describe the geometry of the 
plane IIF using either the old or the new coordinates. 

Now we give some applications. 

Proposition 14.3 
There exists a configuration in the plane fIF of four points A, B, C, D such that 
ABII CD, ACIIBD, and ADIIBC if and only if the characteristic of F is 2. 

Proof We have already seen the existence (14.0.1), since any field F of charac­
teristic 2 contains the subfield {O, I} of two elements with addition and multipli­
cation (mod 2). 

For the converse, suppose that such a configuration exists in IIF . Then make 
a linear change of coordinates such that C becomes the new origin, and A, Dare 
the unit points. Then B will be the point (1,1); BC will be the line x = y, and AD 
will be the line x + y = l. In this configuration, ADIIBC, so the equations x = y 
and x + y = 1 must have no common solution. Solving, we obtain 2x = 1, which 
has a solution in F as long as 2 i= O. We conclude that this configuration exists 
only if 2 = 0, i.e., the charactistic of F is 2. 

Proposition 14.4 (Pappus's theorem) 
In the Cartesian plane over a field F, suppose we are given lines l, m and 
points A,B,CEl and A',B',C'Em such that AC'IIA'C and BC'IIB'C. Then also 
AB'IIA'B. 
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Proof Suppose that 1, m meet at a point 
o (we leave the case 111m as Exercise 
14.1). Choose coordinates such that 0 is 
the origin, and A, B' are the unit points. 
Let C be the point (0, a) and let C' be 
the point (b,O). Then writing the equa­
tions of the lines involved, we find that 
B = (0, ab) and A' = (ab,O). Thus the 
line BA' has slope -1, hence is parallel 
toAB'. 

Remark 14.4.1 

"6 
\, 

\, 

(' 

\, , , 
\, , , , 

A' 

It is possible to define a Cartesian plane over a skew field F (which is an al­
gebraic structure the same as a field, except that the multiplication need not 
be commutative) . Then Hilbert (1971) has shown that the skew field F is 
commutative if and only if Pappus's theorem holds in the associated plane 
fIF · 

Example 14.4.2 
In the Cartesian plane over the field F, 
assuming characteristic 0, there is a 
configuration such as the one shown 
(where all lines that appear parallel are 
assumed to be parallel, namely DEIIBC, 
DFIIAC, EFIIAB, GHIIBC, and BHIIGE) if 
and only if viz E F. 

Indeed, to analyze this situation, 
take B to be the origin, BC and BA the 
axes, and D, F the unit points. Then A = 
(0,2), E= (1,1), C= (2,0). Let G have 
coordinates (0, a). Then H = (2 - a, a). 
The line BH will have slope a/(2 - a), 
and the line GE will have slope 1 - a. 
The parallelism BHIIGE then requires 
a/(2 - a) = 1 - a, or, equivalently, a2 -

4a + 2 = 0. Solving with the quadratic 
formula gives a = 2 ± viz. 

For this configuration to exist, it is 
necessary and sufficient that a E F, and 
this is clearly equivalent to viz E F, as 
required. 

B F c 
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Exercises 

14.1 Show that Pappus's theorem (Proposition 14.4) still holds in OF in the case that 
111m. 

14.2 Show that Desargues's theorem holds 
in the Cartesian plane over a field 
F: Given a configuration as shown, 
with ACIIA'C' and ABIIA'B', prove that 
BClIB'C'. o 

AI 

14.3 We define a skew field (also called a division ring) to be the same as a field, but 
without assuming property 2(ii), that multiplication is commutative. 

(a) Using the same definition of points and lines, show that the Cartesian plane 
over a skew field F still satisfies the incidence axioms (Il)-(I3) and (P), as in Prop­
osition 14.1. 

(b) Show that a skew field is commutative (Le., is a field) if and only if Pappus's 
theorem (Proposition 14.4) holds in the Cartesian plane over F. 

For each of the following problems, assume that you are working in the Cartesian 
plane n over a field F of characteristic o. Give necessary and sufficient conditions on the 
field F for the given configuration to exist. Assume that all lines that appear to be parallel 
are parallel, and apparent right angles are right angles. 

14.4 Ans: J3 E F. 14.5 Ans: Jl3 E F. 
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14.6 14.7 

14.8 ~--------

14.9 ~--......... r---...,....--__ 

In each of the following four problems, suppose that you are given the triangle ABC. 
Make a.ruler and compass construction of the diagram shown. In the first three, D,E,F 
are the midpoints of the sides. In the last, they are one-third of the way along each side. 
(Par = 20 to 25 steps each.) 

14.10 

c. 
~------~~-----~~ 

f 
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14.11 

~~----------~-----------=~ 
f 

14.12 

B ~ ______ ~ ____ ~~ ____________ ~C 
f 

14.13 

~--------~------------------~ 
c 

f 

15 Ordered Fields and Betweenness 

The next undefined notion we need to interpret in the Cartesian plane over a 
field is betweenness. It turns out that this is not possible over an arbitrary field. 
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We will have to impose some additional structure on the field to make a defini­
tion of betweenness possible. To see why this is so, suppose we had a notion of 
betweenness in our geometry. Then the x-axis (whose points are in one-to-one 
correspondence with the elements of our field P) could be divided into subsets 
consisting of the "positive x-axis" meaning all points on the same side of 0 as 1, 
the origin 0, and the "negative x-axis" consisting of all points on the other side of 
o from 1. In this way we can define a notion of "positive" elements of the field F, 
analogous to the usual notion of positive real numbers. 

This leads to the concept of an ordered field. 

Definition 
An ordered field is a field F, together with a subset P, whose elements are called 
positive, satisfying: 

(i) If a, b E P, then a + b E P and ab E P. 
(ii) For any a E F, one and only one of the following holds: a E P; a = 0; -a E P. 

Here are a few elementary properties of an ordered field. 

Proposition 15.1 
Let F, P be an ordered field. Then: 

(a) 1 E P, i.e., 1 is a positive element. 
(b) F has characteristic O. 
(c) The smallest sub field of F containing 1 is isomorphic to the rational numbers <Q. 
(d) For any a # 0 E F, a2 E P. 

Proof (a) In any field, 1 # 0, so either 1 E P or -1 E P. If 1 E P we are done. If 
-1 E P, then by (i), also (-1) . (-1) = 1 E P, which contradicts (ii). Hence 1 E P. 

(b) Since 1 E P, 1 + 1 + 1 + ... + 1 any number of times is also in P. In par­
ticular, such a sum is never 0, so F has characteristic O. 

(c) The natural map of the positive integers IN to F given by n goes to 
1 + 1 + ... + 1 (n times) is injective, by (b), and extends to an injective map of<Q 
to F whose image is (1) isomorphic to <Q and (2) the smallest subfield of F con­
taining 1. Whenever no confusion can arise, we will identify <Q with its image 
in F. So for example, if n E 7l, then n will also denote the corresponding element 
ofF. 

(d) If a # 0, then either a E P or -a E P. If a E P, then a2 E P by (i). If -a E P, 
then (-a)( -a) = a 2 E P. 

Proposition 15.2 
In an ordered field F, P, we define a > b if a - b E P, and a < b if b - a E P. This 
notion of inequality satisfies the usual properties, namely: 

(i) If a > band c E F, then a + c > b + c. 
(ii) If a > band b > c, then a > c. 
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(iii) If a> band e > 0, then ae > be. 
(iv) Given a, bE F, one and only one of the following holds: a> b; a = b; a < b. 

Examples 15.2.1 
The rational numbers <Q form an ordered field, where we take for P the positive 
rational numbers, in the usual sense. 

15.2.2 The field of real numbers JR. is an ordered field with the usual notion 
of positive elements. 

15.2.3 The field of complex numbers <C cannot be an ordered field (i.e., 
there is no subset P of <C satisfying the definition) because i 2 = -1 < 0, which 
contradicts (15.1d). 

15.2.4 Since an ordering on a field is extra structure, in general there may 
be more than one way to make a given abstract field into an ordered field. For 
example, let F = <Q( v2). Then F is a subfield of JR., so we can make it into an 
ordered field by taking P to be the subset of elements of F that are positive in JR.. 
But there is another embedding rp : F ---+ JR. given by rp(a + bv2) = a - bv2 for all 
a, b E <Q, and we can put another ordering on F by taking P to be the set of ele­
ments x E F for which rp(x) > 0 in JR.. 

Proposition 15.3 
If F is a field, and if there is a notion of betweenness in the Cartesian plane IIF sat­
isfYing Hilbert's axioms (B1)-(B4), then F must be an ordered field. Conversely, if 
F, P is an ordered field, we ean define betweenness in ITF so as to satisfY (B1)-(B4). 

Proof First suppose that F is a field and that there is a notion of betweenness in 
the plane fIF satisfying (B1)-(B4). We define the subset P S; F to consist of all 
a E F, a =I- 0, such that the point (a, 0) of the x-axis is on the same side of 0 as 1. 
Since addition in the field corresponds to laying out line segments consecutively 
on the x-axis, one can show easily that a, b E P => a + b E P. 

For multiplication, given a, b E P, 
put a on the x-axis, put 1, b on the y­
axis, draw the line from (0,1) to (a,O), 
and draw the line parallel to this one 
through (0, b). It will meet the x-axis in 
the point (ab,O). Now clearly, 1,a,bE 
P => ab E P (we leave to the reader to 
see exactly how this follows from (B1)­
(B4)!), so P satisfies the first property of 
the definition of an ordered field. By 
construction, F is the disjoint union of 
P U {O} U - P, so that F, P is an ordered 
field. 

b 

o 
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Now suppose conversely that F, P is a given ordered field. We define be­
tweenness for points on a line as follows: Let A = (a}, a2), B = (b], b2), C = (c], C2) 
be three distinct points on a line y = mx + b. We say that B is between A and 
C (A * B * C) if 

either a] < b] < c] or a] > b] > Cr . 

If the line is vertical, we use instead the second coordinates in the same way. 
We must verify the axioms (Bl)-(B4). 
(Bl) is obvious from our definition. 
(B2) follows from the corresponding fact, true in any ordered field, that 

given b < dE F, there exist a, c, e E F such that a < b < c < d < e. Indeed, we can 
always take, for example, a = b - 1, c = ! (b + d), and e = d + 1. Note that since 
F has characteristic 0, by (15.1) , ! E F. 

(B3) follows from the fact that in an ordered field F, if a, b, c are three distinct 
elements, then one and only one of the following six possibilities can occur: 

a < b < c; 

a < c < b; 

b < a < c; 

b < c < a; 

c < a < bi 

c<b<a. 

(B4). Suppose we are given a triangle ABC and a line 1 that meets the side 
AB. Assuming A, B, C rt l, we must show that 1 also meets either AC or BC, but 
not both. 

First suppose that the line 1 is verti­
cal, with equation, say, x = d. Let a, b, c 
be the x-coordinates of A,B, C. By hy­
pothesis, either a < d < b or b < d > a. 
By symmetry, let us assume a < d < b. 
Then it is clear if c < d (as in the pic­
ture), then 1 will meet BC but not AC. If 
c > d, then 1 will meet AC and not BC, 
as required. 

o 

A 

c 

x. 

If 1 is not vertical, we make a change of coordinates (14.2) such that 1 
becomes vertical. Since linear changes of variables either preserve or reverse 
inequalities, this does not affect the notion of betweenness, and so we are 
reduced to the previous case. 

To complete this section, we will discuss Archimedes' axiom (A) and Dede­
kind's axiom (D) -cf. Section 12. 
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Proposition 15.4 
Let F,P be an ordered field. Then the Cartesian plane ITF will satisfy (A) or (D) if 
and only if the field F satisfies the corresponding property for a field, namely: 

(A') (Archimedes' axiom for a field). For any a > 0 in F, there is an integer n such 
that n > a. 

(D') (Dedekind's axiom for a field). Suppose we can write the field F as the disjoint 
union of two nonempty subsets F = S U T, and assume that for all a E S and all bET 
we have a < b. Then there exists a unique element c E F such that for all a E S and all 
bET we have a :::;; c :::;; b. 

Proof For (A), we can choose coordinates such that the first segment AB is a 
unit segment. If C and D on the same line correspond to elements c < d E F, 
then n copies of AB will exceed CD if and only if n > d - c. 

For (D), choose coordinates such that the line in question is the x-axis, and 
identify its points with elements of F. Then the statements are the same. 

Proposition 15.5 
Let F be an ordered field satisfying Archimedes' axiom (A'). Then F is isomorphic, 
with its ordering, to a sub field of JR. Furthermore, in this case, F satisfies Dedekind's 
axiom (D') if and only if this subfield is equal to JR. 

Proof We saw earlier (15.1) that F contains a subfield Fo isomorphic to <Q. This 
gives us a unique isomorphism CPo : Fo ---+ <Q s;;; JR. We will extend CPo to an iso­
morphism of F into JR. Let IX E F. Because of Archimedes' axiom, there are in­
tegers both smaller and bigger than IX. SO let ao be the unique integer n such that 
n :::;; IX < n + 1. Next define al E fa Z to be the unique one-tenth integer such 
that al:::;; IX < al + 1/10. Similarly, define a2 E (1/100)Z such that a2:::;; IX < 
a2 + 1/100. Continuing in this way we obtain a sequence an :::;; al :::;; a2 :::;; ... of 
rational numbers with the property that for each n, an :::;; IX < an + lO-n . In the 
field of real numbers JR, these converge to a certain real number, which we call 
cp(IX). This defines a map cp: F ---+ JR. It is easy to verify that 
qJ( IX + p) = cp( IX) + cp(P) and cp( IXP) = cp( IX) . cp(P). So qJ is a homomorphism of fields, 
which is necessarily an isomorphism onto its image. One checks also that 
IX < P => cp(lX) < cp(P), so it is an order isomorphism of F onto qJ(F) S;;; JR. 

Now, condition (D') on F is equivalent to (D') on cp(F), since the fields are 
order-isomorphic. Each real number r E JR is characterized by the sets ~l = 
{a E JR I a :::;; r} and ~2 = {a E JR I a> r}, so clearly (D') holds in cp(F) if and only 
if cp(F) = JR. 

Remark 15.5.1 
As a converse to this result, note that any sub field F of JR becomes an ordered 
field if we take for P S;;; F those elements of F that are positive (in the usual 
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sense) in IR. Thus the study of Archimedean ordered fields is equivalent to the 
study of subfields of IR. 

See Section 18 for some examples of non-Archimedean ordered fields. 

Exercises 
15.1 If a> 0 in an ordered field F, show that a-I> 0 also. 

15.2 Let Fbe an ordered field, and let a > O. Show that if a has a square root in F, i.e., an 
element b E F such that b2 = a, then a has exactly two square roots in F, one of 
which is positive and the other negative. We use the notation Va to denote the posi­
tive square root. 

15.3 Let Fbe an ordered field, let d> 0, and suppose that d does not have a square root 
in F. Let F( v'd) denote the set of all a + bv'd, with a, b E F, where v'd is a square root 
in some extension field of F. 

(a) Show that F( v'd) is a field. 

(b) Show how to define an ordering on F( v'd), with v'd > 0, such that it becomes an 
ordered field. 

15.4 In an ordered field F, show that Dedekind's axiom (D/) implies Archimedes' axiom 
(A'). Hint: If F did not satisf'y (A'), let S = {IX E F I:ln E 'IL, with IX < n}, and let T = 
F- S. Then apply (D/). 

15.5 In the proof of Proposition 15.5, verif'y that cp(IXfJ) = cp(IX) . cp(fJ). 

15.6 If F is a skew field (Exercise 14.3), together with an ordering defined as in this sec­
tion that satisfies Archimedes' axiom (A'), then in fact F is a field. Hint: Show that 
the proof of Proposition 15.5 still works. 

16 Congruence of Segments and Angles 

Next, we need to define the notion of congruence for line segments and for 
angles. We assume from now on that we are starting from an ordered field F, P, 
so that we have betweenness as studied above. Then we can define the line seg­
ment AB to be the set of all points on the line AB that are between A and B, plus 
the endpoints A, B. We would like to define congruence of line segments using 
the usual Euclidean distance function (motivated by the theorem of Pythagoras 
(I.47)) for two points A = (al,a2), B = (b1,b2), namely, 

dist(A,B) = v(al - bl )2 + (a2 - b2)2. 
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However, our field F may not have square roots in it, so we will use instead the 
"distance-squared" function 

This will give the same notion of congruence. 

Definition 
Two line segments AB and CD in the Cartesian plane over an ordered field Fare 
congruent if 

dist2 (A, B) = dist2 (C, D). 

Since congruence is defined using the function dist2 from line segments to the 
field, the axiom (C2), transitivity of congruence, will be obvious. Notice that 
because of the ordering on F, if A,B are distinct points, then dist 2 (A,B) > O. 

Next we will define congruence for angles, by defining a function tan a E F 
for any angle a. This is motivated by the usual tangent function of trigonometry, 
but since we are working over an abstract field, you should not assume any 
properties of this function until they have been proved. 

Recall that a ray is a subset of a line 
consisting of a point plus all the points 
of the line on one side of that point. An 
angle is the union of two rays emanating 
from the same point and not lying on 
the same line. The interior ofthe angle a 
consists of all points of the plane that 
are on the same side of 1 as r' and on 
the same side of l' as r. 

We say that an angle is a right angle 
if the slopes of the lines its rays lie on 
satisfy mm' = -1. Then we say that an 
angle is acute if it is contained in the 
interior of a right angle; it is obtuse if it 
contains a right angle in its interior. 

Definition 
If a is an angle formed by two rays r, r' 
lying on lines of slopes m, m', we define 
the tangent of a to be 

tan a = + 1 m' m I, 
- 1 +mm' 

where we take + if the angle is acute 
and - if the angle is obtuse. 
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The awkwardness of this definition is due to the fact that the slopes depend 
only on the lines and do not distinguish the rays on those lines. So any formula 
using slopes cannot distinguish an angle from its supplement. We cannot use the 
usual definition of tangent, as side opposite over side adjacent, because that 
needs square roots (Exercise 16.3). 

Note also that by this definition, the tangent of a strictly acute or strictly 
obtuse angle is an element of the field F, while the tangent of a right angle we 
take to be the symbol 00. In case one ofthe slopes m or m' in the definition is 00, 

we can still make sense of the formula by using rules (Exercise 16.2) such as 

Definition 

00 -m 1 

l+m·oo m 

Two angles in the Cartesian plane over an ordered field F are congruent if they 
have the same tangent, considered as an element of the set F U { 00 }. 

Because congruence is defined by a function with values in F U {oo}, axiom 
(CS), transitivity of congruence, becomes obvious. 

Proposition 16.1 
Let F be an ordered field, and let IIF be the associated Cartesian plane. Then IIF 
satisfies axioms (C2)-(CS). Furthermore, (C1) holds if and only if F satisfies the 
condition 

( *) For any element a E F, the element 1 + a2 has a square root in F (in which 
case we say that the field F is pythagorean). 

Proof (C2) is transitivity of congruence of segments, which follows immedi­
ately from our definition of congruence using the dist2 function. 

( C3) is left as an exercise (Exercise 16.1). 
(C4) is the axiom about laying off 

angles. So suppose we are given an an-
gle IX and a ray emanating from a point 
A with slope m. We must find a line 
passing through A with slope m' such 
that 

1m' ml tanlX=± , 
l+mm' 

where the sign is adjusted according to 
whether IX is acute or obtuse. This gives 
equations that are linear in m', and so 
can be solved in F. We obtain 

I 
M 
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, m ± tan a m =----
1 + mtana 

The two solutions give angles on either side of the given line through A, so that 
we can construct the new angle a' on the desired side of the line. 

(C5) is the transitivity of congruence of angles, which is immediate from our 
definition of congruence using the tangent function. 

Now let us consider the axiom (C1) 
about laying off line segments. This 
does not hold over an arbitrary field. 
For example, let <Q be the field of ratio­
nal numbers. Then the segment from 
(0,0) to (1,1) cannot be laid off on the x­
axis, because its length, viz, is not in the 
field. 

Over an arbitrary field F, if a E F is 
any element, let us consider the seg-
ment from (0, 0) to (a, 1). There will be 
a segment congruent to this one, laid off 
on the x-axis starting from 0, only if 
there is an element b E F such that 

dist2 ((0, 0), (a, 1)) = dist2 ((0, 0), (b, 0)). 

This says that 

1 + a2 = b2 • 

(0,0) el,o) 

(0,/) 

o 

Thus we need bE F that is a square root of 1 + a2 . In other words, if (C1) holds 
in IIF , we must have the condition (*) on the field F. 

Conversely, suppose that F satisfies (*), namely, for any c E F, we have 
JI+C2 E F. Then for any a, b E F, with a i= 0, we can write 

Now letting c = b/a we see that 

va2 + b2 = lal· JI+C2 
is also in F. From this is follows that for any two points A, B E IIF , the distance 
between A, B is also in F, so we have the distance function 

dist(A,B) = v(al - b1)2 + (a2 - b2)2 E F. 

Now suppose that we are given a line y = mx + b and a point A on the line, 
and suppose we wish to layoff a segment of length d. We can write A = 
(a, ma + b), and we are looking for a point C = (c, me + b) on the same line such 
that 
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dist(A, C) = d. 

This says that 
J (a - c)2 + (ma + b - (mc + b)) 2 = d, 

which becomes 
la - cl . VI + m 2 = d. 

Since F satisfies (*), the quantity VI + m 2 is in F, so we can solve this equation 
for c. Note that there will be two solutions, corresponding to the two directions 
from A along the line I. 

Remark 
We defer consideration of (C6), the (SAS) axiom, to the next section, where we 
discuss rigid motions and Euclid's method of superposition. 

To complete this section, we discuss the intersections of lines and circles. 
Recall from Section 11 the circle-circle intersection property, which we called 
axiom (E), and the line-circle intersection property (LCI), which was proved in 
(1l.6) as a consequence of (E). 

Proposition 16.2 
Let n be the Cartesian plane over an ordered field F. Then the following conditions 
are equivalent: 

(i) n satisfies the circle-circle intersection property (E). 
(ii) n satisfies the line-·circle intersection property (LCI). 

(iii) the field F satisfies (**): For any a E F, a> 0, there is a square root of a in F 
(in which case we say that the field F is Euclidean). 

Proof (i) =} (ii). Let f = 0 be the equation of a circle, and let g = 0 be the equa­
tion of a line. Then f + g = 0 is another circle, whose intersections with the first 
circle are the same as the intersections of the first circle with the line. Thus (E) 
implies (LCI). 

(ii) =} (iii). Now we assume (LCI) 
and we must prove that F has square r 
roots of positive elements. Given an ele-
ment a E F, a > 0, consider the points 
0= (0 , 0), A = (a, 0), and A' = (a + 1,0). 
Let r be the circle with center 0 A ' 
(! (a + 1),0) and radius !(a + 1). Con­
sider the vertical line I through the 
point A. Clearly, A is inside the circle, 
so by (LCI), the line I must meet the cir­
cle r in a point B. Solving the equations, 
we find that B = (a, va), so va E F. 
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(iii) :::} (i). This time we assume the existence of square roots of positive ele­
ments in F, and must prove (E). If rand r' are circles in IT, their equations can 
be written 

(x - a)2 + (y - b)2 = r2, 

(x - C)2 + (y - d)2 = S2, 

where (a, b) and (c, d) are the centers of the two circles, and r, s their radii 
(which are elements of F because of our hypothesis (**) on existence of square 
roots). 

Normally, solving two quadratic equations simultaneously would lead to a 
fourth-degree equation, but in this case, the coefficients of x2 and y2 in both 
equations are 1. Thus we can subtract one equation from the other to get a linear 
equation. This can be solved simultaneously with one of the quadratic equations 
using only square roots, and so, using (**), the intersection points of the circles 
have coordinates in F, so they exist in the plane IT. We leave to the reader the 
troublesome verification that if rand r' satisfY the hypothesis of (E), then the 
square roots we need will be square roots of positive elements of F, so will exist 
by (**); cf. Exercise 16.6. 

Remark 16.2.1 
This shows that (E) and (LCI) are equivalent in the Cartesian plane over any 
ordered field F; cf. (11.6.1). 

Proposition 16.3 
Let n be the set of all real numbers that can be expressed starting from the rational 
numbers and using a finite number of operations +, -,', -:-, and c f--+ VI + c2. (Note 
that for any c E JR., 1 + c2 > 0, so JI+C2 E JR..) Then n is an ordered Pythagorean 
field. 

Proof To show that n is a field, let a, bEn. Then each of a, b can be expressed 
in a finite number of steps using rational numbers and operations +, -,', -:-, 
c f--+ JI+C2. Hence the same is true of a ± b, a . b, and alb, provided that b #- O. 
If c is any element of n, then c can be expressed in a finite number of such 
steps, so JI+C2 can also, and so VI + c2 E n. Hence n is Pythagorean. n is an 
ordered field, because it is a subfield of JR., so we can take P to be those elements 
of n that are positive as real numbers. 

Remark 16.3.1 
Clearly, n is the smallest Pythagorean ordered field. We call it Hilbert's field, 
since he studied it in his Foundations of Geometry (1971). It is also the smallest 
field over which all of Hilbert's axioms of betweenness and congruence will hold 
(17.3). 
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Proposition 16.4 
Let K be the set of aU real numbers that can be obtained from the rational numbers 
by a finite number of operations +, -, " ..;-, and a > 0 f-+ Va. Then K is a Euclidean 
ordered field. 

Proof Similar to the proof to (16.3). Note that we may take square roots only of 
positive elements. Since K is also a subfield of JR, we get the ordering on K from 
JR as above. 

Remark 16.4.1 
We call this the constructible field because it is the smallest field over which we 
can carry out ruler and compass constructions. Note also that n £ K, since 
1 + c2 > 0 for any c E n. To show n # K, see Exercise 16.10. 

Exercises 
16.1 If II is the plane over an ordered field F, show that (C3), congruence of added line 

segments, holds. Do not assume that F is Pythagorean. 

16.2 Make up a set of rules for dealing with 00 so that we can do arithmetic in F U {oo} 
and get the results we want with slopes and tangents of angles. 

16.3 Let ABC be a triangle with a right angle at C in the Cartesian plane over an ordered 
field F satisfying ( *). If ex is the angle at A, show that 

dist(B, C) 
tan ex = . 

dist(A, C) 

16.4 If F is a Pythagorean ordered field, prove the triangle inequality in the correspond­
ing plane II, namely, if A, B, C are three points in II, then 

dist(A, C) ~ dist(A, B) + dist(B, C), 

and equality holds if and only if A,B, C are collinear and B is between A and C. 

16.5 Using the definition of the tangent of an angle given in the text, verify that for any 
two acute angles ex, p, 

( p) tanex+tanp 
tanex+ = . 

1 - tanextanp 

16.6 Let II be the plane over a Euclidean ordered field F. Verify that a circle r meets a 
line 1 in two points if and only if 1 has a point inside r. Hint: Compute the shortest 
distance from the center 0 of the circle to the line 1. Show that this is less than the 
radius of the circle if and only if the square roots needed to solve the equations are 
square roots of positive elements. 
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16.7 Let Fbe an ordered field (without assuming Pythagorean or Euclidean). 

(a) Show that the associated plane n contains an equilateral triangle if and only if 
v'3 E F. 

(b) Show that there exists an equilateral (but not necessarily equiangular) penta­
gon in n if F = <Q( v'3), <Q( JU), or <Q( Jl5), but not if F = <Q. 

16.8 Let Fbe an ordered field (without assuming Pythagorean or Euclidean). Let A,B be 
points of the associated plane n. Show that the circle r with center A and passing 
through B has infinitely many points on it. Hint: First do the case of the circle of 
radius 1 and center (0,0) over <Q. 

16.9 (a) Show that cos 72° and sin 72° are in Hilbert's field n. 

(b) Prove that a regular pentagon inscribed in a unit circle exists in the Cartesian 
plane over the field n. 

16.10 Totally real field extensions (this exercise requires some knowledge offield theory). 
We consider algebraic numbers, which are complex numbers satisfying some poly­
nomial equation with rational coefficients. We denote the set of algebraic numbers 
by <Q. An algebraic number a E <Q is totally real if it and all its conjugates are real. A 
subfield F £; <Q is totally real if all its elements are totally real. We say that a E <Q is 
totally positive if it and all its conjugates are real and positive. Show the following: 

(a) IfF£; <Q is a totally real sub field, and if a E F is a totally positive element, then 
the extension field F' = F( Va) is totally real. 

(b) If aI, ... ,aT are elements of a totally real field F, then 'J:.a; is a totally positive 
element of F. 

(c) Hilbert's field n (Proposition 16.3) is a totally real field. 

(d) The number a = VI +.j2 is in the constructible field K (Proposition 16.4) but 
not in n. Thus n < K. 

16.11 Use ideas from (Exercise 16.10) to give an example of three line segments in the 
Cartesian plane over n, any two exceeding the third, but such that the triangle with 
sides equal to those segments does not exist. Thus (I.22) fails in this plane. 

16.12 The converse of Exercise 16.10b is a theorem of Emil Artin: Ifb is a totally positive 
element of a sub field F £; <Q, then there exist elements al,"" an E F such that 
b = 'J:.a;. Fill in the details of the following outline of a proof of this theorem. 

(a) Replacing F by <Q(b), we may assume that F is a finite totally real extension 
of<Q. 

(b) Let 

S = {'J:.all a; E F, not all zero}. 

Show that the set S is closed under addition, multiplication, and multiplicative 
inverses, and that 0 ¢ S. Hint: Write S-l = (S-1)2S. 
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(c) Now let b be a totally positive element of F, and suppose that brio S. We will 
show that this leads to a contradiction. Let S' = S - bS, and show that S' is closed 
under +,., inverses, and that 0 rio Sl 

(d) Let f?J be the set of all subsets P S; F such that 0 rio P, S' S; P, and P is closed 
under +,', inverses. Use Zorn's lemma to show that f?J has a maximal element. 

(e) If P E f?J is a maximal element, show that F,P is an ordered field. You only have 
to check the trichotomy: If a =I 0, and -a rio P, consider p' = P + aP and use maxi­
mality to show p' = P, so a E P. 

(f) Use the fact that F is algebraic over <Q to show that the ordering is Archimedean. 

(g) Now use Proposition 15.5 to get an embedding rp : F'--+ IR with rp(b) < 0, yield­
ing a contradiction. 

16.13 Verify the result of Exercise 16.12 directly for the field <Q(V!Z), without using its 
proof. 

16.14 Using Exercise 16.12, show that Hilbert's field Q is equal to the set of totally real 
elements in the constructible field K. 

1 7 Rigid Motions and SAS 

Our first goal in this section is to show that Hilbert's axiom (C6), the "side­
angle-side" criterion for congruence of triangles, holds in the geometry over an 
ordered field F. This will complete the proof that all of Hilbert's axioms hold in 
the Cartesian plane over a field. After that we will study the properties of rigid 
motions in an arbitrary Hilbert plane. 

One could criticize Hilbert for taking a statement as complicated as (SAS) for 
an axiom, just as one could criticize Euclid for his fifth postulate, which is so 
much less elementary than his others. The response in both cases is the same: 
One cannot avoid including a statement as an axiom if one cannot prove it from 
the other axioms. Now, Euclid did not include (SAS) as an axiom, but "proved" 
it as (1.4). His proof has been justly criticized, because he used the "method of 
superposition," which involves moving one triangle and placing it on top of the 
other. This cannot be justified on the basis of Euclid's postulates and common 
notions. In fact, if you think about it, the possibility of moving figures around, 
without distorting their shapes, is a rather strong statement about homogeneity: 
The geometry is similar in different parts of the space. This is a deep fact not to 
be taken lightly or assumed without proof. 

Curiously enough, in order to show that (SAS) holds in the geometry over a 
field, we will use Euclid's method of superposition, but only after proving that it 
makes sense. We will define the notion of rigid motion of a plane and show that 
there are enough of them to make Euclid's method work. 
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Conversely, we will prove the existence of rigid motions in an arbitrary Hil­
bert plane. Thus the existence of enough rigid motions is essentially equivalent 
to the statement (SAS), in the presence of the other axioms. This gives a satis­
factory modern understanding of the meaning of Euclid's method of super­
position. It also introduces us to the group of rigid motions of the plane and val­
idates Felix Klein's point of view, expressed in his "Erlanger Programm" in the 
late nineteenth century, that one should classifY different geometries according 
to the groups of motions that act on them. 

To start with, we define the notion of a rigid motion. 

Definition 
If II is a geometry consisting of the undefined notions of point, line, between­
ness, and congruence of line segments and angles, which mayor may not sat­
isfY various of Hilbert's axioms, we define a rigid motion of II to be a mapping 
rp : II -+ II defined on all points, such that: 

(1) rp is a 1-to-1 mapping of the points of II onto itself. 
(2) rp sends lines into lines. 
(3) rp preserves betweenness of collinear points. 
(4) For any two points A,B, we have AB ~ rp(A)rp(B). 
(5) For any angle oc, we have Loc ~ Lrp(oc). 

In other words, rp preserves the structures determined by the undefined 
notions in our geometry. 

Remark 17.0.1 
For example, the identity transformation of II to itself, which leaves every point 
fixed, is a (trivial) rigid motion. It is clear that the set G of all rigid motions 
forms a group, because the composition of any two is another one. We will use 
functional notation for composition: rpljJ(A) = rp(IjJ(A)). However, it is not obvi­
ous in general that there are any other rigid motions besides the identity. 

Now we can express what is needed to justify Euclid's method of super­
position in the following principle 

ERM (Existence of Rigid Motions) 

(1) 

(2) 

(3) 

For any two points A, A' E II, there is a rigid motion rp E G such that 
rp(A) = A'. 
For any three points O,A,A', there is a rigid motion rp E G such that rp(O) = 

---+ ----t o and rp sends the ray OA to the ray OA'. 
For any line l, there is a rigid motion rp E G such that rp(P) = P for all PEl and 
rp interchanges the two sides of l. 
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Proposition 17.1 
In a plane satisfying the incidence and betweenness axioms, and assuming (C2), (CS), 
and the uniqueness portions of(C1) and (C4) only, (ERM) implies (C6) = (SAS). 

Proof We are now assuming the exis-
tence of rigid motions (ERM) and will 
prove (SAS) by Euclid's method. So 
suppose we are given two triangles ABC 
and A'B'C', and suppose AB ~ A'B', 
AC ~ A'C', and LBAC ~ LB'A'C'. Then 
we must show that MBC ~ M'B'C', 
namely, that BC ~ B'C' and the angles 
at B, C are congruent to the angles at B' 
and G', respectively. 

By (ERM) (1), there is a rigid motion rp that takes A to A'. Let B" = rp(B) . 
Then AB ~ A'B", since rp is a rigid motion and AB ~ A'B' by hypothesis, so 
A'B' ~ A'B" by (C2). 

Next, by (ERM) (2), there is a rigid motion ljJ that leaves A' fixed and 
sends the ray A'B" to the ray A'B'. Since A'B" ~ A'B', and ljJ preserves congru­
ence, we conclude from the uniqueness portion of (C1) that ljJ(B") = B'. Let 
c" = ljJrp( C). 

Then we consider the line 1 = A'B', and the two rays A'C' and A'C". If they 
are on the same side of 1, we do nothing, but if on opposite sides, then by (ERM) 
(3) there is a rigid motion a leaving the points of 1 fixed and interchanging the 
sides. 

Let us denote by () E G the composition ljJrp, or aljJrp if we used a. Then () 
has the following properties: (}(A) = A', (}(B) = B', and CIII = (}(C) is on the same 
side of A' B' as C'. 

Since () is a rigid motion, LBAC ~ LB'A'C". But also LBAC ~ LB'A'C' 
by hypothesis, so by (CS), LB'A'C' ~ LB'A'CIII . Furthermore, C' and CIII are on 
the same side of A'B'. So by the uniqueness portion of(C4) we conclude that the 
rays A'C' and A'CIII are equal. 

Now, A'C' ~ AC by hypothesis, and AC ~ A'C III , since () is a rigid motion, so 
by (C2) A'C' ~ A'CIII . Furthermore, C' and CIII are on the same side of A'. So by 
the uniqueness portion of (CI) we conclude that C' = CIII . 

Thus (}(B) = B' and (}(C) = C'. Since () is a rigid motion, BC ~ B'C' as re­
quired. Similarly, for the angles, () takes LABC to LA'B'C'. So () being a rigid 
motion, we conclude LABC ~ LA'B'C'. The same method shows LACB ~ 
LA'B'C'. This concludes the proof of (SAS). 

Next we will show that (ERM) holds in the Cartesian plane over a field. 



17. Rigid Motions and SAS 151 

Theorem 17.2 
Let F be an ordered Pythagorean field, and let n be the associated Cartesian plane. 
Then (ERM) holds in n. 

Proof We think of n as having coordinates (x, y). We will consider certain 
transformations of n defined by functions of x and y, we will show that these 
are rigid motions, and then we will see that there are enough of them to prove 
(ERM). 

First of all, consider a point A = 
(a, b) and the transformation T (called a 
translation) given by 

{
X' = x+a, 
y' = y+b. 

Clearly, T is 1-to-1 and onto, because it 
has an inverse 

{
X = x' - a, 
y = y'- b. 

A line y = mx + k under this transformation becomes 

y' - b = m(x' - a) + k. 

In particular, its image is a line, so we see that T takes lines into lines. Next, 
we notice that the slope of the new line is the same as the slope of the old line, 
so T preserves angles. Clearly, T preserves betweenness, because this reduces to 
questions of inequalities in the field F, which are unchanged by adding con­
stants. 

Finally, we must check that T preserves the dist2 function to get congruence 
of segments. This is obvious, since we add the same constant to the coordinates 
of two points A, B, so in computing the dist2 function we get the same value. 

Thus the mapping T is a rigid motion. Given two points B, C, we can take a, b 
to be the difference of their x- and y-coordinates, so T(B) = C, and we have sat­
isfied condition (1) of (ERM). 

To prove condition (2) of (ERM) we will consider rotations. A rotation of the 
plane n is a transformation p defined by 

{
X' = cx - sy, 

y' = sx+cy, 

where c, s E F and c2 + S2 = 1. The inverse of this transformation is given by 

{
X = cx' + sy', 
y = -sx' + cy'. 
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Therefore, p is 1-to-1 and onto. Being linear, p takes lines to lines, and a brief 
calculation shows that a line with slope m is transformed to a new line with 
slope 

, cm+s 
m =---. 

c-sm 

Since linear transformations either preserve or reverse inequalities, e preserves 
betweenness. 

Next, we show that p preserves angles. Given two lines with slopes mj and 
m2, let m; and m~ be the new slopes. Since congruence of angles is determined 
by their tangents, it will be enough to show that 

m; - m~ mj - m2 
1 + m;m~ 1 + mjm2 

This is an elementary calculation (left to the reader). 
Finally, let us see what happens to the distance function. Let A and B be two 

points. Then another amusing little calculation, left to the reader, shows that 

dist(p(A),p(B)) = dist(A, B). 

Hence p is a rigid motion. 
Now we can verifY condition (2) of (ERM). Given three points O,A,A', we 

----'-t 

must show that there is a rigid motion leaving 0 fixed and taking the ray OA to 
----'-t 

the ray OA'. By using a translation, we can reduce to the case 0 = origin. Let 
y = mx and y = m'x be the lines containing A and A'. Any rotation leaves 0 
fixed, so to send the first line to the second, we have only to find c, s E F with 
c2 + S2 = 1 such that 

, cm+s m =---
c-sm 

according to the formula above. Solving for s we obtain 

m'-m 
s = c. 

l+mm' 

Let k be the coefficient (m' - m)/(l + mm'). Then we can solve s = kc and 
S2 + c2 = 1 by c = ±1 /~, using the Pythagorean property of F. 

So we have two rotations taking the first line to the second, differing by the 
----'-t ----'-t 

rotation x' = -x, y' = - y. One of these will send the ray OA to the ray OA' 
as desired. 

To complete the proof of (ERM), we must verifY condition (3), that for every 
line 1, there is a rigid motion (called a reflection) leaving 1 pointwise fixed and 
interchanging the two sides of 1. Using a translation from a point of 1 to the 
origin 0, we may assume that 0 E 1. Let A be any other point of 1, and let p be 

----'-t 

the rotation that sends the positive x-axis to the ray OA. Let (j be the reflection in 
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the x-axis defined by 

{~,:x~y. 
Clearly, this is a rigid motion that leaves the x-axis pointwise fixed and inter­
changes the two sides. Now qJ = pap- l is the required reflection in the line 1. 

TheoreIll 17.3 
If F is any Pythagorean ordered field, then the Cartesian plane Il over F is a Hilbert 
plane satisfYing the parallel axiom (P). The plane IT will be Euclidean if and only if 
F is Euclidean. 

Proof We have previously verified the incidence axioms (11)-(13) and (P) in 
(14.1), the betweenness axioms (B1)-(B4) in (15.3), and the congruence axioms 
(C1)-(C5) in (16.1). Now, from (17.2) we know that (ERM) holds in II, and 
therefore by (17.1) also (C6) holds. For the plane to be Euclidean, i.e ., to satisfy 
(E), it is necessary and sufficient that the field Fbe Euclidean (16.2). 

Next we will prove a sort of converse to (17.1), namely that (ERM) holds in 
any Hilbert plane. 

Proposition 17.4 
In any Hilbert plane (cf Section 10), there are enough rigid motions: (ERM) holds. 

Proof First we will show the existence of reflections. Then we will build other 
rigid motions out of these. 

Suppose we are given a line 1. We 
will construct a rigid motion a, called 
the reflection in 1, that leaves the points 
of 1 fixed and interchanges the two sides 
of 1. For any point PEl we define a(P) = 

P. For any point A r/= 1, drop the perpen­
dicular AAo to 1, and extend it on the 
far side of 1 so that AAo ::::;: AoA'. Then 
we set a(A) = A' . Clearly a 2 = id, so a is 
1-to-1 and onto. 

Let A, B be any two points not on 1. 

We will show that AB::::;: A'B', where 
a(A) = A', and a(B) = B'. If A,B lie on 
the same line perpendicular to 1, this is 
immediate from subtracting congruent 
line segments. If A, B are on different 
perpendiculars, as in the figure, let 

Ao 

A' Q,' 
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Ao,Bo be the feet of those perpendiculars. Then MoABo is congruent to 
MoA'Bo, using the right angles at Ao, by (SAS). Therefore, the angles LABoAo 
and LA'BoAo are congruent. Subtracting from the right angles at Bo, we find that 
LABoB ~ LA'BoB'. On the other hand, ABo ~ A'Bo from the first triangles. Now 
we can apply (SAS) again to conclude that MBoB ~ M'BoB'. In particular, 
AB ~ A' B' as claimed. 

Now suppose A,B, C are three non­
collinear points whose images by (J are 
A', B', C'. Then by (SSS) we conclude 
that MBC ~ M'B'C', and in particular, 
LBAC ~ LB'A'C'. Thus (J preserves 
angles. From here it is easy to verifY 
that (J preserves lines and betweenness, 
so in fact, (J is a rigid motion (details left 
to reader). 

'B AC>C 

A' 
~CI 

To verifY that (ERM) holds, we have just established property (3) by the 
existence of reflections. If A, A' are any two points, let I be the perpendicular 
bisector of the segment AA'. Then (J/ will send A to A'. Thus condition (1) of 
(ERM) holds. For condition (2), let O,A,A' be three points. Let I be the bisector 
of the angle LAOA'. Then the reflection (J/ will leave 0 fixed and send the ray 
---'t ---'t 

OA to the ray OA'. Thus (ERM) holds. Note that for this proof we need the exis-
tence of the perpendicular bisector of a line segment (UO) and (U1), and the 
bisector of an angle (1.9), which exist in a Hilbert plane by (10.4). 

Corollary 17.5 
In the presence of all the axioms of a Hilbert plane except (C6), the axiom (C6) is 
equivalent to (ERM). 

Proof Combine (17.1) and (17.4). 

Remark 17.5.1 
One can give the rigid motions an even more prominent position in the founda­
tions of geometry by using them to define congruence, as follows. Suppose we are 
given a set of points with undefined notions of lines and betweenness satisfYing 
axioms (Il)-(I3) and (Bl)-(B4) as before. Suppose also that we are given a group 
G of transformations of this set, called motions, that preserve lines and between­
ness and suppose further that G satisfies the following axioms (similar to (ERM)): 

(1) Given two rays, and given a side of each line containing one of the rays, 
there is a unique motion rp E G that takes one ray to the other and the given 
side to the given side. 

(2) For any two distinct points A, B, there exists a motion of G that interchanges 
the two points. 
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(3) For any two rays emanating from the same point, there exists a motion ofG 
that interchanges the two rays. 

Then one can define congruence of segments and angles by requiring the 
existence of a motion in G that sends one to the other, and one can prove that 
this notion of congruence satisfies the axioms (C1) -( C6) and so makes a Hilbert 
plane. See Hessenberg-Diller (1967), Sections 37-39. Bachmann (1959) carries 
this idea a step further, by eliminating points and lines altogether and giving a 
set of axioms for geometry based on the group G above (cf. discussion in Section 
43). 

Exercises 
17.1 In the proof of Theorem 17.2 verify that: 

(a) Rotations preserve angles. 

(b) Rotations preserve distances. 

17.2 Let rp : n - n be a map of a Hilbert plane into itself. For any point A, denote ,(A) 
by A'. Assume AB ~ A'B' for any two points A,B. 

(a) Prove that rp is l-to-l and onto. 

(b) Show that in fact, rp is a rigid motion. 

17.3 In a Hilbert plane n, show: 

(a) Any rigid motion with at least three noncollinear fixed points must be the 
identity. 

(b) Any rigid motion is equal to the product of at most three reflections. 

17.4 In a Hilbert plane n, define a rotation around a point 0 to be a rigid motion p, not 
equal to the identity, leaving 0 fixed and such that for any two points A,B, the 
angles LAOA' and LBOB' are equal, where p(A) = A', p(B) = B'. Show: 

(a) For any two distinct points A,A' with OA ~ OA', there exists a unique rotation 
around 0 sending A to A'. 

(b) The set of rotations around a fixed point 0, together with the identity, is an 
abelian subgroup of the group of all rigid motions. . 

(c) Any rotation can be written as the product of two reflections. 

(d) A rigid motion having exactly one fixed point must be a rotation. 

17.5 In a Euclidean plane n, define a translation to be a rigid motion T such that for any 
two points A,B, we have AA' ~ BB', where T(A) = A', T(B) = B'. Show: 

(a) For any two points A,A', there exists a unique translation T such that T(A) = A'. 
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(b) If T is a translation, then for any two points A,B, we have ABIIA'B' and 
AA'IIBB'. 

(c) The set of translations forms an abelian subgroup T of the group of all rigid 
motions. 

(d) Any translation is a product of two reflections. 

(e) Is the group T of translations a normal subgroup of the group G of all rigid 
motions? Prove yes or no. 

17.6 In this exercise we establish an alge­
braic interpretation of the group of 
rotations around a point in a Cartesian 
plane. Let Fbe an ordered field. In the 
Cartesian plane n over F, let r be the 
unit circle, and let E = (-1,0) . Let a 
line I through E meet the circle at a 
point A. E 

__ ~~ ____ ~L-__ ~~----

(a) If the line I has slope t, show that 
the coordinates of the point A are 
(c, s), where 

1 - t2 
c=--

1 + t2 ' 

2t s--­
- 1 + t2 · 

(Note: We use this notation because if F = IR, and if a is the angle that OA makes 
with the positive x-axis, then by trigonometry, we obtain t = tan ~ a, c = cos a, 
s = sin a, and these are the usual formulas for expressing c, s in terms of t. Do you 
remember those substitutions used in calculus classes for rationalizing trigono­
metric integrals?) 

(b) Let PI be the corresponding rotation 

{
X' = ex - sy, 

PI: 
y' = sx + cy, 

as defined in the text. Show that PI is also a rotation in the sense of Exercise 17.4, 
and show that the mapping t f-> PI gives a I-to-l correspondence between the set 
F U { CfJ } and the group R of rotations of n with center o. 

(c) Under the correspondence in (b), show that the group operation in R corre­
sponds to the operation 

t + t' 
tot' =--

1 - tt' 

in the set F U {CfJ}. We call the set F U {CfJ} with the operation 0 the circle group of 
the field F. 

(d) If F = IR, show that the circle group of F is isomorphic to the abstract group 
(IR/Z, +). 
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17.7 Let Fbe a field (not necessarily an ordered field) that does not contain a square 
root of -1. In analogy to the situation above, we define the circle group of F to be 
the set C(F) = F U { 00 } with the operation 

aob= a+b 
1 - ab for a, bE C(F). 

(a) VerifY directly that C(F), 0 is an abelian group by verifYing the group axioms. 
Make clear your rules for treating 00 (cf. Exercise 16.2), and point out where you 
use the hypothesis g rt F. 

(b) Show that + 1, -1 are elements of finite order in C(F). 

(c) If F = <Q, show that ± 1,00 are the only elements of finite order different from 
the identity. 

(d) If F = JR., find explicitly four elements of order 5 in C(F). 

17.8 With F a field as in Exercise 17.7, consider an extension field F(i) with i = g. 
Elements of F(i) can then be written as ex = a + bi, a, bE F. Define the norm of an 
element ex by N(ex) = a2 + b2 . 

(a) For any ex,p E F(i) verifY that N(exP) = N(ex)N(P). 

(b) Let S = {ex E F(i) I N(ex) = I}. Then S is a group under multiplication. Show that 
the map S -7 C(F) defined by 

. b ex=a+blf-> --
a+1 

is an isomorphism of (S, .) with the circle group (C(F) , 0). 

Note: This mysterious isomorphism is motivated by the figure in Exercise 17.6, in 
which t = tan ~ex = s/(c + 1). 

17.9 Let Fbe a finite field of p elements, p == 3(mod 4). 

(a) Show that -1 does not have a square root in F. 

(b) Show that the circle group C(F) is cyclic of order p + l. 
17.10 Let ABC and A'B'C' be two congruent triangles in a Hilbert plane. Show that there 

exists a rigid motion ({J of the plane with ({J(A) = A', ({J(B) = B', and ({J( C) = C'. 

17.11 In a Euclidean plane, show that the product of two rotations around different points 
is equal to either a rotation around a third point or a translation. Hint: Show that it 
has at most one fixed point. 

17.12 In a Euclidean plane, show that the product of an odd number of reflections cannot 
be equal to the identity. Hint: Use Exercise 17.11 to reduce products offour reflec­
tions to products of two reflections, and proceed by induction. 

17.13 In a Hilbert plane, let us define one segment of a circle to be congruent to another 
segment of a circle if there exists a rigid motion of the plane that makes the first 
coincide with the second. Using this notion of congruence of segments, show that 
Euclid's results (III.23)-(III.30) and their proofs are all ok in a Euclidean plane. 
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17.14 (Theorem of three reflections). 

(a) Given three lines a,b,c through a point 0, show that there exists a unique 
fourth line d such that 

where IJ" denotes the reflection in a given line. Hint: Let A be a point of a, and take 
d to be the perpendicular bisector of AC, where C = IJ"clJ"b(A). (See Proposition 41.2 
for an analogous result in hyperbolic geometry.) 

(b) Given three lines a, b, c perpendicular to a line 1, show that there exists a 
unique fourth line d such that IJ"clJ"blJ"a = IJ"d. 

18 Non-Archimedean Geometry 

The Archimedean principle, that given two line segments, some multiple of the 
first will exceed the second, is so embedded in our experience of the world that 
it is hard to imagine a geometry in which this would not hold. Even the farthest 
star has a distance from the earth that can be measured in light years, and even 
if we take the inch as our standard unit of length, some number of inches, albeit 
a very large number, will exceed the distance to that farthest star. As long as we 
retain the notion that geometry somehow represents the real world, we are 
bound to accept Archimedes' principle as a truth. 

In abstract mathematics, on the other hand, a geometry is a theory that sat­
isfies a certain set of axioms. In this chapter we have seen how to construct a 
geometry over an abstract ordered field. The elements of the field need not be 
numbers or distances. Any abstract field will do. 

We will take advantage of this abstraction to construct some non­
Archimedean geometries. These examples will serve two functions. One is to 
show the independence of Archimedes' axiom (A) and Playfair's axiom (P) from 
the axioms of a Hilbert plane. The other is to free our minds from the con­
straints of habit by studying the properties of a logically constructed geometry 
in which Archimedes' axiom (A) does not hold. Such geometries are called non­
Archimedean geometries. 

Proposition 1B.1 
Let lR. be the field of real numbers, let t be an indeterminate, and let lR.(t) be the field 
of all rational functions oft, that is, all quotients f(t)/g(t) where f and g are polyno­
mial functions of t with real coefficients and g( t) is not identically zero. Then the field 
F = lR.(t) has a natural ordering that makes it into a non-Archimedean ordered field. 

Proof If rp E F, we think of rp as a function rp(t) = f(t)/g(t) from lR. to lR., defined 
everywhere except at the finite number of points where g(t) = o. We define the 
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set P of "positive" elements of F to be the set of those functions rp that are posi­
tive for all large enough values: 

P = {rp E F\3ao E 1R such that rp(b) > 0 for all b > ao}. 

Note that rp > 0 if and only if the quotient of the leading coefficients of f and g is 
positive in 1R. Now, F is a field, because any sum, difference, product, or quo­
tient of rational functions is again a rational function. The set P is closed under 
sums and products, because the sum and product of two eventually positive 
functions is again eventually positive. To show that (F, P) is an ordered field, it 
remains to show that if rp E F, rp -:f. 0, then either rp E P or -rp E P, but not both. 
Indeed, if rp -:f. 0, then it is the quotient of two nonzero polynomials rp = f(t)/g(t). 
Each of these has a finite number of zeros. If we take ao E 1R larger than all the 
zeros of f(t) and g(t), then rp is continuous and never 0 for all b > ao. Thus by 
the intermediate value theorem, rp is either always positive for b > an, or always 
negative for b > an. In the first case rp E P; in the second case -rp E P. 

Now consider the element t E F. For any integer n > 0, we have t> n as ele­
ments of F. Indeed, for b > n, the function rp(t) = t - n is positive. Thus the field 
F is non-Archimedean. Note that in this field we have 

o < I < 2 < ... < t < t + I < t + 2 < ... < t2 < t3 < .... 

Definition 
Let F be a non-Archimedean ordered field. We will say that an element a E F is 
finitely bounded if there exists a positive integer n for which -n < a < n. Other­
wise, we say that a is infinite. We say that an element a E F is infinitesimal if for 
every positive integer n, we have -lin < a < lin. An element of F is finite if it 
is finitely bounded but not infinitesimal. 

Next we will construct non-Archimedean fields satisfying the Pythagorean 
property ( *) of (16.1) and the Euclidean property ( * *) of ( 16.2) . 

Proposition 18.2 
There is a (non-Archimedean) Pythagorean ordered field 0' containing the field 1R(t). 

Proof We start with the field 1R(t) of rational functions in an indeterminate t, 
described above, and we consider 1R(t) as a subset of the set C(j of all continuous 
real-valued functions from 1R to 1R, defined at all except a finite number of 
points, and having only a finite number of zeros (except for the identically 0 
function). Beware that C(j is not a field(!) because, for example, the functions 2 
and 2 + sin t are in C(j, but their difference sin t is not in C(j, because it has infi­
nitely many zeros. Nevertheless, C(j has a nice order, because we can define the 
subset P~ of positive functions as before: rp(t) E C(j is positive if 3ao E 1R for which 
rp(b) > 0 for all b > ao. Then P~ satisfies properties (i) and (ii) of the definition of 
an ordered field, even though C(j is not a field. We use the fact that a continuous 
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function on an interval (ao, 00) that has no zeros is either always positive or 
always negative. 

Now let n' be the set of all elements of~ that can be obtained from lR(t) by a 
finite number of operations +, -, " -:-, and c t---> ,/1 + cZ• The hard part is to show 
that n' is a field. Once we know that n' is a field, the Pythagorean property is 
easy, because for any c E~, 1 + CZ is a function that is strictly positive whenever 
it is defined (at all except the finite number of points where c is not defined), so 
v'f+C2 is another such function, hence also in ~. Thus if c En', VI + c2 En' 
also. We make n' into an ordered field by taking as the positive elements 
p' = P'(j n n', and p' satisfies (i) and (ii) because Pre does. 

Lemma 18.3 
Let F be a subset of n' that is a field, and let W E F, VI + W Z r/= F. Then 

F' = {a + PVI + w 2 la,p E F} 

is also a subset of n' that is a field. 

Proof First we show that every element of F' is in n'. Since a,p,w are obtained 
from lR(t) by a finite number of operations +, -,', -:-, c t---> VI + cZ, so are the 
elements of F'. The elements of F' are defined except at the finite number of 
points where a,p,w may fail to be defined. They are continuous because a,p,w 
are. The only problem is to show that a + PVI + w 2 has only finitely many 
zeros. Any zero to of this function satisfies 

a(to) + P(toh/I + w(to)2 = O. 

Separating the two pieces, squaring, and combining again we obtain 

a(to)2 - p(to)2(1 + W(tO)2) = O. 

In other words, to is a zero of the function 

aZ - p2(1 + w2 ) E F. 

Hence there are only finitely many such zeros, since F £; n'. Note that 
a + PVI + w2 is not identically zero because then VI + WZ E F. Thus 
a + PVI + w 2 has only finitely many zeros, and so F' £; n'. 

To show that F' is a field is standard. It is clearly closed under +, -,'. And to 
show closure under -:- one rationalizes the denominator by multiplying by its 
conjugate: 

a+b/! c-d/! 
c + d/!' c - d/! 

(a + b/!)(c - d/!) 
c2 - d2 f 

Proof of 18.2 (continued) To show that n' is a field, suppose a, pEn'. We must 
show that a ± p, a· p, alP En' (provided that p"# 0). Since a is obtained from 
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lR(t) by a finite number of operations +, -,., -:-, w t----> VI + w 2, by applying the 
lemma each time we take a square root, we obtain a subfield F <;; Q' that con­
tains rx. Now, starting from F, and applying the lemma again each time we use a 
square root in the description of {J, we obtain a field F <;; G <;; Q', with rx, {J E G. 
Then clearly, rx ± {J, rx . {J, rxl {J E G <;; Q'. 

Proposition 18.4 
There is a (non-Archimedean) Euclidean field K' containing lR(t). 

Proof We follow the same plan of proof as for (18.2), except that now we con­
sider the space ee' as follows: ee' consists of continuous real-valued functions de­
fined on some interval (ao, 00) of lR that are never O. Two functions f on (ao, 00) 
and g on (aI, 00) are equivalent if 3a2 > ao, al such that f = g on (a2' 00). We say 
that f is positive if for some ao, feb) > 0 for all b > ao. The set Pcc' of positive 
functions clearly satisfies (i) and (ii) of the definition of ordered field. Note again 
that ee' is not a field. But if rp E ee', rp> 0, then -..ftP E ee' also. 

Now we take K to be the set of all elements of ee' that can be obtained from 
lR(t) by a finite number of operations +, -, ., -:-, and rp > 0 t----> -..ftP. 

The proof that K' is a field can be carried out exactly as in the proof of (18.2). 
Clearly, K' is Euclidean, and taking p' = K' n Pcc' makes K' into an ordered field. 

Example 18.4.1 
Let IT be the Cartesian plane over the field Q' of (18.2). Then IT is a Hilbert 
plane satisfying (P) but not (A). In particular, this shows that (A) is independent 
of the axioms of a Hilbert plane. 

Example 18.4.2 
Let IT be the Cartesian plane over the field K' of (18.4). Then IT is a Euclidean 
plane that does not satisfy (A). 

Example 18.4.3 
Let IT be the non-Archimedean geometry described in (18.4.2). Let ITo be the 
subset consisting of all points of IT whose distance from the origin is finitely 
bounded. A line of ITo will be the intersection of a line of IT with ITo, whenever 
that intersection is nonempty. Take betweenness and congruence to have the 
same meaning as in IT. Then ITo is a Hilbert plane satisfying neither (A) nor (P) 
(Exercise 18.3). In particular, this shows that (P) is independent of the axioms of 
a Hilbert plane. 

To help visualize a non-Archimedean geometry, let us imagine for a moment 
that we live in a non-Archimedean universe. What we perceive with our tele­
scopes are very large, but still finite, distances; what we observe with our cyclo­
trons and particle accelerators are very small, but still finite, quantities. And yet 
out beyond the farthest stars are other parallel universes, and inside each ele­
mentary particle are infinitesimal worlds unknown to us. Perhaps they exert 
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some subliminal influence on our lives? How could we determine whether our 
universe is indeed non-Archimedean when we see only the finite part of it? 

Exercises 

IB.l In the ordered field lR.(t) , arrange the following elements in increasing order: 
0,1,5, t, 1ft, t + 1, If(t + 1), t - 1, !t, t2 - t, t2 - 1, t + t, (t - 1 )f(t + 1). 

1B.2 Show that the field Q' of Proposition 1B.2 is not Euclidean, by showing that ..fi ¢: QI. 

1B.3 Show that the plane IIo of Example 1B.4.3 satisfies the axioms for a Hilbert plane. 
Pay special attention to (12), (B2), and (C1). 

1B.4 Again let IIo be the plane of Example 1B.4.3. 

(a) Show that IIo does not satisfY (P). 

(b) Show that IIo does satisfY (1.32): The angle sum of every triangle is two right 
angles. 

(c) Show that IIo does not satisfY (IV.5), by giving an example of a triangle that has 
no circumscribed circle. 

1B.5 Let II be the non-Archimedean plane of Example 1B.4.2. Define a subset III of II to 
be all the points of II whose distance from the origin is infinitesimal. 

(a) Show that III is a Hilbert plane. 

(b) Show that III does not satisfY (P). Thus III gives another example of the inde­
pendence of(P) from the axioms of a Hilbert plane. 

1B.6 We say that a Hilbert plane is finitely bounded if there exists a segment AB such that 
for every other segment CD, there exists an integer n, depending on CD, for which 
CD < n·AB. 

( a) Any Archimedean Hilbert plane is finitely bounded. 

(b) The plane IIo of Example 1B.4.3 is finitely bounded but not Archimedean. 

(c) The plane III of Exercise 1B.5 is not finitely bounded. In particular, the planes 
no and III are not isomorphic Hilbert planes. 

1B.7 We say that the rectangle axiom holds in a Hilbert plane if whenever a quadrilateral 
has three right angles, then the fourth angle is also a right angle. 

(a) The rectangle axiom holds in any Hilbert plane with (P). 

(b) The rectangle axiom holds in the examples IIo and III above. Thus the rectangle 
axiom does not imply (P). 

1B.B Let Fbe any ordered field. Generalize the proof of Proposition 1B.1 to show that the 
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field F(t) of rational functions in an indeterminate t is a non-Archimedean ordered 
field. (Be careful not to use continuity.) 

18.9 Let Fbe any ordered field. Let F((t)) be the set of Laurent series 

00 

rp = L a;ti , an =I 0, 
i~n 

where the ai E F and n E 7l can be positive, zero, or negative. Define rp > 0 if its 
leading coefficient an > 0 in F. 

(a) show that F((t)) is a field. 

(b) Show that F((t)) is a non-Archimedean ordered field. 

(c) An element rp E F( (t)) is a square if and only if its order n is even and its leading 
coefficient an is a square in F. 

(d) If F is Pythagorean, show that F((t)) is also Pythagorean. This gives another 
method of constructing Pythagorean non-Archimedean ordered fields. 

Let man and woman form a circle 
From which grows a square; 
Around these put a triangle, 
Embed them all in a sphere: 
Then you will have the philosopher's stone. 
If in your mind this does not soon appear, 
Geometry, well learned, will make it clear. 

- from Atalanta Fugiens 
by Michael Maier (1618), 

Epigramma XXI. 



CHAPTER 

Segment 
Arithmetic 

egment arithmetic allows us to complete the chain of 
logical connections between an abstract geometry sat­
isfying axioms studied in Chapter 2 with the geo­
metries over fields studied in Chapter 3. We will show 
how to define addition and multiplication of line seg­
ments in a Hilbert plane satisfying the parallel axiom 
(P) . In this way, the congruence equivalence classes 
of line segments become the positive elements of an 
ordered field F (Section 19). Using this field F we can 

recover the usual theory of similar triangles (Section 20). 
To complete the circle, we show that if you start with a Hilbert plane n sat­

isfying (P)' and if F is the associated field of segment arithmetic, then n is iso­
morphic to the Cartesian plane over the field F (Section 21) . 

19 Addition and Multiplication of Line 
Segments 

In studying Euclid's Elements, we have noted the absence of numbers in his de­
velopment. There is no notion of the length of a line segment, for example. 
There is an undefined notion of congruence of segments, which we can think of 
as the segments being the same size. This is in contrast to ordinary high-school 
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geometry, where each segment has a length, based on some chosen "unit" seg­
ment, which is thought of as a real number, and two segments are congruent if 
they have the same length. 

Similarly, in the case of angles, there is no degree measure attached to an 
angle, although there is a notion of congruence of angles. 

In the study of area, Euclid does not assign a number to a plane figure, in 
contrast, for example, to high-school geometry, where one takes a triangle and 
assigns to it the number ~ bh as its area, where b is the length of the base and h is 
the length of the altitude. Instead, Euclid treats area by adding and subtracting 
congruent figures. 

For the material of Books I - IV of the Elements, we have also seen that Euclid 
succeeds remarkably well in developing a beautiful theory of "pure" geometry 
without numbers. Hilbert has reinforced this by providing a set of purely geo­
metric axioms on which to base Euclid's geometry in a way that will satisfy 
modern criteria of rigor. 

Just for contrast, you might look at some other twentieth-century proposals 
for a set of axioms on which to base the study of geometry, where the real 
numbers are presupposed from the beginning in the axioms. (See, for example, 
Birkhoff (1932), or the School Mathematics Study Group postulates. Both can be 
found as appendices to Cederberg (1989).) 

For me this is unsatisfactory because it is not purely geometric, and the con­
cept of a real number is a rather sophisticated modern notion, dating from the 
nineteenth-century, and is not in the elementary spirit of Euclid's geometry. 
While Euclid was clearly aware of irrational numbers, and studies them ex­
tensively in Book X of the Elements, I find it difficult to support any argument 
that Euclid had a concept of the totality of real numbers. 

While Euclid was able to develop the material of Books I - IV without any no­
tion of number, it is a different matter when we come to the concept of similar 
triangles as taught in high school. These are triangles whose sides are not equal, 
but have some common ratio to each other. If that ratio is 2, it is not difficult to 
develop a theory of triangles that are doubles of each other, as we did in Section 
5. With a little more effort, one could extend this theory to triangles whose sides 
are integer multiples of each other, or (with even a little more effort), rational 
number multiples of each other. But if the ratio is not rational, as for example in 
comparing an isosceles right triangle to its half formed by drawing an altitude, 
how can one even express the notion of sides being proportional to each other 
without having numbers? One would like to say that the ratios of the lengths of 
the sides are equal, but this is difficult if one has no notion oflength as a number 
and does not have the ability to divide one such number by another. 

Euclid handles this difficulty with the theory of proportion developed in Book 
V ofthe Elements. The key concept is in Book V, Definition 5, where he says that 
magnitudes (which could be line segments, areas, or whatever) are in the same 
ratio (in symbols a : b = c : d) if whenever equal integer multiples (say n times) 



19. Addition and Multiplication of Line Segments 167 

be taken of a and c, and whenever equal integer multiples (say m times) be 
taken of band d, then na > mb or na = mb or na < mb if and only if nc > md, or 
nc = md, or nc < md, respectively. If a, b, c, d are numbers, this is equivalent to 
saying that a rational number min is less than, equal to, or greater than alb if 
and only if that same rational number is less than, equal to, or greater than cld. 
If furthermore a, b, c, d are real numbers, this is equivalent, as we know, to say­
ing that alb and cld are equal as real numbers, since the rational numbers are 
dense in the set of real numbers. In fact, this is word for word the same notion 
used by Dedekind in constructing the real numbers by his so-called Dedekind 
cuts (cf. Dedekind (1872)). 

Aha!, you may say, so Euclid did know about the real numbers, and wrote 
their definition 2000 years before Dedekind! But here is the difference. Euclid 
used this criterion only to distinguish between ratios that arose naturally in his 
geometry, such as the ratios of line segments that might be obtained by ruler 
and compass constructions, and that might be irrational. But I see no evidence 
that he conceived of the existence of any other real numbers (such as c, for 
example), whereas Dedekind could conceive of the totality of all Dedekind cuts 
of rational numbers, and take this set to be a new mathematical object called the 
set of real numbers. It is this process of creating a new mathematical object as a 
set of all subsets of another set with certain properties that seems very modern 
to me. 

Even in the classical problem of the trisection of the angle it seems that the 
emphasis was on finding a construction that would produce an angle equal to 
one-third of a given angle, and there is no evidence that the ancients believed in 
the existence of such an angle before it was constructed. 

Note also that for Euclid's theory of proportion to work, we implicitly need 
Archimedes' axiom. This is clear from Book V, Definition 4, which says that 
magnitudes have a ratio to each other if each, when multiplied, is capable of 
exceeding the other. Without Archimedes' axiom, some quantities would be in­
comparable. Also, one would fail to distinguish unequal quantities. For example, 
if F is a non-Archimedean ordered field with an infinite element t, then Euclid's 
test would fail to distinguish between v'2 and v'2 + 1 It. 

Having developed the theory of proportion abstractly in Book V, Euclid pro­
ceeds to apply his theory to geometry in Book VI, and develops what we recog­
nize as the familiar theory of similar triangles. The key result here, which forms 
the basis of the subsequent development, is (VI.2), which says that a line parallel 
to the base of a triangle, if it cuts the sides, cuts them proportionately, and con­
versely. Euclid's proof is a tour de force, using the theory of area previously 
developed in Book I to establish this result. 

There are two reasons for us to seek an alternative development of the 
theory of similar triangles: One is to free ourselves from dependence on Archi­
medes' axiom, and the other is to avoid Euclid's use of the theory of area, which 
we have not yet treated satisfactorily (cf. Chapter 5). 
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So now, after this rather lengthy introduction, we come to the main point of 
this section, which is to create an arithmetic of line segments. We will define 
notions of addition and multiplication for line segments up to congruence, that is, 
the sum or product of congruent segments will be congruent. Or if you prefer, 
the operations + and· will be defined on the set P of equivalence classes of line 
segments modulo congruence. We will show that these operations obey all the 
usual rules of arithmetic for positive numbers. And then, by a natural construc­
tion that introduces an element 0 and negatives of line segments, we will con­
struct an ordered field whose positive elements are the congruence classes of 
line segments. Here is where the concepts of modern abstract algebra play an 
essential role, because instead of using some preexisting notion of number, such 
as the rational numbers or the real numbers, we create a set that occurs natu­
rally in our geometry and give this set the structure of an abstract field. 

Using this field we will then in the next section be able to define the notion 
of length of a segment (as an element of this field) and to develop the theory of 
similar triangles, where ratios are quotients of lengths in the field. Thus we will 
replace Euclid's theory of proportion as developed in Book V by the use of alge­
braic relations in the field of segment arithmetic. 

We will now define the arithmetic operations on congruence equivalence 
classes of line segments, following the ideas of Hilbert (1971), with simplifica­
tions suggested by material in the supplements to that book, apparently due to 
Enriques. We will work in a Hilbert plane satisfYing the parallel axiom (P). 

Definition 
Given congruence equivalence classes 
of line segments a, b, we define their 
sum as follows. Choose points A, B such 
that the segment AB represents the 
class a. 

A 

Then on the line AB choose a point C with A * B * C, such that the segment 
BC represents the class b. Then we define a + b to be represented by the seg­
mentAC. 

Proposition 19.1 
In any Hilbert plane, addition of line segment classes has the following properties: 

(1) a + b is well-defined, i.e., different choices of A, B, C in the definition will give rise 
to congruent segments. 

(2) a + b = b + a, i.e., the corresponding line segments are congruent. 
(3) (a+b)+c=a+(b+c). 
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(4) Given any two classes a, b, one and only one of the following holds: 
(i) a=b. 

(ii) There is a class c such that a + c = b. 
(iii) There is a class d such that a = b + d. 

Proof (1) If we choose a different rep­
resentative A' B' of the class a, and lay 
off C' on the line A' B' such that B' C' 
represents b, then AC ~ A'C' by axiom 
(C3); cf. (8.2). 

(2) Let AB represent a, and choose C 
such that A * B * C and BC represents b, 
as in the definition. Then AC represents 
a + b. Now take DE to represent b, and 
layoff F such that D * E * F and EF rep­
resents a. Then DF represents b + a. 
But AB ~ FE and BC ~ ED, so AC ~ FD 
by (C3). This shows that a + b = b + a. 

(3) To get (a + b) + c we first choose 
AB E a, then find C such that A * B * C 
and BC E b, then find D such that 
A * C * D and CD E c. Then AD repre­
sents (a + b) + c. 

On the other hand, let EF E band 
choose G such that FG E c. Then EG 
represents b + c. To get a + (b + c) we 
need to find a point H with A * B * H 
and BH ~ EG. But BD ~ EG by (C3), so 
H = D by the uniqueness part of (C1). 
Therefore, (a + b) + c = a + (b + c). 

(4) Given two classes a, b on a ray 
from a point A, layoff points B, C such 
that AB E a and AC E b. If B = C, then 
a = b. If A * B * C, then a + [Be] = b. 
If A * C * B, then a = b + [CB]. By (B3) 
these are the only possibilities, and this 
proves (4). 

S 
b c 

E F' 

A 

• 
C' 

c. 

F 

( 

Before we define multiplication, we need a standard unit segment. So choose 
arbitrarily, and then fix once and for all, a segment class we call the unit seg­
ment, and denote it by l. We also need the parallel axiom (P), even for the defi­
nition of the product (Exercise 19.1). 
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Definition 
Given two segment classes a, b, we 
define their product ab as follows. First 
make a right triangle ABC with AB E 1 
and BC E a, where the right angle is at 
B. Let ff. be the angle LBAC. Now make 
a new right triangle DEF with DE E b 
and having the same angle ff. at D. Then 
we define ab to be the class of side EF of 
this new triangle. 

Proposition 19.2 

D 

In any Hilbert plane with (P), multiplication of segment classes has the following 
properties: 

(1) ab is well-defined. 
(2) a· 1 = a for all a. 
(3) ab = ba for all a, b. 
(4) a(bc) = (ab)cfor all a,b,c. 
(5) For any a, there is a unique b such that ab = 1. 
(6) a(b + c) = ab + ac for all a, b, c. 

Proof (1) The product is well-defined. If A' B' C' is another right triangle with 
sides 1, a, then it is congruent to ABC by (SAS). Hence we get a congruent angle 
ff.. If D'E'F' is another right triangle with angle ff. and side b, then it is congruent 
to DEFby (ASA). So we get a congruent segment E'F'. 

(2) To compute a ·1, we take the triangle DEFto have side b = 1 and angle ff.. 

Then DEF ~ ABC by (ASA), so a· 1 = a. 
(3) Given a, b, first make a right tri- C, 

angle ABC with sides 1, a. This deter­
mines the angle ff. = LBAC. Now extend 
CB on the other side of AB to D, so that 
BD E b, and draw a line through D mak­
ing an angle ff. with BD, on the far side 
of BD from A. Let this line meet AB ex­
tended to E. Then DBE is a right tri­
angle with side b and angle ff., so the 
segment BE represents ab by definition. 

Now consider the four points ACDE. 
We will use the method of cyclic quad­
rilaterals developed in Section 5. Be-
cause the angles LCAE and LCDE are 
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Plate VII. A page from La Geometrie of Descartes (1664), showing how he mUltiplies two 
line segments to get another, and how he finds the square root of a line segment. 
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both equal to rx, they satisfy the hypotheses of (5.8), so the points ACDE form 
a cyclic quadrilateral. Applying (5.8) to the same points in a different order, it 
follows that the angles LDAE and LDCE are equal; call this class /3. To compute 
the product ba we first use the triangle ABD, obtaining the angle /3, and then use 
the triangle CBE, which has angle /3 and side a. This shows that BE represents 
the product ba. Thus ab = ba. 

(4) For the associative law, we pro­
ceed as follows. Make right triangles 
with 1, a to define the angle rx, and with 
1, c to define the angle y. Make a right 
triangle ABC with angle rx and side b to 
determine ab. 

Extend CB on the other side of AB to 
meet a line from A making an angle y 
with AB. Then BD represents cb. Now 
make a line at D with angle rx to meet 
AB extended at E. Then BE will repre­
sent a(cb). 

As in the previous proof, the angles 
rx at A and D show that ACDE is a cyclic 
quadrilateral. Then by (5.8) again we 
conclude that LBCE = y. It follows that 
BE also represents the segment c(ab). 
Thus a(cb) = c(ab). Then using the com­
mutative law already proved, we get 
a(bc) = (ab)c. 

(5) Given a, make a right triangle 
with sides 1, a to define rx, and let /3 be 
the other acute angle in that triangle. 
Then make a right triangle with angle /3 
and side 1 to determine a new segment 
b. Since the other angle in this triangle 
is rx (1.32), this second triangle shows 
that ab = l. 

(6) Given a, b, c, let rx be determined 
by the right triangle with sides 1, a. 
Make a right triangle ABC with side 
b and angle rx to determine BC E ab. 
Choose D on the line AB such that 
A * B * D and BD E c. Draw CE parallel 
to AB, and DEF perpendicular to AB. 
Then LECF = rx, and CE E c, so EF rep-
resents ac. 

y 

D 

C 

(;.10 

A 13 

b 

f 

u<-
".I. E" 

c. 

a.b 

c.. 1) 



19. Addition and Multiplication of Line Segments 173 

Because BCDE is a rectangle, DE E abo Now by definition of sum, AD repre­
sents b + c and DF represents ab + ac. On the other hand, the triangle ADF has 
side b + c and angle rx, so DF also represents a(b + c). Hence a(b + c) = ab + ac. 

Remark 19.2.1 
Let us examine carefully the hypotheses needed for the validity of these two 
results, (19.1) and (19.2). The first, concerning addition oEline segments, is valid 
in any Hilbert plane (Exercise 8.1). On the other hand, even for the definition of 
the product, we need (P), or its equivalent, Euclid's fifth postulate, to guarantee 
that the point F exists. For the proof of (19.2) you might feel more comfortable 
assuming the hypotheses of a Euclidean plane, in which case we have justified 
the needed results from Book III (12.4). But if you look closely, we do not need 
the Euclidean axiom (E) on intersection of circles for (5.8): See Exercise 19.2. We 
also need (I.32), which uses (P) but not (E). Thus these two results hold in a 
Hilbert plane with (P). We do not need (E), nor did we ever use Archimedes' 
axiom (A). 

Proposition 19.3 
Given a Hilbert plane satisfYing (P), and a unit segment 1 having been chosen, there 
is a unique (up to isomorphism) ordered field F whose set of positive elements P is the 
set of congruence equivalence classes of line segments with operations +,. defined 
above. 

Proof This is a consequence of the purely algebraic lemma that follows. 

Lemma 19.4 
Let P be a set, with two operations +, . defined on it that satisfY the properties listed in 
(19.1) and (19.2). Then there is a unique ordered field F whose positive elements form 
the set P. 

Proof One is tempted to define F to be the set P U {o} U - P, for intuitively, this 
is what is happening. F will consist of the original set P, plus a 0 element, plus 
another set of "negative" elements that is in 1-to-1 correspondence with the set 
of positive elements. However, I believe that we can obtain a cleaner proof by 
imitating the definition of the quotient field of an integral domain using ordered 
pairs, except that this time our ordered pairs will represent differences of ele­
ments of P. 

So here is the formal construction. Let F be the set of equivalence classes 
(a, b) of ordered pairs (think of (a, b) as being a - b) of elements of P, where 

(a, b) '" (a', b' ) if a + b' = a' + b. 
Define addition by 

(a,b) + (c,d) = (a+c,b+d) 
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and multiplication by 

(a, b)(e, tI) = (ac + bd, ad + be). 

We must verifY that these operations are well-defined, i.e., if we replace an 
ordered pair by an equivalent ordered pair, the result is equivalent (!). (The 
symbol (!) means a trivial verification left to the reader. There will be lots of 
these, and all will result by using properties of + and· in the set P.) 

Then we let 0 denote the equivalence class of (a, a) for any a E P, and note 
that 0 acts as an additive identity (!). Also note that addition is commutative (!) 
and associative (!). For any pair (a, b) note that (b,a) acts as an additive inverse 
(!). Thus the set F together with the operation + is an abelian group. 

Next verifY that multiplication is associative (!), commutative (!), and dis­
tnbutive over addition (!). Let 1 be the class of (1 + a, a) for any a E P. Thus 1 
acts as a multiplicative identity (!), and there exist multiplicative inverses (!). 
Hence F together with +,. is a field. 

We define a mapping rp : P --+ F by a E P goes to (a + b, b) for any bE P. This 
mapping is 1-to-1 onto its image (!), which we therefore identifY with P. Also, rp 
preserves +,. (!), so that Phas already two of the three properties required for P 
to be the set of positive elements of an ordered field. It remains to verifY the tri­
chotomy, namely, for any -x = (a, b) in F, either -x E P or -x = 0 or --x E P. If a = b, 
then -x = o. We will use property (4) of (19.1). If there exists a e such that 
a + e = b, then -x = (a, b) = (a, a + c), and the negative of this element satisfies 
--x = (a + e, a) E P. If on the other hand there is a d such that a = b + d, then 
-X= (a,b) = (b+d,b) EP. 

This concludes the proof modulo a million tedious verifications (!) left to the 
reader! 

Remark 19.4.1 
We will see in the next section (20.7) that F is necessarily Pythagorean. 

Exercises 
19.1 Explain where and how (P) is needed in the definition of the product. 

19.2 Show that the result (Proposition 5.8) about cyclic quadrilaterals holds in any Hilbert 
plane with (p). 

19.3 Supply the missing verifications in the proof of (Lemma 19.4). 

19.4 If we start with the Cartesian plane over a Pythagorean ordered field Fo, show that 
the field F of segment arithmetic constructed in Proposition 19.3 is naturally iso­
morphic to the original field Fo. 
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19.5 Is Lemma 19.4 still true if we omit property (4) of Proposition 19.1, but keep all 
the other properties of Proposition 19.1 and Proposition 19.2? Give a proof or 
counterexample. 

19.6 In Proposition 19.3, show that if we choose a different unit segment I', the resulting 
field F' is isomorphic to F. 

20 Similar Triangles 

We continue to work in a Hilbert plane satisfying (p). 
Now that we have defined the arithmetic of line segments and have con­

structed a field F whose positive elements correspond to congruence classes of 
line segments, we can establish a theory of proportion and similar triangles. The 
results are the same as Euclid's in Book VI, but our methods are different. 

For any line segment AB, its congruence equivalence class a is an element of 
the field F. We will call a the length of AB, to conform with the usual terminol­
ogy. If AB and CD are two segments with lengths a, b, we can speak of their ratio 
as the quotient alb E F. We say that four segments with lengths a, b, c, d are pro­
portional if alb = cld as elements ofthe field F. 

Definition (VI, Definition 1) 
Two triangles ABC and A' B' C' are simi­
lar if the three angles of one are respec­
tively equal to the three angles of the 
other, and the corresponding sides are 
proportional, i.e., 

ala' = bib' = clc'. 

Proposition 20.1 (Sim AAA) (VI.4) 

a... c 
AI 

~fG'Cf C. 

If two triangles ABC and DEF have their three angles respectively equal, then the two 
triangles are similar. 

Proof Our definition of multiplication in the field of segment arithmetic was 
based on a special case of the notion of similar triangles, namely, comparing 
the legs of equal-angled right triangles. So we will prove this result, following 
Hilbert, by reducing to this case. 

In the first triangle, draw the angle bisectors of the three angles, and let 
them meet at the point I (cf. Exercise 1.8 or (IV.4)) . Recall from the proof of 
(IV.4) that I is equidistant from the three sides of the triangle: If we drop per­
pendiculars from I to the three sides, we obtain three congruent segments h. 
Also, in the course of the proof we obtained congruent triangles about each ver-
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tex: AFI ~ AEI, etc, Thus we get congruent segments AE ~ AF, which we call x, 
BD ~ BF = y, and CD ~ DE = z, 

Make a similar construction in the second triangle A'B'C', obtaining points 
D',E',F',I' and segments x', y',z', h', 

Let iX be one-half of the angle at A, 
draw a right triangle with one leg equal 
to 1, and let r be the other leg, Then by 
the definition of segment multiplica-
tion, h = rx, In the second triangle, the r 
angle at A' is equal to the angle at A by 
hypothesis, so one-half of it is also iX, so 
we find similarly that h' = rx', Dividing 
one equation by the other, we find that 
x/x' = h/h', 

In the same way, working from the other two vertices of the triangle, we 
obtain y/y' = h/h' and z/z' = h/h', If we let h/h' = k, then we can write these 
results as 

x = kx', 

y= ky', 

z= kz', 

The sides of the original triangle are formed of sums of these, Thus a = y + z 
and a' = y' + z', It follows from the distributive law that 

and by the same reasoning also 

a= ka', 

b= kb', 

e = ke', 

Then a/a' = bib' = e/e', so the two triangles are similar. 
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While this proof has an entirely different basis from Euclid's, the other 
results on similar triangles in Book VI will now follow easily, but in a different 
order. 

Proposition 20.2 (V1.2) 
In any triangle ABC, let B'C' be drawn 
parallel to Be. Then the sides AB and AC 
are proportional to AB' and AC'. Con-
versely, if the sides are divided by points 
B', D such that AB, AC are proportional to 
AB', AD, then B'D is parallel to BC. 

Proof Since B' C' is parallel to BC, the 
angles at B', C' are equal to the angles at 
B, C, respectively (1.29). Since the angle 
at A is common, the triangles ABC and 
AB' C' have their three angles equal, 
and so they are similar (20.1). It follows 
that the sides are proportional. 

g' 

B c 
~--------------------~~ 

Conversely, suppose we are given B', D such that AB, AC are proportional to 
AB',AD. Draw B'C' parallel to BC. Then also AB,AC are proportional to 
AB', AC'. Since we are working in a field F, the fourth proportional to three 
given quantities is uniquely determined. Hence AD ~ AC'. Since the points 
D, C' lie on the same ray from A, the points D, C' are equal (axiom (C1)). Hence 
B'D is parallel to BC. 

Proposition 20.3 (Sim SSS) (V1.5) 
Suppose two triangles ABC and A'B'C' have their three sides respectively propor­
tional to each other. Then the two triangles are similar. 

Proof Supposing the sides of the second 
triangle to be larger, find a point D on 
the segment B'A' such that B'D ~ BA. 
Then draw a line through D parallel to 
A'C'. It follows (20.2) that the triangles 
A'B'C' and DB'E are similar, and in 
particular, their sides are proportional. 
But the sides of ABC are also propor­
tional to the sides of A'B'C', so it follows 
(from field arithmetic) that the sides of 
ABC are proportional to the sides of 
DB'E. 
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On the other hand, B'D was chosen congruent to BA. So the proportionality 
factor is 1, and it follows that all three sides of ABC are congruent to all three 
sides of DB'E. Then by the congruence criterion (SSS) = (1.8), the triangle ABC 
is congruent to DB'E. In particular, the three angles of ABC are equal to the 
three angles of DB'E, which in turn are equal to the three angles of A'B'C', since 
the latter two are similar. Thus we have proved that the angles of ABC are equal 
to the angles of A'B'C', and so the two triangles are similar. 

Proposition 20.4 (Sim SAS) (V1.6) 
Suppose that two triangles ABC and A'B'C' have the angles at A and A' equal, and 
the two sides AB,AC are proportional to the two sides A'B',A'C'. Then the two tri­
angles are similar. 

Proof (Exercise 20.1). 

Theorem 20.5 
In a Hilbert plane with (p), the results of Euclid's theory of similar triangles (V1.2)­
(VI.l3) all hold. 

Proof The propositions (VI.2)-(V1.6) appear as results in this section, or Exer­
cises 20.1, 20.2. Also, (V1.8) is covered in the proof of (20.6) below. The remain­
ing results follow easily, replacing Euclid's references to Book V by algebraic 
reasoning in the field of segment arithmetic. 

Remark 20.5.1 
Proposition (VI.l) and most of the latter part of Book VI, namely Propositions 
(VI.l4)-(V1.31), deal with the connection between proportionality of figures 
and their area, so we postpone discussion of these until Chapter 5 (Exercise 
23.7). 

Next, using our segment arithmetic and the theory of similar triangles, we 
can prove some analogues of theorems that Euclid stated in terms of area, but 
that we will state as equations in the field F. 

Proposition 20.6 
If ABC is a right triangle with legs a, b and hypotenuse c, then 

a2 + b2 = c2 

in the field F of segment arithmetic. 

Proof This, of course, is another version of the Pythagorean theorem (1.47), 
which Euclid proved in terms of the areas of the squares built on the sides of the 
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triangle. The present statement in terms of segment arithmetic is of a totally 
different nature, and neither implies, nor is implied by, the previous statement, 
until we have made some connection between area and segment arithmetic (cf. 
Chapter 5). 

To prove the current statement, drop 
a perpendicular CD from the vertex with 
the right angle to the hypotenuse. Then 
we find that the original triangle ABC 
has the same angles as the two new tri­
angles ACD and CBD. Hence all three 
triangles are similar, by (20.1). (This 
statement is (VI.8) in Euclid.) Then cor­
responding sides are proportional, and 
we obtain 

x a 
a c 

using CBD similar to ABC, and we obtain 

c -x b 
b c 

using ACD similar to ABC. Cross multiplying, we obtain 

cx = a2 , 

c2 - cx = b2 , 

from which by substituting we obtain 

Corollary 20.7 

c.. 

In a Hilbert plane satisfying (P), the field of segment arithmetic (19.3) is Pythagorean. 

Proof We must show for any a E F that 
VI + a 2 E F. If a = 0, this is trivial; if a 
is negative, we can replace a by -a, so 
we may assume that a is positive. Then 
a is the length of a certain segment. If 
we construct a right triangle with legs 1 
and a, then by (20.6) the hypotenuse 
will be a segment whose class in F is 
VI + a2 . Thus F is Pythragorean. 
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Proposition 20.8 (cf. (III.3S)) 
If two chords of a circle meet, cutting each 
other in segments of lengths a, b, c, d, then 

ab= cd 

in the field F of segment arithmetic. 

Proof Draw the lines AB and CD. Then 
by (III.21) the angles at Band Dare 
equal, and the angles at A and Care 
equal. Hence the triangles ABE and 
CDE have the same angles, so are simi-
lar (20.1). It follows that corresponding 
sides are proportional: a/c = d/b. Cross 
multiplying, we obtain ab = cd. 

Proposition 20.9 (cf. (III.36)) 
Let A be a point outside a circle, let the line 
AB be tangent to the circle at B, and let the 
line ACD cut the circle at C and D. Then, 
in the field of segment arithmetic, 

(AB)2 = (AC) . (AD). 

Proof Draw the lines BC and BD. Then LABC = LADB by (III.32). Since the 
angle at A is common, the triangles ABC and ADB have two (and hence three) 
angles equal, so they are similar (20.1). It follows that corresponding sides are 
proportional, namely, 

Cross multiplying gives 

AB AD 
AC AB 

(AB)2 = (AC) . (AD). 

As applications of similar triangles, we give some other well-known theo­
rems here and in the exercises. 

Proposition 20.10 (Menelaus's theorem) 
Let ABC be any triangle, and let a line I cut the sides of the mangle (extended if nec­
essary) in points D, E, F. Then 

AD BF CE 
-.-._=l. 
BD CF AE 



Proof Draw a line through A parallel to 
BC, and let it meet 1 at G. Then the tri­
angle ADG is similar to BDF, and the 
triangle AEG is similar to CEF. From 
this we obtain 

AD 

AG 

BD 

BF 
and 

AE 

AG 

CE 

CF 

Eliminating AG from these equations 
and rearranging gives the result. 

Exercises 
These exercises take place in a Hilbert plane with (P). 

20.1 Prove (Sim SAS) (Proposition 20.4). 

20.2 (VI.3) Let ABC be any triangle, and let 
AD be the angle bisector at A. Prove 
that AB and AC are proportional to BD 
and DC. 

20.3 Let A be a point outside a circle, and 
draw any two lines through A cutting 
the circle at B, C and D, E. Then show 
that 

(A B) . (AC) = (AD) . (AE) . 

The product (AB)· (AC), which thus 
depends only on A, is called the power 
of the point A with respect to the cir­
cle. If A is inside the circle, we use 
signed lengths, so that the power of A 
will be positive if A is outside the 
circle, and negative if A is inside the 
circle. 
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20.4 If two circles intersect in two points, 
the line through those points is called 
the radical axis of the two circles. 
Show that the radical axis is equal to 
the set of those points A in the plane 
for which the power of A with respect 
to the first circle is equal to the power 
of A with respect to the second circle. 
(Even when the two circles do not 
intersect, this latter property defines a 
straight line that is taken to be the 
radical axis in that case.) 

20.5 If three circles each meet the other 
two in two points, and their centers 
are not collinear, show that the three 
radical axes of the circles, taken two 
at a time, meet in a single point. (We 
will see later (Exercise 39.20) that this 
result also holds in the Poincare model 
of non-Euclidean geometry. So we can 
ask, is it true in any Hilbert plane?) 

20.6 In a Hilbert plane with (P), given two 
circles by their centers and one point 
each, but without being given their 
intersection points, show that the fol­
lowing construction (which can be 
done with Hilbert's tools) gives the 
radical axis of the two circles. 

Let the two circles be defined by 
their centers OJ, O2 and their points 
A j ,A2 . Let B be the midpoint of A j A 2 . 

Drop a perpendicular from A j to OjB, 
and a perpendicular from A2 to 02B, 
and let these two lines meet at P. 
Then the perpendicular from P to 
OJ O2 is the required radical axis of the 
two circles. 

/ 

,/ 

20.7 (Ceva's theorem). Let ABC be any triangle, and let Pbe any point inside the trian­
gle. Draw lines from the vertices through P meeting the opposite sides at D, E, F. 
Then show that 

AD BF CE _._._=l. 
BD CF AE 

Hint: Imitate the proof of Proposition 20.10. 



20.8 (Desargues's theorem) . Let ABC and 
A'B'C' be two triangles. Assume that 
AA', BB', CC' all pass through a single 
point 0 (we can say that ABC and 
A'B'C' are perspective from 0). As­
sume further that AB is parallel to 
A'B', and BC is parallel to B'C'. Prove 
that AC is parallel to A'C'. (Compare 
Exercise 14.2, where the same result 
is proved in a different situation.) 

20.9 Prove the field analogue of (11.11) , as 
follows. Let AB be a given line seg­
ment. Construct AC ~ AB and per­
pendicular to it. Let D be the midpoint 
of AC. Then find E on AC such that 
DE ~ DB. Find F on AB such that 
AE ~ AF. Prove that 

(AF)2 = (AB)(BF) 

in the field of segment arithmetic. 
Hint: Use Proposition 20.6. We say 
that AB has been divided in extreme 
and mean ratio. 

20.10 Give a new proof of(lV.10) as follows. 
Let the segment AB be divided in ex­
treme and mean ratio as in Exercise 
20.9 above: (AF)2 = (AB) . (BF) . Con­
struct a triangle ABC such that AC ~ 
AB and BC ~ AF. Prove that the base 
angles ofthe isosceles triangle ABC are 
each equal to twice the vertex angle at 
A. Hint: Use (Sim SAS) (Proposition 
20.4) to obtain similar triangles. 
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20.11 Let OA and OB be two perpendicular 
radii of a circle. Let C be the midpoint 
of OB. Let CD be the angle bisector of 
LACO. Let DE be perpendicular to A 
~A. Then prove that AE is a side of to:::-------IIf---+'E..........-----~ 

the regular pentagon inscribed in the 
circle. Hint: Use Exercise 20.2. 

How many steps would it take to 
construct the pentagon by this method 
(given the circle and its center)? 

20.12 Prove that in a Hilbert plane with (P) (without assuming (E)), there exists an equi­
lateral triangle with given side AB. Hint: First show that the field F of segment 
arithmetic contains an element ~ J3. 

20.13 Given a triangle ABC with acute 
angles at Band C, make a ruler and 
compass construction for a square 
with one edge along the side BC, and 
the other two vertices on the sides 
AB,AC. We call this an inscribed 
square (par = 17). 

20.14 Match wits with the great nineteenth-century geometer Jakob Steiner: This is one 
of his many theorems published without any indication of proof (Werke (1881) 
vol. I, p. 128). Suppose you are given four lines in the plane, no two parallel, and 
no three concurrent. Taken three at a time, they make four triangles. Show that the 
orthocenters (intersection ofthe altitudes) of these four triangles are collinear. 

20.15 (Trigonometry). In a Hilbert plane 
with (P), suppose that you are given a 
right triangle ABC with sides a, b, c 
and angle (X at A. Define 

. a b a 
sln (X = -, cos (X = -, tan (X = -b 

c c 

as elements of the field of segment 
arithmetic F. 

A 
------~c 

k 
(a) Show that the functions sin (x, cos (x, tan (X depend only on the angle (x, and not 
on the particular triangle chosen. 

(b) Prove the identity 

sin2 (X + cos2 (X = 1. 

c 



20.16 (Law of cosines). Let ABC be any tri­
angle, with sides a, b, c, and angle C( at 
A. Using the cosine function defined 
in Exercise 20.15, prove the law of 
cosines 

Hint: Draw an altitude to make two 
right triangles, and use Proposition 

.-20.6. How does this result relate to 
Euclid (II.l3)? 
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20.17 (Law of sines). With the same notation as in Exercise 20.16, prove the law of 
sines: 

sin C( sin f3 sin y 

abc 

20.18 Let ABC be a triangle, and let D,E,F 
be points on the sides such that 
AF, BE, and CD are concurrent. Show 
that DE is parallel to BC if and only 
if F is the midpoint of BC. Hint: Use 
Ceva's theorem (Exercise 20.7). 

B c 
F 

20.19 (a) Given a line segment BC and its midpoint F, construct with ruler alone a line 
through a given point D parallel to the line BC (par = 6). 

(b) Given a segment BC and given a line m parallel to the line BC and distinct from 
it, construct with ruler alone the midpoint of BC (par = 5). 

20.20 Verify the following construction due 
to Hilbert. Given a line 1, to construct 
a line perpendicular to 1 (at an un­
specified point) using only ruler and 
dividers (cf. Section 10). Take any two 
points A, B on 1 and any two rays m, n 
emanating from A. Layoff segments 
AC, AD, AE equal to AB. Let BD meet 
CE at F; let CD meet BE at G. Then 
the line FG is perpendicular to 1 (10 
steps). 
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20.21 

21 
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In a Hilbert plane with (P), given an 
angle ex, given a ray r, and given a side 
of r, construct with ruler and dividers 
only an angle equal to ex on the given 
side of the ray r (par = 30). Hint: Em­
bed ex in a right triangle and transport 
its legs, using Exercises 20.19, 20.20. 

r 

It follows that any construction possible with Hilbert's tools (Section 10) is 
actually possible using only the ruler and the dividers: The present construction 
makes the transporter of angles superfluous. 

Introduction of Coordinates 

In this section we will complete a logical circle by showing that if II is an 
abstract geometry satisfying the axioms of a Hilbert plane plus (P) and if F is the 
field of segment arithmetic for II (19.3), then II is isomorphic to the Cartesian 
plane over the field F. 

Let me explain this in greater detail. We started our study of geometry from 
two different perspectives. On the one hand we considered a purely geometric 
development, where points, lines, congruence, etc., were undefined notions 
subject to certain axioms, from which we prove theorems. This is Euclid's 
approach, improved by Hilbert, who gave us a set of axioms including Euclid's 
unstated assumptions, so that we could develop his geometry on a rigorous basis. 

On the other hand, we constructed examples, or models, of this abstract ge­
ometry, based on the logical foundations of modern algebra, by starting with an 
ordered field F (for example the real numbers), and making a geometry whose 
points are ordered pairs of elements of the field F. This is the Cartesian 
approach (cf. Section 13). In this model we defined lines and congruence, using 
linear equations and a distance function, and then proved, by algebraic meth­
ods, that the axioms of abstract geometry are true. 

For any particular field F, it may happen that certain things are true that do 
not hold in every geometry: For the plane F2 is just one of many possible models 
of an abstract geometry. For example, if F = JR., then Dedekind's axiom (D) 
holds, but it does not hold in the field of constructible numbers (16.4). 

Perhaps more interesting is that we can prove certain results in the geome­
try over any field F, though we do not know how to prove the corresponding 
statement in abstract geometry. For example, over any field F, the line-circle 
intersection property (LCI) is equivalent to the circle-circle intersection prop­
erty (E), because we have shown that both of these are equivalent to the Eucli­
dean condition on the field F, (16.2). We do not know any purely geometric 
proof of this equivalence. 

Of course, it might be that the geometries constructed over fields were only 
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some possible geometries, and that there were other abstract geometries, not 
corresponding to any field, with properties different from the geometries over 
fields. If we drop the parallel axiom, this is indeed the case, as we will see with 
the non-Euclidean geometries (Chapter 7). However, we will show that any 
abstract geometry with (P) is isomorphic to a geometry over a field. 

To understand this, we need to be clear what we mean by an isomorphism of 
geometries. The Greek roots iso + morph mean "the same form." Intuitively, 
both geometries behave the same way. Their outer structures may be different, 
but there is no way that they can be distinguished internally. 

The formal definition of isomorphism of geometries is as follows. 

Definition 
Let IT and IT' be two Hilbert planes. An isomorphism between IT and IT' is a one­
to-one mapping qJ : IT -+ IT' of IT onto IT' that is compatible with the undefined 
notions. This means: 

(1) A subset L <;; IT is a line if and only if qJ(L) <;; II' is a line. 
(2) Three points A,B, C E IT satisfy the betweenness property A * B * C if and 

only if qJ(A) * qJ(B) * qJ( C) in IT '. 
(3) Given four points A, B, C, DE IT, the line segments AB and CD are congruent 

if and only if the line segments qJ(A)qJ(B) and qJ(C)qJ(D) are congruent in II'. 
( 4) If IX is an angle formed by the rays AB and A C in IT, we denote by qJ( IX) the 

angle formed by the rays qJ(A)qJ(B) and qJ(A)Ip(C) in IT'. If IX and fJ are two 
angles in IT, then IX and fJ are congruent if and only if 1p(1X) and qJ(fJ) are con­
gruent in IT'. 

Theorem 21.1 (Introduction of coordinates) 
Let IT be a Hilbert plane satisfying the parallel axiom (P). Let F be the ordered field of 
segment arithmetic in IT (19.3). Then Fis Pythagorean (20.7), and IT is isomorphic to 
the Cartesian plane F2 over the field F. 

Proof We start by fixing two perpen­
dicular lines in the plane IT, which we 
call the x-axis and the y-axis. We call 
their intersection point 0 the origin. On 
each axis choose a point Ix and ly such 
that the segments 01 x and 01y both 
represent 1 in the field F. These then 
define the positive rays on the x-axis and 
the y-axis. 

Now for any point P in the plane, we 
drop perpendicular P A to the x-axis and 
PB to the y-axis. Let the segment OA 
represent a E F and let OB represent 
bE F. 

o L~ A 'X 



. ' ..-
, 

" 

FlO. 14 . 

FIO.IS . 

.. ' 
.... / .. 

.4 FIC- qo 
~ ... ..... -.. . . -- .. --- .-. . . . . . . -- -
A. · .. · . 

&: .... ....... ..... ..... . 
c Tl 

.A 

.F I . U. Pa;;. 30 

FIG. IJ. 

.' . ,- , , -

:D"" ""'c"" "'''' "-'''' 
lI.t!-;' . \ 

. . . . 
;' 6::::. 0 .. .... -·························· (-

A 

FW.21. 

. , - ••• /' , I' 

A>c/~;::~~",?::r 
Plate VIII. Figures from Gregory's Treatise of Practical Geometry (1751) . 

188 



21. Introduction of Coordinates 189 

Now we can define a mapping rp: II --+ F2 by rp(P) = (±a, ±b), where we 
choose the + sign if A (resp. B) is on the positive x-axis (resp. y-axis) and the -
sign if not. Clearly, this construction gives a bijective correspondence between 
the set of points of IT and the set of ordered pairs of the field F; so rp is 1-to-1 and 
onto. 

We must verify that rp is compatible with the notions of line, betweenness, 
congruence of segments, and congruence of angles. And remember that in II 
these are undefined notions, whose properties are known only through the axi­
oms and propositions of the geometry, while in F2 they were defined in terms of 
algebraic conditions (Chapter 3) . 

Step 1 Let I be a line in IT. (For simplicity we will consider a general line, and 
let the reader check the special cases of horizontal and vertical lines(!).) Let I 
meet the x-axis at A. Measure off AB E 1, let BC be a perpendicular, and let m E F 
be the class of BC. We call m the slope of the line. 

Let I meet the y-axis at D, and let b E F represent that point (i.e ., b = OD if D 
is on the positive y-axis; otherwise, b = -OD) . 

Now consider an arbitrary point P = (x, y) in the plane. Make a triangle DPE 
using horizontal and vertical lines. Then DE = x and PE = Y - b (in the case 
shown; otherwise, adjust signs ± as needed (!)). This point P will lie on the line I 
if and only if the angle PDE = IX. Because of the definition of our segment arith­
metic, this condition is equivalent to saying y - b = mx. In other words, P = 
(x, y) lies on the line I if and only if y = mx + b. Since lines in F2 were defined 
by linear equations, this establishes the first property of an isomorphism: L <:; IT 
is a line {:} rp(L) <:; IT' is a line. 

~~~~~------------~-- x o F 

Step 2 Let A, B , C be three collinear points in IT (which by Step 1 will guarantee 
that their images in IT' are collinear). Let A' , B', C' be their projections on the x­
axis (and again for simplicity we will treat the special case that A, B, C are in the 
first quadrant, leaving other cases to the reader (!)). 
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Since the lines AA', BB', ee' are par­
allel, A and e will be on opposite sides 
of the line BB' if and only if A' and e' are 
on opposite sides of the line BB' (7.2), 
so A * B * e if and only if A' * B' * e'. 
Let the segments OA', OB', oe' repre­
sent a, b, c, E F. Then A' * B' * e' means 
that either the segments are related 
OA' ::;; OB' ::;; oe' or vice versa oe'::;; 
OB' ::;; OA'. This is equivalent to saying 
a < b < c or c < b < a, by the way we 
defined inequality in the field F of seg­
ment arithmetic. And this, in turn, is 
equivalent to saying qJ(A) * qJ(B) * qJ(C) 
because of the definition of between­
ness in F2 (Section 15). 

Step 3 Let A, B be two points in IT, and 
let the segment AB represent d E F. On 
the other hand, let qJ(A) = (a], a2) and 
qJ(B) = (b], b2 ). Then if we draw the 
right triangle ABe with legs parallel to 
the axes, we find that Ae = b] - a] and 
Be = b2 - a2 by construction. We use 
the field version of the Pythagorean 
theorem (20.6) to conclude that 

d2 = (b] - a])2 + (b2 - a2)2 

inFo 

Ie 
------~--~----~--~----o AI ~' c' 

Now let A'B' be another segment, with length d' E F. Then similarly, if 
qJ(A') = (a~, aD and qJ(B') = (b~, b~), we have 

d,2 - (b' - a,)2 + (b' - a') -]] 2 2· 

Now AB ~ A'B' if and only if d = d', because F was constructed from the set 
P of congruence equivalence classes of line segments. On the other hand, d = d' 
if and only if d2 = d'2, because both are positive elements of F. But the equations 
above show that d2 and d'2 are equal to the "distance squared" function that we 
used to define congruence of segments in F2 (Section 16). Thus AB ~ A' B' if and 
only if qJ(A)qJ(B) ~ qJ(A')qJ(B'). 
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Step 4 We show that two angles IX, IX' in IT are congruent if and only if IP(IX) and 
IP(IX') are congruent in IT'. For economy of exposition, we give an indirect proof, 
though a direct proof is also possible (see Exercise 21.2). 

Suppose we are given angles IX and 
IX' in IT. Let the vertices be A and A', 
and choose any two points B, C on the 
two rays of IX. Then find B', C' on the 
rays of IX' such that AB ~ A'B' and 
AC ~ A'C'. Draw the lines BC and B'C' 
to make triangles. 

If IX ~ IX', then by (SAS) it follows 
that the triangles ABC and A'B'C' are 
congruent, and in particular, BC ~ B' C'. 
Conversely, if BC ~ B'C', then by (SSS) 
the two triangles are congruent, and so 
IX ~ IX'. Hence IX ~ IX' {:} BC ~ B' C'. 

8,--__ -..., ........ 
c 

A 

Apply IP to the six points A,B, C,A',B', C'. Then IP(A)IP(B) ~ IP(A')IP(B') and 
IP(A)IP(C) ~ IP(A')IP(C') by Step 3. Furthermore, we have shown that the geome­
try p2 satisfies Hilbert's axioms (Section 17), and in particular, (SAS) and (SSS) 
hold also in p2. So by the same argument in p2 we see that IP( IX) ~ IP( IX') if and 
only if IP(B)IP( C) ~ IP(B')IP( C'). 

Combining this result with Step 3 for the segments BC and B'C', we see that 
IX ~ IX' {:} BC ~ B' C' {:} IP(B)IP( C) ~ IP(B')IP( C') {:} IP( IX) ~ IP( IX'). 

Corollary 21.2 
In any Hilbert plane IT satisfYing (P), (LCI) is equivalent to (E), and both are equiv­
alent to saying that the field P of segment arithmetic is Euclidean. 

Proof Indeed, we have shown that this is true over a field (16.2), so by the 
theorem it is true in IT also. 

Corollary 21.3 
A Hilbert plane IT satisfYing (P) and (D) is isomorphic to the real Cartesian plane. 

Proof By (21.1), IT is isomorphic to the Cartesian plane over a pythagorean 
ordered field F. By (15.4), the plane IT satisfies (D) if and only if the field P sat­
isfies (D'). And then by (15.5), P ~ IR. 
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Exercises 

2l.1 Given two adjacent nonoverlapping 
angles rx,fJ at a point A, use the dia­
gram shown, plus similar triangles 
and Proposition 20.6, to show that 

( fJ) tan rx + tanfJ 
tan rx + = -----

1 - tan rx tanfJ 

in F (cf. Exercise 20.15 for the defini­
tion oftanrx). 

A 
~------~~--------

2l.2 Use Exercise 2l.1 above to give a direct proof of step (4) of Theorem 2l.1, namely, 
that two angles rx, rx' in IT are congruent if and only if qJ(rx) and qJ(rx') are congruent 
in F2, using the definition of congruence we gave for angles in F2 (Section 16). 

2l.3 Give another proof that (LeI) is equivalent to (E) in a Hilbert plane with (p) by 
using the construction of Exercise 20.6. 

21.4 In this and the following exercises we 
consider, in a Hilbert plane with (P), 
constructions with a ruler alone, but 
we are given a fixed circle r and its 
center 0, and we are allowed to inter­
sect lines with this circle. The key ob­
servation is that any line through ° 
cuts off a diameter, with ° as its mid­
point, and this allows us to draw par­
allellines (Exercise 20.19). 

Given rand 0, construct with 
ruler alone the midpoint of a given 
segment (par = 15). The diagram is 
given as a hint of one possible con­
struction. 

21.5 Given rand 0 , construct with ruler 
alone a line parallel to a given line 
1 and passing through a given point 
P (par = 16). Hint: First construct a 
bisected segment on I, as shown. 

--- r 

o 

A 



2l.6 Given rand 0 , and given a segment 
OA and a ray r originating at 0 , con­
struct with ruler alone a point B on r 
with OA ~ OB (par = 17). 

2l.7 Given rand 0 , and given a point P 
and a line I, construct a perpendicular 
to 1 through P (par = 33). 
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r 

2l.8 Given rand 0 , and given a circle Ll defined by its center A and a point B, and 
given a line I, construct with ruler alone an intersection point of Ll and 1 (par = 54) . 

8 

/ 

\ 
} 

/ 
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21.9 Now prove the theorem of Poncelet-Steiner, that any ruler and compass construc­
tion can be accomplished with ruler alone if we are given a single circle r and its 
center O. Hint: Use the construction of Exercise 20.6 to reduce the problem of 
intersecting two circles to intersecting a circle and a line. Or else proceed algebrai­
cally and show first that the operations +, -,', -:-,'; can be carried out on line 
segments; then use Theorem 13.2. 

21.10 (Extra credit) Given a circle and its center, construct with ruler alone an inscribed 
regular pentagon (par = about 50). 

But when the sceptre devolved to Almamon, 
the seventh of the Abbassides, he completed the 
designs of his grandfather, and invited the 
Muses from their ancient seats. His ambassadors 
at Constantinople, his agents in Armenia, Syria, 
and Egypt, collected the volumes of Grecian 
science: at his command they were translated 
by the most skillful interpreters into the Arabic 
language: his subjects were exhorted assidu­
ously to peruse these instructive writings; and 
the successor of Mahomet assisted with pleasure 
and modesty at the assemblies and disputations 
of the learned ... 

The sages of Greece were translated and 
illustrated in the Arabic language, and some 
treatises, now lost in the original, have been 
recovered in the version of the East, which pos­
sessed and studied the writings of Aristotle and 
Plato, of Euclid and Apollonius, of ptolemy, 
Hippocrates, and Galen. 

- from The History of the Decline and Fall 
of the Roman Empire 

by Edward Gibbon, vol V, ch 52 
Bigelow, NY (1845) 



CHAPTER 

Area 

ooking at Euclid's theory of area in Books I-IV, Hilbert 
saw how to give it a solid logical foundation. We define 
the notion of equal content by saying that two figures 
have equal content if we can transform one figure into 
the other by adding and subtracting congruent tri­
angles (Section 22) . We can prove all the properties of 
area that Euclid uses, except that lithe whole is greater 
than the part." This is established only when we relate 
the geometrical notion of equal content to the notion 

of a measure of area function (Section 23). 
In an Archimedean Euclidean plane, we prove the theorem of Bolyai 

and Gerwien, that figures of equal area are equivalent by dissection (Section 
24) . We also investigate the practical problem of dissecting one figure into 
another. 

We briefly discuss the classical problem of squaring the circle (Section 25) 
and its influence. 

In comparing the volumes of three-dimensional figures, Euclid uses a limit­
ing process, the "method of exhaustion" (Section 26). We give Dehn's solution of 
Hilbert's third problem, that solid figures of equal volume are not necessarily 
equivalent by dissection (Section 27), thus vindicating Euclid's use of an infinite 
limiting process in the study of volume. 

195 
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22 Area in Euclid's Geometry 

Starting with (1.35), Euclid introduces a new notion of equality between figures, 
which corresponds to what we would call "equal area." The area we are familiar 
with from high school attaches a number to each figure. So the area of a rectan­
gle with sides a and b is the number ab; the area of a triangle with base band 
height h is ~ bh. In Euclid's geometry, there are no numbers, so we cannot 
explain his concept of area this way. 

Euclid does not define this new notion of equality, but we can infer from his 
proofs that he considers it another undefined notion, like congruence of seg­
ments or angles, that satisfies certain properties similar to the common notions. 
In particular, he assumes that: 

1. Congruent figures are "equal." 
2. Sums of "equal" figures are "equal." 
3. Differences of "equal" figures are "equal." 
4. Halves of "equal" figures are "equal." 
5. The whole is greater than the part. 
6. If squares are "equal," then their sides are equal. 

Properties 1, 2, and 3 are used in the proof of (1.35). Property 4 appears in 
the proof of (1.37), and property 5 appears in the proof of (1.39). Property 6, 
which is actually a consequence of 5, is used in the proof of (1.48). 

We could accept this notion of "equality" between figures as another un­
defined notion, with these properties as additional axioms. However, one is 
reluctant to encumber the foundations of geometry with unnecessary undefined 
notions and axioms. So instead, following Hilbert, we will show that one can 
define a suitable notion of "equal area" and prove its properties, thus providing 
a new foundation for the theory of area. To avoid overuse of the word "equal," 
we introduce a new terminology and will say that certain figures have "equal 
content." 

To begin with, let us be precise about our terminology. We presuppose the 
axioms of a Hilbert plane. When we speak of a triangle ABC in this chapter, we 
mean that subset of the plane consisting of the three line segments AB, AC, BC, 
the sides of the triangle, plus all the points in the interior of the triangle. 

Recall (Section 7) that the interior of a triangle ABC is the set of points that 
are on the same side of the line AB as C, on the same side of AC as B, and on the 
same side of BC as A. Two triangles are nonoverlapping if they have no interior 
points in common. They may have common vertices or parts of edges. 

Definition 
A rectilineal figure (or figure for short) is a subset of the plane that can be ex­
pressed as a finite nonoverlap ping union of triangles. A point D is in the interior 
of a figure P if there is a triangle ABC entirely contained in P such that D is in 
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the interior of the triangle ABC. Two figures are nonoverlapping if they have no 
interior points in common. Note that our definition of a figure includes its edges 
and all its interior points. 

Proposition 22.1 
The intersection of any two figures is a figure . The union of any two figures is a 
figure . The complement of one figure inside another figure (plus the line seg­
ments that form its sides) is a figure. In particular, any finite union of triangles is a 
figure . 

Proof The basic idea is to deal with one 
triangle at a time. For example, if a tri­
angle ABC is cut by a line 1, then that 
portion of the triangle that lies on one 
side of the line is a figure. One side BDE 
in this example is a triangle. The other 
side is a union of two triangles, after we 
draw the line DC. We leave details to 
the reader (Exercises 22.1,22.2, 22.3). 

Definition 

c 

Two figures P, pI are equidecomposable if it is possible to write them as non­
overlapping unions of triangles 

p' = T~ U .. . U T~, 

where for each i, the triangle Ti is congruent to the triangle T[. 
Two figures P, pI have equal content if there are other figures Q, O!. such that: 

(1) P and Q are nonoverlapping. 
(2) pI and O!. are nonoverlapping. 
(3) Qand O!. are equidecomposable. 
(4) P U Q and pI U O!. are equidecomposable. 
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Example 22.1.1 
If P is the union of two congruent 
squares in a Euclidean plane, and pi is a 
square built on the diagonal of one of 
the squares of P, then p and pi are equi­
decomposable. Indeed, we cut P and pi 
into four congruent triangles each, as 
shown in the diagram. 

Example 22.1.2 
In a Euclidean plane, let ABCD and 
CDEF be two parallelograms on the 
same base CD and lying in the same 
parallels. The Euclid's proof of (1.35) 
shows that ABCD and CDEF have equal 
content. 

Indeed, if we let P = ABCD and 
pi = CDEF, take Q = Ci. = triangle BGE. 
Then P U Q and pi U Ci. are the unions of 
the congruent triangles ACE and BDF 
and the equal triangles CDG and CDG. 

Example 22.1.3 
If two figures P and pi are equidecom­
posable, then they have equal content, 
but the converse is not necessarily true. 
For example, consider the Cartesian 
plane over a non-Archimedean field F 
(Section 18). Let tbe an infinite element 
of the field F. Consider the unit square 
ABCD and the parallelogram with base 
CD and top side EF, where E = (t, 1) 
and F = (t + 1, 1). 

A 

:[~: 
o ( t t+- ( 

Then according to (1.35), ABCD and CDEF have equal content. However, 
they are not equidecomposable. Indeed, any triangle contained in the unit 
square has sides of length less than or equal to -J2. Any finite number of 
these sides, placed end to end, still has finite length in the field F. But the side 
CE of the parallelogram has length Jt2+l> t, which is infinite. Thus no 
finite number of triangles contained in ABCD can ever fill up the parallelogram 
CDEF. 
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Remark 22.1.4 
This example suggests the following question: If we assume Archimedes' axiom 
(A) in addition, are the notions of equidecomposable and equal content equiva­
lent? We will see that the answer is yes in any Hilbert plane with (P) and (A), 
by using a measure of area function with values in the field of segment arith­
metic (24.7.3). I do not know any purely geometric proof of this fact. In the non­
Euclidean case, we obtain the same result using the defect of a triangle as a 
measure of area function (36.7.1). 

Proposition 22.2 
In a Hilbert plane, the relation of two figures being equidecomposable is an equivalence 
relation. Nonoverlapping unions of equidecomposable figures are equidecomposable. 

Proof The relation is obviously reflexive ("P is equidecomposable with P") and 
symmetric ("if P and pI are equidecomposable, then pI and Pare equidecom­
posable"). The nontrivial part is transitivity. So suppose that p and pI are equi­
decomposable, and pI and p" are equidecomposable. Let 

p= Tl U ... UTn , 

p' = T~ U ... U T~, 

where Ti and T[ are congruent triangles, for each i. Also let 

p' = S~ U ... U S:", 
p" = sfU ... US~, 

where Sf and SJ' are congruent triangles, for eachj. We must show that P and p" 
are equidecomposable. 

To do this, we will refine the decompositions of P and p" in order to express 
them both as unions of congruent triangles. For each i, j consider the inter­
section T[ n Sf in p'. It may be empty, or may consist of points or line segments 
only. We ignore those. When the intersection has a nonempty interior, it will be 
a figure (Exercise 22.1) that can be written as a union of triangles 

1 

T;nsj = U Uijk' 
k=l 

Now let ({Ji : Ti - T[ be a rigid motion (Exercise 17.10) taking the triangle Ti 
to the congruent triangle T[. We use ({Ji to transport the triangles Uijk to new tri­
angles Uijk = ({Ji1 (Uijk) contained in Ti. Then 

Ti = U Uijk, 
j,k 

and each Uijk is congruent to Uijk' 
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Similarly, for each j, let t/lj be a rigid motion taking S; to the congruent trian­
gle Sf'. Let U{jk = t/lj(Uijk)' Then 

and each U{jk is congruent to Uijk' 
By construction, the Uijk and the U{jk are nonoverlapping triangles, and we 

can write 

p" = U· ·kU"k' l)), 1-) 

where Uijk is congruent to U{jk for each i, j, k. Thus P and p" are equidecompos­
able. 

If p and pI are equidecomposable, and Q and Ci are equidecomposable, and 
if p does not overlap Q and pI does not overlap Ci, then it is obvious that PU Q 
and pI U Ci are equidecomposable. 

Proposition 22.3 
In a Hilbert plane, the relation of two figures having equal content has the following 
properties: 

(a) Equal content is an equivalence relation. 
(b) Equidecomposable figures have equal content. 
(c) Nonoverlapping unions offigures of equal content have equal content. 
(d) If Q r;; p and Ci r;; pI, and if Q and Ci have equal content, and p and pI have 

equal content, then P - Q and pI - Ci have equal content. 

Lemma 22.4 
Suppose P and pI are equidecomposable figures, and suppose P is expressed as a 
nonoverlapping union of subfigures P = PI U Pz. Then there are subfigures Pf ,P~ of 
pI such that pI is the nonoverlapping union of Pf and P~, and Pi and PI are equi­
decomposable for i = 1,2. 

Proof Suppose 
p= TI U ... U Tn, 

p' = T~ U ... U T~, 

where Ti and T[ are congruent triangles for each i. As in the proof of (22.2) we 
will refine decompositions appropriately. 

For each i, consider the intersections Ti n PI and Ti n Pz. We can write each 
as unions of triangles (22.1) 

Ti nPI = Uj SijI' 

Ti n Pz = Uj SijZ. 
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Use rigid motions {fJi : Ti ~ T: to transport these triangles and define 

S~k = (fJi(Sijk) 

for each i, j, k. Let 

p{ = USijll 

p~ = USij2' 
Then p~ ,p~ satisfy the requirements of the lemma. 

Proof of 22.3 (a) The relation of equal content is obviously reflexive and sym­
metric. The nontrivial part is to show that it is transitive. So suppose figures p 
and pI have equal content, and pI and p" have equal content. Then there are 
equidecomposable figures Q and 0:. such that p U Q and pI U 0:. are equidecom­
posable, and there are further equidecomposable figures R' and R" such that 
pI UR' and p" U R" are equidecomposable. 

The difficulty is that while the unions mentioned above are all nonover­
lapping, it may happen that 0:. and R' overlap. To avoid this situation, we apply 
the lemma to the equidecomposable figures pI U R' and p" U R" and the given 
decomposition of the first of these. Thus we may assume that the triangulation 
of pI UR' arises from separate triangulations of pI and R'. Once this is so, we can 
move R' to some other position in the plane R* and still have pI U R* equi­
decomposable with p" UR". In particular, we may choose R* in such a way that 
0:. and R* do not overlap (Exercise 22.4). 

Now let R be a figure congruent to R* that does not overlap p or Q, and let 
0:.' be a figure congruent to 0:. that does not overlap p" or R". Then, by additivity 
of equidecomposability, we find p U Q U R equidecomposable with p" U Q' U R", 
and Q U R equidecomposable with Q' U R", so by definition, p and p" have equal 
content. This completes the proof of (a). 

Statement (b) is trivial. 
Statements (c) and (d) are not difficult to prove after using the lemma to 

avoid overlaps (Exercise 22.5). 

Now we have defined a notion of equal content for rectilineal figures in the 
plane, and we have established enough properties to recover most of Euclid's 
results on area. In particular, this notion of equal content satisfies the proper­
ties, 1, 2, 3 listed at the beginning of this section. However, our theory does not 
seem to be strong enough to establish properties 4, 5, 6, so we formulate what is 
missing as follows. 

Z. (de Zolt's axiom). If Q is a figure contained in another figure P, and if P - Q 
has a nonempty interior, then p and Q do not have equal content. 

We can think of (Z) as a precise formulation of Euclid's Common Notion 5, 
"the whole is greater than the part," for the notion of content. However, we 
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avoid the use of the words "greater" and "lesser," because these imply the exis­
tence of an order relation among figures, which we have not yet established. In 
fact, the existence of an order relation for content depends on (Z) (Exercise 
22.7). We will also see in the exercises that (Z) implies the other two properties 4 
and 6 listed at the beginning of this section (Exercises 22.6,22.8). 

I do not know of any purely geometric proof of (Z) from the definition of 
content we have given. We will see in the next section, however, that (Z) holds 
whenever there is a measure of area function in the geometry. In particular, (Z) 
will hold in any Hilbert plane with (P) (Section 23), and also in the non-Euclidean 
geometries (Section 36). 

Corollary 22.5 
In a Hilbert plane, the relation equal content has properties 1, 2, 3 at the beginning of 
this section. In a Euclidean plane with (Z), 4, 5, 6 also hold. 

Proof 1, 2, 3 are contained in (22.3), and 4,5, 6 are in Exercises 22.6,22.7, 22.8. 

Now let us review Euclid's results about area and their proofs, substituting 
everywhere his "equality" of figures by the notion of equal content developed in 
this section. We work in a Euclidean plane (Section 12), i.e., a Hilbert plane with 
(P) and (E). 

We have already seen (22.l.2) that Euclid's proofof(1.35) shows that the two 
parallelograms have equal content. The next result (1.36) follows using tran­
sitivity of equal content. But in the proof of (1.37) Euclid uses the property that 
"halves of equals are equal," which depends on (Z) (Exercise 22.8). So we will 
give another proof, which does not depend on (Z). 

Proposition 22.6 (1.37) 
In a Euclidean plane, triangles on the same base, whose top vertices are on the same 
line parallel to the base, have equal content. 

Proof Let ABC and DBC be the given 
triangles, lying in the parallel lines 1, m. 
Let E be the midpoint of AB, and draw a 
line n through E, parallel to 1. Let this 
line meet DC at F. Then, from (5.1) (cf. 
Exercise 5.3) it follows that F is the 
midpoint of DC. Draw a line through B, 
parallel to AC, to meet n at K, and draw 
a line through C, parallel to BD, to meet 
nat L. 

B 

A 

1.. 
c.. 

Then because of parallel lines, we get equal angles, which shows that 
MEG ~ MEK using (ASA). So the triangle ABC has equal content with 
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the parallelogram BCGK. Similarly, tillHF ~ flCLF, so that flBCD has equal con­
tent to the parallelogram BCHL. 

Now by (1.35), these two parallelograms have equal content. So by tran­
sitivity it follows that the triangles ABC and DBC have equal content. 

Continuing with our examination of Euclid's results, (1.38) follows by tran­
sitivity. Its converse (1.39) uses "the whole is greater than the part" in its proof, 
and so depends on (Z). Generally speaking, all of the results in which Euclid 
shows that two figures are equal will be valid for the notion of equal content. 
However, when a hypothesis of equal content is used to conclude something 
involving congruence of segments or angles in the figure, then (Z) will be nec­
essary. So (1.40) also depends on (Z). In (1.48) Euclid says that if squares 
have equal content, then their sides are equal, so this result also depends on (Z) 
(Exercise 22.6). The remaining results of Book I, namely (1.41)-(1.45) and (1.47) 
are all valid for content. So for example, (1.47), the Pythagorean theorem, says 
that the square on the hypotenuse of a right triangle has equal content to the 
union of the squares on the two legs of the triangle. 

In Book II, all of the results make statements about certain figures having 
equal content to certain others, and all of these are valid in our framework. Note 
that the line-circle intersection property (11.6) is used in (11.11) to divide a line 
such that the square on the larger piece has equal content to the rectangle on 
the whole and the smaller piece. It is also used in (11.14) to construct a square 
with equal content to any given rectilineal figure. 

In Book III, Propositions (111.35) and (III.36) hold for equal content. The 
converse (III.37) of(1I1.36) requires property 6 above-if squares are equal, their 
sides are equal-and so depends on (Z). 

In Book IV the only result needing Euclid's theory of area is (IV.I0), to con­
struct an isosceles triangle whose base angles are twice the angle at the vertex. 
The proof uses (III.37) and so depends on (Z). In particular, Euclid's proof of the 
construction of the regular pentagon (Section 4) depends on (Z). So we see again 
how the construction of the pentagon involves all the subtleties of Euclid's 
geometry! 

At this point we could take (Z) as an additional axiom, and then we would 
have a satisfactory basis for Euclid's theory of area. However, we will see in the 
next section that (Z) holds in the Cartesian plane over a field, and hence, using 
the theorem of introduction of coordinates (2l.1), it holds in any Hilbert plane 
with (P), and hence in any Euclidean plane. See (23.6) for a summary. 

Exercises 
22.1 Show that the intersection of any two figures is a figure. Hint: First do the inter­

section of two triangles. 
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22.2 Show that the complement of one figure contained in another figure is a figure. 
Hint: First do the case where the smaller figure is a single triangle. 

22.3 Show that the union of two figures is a figure. 

22.4 In a Hilbert plane, given two figures P, Q, show that there is a rigid motion cp of the 
plane (cf. Section 17) such that P and cp( Q) do not overlap. 

22.5 Prove parts (c) and (d) of Proposition 22.3. 

22.6 In a Euclidean plane, assuming (Z), suppose that you are given segments AB and 
CD such that the squares on AB and CD have equal content. Show that AB and CD 
are congruent. 

22.7 In a Euclidean plane with (Z), show that there is a total ordering on the set of fig­
ures with the property that P :s; Q whenever there exists a figure pi with the same 
content as P, and pi is contained in Q. Hint: Use (1.44) to show that any figure P has 
equal content with a rectangle pi of given fixed side AB. 

22.8 In a Euclidean plane with (Z) show that "halves of equals are equal," in the follow­
ing sense: If P and Q are figures with equal content, and if P = PI U Pz is a non­
overlapping union, where PI and Pz have equal content, and similarly Q = Ql U Qz 
with Ql and Qz having equal content, then PI and Ql have equal content. 

22.9 In a Euclidean plane satisfYing (A), 
suppose that (Z) fails in the sense that 
there exists a triangle ABC and a point 
D between Band C, such that ABC has 
equal content with the smaller trian­
gle ADC. Then show that for any fig­
ure P, there exists a figure Q contain­
ing P, and Q has equal content with 
the empty set. (If you can find a con­
tradiction resulting from this, you will 
have discovered a proof of (Z)!) 

B D 

22.10 In a Euclidean plane with Archimedes' axiom (A), give a direct proof of the ana­
logue of (1.35) for equidecomposability: Two parallelograms on the same base and 
within the same parallels are equidecomposable. 

22.11 Simple closed polygons. A simple closed 
polygon is a finite union of line seg­
ments A IA z,AzA 3 , ... ,AjAi+I,'" ,AnA), 
where AI,'" ,An are distinct points in 
the plane, and the line segments have 
no other points in common except 
their endpoints, each of which lies on 
two segments. 

(a) Show that a simple closed polygon 
divides the plane into two segment-
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connected (cf. Exercise 7.12) subsets, its interior and its exterior. (This is the much 
easier polygonal analogue of the famous Jordan curve theorem for simple closed 
curves in lR 2 .) 

(b) Show that the simple closed polygon, together with its interior, is a figure P 
(Le., a finite union of triangles). Is it always possible to write an n-sided polygon P as 
a union of n - 2 triangles? 

23 Measure of Area Functions 

In this section we will relate Euclid's theory of area discussed in the last section 
with the familiar notion of area as a number. In high-school geometry, most 
likely you learned how to compute the area of various figures, but never saw a 
definition of area or a proof that it exists. So we will first define an area function 
by the properties we want it to have. Then we discuss the question of existence 
and uniqueness. We will see that an area function exists in a Hilbert plane with 
(P). We will also see that the existence of an area function implies de Zolt's 
axiom (Z) discussed in the last section. These two results then put Euclid's 
theory of area on a firm basis. 

Definition 
An ordered abelian group is an abelian group G, together with a subset P, whose 
elements are called positive, satisfYing: 

(i) If a, b E P, then a + b E P. 
(ii) For any a E G, one and only one of the following holds: a E P; a = 0; -a E P. 

As in the case of an ordered field (cf. Section 15) we define a > b if a - b E P. 
Then the relation> has all the usual properties (15.2). 

Definition 
A measure of area function on a Hilbert plane is a function rx, defined on the set (JjJ 

of all figures (see definition in Section 22), with values in an ordered abelian 
group G, such that: 

(1) For any triangle T, we have rx(T) > 0 in G. 
(2) If T and T' are congruent triangles, then rx(T) = rx(T'). 
(3) If two figures P and Qdo not overlap, then 

rx(PU Q) = rx(P) + rx(Q). 

We call rx(P) the area of the figure P, with respect to the given measure of area 
function. 
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Proposition 23.1 
Suppose rx is a measure of area function on a Hilbert plane. 

(a) If P is any figure with nonempty interior, then rx(P) > O. 
(b) If P and pI are equidecomposable figures, then rx(P) = rx(pl). 
(c) If P and pI are figures with equal content, then rx(p) = rx(pl) . 
(d) If a figure Q is contained in a figure P, and P - Q has nonempty interior, then 

rx(Q) < rx(p). In particular, P and Qcannot have equal content, so (z) holds (cf Sec­
tion 22). 

Proof (a) Writing the figure P as a union of triangles Ti , it follows from the def­
inition of a measure of area function that rx(P) = L rx(Ti), and each rx(Ti ) > 0, so 
rx(P) > O. 

(b) This follows from the property that congruent triangles have equal area 
function. 

(c) If P and pI have equal content, then there are figures Q and 0:. that are 
equidecomposable and do not overlap with P and pI, respectively, such that 
PU Q and pI U 0:. are equidecomposable. Hence rx(Q) = rx(o:.) and rx(PU Q) = 
rx(pI U 0:.). Using the additivity property (3) and subtracting in the group G, we 
find that rx(P) = rx(PI). 

(d) Write P = QU (P - Q). Since P - Q has nonempty interior, rx(p - Q) > O. 
Hence by additivity, rx( Q) < rx(p). It follows from (c) that P and Q cannot have 
equal content. In other words, de Zolt's axiom (Z) stated in Section 22 holds. 

Now that we know what a measure of area function is and have seen some of 
its properties, the main work of this section is to prove the existence of such a 
function in a Hilbert plane with (P). See Section 36 for the existence of measure 
of area functions in non-Euclidean geometry. 

Theorem 23.2 
In a Hilbert plane with (P), there is an area function rx, with values in the additive 
group of the field of segment arithmetic F (19.3), that satisfies and is uniquely deter­
mined by the follOwing additional condition: For any triangle ABC, whenever we 
choose one side AB to be the base and let it have length b E F, and let h be the length 
of an altitude perpendicular to the base, then rx(ABC) = ~ bh. 

Proof In this theorem, the uniqueness is obvious, because the additional condi­
tion tells us the value of rx for any triangle, and any figure is a finite union of 
triangles. 

For the existence of rx, there is no 
choice: For any figure P E fllJ, write P as 
a union of triangles P = Tl U .. . U Tn, 
for each triangle Ti choose one side to 
be the base b i , let hi be the correspond-
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ing altitude, and define 

The problem is to show that this notion is well-defined: We must show that IX of a 
triangle is independent of which side we choose as base, and then we must show 
that IX(P) is independent of the triangulation chosen. After that we must verifY 
that IX satisfies the properties of an area function. We will deal with some of 
these questions as separate lemmas. 

Lemma 23.3 
In a Hilbert plane with (P), let ABC be 
any triangle. Let b be one choice of base, 
with corresponding altitude h, and let b' be 
another choice of base, with altitude h'. 
Then ! bh = ! b'h' in the field of segment 
arithmetic. 

A 

c 

Proof Let ABG be the triangle, with b = BG, h = AD, b' = AG, h' = BE. The two 
right triangles ADG and BEG have the angle at G in common; hence all three 
angles equal (I.32). So by (Sim AAA) (20.1) they are similar triangles. It follows 
that the ratios of corresponding sides are equal, so 

h h' 
b' b· 

Cross multiplying, we obtain bh = b'h', and so ! bh = ! b'h', as required. 

Thus the function IX is well-defined for triangles. The key point in studying 
arbitrary triangulations is to see what happens when a triangle is divided into 
smaller triangles. 

Lemma 23.4 
If a triangle T be subdivided into smaller triangles Ti in any way whatsoever (but still 
a finite number), then the measure of area of the big triangle is equal to the sum of 
the measures of area of the small ones: IX(T) = I: IX(Ti). 

Proof Step 1 We consider the special 
case where a triangle ABC is divided 
into two triangles by a single transver­
sal, namely a line that goes from one 
vertex (say C) to a point D on the oppo­
site side AB. A 

c. 

B 
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Then choosing side AB as a base for the big triangle, and sides AD and DB as 
bases for the two smaller triangles, all three triangles have the same height, and 
the bases AD, DB add up to the base AB, so clearly a(ABC) = a(ACD) + 
a(BCD). 

Step 2 Next we do a slightly harder 
case. Suppose a triangle ABC is sub­
divided into triangles Ti such that there 
are no new vertices in the interior of the 
triangle, and at least one edge (AC in 
the picture) is free from new vertices on 
the sides of the triangle. Then a(ABC) = 

2:: a(Ti). 

A 

We prove this result by induction on the number of the smaller triangles Ti. 
If there are just two of them, then we are in the situation of Step 1 above. So 
suppose there are more than two. The free side (say AC) must belong to one of 
the small triangles, say T 1, and the third vertex D of Tl must be on one of the 
sides AB or BC (suppose it is AB). Then by Step 1, 

a(ABC) = a(Td + a(BCD). 

Notice that BCD has one fewer triangle in its subdivision than ABC. Further­
more, BCD satisfies the hypotheses of Step 2, because it has no interior ver­
tices (since ABC didn't) and the side CD, being interior to ABC, has no vertices 
on it. Thus by the induction hypothesis, a(BCD) = 2::~2 a(Ti ), and we are 
done. 

Step 3 The general case. Let the trian­
gle ABC be divided into subtriangles Ti. 
Choose one vertex of ABC, say C, and 
draw lines (dotted in the diagram) from 
C to each of the vertices of the triangu­
lation, including those on the opposite 
side AB, and extend these lines down to A 8 
the side AB. L--4.:::..-'-------l'---""----40 

Then we have another subdivision 
of ABC, this time by triangles Sj. Note 
that the subdivision Sj satisfies the hy­
potheses of Step 2, so 

(1) A 

s· J 
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Taking all the Ti and the Sj together gives another subdivision ABC = 
U· . Ti n Sj. These figures Ti n Sj may be triangles or may have four sides. Add 

l,J 
extra lines so that they become unions of triangles: Ti n Sj = Uk Uijk. Thus we 
have a third triangulation of ABC into the triangles Uijk. 

Next, observe that each Sj is the union of triangles Uijk as i and k vary, and 
this triangulation of Sj satisfies the conditions of Step 2! It has no interior ver­
tices, because the lines forming the triangles Sj went through all the vertices of 
the original triangulation. Furthermore, the side of Sj along the base AB is free 
of vertices, for the same reason. Thus by Step 2, for each j we have 

cx(Sj) = L CX(Uijk). (2) 
i,k 

Combining this with the earlier result (1) about ABC as the union of the Sj, we 
obtain 

cx(ABC) = L CX(Uijk). 
i,j,k 

It remains to discuss the division of 
each Ti into the smaller triangles Uijk. 
Typically, one of the lines from C 
through the three vertices XYZ of Ti will 
cut Ti in halves, say T[, T['. (In the 
drawing the line through Z cuts Ti in / 
half.) Then by Step 1, CX(Ti) = cx(T[) + / 
cx(T['). 

Each of these halves is further sub­
divided by lines through C and addi-

" " 

(3) 

'- 'f 

" " 
" .,.. . 

L 

tional lines we have added to cut quadrilaterals into two triangles. These trian­
gulations of T[ and T[' satisfy the conditions of Step 2: There are no interior ver­
tices, and the side through Z, which we used to separate Ti into T[ and T[', con­
tains no vertices. Hence by Step 2 again, each of T[ and T[' has measure equal to 
the sum of the measures of the Uijk of which it is composed, and hence 

CX(Ti) = L CX(Uijk). 
j, k 

Now, finally, combining this with equation (3) we obtain 

as required. 

(4) 

(5) 
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Lemma 23.5 
The measure of area of a rectilineal figure is independent of the triangulation used to 
define it. 

Proof If a figure P has two triangulations 

P= Tl U ... UTn 

and 

P = T~ U ... U T:r" 

then the intersections of the Ti and Tj can be further subdivided into triangles 
Uijk, as in the proof of (22.2). Now applying Lemma 23.4 to each Ti = Uk Uijk 

U h 
and to each TJ = i,k Uijk, we find that 

L rx(Ti) = L rx(Uijk) = L rx(TJ), 
i ~hk j 

so that rx(P) comes out the same either way. 

Proof of 23.2, continued From the lemmas (23.3), (23.4), and (23.5) we know 
that the function rx is well-defined. We need only verify that it has the properties 
required of an area function. Since segments give positive elements of F, 
rx(T) > 0 for any triangle. Congruent triangles have congruent sides and congru­
ent altitudes, so rx(T) = rx(T') if T and T' are congruent triangles. 

If P and Q are two figures with nonoverlapping interior, and if we write 
P = Tl U ... U Tn and Q = T~ U ... U T:r" we can use all the Ti and T[ to triangu­
late P U Q. In that case the additivity is obvious. 

Corollary 23.6 
In a Euclidean plane, all of Euclid's theory of area, namely (1.35)-(1.48), (11.1)­
(11.14), (111.35)-(111.37), and (IV.IO) hold, where we interpret "equality" offigures to 
mean equal content in the sense of Section 22. 

Proof We have already seen in Section 22 that all these results follow from the 
definition of equal content plus the statement (Z). In this section we saw that (Z) 
is a consequence of the existence of an area function (23.1) and that an area 
function exists in a Hilbert plane with (P) (23.2). 

Remark 23.6.1 
This proof is analytic in that it makes use of the field of segment arithmetic 
and similar triangles. We do not know any purely geometric proof, for example 
of (1.39), that triangles on the same base with equal content have the same 
altitude. 
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Remark 23.6.2 
It may be worthwhile to point out that we are not using circular reasoning here. 
To be sure, the proof of (Z) we have just given uses the field of segment arith­
metic (19.3), whose proof uses some results from Euclid, Book III (19.2.1). But 
the results used were only those that did not depend on the theory of area (cf. 
12.4), so that we may now use them to go back and validate earlier results from 
Book I on that need the theory of area. 

Proposition 23.7 
In a Hilbert plane with (P), let IX be the measure of area function of(23.2). Then two 
figures P, Q have equal content if and only if IX(P) = IX( Q). 

Proof If P and Q have equal content, then IX(P) = IX(Q) by (23.1). Conversely, 
suppose IX(P) = IX(Q). By (1.44) we can find rectangles pi and Q!. with content 
equal to P, Q, respectively, and furthermore, we may assume that one side of 
these rectangles is the unit 1 in the field of segment arithmetic. Let a, b be the 
other sides of these two rectangles. Then cutting each into two triangles, we see 
that lX(p l ) = 1 . a = a, and IX( Q!.) = 1 . b = b. On the other hand, figures of equal 
content have equal IX, so IX(P) = a and IX( Q) = b. Our hypothesis now implies 
a = b. Thus the two rectangles are congruent, so pi and Q!. have the same con­
tent. By transitivity, P and Q have the same content. For this proof, note that 
(1.44) does not use (E), and so is valid in any Hilbert plane with (P). 

Remark 23.7.1 
Thus in a Hilbert plane with (P), the theory of content is essentially equivalent 
to the theory of area given by the area function of (23.2), so we can also restate 
Euclid's theory of area in terms of the area function. 

Exercises 
23.1 In Theorem 23.2, the uniqueness of the area function was established by requiring it 

to have the expected value on every triangle. Suppose instead, in the Cartesian 
plane over a field F, we consider measure of area functions, with values in the addi­
tive group of the field, with the weaker requirement that (X of the unit square should 
be equal to 1. 

(a) If the field is Archimedean, show that (X is uniquely determined by the above 
condition. 

(b) If the field F is non-Archimedean, show that there can be more than one area 
function having value 1 on the unit square. 

23.2 Use the measure of area function of Theorem 23.2 to show that if two squares have 
equal area, then their sides are congruent. 
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23.3 Let ABC be any triangle . Let D, E, F 
divide the sides in thirds. Draw AE, 
BD, CF. Show that the small triangle 
formed in the inside has area equal to 
~ the area of the whole triangle. Hint: 
Review the proof of Proposition 5.4 and 
use similar triangles. 

23.4 Let ABC be any triangle, let DE be a 
line parallel to the base, and let F be 
any point on DE. Show that the area of 
the union of the two triangles DBF and 
ECF is less than or equal to one-fourth 
the area of the whole triangle, with 
equality if and only if D and E are the 
midpoints of AB and AC. 

~ C c-__________________ ~~ 

23.5 To get a feeling for ordered abelian groups, try this one. Let <Q( viz) = 

{a + bvlzl a, bE <Q}, and similarly <Q( v'3). 

(a) Show that <Q( viz) and <Q( v'3) are isomorphic as abelian groups (under addition). 

(b) Show that <Q( viz) and <Q( v'3) are not isomorphic as fields. 

(c) Show that <Q( viz) and <Q( v'3) are isomorphic as ordered sets, with the orderings 
induced by the natural ordering on JR. (Here an ordered set is a set S, together with a 
relation a < b, having the two properties (i) a < band b < c implies a < c; (ii) if 
a, b E S, then one and only one of the following holds: a < b, a = b, b < a.) 

(d) <Q( viz) and <Q( v'3) are not isomorphic as ordered abelian groups (again taking 
addition as the group operation). 

23.6 Prove Ptolemy's theorem: The rectangle formed of the two diagonals of a cyclic 
quadrilateral is equal in content to the sum of the two rectangles made by opposite 
sides of the quadrilateral. 

23.7 In a Euclidean plane, show that the results (VI.1) and (VI.14)-(VI.31) hold using 
equal content for equality of figures. 

24 Dissection 
As we have seen in the previous sections, Euclid bases his theory of area on 
adding and subtracting congruent figures. This notion is formalized by Hilbert's 
definition of equal content (Section 22), which can also be interpreted using a 
measure of area function (Section 23). While the notion of content gives a good 
general theory, one could complain that it is not practical, in the sense that if 
two figures have equal content, one does not know how much must be added in 
order to make them equidecomposable. In Example 22.1.3, the two figures being 
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compared both have area 1, but to make them equidecomposable, one must add 
a triangle whose area is infinite in the non-Archimedean field F. 

In this section we will investigate the stricter notion of when two figures are 
equidecomposable (Section 22). This leads to the practical problem of dissection: 
given two figures, to find, if possible, an efficient decomposition of the first as a 
nonoverlapping union of smaller figures, not necessarily triangles, that can be 
reassembled into the second. A dissection exists if and only if the two figures are 
equidecomposable. In this case we will also say that one figure can be dissected 
into the other, or that they are equivalent by dissection. 

We work in a Hilbert plane with (P), and in some cases use also (A) or (E). 
We will see that certain of the results, such as the Pythagorean theorem (1.47), 
which Euclid proved for content, are also true in the stronger sense of dis­
section. We will prove the theorem, due to Bolyai and Gerwien, that in an 
Archimedean plane, any two figures of equal area (Section 23) are equivalent by 
dissection. 

The practical problem of finding dissections of one figure into another has 
received a certain amount of attention among recreational mathematicians, but at 
this point it seems to be more of an art than a science. Amateurs have discovered 
a number of clever dissections, but proofs that certain dissections are minimal, 
or effective bounds on the number of pieces required, seem to be lacking. 

We begin this section with some general results on existence of dissections. 

Proposition 24.1 
In a Hilbert plane with (P), any triangle can be dissected into a parallelogram. 

Proof (cf. 22.6) Let ABC be the tri­
angle. Let D be the midpoint of AC. 
Draw lines through D parallel to BC and 
through C parallel to AB, meeting at 
F. Then MDE ~ b.CDF by (ASA). So 
MBC can be dissected into the parallel­
ogram BCEF. 

Lemma 24.2 
Let ABC be a triangle, and suppose that 
the foot D of the altitude from A to side BC 
lands outside the interval BC. Then one 
of the angles of the triangle, at B or C, is 
obtuse. 

Proof Suppose B is between D and C. 
Then the angle LABC is an exterior an­
gle of the right triangle ADB, so LABC 
is greater than a right angle, by (1.16). 

E~ ___ _ ~ ____ ---i-4 

B 
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Proposition 24.3 
Any parallelogram can be dissected into a rectangle. 

Proof Let ABCD be the given parallelo­
gram. Drop the altitudes from C and D 
to the side AB, with feet E, F. Suppose, 
for example, that E is inside the interval 
AB. Then the triangle MCE is congru­
ent to the triangle BDF. So the parallel­
ogram is dissected into the rectangle 
CDEF. 

Now let us see that we can always apply this construction. In any parallelo­
gram, the opposite angles are equal (1.34) and the sum of the angles is four right 
angles, so two of the opposite angles are acute. (If not, all four are right angles 
and there is noting to prove.) So we may assume that the angle at A is acute. 

Now, if the altitude from C lands 
outside AB, then by (24.2) the angle 
ABC must be obtuse. This forces the 
angle ACB to be acute (1.32), and in that 
case, exchanging the roles of Band C, 
the altitude from B to AC will land 
inside the segment AC (24.2), so we can 
apply the construction above. 

Proposition 24.4 

c. 

A F 

Given a rectangle ABCD, and given a segment AE such that AB < AE < 2AB, the 
rectangle ABCD can be dissected into a rectangle having one side equal to AE. 

Proof Suppose we are given the rect­
angle ABCD and the point E. Let C and 
E be joined, meeting BD at F. Let G be 
chosen on AC such that CG ~ BF. Con­
struct the rectangle AEGH, and let K, L 
be as shown. Because of parallel lines, 
the angles at C and F are equal. And CG 
was equal to BF by construction, so by 
(ASA) , I1CGK ~ I1FBE. It follows that 
GK ~ BE, and so by subtraction, CD ~ 
AB ~ KH. Now by (ASA) again, I1CDF 
~ MHE. This gives a dissection of 
the rectangle ABCD into the rectangle 
AEGH, as required. 

c D 
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Note that in order for this dissection to work, we need to know that F is 
below the midpoint of BD, so that G is above the midpoint of AC, and so F 
is below L. This follows from the hypothesis AB < AE < 2AB, because the line 
from C to the midpoint of BD would meet the line AB at a point M with 
AM= 2AB. 

Proposition 24.5 
Assume Archimedes' axiom (A). Given any rectangle ABCD and given any segment 
EF, there is a rectangle EFGH equivalent by dissection to ABCD. 

Proof Given any rectangle, by cutting 
it in half and reassembling the two 
halves along the other sides, we can 
dissect the original rectangle into a new 
rectangle with one-half the height and 
twice the base of the original one. Now 
by Archimedes' axiom, after doubling or 
halving AB a finite number of times, we 
may assume AB:::::; EF < 2AB. Then we 
apply (24.4) to get a rectangle EFGH as 
required. 

Corollary 24.6 

o 
Assuming (A) and given a segment EF, any rectilineal figure (Section 22) can be dis­
sected into a rectangle with one side EF. 

Proof Divide the figure P into a finite number of triangles T I , T2 , •.• , Tn. For 
each i first dissect the triangle Ti into a parallelogram (24.1), then to a rectangle 
(24.3), then to a rectangle Ri with base equal to EF (24.5). Now stacking the rec­
tangles R I , R 2 , .•. ,Rn , all of which have base equal to EF, on top of each other, 
we obtain one big rectangle with base EF, as required. 

Theorem 24.7 (Bolyai, Gerwien) 
In a Hilbert plane with (P) and (A), let rx be the area function of (23.2). Then two 
figures P and Q are equivalent by dissection if and only if they have the same area. 

Proof One direction follows from (23.1). The new part, which requires the use 
of Archimedes' axiom, is that figures of equal area are equivalent by dissection. 
The proof parallels (23.7), where the analogous result was proved for content. 

So suppose figures P and Qhave equal area: rx(P) = rx(Q). By (24.6), they can 
each be dissected into rectangles with sides 1, a and 1, b. Then rx(P) = a, rx( Q) = b, 
so a = b, and the rectangles are equal. Thus by transitivity of equidecompos­
ability (22.2), P can be dissected into Q. 
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Remark 24.7.1 
This result is false without (A), as is shown by Example 22.1.3. 

Remark 24.7.2 
This proof is effective, since given figures P and Q of equal area, and given a 
decomposition of each into triangles, the method of proof of the results of this 
section will lead to a dissection of one to the other. Of course, the dissection 
found in this way may not be efficient in terms of the number of pieces required. 

Remark 24.7.3 
Combining this result with (23.7) we see that in a Hilbert plane with (P) and (A), 
two figures have equal content if and only if they are equidecomposable (cf. 
22.1.4). 

Proposition 24.8 
Assume (E). Let ABCD be a rectangle with sides a = AB and b = AC satisfYing 
a S b S 4a. Then there is a segment c = AE such that the rectangle ABCD can be 
dissected into a square with side AE. 

Proof Form a segment of length a + b, 
let 0 be its midpoint, draw a circle with 
center 0 passing through the segment's 
endpoints, and let c be the segment cut 
off on a perpendicular dividing the seg­
ment into a + b, from the segment to 
where it meets the circle. (Here we use 
(E) for the existence of the intersection 
point.) 

Now let ABCD be the given rectan­
gle, let AE be congruent to the segment 
c, and let AEFG be the square on side 
AE. Since the angle in a semicircle is a 
right angle (III.3l), the angles a,/3 in the 
circle diagram are equal. These are the 
same as the angles a, /3 of the second 
diagram, by congruent triangles (SAS). 
Hence the two diagonal lines FB and CE 
are parallel (1.28). It follows that CF ~ 
MB and FK ~ BE (1.33). From here the 
same argument as in the proof of (24.4) 
shows that ABCD can be dissected into 
the square AEFG. 

F 



24. Dissection 217 

In order for this construction to work, we need to know that AB::; 
AE < 2AB. We assumed that a::; b, so the angle a = f3 is less than one-half a 
right angle, and so a::; c ::; b. On the other hand, if c ~ 2a, then by similar tri­
angles it follows that b ~ 2c. This implies b ~ 4a, contrary to our hypothesis. 

Corollary 24.9 
In a Euclidean plane with (A), any rectilineal figure can be dissected into a square. 

Proof Choose a segment AB. By (24.6) the original figure can be dissected into a 
rectangle ABCD with side AB. Cutting the rectangle in half and reassembling 
a finite number of times (again using (A)), as in the proof of (24.5), we may 
assume that the sides a = AB and b = AC satisfy a ::; b ::; 4a. Then by (24.8) this 
rectangle can be dissected into a square. 

Next, let us look at the Pythagorean theorem (I.47). Euclid's proof shows that 
the union of the squares on the legs of the right triangle has equal content to 
the square on the hypotenuse. Using Archimedes' axiom (A) one can improve 
Euclid's results about parallelograms (I.35) and triangles (1.37) to hold also for 
dissection. Then Euclid's proof will show that (I.47) holds for dissection assum­
ing (A). However, even better than this are several direct proofs of (I.47) by dis­
section that do not need Archimedes' axiom. 

Let us first consider the proof attributed to Thabit b. Qurra (826-901 A.D.). 

Proposition 24.10 (I.47) 
In a Hilbert plane with (P), the union of the squares on the legs of a right triangle can 
be dissected into the square on the hypotenuse. 

Proof Let ABC be the original triangle; 
let ABDE be the square on AB; let ACFG 
be the square on AC; fill in the square 
GHEK and the line LM so that DM ~ 
BC. Then the three triangles 'ADF, FHG, 
CKG are congruent to the original trian­
gle ABC, and GHEK is congruent to the 
squqre on BC. 

Now the square on the hypotenuse 
is. dissected into the five pieces 
1,2,3,4,5. The first three are congruent 
to 1',2',3' by construction. The square 
on AB is dissected into 1', 3', 5, while 
the square on BC is dissected into 2',4. 
So the result is proved. 
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Remark 24.10.1 
Here is another proof of (I.47) by dis­
section. Let ABC be the original right 
triangle. Draw the squares on the 
three sides as shown. Let 0 be the cen­
ter of the square ACFG, and draw lines 
through 0 parallel to the sides of the 
square BCRS. 

Now let M,N,P, Q be the midpoints 
of the sides of the square BCRS, and 
draw lines through them parallel to AB 
and AC, to form the figure shown. 

We claim that 1',2',3',4',5' are 
respectively congruent to 1,2,3,4,5, 
which will complete the proof by 
dissection. 

Since 0 is the center of the square 
ACFG, it follows that 0 is also the mid­
point of the segments KL and HJ. These 
two segments are also equal to each 
other, and from the parallelogram 
BCKL, they are equal to BC. Thus OK, 

f 

'/.' z. 

OL, OH, OJ are all equal to one-half of BC; hence are congruent to the segments 
BM, MC, DP, PS, etc. Since the lines drawn in the big square are parallel to the 
sides of the square ACFG, it follows that 1,2,3,4 are congruent to 1',2',3',4'. 

It remains to show that 5 ~ 5'. Note that MW ~ LC, since they are corre­
sponding sides of 3 and 3'. From the parallelogram BCKL we see that LC ~ 
BK. But also BK ~ MX. So by subtraction XW ~ AB. The figure is symmetrical, so 
one can also show that AJ ~ LC and JC ~ KA; then a similar argument shows 
that Xy ~ AB. Thus 5' is a square congruent to 5. 

Note that a proof by dissection requires 

(1) a diagram to show the pieces and how they correspond, 
(2) a careful construction stating how and in what order the diagram was 

drawn, and 
(3) a proof, based on the construction (2), showing that corresponding pieces 

are congruent. 

There may be many ways of making the construction, and it is worth con­
templating which will make the proof easier. 
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Exercises 
The following exercises take place in a Hilbert plane with (p) . Assume that it is a 
Euclidean plane, or the Cartesian plane over a field, as needed. 

24.1 Using Archimedes' axiom (A) give a direct proof of (1.37) by dissection. 

24.2 Dissect a square into three equal smaller squares. 

24.3 Use the accompanying diagram to 
provide another proof of the Pytha­
gorean theorem (1.47) by dissection. 
You must supply a construction of the 
diagram, and then a proof based on 
your construction, that corresponding 
pieces are congruent. 

24.4 Find a dissection of an equilateral triangle into a square. After writing your con­
struction and proof, make a model with construction paper and numbered pieces 
to illustrate your dissection. 

24.5 Prove or disprove the existence of a dissection of a square of side 21 into a rectan­
gle of sides 13, 34 according to the diagram below. 

... , 
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24.6 Let ABC be any triangle. Let D be a point on AC. Prove that there is a dissection of 
ABC into a trapezoid PQF.S as shown. What condition is necessary on the point D 
for this to work? 

Q 

, ~ 8~~ ______ '{ ____ ---..::..C 

24.7 Use the previous exercise to find a dissection oftwo equilateral triangles of side 1 
into a single equilateral triangle of side viz, 

24.8 Prove the existence of Dudeney's 
(1929) dissection of an equilateral tri­
angle into a square using four pieces, 
as suggested in the accompanying 
diagram. 

24.9 Dissect a regular pentagon into a square. 

24.10 Prove or disprove: For any integer n;:o: 1, the mInImUm number of triangles 
required to dissect a square of side 1 into a rectangle of sides nand 1/ n is 2n. 

24.11 Dissect a square into eight strictly acute triangles (all angles less than 90°). 

24.12 If a square is dissected into n triangles of equal area, then n must be an even 
number. 

24.13 Consider a restricted form of dissec­
tion problem, where you can cut the 
figure in pieces and move the pieces 
around in the plane, using translations 
only (i.e., no rotations, and no turning 
pieces over). Show that you can dis­
sect the unit square, with translations 
only, into the unit square with any 
other given orientation. 

'00 



24.14 Divide the unit square by its diagonal 
into two (congruent) triangles T J , Tz. 
Show that it is impossible to dissect TJ 
into Tz using translations only. 

25. Quadratura Circuli 221 

24.15 If p and pI are any two figures with the same area, then assuming Archimedes' 
axiom, show that it is possible to dissect P into pI using translations and 1800 rota­
tions only. 

24.16 Let T be a triangle whose smallest angle is greater than or equal to 450 • Then T can 
be dissected into a square using 5 or fewer pieces. 

24.17 Let T be a triangle having an angle IX with tan IX < 1/ a for some a E F, a > 1. Then 
any dissection of T into a square requires z! Va pieces. In particular, there exist 
triangles requiring arbitrarily many pieces to dissect into a square. 

24.18 Let T be a triangle whose smallest angle IX satisfies tan IX > l/a, for some a E F, 
a z 1. Then T can be dissected into a square using no more than 3Va + 4 pieces. 

25 Quadratura Circuli 

No discussion of area would be complete without mention of the classical prob­
lem of squaring the circle. Through the ages this problem has had an influence 
way beyond the confines of mathematics as an archetype of the insoluble prob­
lem. In one of his religious meditations, John Donne (early seventeenth cen­
tury) mentions squaring the circle as something only God can achieve. Perhaps 
the expression "to put a round peg in a square hole" is a modern vestige of this 
old problem. And yet what a natural problem it is! The circle is the perfect 
round form, while the square is complete with its four equal sides and equal 
angles. What could be more natural than to transform the one into the other? 
But the solution has been as elusive as the alchemist's search for a way to trans­
form lead into gold. 

The problem is to construct a square with area equal to a given circle. What 
does this mean, exactly? By "construction," of course, is meant a geometrical 
construction with ruler and compass. But what is the area of a circle? In the 
theory of area presented so far, which corresponds to Euclid's usage in Books 
I - VI of the Elements, we have discussed the area of rectilineal figures only. So 
there is another problem implicit in the problem of squaring the circle, namely 
to give a good definition of the area of a circle . In the language of Section 23, we 
might ask for a measure of area function defined on all plane regions that can be 
bounded by straight line segments and arcs of circles. A modern approach to 
this (in the real Cartesian plane) is to use a definite integral to define the area. 
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Euclid never defines the area of a circle, and wisely avoids the problem of 
squaring the circle, but in Book XII, he does have a proposition saying that the 
ratio of the area of one circle to another is equal to the ratio of the squares of 
their radii. His proof makes use of the "method of exhaustion," which we would 
call a limiting process. The key result, which is remarkably similar to the treat­
ment of the Riemann integral in modern calculus classes, is this. 

Proposition 25.1 
In a Euclidean plane with (A), given a circle r, one can find an inscribed polygon P 
and a circumscribed polygon pi such that the difference in area rt.(pl) - rt.(P) is less 
than any preassigned quantity (as an element of the field F of segment arithmetic). 

Proof Start with any inscribed polygon 
p and any circumscribed polygon pi, 
where the vertices of P are the points of 
tangency of p'. If we double the number 
of sides of P and pi by bisecting all the 
central angles of P, then we get new 
polygons PI and P{. We compare the 
difference of PI and P{ to the difference 
of p and p'. Let us look at the triangle 
ABC, which is one piece of pi - P. The 
new difference P{ - PI intersected with 
ABC is represented by the shaded area. 

Euclid shows that the shaded area is 
less than one-half of the area of the tri­
angle ABC. In fact, its area is less than 
or equal to ~ of the area of that triangle 
(Exercise 23.4). So every time we double 
the number of sides, the new difference 
in areas of outside and inside polygons 
is less than half of the previous differ-
ence. Hence, using Archimedes' axiom 
(A), it can be made less than any preas-
signed quantity. 

o 
B I--------~ 

Approximating the circle by its inscribed and circumscribed polygons, Euclid 
could show that the ratio of the area of a circle to the square of its radius was a 
constant independent of the size of the circle. This constant, of course, is what 
we now call n. Archimedes, who lived shortly after Euclid, used the method of 
approximating by polygons to obtain the estimate 3 W < n < 3~, or in fractions, 
2i? < n < lif. Thus began one facet of the work inspired by the problem of squar­
ing the circle, namely to find increasingly accurate numerical approximations 
for n. Energetic human calculators worked hard on this problem, so that by 



25. Quadratura Circuli 223 

1600, the value of n was known to 15 decimal places, by 1700 to 71 places, and 
by 1873 to more than 500 places. Even today, the urge to compute is still strong, 
and with the help of electronic calculators, the value of n has been found to 
more than one billion decimal places. 

Coming back to the original problem of squaring the circle, it has always 
been regarded as very difficult, if not impossible. Since Lindemann proved in 
the 1880s that n is transcendental we have known that the problem as originally 
stated is mathematically impossible (cf. 13.2). Nevertheless, the problem has 
exerted a great fascination on the inquiring mind, and over the years, many 
people have come forward with solutions. The study of these solutions forms a 
colorful chapter in the history of mathematics. 

The solutions can be divided into three general categories. 
1. Honest ruler and compass constructions that, however, give only an ap­

proximate solution to the problem. One of the best of these depends on the 
coincidental proximity of the number ~ (3v1s + 9) = 3.14164 ... to n. 

II. Constructions using additional tools that give an exact solution to the 
problem. One such known from antiquity uses an auxiliary curve, the quadratnx. 

Take a quadrant AOB of the unit 
circle. Let OAI bisect the right angle, -g 
and let BI bisect the interval OB. Let the - P:--_ 
radius OA I meet the horizontal line 
through BI at C]. Bisect the two 45° an- 6\ t--+-k-=--7'--""" 

gles at 0 with OA2 and OA 3 , and bisect 
the intervals OBI and B] B with B2 , B3 • 13 1 t-~f---+-*----''-7''~ 
Let the radii meet the corresponding 
horizontal lines in C2 and C3 • Continu-
ing in this manner, bisecting angles and D I.. 
segments, one can construct as many 1oIIt~L::;;"""::::=---====-,r-=-\ 

points as one likes CI , C2 , C3 , . . •. The 
curve passing through these points is 
called the quadratrix. 

o 

With a little help from modern trigonometry we can express the curve para­
metrically as 

{ 

20 
x = ntanO' 

20 
Y=-, 

n 

where 0 is the angle of the radius to the x-axis. As 0 tends to 0 we obtain the 
point D where the curve meets the x-axis. Its x-coordinate is 2/n (Exercise 25.1). 
So clearly, if we are given a copy of the quadratrix curve, we can obtain the 
quantity n, and hence can construct a square with area equal to a given circle. 
Note, however, that this is not an honest ruler and compass construction: 
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Though we can obtain as many of the Ci as we like by ruler and compass, the 
point D is obtained only as a limit of the Ci as they approach the x-axis. 

III. Solutions by people I would like to call fringe mathematicians, though 
they have been called by worse names, who have little mathematical training 
but are attracted to famous problems like the moth to the flame. The hint that a 
problem may be insoluble inspires them to work even harder, as they have a 
conviction that they will succeed where others have failed. Their solutions are 
a jumble of facts and fallacies lacking in logical coherence. Pointing out their 
errors and quoting the results of established mathematicians only confirms their 
belief that they have discovered the real truth that all the scholars were too blind 
to see. Sometimes their solutions come from divine inspiration, which leaves 
little room for discussion, since one cannot argue with God. 

A case in point is Joseph Ignati Carl von Leistner, a knight in the service of 
Francis I (1708-1765), duke of Lorraine, and later Holy Roman emperor. Herr 
Leistner discovered that the exact value of 1l was 3844/1225. When his discovery 
did not occasion the acclaim he expected, he used his influence with the duke to 
appoint a imperial commission to report on his work. This commission natu­
rally pointed out his errors, upon which he published a lengthy rebuttal attack­
ing his critics and defending his work. Apparently, Herr Leistner believed that 
the true value of 1l would be a ratio of integers, but that no one had yet been 
clever enough to find the right ones, as he did. One of his arguments goes like 
this: "Archimedes proposed the values 22/7 and 223/71, but even he acknowl­
edged that they were not correct, while mine is the correct value." Herr Leistner 
failed to notice that his value fell outside of the bounds proved by Archimedes. 
On the occasion of his lord's marriage to Maria Theresa of Austria in 1736, Herr 
Leistner published a treatise on the wonderful coincidence of the numbers 3844 
and 1225 with various dates and other numbers from the life of the duke and his 
bride. 

Exercises 
25.1 (a) Derive the parametric equations for the quadratrix given in the text. 

(b) Use a little first-year calculus to show that the point D has x-coordinate 2/n. 

25.2 (a) Let rbe the circle of radius 1. Find the area of the inscribed polygons of6, 12, 24, 
48, 96, 192 sides, and express them in standard form (Exercise l3.2) as a rational 
number times an expression involving integers and square roots. Then verify that 
the area of the inscribed 192-gon is greater than 223/71, thus confirming Archi­
medes' estimate 223/7l < n. (Check: To four decimals, area of inscribed 48-gon is 
3.1326, 96-gon is 3.l394, 192-gon is 3.1410.) 

(b) Show that the area of the circumscribed 96-gon is less than 22/7, confirming the 
inequality 1l < 22/7. 
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26 Euclid's Theory of Volume 

Euclid discusses three-dimensional geometry in Book XI, and beginning with 
(XI.28) he treats the volume of solid figures. As with area in Book I, there is no 
definition of volume, and no acknowledgment that we are dealing with a new 
sort of equality different from congruence. From his proofs it becomes apparent 
that he is using "equality" of solid figures to mean equality of volume. Exactly 
what his notion of volume is becomes more clear as we progress; to begin with, 
we can think of a notion similar to the notion of content for plane figures, 
achieved by adding and subtracting congruent pieces of a dissection of the 
figure. 

To simplify our discussion of Euclid's text, let us suppose that we are work­
ing over a field F and are given a volume fUnction v that to each solid figure 
F associates a nonnegative element v(F) E F, that assigns the same volume 
to congruent figures, and that is additive for unions with nonoverlapping in­
teriors. Each of Euclid's results can be interpreted as saying that certain figures 
have equal volume. Our attention will be focused on how Euclid proves this 
equality. 

First we fix our terminology. A pyr­
amid is a solid figure formed by taking a 
plane figure, say ABCD, and joining its 
vertices to a point 0 outside the plane 
of ABCD. If the base is a triangle, we 
speak of a triangular pyramid, if the base 
is a square, a square pyramid, etc. 

A prism is a solid figure formed by 
taking two congruent figures in parallel 
planes, with parallel edges, and joining 
their corresponding vertices. Its faces 
consist of the two original congruent 
figures, plus parallelograms joining the 
corresponding sides. If the base is a tri­
angle, it is a triangular prism (as shown). 

A parallelepiped is a prism whose 
base is a parallelogram. It is formed by 
three pairs of parallelograms in parallel 
planes. 

I'---______ ~ C. 
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Euclid's first results concerning vol­
ume are proved by methods entirely 
analogous to the methods of Book 1. So 
for example, in (XI.28) he shows that a 
parallelepiped is bisected by the plane 
through two opposite edges. Note that 
Euclid proves that the two halves have 
congruent faces and angles. But they 
cannot be superimposed on each other 
in three dimensional space, because 
they are mirror images. However, Leg­
endre gives a proof that they are equiv­
alent in the sense of dissection, and we 
will see later (Exercise 26.1) that any 
solid figure is equivalent by dissection 
to its mirror image. 
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Using techniques exactly analogous to those of Book I, Euclid shows (XI.29) 
and (XI.30) that parallelepipeds with the same base and of the same height have 
the same volume. Then (XI.31) he shows, using the method of (1.44), that paral­
lelepipeds having equal bases (in the sense of same content) and of the same 
height have equal volume. Using these results, one could show as a corollary 
that any parallelepiped has the same volume as a rectangular parallelepiped 
with sides 1, 1, and a, for some a E F. In fact, assuming the field to be Archime­
dean, one can accomplish this by dissection, that is, by cutting the solid into 
pieces and rearranging. 

As an interesting application of 
these methods, Euclid shows (X1.39) 
that if we are given two triangular 
prisms, one lying on its side, and the 
other standing up, and if the parallelo­
gram base of the one is equal to twice 
(in the sense of content) the triangular 
base of the other, and if they have the 
same height, then they have equal 
volume. 

The method is to double each to get parallelepipeds, which have equal vol­
ume by the earlier results, and then appeal to the principle that "halves of 
equals are equal." When we think of volume as a function with values in a field, 
this principle poses no problem. However, if we sought to develop a purely geo­
metric theory of volume by dissection or by content, as we did for area, it would 
require justification. 

So we see that the theory of volume of parallelepipeds and prisms can be 
handled by methods familiar from the theory of area, and this involves nothing 
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really new beyond translating ideas from the plane into three-dimensional 
space. 

When we come to the study of the volume of pyramids in Book XII, how­
ever, the situation is quite different. The key result here is (XII.5), which, in a 
special case, is the content of the following proposition. 

Proposition 26.1 (XII.5) 
Triangular pyramids having equal bases (in the sense of content) and equal height 
have equal volume. 

Proof For the proof, Euclid uses the method of exhaustion, attributed to Eudoxus. 
The idea is to write both figures as infinite unions of subfigures of equal volume, 
each one equal to more than one-half of what was left over after removing the 
previous subfigures. In this way the subfigures "exhaust" the entire figure , and 
from the equality of volume of the subfigures one concludes the equality of vol­
ume of the whole figures. This last step requires an explicit use of Archimedes' 
axiom, because as Euclid says in the proof of (XII.5), if the two pyramids were 
different, let this exhaustion process be done until the remainder left over is less 
than the difference of the two pyramids. This is possible because each remain­
der is less than one-half of the previous remainder, and so by repeating this 
process can be made smaller than any preassigned quantity. 

In modern language, we would say that the volume of the whole pyramid is 
the limit of the volumes of the subfigures, and the definition of limit using c's 
and 15's is nothing but a modern rewording of the argument Euclid uses here. 

Now let us examine the particulars 
of the proof. Let ABCD be one of the 
given triangular pyramids. Let E, F, G, 
H, J, K be the midpoints of the sides. 
Then the pyramid P is decomposed into 
four pieces: two smaller pyramids PI = 
AEFG and Pz = FBHK, which are con­
gruent to each other and have edges 
equal to ~ the edges of P; and two trian­
gular prisms Tl = FHKGJD and Tz = 
EFGCHJ. Of these, TI is lying on its 
side, while Tz is standing up, and the 
base of Tl is a parallelogram HJKD 

A 

equal to twice the triangle CHJ (in fact, D 
it is the union of two triangles congru- a ~ _____ ..::io..:."':""" ___ _ ~ 

ent to this one, if one draws the line JK). 
SO by (XI.39), Tl and T z have the same volume. Furthermore, since Tz and 

PI have the same base EFG, and the same height, and one is a prism while the 
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other is a pyramid, it is clear that T z is greater than p] in volume. (In fact, the 
pyramid ECHI is congruent to p] and is contained in Tz.) So we conclude that 
T] + Tz is more than one-half of P in volume. 

Now suppose we divide the second pyramid pi similarly into two pyramids 
P{ ,P~ and two prisms T{, T~. Since the base triangles of P and pi are equal in 
content, it follows that parallelepipeds on the bases of T] and T{ of the same 
height will have equal volume (XI.39), and hence their halves T] and T{ will 
have equal volume. So T] + T z and T{ + T~ have equal volumes, which are re­
spectively more than one-half the volumes of P and p'. Moreover, the re­
mainders P1 + Pz and P{ + P~ are unions of pyramids of equal height and having 
bases of equal content. 

Thus, inductively, we can repeat this process and write each of p], Pz, P{ , P~ 
as unions of four pieces, two pyramids, and two prisms, and continue in this 
manner. 

Since the prisms constructed at each step have equal volume, and these 
exhaust the pyramids as explained above, in the limit, we find that P and pi 
have the same volume. 

Corollary 26.2 (XII. 7) 
A triangular pyramid has volume equal to one-third of a triangular prism on the 
same base and of the same height. 

Proof Let ABCDEF be a triangular 
prism. We can regard the prism T as the 
union of three pyramids P1 = CDEF, 
Pz = ACDE, and P3 = ABCE. 

Think of P1 and Pz as pyramids with 
vertex E and bases the triangles CDF 
and ACD. These two triangles are 
halves of the parallelogram ACDF, 
hence have equal area (or content). So 
by (26.1) P1 and Pz have equal volume. 

The two pyramids Pz and P3 can be 
regarded as pyramids with vertex C and 
bases the triangles ADE and ABE. These F 
triangles are halves of the parallelogram 
ABDE, hence have equal content. The 
two pyramids have the same height, so 
by (26.1) again, Pz and P3 have the same 
volume. 

Thus P1 , Pz, P3 all have the same volume, so this volume is equal to one-third 
the volume of the prism. 
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Euclid's use of the method of exhaustion here requires some comment. First 
of all, it is clear that a theory of volume based on this result will be considerably 
more complicated than the notion of content for plane figures. If we presuppose 
the existence of a volume function and work over an Archimedean field, this is a 
perfectly good proof. However, if we wish to establish a purely geometric theory 
of volume, we will have to allow limiting processes such as this method of 
exhaustion in our definition, along with the earlier notions of dissection and 
complementation. 

Secondly, we can wonder whether this method is really necessary. Note that 
(XII.5) applies to the problem of mirror images mentioned earlier. Any figure 
bounded by planes can be cut up into a finite number of triangular pyramids, so 
it is enough to show that a triangular pyramid P has the same volume as its 
mirror image p'. Since P and pi have congruent bases (hence same content) and 
the same height, (XII.5) applies to show that P and pi have the same volume. 

Gauss, in a letter to Gerling in 1844, says that it is too bad that the equality of 
volume of two symmetrical but not congruent figures can be proved only using 
the method of exhaustion. Gerling in his reply gives a direct proof that any tri­
angular pyramid can be dissected into twelve pieces that are congruent to those 
in a dissection of its mirror image (Exercise 26.1). Gauss responds yes, that is 
nice, but it is still unfortunate that the proof of (XII.5) seems to require the 
method of exhaustion. 

These reflections, contrasted with the theorem of Bolyai and Gerwien that 
plane figures of equal area are equivalent by dissection (24.7), led Hilbert to in­
clude this question in his famous list of the 23 most important problems facing 
mathematics in the twentieth century, which he presented at the International 
Congress of Mathematicians in 1900. The third problem was to show that the 
method of exhaustion really is necessary, by exhibiting two solid figures of the 
same volume that cannot be subdivided in any way into a finite union of con­
gruent pieces. This was done in the same year by Max Dehn, who showed that 
indeed, the method of exhaustion is necessary. In particular, it is not possible to 
dissect a regular tetrahedron into a finite number of pieces that can be re­
assembled into a cube (Section 27). 

Exercises 
26.1 Gerling's proof that a triangular pyramid and its mirror image are equal by 

dissection. 

(a) Let ABCD be a given triangular pyramid. Show that it can be inscribed in a 
sphere, i.e., there is a sphere containing the points A, B, D, D. Then by drawing 
planes through the center 0 of the sphere and the edges of the original pyramid P, 
show that P can be dissected into four triangular pyramids PI, P2 , P3 , P4 with bases 
ABC, etc., and such that the vertex 0 is equidistant from the three vertices of the 
base of each Pi. 



(b) Now let PI = OABC be a trian­
gular pyramid with 0 equidistant from 
A, B, C. Drop a perpendicular OD to the 
plane of ABC, and show that D is equi­
distant from A, B, C. Then by drawing 
planes through OD and A, B, C respec­
tively, show that PI is subdivided into 
three right isosceles triangular pyramids 
Pll,PI2,PI3. So for example, Pll = 
OABD, and OA ~ OB, DA ~ DB, and 
OD ..1 DA and OD ..1 DB. 

(c) Show that a right isosceles triangu­
lar pyramid Pll as just described is 
congruent to its mirror image, by a 
motion in 3-space. 
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(d) If P is the original pyramid, and pi its mirror image, show that P = L: Pi) and 
pi = L: Pij are two decompositions into twelve pieces each, and Pij ~ Pij. 

26.2 Show that a regular tetrahedron of edge 1 can be dissected into four regular tetrahe­
dra of edge! plus a regular octahedron of edge !. 

27 Hilbert's Third Problem 

As mentioned in the last section, Hilbert's third problem was to show that the 
method of exhaustion really is necessary in Euclid's proof of (XII.S). More pre­
cisely, the problem is to find two solid figures of equal volume that are not 
equivalent by dissection, even after possibly adding on other figures that are 
equivalent by dissection. This problem was solved in 1900 by Max Dehn, and 
here we give a modern algebraic version of his solution. 

This is another example of the use of methods of modern algebra to solve a 
purely geometric problem. To show that a certain dissection is possible, it is 
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enough to exhibit the dissection and prove that the parts are congruent. This we 
have done with many areas (Section 24), and it is a purely geometric process. 
However, to show that a certain dissection is not possible requires a different 
approach. 

In contemporary mathematics, a proof that certain geometric objects are not 
equivalent in some way is usually accomplished by defining an invariant that is 
the same for equivalent figures, and then showing that the invariant of the fig­
ures in question are different. This is the philosophy behind the study of homo­
topy and homology groups in topology, for example. Modern algebra renders a 
great service in providing the tools for defining these invariants and calculating 
them. 

In the present case, we will define a certain abelian group G, and for each 
polyhedral figure P we will define an element <>(P) E G, called the Dehn invariant 
of P. We will show that <> of congruent figures is the same, and that <> is additive, 
in the sense that <>(PI U P2) = <>(PI) + <>(P2) for figures PI, P2 with nonoverlapping 
interiors. It follows that figures that are equivalent by dissection or by com­
plementation (the three-dimensional analogue of equal content-cf. Section 22) 
have the same invariant <>. We will compute <> of a tetrahedron, which will be 
nonzero, and <> of a cube, which will be zero. This will show that a tetrahedron is 
not equivalent to any cube by dissection or complementation. 

We start with the definition ofthe group G. 

Definition 
Let G be the set of all expressions 

(al,IXI) + (a2,1X2) + ... + (an,lXn), 

where ai are real numbers (ai E lR), and the lXi are real numbers modulo n 
(lXi E lR/nZ), modulo the equivalence relation generated by the two following 
types of operations: 

(a, IX) + (a,p) = (a, IX + P), 

(a, IX) + (b, IX) = (a + b, IX). 

We define addition by adding one expression to another to make a longer expres­
sion, and the order of the terms does not matter. Thus addition is associative 
and commutative. 

Lemma 27.1 
G is an abelian group (called the tensor product lR ®z lR/nZ). 

Proof We must show the existence of an additive identity (0) and additive 
inverses. First we note that for any a E lR, 
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(a,O) = (a, 0) + (0,0) 

= (a, 0) + (a, 0) + (-a, 0) 

= (a,O) + (-a,O) 

= (0,0) 

using the rules of operation above. Similarly, one can show that (0, IX) = (0,0) for 
any IX E lR/nZ. 

Now let 0 = (0,0). Then for any (a, IX), 

so 0 is an additive identity. 

0+ (a, IX) = (0,0) + (a, IX) 

= (a, 0) + (a, IX) 

= (a, IX), 

Given any (a, IX), if we add (-a, IX) we get (O,IX) = 0, so (-a, IX) is an additive 
inverse. Thus G is an abelian group. For simplicity we will henceforth denote 0 
by O. 

Definition 
For any polyhedral solid P in Euclidean 
3-space over the real numbers, we de­
fine its Dehn invariant J(P) E G as fol­
lows. For each edge of P, let the length 
of the edge be a, and let IX be the dihe­
dral angle (measured in a plane perpen­
dicular to the edge) in the interior of the 
solid between the two planes meeting 
along the edge. 

We take IX in radians to be a positive 
number and reduce (mod n). Then we 
define 

where the sum is taken over all the 
edges of P. 

Example 27.1.1 
Let P be a cube whose edge has length 
a. The dihedral angle between any two 
faces is a right angle, so 

J(P) = 12(a, n/2), 
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since there are 12 edges of length a. Now, in the group G, 

Hence J(P) = O. 

(a, n/2) = (a/2, n/2) + (a/2, n/2) 

= (a/2, n) = o. 

In fact, the same method shows that J(p) = 0 for any rectangular 
parallelepiped. 

Example 27.1.2 
Let P be a right triangular prism with 
base edges a, b, c, base angles IX, jJ, y, and 
height h. Then 

J(P) = 2(a, n/2) + 2(b, n/2) + 2(c, n/2) 

+ (h, IX) + (h,jJ) + (h, y). 

As above, (a, n/2) = 0, and similarly for 
band c. Now, in G we have 

(h, IX) + (h, jJ) + (h, y) = (h,2n) = O. 

So J(P) = O. 

Example 27.1.3 
Let P be a regular tetrahedron of edge a. Then P has six edges of length a, all 
having the same dihedral angle IX, so 

J(P) = 6(a, IX). 

We can compute the angle IX by 
drawing the altitudes of two of the 
faces. We get a triangle AHC, with 
AC = a, and with AH = HC = V3/2a, 
the altitude of an equilateral triangle. 
The perpendicular from A to the face 
BCD of the tetrahedron meets it at a 
point K equidistant from A, B, C. So K is 
the centroid of ABC, and HK = ~HC. 
From this we conclude that 

1 
cos IX = 3' 

and this determines the angle IX. 

We will show later that J(P) 'I- 0 
in G. 

A 
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Proposition 27.2 
The Dehn invariant 0 has the following properties. 

(a) IfP and P' are congruent, theno(P) =o(P'). 
(b) If PI and Pz have nonoverlapping interiors, then 

Proof Statement (a) is obvious, because congruent figures have congruent 
edges and congruent dihedral angles, so their lengths ai and measure of angles 
lXi are equal. 

For (b), in comparing the union PI U Pz to the two pieces PI and Pz, there are 
three ways in which the edges of PI U Pz can be different than the aggregate of 
the edges of PI and Pz. In each case we will show that the contribution to 0 is the 
same. 

Case 1 An edge of PI and an edge of Pz 
can be glued to form a single edge of 
PI U Pz. In this case the angle IX of that 
edge in PI U Pz will be the sum IXI + IXZ of 
the angles in PI and Pz. 

Since (a, IXI + IXz) = (a, IXd + (a, IXz) in 
G, the contributions to 0 are the same. 

Case 2 Two edges of length a in PI and 
of length b in Pz having the same angle 
IX can be attached end to end to form a 
single edge of PI U Pz. Since (a + b, IX) = 
(a, IX) + (b, IX) in G, the contributions to 0 
are the same. 

Case 3 Two edges of PI and Pz can be 
glued so as to make a single face. In this 
case there is no corresponding edge of 
PI U Pz. But the dihedral angles IX, fJ of 
that edge in PI and Pz will add up to n. 
Since 

(a, IX) + (a, fJ) = (a, n) = 0 in G, 

the contribution to 0 is unchanged. 

A 
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There are some further possibilities, essentially equivalent to those above, 
which we leave to the reader. This shows that J is additive, as claimed. 

Proposition 27.3 (Dehn's solution to Hilbert's third problem) 
In Euclidean 3-space over the real numbers, a tetrahedron cannot be dissected into a 
cube. 

Proof Because ofthe properties (27.2), any two figures equivalent by dissection 
must have the same Dehn invariant. We have seen that the invariant of a cube 
of any size is 0, so it is sufficient to show that the invariant of a tetrahedron is 
nonzero. This will be a consequence of the following two lemmas: 

Lemma 27.4 
An element of the form (a, a) EGis zero if and only if a = 0 or a is a rational multi­
ple ofn(a E n<Q). 

Proof First suppose a E n<Q, so a = (r/s)n, with r,s E lL. Then in G we can write 

(a, a) = sGa,a) = Ga,sa) = G,m) = o. 

Conversely, suppose a i= O. We will define a group homomorphism 
rp : G ~ IR/ n<Q as follows. Think of IR as a vector space over <Q. Since a i= 0, a<Q is 
a I-dimensional subvector space. Choose a complementary subspace V, so that 
every element b E IR can be written uniquely as 

b=ra+v 

with r E <Q and v E V. For any element g = 'IJbi,fJJ E G write each bi = ria + Vi 
with ri E <Q, Vi E V, and define 

rp(g) = L rifJi E lR/n<Q. 

We must check that rp is well-defined. First, note that if fJi E nlL, then 
rifJi E n<Q, so it is well-defined on fJi (mod n). Second, we must see whether rp re­
spects the equivalence relation used to define G. If 

and 

then 

(b, fJ) = (b l , fJ) + (b2 , fJ) 

bl = rja+vI, 

b2 =r2a + v2, 
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so 

rp(b,P) = (rl + rz)p = rp(b1,P) + rp(bz,P)· 

On the other hand, if 

and b = ra + v, then 

Thus rp is well-defined. 
Now observe that a = 1 . a + 0, so rp(a,O() = 0( E lR/n<Q. So if (a, O() = 0 in G, it 

follows that rp(a, O() = 0 in lR/n<Q, and hence 0( E n<Q, which is what we wanted to 
prove. 

Lemma 27.5 
If 0( is an angle with cos 0( = ~, then 0( is not a rational multiple of n. 

Proof We will offer two proofs of this fact. The first is "elementary" in the sense 
of using nothing more than trigonometry, but does not give much insight into 
why the result is true. The second is more conceptual, but uses results from the 
Galois theory of cyclotomic extensions of <Q. 

1st Proof From a small right triangle 
we see that tan 0( = 2,;2. Our proof will 
consist in showing that for every posi­
tive integer n, tan nO( ¥- 0,00. This is suf­
ficient to show that a ¢: n<Q, because if 0( 
were a rational multiple of n, then some 
nO( would be an integral multiple of n, in 
which case tan nO( = 0 or 00. 

We compute tan nO( inductively using the angle sum formula for tangents: 

In this way we find that 

( ) tan 0( + tan nO( 
tan n + 1 0( = . 

1 - tan 0( tan nO( 

tan 0( = 2,;2, 
4 

tan 20( = --vz 
7 ' 

10 
tan 30( = -VZ, 

23 

and so on. More generally, if tan nO( = a/b,;2, with a, b E 71, then 

a + 2b r;:; 
tan(n + 1)0( = -b-- v 2. 

-4a 
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We conclude, inductively, that tan nO( is a rational multiple of viz for all n ~ l. 
While the rational numbers that occur seem more and more complicated, mat­
ters are simpler if we look at the numerator and the denominator of this fraction 
(mod3) . To be precise, consider the transformation that takes an ordered pair 
(a , b) and sends it to (a + 2b, b - 4a), and regard a, b as elements of 7L/37L. Start­
ing with a = 2, b = 1, we obtain 

(2, 1) ~ (1, 2) ~ (2,1). 

After two steps it repeats. We conclude that for any n ~ 1, tan nO( = (a/b) viz, 
with (a, b) == (2,1) or (1,2) (mod3). In particular, neither of a, b can be 0, so 
tan nO( # 0, 00, as required. 

2nd Proof If cos 0( =~, then sin 0( = 
~ viz. Consider the complex number 

Z = cos 0( + i sin 0( = ~ + ~ R. 

Obviously, z is a root of a quadratic 
equation over <Q (in fact, 3z2 + 2z + 
3 = 0) , so z generates a field extension 
<Q(z) of degree 2 over <Q. 

Now, if 0( is a rational multiple of n, then we can write 0( = E. . 2n with p, 
q 

q E 7L , (p , q) = 1. In this case z will be a primitive qth root of unity. Its minimal 
polynomial over <Q will be the cyclotomic polynomial <l>q(z), which has degree 
cp(q), where cp is the Euler cp function (32.7). 

In our case z has degree 2 over <Q, so we conclude that cp(q) = 2. If 
q = pfl ... p;' is the prime factorization of q, then 

So the only values of q that give cp(q) = 2 are q = 3,4,6. The corresponding field 
extensions are <Q( R) and <Q(i). Neither ofthese is equal to <Q(z) = <Q( R), so 
we have a contradiction. This shows that 0( is not a rational multiple of n. 

Exercises 

27.1 Compute the Dehn invariant of a regular octahedron of side a. Show that this ele­
ment is nonzero in G, so the octahedron cannot be dissected into a cube. Show fur­
thermore that an octahedron cannot be dissected into a regular tetrahedron. 
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27.2 Show that two tetrahedra of edge 1 cannot be dissected into a single tetrahedron of 
edge «'2. Is it possible to dissect 8 tetrahedra of edge 1 into a single tetrahedron of 
side 2? 

27.3 Is there any triangular pyramid with Dehn invariant O? 

27.4 Compute the Dehn invariant of a right 
isosceles triangular pyramid ( Exercise 
26 .1) OABC with AB = AC = a, base 
angle LBAC = e, with OA perpendicu­
lar to the plane of ABC, and dihedral 
angle IX along BC. Use this to determine 
the image of the map b, Le., the sub­
group of G consisting of elements 
that are the Dehn invariant of some 
polyhedron. 

o 

c 
27.5 Imitate the first proof of Lemma 27.5 to show that if tan IX E <Q, and IX is a rational 

multiple of 71:, then tan IX = 0, ±1, 00. Hint: Let tan IX = (rls) with r, s E 7l, (r, s) = 1. If 
r, s are not both ±1, take an odd prime divisor p of r2 + S2 , and make a calculation 
(modp) similar to the one (mod 3) in (Lemma 27.5) . 

27.6 Use the second proof of (Lemma 27.5) to show that if cos IX E <Q and if IX is a rational 
multiple of 71:, then cos IX = 0, ±~, ±1. 

Hobbes, on being asked why he did not read 
more? answered, if I read as much as other 
men, I should know as little; his library con­
sisted of Homer, Thucydides, Euclid, and Virgil. 

- from the introduction to the 
Retrospective Review, Vol. 1(1820) 



CHAPTER 

Construction 
Problems and 
Field Extensions 

uring the earlier parts of this book, we started always 
from Euclid's geometry, developing and expanding it 
using our modern mathematical awareness. Because 
of the construction of the field of segment arithmetic, 
one could even argue that the use of fields in Chapter 
4 arises naturally from the geometry. In this chapter, 
however, we will make use of modern algebra, the 
theory of equations and field extensions, and in par­
ticular the Galois theory, as it developed in the late 

nineteenth and early twentieth centuries. 
We use algebra as a lens to examine and interpret geometrical questions in 

a new way. It was this algebraic interpretation that first provided the tools for 
rigorously proving the unsolvability of classical construction problems. If these 
proofs seem easy today, just think of all the modern algebra we take for granted 
that did not exist even two hundred years ago. 

We begin by examining three classical construction problems, two of which 
we can prove to be impossible using field theory. (The third depends on the 
transcendence of 71:, whose proof would carry us too far afield.) 

Next we consider the problem of constructing regular polygons, and give 
Gauss's proof of the constructibility of the regular 17-sided polygon. 

In Section 30 we consider constructions made with an additional tool, the 
marked ruler. Using the marked ruler we show how to extract cube roots and 
trisect angles. Then in Section 31 we study the real roots of cubic and quartic 
equations, and show that the constructions with compass and marked ruler are 
equivalent to solutions of quadratic, cubic, and quartic equations. 

241 
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In an appendix Section 32 we collect, mostly without proof, the results from 
field theory that we use in the earlier sections of this chapter. 

In this chapter we work always over a subfield of the real numbers JR. 

28 Three Famous Problems 

In this section we will discuss three classical construction problems via field 
theory. Recall (13.2) that a point with coordinates (a,p) in the real Cartesian 
plane can be constructed with ruler and compass if and only if the coordinates 
a, p can be obtained from the initial data by a finite number of field operations 
and extractions of square roots of positive quantities. If we suppose that the 
initial data are given by rational numbers, then this is equivalent to saying that 
a and p are elements of the constructible field K (16.4.1), which is just the set of 
those real numbers that can be obtained by a finite number of field operations 
and square roots from <Q. We say that a real number a is constructible if it is an 
element of K. So a point (a, P) in the real Cartesian plane is constructible by 
ruler and compass from the rational numbers if and only if a and p are con­
structible numbers. 

For our applications we need some criteria to decide when a number is con­
structible. The first is merely a restatement of what we have just said. 

Proposition 28.1 
A real number a E JR is constructible if and only if there is a tower of sub fields of JR, 

such that a E Fk and each Fi = Fi- l ( yfai) for some ai E Fi-l. 

Proof In writing a as obtained by a finite number of field operations and square 
roots, each time there is a square root, let Fi be the field generated by that 
square root over the previously constructed field. Conversely, if a E Fk, then by 
construction it is written using field operations and square roots. 

Corollary 28.2 
If a E JR is constructible, then deg<Q(a)/<Q is a power of 2. 

Proof Here we use the notion of the degree of a field extension (32.1). Adjoin­
ing a square root of an element that is not already a square creates a field ex­
tension of degree 2. So, assuming that the extensions in (28.1) are all nontrivial, 
we find that degFk/<Q = 2k. Since <Q ~ <Q(a) ~ Fk, by multiplicativity of degrees 
offield extensions (32.1) we see that deg<Q(a)/<Q is a power of2. 
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Remark 28.2.1 
This simple statement is already enough to dispose of two of the three classical 
construction problems. Beware, however! The converse of this statement is false 
(28.7.1). 

Duplication of the Cube 

The problem is, given a cube, to construct a new cube whose volume is twice 
the volume ofthe old cube. We will interpret the phrase "given a cube" to mean 
that we are given its edge, as a line segment in the plane, and the problem is 
then to construct the edge of the new cube. If the first cube has edge a, then we 
are looking for a length b such that b3 = 2a3 . This means that b = Vza. If b is 
constructible, then Vz is constructible, and conversely. 

Theorem 28.3 
Vz is not in K. Hence the duplication of the cube is not possible by ruler and 
compass. 

Proof Consider 0( = Vz. It is a root of the equation x 3 - 2 = O. The polynomial 
x3 - 2 is irreducible over <Q. Indeed if it factored, then at least one factor would 
be linear, so it would have a root. Let this root be alb with a, b E 'IL, a, b relatively 
prime. Then 

a 3 = 2b3 . 

It follows that a is even. Then 23 1a3, so 22 1b, so b is also even. This contradicts 
the hypothesis that a and b were relatively prime. 

Now, since x3 - 2 is irreducible, the field <Q( Vz) is an extension of degree 3 
of <Q. Since 3 is not a power of 2, we conclude Vz ¢ K, by (28.2). 

Trisection of the Angle 

The problem is, given an angle in the plane, to construct by ruler and compass a 
new angle equal to one-third of the given angle. This problem is a bit more 
complicated because some angles can be trisected. For example, if the given 
angle is a right angle, we can construct an angle equal to one-third of it (30°) 
by first constructing an equilateral triangle (U) and then bisecting one of its 
angles. See also Exercise 28.4. 

We will show that the problem of trisecting the angle is not always possible 
by exhibiting one angle that exists in the Cartesian plane II over the con­
structible field K, namely an angle of 60°, whose third, an angle of 20°, does not 
exist in II. If an angle oc exists in II, then the trigonometric functions sin oc, cos oc, 
tan oc will be elements of the field K (Exercise 20.15). 

Theorem 28.4 
The real number 0( = cos 20° is not in K. Hence an angle of 60° cannot be trisected 
by ruler and compass. 
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Proof Using the sum angle formulas for sin and cos, we find for any angle e 
that 

cos 3e = 4 cos3 e - 3 cos e. 

Since cos 60° = ~, the real number rx = cos 20° satisfies 

3 1 4rx - 3rx =-. 
2 

In other words, rx is a root of the equation 

3 1 
4x - 3x - - = O. 

2 

We will show that this equation has no roots in K. Making the substitution 
y = 2x, it is sufficient to show that the equation 

y3 _ 3y -1 = 0 

has no roots in K. 
First we show that it has no roots in <Q. If it did, let the root be alb, with 

a, b E 7L, relatively prime. Then 

a3 - 3ab2 - b3 = O. 

Consequently any prime factor p of a also divides b, and conversely, any prime 
factor of b divides a. Since a, b are relatively prime, we conclude that a, b = ±1, 
so alb = ± 1. But by inspection we see that neither +1 nor -1 is a root of the 
equation. 

Hence y3 - 3y - 1 is an irreducible polynomial over <Q, since it is of degree 
3 with no rational roots. We conclude that <Q(rx) is an extension of degree 3 of<Q. 
But if rx were constructible, then <Q(rx) would have degree a power of 2 over <Q 
(28.2). We conclude that rx rt K, so the angle of 20° is not constructible. 

Squaring of the circle 

The problem is, given a circle, to construct by ruler and compass a square of 
area equal to the area enclosed by the circle. If the circle has radius r, its area is 
nr2, so we need a square of side a with a2 = nr2. Thus a = Vii . r. If a were con­
structible from r, then Vii, and hence n would be constructible. 

Theorem 28.5 
n rt K, so the problem of squaring the circle cannot be solved by ruler and compass. 

The fact that n rt K is a consequence of the stronger fact that n is transcen­
dental over <Q: There is no polynomial with rational coefficients having n as a 
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root. But every element of K is algebraic over <Q. The proof that n is transcen­
dental is analytic, so we will not give it here. See, for example, Stewart (1989), 
Chapter 6. See also Section 25 for further discussion of this problem and its his­
tory. And see (42.4.1) for a surprise: In the hyperbolic plane, some circles can be 
squared! 

Up to here we have used only the necessary condition (28.2) for a number to 
be constructible. Using a little more field theory, we will now derive a necessary 
and sufficient condition for a real number to be constructible. It depends on a 
remarkable coincidence of three separate notions: adjoining square roots, solv­
ing quadratic equations, and making field extensions of degree 2. 

Proposition 28.6 
Let F ~ E be an extension of fields of characteristic not equal to 2. Then the following 
conditions are equivalent: 

(i) E = F( via) for some a E F, via rf: F. 
(ii) degE/F = 2. 

(iii) E = F((1.), where (1. is a root of an irreducible quadratic polynomial over F. 

Proof (i) =} (ii). If E = F(vIa), then every element of E can be written uniquely 
in the form Cl + C2v1a, Cl, C2 E F, so degE/F = 2. 

(ii) =} (iii). If degE/F = 2, and if (1. E E is any element not in F, then 1, (1., (1.2 

are linearly dependent, so (1. satisfies an irreducible quadratic equation with co­
efficients in F. 

(iii) =} (i). Follows from the quadratic formula: The roots of the equation 
ax2 + bx + c = 0 are given by (1. = (1/2a)( -b ± v'b2 - 4ac). 

Remark 28.6.1 
This is indeed an elementary result, but we thought it worth stating explicitly 
because of the contrast with what happens in higher degrees-cf. Exercise 28.5 
and Section 31. 

Proposition 28.7 
A real number (1. is constructible if and only if the Galois group of its minimal poly­
nomial is a group of order 2n for some n. 

Proof Suppose (1. is constructible. Then there is a tower of fields 

as in (28.1). For any isomorphism (J : Fk ----) F' to a sub field F' of <C, F' will also be 
the top of a similar tower 
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Hence every element of F' can be obtained by field operations and succes­
sive square roots. The subfield F of <C generated by the fields a(Fk) for all pos­
sible such a is then a normal extension of <Q, whose degree over <Q is a power 
of 2. 

Now, if a is an element of Fk with minimal polynomial f(x), then all the 
conjugates of a lie in the various fields a(Fk), so the splitting field E of f(x) will 
be a subfield of F. Hence also the degree of E/<Q, which is equal to the order of 
the Galois group G of f(x), is a power of 2. 

Conversely, let a E JR, and assume that the Galois group G of its minimal 
polynomial has order a power of 2. An elementary result in group theory states 
that the center of a p-group is nontrivial (see, e.g., Herstein (1975), p. 86). Hence 
G has a normal subgroup G1 of order 2. Applying the same argument to G/G1 

and continuing, we find that there is a chain of subgroups 

{ e} = Go s; G1 s; G2 s; ... s; Gn = G 

where each Gi is normal in G, and G;jGi-1 has order 2. 
By the fundamental theorem of Galois theory (32.4), if we denote by E the 

splitting field of the minimal polynomial f(x) of a, there is a chain of fields 

<Q = Eo s; E1 s; ... s; En = E s; <C 

with each E;jEi-1 of degree 2, and each Ei is a normal extension of <Q. Let 
Fi = Ei n JR. Then we have 

<Q = Fo s; F1 s; F2 s; ... s; Fn = En JR. 

Now, each Ei is normal over <Q, so complex conjugation r acts on Ei, with fixed 
field Fi. Hence degE;jFi = 1 or 2 for each i. More precisely, if k is the largest 
index for which Ek s; JR, then Fi = Ei for i:::; k; Fk = Fk+1, and degE;jFi = 2 for 
all i > k. In particular, degF;jFi-1 is equal to 2 for all i except i = k + 1, in which 
case it is 1. By (28.6), Fi = Fi-1 (y'ai) for some ai E Fi-1' Furthermore a E Fn = 
En JR, so a is constructible. 

Example 28.7.1 
For a E JR to be constructible, it is not sufficient that deg<Q(a)/<Q be a power 
of 2. Take, for example, the polynomial f(x) = X4 - x3 - Sx2 + 1. A little curve­
sketching from first-year calculus shows that it has four distinct real roots. Let 
a be one of them. It is shown in (32.5.1) that f(x) is irreducible, and that its 
Galois group has order 12 or 24. Hence deg<Q(a)/<Q = 4, but by (28.7), a is not 
constructible. 



Exercises 

28.1 A parabola r can be defined as the 
locus of points P equidistant from a 
fixed point F, the focus, and a fixed 
line I, the directrix. 

( a) If the focus is (0, 1) and the direc­
trix is y = -1, find the equation of the 
parabola. 

(b) If Y = mx + b is a line with 
m, b E K (the constructible field) and 
b > 0, show that the two intersection 
points of the line with r have coor­
dinates in K. 
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(c) Now give a ruler and compass construction for the intersection points of a line 
m with the parabola having focus F and directrix l. (Par = 9 to get one point.) Thus, 
even though we cannot "draw" the parabola, yet we can find its intersection points 
with any line, as if it were drawn. 

28.2 In the real Cartesian plane: 

(a) Show that the circle with center (a, 1) passing through the origin intersects the 
parabola r given by y = !X2 at the point (2Va, 2vaz). 

(b) Show that if we are given a single parabola drawn in the plane, then the prob­
lem of duplication of the cube becomes possible. 

(c) If a parabola is given by its focus and directrix, conclude that its intersection 
points with a circle are not always constructible. 

28.3 Squaring the parabola. Let a parabola 
be given by its focus F and directrix I 
(as in Exercise 28.1), and let another 
line m be given in the plane. Prove 
that it is possible to construct with 
ruler and compass a square whose 
area is equal to the area bounded by 
the line and the parabola. (You need 
not find the construction: Just prove 
that it is possible.) 

28.4 In the real Cartesian plane, if we are given an angle IX of radian measure 2na/b 
with a, bE'll, and b not divisible by 3, show that it is possible to construct an angle 
~ IX starting from the given angle. 

28.5 (a) Sketch the graph of y = x3 - 3x - 1 in the real Cartesian plane, and use the 
intermediate value theorem to show that it has three real roots. 
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(b) If a is one of the roots of x3 - 3x - 1, show that the field CQ( a) is not equal to a 
field of the form CQ( Vd) for any dE CQ. Thus a field extension of degree 3 need not 
be generated by cube roots, in contrast to the situation in degree 2 (Proposition 
28.6). 

(c) However, one can express roots of this equation using square roots and cube 
roots of complex numbers: VerifY that for a suitable choice of cube roots, 

is a root of the above equation. Hint: Df course you could substitute directly in the 
equation and multiply out, but using a little geometry you should be able to show 
without any messy calculation that a is a root of this equation. 

28.6 Let a = cos 20°. Show that a is totally real and a + 1 is totally positive in the sense 
of Exercise 16.10. Find an explicit representation of a + 1 as a sum of squares in 
the field CQ(a)-cf. Artin's theorem (Exercise 16.12). 

28.7 Instead of using trigonometry, as in 
the text, one can also use geometry to 
obtain a cubic equation expressing the 
trisection of an angle. Let an angle 
a = AOB be given in a circle of radius 
1, and let the length of AB be a. Sup­
pose a can be trisected by DC, OD. Let 
x = length AC. Show that MCE and 
dOEF are both similar to dOAC. From 
this derive a cubic equation for x in 
terms of a. If a = 60°, what equation 
do you get? 

28.8 Prove a theorem analogous to (Theorem 13.2) for constructions with Hilbert's tools 
(Section 10): Given a number of points Pi, including (0,0) and (1,0) in the real 
Cartesian plane, a new point Q = (a,p) can be constructed with Hilbert's tools from 
the initial points if and only if a and p can be obtained from the coordinates of 
the initial points by a finite number of field operations +, -,', .;-, and operations 
a ...... vI +a2 • 

28.9 Conclude from Exercise 28.8 that a point Q = (a, P) is constructible with Hilbert's 
tools from the rational numbers if and only if its coordinates a, p are in Hilbert's 
field n (Proposition 16.3). Using Exercise 16.14 this is also equivalent to saying that 
a,p are constructible and totally real. 

28.10 (a) Show that cos 72° and sin 72° are totally real, and conclude that it is possible to 
construct a regular pentagon with Hilbert's tools. 
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(b) Given a segment OA in the plane, construct with Hilbert's tools a r egular pen­
tagon inscribed in the circle with center 0 and radius OA (but without drawing the 
circle!) . 

28.11 Show that it is not possible with Hilbert's tools to construct a square with area equal 
to a given equilateral triangle. (Of course, it is possible with ruler and compass by 
(II.14) .) 

28.12 (Origami) In the traditional art of paper folding, you start with a square piece of 
paper. Consider the corners and the edges to be given. You get new points and 
lines as images of previously constructed points and lines by the following three 
operations (the "restricted" rules of origami): 

(1) Make a fold passing through two given points. 
(2) Make a fold that places one known point on another known point. 
(3) Make a fold that places a known line on another known line. 

If we consider the original paper to be the unit square [0 , 1] x [0, I], show that the 
points obtainable by these rules are the same as those constructed by Hilbert's 
tools, namely points in the unit square with coordinates in Hilbert's field Q (Prop­
osition 16.3). 

28.13 In practice, most origami constructions make use of a fourth rule (the "general" 
rules of origami), namely: 

(4) Make a fold through a given point that places another given point on a given 
line. 

Show that with the general rules, we obtain all points with constructible coordinates 
(Proposition 16.4) . 

28.14 Fold a piece of origami paper into an 
equilateral triangle as follows, and ex­
plain why it works. 

l. Fold A to B, get C. 
2. Fold B to C, get line d. 
3. Fold A to d, passing through C, get 

E. 
4. Fold CB to CE, get F. 
5. Fold EF. 

F 

A c. B 

28.15 Fold a piece of origami paper into a regular pentagon, and explain why it works. 
Hint: The side of an inscribed pentagon, with one side parallel to a side of the 
paper will be Hv's -1). (About 10 folds .) 



250 6. Construction Problems and Field Extensions 

28.16 For a real challenge, suppose that we 
are given two segments a, b on oppo­
site edges of the paper. Fold the trian­
gle with sides 1,a,b. (About 10 folds.) 

28.17 The problem of Apollonius is, given 
three circles 1'1,1'2,1'3, to construct a 
circle t. that is tangent to all three. Let 
I'i have center (ai, bi) and radius rio If 
we assume that t. is in between the I'i, 
as in the figure, and has unknown 
center (x, y) and radius r, we obtain 
equations 

dist((x, y), (ai, bi)) = r + ri 
for i = 1,2,3. Show that these equa­
tions can be solved for x, y, r using 
field operations and square roots. 
Thus the problem is solvable by ruler 
and compass. (For an actual construc­
tion, see Section 38). 

\ 

/1' 

1 

29 The Regular 17-Sided Polygon 

/' 

/ 

A regular polygon is a polygon with all sides equal and all angles equal. Euclid 
knew how to construct regular polygons with n sides for n = 3 (U), n = 4 (I.46), 
n = S (IV.Il), n = 6 (IV.lS), and n = IS (IV.16). By bisecting the central angles, 
one can construct a regular polygon of 2n sides, given one ofn sides. Thus Euclid 
could construct regular polygons of n sides for n = 2k, 2k . 3, 2k. S, Zk . 3 . S. For 
two thousand years these were the only known constructible regular polygons 
until Carl Friedrich Gauss in 1796, at the age of 19, made the remarkable dis­
covery that the regular polygon of 17 sides is constructible with ruler and com­
pass. He was so proud of this result that he requested that a regular 17-gon be 
inscribed on his tombstone. 



29. The Regular 17-Sided Polygon 251 

In this section we will explain Gauss's method using the algebra of complex 
numbers. We start with a proof of the construction of the regular pentagon, and 
finish with a criterion for constructibility of regular n-gons. 

Our first step is to represent points 
of the real Cartesian plane by complex 
numbers. To the point (a, b) we associ­
ate the complex number z = a + bi. If ( 
is a point on the unit circle making an 
angle e with the positive real axis, then 
we can write 

( = cos e + i sin e. o 

If e = 2nk/n for some integers k, n, then according to the laws of multiplication 
of complex numbers, (n = 1. In other words, ( is a complex root of the equation 
xn - 1 = O. Letting k = 0,1, ... , n - 1, we obtain n distinct roots of this equation, 
so these are all the roots. They are called the nth roots of unity. 

To construct a regular polygon of n sides, it is sufficient to construct the 
quantity cos 2n/n, and hence also sin 2n/n. Since the complex number (= 
cos 2n/n + i sin 2n/n is then an nth root of unity, the constructibility of the regu­
lar n-gon in the real Cartesian plane is related to the solutions of the equation 
xn - 1 = 0 in the complex numbers. 

Let us illustrate this situation by 
considering the case n = 5. Take e = ~ 

2n/5, and let ( = cos 2n/5 + i sin 2n/5 be 
the complex number that corresponds 
to the first vertex of the pentagon after 
l. Then the five vertices ofthe pentagon 
will be 1,(,(2,(3,(4. Note that (4 = C 1 

is the complex conjugate of (. Therefore, 

(+(4 = 2cos2n/5. 

On the other hand, ( is a root of 
XS - 1. This polynomial factors as 

Since ( =F 1, it is a root of the second factor, which is called the cyclotomic poly­
nomial <Ds (cf. Section 32). Let rx = ( + (4. Then (remembering that (s = 1) 

rx2 = (2 + 2 + (3. 

Hence 
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using the relation <l>s(C) = o. So ex is a root of the polynomial 

X2 +x -1 = o. 

Using the quadratic formula, 

Since our IX is a positive real number, we conclude that ex = ~ ( vis - 1). Hence: 

Proposition 29.1 
cos 27C/5 = ~(vIs -1). 

Remark 29.1.1 
This gives another algebraic proof of Euclid's construction of the regular penta­
gon (Iv.n). Compare (13.4) and (13.5). 

Now let us turn our attention to the regular 17-gon. 

Theorem 29.2 (Gauss) 
The regular 17-sided polygon is constructible with ruler and compass. 

Proof An abstract proof of constructibility can be given using Galois theory 
(29.3.1). Here, however, we will give an elementary constructive proof, close to 
Gauss's original method. 

We follow the general idea of the method used above with the pentagon. 
Let 

( = cos 27C/17 + i sin 27C/17. 

Let 

IX = (+C!' 
P = ( + (4 + C1 + C\ 
y = (+ (2 + (4 + (B + c 1 + C 2 + C 4 + CB. 

We will show that 

<Q ~ <Q(y) ~ <Q(P) ~ <Q(ex), 

and each field is quadratic over the previous one. Since ex = 2 cos 27C/17, this will 
show that the regular 17-gon is constructible. 
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(At this point, you may ask, where did these expressions for iX, /3, y come 
from? Here are three possible answers: 1. Gauss was a genius. 2. Never mind 
where they came from; just follow the proof and see that it works. 3. If you look 
at the subgroups of order 2, 4, 8 of the Galois group of <Q( 0, these are elements 
that will be left fixed by them-see (29.3.1).) 

Let us start with y. It is natural to consider also the element y' that is the sum 
of the other eight powers of (, namely 

y' = (3 + (5 + (6 + C + C 3 + C 5 + C 6 + C 7 . 

Since ( is a 17th root of unity, it is a root of the cyclotomic polynomial 

<l>l7 = Xl6 + X l5 + ... + x + 1. 

Thus y + y' = -1 (remember to treat exponents of ( (mod 17), since (17 = 1) . We 
will show that yy' is also in <Q, so that y, which is a root of the equation 

x2 - (y + y')x + yy' = 0, 

will be quadratic over <Q. 
To find yy' we must make a computation. Multiplying each term of y' by 

each term of y, we obtain the sum of ( raised to each of the powers shown in 
the accompanying table. Observe that each integer 1 :-:::; i:-:::; 16 (mod 17) occurs 
exactly four times in the table. Thus 

yy' = 4( f c) = -4. 
1=1 

Table of exponents of )Ill' 

4 6 7 8 -2 -4 
5 7 8 9 -1 -3 
7 9 10 11 1 -1 

11 13 14 15 5 3 
2 4 5 6 -4 -6 
1 3 4 5 -5 -7 

-1 1 2 3 -7 -9 
-5 -3 -2 -1 -11 -13 

So Y is a root of the equation 

x2 + X - 4 = o. 
Using the quadratic formula, we obtain 

1 
x = 2(-1 ± V17). 

-5 -6 
-4 -5 
-2 -3 

2 1 
-7 -8 
-8 -9 

-10 -11 
-14 -15 
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To choose the correct sign for y, we 
make an estimate. Note that in the sum 
for y, the imaginary parts cancel, so y is 
real. In fact, 

y = 2( cos 2n/17 + cos 4n/17 

+ cos8n/17 + cos 16n/17). 

Now looking at the approximate posi­
tion of the powers (, (2, (4, (8, it is clear 
that y is positive. Therefore, 

We can also confirm this choice of sign with a calculator by evaluating the sum 
of cosines above and the expression with the radical. Both come to 1.56155 to 
five decimal places. Note, however, that the calculator check does not prove the 
equality: It is merely a good way to detect errors in our work. 

Next we consider fJ. If we let 

then fJ + fJ' = y. On the other hand, fJfJ' turns out to be the sum of all the non­
zero powers of (, so fJfJ' = -1. Thus fJ is a root of the equation 

x2 - yx -1 = O. 

By the quadratic formula, 

1 
x = '2 (y ± JY2+"4). 

Since fJ is positive, we choose the + sign, and obtain 

1 
fJ = '2 (y + JY2+"4). 

Substituting for y and simplifYing gives 

fJ = ~ (-1 + v'f7 + V34 - 2v'f7). 
Note also that by definition, 

fJ = 2(cos2n/17 + cos8n/17). 

Both check with a calculator to give fJ = 2.04948 (to 5 decimals). 
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Now let us look at the field extensions created so far. Clearly, <Q(y) = 
<Q(v''I7). We claim that <Q(P) = <Q( V34 - 2v'I7), which contains <Q(y). It is clear 
that 

<Q(P) = <Q( v'I7 + V34 - 2v'I7). 

If we let 

then squaring twice to get rid of radicals gives the equation 

X4 - 6 . 17x2 + 8 . 17x + 13 . 17 = O. 

By Eisenstein's criterion (32.8) this is irreducible, so the degree of the field 
extension <Q(P)/<Q is four. Since P is clearly contained in the field 

<Q( V34 - 2v'I7), which has degree at most four, we conclude that <Q(P) = 

<Q( V34 - 2v'I7), as claimed. 
Next let us conside 01.. Let 

Then 

OI.+OI.'=P 
and 

01.01.' = (3 + (5 + C3 + C 5 . 

Let us denote 01.01.' by p", and let 

pm = (6 + C + C6 + C 7 . 

Then 

P" +pm = y' 

and 
16 

p"pm = L(i =-l. 
i=1 

Thus P" is a root of the equation 

x2 - y'x - 1 = O. 

A calculation similar to the one used for P then gives 
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Note that 

V34 - 2V17' V34 + 2V17 = V34 2 - 4 ·17 = 8V17. 

Therefore, p" E <Q( V34 - 2V17) = <Q(P). 
Now Q( satisfies the equation 

x2 - px + P" = 0, 

so Q( is quadratic over <Q(P). Using the quadratic formula, substituting, and 
choosing the sign correctly, we obtain 

Q( = 2cos2n/17 

= t (-1 +V17+ V34-2V17+2v'17+3V17+V170-26V17-4V34+2V17). 

This checks by calculator, giving Q( = 1.86494. In particular, this shows that Q( is a 
constructible number, and hence the regular 17-gon is construchble by ruler and 
compass. 

Although we have just completed the proof of the theorem, we have not yet 
shown that <Q(P) s;; <Q(Q() as claimed earlier. To do this, write Q( = (+ C 1 and 
then compute 

Q(2 = (2 + 2 + C 1 , 

Q(4 = (4 + 4(2 + 6 + 4C2 + C 4. 

Therefore, p, which was defined to be (+ (4 + C 1 + C 4 , can be obtained as 

P = Q(4 _ 4Q(2 + Q( + 2. 

Therefore, P E <Q(Q(), as required. 

Corollary 29.3 
The side of the regular 17 -gon inscribed in the unit circle is 

Proof Use (13.3) and the expression for Q( above. 

Remark 29.3.1 
If we wish to show only that the regular 17-gon is constructible, without an ex­
plicit formula for cos 2n/17, we can proceed as follows. The question is whether 
Q( = 2 cos 2n/17 is a construchble real number. Now, Q( is contained in the field 
<Q( () ofl7th roots of unity. By (32.7) this is a normal extension of <Q of degree 16 
and with Galois group Z;7' which is cyclic of degree 16. Therefore, the Galois 



29. The Regular 17-Sided Polygon 257 

group of the splitting field of the extension CQ(ct) will be a quotient of this one, 
and its order will be a power of 2. By (28.7) therefore, ct is constructible. 

The proof of (29.2) given above actually illustrates the proof of (28.7) and at 
the same time gives a nice example of the fundamental theorem of Galois 
theory (32.4) by showing the correspondence between the subgroups of the 
Galois group and the subfields of the field . For inside the group 7l~7 we have a 
chain of subgroups 

{I,-I} S; {1,-1,4,-4} S; {1,2,4,8,-1,-2,-4,-8}. 

The fixed fields of these subgroups are precisely CQ(ct), CQ(p) , and CQ( y). And of 
course, it was these subgroups of 7l~7 that provided the motivation for choosing 
ct, 13, y the way we did. 

Remark 29.3.2 
The explicit expressions for ct, 13, y found in the proof of (29 .2) can without too 
much difficulty be turned into an actual construction of the I7-gon. Here is a 
particularly simple one: 

Let the circle with center 0 be given. Let OA and OB be two orthogonal radii. 
Take OC = ~ OB. Let the circle CA meeet OB in D and E. Let the circle EA give F, 
and let the circle DA give G. Take H the midpoint of BF, and let the circle HB 
meet OA in J. Take K to be the midpoint of OG. Let the circle with center J and 
radius OK meet OB in L. Then KL is the side of the inscribed 34-gon. See (Exer­
cise 29.4). 
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Using the ideas of this section we can now obtain a complete determination 
of the possible constructible regular n-gons. 

Theorem 29.4 
The regular polygon of n sides is constructible by ruler and compass if and only if n is 
a number of the form 

n = 2 rpl ... Ps, r,s::::>: 0, 

where the Pi are distinct odd primes, each of which is a prime of the form 

P = 22k + 1. 

Proof For any integer n, let 

( = cos 2n/n + i sin 2n/n 
and let 

Then 
a = 2 cos 2n/n, 

and ( is a root of the equation 

x2 - ax + 1 = 0 

with coefficients in <Q(a). Therefore, deg<Q(O/<Q(a) = 2. Since <Q(O is the field 
of nth roots of unity, it is a normal field extension of <Q with Galois group 7L~, 
which is an abelian group of order ip(n), the Euler ip-function (32.7). Since the 
Galois group is abelian, <Q(a) is a normal extension of <Q, and the orders of 
the Galois groups of <Q(a) and <Q(O differ by 2. We conclude from (28.7) that the 
regular n-gon is constructible if and only ifthe order of the Galois group of <Q( 0, 
which is ip(n), is a power of 2. 

Now let us write 

n = 2kpeJ p e., 1 ... s 

with distinct odd primes Pi. Then 

ip(n) = 2k- 1 IIpie,-I(Pi -1). 

In order for this to be a power of 2, we must have ei = 1 for each odd prime 
occurring, and Pi - 1 must be a power of 2, so 

Pi = 2 t, + 1. 

One sees easily that in order for Pi to be prime, it is necessary that ti be a power 
of 2. Thus Pi is of the form 

P = 22k + 1 

as required. This argument is reversible, and so the theorem is proved. 
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Remark 29.4.1 
Prime numbers of the form p = 22k + 1 were studied by Fermat, who hoped he 
had discovered a formula for generating prime numbers. If we denote by Fk the 
kth Fermat number 22k + 1, then Fa = 3, FJ = 5, F2 = 17, F3 = 257, and F4 = 65537 
are all primes. It is an open problem whether there are any further prime Fermat 
numbers. As of this date (April 1999), Fk is known to be composite for 5::;; k::;; 23, 
so F24 is the first unknown case. 

Exercises 
29.1 To illustrate that the square root of a complex number with constructible coordinates 

also has constructible coordinates, write V5 + 2M in the form a + bi where a and 
b are constructible real numbers in standard form (cf. Exercise 13.2). 

29.2 Let (= cos2n/7 + i sin 2n/7, and let rx = (+ C 1 . 

(a) Find the minimal polynomial for rx over <Q (it is a cubic). 

(b) Show that <Q(O contains a unique sub field E of degree 2 over <Q. Find an integer 
d for which E = <Q( Vd). 

29.3 An investigation of the Fermat number FZ4 . Using a hand calculator only, find 

(a) How many digits does FZ4 have in its decimal expansion? 

(b) What are the first six digits of FZ4? 

( c) What are the last six digits of FZ4? 

In each case, explain your method, and include a discussion of your calculator's 
round-off error and how reliable you believe your answer to be. 

29.4 (a) Carry out the construction of the 17-gon described in Remark 29.3.2 (par = 20 
steps to get KL; 25 more to mark the vertices and draw the edges ofthe l7-gon). 

(b) Prove that the construction works by showing (in the notation of the proof 
of Theorem 29.2) that OD =!y, OC = p, OF = p", KL = rx'. Then show that rx' = 
(4 + C4 is equal to the side of the inscribed regular 34-gon. 

29.5 If a regular polygon of n sides is constructible with ruler and compass, show that it is 
also constructible with Hilbert's tools. 

30 Constructions with Compass and Marked 
Ruler 

Up to now we have studied the classical ruler and compass constructions of 
Euclid's Elements. We have seen that there are some problems that cannot be 
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solved by ruler and compass, such as the duplication of the cube (28.3), the tri­
section of the angle (28.4), or the construction of a regular 7-sided polygon 
(29.4). Although Euclid uses only ruler and compass, other classical authors, 
both before and after Euclid, used a variety of other methods for more difficult 
problems. Some used an auxiliary curve given in the plane, such as a parabola 
(Exercise 28.2), the quadratrix (Section 25), or the conchoid of Nicomedes (later 
in this section). As the theory of conic sections became more developed, espe­
cially in the work of Apollonius, problems were solved using intersections of 
conics in the plane. New tools were invented, such as the marked ruler that 
could slide to cut off a given distance between two curves. There was even a 
classification of problems according to the methods needed for their solution 
(though the geometers of that time were not in a position to prove that any 
given problem belonged to a certain class). A planar problem was one that could 
be solved with ruler and compass. A solid problem needed the use of conic sec­
tions, and a linear problem (not our meaning of the word!) was one that required 
curves (which they called lines) of higher degree. 

In this section we will study one of these methods, namely the use of the 
marked ruler, and we will see that with its help we can trisect angles and extract 
cube roots. As an application we give a construction of the regular heptagon (7-
sided polygon) . We will also show that analytically, the use of the marked ruler 
between lines corresponds to finding a root of a certain quartic equation. In the 
next section we will discuss the associated field theory and show that the geo­
metrical use of the compass and marked ruler is equivalent to the algebraic 
solution of cubic and quartic equations, and this in turn corresponds to the 
"solid" problems in the ancient classification. 

First let us make clear what the 
marked ruler can do. You can make 
two marks on the ruler corresponding 
to a given distance, and then you can 
slide the ruler along so that the marks 
lie on two given lines, while at the same 
time the ruler passes through a given 
point. 

o ./ 

In other words, given two lines 1, m, given a distance d, and given a point 0, 
you can draw a line OAB with A E 1, B E m, and such that AB = d. This will count 
as one marked ruler step. Meanwhile, the ruler can still be used as an ordinary 
ruler in the old sense. 

Proposition 30.1 
Using compass and marked ruler, it is possible to trisect any angle. 

Proof Let AOB be the given angle. Drop a perpendicular AC from A to OB. 
Draw a line 1 through A parallel to OB. Now use the marked ruler to draw a line 
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ODE such that D E AC, EEl, and DE = 2AO. This line will be the trisector of the 
original angle. 

To see this, let F be the midpoint of DE, and let G be the midpoint of AE. 
Then FG is perpendicular to AE, so by (SAS) the triangles EFG and AFG are 
congruent. Now the new angle EOB = rx is equal to LAEO by parallel lines and 
to LEAF by congruent triangles. So LAFO = 2rx, since it is an exterior angle to 
the triangle AEF. 

But DE was constructed equal to 2AO, so AO = EF = AF. Hence the triangle 
AOF is isosceles, and so LAOD = 2rx. Thus the original angle AOB is equal to 3rx, 
and rx is one-third of it, as required. 

A 

o c 

Proposition 30.2 
Given segments of lengths 1 and a, it is possible with compass and marked ruler to 
construct a segment of length Va. 

Proof Let AB be the given segment oflength a . Using the segment oflength 1, 
choose b = 23k- 1 for suitable k such that b > a. Make an isosceles triangle ABC 
with CA = CB = b, and extend CA to D with AD = b. Draw the line DB. Now use 
the marked ruler to draw CEF with E E DB and FE AB and EF = b. Let BF = y . 
Then Va = y/22k. 

To see this, we first apply Menelaus's theorem (20.10) to the triangle ACF 
and the transversal line DBE. Letting CE = x, starting with vertex A, and going 
clockwise, it says that 

b x Y _._.-=l. 
2b b a 

This gives us 
xy = 2ab. 

Then we apply (III.36) to the circle with center C and radius b, and the point 
F outside, and the two chords FBA and FGH. Note that CG = b, so by subtrac­
tion, FG = x. Thus we obtain 

y(y + a) = x(x + 2b). 
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Eliminating x from our two equations we obtain 

y3 = 4ab2. 

substituting b = 2 3k- 1 we obtain 

y3 = 26k . a. 

Therefore, Va = y/2 2k can be obtained from y by bisecting 2k times. 

Proposition 30.3 
Let lines 1, m, a point 0, and a segment of length d be given in the Cartesian plane 
over a field F. Suppose OAB is a line with A E 1, B E m, and AB = d. Then the coor­
dinates of A and B lie in a field F( IX), where IX is a root of a quartic polynomial with 
coefficients in F. 

Proof By a linear change of coordi­
nates, we may assume that 0 = (0,0) is 
the origin, and that I is the line y = b, 
for some b. We consider the locus of all 
points P such that OP cuts I in a point Q 
and PQ = d. This locus is called the con­
choid of Nicomedes. To find the line OAB 
of the proposition is equivalent to find­
ing the intersection of the second line m 
with the conchoid. This we will now do 
analytically. 

o 
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First we need to find the equation of the conchoid. Take an arbitrary line 
y = ax through the origin. This line meets 1 at the point Q = (b / a, b). Let P have 
variable coordinates P = (x, y). Then the condition PQ = d gives 

(x - b/a)2 + (y - b)2 = d2. 

But P also lies on the line y = ax. We use this equation to eliminate the variable 
a from the equation: Substituting a = y/x and simplifying, we obtain the equa­
tion of the conchoid, 

To find the intersection B of the conchoid with the line m, we substitute the 
linear equation of m in the equation of the conchoid. This gives a quartic equa­
tion in x. If (J( is a root of that equation, the coordinates of B are then x = (J( , and y 
is linear expression in (J(. From there we get the line OB and the coordinates of A. 

Remark 30.3.1 
It is clear from this proposition that the use of the marked ruler is equivalent 
to being given a single conchoid, drawn somewhere in the plane, and being 
allowed to intersect it with lines. Indeed, by rigid motions and similarities, any 
application of the marked ruler can be reduced to finding an intersection point 
of the conchoid with a certain line. 

As an application of the marked ruler, we will give the elegant construction, 
due to Viete, of the regular heptagon. This he accomplished two hundred years 
before Gauss, working within the tradition of Euclid, without the benefit of 
modern algebra, but using only some simple algebraic manipulation of equations. 

Problem 30.4 
Given a circle and its center, to construct with compass and marked ruler a reg­
ular heptagon inscribed in the circle. 
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1. OA get B. 
2. Circle AO, get C, D. 
3. Circle DO. 
4. Circle, center 0, radius CD, get E. 
5. CE, get F (then OF = !OA). 
6. Circle FC. 
*7. Line CGH, so that GH = FC. 
8. Circle H, radius OA, get I, K. 
9. Circle B, radius 1K, get L, M. 
10. Circle B, radius 1M, get N, P. 
11-17. Draw sides of heptagon B1LNPMK. 
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To see why this works, we will follow Viete's original proof, for which we 
need two lemmas. 

Lemma 30.5 
Suppose we are given two isosceles triangles based on the same line, with equal sides, 
and such that the vertex of one is in line with the side of the other, as shown. Then 
the angle at E is three times the angle at A, and if we denote the bases by x, b, and the 
side by r, then 

Proof Let the angle at A be a. Then using (I.5) and (I.32) several times, we ob­
tain that the angles marked 1, 2, 3, are respectively a, 2a, and 3ct. 

i) 

B 

A 
G b 

For the relation between x, b, r, we draw the circle with center C and radius 
r, and drop perpendiculars EF and DG to the line ACE. Then AF =!x and 
FG =! (b + x), so by (VI.2) = (20.2), we get 

y 
r 

and so xy = r(b + x), where y = ED. 

~ (b + x) 
Ix 
2 

On the other hand, using (HI.36), from the point A, we obtain 

r(y + r) = AH· AK = (x - r)(x + r). 

Eliminating y from these two equations, we obtain 
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as required. 

A 

Remark 30.5.1 
If we write the trigonometric functions cos a = x/2r and cos 3a = b/2r, then this 
equation translates to cos 3a = 4 cos3 a - 3 cos a. So we see that Viete knew the 
equivalent of this triple angle formula, and could prove it geometrically. 

Lemma 30.6 
Suppose we are given a circle with center 0, diameter AB, and a point H on the di­
ameter extended such that 

HB . HA 2 = HO . OA 2. 

Let I be a point on the circle for which HI = OA. Then BI is a side of the inscribed 
regular heptagon. 

Proof Let Q be the other intersection of the line HI with the circle. First we 
will show that OQis parallel to AI. By (VI.2) = (20.2), it will be sufficient to show 
that 

HQ HO 
HI HA 

Using (HI.36) we have HQ· HI = HB . HA. Therefore, 

HQ HB·HA 
HI HI2 

But HI = OA, so using the hypothesis of the lemma, we obtain 

HQ HB·HA HO 
HI OA2 OA 

Thus OQ and AI are parallel, as claimed. 
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Now let the angle at A be rx. Then using (I.5) and (1.32) several times, we find 
that the angles marked 1, 2, 3 in the diagram are respectively rx, 2rx, 3rx. In par­
ticular, OO! is an isosceles triangle whose base angles are three times the vertex 
angle. It follows that the angle rx is ~ (2RA), and so the angle EOI = 2rx is ~ (4RA). 
Thus EI is a side of the inscribed regular heptagon. 

! 

A 

Proof of Construction of (30.4) U sing these two lemmas, we can prove that the 
construction gives a regular heptagon. If we add lines FG and CR, where R is the 
midpoint of FA (dotted in the diagram), then we recognize triangles HGF and 
FCR satisfying the conditions of(30.5). Let us fix OA = l. Then OF = FR =~. If S 
is the midpoint of FR, then CS = ! 03, because it is the altitude of the equilateral 
triangle OAC. On the other hand, FS = ~, so by (I.47), we find that FC = ~ v'7. So 
the cubic equation of(30.5) becomes 

3 7 7 x --x=-. 
3 27 

To complete the proof that EI is a side of the regular heptagon, by (30.6), we 
need to verify that HE . HA 2 = HO . OA 2. Remembering that HF = x, we must 
show that 

A simple calculation reduces this to the cubic equation for x obtained from 
(30.5). So the condition of (30.6) is satisfied, and we conclude that EI is a side of 
the regular heptagon. The remaining steps of the construction merely identify 
the other vertices of the heptagon. 

Remark 30.6.1 
In this construction, the marked ruler is used to insert the segment GH = FC 
between a line and a circle. This is a stronger use of the marked ruler than what 
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we described at the beginning of this section. However, since the function of this 
step is to trisect the angle at F (Exercise 30.1), the construction could have been 
accomplished using (30.1), where the marked ruler is used to insert a segment 
between lines only, at the cost of a few extra steps. 

For a more algebraic derivation of a construction of the heptagon, see Exer­
cise 30.3. 

Exercises 

30.1 Given an angle iX, with vertex 0, draw a circle of any radius, cutting the angle in A 
and B. With the marked ruler draw a line BCD such that C lies on the circle, D lies 
on the line OA extended, and CD = OA. Show that the angle at D is ~iX. 

30.2 Construct a regular enneagon (9-sided polygon) using compass and marked ruler 
(between lines only). (Par = 21 steps, including one marked ruler step.) 

30.3 Derive a construction of the regular heptagon, independent of the method of Prob­
lem 30.4, as follows. 

(a) Find a cubic equation with root cos2n/7-cf. Exercise 29.2. 

(b) Make a change of variables so that this equation is brought into the form 
y3 _ 3y - b = 0, and so can be solved by trisecting a certain angle-cf. Theorem 
28.4. 

(c) Now construct the required angle, then use the marked ruler to trisect that angle 
(Proposition 30.1), and thus make a construction for the regular heptagon using 
compass and marked ruler (par = 28 steps). 

30.4 Show that a regular 13-gon can be constructed with compass and marked ruler as 
follows. 

(a) Find a cubic and a quadratic equation whose successive solution will give 
cos2n/ 13. 

(b) Show that the cubic equation in (a) can be solved by trisecting a certain angle 8, 
and find cos 8. 
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30.5 Let AB be a given segment. Make ABM 
a right angle, and ABN = 1200 • With the 
marked ruler, draw ACD cutting off a 
segment CD = AB between the lines 
BM and BN. Show that AC = Vz . AB. 

30.6 Here is another kind of neusis (sliding 
ruler) used by Archimedes in his study 
of the heptagon. Let ABCD be a unit 
square with its diagonal BC. Rotate the 
ruler around the point A until the areas 
of the two triangles ABE and DFG are 
equal. If CG = a show that -a satisfies 
the equation of Exercise 29.2a. Con­
clude that a = 2cos2n/14. 

30.7 Verify the following marked-ruler con­
struction of a regular pentagon on a 
given segment AB. (Of course, here 
the marked ruler is not necessary, 
but it gives a particularly elegant 
construction. ) 

1. Circle AB. 
2. Circle BA, get C, D. 
3. Line CD. 
*4. Line AEF so that EF = AB. 
5. Circle FE, get G, H. 
6-9. Draw pentagon ABHFG. 

A 

31 Cubic and Quartic Equations 

13 

F 

o 

Our purpose in this section is to investigate the roots of cubic and quartic equa­
tions, and to show that the use of the compass and marked ruler is equivalent to 
finding successive real roots of such equations. 
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In the quadratic case, there is a happy coincidence between solving qua­
dratic equations, adjoining square roots of field elements, and considering 
degree-2 field extensions (28.6). For cubic and quartic equations, the situation is 
more complicated. A real root of a cubic equation may not be expressible in 
terms of cube roots (Exercise 28.5). A root of a quartic equation may give a 
degree-4 field extension that has no intermediate degree-2 subfield, and so (1. 

may not be expressible by square and fourth roots (32.5.1). 
If we ignore questions of reality, it can be shown that arbitrary cubic and 

quartic equations can be solved by successive square roots and cube roots of 
complex numbers. But since this is a course in geometry, we are interested in 
what happens in the real Cartesian plane, and so we will be concerned with real 
roots of these equations. We will show that real roots of cubic and quartic equa­
tions can be expressed by three types of field extensions of a subfield F S;;; JR.: 

(1) F( y'a) where a E F, a > O. 
(2) F( Va) where a E F. 
(3) F(cos ~O) where cosO E F. 

Roughly speaking, we will say these equations can be solved by taking square 
roots, cube roots, and trisecting angles. In this way we will see that solving cubic 
and quartic equations is equivalent to the use of the compass and marked ruler. 

It is a remarkable tribute to the wisdom of the Greek geometers that two of 
the problems they highlighted, the duplication of the cube and the trisection of 
the angle, provide preCisely the tools needed for the solution of cubic and 
quartic equations. 

For the reader who is already curious about quintic polynomials, see Exer­
cise 31.5. 

We begin our work with some equations we do know how to solve. 
Throughout these discussions we fix a subfield F of the real numbers. We con­
sider polynomials with coefficients in F, and will be concerned with the field 
extensions necessary to find roots. Of course, the equation x3 - a = 0 can be 
solved by x = Va. Another type of equation we can solve by trisecting an angle. 

Proposition 31.1 
Suppose we are given an equation 

x3 - 3x - b = 0 

with b E F and Ibl < 2. Let 0 be an angle with cos 0 = ~ b. Then (1. = 2 cos ~ 0 is a root 
of the equation. 

Proof We have already encountered this equation twice before ((28.4) and 
Exercise 30.3). It is a consequence of the trigonometric identity 

cos 3tj1 = 4 cos3 tjI - 3 cos tjI, 
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where we put () = 3t/t, x = 2 cos tIt, and b = 2 cos 3t/t. The restriction Ibl < 2 is 
necessary to find a () with cos () = ~ b. 

To study a general cubic equation we will follow the method of Cardano. 
First note that a general cubic 

x 3 + ax2 + bx + c = 0 

can be simplified by the substitution x = y - ~ a so as to eliminate the x2 term. 
So it will be sufficient to consider the equation 

x3 + px+q = O. 

We look for a solution of the form x = U + v, so we need 

U 3 + 3u2v + 3uv2 + v3 + p(u + v) + q = O. 

This can be accomplished by setting p = -3uv and q = _u3 - v 3 . Then 

u3 +v3 = -q, 

U 3V 3 = -(~y, 
so u 3 and v 3 are roots of the quadratic equation 

We solve this by the quadratic formula to obtain 

Since u and v are the cube roots of these two values of y, we get 

x= 
q 

2 

This is the so-called formula of Cardano. In order for the roots to be real, we 

need (~Y+(~Y ~ O. Thus we have proved the following result: 

Proposition 31.2 
If (q/2)2 + (p/3)3 ~ 0, then a real root of the equation x3 + px + q = 0 can be found 
by taking real square roots and cube roots. 
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Remark 31.2.1 
Although it appears that we need two cube roots, since p = -3uv, we have 
v = -p/(3u), and so x = u - p/(3u) can be expressed using one square root and 
one cube root. 

Proposition 31.3 
If (q/2)2 + (p/3)3 < 0, then a real root of the equation x3 + px + q = 0 can be found 
by taking a square root and trisecting an angle. 

Proof The hypothesis implies that p < 0, so we adjoin V-3p to our field and 
make a change of variables x = lV-3pz. This gives the equation 

z3 - 3z+ b = 0, 
where 

b=qJ- ;~. 
Now, our hypothesis (q/2)2 + (p/3)3 < 0 implies Ibl < 2, so we can use (31.1) to 
solve the equation by trisecting an angle. 

Remark 31.3.1 
The conditions (q/2)2 + (p/3)3 ;;::: 0 (resp. <0) of(31.2) and (31.3) are equivalent 
to saying that the discriminant ~ is ;S;O (resp. >O)-cf. (Exercises 31.14, 31.15). 
The case of (31.3) is called the casus irreducibilis ofthe cubic equation. 

Proposition 31.4 
If ex is a real root of a quartic polynomial with coefficients in F, then ex can be found 
by first adjoining a real root of a cubic polynomial with coefficients in F (called the 
cubic resolvent of the quartic equation), followed by successive real square roots. 

Proof Here we follow Descartes's method. By a linear change of variables, we 
may assume that there is no x3 term, so the quartic polynomial has the form 

X4 + px2 + qx + r = O. 

If ex is one real root, there must be another real root p (since complex roots come 
in pairs), so ex and p are roots of a quadratic polynomial x2 + ax + b, with a, bin 
some real extension field of F. Then the quartic polynomial factors into 

(x2 + ax + b)(x2 - ax + c) 

for some c E 1R. From this we obtain 

p = b+c-a2, 

q = a(c - b), 

r= bc. 
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Eliminating band c from these equations, we obtain 

1 ( 2 q) b=z p+a -~ 

In other words, a 2 is a root of the cubic resolvent polynomial 

whose coefficients are in F. 
Having found a2 , which is a positive real root of this cubic equation, we can 

then find a, b, and IX by successive (real) square roots. 

Theorem 31.5 
Let F be a subfield of JR and let IX E JR. The following conditions are equivalent: 

(i) There exists a tower of subfields 

with IX E Fb and for each i, Fi is obtained from FH by adjoining an element 
f3i = 13, where either 

(1) 13 = va, with IX E Fi - 1, a> 0, or 
(2) 13 = Va, with a E F i- 1, or 
(3) 13 = cos !O, with cosO E Fi - 1 . 

(ii) There exists a tower of subfields 

with IX E Fn , and each Fi is obtained from FH by adjoining a root of a quadratic, 
a cubic, or a quartic polynomial. 

(iii) The quantity IX can be constructed by compass and marked ruler (using the 
marked ruler between lines only) from data with coordinates in F. 

Proof (i) '* (iii). The three types of extensions are constructible with compass 
and marked ruler, the first by ordinary ruler and compass construction, the sec­
ond by (30.2), and the third by (30.1). (Note that cos 0 E F does not necessarily 
imply that the angle 0 can be realized by lines in the Cartesian plane over F. We 
may have to make a quadratic extension to obtain sin 0 first, before we have an 
actual angle to trisect.) 

(iii) '* (ii). Regular ruler and compass constructions correspond to quadratic 
equations, and each use of the marked ruler between lines can be accomplished 
by solving a quartic equation (30.3). 

(ii) '* (i). A quartic polynomial can be reduced to cubic and quadratic equa­
tions by (31.4), and cubic and quadratic polynomials can be solved by the three 
types of extensions listed, by (31.2) and (31.3). 
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Corollary 31.6 
If the quantity rx E 1R is constructible by compass and marked ruler (used between 
lines only) from data in the field F, then degF(rx)/F is 2Y3S for some r, s ~ o. 

Proof Since F(rx) S; Fk of (i) in the theorem, and each of the indicated exten­
sions is of degree 2 or 3, it follows that degFk/F, and hence also degF(rx)/F, is of 
the form 2 Y 3S for some r, s ~ O. 

In fact, a stronger result is true. 

Proposition 31. 7 
The quantity rx E 1R is constructible by compass and marked ruler ( used between lines 
only) from data in the field F if and only if the Galois group of the minimal poly­
nomial of rx over F has order 2a3b for some a, b ~ O. 

Proof If rx is so constructible, they by (3l.6) the field F(rx) has degree 2Y 3S over 
F, for some r, s ~ O. The same will be true for all the conjugates of rx, and these 
generate the splitting field, so the degree of the splitting field, which is also the 
order of the Galois group, will be 2a3b for some a, b ~ O. 

Conversely, suppose the order of the Galois group Gis 2a3 b . We apply the 
theorem of Burnside (see Hall (1959), Theorem 9.3.2) that any group of order 
paqb is solvable to conclude that G is solvable. This means that there is a chain of 
subgroups, each one a normal subgroup of the next, such that all the quotients 
are cyclic groups of prime order. To continue the proof, we need a lemma. 

Lemma 31.8 
Let G be a solvable finite group and let T be a subgroup of order 2. Then there exists a 
chain of subgroups 

T = G1 S; Gz S; ... S; Gn = G 

such that for each i, the index of Gi in Gi+l is a prime number. 

Proof We proceed by induction on the order of G, the case G = Tbeing trivial. 
Since G is solvable, it has a normal subgroup H of some prime index p. If 

T S; H, we can apply the induction hypothesis to H (since any subgroup of a 
solvable group is solvable), and then we are done. 

So suppose T~H. Let T = {e, r}, where r is an element of order 2. Then G/H 
has an element of order 2, so p = 2. Since H is also solvable, it has a normal 
subgroup K of prime index q. Since H is normal in G, conjugation by r will send 
K to a normal subgroup K~ = rKr-1 of H. 

Case 1 If K~ = K, then TK is a subgroup of G, and K will have index 2 in TK. 
Hence TK has index q in G, and we can apply the induction hypothesis to TK, 
concluding the proof as before. 



276 6. Construction Problems and Field Extensions 

Case 2 If KT ¥- K, let L = K n KT. Then L is a normal subgroup of H and the 
quotient H/L is isomorphic to the direct product H/K x H/KT, which is abelian 
of order q2. Let a E K generate K/L. Then aT = 'f(Jr-1 will generate KT /L. Let M 
be the subgroup of H generated by Land p = aaT • Now, 

pT = aTa == aaT = p (modL), 

so MT = M. Since H/L is abelian, M will be a normal subgroup of H of index q, 
and we are reduced to the situation of Case 1. 

Proof of 31.7, continued We apply the lemma to the Galois group G, taking T to 
be the subgroup generated by complex conjugation T. Then the fixed field E of T 
is the intersection of the splitting field with the real numbers. Now IX E E, and by 
the fundamental theorem of Galois theory (32.4), the chain of subgroups Gi will 
give a chain of field extensions 

F=En c::::::En- 1 c:::::: ... c::::::E1 =E 

where each field has degree 2 or 3 over the previous one. So IX can be obtained 
by finding real roots of a succession of quadratic and cubic polynomials, and so 
by (3l.5) is constructible with compass and marked ruler. 

Remark 31.8.1 
The condition of (3l.6) is not sufficient for rx to be constructible by compass and 
marked ruler, because for example, rx could be a root of a 6th-degree equation 
with Galois group S6, whose order is divisible by 5. 

Corollary 31.9 
A regular polygon of n sides can be constructed with compass and marked ruler 
(between lines only) if and only if n is of the form 

n = 2k31pl ... Ps, k, 1 2:: 0, 

where the Pi are distinct primes, each of the form 

Pi = 21l;3 bi + l. 

Proof As in the proof of (29.4), each prime different from 2 or 3 must be of the 
form 

Conversely, ifn is ofthis form, the Galois group will be abelian of order 2 r3 s 

for some r, s, and the result follows from (3l. 7) (whose proof is much easier in 
the abelian case). 
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Remark 31.9.1 
As Gleason (1988) has pointed out, since the Galois group is abelian, all the 
polygons in (31.9) can be constructed with ruler, compass, and angle trisector. 
Indeed, the marked ruler steps can be reduced to two kinds, extraction of a cube 
root and angle trisection, and a real cube root has complex conjugates, which 
would contribute a nonabelian factor S3 to the Galois group. 

Exercises 

31.1 Show that it is not possible to construct a regular ll-gon with compass and marked 
ruler. 

31.2 Show that it is possible to construct a regular 19-9on with compass and marked 
ruler. 

31.3 Show that it is not possible to extract 5th roots with compass and marked ruler. 

31.4 Show that it is not possible to quintisect (divide in 5) a general angle with compass 
and marked ruler. 

31.5 Suppose, in addition to the compass and marked ruler, we were given tools to 
extract 5th roots and quintisect angles. Show that even with these new tools, it is 
still not possible to solve a general fifth-degree equation. Hint: Show that the Galois 
group of any extension obtained with these new tools is still solvable, and then take 
a quintic equation with Galois group 85 , such as Example 32.4.4. 

31.6 Verif'y that the following construction 
using a parabola will trisect an angle. 
Suppose we are given in the xy-plane 
the parabola r defined by y = x2 . 

Suppose we are also given an an­
gle AOE, with A lying on the unit cir­
cle and E = (1, 0). Draw a vertical line 
through A to meet the line y = 2 at C. 
Draw a circle with center C, passing 
through the origin 0, and let it meet 
the parabola r at D. Drop a perpen­
dicular DE from D to the x-axis. Draw 
a circle with center E and radius 1 to 
meet the unit circle at F. Then LFOE 
will be one-third of the angle LAOE. 

:2. t---I...;;'"----+--.f-

1 
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3l.7 Show that the constructions one can accomplish given the fixed parabola y = x 2 in 
the xy-plane, and being allowed to intersect it with lines and circles, are precisely 
equivalent of those one can achieve with compass and marked ruler. 

31.8 The problem of Alhazen. Given a cir­
cle r, and given two points A, B, find a 
point C E r such that the lines AC and 
BC make equal angles with the circle. 
Show that this problem leads to a 
quartic equation, and so can be solved 
with marked ruler and compass. 

3l.9 In the proofs of Propositions 5-9 of his 
book on spirals, Archimedes makes 
use of the following construction: 
Given a circle r, given a chord 1, given 
a point P on the circle, and given a 
segment d, to draw a line through P 
such that the segment AB cut off by 
the line and the circle is equal to the 
given segment d. This is not a legiti­
mate use of the marked ruler in the 
limited sense we have considered. 
Show, however, that: 

(a) This construction can be made 
with compass and marked ruler in our 
sense. 

(b) If 1 is perpendicular to the diameter of the circle passing through P, then the 
construction is possible even with ruler and compass only. 

3l.l0 Show that those cubic equations that can be solved with square roots and an angle 
trisection are the equations with three real roots, while those equations needing 
square roots plus a cube root are the equations with one real and two complex 
roots. 

3l.11 If f(x) is an irreducible cubic equation over the field F <;; IR with one real and two 
complex roots, then its Galois group is S3. 

3l.l2 We have seen (Theorem 28.4) that rx = 2 cos 20° is a root of the equation 
x3 - 3x - 1 = o. Show that the other two roots of this equation are contained in the 
field <Q(rx), and so its Galois group is 'lL3 . 

3l.13 You have probably seen (Exercise 29.2) that rx = 2cos2n/7 is a root of the equation 
x3 + x2 - 2x - 1 = o. Show that the other two roots of this equation are also in the 
field <Q(rx), so that it is a normal extension with Galois group 'lL3 . Note that in this 
case, however, it is only after adjoining V7 that we can express rx using a trisection 
of an angle. 
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31.14 The discriminant. Let [(x) be an irreducible cubic polynomial with coefficients in 
the field F <;; lR., and let its roots be IX], 1X2, 1X3 in its splitting field. We define the dis­
criminant of [(x) to be 

~ = (IX] -1(2)2(IX] - I(3)2(IX2 -1(3)2. 

(a) Show that ~ E F. 

(b) Show that ~ > 0 if and only if [(x) has 3 real roots, while ~ < 0 if and only if 
[(x) has one real and two complex roots. 

(c) Show that the Galois group of [(x) is lL3 if and only if ..fS,. E F; otherwise, it 
is S3. 

31.15 If [(x) = x3 + px + q, show that its discriminant is ~ = -4p 3 - 27q2, as follows: Let 
IX be one root. Then show that the remaining two roots of [(x) are roots of the qua­
dratic equation 

Solve this using the quadratic formula. Then put the three roots into the definition 
of ~ (Exercise 31.14) and simplify. 

31.16 Consider the equation x3 - 3x -! = 0 over 02. If we take e such that cos e = i, then 
IX = 2 cos ~e is a root, by Proposition 31.1. Show that in this case, the other two 
roots ofthe equation are not contained in the field O2(IX), so the Galois group will be 
S3. Show that the splitting field of 02 (IX) is O2(IX, vis). 

31.17 In this exercise we investigate when two different polynomials can give rise to the 
same field extension. For simplicity let us consider an irreducible polynomial 
[(x) = x3 - 3x - b over 02. Let IX be a root of this polynomial, and denote by ~(IX) its 
discriminant. 

(a) If fJ is any other element of the field O2( IX), fJ rf= 02, show that ~(fJ), the discrim­
inant of its minimal polynomial, satisfies 

for some a,c E 02. In particular, ~(fJ)/~(IX) is a square in 02. 

(b) If [(x) = x3 - 3x - 1 with root IX, and g(x) = x3 - 3x -! with root fJ, show that 
~(fJ) / ~(IX) is not a square, and hence 02 (IX) of- 02 (fJ). 

(c) Now let [(x) = x3 - 3x - 1 have root IX and g(x) = x3 - 3x - 13/7 have root fJ. In 
this case show that ~(fJ)/~(IX) is a square, but nevertheless, O2(IX) of- O2(fJ). Hint: Use 
the criterion of (a) to reduce to a certain cubic Diophantine equation over lL, and 
show that it has no solutions. 

31.18 Show that those construction problems that can be solved by intersecting arbitrary 
conics in the plane-the so-called solid problems of the ancients-are exactly those 
described in (Theorem 31.5). 
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31.19 Given a unit square, find a point E on 
AB extended such that the line CE 
cuts off a segment EF equal to a given 
segment b. 

(a) Show that this marked ruler prob­
lem gives rise to a quartic equation 
that can be solved with square roots 
only. Thus E can be constructed with 
ruler and compass. 

(b) Find a ruler and compass con­
struction (par = 7). 

32 Appendix: Finite Field Extensions 

Our purpose in this section is to review the basic facts about finite field exten­
sions that we use in studying geometric constructions. For the most part we will 
not give proofs, which can be found in any standard algebra textbook. If you are 
learning this material for the first time, it may make sense simply to accept 
these results and let their use in geometry provide some motivation before you 
study their abstract algebraic proofs. 

Field Extensions 

When one field is contained in another, F s:; E, we can think of F as a subfield of 
E, or we can think of E as an extension field of F, depending on the point of 
view. For example, when we see <Q s:; <Q( viz), the field of rational numbers <Q is 
more familiar, so we will think of <Q( viz) as a field extension. Or when a field F 
is given, and we are looking for an extension field E with some particular prop­
erty, we think of E as an extension field. 

If F s:; E are two fields, and if 1X1, .•. ,lXn E E, then we denote by F( 1X1, ..• , IXn) 

the smallest subfield of E that contains F and the elements 1X1, .•. ,lXn. We call it 
the subfield of E generated by the elements 1X1, .•• ,lXn over F. 

When one field is contained in another, F s:; E, we can regard the larger field 
as a vector space over the smaller field. The dimension of this vector space is 
called the degree of the field extension, written deg E / F. 

Example 32.0.1 
Every element of <Q()2) can be written uniquely in the form a + bvlz 
with a, bE <Q. Thus <Q( viz) is a vector space of dimension 2 over <Q, so 
deg <Q()2) /<Q = 2. 
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A field extension may have infinite degree. For example, if <Q is the set of all 
algebraic numbers (those complex numbers that are roots of polynomial equa­
tions with coefficients in <Q), then deg <Q/<Q is (countably) infinite. If IR is the 
real numbers, deg IR/<Q is (uncountably) infinite. 

Proposition 32.1 
If F S; E S; G are three fields, each contained in the next, then 

deg G/F = (deg G/E) . (degE/F). 

Proof If 0:1, ... ,lXn is a vector space basis for E over F, and if fJ1' ... ,fJm is a 
vector space basis for Gover E, then {lXifJjli = 1, ... , n; j = 1, ... , m} is a basis for 
Gover F. 

Example 32.1.1 
Consider <Q S; <Q( viz) S; <Q( viz, y3). Adjoining a square root of an element that 
was not already a square in a field makes a field extension of degree 2. We know 
that viz i <Q. We can also show that y3 i <Q( viz) as follows. If y3 = a + bvlz, 
then 

a Z + 2abvlz + 2bz = 3. 

This equation takes place in <Q( viz), where each element is uniquely written as 
c + dvlz. Hence 

a Z + 2bz = 3, 

2ab = O. 

Thus a = 0 or b = 0, so either a Z = 3 or 2bz = 3, both of which are impossible 
in <Q. Hence y3 i <Q( viz), so <Q( viz, y3) is an extension of degree 4 of <Q. For a 
basis, we can take the elements 1, viz, y3, V6. In other words, every element of 
this last field can be written uniquely as a + bvlz + cy3 + dV6, with a, b, c, dE <Q. 

Roots of Polynomials 

Let F be a field, and let 

be a polynomial with coefficients ai E F. A root of f means an element 0: in some 
extension field E of F for which f(o:) = o. 

Proposition 32.2 
For any field F and any nonconstant polynomial f(x) there always exists an exten­
sion field E that contains a root 0: of f(x). If f(x) is irreducible of degree n, then the 
degree of the field extension F(o:)/F is n. If f(x) is irreducible, and if 0:1 E E1 and 
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IX2 E E2 are roots of f(x) in two extension fields of F (which may be the same), then 
there is an isomorphism rp : F( IX]) -+ F( 1(2) of the subfields of E], E2 generated by IX], 

1X2, respectively, that sends IX] to 1X2 and leaves every element of F fixed. 

This proposition is usually proved using an abstract field extension E con­
structed by taking the polynomial ring F[x] and dividing out by the ideal I gen­
erated by f(x). Since f(x) is irreducible, I will be a maximal ideal, and so the 
quotient ring E = F[xJl I is a field. The image IX E E of x E F[x] then becomes a root 
of f(x). 

In the case that will concern us most, polynomials with rational coefficients, 
there is another, more concrete, way of finding roots. Since <Q S; <C, the field of 
complex numbers, and since every polynomial with complex coefficients has a 
root in <C (this is the so-called fundamental theorem of algebra, whose proof, 
however, requires complex analysis), it follows that every polynomial 
f(x) E <Q[x] has a root in <C (and sometimes even a root in lR). So if we write Vi, 
for example, it can be assumed that we are referring to the real number 
Vi = 1.414 ... , and not to some abstract element in some abstract field exten­
sion of <Q in which the polynomial x2 - 2 has a root. 

Example 32.2.1 
The polynomial x2 - 2 is irreducible over <Q, since Vi is irrational, as was shown 
by Euclid (X.1l7). It has a root Vi E lR, so we can denote by <Q (Vi) the subfield 
of lR consisting of all real numbers of the form a + bVi, with a, bE <Q. This is a 
field extension of degree 2 of <Q, with 1, Vi as a basis. Now, the polynomial 
x2 - 2 also has another root, -Vi, The field extension generated by this root, 
<Q( -Vi), is equal to <Q( Vi). According to (32.2) there is an isomorphism (in this 
case an automorphism) rp : <Q( Vi) -+ <Q( Vi) that leaves all rational numbers fixed 
and sends Vi to -Vi, Indeed, you can verifY that the map rp defined by 
rp(a + bVi) = a - bVi is a field automorphism of <Q( Vi), namely, it satisfies 
rp(1X + fJ) = rp(lX) + rp(fJ) and rp(lXfJ) = rp(lX) . rp(fJ) for alllX,fJ E <Q( Vi). 

Example 32.2.2 
For a slightly more complicated example, consider the polynomial x3 - 2 over 
<Q. It has a root Vz = 1.2599 ... in lR, so we can consider the field <Q( Vz). This is 
an extension field of degree 3 of <Q, with basis 1, Vz, and V'4. But the equation 
x3 - 2 also has a complex root wVz, where w = ~ (-1 + H) is a cube root of 
unity. This gives a different extension field <Q(wVz) of <Q in which the poly­
nomial x3 - 2 has a root. This is also an extension of degree 3 of <Q, with basis 1, 
wVz, w 2 V'4. According to the proposition, these two field extensions are iso­
morphic as field extensions of <Q, even though one is contained in lR and the oth­
er is not. The isomorphism rp : <Q( Vz) -+ <Q(wVz) sends 1 -+ 1, Vz -+ wVz, and 
V'4 -+ w 2 V'4. 
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Example 32.2.3 
In some other cases we cannot write roots explicitly, but we can show that they 
exist. Try X S - 5x - 1 for example. Substituting x = y + 1 gives 

yS + 5y4 + 10y3 + 10y2 - 5, 

which is irreducible by Eisenstein's cri­
terion (32.8), so X S - 5x - 1 is irreduc­
ible. A little elementary calculus shows 
that the graph has a relative maximum 
at (-1 ,3) and a relative minimum at 
(1 , -5) and no other relative extremum. 
Therefore, it has exactly 3 real roots 
and 2 complex roots, though we cannot 
write them explicitly. Nevertheless, the 
roots exist. Say 0(1 , 0(2,0(3 are the real 
roots and 0(4, O(s are the complex roots. 
In this case the field extensions <12(0(1), 
<12(0(2), <12(0(3), <12(0(4), <I2(O(s) are actually 
five distinct subfields of <C, three of 
which are contained in lR., and which 
are all isomorphic as field extensions of 
<12 (Exercise 32.7) . 

-\ 

'1 

1 

If instead of starting with the field F and the polynomial f(x), we start with a 
field extension F £; E and an element 0( E E, and if E is a finite field extension, 
meaning degE/ F is finite, then 0( will be algebraic over F, that is, there exists a 
polynomial with coefficients in F of which 0( is a root. Indeed, if degE/F = n, the 
n + 1 elements 1,0(,0(2, ... ,O(n of E must be linearly dependent over F. In other 
words, there are elements ao, .. . ,an E F, not all 0, such that 

aoO(n + a10(n~1 + .. -+ an = O. 

Thus 0( is a root of the polynomial 

f(x) = aoxn + a1Xn~ 1 + -. -+ an-

Once we know that there is some polynomial of which 0( is a root, we can find 
one of minimal degree, and this is called the minimal polynomial of 0( (usually 
normalized to have leading coefficient 1). If g(x) is the minimal polynomial of 0(, 
then g(x) is necessarily irreducible, so by the previous proposition, degF(O()/F = 
degg(x). 

Example 32.2.4 
,---= 

Take 0( =! )10 - 2V5 E JR., for example, which is the side of the regular penta-
gon. Let us find its minimal polynomial. Set 
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Squaring, 

Regrouping, 

Squaring again, 

So 

x = ~\ho - 20. 
2 

4x2 = 10 - 20. 

2X2 - 5 = -0. 

4X4 - 20x2 + 25 = 5. 

X4 - 5x2 + 5 = O. 

This procedure produces for us a polynomial of which rx is a root. In fact, run­
ning the same calculation backward shows that the four roots of this polynomial 
are ±~ VlO ± 20. To see whether this polynomial is the minimal polynomial 
of rx, we must decide whether it is irreducible. We first note that none of the four 
roots is rational, so that the polynomial has no linear factor. If it had quadratic 
factors, say 

X4 - 5x2 + 5 = (x2 + ax + b)(x2 + ex + d), 

then from the absence of cubic and linear terms we obtain e = -a and d = b. 
Then 

so we must have 

which is not possible for a, bE <Q. 

2b - a2 = -5, 

b2 = 5, 

Therefore, X4 - 5x2 + 5 is irreducible, and it is the minimal polynomial of rx. 
We could also have used Eisenstein's criterion (32.8) with p = 5. 

Splitting Fields 

Given a field F and a polynomial f(x) E F[x], one can always find a root rx in 
some extension field E as we have seen above. Then in the polynomial ring E[x] 
one can factor out a linear factor, so f(x) = (x - rx)g(x), where g(x) is a new 
polynomial, of degree one less than f(x) and having coefficients in the new field 
E. 

Repeating this process, one can find a root of g(x) in some extension field of 
E, and split off another linear factor. In this way, one eventually finds an exten­
sion field E' of F in which the polynomial f(x) splits into linear factors 
f(x) = e I1(x - rxi), where rx], ... , rxn are n = deg f(x) roots of f(x) in E', and e E F 
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is a constant. Note that the lXi need not all be distinct in general, although iff is 
irreducible and the characteristic of the field F is zero, they will be. 

A splitting field for the polynomial f(x) over the field F is a field extension E 
of F such that over E one can factor f(x) = c I1(x - lXi) as above, with c E F, 
IX; E E, and furthermore, E = F(IXJ, ... , IXn); in other words, the field E is minimal 
with this property. 

Proposition 32.3 
Let a field F and a polynomial f(x) E F[x] be given. Then there exists a splitting field 
for f(x) over F. Any two splitting fields are isomorphic as field extensions of F. If f(x) 
is irreducible, if E is a splitting field for f(x) over F, and if IX], IXz E E are any two 
roots of f(x) in E, then there exists an automorphism rp : E -+ E leaving elements of F 
fixed and sending IX] to IXz. 

Example 32.3.1 
If f(x) = X Z - 2, the two roots are ± viz, and <Q( viz) is a splitting field. 

Example 32.3.2 
If f(x) = x3 - 2, the roots are Vz, wVz, wZVz, so the splitting field is 
<Q( Vz, wVz, WZVz). It is easy to see that this field is the same as the field 
<Q( Vz, R), which has degree 6 over <Q. In general, as we see from the method 
of constructing a splitting field, the splitting field of a polynomial of degree n 
will have degree less than or equal to nL In this case we have equality: 6 = 31. 

Example 32.3.3 
Let f(x) = X4 - 5xz + 5. We saw earlier that the roots of this polynomial are 

±~ VlO ± 2V5, so the splitting field will be <Q( VlO + 2V5, VlO - 2V5). Since 

VlO + 2V5· VlO - 2V5 = v'BO = 4V5, 

the splitting field is actually equal to <Q ( VI 0 + 2 V5), because this field already 

contains V5. We saw earlier that this polynomial is irreducible, so the splitting 
field has degree 4. This is an example where the degree of the splitting field is 
considerably less than 4! = 24. 

Example 32.3.4 
For X S - 5x - 1, which we looked at earlier, the splitting field has degree 
120 = 5! over <Q (32.4.4). 

Normal Extensions and Galois Groups 

For this part, we will restrict our attention to fields of characteristic 0 for sim­
plicity, since in the applications to geometry we will be dealing mainly with 
extension fields of <Q. 
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A finite field extension ElF is called normal if it is equal to the splitting field 
of some polynomial f(x) E F[x]. In this case we denote by G the group of all 
automorphisms of E that leave elements of F fixed. G is called the Galois group of 
the field extension ElF. Or if E is the splitting field of a polynomial f(x) E F[x], G 
is also called the Galois group of the polynomial f(x). A normal extension ElF is 
also sometimes called a Galois extension. 

Theorem 32.4 (Fundamental theorem of Galois theory) 
Let ElF be a normal field extension with Galois group G. Then 

( a) The order of G is equal to the degree of the extension E / F. 
(b) The only elements of E fixed under all elements of G are the elements of F. 
( c) There is a l-to-l inclusion-reversing correspondence between subgroups H ~ G 

and intermediary fields F ~ K ~ E given as follows: To a subgroup H ~ G we 
associate the field EH of elements of E left fixed by all elements of H. Conversely, 
to an intermediate field K we associate the subgroup H ~ G of those elements of G 
that leave all elements of K fixed. 

(d) Under the correspondence just described, the subgroup H ~ G will be a normal 
subgroup of G if and only if the associated field K is a normal extension ofF, and 
in that case the quotient group GIH is isomorphic to the Galois group of KIF. 

Note that if f(x) is an irreducible polynomial of degree n over a field F of 
characteristic 0, then its roots IX}, ..• , IXn are all distinct. Let E = F( IX}, ... , IXn) be a 
splitting field, and G its Galois group. For any root, say IX}, the equation f(lXd = 
o must be preserved by any element of G. The coefficients of f are elements of 
the base field F, so they are fixed by elements of G. Thus the image of IX} by an 
element of G must be another root of f(x), namely one of IX}, .•. ,lXn. In this way 
we see that an element of G permutes the set IX}, ..• ,lXn of the n roots of f(x). 
Since E is generated by these roots, the action of an element of G is completely 
determined by its action on the lXi. In this way we see that G can be regarded as 
a subgroup of the symmetric group Sn of all permutations of the set {IX}, ... ,lXn }. 

Example 32.4.1 
Consider the polynomial XZ - 2 over <Q. Its splitting field is <Q( v'2). This is a 
normal extension of <Q, and the Galois group consists of the identity and the au­
tomorphism rp that takes v'2 to -v'2. In this case G is equal to the symmetric 
group Sz, which is isomorphic to tlz = 7l/27l. 

Example 32.4.2 
Consider x3 - 2 over <Q. First look at the field extension <Q( Vz). Any auto­
morphism of this field would have to take Vz to another root of x3 - 2. But the 
other two roots are complex numbers, not contained in the field <Q( Vz). Thus 
the only automorphism of this field is the identity. It follows from (32.4) that 
<Q( Vz) is not a normal extension of <Q. Of course, we know that it is not the 
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splitting field of the polynomial x3 - 2, but this shows, assuming the result 
(32.4a), that <Q( Vz) cannot be the splitting field of any polynomial over <Q. 

The splitting field of x3 - 2 is <Q( Vz, R), which has degree 6 over <Q. 
Hence the Galois group will be equal to 83 . There are three intermediate fields 
of degree 3 over <Q, namely <Q( Vz), <Q(wVz), and <Q(WZVz). These correspond 
to the three subgroups ie, (12)}, ie, (13)}, ie, (23)} of order 2 of 83 . The field 
<Q( R), which is a normal extension of <Q, corresponds to the normal subgroup 
A3 = ie, (123), (132)} of 83 . 

Example 32.4.3 
Consider again the polynomial X4 - 5xz + 5 over <Q. We saw that it is irreducible 
with roots 

(Xl =! V10 + 2v1s, 

(Xz = ! VlO - 2v1s, 

(X3 = -!V10 + 2 vis, 

(X4 = -! VlO - 2v1s. 

We saw that the splitting field is <Q( V10 + 2 vis) , which has degree 4 over <Q. 
Thus the Galois group G will be a subgroup of order 4 of the symmetric group 
84 • Which subgroup of order 4 is it? 

To investigate this question, we must describe explicitly the automorphisms 

of the field E = <Q ( V10 + 2v1s). According to (32.3), there exists an element 

a E G such that a( (Xl) = (Xz. Then a( (Xr) = (X~, and since elements of <Q are fixed, it 
follows that a( vis) = -vis. Now we make use of the identity (Xl (Xz = vis. Apply­
ing a we obtain a( (Xl) . a( (Xz) = a( vis) = -vis. But a( (Xl) = (Xz by choice of a, so we 
obtain (Xz· a((Xz) = -vis. From the equation (XI(XZ = vis it follows that a((Xz) = 
-(Xl = (X3. Finally, a((X3) = a( -(Xd = -(Xz = (X4. Thus a = (1234). So G is the sub­
group of 84 generated by (1234), which is a cyclic group of order 4. 

Perhaps from this example it is already clear that the determination of the 
splitting field of a polynomial and its Galois group is not a straightforward mat­
ter. It depends in each case on using some special information about that par­
ticular example, which may not be an easy task. 

Example 32.4.4 
Coming back to the example x5 - 5x - 1 we studied earlier, let us see whether 
we can determine the degree of its splitting field and its Galois group. The poly­
nomial is irreducible, so if we adjoin one root (x, then <Q( (X) will be an extension 
of degree 5 of <Q. Let E be the splitting field. Then <Q ~ <Q((X) ~ E. Therefore, 
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degE/<Q is a multiple of 5. So the Galois group G will be a subgroup of S5, whose 
order is a multiple of 5. Hence (from abstract group theory), G contains an ele­
ment of order 5. In S5, the only elements of order 5 are the 5-cycles. Thus G 
contains a 5-cycle. On the other hand, we saw earlier that f(x) has 3 real roots, 
and hence two conjugate complex roots. Complex conjugation in <C then induces 
an automorphism of E that fixes the three real roots and permutes the two com­
plex roots. This is an element of G whose image in S5 is therefore a transposition 
(a 2-cycle). Now, one can show (again using abstract group theory) that a sub­
group of S5 that contains a 5-cycle and a transposition must be the full symmet­
ric group. Hence G = S5, and the degree of E/<Q is 5! = 120. 

Note the indirect nature of the reasoning, and how we were able to prove 
that G = S5 without having any explicit representation of the roots of f(x). 

Reduction mod p 

A useful technique for obtaining information about the Galois group of a poly­
nomial with integer coefficients is the following. 

Proposition 32.5 
Let f(x) be an irreducible monic polynomial with integer coefficients. Fix a prime p, 
and assume that the polynomial f(x) with coefficients reduced (mod p) has distinct 
roots in a splitting field E for f(x) over the prime field IFp. Then there is a 1-to-1 cor­
respondence between the roots of f(x) in its splitting field E over <Q and the roots of 
f(x) in E such that the Galois group off over IFp, considered as a group of perm uta­
tions of the roots, corresponds to a subgroup of the Galois group off over <Q. 

Example 32.5.1 
Consider the polynomial f(x) = X4 - x3 - 5x2 + 1. It has no roots in <Q, because a 
root would have to be an integer dividing 1, and neither +1 nor -1 is a root. 
Reducing (mod 2), we obtain f(x) = X4 + x3 + x2 + 1 = (x + 1)(x3 + X + 1). Note 
that x3 + x + 1 is irreducible because it has no roots modulo 2. It follows that 
f(x) cannot be a product of two quadratic polynomials, because then f(x) would 
be also. Thus f(x) is irreducible, and so 4 divides the order of the Galois group. 

Now let us apply the proposition. The polynomial f(x) has distinct roots 
(since the derivative of x3 + x + 1 is nonzero), and its Galois group is cyclic of 
order 3. We conclude from the proposition that the Galois group of f(x) contains 
a 3-cycle. Hence its order is divisible by 3, and we see that the Galois group of 
f(x) must have order 12 or 24. 

Roots of Unity 

We will examine in greater detail the Galois groups of the polynomials xn - 1 
over <Q, since these are closely related to the question of constructing regular 
polygons of n sides. 
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If IX = 2n/n is an angle equal to one nth 
of a complete rotation, then the com­
plex number 

( = e2ni/ n = cos IX + i sin IX 

is an nth root of unity. In fact, 
1, (, (2, ... , C-I are the n roots of the 
equation xn - 1 in the field <C of com­
plex numbers. Among these we will 
designate as primitive nth roots of unity 
those that are not a dth root of unity for 
any din. 

In other words, the primitive nth roots of unity are those powers C of ( for 
which (r, n) = 1. The product 

<l>n(x) = II (x - C) 
(r,n)=1 

is called the nth cyclotomic polynomial. From this description, it is not obvious 
where its coefficients lie, but from the expression 

$"(X) ~ (x" -ly(g $d(X)) 

it follows inductively that <l>n has coefficients in <Q, and in fact (using Gauss's 
lemma), coefficients in 7l. 

The degree of the polynomial <l>n(x) is given by the Euler tp-function: tp(n) = 
#{l:s; r < nl(r,n) = I}. 

Proposition 32.6 
For any n, the cyclotomic polynomial <l>n(x) is irreducible over <Q. 

Example 32.6.1 
The first few cyclotomic polynomials are 

<1>1 = x-I, 

<1>2 = X + 1, 

<1>3 = x2 + X + 1, 

<l>4=x2+1, 

<1>5 = X4 + x3 + x2 + X + 1, 

<1>6 = x 2 - X + 1, 

<1>7 = x6 + x5 + X4 + x3 + x2 + X + 1, 

<1>8 = X4 + 1. 
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(However, do not conclude from this list that the coefficients are always ±1: 
There may be other integer coefficients.) 

Let ( = eZni / n again. Since <Dn is irreducible, it will be the minimal polynomial 
of (, and we find that degree of <Q(O/<Q is rp(n), the Euler rp-function. Further­
more, since the other roots of <Dn are all powers of (, the splitting field of <Dn is 
this same field <Q(O. From (32.3) we find that for each 1 ::;; r < n with (r, n) = 1, 
there is an element rpr of the Galois group G for which rpr( 0 = C. If we compose 
two of these, we have rpsrpr(O = rps(C) = (rs. Reducing rs (mod n) to t with 
1 ::;; t < n, it follows that rpsrpr = rpt. In this way we see that the Galois group G is 
isomorphic to the group of integers 1 ::;; r < n relatively prime to n, under multi­
plication (mod n). This group is usually denoted by 7L~. The field <Q(O is called 
the nth cyclotomic extension of <Q, or the field of nth roots of unity. Summarizing, 
we have the following proposition. 

Proposition 32.7 
The cyclotomic field of nth roots of unity <Q(O is generated by (= eZni / n . It has degree 
rp( n) over <Q, and its Galois group is isomorphic to 7L~. In particular, if n is a prime 
number p, then <Q(O has degree p - 1, and its Galois group is 7L;, which is a cyclic 
group of order p - 1. 

Example 32.7.1 
n=3. <D3=Xz+X+1. Its roots are w=~(-l+H) and w2=~(-1-H). 
The cyclotomic field <Q(w) is <Q( H), with Galois group isomorphic to 7L 2 . 

Example 32.7.2 
n = 4. <D4 = XZ + 1. Roots are ±i. The field is <Q(i) with Galois group 7Lz. 

Example 32.7.3 
n = 5. <D5 = X4 + x3 + XZ + x + 1. The cyclotomic field is <Q(O, where 

( = eZni/ 5 = cos 2n/5 + i sin 2n/5 

= ~ ( VS - 1) + i ~ J 10 + 2VS. 
The Galois group is isomorphic to 7L4 . 

Example 32.7.4 
n = 8. <Ds = X4 + 1. Its roots are (, (3, (5, 
C, where 

( = e2ni/8 = V2 + i V2 . 
2 2 

The Galois group is 7L~, which is 
{I, 3, 5, 7} under multiplication (mod 8). 
This group is isomorphic to the Klein 
four-group 7Lz x 7Lz. 
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For reference we include the following useful criterion for a polynomial to 
be irreducible. 

Proposition 32.8 (Eisenstein) 
Let 

f(x) = x" + alXn-1 + ... + an 

be a monic polynomial with integer coefficients ai Ell. Suppose for some prime num­
ber p, that p divides all the ai, and p2 does not divide an. Then f(x) is irreducible 
over <Q. 

Exercises 

32.1 For each of the following real numbers, find the minimal polynomial over <Q (be 
sure to prove that it is irreducible), find the degree of the splitting field of the 
polynomial, and determine the Galois group (up to isomorphism). Hint: Expect to 
find groups of orders 2, 4, and 8. 

(a) vl2 + viz. 
(b) v3+7z. 
(c) yh + 2 viz. 

In the following exercises, we will investigate the Galois group of a construction prob­
lem, defined as follows. For a construction problem in the real Euclidean plane lR 2 , start­
ing with data defined over <Q, the construction will create various points. Let F be the 
field F = <Q(PI' ... ,Pm) obtained by adjoining the coordinates of all the points constructed. 
Let E be the smallest normal field extension containing F, which can be obtained as fol­
lows. Let f;(x) be the minimal polynomial of p" i = 1, ... , m, let g(x) = I1"'1 fi(x), and 
take E to be the splitting field of g(x). The Galois group G of Ej<Q we will then call the 
Galois group of the construction problem. 

32.2 Given the unit segment A,B, where 
A = (0,0), B = (1,0), construct an 
equilateral triangle with side AB. De­
termine the associated field F, the 
normal field E, and the Galois group G 
of the construction problem. Answer: 
F= E = <Q(v'3). G ~ 7l2 . 

32.3 Construct a square with one corner at (0,0), with sides along the x- and y-axes, and 
with area equal to the area of the triangle in Exercise 32.2. Find F, E, G as above. 

32.4 Construct a regular pentagon inscribed in the unit circle having one vertex at (1,0). 
Find F, E, G as above. 
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32.5 Construct an equilateral triangle with 
one side on the x-axis, and with area 
equal to twice the area of the triangle 
in Exercise 32.2 above. Find F, E, G as 
above. 
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32.6 (a) Compute <1>9, the ninth cyclotomic polynomial, and find the Galois group of the 
cyclotomic field <Q(O where ( = e2ni/ 9 

(b) Let Cl = ~ cos40°. Find the minimal polynomial ofCl. Show that <Q(Cl) is a normal 
field extension of<Q of degree 3 and that <Q(Cl) ~ <Q(O. 

(c) Show that R E <Q(O. 

(d) Finally, show that <Q(O = <Q(Cl, R). 

32.7 Using facts about the Galois group from Example 32.4.4, show that the five fields 
<Q(Cli) mentioned in Example 32.2.3 are all distinct. 

32.8 Let <Q(O be the cyclotomic field of 5th roots of unity. 

(a) Show that v's E <Q(O. 

(b) Show that <Q(O = <Q(J), where J = ~ )10 + 2v's. 
2 

(c) What is the minimal polynomial of J? 

32.9 For p = 5,7,11,13,17, show explicitly that 7L; is cyclic by finding a suitable ele­
ment and proving that it generates the group. 

32.10 Consider the polynomial X4 - 2X2 - 7 over <Q. 

(a) Show that its Galois group is the dihedral group D4 , defined by generators a, b 
and relations a4 = e, b2 = e, ba = a-I b. 

(b) Find the lattice of all subgroups of D 4 . 

(c) Find all the subfields of the splitting field, and explain their correspondence 
with the subgroups of D4 . 

32.11 Consider the polynomial f(x) = X4 + X - 3 over <Q. 

(a) Find the cubic resolvent and show that it is irreducible . 

(b) Show that f(x) is irreducible. 

(c) By curve sketching, show that f(x) has two real roots and two complex roots. 

(d) Conclude that the Galois group of f(x) is S4. 

(e) IfCl is a real root, then <Q(Cl) is an extension of degree 4 of<Q, but Cl is not con­
structible by ruler and compass. 
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32.12 If [(x) is an irreducible quartic polynomial over <Q whose cubic resolvent is irre­
ducible with discriminant ~, show that the Galois group is A4 if and only if ~ is a 
square in <Q; otherwise, the Galois group is S4. 

32.13 Prove the following theorem of Holder: Let [(x) be irreducible of degree n over <Q, 
having all real roots. If at least one of these roots can be expressed by real radicals 
( of various degrees), then n = 2 k, and all the roots can be expressed by real square 
roots. 

Out two soules therefore, which are one, 
Though I must goe, endure not yet 

A breach, but an expansion, 
Like gold to ayery thinnesse beate. 

If they be two, they are two so 
As stiffe twin compasses are two, 

Thy soule the fixt foot, makes no show 
To move, but doth, if the'other doe. 

And though it in the center sit, 
Yet when the other far doth rome, 

It leanes, and hearkens after it, 
And growes erect, as that comes home. 

Such wilt thou be to mee, who must 
Like th'other foot, obliquely runne; 

Thy firmnes drawes my circle just, 
And makes me end, where I begunne. 

- from A Valediction: Forbidding Mourning 
by John Donne (1572-1631) 



CHAPTER 

Non-Euclidean 
Geometry 

ertainly one of the greatest mathematical discoveries 
of the nineteenth century was that of non-Euclidean 
geometry: seen but not revealed by Gauss, and devel­
oped in all its glory by Bolyai and Lobachevsky. The 
purpose of this chapter is to give an account of this 
theory, but we do not always follow the historical 
development. Rather, with hindsight we use those 
methods that seem to shed the most light on the sub­
ject. For example, continuity arguments have been 

replaced by a more axiomatic treatment. 
There are actually three different approaches presented here. One begins 

with Saccheri's theory, dividing geometries into three classes, in Section 34, and 
the theorem of Saccheri-Legendre, using Archimedes' axiom, in Section 35. The 
second is the analytic model of a non-Euclidean geometry given in Section 39. 
Third is Hilbert's axiomatic approach based on the axiom of limiting parallels 
(L) in Section 40. 

We start with a historical introduction to the problem of the parallels and the 
various futile attempts to prove Euclid's fifth postulate from the other axioms. 
Then we begin to explore this strange new world where the sum of the angles of 
a triangle can be less than two right angles. The defect of this angle sum pro­
vides a measure of area, which we exploit in Section 36. 

To explain the Poincare model of a non-Euclidean geometry, we need the 
Euclidean technique of circular inversion. This is developed in Section 37. It is a 
technique with many applications in Euclidean geometry. In particular, we 

295 
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make a digression in Section 38 to show how it can provide a solution to the 
classical problem of Apollonius, to construct a circle tangent to three given 
circles. 

In Section 40 we present a development of non-Euclidean geometry based 
on the axiom of existence of limiting parallel rays, proposed by Hilbert. This 
allows us to avoid the appeal to continuity invoked by the founders of the sub­
ject and free ourselves from dependence on the real numbers. Then we give 
Hilbert's brilliant construction of an abstract field from the set of common ends 
of limiting parallel rays. This allows us to characterize hyperbolic planes by 
their associated fields without using the techniques of projective geometry. 

We follow the principle, established earlier in this book, of systematically 
avoiding the use of real numbers. There is a slight cost, in that some familiar 
results will look different here, but I believe this approach is justified by keeping 
the intrinsic geometry in the foreground. For example, instead of taking loga­
rithms to define a distance function, we use a multiplicative distance function fl. 
Then Bolyai's famous formula for the angle of parallelism a of a line segment PQ 
takes the form tana/2 =fl(PQr1 (39.13) and (41.9). The arbitrary constant k 
that appears in some books, coming from the choice of a base for the logarithms 
in the distance function, is absent: In our approach, any two hyperbolic planes 
over the same field are isomorphic. Also, the hyperbolic trigonometric functions 
sinh, cosh, tanh do not appear in our formulae of hyperbolic trigonometry (42.2) 
and (42.3). As a result of this approach, the solution of any problem we consider 
can be found constructively, by ruler and compass, or, equivalently, by solving 
linear and quadratic equations in the coefficient field. 

33 History of the Parallel Postulate 

To set the background for the discovery of non-Euclidean geometry, a kind of 
geometry where there may be many lines through a point parallel to a given 
line, let us trace the history of attitudes toward the parallel postulate. 

We have seen already that Euclid's fifth postulate, which we refer to as the 
parallel postulate, was of a much more sophisticated nature than the other pos­
tulates and axioms. Euclid seems to have recognized this himself, since he post­
poned using it as long as possible, and was careful to develop the standard con­
gruence theorems for triangles without the parallel postulate. 

Euclid was criticized for making this a postulate and not a theorem. Proclus 
(410-485), who represented the school of Plato in fifth-century Athens, has left 
an extensive commentary on the first book of Euclid's Elements. His opinion on 
the fifth postulate is unambiguous: 

"This ought to be struck from the postulates altogether. For it is a theorem­
one that invites many questions, which ptolemy proposed to resolve in one of 
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his books-and requires for its demonstration a number of definitions as well as 
theorems" (Proclus (1970), p. 150). 

In his commentary on (1.29) , Proclus gives Ptolemy's proof and points out its 
flaws, and then proceeds to give his own proof of the fifth postulate. First, he 
says, we must accept an axiom that was used earlier by Aristotle: 

Aristotle's Axiom 

A c 

If from a single point two straight lines 
making an angle are produced indef­
initely, the interval between them will 
exceed any finite magnitude. In other 
words, given any angle BAC, and given 
a segment DE, there exists a point F on 
the ray AB such that the perpendicular 
FG from F to the line AC will be greater 
than DE. 

~------~--------

e 

Then Proclus proposes to prove the following lemma of Proclus. 

Lemma of Proclus 
If a straight line cuts one of two parallel lines, it cuts the other also. 

His proof goes like this. If AB and 
CD are two parallel lines, and if EF cuts 
AB, with F on the side toward CD, then 
we apply Aristotle's axiom to the angle 
BEF. As we extend the ray EF indef­
initely, its interval from the line AB will 
exceed the distance between the paral­
lel lines, and so it must cut the line CD. 

A 

D 

From this lemma (which is essentially the same as what we now call Play­
fair's axiom), Proclus easily proves the parallel postulate. 

Proclus's reasoning was apparently accepted for some time, since it is repro­
duced without critical comment by F. Commandino in his edition of Euclid 
( 1575) . 

We can observe two things about the argument of Proclus. First of all, he as­
sumes another axiom (the axiom of Aristotle) in the course of his proof. This is 
not uncommon in various attempted proofs of the parallel postulate. Often, one 
ends up assuming (consciously or unconsciously) something else that turns out 
to be equivalent to the parallel postulate. In this particular case, it is not so bad: 
We will see that Aristotle's axiom is a consequence of Archimedes' axiom, and 
does not imply the parallel postulate by itself (35.6). 
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The more serious flaw in Proclus's argument is that he speaks of lithe dis­
tance between the parallel lines" as if all the points of one line were at the same 
distance from the other line. Since the definition of parallel lines is lines in the 
same plane that do not meet, however far extended, it does not follow from the 
definition that they are at a constant distance from each other. In fact, this as­
sumption of constant distance is enough to prove the parallel postulate (in the 
presence of Aristotle's axiom), as Proclus shows. Thus, in view of (1.34) it is 
equivalent to the parallel postulate. 

This confusion of the definition of parallel lines as lines that do not meet 
with the common-sense notion of parallel lines as equidistant from each other 
(like railroad tracks) has persisted. For example, in the edition of Euclid's first 
six books by J. Peletier (1557), definition 35 says, II Parallels, or equidistant 
straight lines, are those which being in the same plane, and extended arbitrarily 
in either direction, do not meet." However, Peletier follows Euclid's proofs in 
Book I, and does not make use of the equidistant property. 

A more striking example is the very popular edition of the Elements of 
Geometry by the Jesuit Andrea Tacquet (1612-1660), first published in 1654 and 
reprinted many times over the next hundred and fifty years (Tacquet (1738)). 
Tacquet's book is not a strict translation of Euclid, but an arrangement, to 
make the study of geometry easier for beginners. Though he preserves the 
numbering of Euclid's propositions, he takes great liberties with their proofs. 
For example, he says that there is no point in proving (I.16), because it is a 
special case of (1.32)! He apparently does not care about the fact that Euclid's 
proof of (I.16) is independent of the parallel postulate, while (1.32) depends 
on it. 

Tacquet says that since there are 

various species of lines (such as the 1 t t 
hyperbola and a straight line) that 
approach each other indefinitely but 
never meet, so Euclid's definition of 
parallel lines does not satisfactorily 
reflect the nature of parallels. 

He takes as his definition that two lines are parallel if the points of one are 
all equidistant from the other, as measured by perpendiculars from points on 
the first line to the second line. 

There is no harm, of course, in using any definition you like of parallel lines, 
though this one places a great burden on the proof of existence of parallels. 
Tacquet misses the subtlety, however, because in the next sentence he says that 
you can generate parallel lines as the locus of points at a fixed distance from a 
given line as the perpendicular moves along. Here he is implicitly using another 
axiom, which was in fact stated explicitly and used earlier by Christoph Clavius 
(1537-1612) as a substitute for Euclid's parallel postulate: 
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Clavius's Axiom 
The set of points equidistant from a given line on one side of it form a straight 
line. 

This axiom, as one can easily show, is almost equivalent to the parallel pos­
tulate that Tacquet was trying to avoid (Exercise 33.7). 

The French mathematician Alexis Claude Clairaut (1713-1765) wrote an 
EZemens de Geometrie (first published in 1741) in which he tried to make geome­
try more accessible for students. He complained about the usual method of 
teaching the elements, in which "one always starts with a great number of defi­
nitions, postulates, axioms, and first prinCiples, which appear to offer nothing 
but dryness to the reader./I He thought that Euclid's careful reasoning was 
merely to satisfY a fussy audience : "That Euclid went to the trouble to prove that 
two circles which cut each other do not have the same center; that a triangle 
contained inside another triangle has the sum of its sides less than that of the 
triangle in which it is enclosed - one should not be surprised. For this geometer 
had to convince the obstinate sophists who glorified in finding fault with the 
most evident truths: so it was necessary that geometry, like logic, make use of 
proper reasoning, to close the mouths of its critics." 

Clairaut's purpose is to introduce the concepts of geometry simply and natu­
rally in the context of practical questions such as measurement of terrain. So he 
talks of straight lines to measure the distance between points, and how to con­
struct perpendicular lines. Then he says, what is more easy than to use this 
method to construct a rectangle? One has only to take a segment AB, and at its 
endpoints raise perpendiculars AC and BD of equal length, and then join CD. 
From here he develops the theory of parallels. The hidden assumption is that his 
construction makes a rectangle. So we will call this assumption Clairaut's axiom. 

Clairaut's Axiom C 1) 

Given a segment AB, let AC and BD { 1 be equal segments perpendicular to AB. 
Then the angles at C and D are right 
angles, i.e ., ABCD is a rectangle. A G 

Robert Simson, M.D. (1687-1768), professor of mathematics in the Univer­
sity of Glasgow, made an important edition of Euclid's elements, in Latin and in 
English, first published in 1756, which went through some thirty successive edi­
tions. Simson railed against the errors introduced by earlier editors, and wished 
to "restore the principal Books of the Elements to their original Accuracy .. .. 
This I have endeavored to do by taking away the inaccurate and false Reason­
ings which unskilful Editors have put into the place of some of the genuine 
Demonstrations of Euclid, who has ever been justly celebrated as the most 
accurate of Geometers, and by restoring to him those Things which Theon 
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or others have suppressed, and which have these many ages been buried in 
Oblivion" (Simson (1803), Preface). Simson's restorations were not so much 
based on textual studies as on his faith that anything mathematically true and 
accurate must have been Euclid's, while anything incorrect or not rigorous must 
have been inserted by "some unskilful editor." About the parallel postulate, he 
says, "It seems not to be properly placed among the Axioms, as, indeed, it is 
not self-evident; but it may be demonstrated thus." Simson then introduces an 
axiom, 

Simson's Axiom 
A straight line cannot first come nearer to another straight line, and then go 
further from it, before it cuts it; and, in like manner, a straight line cannot go 
further from another straight line, and then come nearer to it; nor can a straight 
line keep the same distance from another straight line, and then come nearer to 
it, or go further from it (Simson (1803), p. 295). 

From this axiom, and implicitly making use of Archimedes' axiom, Simson 
proves (correctly) five propositions, of which the last is Euclid's parallel postulate. 

So here we have a clear case of an author substituting another axiom that 
seems more natural to him, and then using it to prove the parallel postulate. 

John Playfair (1748-1819), professor of natural philosophy, formerly of math­
ematics, in the University of Edinburgh, published a new edition of the first six 
books of Euclid's Elements that first appeared in 1795. He says that Dr. Simson 
has done a fine job of restoring Euclid's Elements, and that his purpose in pre­
senting a new edition is to give them the form that may "render them most 
useful." He says, "A new axiom is also introduced in the room of the 12th [which 
we call the fifth postulate], for the purpose of demonstrating more easily some 
of the properties of parallel lines" (Playfair (1795), Preface). This is Playfair's 
axiom. 

Playfair's Axiom 
Two straight lines that intersect one another cannot be both parallel to the same 
straight line. 

In his notes to (1.29), Playfair has an interesting discussion ofthe problem of 
parallels. He agrees with Proclus that Euclid's postulate should be proved, and 
not taken as an axiom. He then reviews the three methods by which geometers 
"have attempted to remove this blemish from the Elements . .. 

(1) by a new definition of parallel lines; 
(2) by introducing a new Axiom concerning parallel lines, more obvious than 

Euclid's; 
(3) by reasoning merely from the definition of parallels, and the properties of 

lines already demonstrated, without the assumption of any new Axiom." 
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Exercises 
Throughout these exercises, we assume the axioms of a Hilbert plane. 

33.1 Show that the lemma of Proclus is equivalent to Playfair's axiom (P). 

33.2 Consider the following special case of 
Euclid's parallel postulate, which we 
will call the right triangle axiom: 
Given a right angle ABD and an acute 
angle C( = CAB on the same side of the 
line AB, the ray AC when extended 
will meet the ray BD extended. 

Show that the right triangle axiom 
is equivalent to (P). 

c 

A 

c 1> 33.3 Show directly that the right triangle 
axiom implies the special case of 
Euclid's parallel postulate that says, 
given acute angles C( = CAB and P = 
ABD on the same side of the line AB, 
the rays AC and BD will meet. 

/ \ 
33.4 Discuss the following "proof" of the 

right triangle axiom due to France­
schini (1756-1840): Given A,B, C,D as 
in Exercise 33.2, drop a perpendicular 
CE from C to the line AB. Since C( is an 
acute angle, E will lie between A and 
B. Now take a point F further out on 
the ray AC. Drop a perpendicular FC 
from F to AB. Then C is between E 
and B. As the point F moves out the 
ray AC without bound, so the point C 
must move along the ray AE without 
bound, and thus it must eventually 
reach B. Then F will be the inter­
section of AC and BD. 

33.5 John Wallis (1616-1703) gave a proof 
of the parallel postulate based on the 
principle that to every figure there is 
always a similar figure of arbitrary 
size. To be precise, we state Wallis's 
axiom as follows: 

Wallis's Axiom 
Given a triangle ABC and given a line 
segment DE, there exists a similar tri-

A B 

F 

c 

D E 
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angle A'B'C' (that is, a triangle with the same angles as the triangle ABC) having 
side A'B' ;:: DE. 

(a) Show that Wallis's axiom implies (P). 

(b) In the non-Archimedean geometry of (lS.4.3) show that there are similar tri­
angles of different sizes, but that Wallis's axiom fails. (We will see later that in a 
semihyperbolic or semielliptic non-Euclidean geometry, the only similar triangles 
are congruent triangles (Exercise 34.4).) 

33.6 In a Hilbert plane, show that opposite 
sides of a rectangle (Le., a figure with 
four right angles) are equal. Hint: Bi­
sect one side AB at E, erect a perpen­
dicular to AB at E, and use the accom­
panying diagram. Your goal: to show 
AB ~ CD. 

C D 

~ 
33.7 In this exercise we explore the consequences of Clavius's axiom. 

(a) Let I be a line, and let m be a set of 
equidistant points, which by Clavius's 
axiom is a line. Thus for points A , B, C 
in m, the perpendiculars AA' , BB' , CC' 
to I are all equal. Show that the angles 
at A, B, C are also right angles. 

(b) Let ABC be a right triangle. Extend 
AB to D so that AB ~ BD, and drop the 
perpendicular DE to AC. Assuming 
Clavius's axiom, show that DE ~ 2BC. 

[ [ 
A ' Ib I 

1 
c' 

(c) Show that Clavius's axiom, together with Archimedes' axiom (A), implies (P). 

(d) Show that Clavius's axiom holds in the non-Archimedean plane of(lS.4.3) even 
though (P) does not. 

33.S (a) Show that Aristotle's axiom holds in the Cartesian plane over a field F , even if F 
is not Archimedean. 

(b) Show that Aristotle's axiom fails in the plane of(lS.4.3) . 

33.9 Show that Clairaut's axiom is equivalent to Clavius's axiom. 

33.10 Show that Simson's axiom is equivalent to Clavius's axiom. 

33.11 Farkas Bolyai, the father of Janos, proposed the following axiom. 

Bolyai's Axiom 
For any three noncollinear points A, B, C there exists a circle containing them. 
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(a) Use the following construction to show that Bolyai's axiom implies Euclid's 
parallel postulate. Given two lines 1, m and a transversal AB, assume that the angles 
oc, p on one side add up to less than two right angles. Let C be the midpoint of AB. 
From C drop perpendiculars to 1 and m, and extend each an equal distance on the 
far side to obtain D and E. Show that C, D, E are not collinear, and then use Bolyai's 
axiom to prove that 1 and m must meet. 

(b) Show that Bolyai's axiom holds in any Hilbert plane with (P). 

33.12 Dr. Anton Bischof in his thesis (1840) 
proposed to free the theory of paral­
lels from its dependence on Euclid's 
parallel postulate by giving a differ-
ent definition of parallel lines. Discuss 
his theory, which goes like this: Lines 
are parallel if they have the same 
direction. 

The direction of a line can be 
measured by the angle it makes with 
another line. So we define "parallel­
ism is the equality of direction of sim­
ilar lines against every other straight 
line." In other words, two lines are 
parallel if they make equal angles 
with every other line that meets them 
both. 

Then it is clear that parallel lines cannot meet, because a transversal line 
through the point of intersection would make the same angle with both of them, so 
they would be equal. By the same reasoning it is clear that there can be only one 
parallel to a given line through a given point. If two lines make the same angle 
with a line that cuts them, they will be parallel. "Similarly one obtains all the other 
corollaries which one finds in all the textbooks." 



304 7. Non-Euclidean Geometry 

33.13 Discuss the following "proof" that the sum of the angles of a triangle is equal to two 
right angles, independent of the theory of parallels, due to Thibaut (1775-1832): 

Let ABC be the given triangle. 
Take a segment AD on the line AC, 
pointing away from C. Rotate it to the 
position AE on the line AB. Then slide H 
it along the line AB into the position 
BF. Rotate to BG, slide to CH, rotate to 
CI, and slide back to AD. In this pro­
cess, the segment AD has made one 
complete rotation, which is 4 right 
angles. But the amount it has rotated 
is equal to the sum of the exterior 
angles DAE, FBG, and HCI. Replacing F 
these by their supplementary angles, 
we find that the sum of the three inte­
rior angles of the triangle is equal to 
two right angles. 

33.14 J.J. Callahan, then president of Duquesne University, in his book Euclid or Einstein 
(1931) claims to prove the parallel postulate of Euclid, and thus nullify the theories 
of Einstein based on non-Euclidean geometry. If you can locate a copy of his book, 
read his proof and find the flaw in his argument. 

34 Neutral Geometry 

Sir Henry Savile, in his public lectures on Euclid's Elements in Oxford in 1621, 
said, "In this most beautiful body of Geometry there are two moles, two blem­
ishes, and no more, as far as I know, for whose removal and washing away, both 
older and more recent authors have shown much diligence." He was referring to 
the theory of parallels and the theory of proportion. Euclid's theory of propor­
tion has been thoroughly vindicated, and receives its modern expression in the 
segment arithmetic that we have explained in Chapter 4. 

The work on the theory of parallels, however, did not lead to the expected 
result. Instead of confirming Euclid's as the one true geometry, these researches 
showed that Euclid's was only one of many possible geometries. The others are 
what we now call non-Euclidean geometries. The story of this discovery is one 
of the most fascinating chapters in the history of mathematics, and has been 
amply told elsewhere. Here we will confine ourselves to the briefest outline. 

We can distinguish four periods. The first, which we have elaborated in the 
previous section, might be called "dissatisfaction with Euclid." While fully ac­
cepting Euclid's Elements as the true geometry, critics said only that his treat­
ment of this topic could have been better. So they tried to better Euclid, either 
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by proving the parallel postulate, or by replacing it with some other more natu­
ral assumption. 

The second period, exemplified by the work of Saccheri, Legendre, and 
Lambert, was based on the attitude, let us suppose the parallel postulate is false 
and see what conclusions we can draw. In this way they developed a collection 
of results that would be true if the parallel postulate were false, still expecting 
ultimately to find a contradiction and thus vindicate Euclid. So strong was the 
power of tradition that even after meticulously proving a whole series of propo­
sitions in this new geometry, each of these authors fell into error and deluded 
himself into thinking he had found a contradiction. 

What a small step of the imagination, with what great consequences, was the 
transition to the third period! All it required was to think, yes it is possible to 
have a geometry in which the parallel postulate is false, and these are its first 
theorems. This step was taken independently by Carl Friedrich Gauss (1777-
1855) in Germany, Janos Bolyai (1802-1860) in Hungary, and Nicolai Ivanovich 
Lobachevsky (1793-1856) in Russia. Although Gauss was the first to realize the 
existence of this new geometry, he published nothing of his researches, leaving 
Bolyai and Lobachevsky each to believe that he was the inventor of this new ge­
ometry. Bolyai exclaimed, in a letter to his father, "Out of nothing I have created 
a strange new universe." 

The fourth period contains the confirmation of these new geometries by pro­
viding models for the axiom systems to show their consistency. This occurred 
only later, with the work of Beltrami, Klein, and Poincare. 

In this and the next section we will describe some work of the second period. 
Then in later sections we will give a model of the non-Euclidean geometry due 
to Poincare, and a fuller axiomatic development of the theory, containing the 
results of Bolyai and Lobachevsky, in a logical framework provided by Hilbert. 

A geometry satisfying Hilbert's axioms of incidence, betweenness, and con­
gruence, in which we neither affirm nor deny the parallel axiom (P), will be 
called a neutral geometry. This is the same as a Hilbert plane, but the terminology 
emphasizes that we do not assume (P). Recall from Section 10 that the results of 
Euclid, Book I, up through (1.28), with the possible exception of (1.1) and (1.22), 
also hold in neutral geometry. A Hilbert plane in which (P) does not hold will be 
called a non-Euclidean geometry. We have already seen one example of a non­
Euclidean geometry (18.4.3), but that one is semi-Euclidean, in the sense that 
the angle sum in a triangle is still equal to 2RA (two right angles) (Exercise 18.4). 
Now we will consider other geometries in which the angle sum of a triangle may 
be different from 2RA. 

The results of this second period are mainly due to Girolamo Saccheri 
(1667-1733) and Adrien Marie Legendre (1752-1833). Saccheri's book Euclides 
ab omni naevo vindicatus was published in 1733. The title "Euclid freed of every 
blemish" recalls the quotation from Savile above. The first 32 propositions are 
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a marvel of mathematical exposition. Unfortunately, after that his previously 
impeccable rigor lapses, and he says that he has proved the parallel postulate, 
because if it were false, there would be two lines having a common perpendicu­
lar at infinity, which is "repugnant to the nature of a straight line." 

Saccheri's work was perhaps before its time, because it did not receive the 
recognition it deserved, and lay hidden in obscurity until the end of the nine­
teenth century. Essentially equivalent results were discovered independently 
half a century later by Legendre, whose book Elements de Geometrie was first 
published in 1794. It was followed by many new editions, reprints, and trans­
lations, which had a wide influence on the teaching of geometry and revitalized 
interest in the question of parallels. 

We start with a figure extensively studied by Saccheri, which goes back to 
Clavius, in his commentary on Euclid's (1.29), where he proposes the axiom that 
we discussed earlier (Section 33). Since it was Clavius's edition of Euclid that 
was recommended to Saccheri by the Jesuit mathematician Tommaso Ceva, we 
may assume that Saccheri was inspired by Clavius to study this figure further. 

Proposition 34.1 
In a Hilbert plane, suppose that two equal 
perpendiculars AC, BD stand at the ends 
of an interval AB, and we join CD. (This 
is called a Saccheri quadrilateral.) Then 
the angles at C and D are equal, and fur­
thermore, the line joining the midpoints of 
AB and CD, the midline, is perpendicular 
to both. 

Proof Given ABCD as above, let E be 

G 

G b 

[:1 
A 

p 
the midpoint of AB and let 1 be the per­
pendicular to AB at E. Since 1 is the per­
pendicular bisector of AB, the points C2tsJf 
A, C lie on one side of 1, while B, D lie 
on the other side. Hence 1 meets the 
segment CD in a point F. By (SAS) the 
triangles AEF and BEF are congruent. 
Hence the angles LFAE and LFBE are A € 

equal, and AF = FE. 
By subtraction from the right angles at A and B we find that the angles L CAF 

and LDBF are equal. So by (SAS) again, the triangles CAF and DBF are congru­
ent. This shows that the angles at C and D are equal, and that F is the midpoint 
of CD. 

The two pairs of congruent triangles also imply that the angles LCFE and 
LDFE are equal. So by definition, both of these angles are right angles. 
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Remark 34.1.1 
From the equality of the angles at C and D, Saccheri distinguished three cases, 
which he called the hypothesis of the acute angle, the hypothesis of the right 
angle, and the hypothesis of the obtuse angle, according to whether C and D 
were acute, right, or obtuse. He showed that if anyone of these holds for one 
such quadrilateral, it holds for all. His proofs used continuity (in the form of the 
intermediate value theorem), but we will show in the following propositions that 
his result is also true in an arbitrary Hilbert plane. 

Proposition 34.2 
Let ABCD be a quadrilateral with right 
angles at A and B, and unequal sides AC, 
BD. Then the angle at C is greater than 
the angle at D if and only if AC < BD. 

Proof Suppose AC < BD, and choose E 
on BD such that AC = BE. Then ABCE 
is a Saccheri quadrilateral and LACE = 
LBEC, by the previous proposition. 
Now, the angle LACD is bigger than 

D 

C-__ ~ 

LACE, and LBEC is bigger than the an- A B 
gle at D by the exterior angle theorem 
(I.l6), so we find that the angle at C is 
bigger than the angle at D, as required. 

On the other hand, if AC > BD, the same argument with roles reversed 
shows that the angle at C is less than the angle at D. Hence we obtain the "if and 
only if" conclusion of the proposition. 

Proposition 34.3 
Let ABCD be a Saccheri quadrilateral, let 
P be a point on the segment CD, and let 
PQ be the perpendicular to AB. Let CI. be 
the angle at C (equal to the angle at D). 

(a) If PQ < BD, then CI. is acute. 
(b) If PQ = BD, then CI. is right. 
(c) If PQ > BD, then CI. is obtuse. 

c. 

r 
A 

Proof Let p, y be the two angles at P. In case (a), if PQ < BD, then PQ < AC also, 
and from the previous proposition we obtain CI. < P and CI. < y. Hence 
2C1. < p + y = 2RA. Thus CI. is acute. The proofs of cases (b), ( c) are analogous. 
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Remark 34.3.1 
Once we have proved all three cases (a), (b), and (c), it fonows that each one is 
an equivalence, not only an implication. 

Proposition 34.4 
Again let ABCD be a Saccheri quadrilateral, but this time let P be a point on the line 
CD outside the interval CD. Let PQ be the perpendicular to the line AB, and let a be 
the angle at C (equal to the angle at D). 

(a) If PQ > BD, then a is acute. 
(b) If PQ = BD, then a is right. 
(c) If PQ < BD, then a is obtuse. 

Proof In case (a), assuming PQ> BD, 
choose E in PQ such that BD = QE. 
Draw CE and DE. Then we have three 
Saccheri quadrilaterals. We will com­
pare their angles. Let a,p, y be the top 
angles of the quadrilaterals ABCD, 
BQDE, A QCE, respectively. Let 15 = 
LEDP. Then 15 is an exterior angle of the 
triangle CDE, so by (I.l6), 15 > LDCE = 

a - y. On the other hand, looking at the 
angles at E, we see that p > y. Now, 
2RA = a + p + 15 > a + y + a - y = 2a, so 
a is acute. 

p 
c. 

A t3 Q 

For case (b), when PQ = BD, then AQCP is a Sac cheri quadrilateral, so by 
(34.3b) its angle, which is equal to the angle of ABCD, is right. 

In case (c), when PQ < BD, the 
proof is similar. Extend PQ to E with 
BD = QE and join CE, DE. This gives 
three Saccheri quadrilaterals, with upper 
angles a,p, y as marked. Let 15 = LPDE. 
Then by the exterior angle theorem 
(I.l6), 15 > LDCE = Y - a. Looking at E 
we see that y > p. On the other hand, 
looking at D we see that a + p - 15 = 
2RA. So, combining these results, we 
obtain 

2RA = a + p - 15 < a + y - 15 < 2a. 

Hence a is obtuse, as required. 

p 

A 
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Remark 34.4.1 
As in the previous proposition, once we have proved all three cases, they each 
become equivalences, not just implications. 

Theorem 34.5 (Saccheri) 
In any Hilbert plane, if one Saccheri quadrilateral has acute angles, so do all Saccheri 
quadrilaterals. If one has right angles, so do they all. If one has obtuse angles, so do 
they all. 

Proof We will give the proof only in the acute case, since the proofs in the two 
other cases are identical. 

Suppose ABCD is a Saccheri quadri- C. • D' 
lateral with acute angles, and let EF Ie. F 11 
be its midline (34.1). If A'B'C'D' is an- I [c/. fl.' 
other Saccheri quadrilateral with mid-
line equal to EF, then it can be moved 
by a rigid motion to make the midlines 
coincide. Suppose AB < A'B'. We obtain A' A ~ A 0' 
a figure as shown, with IX acute. Hence, 
by (34.4), BD < B'D'. Then by (34.3), rx.' 
is acute. If AB > A'B', we run the same argument in the reverse order. It follows 
that all Saccheri quadrilaterals with midline equal to EF have acute angles. 

Next we show that for any other segment, there exists a Saccheri quadrilat­
eral with acute angles and midline equal to that segment. 

Layoff a segment EG on EE. Let the 
perpendicular to AB at G meet CD in Co 

H. Reflect G and H in EF to get G}, H}. 
Reflect F and H in AB to get Fz,Hz. 
Now, G}GH}H is a Saccheri quadri-
lateral with midline EF, so by the pre-
vious argument, its angle P is acute. 
But then FFzHHz is another Saccheri A 
quadrilateral with the same acute angle 
p and midline EG. Now as above, every 
other Saccheri quadrilateral with mid-
line equal to EG less than EB has acute 
angles. 

~. 

(;. 

Finally, given a Saccheri quadrilateral with midline greater than EB, layoff a 
segment less than EB an its midline, draw the perpendicular to the midline at 
that point, creating a new Saccheri quadrilateral with midline less than EB, and 
compare as before. 

Next we will show how to interpret this result on Saccheri quadrilaterals in 
terms of the sum of the angles in a triangle. 
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Proposition 34.6 
Given a triangle ABC, there is a Saccheri quadrilateral for which the sum of its two 
top angles is equal to the sum of the three angles of the triangle. 

Proof Let ABC be the given triangle. 
Let D and E be the midpoints of AB and 
AC, and draw the line DE, which we 
call the midline of the triangle. Drop 
perpendiculars BF, AG, CH to DE. 

Now, AD = DB, and the vertical 
angles at D are equal, so by (AAS) the 
triangles ADG and BDF are congruent. 
Similarly, AE = EC and the vertical 
angles at E are congruent, so the tri­
angles AEG and CEH are congruent. 
From congruent triangles we obtain 
BF = AG = CH. The quadrilateral FHBC 
has right angles at F and H, so it is a 
Saccheri quadrilateral (upside down). 
The angles of the quadrilateral at Band 
C are composed of the angles of the tri­
angle at Band C, plus angles that are 
congruent to the two parts of the angle 
at A, divided by the line AG. Hence the 
angles at Band C of the quadrilateral 
equal the angle sum of the triangle. It 
follows that the triangle and the quadri-
lateral have equal defect. 

B ---------~c. 

A 

F 

If G happens to fall outside the interval FH, the same argument works, ex­
cept that we use differences instead of sums of angles. 

Theorem 34.7 
In any Hilbert plane: 

(a) If there exists a triangle whose angle sum is less than 2RA, then every triangle 
has angle sum less than 2RA. 

(b) The following conditions are equivalent: 

(i) There exists a triangle with angle sum = 2RA. 
(ii) There exists a rectangle. 

(iii) Every triangle has angle sum = 2RA. 

(c) If there exists a triangle whose angle sum is greater than 2RA, then every triangle 
has angle sum greater than 2RA. 
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Proof (a) If there exists a triangle with angle sum less than 2RA, then the asso­
ciated Saccheri quadrilateral of (34.6) must have acute angles. By (34.5) it fol­
lows that every Saccheri quadrilateral has acute angles, and then by (34.6) again, 
every triangle must have angle sum less than 2RA. 

The proof of (b) is the same, where we note that a rectangle is just the same 
thing as a Sac cheri quadrilateral with right angles. The proof of (c) is the same 
as the proof of (a). 

Definition 
In case (a) of the theorem, we say that the geometry is semihyperbolic. In case 
(b) we say that it is semi-Euclidean, and in case (c) we say that it is semielliptic. 

Remark 34.7.1 
Note that these three cases are equivalent to what Saccheri called the hypothesis 
of the acute angle, the hypothesis of the right angle, and the hypothesis of the 
obtuse angle. Thus all Hilbert planes can be divided into these three classes. Of 
course, a Euclidean plane, or more generally any Hilbert plane satisfying (P), is 
semi-Euclidean, by (1.32). On the other hand, we have seen an example of a 
semi-Euclidean plane that does not satisfy (P) in Exercise 18.4. 

We reserve the term hyperbolic for geometries satisfying Hilbert's hyperbolic 
axiom (cf. Section 40). Those geometries will be semihyperbolic, but there are 
also semihyperbolic geometries that are not hyperbolic (Exercise 39.24). 

As for the semielliptic case, these were first discovered in 1900 by Dehn, 
who called them non-Legendre an. The term elliptic is usually applied to geo­
metries like a projective plane in which there are no parallel lines at all. These 
do not satisfy Hilbert's axioms, so fall outside our realm of inquiry. However, a 
suitably small patch of a spherical geometry over a non-Archimedean field gives 
an example of a semielliptic Hilbert plane (Exercise 34.14). 

Definition 
We say that a triangle is Euclidean if the sum of its angles is equal to 2RA. Oth­
erwise, we call it non-Euclidean. To measure the divergence of a triangle from 
the Euclidean case, we define the defect of any triangle to be 2RA - (sum of 
angles in the triangle). Thus J = 0 for a Euclidean triangle, J is a positive angle 
for a triangle in a semihyperbolic plane, and J is the negative of an angle for a 
triangle in a semielliptic plane. 

Lemma 34.8 
If a triangle ABC is cut into two triangles by a single transversal BD, the defect of the 
big triangle is equal to the sum of the defects of the two small triangles: 

J(ABC) = J(ABD) + J(BCD). 
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Proof Label the angles as shown in the 
diagram. Then 

6(ABD) = 2RA - IX - PI - 61, 

6(BCD) = 2RA - P2 - 62 - y. 

Since 61 + 62 = 2RA, by adding we 
obtain 

6(ABD) +6(BCD) 

= 2RA - a - PI - P2 - Y = 6(ABC), 

as required. 

The Theory of Parallels in Neutral Geometry 

Given a line 1 and a point P not on 1, 
we know from (1.31) that there exists a 
line through P parallel to 1. If the Hilbert 
plane satisfies Playfair's axiom (p), that 
parallel is unique. But in the non­
Euclidean case, there may be more than 
one parallel to 1 through P. Among all 
these parallels, there may be one that is 
closer to 1 than all the others on one 
side. To make a formal definition, it 
matters which end of the line we look 
at, so we will phrase it in terms of rays. 

We denote a ray by the symbol Aa, 
where A is its endpoint, and a denotes 
the line carrying the ray, together with 
a choice of one of the two directions on 

c 

the line. Two rays are coterminal if they lie on the same line and "go in the same 
direction." This can be made precise by saying that one ray is a subset of the 
other. Thus if Aa is a ray and A' is another point on the line carrying a, 
we denote by A' a the corresponding coterminal ray. 

Definition 
A ray Aa is limiting parallel to a ray Bb if 
either they are coterminal, or if they lie 
on distinct lines not equal to the line 
AB, they do not meet, and every ray in 
the interior of the angle BAa meets the 
ray Bb. In symbols we write Aa III Bb. 

A 

B 
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It requires some work, in the following propositions, to show that this notion 
is an equivalence relation. Note that we say nothing about the existence of such 
limiting parallels. All the following results should be understood in the sense 
that they hold whenever the limiting parallels exist. Later, in Section 40, we will 
introduce the hyperbolic axiom, which postulates the existence of limiting par­
allels from any point to any given ray. 

Proposition 34.9 
If Aa III Bb, and if A' a, B'b are rays coterminal to Aa, Bb respectively, then 
A'alIIB'b. 

Proof It is sufficient to replace one ray 
at a time by a coterminal ray. So first, 
suppose that A' is on the ray Aa. We 
must show that every ray n in the inte­
rior of the angle BA'a meets the ray Bb. 
Take a point P on the ray n, different 

--=-+ 
from A'. Then the ray AP lies in the 
interior of the angle BAa, so by hypoth­
esis it meets the ray Bb in a point C. 
Now, the ray n cuts one side of the tri­
angle ABC, so by Pasch's axiom (B4) it 
must cut another. The side AB is im-
possible, so n meets BC, which is con­
tained in the ray Bb, as required. 

Next, suppose A' is on the line a, but 
not in the ray Aa. Let A'n be a ray in 
the angle BA' a, and take a point P on 
the line n, but not in the ray A'n. Then 

--'-+ 
the ray PA, after it passes through A, is 
in the interior of the angle BAa, so 

p 

meets Bb in a point C. By the crossbar B y.::::.-_------~----
theorem (7.3) A'n will meet AB, and C 
then by Pasch's axiom it will meet BC. 

If we replace B by a point B' in the 
ray Bb, or by a point B" on the line b 
outside the ray Bb, the proof is easier. 
Any ray from A in the interior of the 
appropriate angle must meet the ray 
B'b or B"b either by the crossbar theo- !b 
rem or by the property Aa III Bb. 

,. 
13 ~I 

In this proof we passed over in silence a small point, namely to show that 
after replacing Aa, Bb by coterminal rays A' a, B'b, we still have satisfied the 
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condition that the rays A' a and B'b do not meet, and they lie on lines not equal 
to A'B'. For this it is sufficient to show that if Aa III Bb, then the lines supporting 
those rays do not meet. We leave this as Exercise 34.6. 

Proposition 34.10 
If a ray Aa is limiting parallel to another ray Bb, then also Bb is limiting parallel 
to Aa. 

Proof If the rays are coterminal, this is trivial, so we may assume that a and b 
are distinct lines. Drop a perpendicular AB' to the line b. Then by the previous 
proposition, Aa is limiting parallel to B'b, and it will be sufficient to prove B'b 
limiting parallel to Aa. In other words, changing notation, we may assume that 
the angle ABb is a right angle. 

We must show that any ray Bn in 
the interior of the angle at B meets the 
ray Aa. Suppose it does not. Drop the 
perpendicular AC from A to n. Since 
the angle ABn is acute, by the exterior 
angle theorem, C must lie on the ray 
Bn, not on the other side of B. In the 
triangle ABC, the angle at C is right, 
while the other two angles are acute. 
Hence by (1.19), AC < AB. (Why is the 
angle atA acute? Because it is less than 
the angle BAa, and this angle must be 
less than or equal to RA. Otherwise, the 
perpendicular to BA at A would lie 
inside the angle BAa and be parallel to 
Bb, contradicting our hypothesis.) 

Rotate C, n, and a around the point 
A until C lands on a point C' of AB, and 
n', a' are the images of n, a. Then Aa' 
will meet Bb, and n' will be parallel to 
b, so by Pasch's axiom, it will meet a'. 
Rotating back, we find that n meets Aa, 
a contradiction. 

Proposition 34.11 

A 

A 

C/t'-_~ 

Given three rays Aa, Bb, Ce, if Aa III Bb and Bb III Ce, then Aa III Ce. 

b 

b 

Proof If any two are coterminal, the result follows from the previous proposi­
tions, so we may assume that they lie on distinct lines. 
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Lemma 34.12 
Given three rays Aa, Bb, Cc lying on distinct lines, with Aa III Bb and Bb III CC, after 
replacing one by a coterminal ray if necessary, we may assume that A,B, and Care 
collinear. 

Proof If A, C lie on opposite sides of the line b, then the segment AC meets the 
line b in a point B'. Replacing Bb by the coterminal ray B'b, we have A,B', C 
collinear. 

If A, C lie on the same side of the 
line b, we consider the angles ABb and 
CBb. If these angles are equal, then 
A, B, C are collinear. If they are not 
equal, one must be smaller, say CBb is 

----'+ 
smaller. Then the ray BC is in the 
interior of the angle ABb, and Bb III Aa 

----'+ 
by (34.10), so the ray BC meets Aa in a 
point A'. Replacing Aa by A'a we have 
A', B, C collinear. If ABb is smaller, the 
same argument works replacing C by a 
point C'. 

b 

8 

Proof of (34.11), continued By the lemma, we may assume A, B, C collinear. It 
follows immediately from the hypotheses that the rays Aa, Bb, Cc are all on the 
same side of the line ABC. 

Case 1 If B is between A and C, take 
any ray An in the interior of the angle 
CAa. Since Aa III Bb, this ray meets Bb in 
a point B'. Then B'b III CC by (34.9), so 
the continuation of that ray will meet 
Cc. Hence Aa III Cc. 

Case 2 C is between A and B. In this 
case a ray An in the interior of the angle 
CAa meets b in a point B'. Then Cc 
must meet n by Pasch's axiom. 

A 

A 
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Case 3 A is between C and B. The proof is the same, taking into account 
CC III Bb by (34.10). 

Remark 34.12.1 
The proof of Case 2 of (34.11) actually shows a stronger result: If Aa III Bb, if Cis 
between A and B, and if Cc is any ray entirely in the interior of the angles BAa 
and ABb, then Cc is also limiting parallel to Aa and Bb. 

Corollary 34.13 
The relation "limiting parallel" for rays is an equivalence relation, which includes the 
equivalence relation of being coterminal. We define an end to be an equivalence class 
of limiting parallel rays. 

Exercises 

34.1 If ABCD is a Saccheri quadrilateral, show that CD > AB if and only if the angles at 
C, D are acute. 

34.2 Define a Lambert quadrilateral to be a 
quadrilateral ABCD with right angles 
at A,B, C. Show that the fourth angle 
D is acute, right, or obtuse according 
as the geometry is semihyperbolic, 
semi-Euclidean, or semielliptic. 

34.3 Let AB be the diameter of a circle, and 
let ABC be a triangle inscribed in the 
semicircle. Show that the angle at C 
is acute, right, or obtuse, according as 
the geometry is semihyperbolic, semi­
Euclidean, or semielliptic. 

p 

c 
----~ 

A 

A 11 
~--------------~ 

34.4 In a semihyperbolic or a semielliptic plane, prove the (AAA) congruence theorem 
for triangles: If two triangles ABC and A'B'C' have LA = LA', LB = LB', LC = 
L C', then the two triangles are congruent. (Hint: Use Lemma 34.8.) 

34.5 In a semihyperbolic or a semielliptic plane, show that for any line 1 and any point A 
not on 1, there are infinitely many lines through A parallel to 1. (Hint: Use Saccheri 
quadrilaterals. ) 

34.6 In Aa and Bb are limiting parallel rays lying on distinct lines, show directly from 
the definition that the lines carrying these rays do not meet. 
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34.7 In a Hilbert plane satisfying Dedekind's axiom (D), show that for any point A and 
any ray Bb, there exists a ray Aa from A, limiting parallel to Bb. 

34.8 In the Hilbert plane of (18.4.3) show that there do not exist any pairs of limiting 
parallel rays lying on distinct lines. 

34.9 (ASAL) Given four rays Aa, Bb, A'a', 
B'b', assume that LBAa = LB'A'a', 
AB=A'B', and LABb=LA'B'b'. Show 
that Aa III Bb if and only if A' a' III B'b'. 

34.10 (ASL) Given Aa III Bb and A'a' III B'b', assume LBAa = LB'A'a' and AB = A'B'. 
Then LABb = LA'B'b'. We call the figure consisting of the segment AB and the 
two limiting parallel rays Aa and Bb a limit triangle. 

34.11 Given a limit triangle aABb, construct 
its midline as follows. Let the angle bi­
sectors at A, B meet at a point C. Drop 
perpendiculars CD, CE from C to a, b. 
Join DE, and let c be the perpendicu­
lar from C to DE. 

(a) Show that Cc is limiting parallel to 
Aa and Bb. 

(b) Show that reflection in the line c 
interchanges the lines a and b. Thus c 
plays a role for the rays Aa and Bb 
similar to the role of the angle bisector G 
of an angle, which interchanges the 
two sides of an angle by reflection. 
So we can think of C as the intersec-
tion of the three (generalized) angle 
bisectors of the limit triangle. 

34.12 Show that the analogue of Pasch's 
axiom (B4) holds for a limit triangle 
aABb: If I is a line that does not con­
tain A or B, and does not contain a ray 
limiting parallel to Aa or Bb, and if I 
meets one side AB, Aa, or Bb, then it 
must meet a second side, but not all 
three. 

A 

A 

b 
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34.13 Spherical geometry. Let Fbe a Euclidean ordered field. In the Cartesian 3-space over 
F consider the sphere of radius r given by the equation x2 + y2 + Z2 = r2. We can 
make a geometry, called spherical geometry, as follows. Our s-points are the points 
of p.J on the surface of the sphere. Our s-lines are great circles on the sphere, that is 
to say, the intersections of the sphere with planes of p.J passing through the origin 
0= (0,0,0). On any piece of an s-line that is less than half of a great circle, we can 
define betweenness by projecting the points from 0 into any plane. We say that 
two segments of s-lines are congruent if the chords joining their endpoints, as line 
segments of p.J inside the sphere, are congruent. We say that angles are congruent 
if the projected angles on the tangent planes to the sphere at their vertices are 
congruent. 

Which of Hilbert's axioms hold in this geometry? You will see right away that 
(11) fails and betweenness does not make very good sense, so it is not a Hilbert 
plane. Show, however, that the congruence axioms (C1)-(C6) and (ERM) do hold. 

34.14 (a) Now suppose that we take Fto be a non-Archimedean Euclidean ordered field, 
such as the one in (18.4). Lett be an infinite element in F, take the sphere of radius 
t, and take our geometry no to consist of only those points on the surface of the 
sphere that are at finitely bounded distance from a fixed point A on the sphere. 
Show that this geometry satisfies all of Hilbert's axioms, so it is a Hilbert plane. 
Show also that the sum of the angles of any triangle in this geometry is greater than 
two right angles. This is an example of a semi-elliptic Hilbert plane. 

(b) Again take F to be a non-Archimedean Euclidean ordered field, and let nl be 
the set of points on a sphere of radius 1 whose distance from a fixed point A is in­
finitesimal. Show that n 1 is another semielliptic Hilbert plane, and show that n 1 is 
not isomorphic to the plane no of part (a). Hint: cf. Exercise 18.6. 

34.15 In any Hilbert plane, show that the three angle bisectors of a triangle meet in a 
point. 

34.16 In any Hilbert plane, if two of the perpendicular bisectors of the sides of a triangle 
meet, then all three perpendicular bisectors meet in the same point. 

34.17 We say that two lines in a Hilbert plane are strictly paranel if every transversal line 
makes equal alternate interior angles. Show that the following conditions are 
equivalent: 

(i) The plane is semi-Euclidean. 

(ii) For every point P and every line 1, there exists a unique line m through P 
strictly parallel to 1. 

(iii) There exists at least one pair of distinct strictly parallel lines. 

34.18 Show that strictly parallel lines (Exercise 34.17) behave in many of the same ways 
as parallel lines in Euclidean geometry: 

(a) If 1 is strictly parallel to m, and m strictly parallel to n, then 1 is strictly parallel 
to n (analogue of (1.30». 

(b) If both pairs of opposite sides of a quadrilateral are strictly parallel, then oppo­
site sides and opposite angles are equal (analogue of (1.34». 
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34.19 In a semi-Euclidean plane, show that if two of the altitudes of a triangle meet, then 
all three altitudes meet in the same point. 

34.20 In a semi-Euclidean plane, show that the medians of a triangle all meet in a point. 

34.21 In any Hilbert plane, show that the line joining the midpoints of two sides of a tri­
angle is orthogonal to the perpendicular bisector of the third side. 

35 Archimedean Neutral Geometry 
If we add Archimedes' axiom to the axioms of neutral geometry, we have the 
remarkable fact that the angle sum of a triangle is always less than or equal to 
two right angles. In other words, the semielliptic case is impossible. Saccheri's 
proof of this result uses a continuity argument, so we prefer the method of 
Legendre, using a repeated application ofthe construction Euclid used in (I.l6) 
for the proof of the exterior angle theorem. In either case, the proof makes 
essential use of Archimedes' axiom. To begin with, we show that the analogue of 
Archimedes' axiom holds for angles. 

Lemma 35.1 
In a Hilbert plane with (A), let IX,fJ be given angles. Then there exists an integer n > 0 
such that nIX > fJ, or else nIX becomes undefined by exceeding 2RA. 

Proof First we make a reduction. Given 
the angle fJ at 0, measure off equal seg­
ments OA and OB on the two arms, and 
draw AB. The line OC joining 0 to the 
midpoint of AB will bisect the angle fJ 
and will make a right angle at C. 

Since it is just as good to prove the 
lemma for !fJ, we reduce to studying 
the case of an angle contained in a right 
triangle. 

So now let OAB be a right triangle 
with the angle fJ at 0 and a right angle 
at A. Suppose, by way of contradiction, 
that nIX ~ fJ for all n. Layoff the angle IX 

inside the triangle, and let that angle 
cut off a segment AA] on the line AB. 
Again layoff the angle IX at 0 to cut a 
segment A]Az on the line AB. Continu­
ing in this manner, we obtain a se­
quence of points A],Az,A3 , ... on AB, 
with each successive segment A;Ai+] 
subtending an angle IX to o. 

A 

o 

i3 

A 
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I claim that AAI <A1Az <AzA 3 < .... 
Consider any three consecutive Ai and 
call them C, D, E. Let DF be drawn such 
that LCDO = LFDO. Then the triangles 
/::,.CDO and /::,.FDO are congruent by 
(ASA) , and hence CD = DF. Now, the 
angle r5 = LEFD is an exterior angle 
to the triangle /::,.FDO, and so r5 > y = 
LFDO = LCDO, by (1.16). On the other 
hand, y = L CDO is an exterior angle 
to the triangle WEO, and so y> B = 
LDEO, by (1.16) . We conclude that 
r5 > B. Then by (1.19), the larger angle 
subtends the larger Side, so DE > DF = 
CD, as required. 

D 

o 

By the way, in order for the drawing to be accurate, i.e., for F to lie in the 
segment OE, we were tacitly assuming that y is acute. This is true for the first 
triangle OAA1, and follows inductively for the rest from (1.16). 

Now, the axiom of Archimedes (A) implies that there is some integer n such 
that n . AAJ > AB. Since the successive segments AIAz, A zA 3 , . .. are each bigger 
than the one before, it follows for a stronger reason that AAn > AB. But this 
contradicts the supposition that all the points Ai were in the segment AB, and 
thus proves the result. 

Theorem 35.2 (Saccheri-Legendre) 
In a Hilbert plane with Archimedes' axiom (A), the sum of the angles of a triangle is 
less than or equal to two right angles. 

Proof Suppose to the contrary that there is a triangle MBC whose angle sum is 
greater than two right angles, say two right angles plus B, where B is some non­
zero angle. Then we will get a contradiction by replacing the triangle MBC by 
another triangle WEF, which has the same angle sum as MBC, and further­
more has one angle (J. very small, less than B. Then the remaining two angles will 
be more than two right angles, which contradicts (1.17). 

As a first step we show, given any 
triangle MBC, and having chosen one 
of its angles, say LA, that there is an­
other triangle MEC having the same 
angle sum as MBC, and one of whose 
angles is less than or equal to !( angle 
A). 

We use the construction of (1.16). Let D bisect BC, draw AD and extend that 
line to a point E such that AD ~ DE, and draw EC. Now the vertical angles at D 
are equal (1.15) and BD ~ DC and AD ~ DE by construction, so by (SAS) the tri-
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angles MBD and fillGD are congruent. In particular, angle fJ = LBAD is equal 
to LDEG. Also, y = LABD = LDGE. 

Now MBG and MEG both have the same angle sum, which is equal to 
(X + fJ + y + 15, where (X = LDAG and y = LDGA. On the other hand, the angle at 
A is (X + fJ, so of the two angles (x, fJ in the new triangle, one of them satisfies (X 

(or fJ) ::; ~ (angle A) . 
Now let us go back to our original triangle MBG having angle sum equal to 

two right angles plus 8 . By applying the above process each time to the smallest 
angle of the preceding triangle, we can obtain a sequence of triangles 

To = MBG, T J , Tz, T 3 , ••• 

each of which has angle sum the same as MBG, and where Tn has one angle 
less than or equal to 1/2n(LA). Now using Archimedes' principle for angles 
(35.1) we see that for some n , Tn will have one angle less than 8, which gives the 
desired contradiction to (1.17). 

Remark 35.2.1 
In the above construction, two angles of the triangle Tn+l are less than the 
chosen angle in triangle Tn. Thus Tn+l has two angles less than or equal to 
(l / 2n)(LA). 

Corollary 35.3 
In any triangle, the exterior angle is greater 
than or equal to the sum of the opposite 
interior angles. 

Proof Indeed, the exterior angle plus 
the third interior angle is equal to two 
right angles. Since the sum of all the 
angles is less than or equal to 2 right 
angles, the sum of the two opposite 
angles is less than or equal to the exte-
rior angle. 

From the preceding theorem of Saccheri and Legendre, we see that the semi­
elliptic case is impossible in an Archimedean Hilbert plane. Now we will show 
more, namely, if an Archimedean Hilbert plane is semi-Euclidean, then already 
(P) holds. 

Proposition 35.4 
In a Hilbert plane with (A), if every triangle is Euclidean, then (P) holds. 

Proof We will prove the contrapositive, namely, if not (P) , i.e ., ifthere is a line 1 
and a point P not on I through which there are two or more lines parallel to 1, 
then there exists a non-Euclidean triangle. 



322 7. Non-Euclidean Geometry 

Given such a line l and point P, drop 
a perpendicular from P to l at A, and let 
m be the line through P perpendicular 
to that perpendicular. Then m is paral­
lel to l (1.27). Now let m' be another line 
through P parallel to l. Then on one side 
of AP, the ray m' will be inside the right 
angle formed by AP and m. Let it form 
an angle {J with m at P. 

A 6 G 

Now take any point Bon l on the same side of AP as m'. Let the angle LPBA 
be (x. Choose Con l such that BC ~ PB, and draw PC. Then we have an isosceles 
triangle BPC, so the angles y shown are equal. But (X is an exterior angle to the 
triangle BPC, so (X ;?: 2y by (35.3). Repeating this process n times, we can find a 
point F further out on the ray l such that the angle PFA is less than or equal to 
(1/2 n )(X. By (35.1) we can take n large enough so that LPFA < {J. 

Consider the triangle PFA. It has one right angle, one angle less than {J, and 
one angle, LAPF, that is less than RA - {J, because the ray m', being parallel to l, 
cannot lie inside the triangle PFA. Thus the angle sum of the triangle PFA is 
strictly less than 2RA, and this proves the result. 

Now we can explain how Legendre thought to prove the parallel postulate. 
He suggested another postulate, which we call Legendre's axiom. 

Legendre's Axiom 
Given an angle (X and given a point P in 
the interior of the angle (x, there exists a 
line l through P that meets both sides of 
the angle. 

He shows that this implies the par­
allel postulate (see (35.5) below). While 
this axiom seems reasonable enough in 
itself, he shows further that if it fails, 
then for any angle (x, however small, 
there would have to be a line l entirely 
contained inside the angle (Exercise 
35.4). 

Then he says "or, il repugne a la na­
ture de la ligne droite" - it is repugnant 
to the nature of a straight line - that 
such a line should be entirely contained 
within an angle! 

" , 
" 

, 
" 

" " 



NOTEl!. 

pOll vail etl'e me. (i) C'est cette considera! ion qui nOlls a 
fail revenir dans 1a 9~1II· edition, a la simple marche d'Euclille, 
en l'envoyant aux notes POUl' la'demonstration rigoureust', 

En examinant les choses avec pins d'attenlion nous 50m­
mes reste convaincu que pour demontrer completement 
notre postulalum it fallait deduire de Ia definition de. la 
ligne droite une propriCte cal'actcristique de cette lig-ne qui 
exchit toute ressemblance avec la forme d'une hypcl;bole 
comprise entre ses deux asymptotes, Voici qu«fl est a eet 
egaI'd Ie resultat de nos recherches. 

Soit RAC un angl.;: donne, et M un poilll donne au .-ledans jiS' :174· 
de eet angle; dir-isez fangle RAC en deux (:gtilemcllt par la 
droite AD ct du point M mene? MP pe'lJelltiicu/aire .wr AD; 
/e dis que /a droite MP prolongee dans Ull senset dans I'autre, 
rencontrera m!ces.rairement les deux cotes de [,angle RAe. 

Car si elle renconlre un des cotes de eet angle, dIe ren­
eontrera l'autre, tout ctant egal des deux cotes it partir du 
point P; si cHe ne rencontrai t pas un c6tc, clle ne rehcon­
trerait pas I'autre par Ia meme raison; ainsi, dans ce dernier 
cas elle deVl'ait eIre renfermee tout entiere dan; I'espace 
compris entre les cMes de l'angle BAC; or, il repugne a la 
nature de la ligne droite qu'une telle ligne, indetinimenl 
prolongee , puisse etre reu(ermee dans un angle. 

En diet, toute Iigne droile AR tmeee sur un plan, et in- Ii;.;. ·l;5. 
definiment prolongee dans les deux sens , divise ce plan en 
deux parties qui etant superposees cOincident dans loute 
leur etendlle et sont parfaitement egales. La partie AMR du 
plan total, situee d'un cote de AR, est egale en tout it la 
partie A.l\'! D "h_' - -1_ !'.,,,tr·t> cotc; car si ron prend un n,,:n' 

( I) On voit dans un article du ~hi/QSQphic{t1 :nagazillc de ~ars .8 ~.l, 
qu'un savant geometre a e&Saye de perfectlOnner celte de.monstl a-
. t d I endre indcpendante de tout post/l/atll/il; malS la con· tlon e ear. ' .. .slruction employee pour demo!ltrer Ia se.conde parhe l~onSlste a 

mener d'un point donne differentes drOltes a tous les som.mets 
J'une ligne qu'on doit considerer comme poly~~nale, pour rals~~: 
uer dans l'hypothese de celui qui nie 1a proposlti?n : or la cOnv.exlle 
de cette ligne, si dIe avait lieu i ne permellralt, pas de COl~tJDUl'r 
indefiniment la construction de l'auteur, comme lile filumal! pour 
l'e.xactilude de sa demonstration. 

plate XII. Legendre's "proof" that through any point in the interior of an angle there is a 
straight line meeting both sides. From his Elements de Geometrie (1823). 
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Proposition 35.5 
In a Hilbert plane with (A), if Legendre's axiom holds for a single angle 0(, then also 
(P) holds. 

Proof Let the vertex of the angle be A, take any two points B, C on the sides of 
the angle, and draw BC. 

Now repeat the angle ACB at B, lay 
off BD = AC, and join CD. Then by 
(SAS) the new triangle BCD is congru­
ent to the triangle ABC. Applying Leg­
endre's axiom for the angle 0( to the 
point D, let 1 be a line through D meet­
ing the sides of the angle 0( at E and F. 
By (1.27), AB is paranel to CD and BD is 
parallel to AC. This implies that E and F 
must lie beyond Band C, so that the 
new triangle AEF contains both the tri­
angles ABC and BCD. 

Suppose that (P) does not hold. Then by (35.4) and (34.7) the triangle ABC 
has a positive defect J > O. By the additivity of defect (34.8), the new triangle 
AEFwill have defect greater than 2c5. Repeating this process and using (35.1) we 
would eventually have a triangle with defect greater than two right angles, 
which is absurd. Therefore, (P) must hold. 

Proposition 35.6 
In a Hilbert plane with (A), Aristotle's axiom holds, namely, given any acute angle, 
the perpendicular from a point on one arm of the angle to the other arm can be made 
to exceed any given segment. 

Proof Using (A), it will be sufficient to 
show that if BC is one perpendicular 
from one arm of the angle to the other, 
than there exists another such perpen­
dicular with DE ~ 2BG. To do this, we 
proceed as follows. First mark off BD = 
AB, and drop the perpendicular DE. 
Then extend BC and drop a perpendic­
ular DF to the extended line. The verti­
cal angles at B are equal, so by (AAS), 
the triangles ABC and DBF are congru- A 
ent, and it follows that CF = 2BC. 

Fh----Jfl) 

Since we have assumed (A), the angle at D of the quadrilateral FCDE must 
be acute or right, by (35.2), (34.7), and Exercise 34.2. Then by (34.2), DE ~ 
FC = 2BC, as required. 
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Exercises 

Unless specified otherwise, the following problems take place in a non-Euclidean (i.e., (P) 
is false) Hilbert plane satisfying Archimedes' axiom (A). 

35.1 Prove: Given any angle e > 0, there exists a triangle with defect (j < e. 

35.2 Discuss the following "proof," due to Legendre, that the angle sum of a triangle is 
two right angles: We have seen that for any triangle ABC, there is a triangle Tn with 
the same angle sum as ABC, and where Tn has two angles less than or equal to 
(1/2n)(LA) (35.2.1). In the limit, the two small angles will become zero, so the tri­
angle becomes a straight line, and the third angle will be 2RA. Thus the angle sum 
of the original triangle must be 2RA. 

35.3 Given an angle aAb, show that there 
exists a point B in the ray Ab such that 
the perpendicular to b at B does not 
meet a. 

35.4 Show that for any angle rx, however small, there exists a line I entirely contained in 
the inside of the angle. Hint: Apply Exercise 35.3 to the angle bisector of rx. 

35.5 Given an angle rx with vertex A, and 
given a ray I inside rx, show that there 
exists a point P on the ray I such that 
for any two points B, C on the two arms 
of rx, the line BC meets the ray I inside 
the interval AP. 

35.6 Given an angle e > 0, show that there exists a triangle with angles rx, P, y, all three 
smaller than e. Hint: Use Exercise 35.4. 

35.7 Show that Lemma 35.1 is false in the Cartesian plane over a non-Archimedean field. 

35.8 If Aa III Bb, show that the perpendicular 
distance from a point PEa to the line b 
is strictly decreasing as P moves away 
from A, e.g., in the diagram PQ> plo.!. 

i3 

A 
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35.9 Prove the converse of Exercise 35.8, namely, if Aa and Bb are two rays that do not 
meet on the same side of the line AB, and if the perpendicular distance from a point 
PEa to b is strictly decreasing as P moves along a away from A, then Aa is limiting 
parallel to Bb. Hint: Use Proposition 35.6. 

36 Non-Euclidean Area 

The discussion of area arose quite early in the development of non-Euclidean 
geometry. Gauss had already thought about area as early as 1799 (see Exercise 
36.1), and Bolyai's fundamental treatise of 1832 has a number of results on area. 
The defect of a triangle, as we will see, provides a natural measure of area, 
which is absolute in that it does not depend on any arbitrary choice of unit in­
terval, as is the case for the Euclidean area function. 

To make our treatment rigorous, we will follow Hilbert's method, which we 
used already for Euclidean area in Sections 22, 23. So recall that in any Hilbert 
plane, two figures are called equidecomposable if they can be written as the 
unions of congruent triangles. Two figures have equal content if one can add to 
them equidecomposable figures so that the whole becomes equidecomposable. 
We showed in Section 22 that both of these notions are equivalence relations. 

In Section 23 we defined the notion of a measure of area function. In most 
texts this is taken to have values in the real numbers, but true to our principle of 
not imposing the real numbers on geometry, we prefer to have it take values in 
a group that arises naturally. In the Euclidean case (23.2) we used the additive 
group of the field of segment arithmetic. For the non-Euclidean case, we will use 
an ordered abelian group (Section 23) whose elements are constructed out of 
finite sums of angles. 

To be precise, we proceed as follows. Recall first that in our development of 
a Hilbert plane, an angle is simply two rays, emanating from a point, that do not 
lie on the same line. Thus there is no zero angle, and every angle is less than 
two right angles. We have defined addition of angles only when the sum is less 
than 2RA (cf. Section 9). We define a set 

A = {O} U {angles less than RA}, 

and we take 

G=7lxA 

to be the direct product set. Define addition on G by 

if 0(1 + 0(2 < RA, 

if 0(1 + 0(2 ~ RA. 
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In this definition, if either IX] or IX2 is the symbol 0, we interpret it by setting 
0+ IX2 = IX2, and ° + ° = 0, etc. Define the lexicographic order on the set G by 
setting 

if either n] < n2, or n] = n2 and IXI < IX2. 

Proposition 36.1 
In any Hilbert plane, the set G defined above, with the operation + and the relation 
<, is an ordered abelian group. 

Proof This is pretty much obvious, using the known properties of angles from 
Section 9. The element (0,0) acts as zero element for the group. The inverse of 
an element (n,IX) is (-n,O) ifIX=O; otherwise, it is (-n-1,RA-IX). The tri­
chotomy for the order relation follows from the corresponding fact for angles 
(9.5). 

Remark 36.1.1 
There is a natural homomorphism of 
the group G to the group R of rotations 
around a fixed point 0 of the plane, 
defined as follows. Fix a ray OA ema-
nating from 0, and let the ray OC make 
a right angle with ~A. For any angle 
IX < RA, choose a ray OB inside the 
right angle to represent IX. Now send 
(1,0) E G to the rotation that sends OA to 
OC; send (0, IX) E G to the rotation that 
sends OA to OB, and extend by linearity 

c 

A 

o 

(cf. Exercise 17.4 for facts about rotations). This homomorphism is surjective, 
with kernel the subgroup 7l generated by (4,0). Thus the elements of G corre­
spond to "rotations with winding number." We will call G the unwound circle 
group ofthe given Hilbert plane (cf. Exercise 17.6). 

Example 36.1.2 
In the real Cartesian plane, the group G is isomorphic to (JR., +), by sending 
(1,0) to n/2 and (0, IX) to the radian measure of IX. 

Now that we have a suitable group for it to take values in, we can show 
the existence of a measure of area function in non-Euclidean geometry. Recall 
(Section 34) that the defect of a triangle is 2RA minus the sum of the three angles 
of the triangle. For any angle J, we identify it with (0, J) E G if J < RA, or 
(l,J - RA) E G ifJ;:::: RA. 
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Theorem 36.2 
In a semihyperbolic Hilbert plane there is a measure of area function 0( with values 
in the unwound circle group G of the plane. It is uniquely determined by the addi­
tional condition that for any triangle T, its value is equal to the defect J of the tri­
angle. 

Proof For any figure P, we write P as a union of triangles T i , and define O((P) = 
~J(Ti)' where J denotes the defect of a triangle and the sum is taken in the 
group G. Because of the semihyperbolic hypothesis this will be a positive ele­
ment of the group G. It gives the same value for congruent triangles, and it is 
additive for nonoverlapping figures, so the only problem is to show that it is 
well-defined. Any two triangulations of a figure can be refined by a third, so as 
in (23.5), we need only show that O((P) is additive for an arbitrary subdivision of 
a triangle into smaller triangles. The case of a triangle cut in two by a single 
transversal is given in (34.8). This corresponds to Step 1 in the proof of(23.4). 
The remaining steps of the proof of (23.4) are valid in our case also, and thus 
O((P) is well-defined. 

Remark 36.2.1 
It now follows from (23.1) that equidecomposable figures and figures of equal 
content have the same area. The property (Z) of Section 22, de Zolt's axiom, also 
holds. 

Remark 36.2.2 
We will see later (Exercise 42.10) that in a hyperbolic plane, for any angle J, 
there exists a triangle with area = J, so that the image of the measure of area 
function 0( is just the set of positive elements of G. 

To illustrate the theory of area, we will give the neutral geometry analogue 
of Euclid's (1.37), that "triangles on the same base and in the same parallels are 
equal." First we compare a triangle to a Saccheri quadrilateral. 

Proposition 36.3 
In a Hilbert plane, any triangle has equal content to a suitable Saccheri quadrilateral. 
Iffurthermore we assume (A), the two are equidecomposable. 

Proof We use the method of(34.6). The construction given there shows that the 
triangle ABC is equidecomposable with the Saccheri quadrilateral FHBC if G lies 
between F and H. If G lies outside the interval FH, the proof given shows that 
they have equal content. 
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Now let us assume (A), and let ABC A 
be any given triangle, with associated 
quadrilateral FHBC. Join CD and extend 
to A'so that CD = DA'. Join A'B. Then 
by (SAS) the triangles ACD and BA'D 
are congruent. Leaving BCD fixed, this 
gives a dissection of ABC into A'BC. Fur­
thermore, they have the same midline, 
and the same Saccheri quadrilateral, -g G 
and D'D = DE = !FH (Exercise 36.6a). 

Repeating this process a finite number of times, and using (A), we transform 
the original triangle ABC by a finite succession of dissections into a new triangle 
A • BC such that the foot G* of the perpendicular from A * to FH lies between F and 
H. Then the method of (34.6) gives a dissection to the Saccheri quadrilateral. 

Corollary 36.4 
Triangles on the same base and with the 
same midline (cf proof of (34.6)) have 
equal content. Furthermore, assuming (A), 
they are equidecomposable. 

Proof Let ABC and A' BC be two tri­
angles with the same base BC and the 
same midline 1. Drop perpendiculars 
BF, CH to 1. Then by the proposition, 
both triangles have content equal to the "6 
Saccheri quadrilateral FHBC, so they 
have equal content to each other (22.3). 
In the Archimedean case, they are equidecomposable. 

Remark 36.4.1 

c. 

Note how the Euclidean hypothesis "lying in the same parallels" of (1.37) has 
been replaced by "having the same midline." Of course, in the Euclidean case 
this is equivalent, because A and A' will lie on the same line parallel to BG. But 
in non-Euclidean geometry, the locus of points A for which the triangle ABC has 
midline 1 is not a straight line: It is the set of points having the same distance 
from 1 as Band C, but on the opposite side of the line 1. Given a line 1 and a seg­
ment d, we call the set of points at distance d from 1 an equidistant curve (or 
hypercycle). It has two branches, one on either side of 1. So we could rephrase 
this result as "Triangles on the same base BC, and having all three vertices 
A, B, C on the same equidistant curve, B, C on one branch, A on the other, have 
equal content." 
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Using ideas from the above proofs, we can now establish the non-Euclidean 
analogue of the theorem of Bolyai-Gerwien (24.7). We start with the case of 
triangles. 

Proposition 36.5 
In a semihyperbolic Hilbert plane satisfying (E), any two triangles of equal area have 
equal content. Iffurthermore we assume (A), they are equidecomposable. 

Proof We use the area function of(36.2), so that equal area means equal defect. 
First let us consider the case where one side of the first triangle is equal to one 
side of the second triangle. We label the equal sides BC, so we can call the tri­
angles ABC and A'BC. By (36.3) we can find Saccheri quadrilaterals FHBC and 
F'H'BC that have equal content with the given triangles. Furthermore, the sum 
of the two angles of these quadrilaterals at B, C are equal to the angle sums of 
the triangles (34.6), hence equal to each other. Since the top angles of a Saccheri 
quadrilateral are equal to each other (34.1), it follows that the angles at Band C 
of the two quadrilaterals are the same, so the sides of the quadrilaterals lie on 
the same lines. 

If the line FG is not equal to the line 
F' G', then FGF' H' is a rectangle, which 
is impossible in the semihyperbolic case 
(34.7). So FG = F'G', the two Saccheri 
quadrilaterals are equal, and the two 
triangles have equal content. 

Now consider the case of two arbi­
trary triangles ABC and A'B'C'. Suppose 
AB < A'B'. Then !A'B' > BD, so using 
the axiom (E) we can find a point D* on 
the midline DE such that BD* = !A'B'. 
Extend BD* to A * such that BD* = 
D *A *. Join A*C. 

Then ABC and A * BC are triangles 
with the same base BC and the same 
midline. Therefore, they have equal 
content (36.4), and also they have the 
same defect. On the other hand, A * BC 
and A' B' C' have one side equal A * B = 
A'B', and they have the same defect, so 
by the previous case, they have equal 
content. 

r' ~----------------__ ~I / IT "'1 G 
F b.. ..d G 

/ 
c. 

If we assume (A), the same proof works with equal content replaced by 
eq uidecomposable. 
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Theorem 36.6 
In a semihyperbolic Hilbert plane with (E), any two rectilineal figures with the same 
area have equal content. Iffurthermore we assume (A), they are equidecomposable. 

Proof Suppose rectilineal figures P and p' have the same area (36.2). Each one 
can be written as a finite union of triangles. Subdividing some triangles if nec­
essary to increase the total number, we may assume that for some n, both P and 
p' are subdivided into exactly 2 n triangles. Let P = U~] Ti. Taking the triangles 
two at a time, and using the lemma below, we can find other triangles 
Tj, j = 1, ... , 2n-], such that P has equal content with 2U~~~1 Tj. Repeating this 
process n times, eventually we find a single triangle To such that P has equal 
content with 2 n T o. 

Do the same with P'. Then there is a triangle Tb such that p' has equal con­
tent with 2nTb. 

Since P and p' have the same area by hypothesis, it follows that To and Tb 
have the same area. Then by (36.5), To and Tb have equal content. Hence P and 
p' have equal content. 

Ifwe assume (A), the same proof works for equidecomposable. 

Lemma 36.7 
In any Hilbert plane with (E), if T] and T2 are two triangles, then there exists a tri­
angle T' such that T] U T2 has equal content with 2T' (or, in case we assume (A), 
T] U T2 is equidecomposable with 2T'). 

Proof By the method of proof of (36.5), we can replace one of the triangles by 
another, so that now the two triangles have a side in common (and for this step 
we use (E)). Next we will show that we can replace each triangle by an isosceles 
triangle with the same base. 

Given a triangle ABC, consider the 
associated Saccheri quadrilateral FHBC, 
and let KL be the line joining the mid­
points of the top and bottom (34.1). 
Choose D' on KF such that KD' = ! DE. 
Then extend BD' to A' such that BD' = 
D'A', and join A'C. As we have seen 
above, ABC and A'BC have equal con­
tent (or assuming (A), are equidecom-
posable). But furthermore, by construc- 13 L.- c-
tion, A'BC is isosceles (Exercise 36.6b). 

Applying this construction to both T] and T 2 , we can assume that they are 
both isosceles on the same base. We put them together along their common base 
(say T] = ABC, T2 = A'BC). Then the line AA' divides T] U T2 into two congru­
ent triangles, so we take T' = ABA'. Then T] U T2 is equidecomposable with 2T'. 
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A 

B ~ __ +--_~c. 

Remark 36.7.1 
It follows from (36.6) that if two figures in a semihyperbolic Hilbert plane with 
(A) and (E) have equal content, they are equidecomposable-cf. (22.l.4). Indeed, 
they will have the same area (23.1), using the area function of (36.2), and then 
the theorem applies. 

Exercises 

36.1 Gauss, in a letter to W. (= Farkas) Bolyai in 1799, wrote, "If one could prove that 
there is a triangle whose area is bigger than any given figure, then I could prove the 
whole geometry." Let us call this Gauss's axiom, that for any rectilineal figure, 
there exists a triangle whose content is bigger than that of the figure. In a Hilbert 
plane with (A), show that Gauss's axiom implies (P), as follows: 

(a) Show that there exist convex rectilineal figures with arbitrarily large area. 

(b) Use (35.2) and (35.4) to get a contradiction if(P) does not hold. 

36.2 Let ABC be an isosceles triangle, let 
D, E be the midpoints of the sides, and 
let AG be the altitude that bisects DE 
and BC. In a semihyperbolic plane with 
(A): 

(a) Show that AG < 2AF. 

(b) Show that BC > 2DE. 

A 

(c) In the Euclidean case, the area of ABC would be four times the area of ADE. In 
this case, show that there is no such multiple estimate for comparing the two areas, 
in the following sense: For any given constant k> 1, there exists an isosceles trian­
gle ABC as above such that (area of ABC) < k· (area of ADE). (In order for multi-
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plication by k to make sense in the unwound circle group G, take k to be a dyadic 
rational number, i.e., of the form a/2 b for a, b integers.) 

36.3 Let P be a polygon inscribed in a circle of radius r in a semihyperbolic plane. Show 
that there is a polygon pi inscribed in a circle of radius 2r having twice as many 
sides as P and whose area is at least twice the area of P. This shows that the area of a 
circle (if properly defined!) can become arbitrarily large. 

36.4 In a semihyperbolic plane, if a Saccheri 
quadrilateral ABCD is cut by a diagonal 
AD, show that the upper triangle ACD 
has area greater than the lower triangle 
ABD. Hint: First show that pi < p. 

36.5 In a semihyperbolic plane, let a triangle 
ABC be cut by its median AD. Assum­
ing that the triangle is not isosceles, 
show that the half (in this drawing 
ABD) containing the acute angle rx at D 
has greater area than the other half. 

36.6 (a) In the situation of Proposition 34.6, show that DE = ~ FH. 

c.. 

(b) In the proof of Theorem 36.6, verify that the triangle claimed to be isosceles is 
indeed so. 

36.7 We have seen that in the real Cartesian plane, the unwound circle group G is iso­
morphic to (JR., +) (36.1.2). This group is also isomorphic to the multiplicative group 
(IR.>o, .), via the exponential map. 

In the case of an abstract ordered field F, we have three ordered abelian groups nat­
urally associated with F: the additive group (F, +), the multiplicative group (F>o, .), 
and the unwound circle group G ofthe Cartesian plane over F. We can ask which of 
these may be isomorphic, as ordered abelian groups. 

(a) Let Fbe the constructible field (16.4.1). Show that (F,+) is not isomorphic to 
either (F>o,·) or G as an ordered abelian group. Hint: Think of dividing by 3 in each 
group. 

(b) Again with F the constructible field, show that if (F>o,·) is isomorphic to G, then 
there can be only finitely many Fermat primes (29.4.1). (I have no reason to believe 
that these two groups should be isomorphic, so do not get your hopes up that this 
might be a way to prove the finiteness of the set of Fermat primes!) 

36.8 Show that a Hilbert plane satisfies (A) if and only if its unwound circle group G sat­
isfies (A'): For any two elements a, b > 0 in G, there is an integer n such that na > b. 

36.9 Modify the results of this section to derive a theory of area and content for a 
semielliptic Hilbert plane, by taking the area of a triangle to be its excess (5 = 
(sum of angles of triangle) - 2RA. 
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37 Circular Inversion 

In this section we will study circular inversion, which is a kind of transforma­
tion of the plane that leaves the points of a given circle fixed, and sends points 
inside the circle to points outside and vice versa. While this study belongs in the 
context of Euclidean geometry, it is a technique not used by Euclid. Perhaps this 
is because the idea of a transformation of the plane, moving points to other 
points, was foreign to the way of thinking of the Greeks. Euclid does use the 
"method of superposition" to compare triangles in his proof of (SAS), but there 
is no evidence that he thought of a rigid motion moving the whole plane onto 
itself. Given that perspective it seems even less likely that the Greeks would 
have seen any value in a transformation of the plane that does not even pre­
serve distances, in fact that does not even preserve proportion in figures. It 
seems that the notion of transformation in geometry is a relatively recent 
notion, which has come to serve very important roles, as we have seen in the 
usefulness of the existence of rigid motion (ERM). 

The theory of circular inversion can be developed purely geometrically 
using the results of Euclid's Book III, but it will be more efficient to use the 
theory of proportion (similar triangles) in our proofs. So in this section we work 
for convenience in the Cartesian plane over a Euclidean ordered field F. Thus 
we have Hilbert's axioms, including (P) and (E) , and we can use the theory of 
similar triangles (Section 20). The Euclidean hypothesis on F can be slightly 
relaxed (Exercises 37.16,37.17). 

Definition 
Let r be a fixed circle in the plane (over 
the field F as above . .. ), with center ° 
and radius r. For any point A =F 0, draw 
the ray OA, and let A' be the unique 
point on the ray OA such that OA· 
OAI = r2. (The dot in this equation 
means products of lengths in the field 
F.) Then we say that AI is obtained from 
A by circular inversion with respect to 
the circle r. 

A' 

Briefly, we will say that A' is the inverse of A (with respect to the circle r) . 
Since the condition OA . OAI = r2 is symmetric in A and A', this notion is recip­
rocal: AI is the inverse of A if and only if A is the inverse of AI. We think of cir­
cular inversion in r as a transformation P = Pr defined for all points A =F 0, 
which thus transforms the plane n - {O} into itself by sending each point to its 
inverse. From the definition it is clear that any point on r is sent to itself. Points 
inside r are sent to points outside r, and vice versa. As a point A approaches the 
center of the circle 0, its inverse gets farther and farther away, so in the limit, 
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the point 0 would have to go to infinity. Since we do not have infinity in our 
geometry, we simply say that p is undefined at O. (Or if you like, you can imag­
ine completing our plane by a single point called infinity, and then 0 and 00 are 
interchanged-cf. Exercise 37.1 on stereographic projection for another inter­
pretation of this idea.) 

Proposition 37.1 
Let A be a point inside the circle r. Draw 
the ray OA. Let PQ be the chord of the 
circle perpendicular to OA at A. Then the 
tangents to r at P and Q will meet the ray 
OA at the point A' that is the inverse of A 
with respect to r. 

A' 

Proof First note that the two tangents will both meet OA in the same point A', 
by symmetry. Now, the right triangles t10AP and t10PA' have the angle at 0 
in common, so they are similar. Hence corresponding sides are proportional. In 
particular, 

Cross multiplying, we obtain 

OA OP 
OP ON 

OA . ~A' = Op2 = r2. 

Hence A and A' are circular inverses in r. 

Remark 37.1.1 
This proposition gives us a method of constructing circular inverses by ruler and 
compass: If A is given inside r, draw OA, construct the perpendicular to OA at 
A, let it meet r at P, draw the radius OP, draw the perpendicular to OP at P, 
which will be the tangent line, and let this line meet OA at A' (9 steps). Con­
versely, if the point A' is given outside the circle, draw the two tangent lines 
from A'to I', join their points of tangency P, Q, and let the line PQ meet OA' at 
A (6 steps). 

Next we will investigate what circular inversion does to lines and circles in 
the plane. 

Proposition 37.2 
A line through 0 is transformed into itself by circular inversion. A line not passing 
through 0 will be transformed into a circle passing through 0, and conversely. 
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Proof A line through 0 is transformed into itself by definition of circular 
inversion. 

Now let 1 be a line not through o. 
Let OA be the perpendicular from 0 to 
1. Let A' be the inverse of A, and let y be 
the circle with diameter OA'. I claim 
that the inverses of points on 1 all lie on 
y and vice versa. So let B be any point 
on 1. Draw OB and let it meet y at B'. 
Then OB'A' is a right triangle (III.31). It 
has the angle at 0 in common with the 
right triangle OAB, so we have similar 
triangles. Therefore, the sides are pro­
portional: 

OB' OA 
OA' OB 

Cross multiplying, we obtain 

OB . OB' = OA . OA'. 

5 

O~--~t--~A 

But A' was chosen to be the inverse of A, so OA · OA' = r2. Hence also 
OB· OB' = r2, so Band B' are inverse to each other. This shows that the circular 
inversion transforms the points of the line 1 to the points of the circle y (except 
0) and vice versa. 

Definition 
When two circles meet (or when a circle meets a line) by the angle between 
them we mean the angle between their tangent lines at that point (resp. the 
angle between the tangent line and the other line). 

Note that when two circles meet in two points, the angle between them is 
the same at both points, because the two circles are symmetrical about the line 
joining their two centers. 

Proposition 37.3 
If a circle y is perpendicular to r (at its intersection points), then y is transformed into 
itself by circular inversion in r. Conversely, if a circle y contains a single pair A , A' of 
inverse points, then y is perpendicular to r and is sent into itself 

Proof First suppose that y is perpendicular to r, and let y meet r at P and Q. 
Then the radius OP is tangent to y, because radius and tangent of any circle are 
perpendicular (IILlB) . Let A be another point of y and let OA meet y again at A' . 
Applying (III.36) to y we obtain Op2 = OA . OA'. (Actually, Euclid meant that the 
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square on OP has content equal to the rectangle formed by OA and OA' , but 
since we are working over the field F, we interpret this statement as lengths and 
products (20.9).) Since OP = r, this shows that A and A' are inverses. This holds 
for any A on y, so y is sent into itself. 

Now (using the same picture) sup­
pose, conversely, that y is any circle 
passing through some pair of inverse 
points A,A'. Let y meet [' at P, and draw 
OP. Since OP is a radius and A,A' are 
inverse points, we have OA . OA' = Opz. 
But now by (1II.37), the converse of 
(III.36), it follows that OP is tangent to 
y, which means that y and r are per­
pendicular at P (and hence also at their 
other point of intersection Q) . 

Proposition 37.4 
If Y is a circle not passing through the center 0 of r, then the transform of y by 
circular inversion is another circle y' . 

Proof This result is not so easy to prove directly (you can try if you like), so we 
will resort to a trick. Suppose we are given a circle y not passing through 0, and 
assume that 0 is outside y, for the moment. 

Draw OP tangent to y, and let r' be 
a new circle with center 0, passing 
through P. Then by construction y is 
sent into itself by Pr" Thus Pr(Y) = 
PI' . Pr" (y), and we are led to consider 
the new transformation of the plane 
o = Pr . PI'" Let r = radius of r , and 
r' = radius of r'. For any point A, let 
A' = Pr,(A),A" = Pr(A'). Then O(A) = 
A" . By definition of inversion, OA· 
OA' = r'z and OA' . OA" = rZ . Dividing, 
we find that 

OA" rZ 

OA r'z' 

so 

OA"=k·OA , where 
r2 

k = r'z' 

r ' 

r 

o 
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This is a transformation that leaves 
o fixed, and stretches points toward (or 
away from) 0 in a fixed ratio k. It is 
called a dilation with center 0 and ratio 
k. In rectangular coordinates with center 
at the origin it would be expressed by 

{
Xi = kx, 

y' = kyo 

o 
ai' 8 

It follows, either from thinking of the distance formula in terms of coordinates, 
or by using the (SAS) criterion for similar triangles (20.4), that all distances are 
changed by the same ratio k. 

In particular, a dilation sends any circle (and its center) into another circle 
and its center. It follows that Pr(Y) = Pr . Pr' (y) = O(y) is a circle. (Warning: Even 
though Pr(Y) is a circle, in general PI' does not send the center of Y to the center 
of y'.) 

In this proof we were assuming 0 outside y. If 0 is inside y, we leave you to 
construct an analogous proof in Exercise 37.4. 

Now that we have seen that circular inversion preserves lines and circles 
( every line or circle is transformed into another line or circle), sometimes turn­
ing a line into a circle, or a circle into a line, the next step is to show that cir­
cular inversion is conformal, i.e., preserves angles. 

Proposition 37.5 
Circular inversion is conformal: Whenever two curves meet (here "curve" means line 
or circle), their transforms under circular inversion meet again at the same angles. 

Proof First suppose that P ¢ r, and that 
two curves (not shown) meet at P with 
tangent lines 1, m. Let pi be the inverse 
of P. Then we can find a circle y, 
through P, pi and with tangent m at P; 

and we can find a circle Y2 through P, pi 
with tangent line 1 at P. Now, by (37.3) Yl 
and Y2 are transformed into themselves. 
Therefore, the original curves are trans­
formed into curves at pi tangent to Yl 
and Y2' so they make the same angle as 

r 

o 

at P, because when two circles Yl ' Y2 intersect they have the same angle at both 
intersections. For this proof we need to observe that a line and a circle, or two 
circles, are tangent if and only if they have just one point in common. Hence 
the property of tangency is preserved by inversion. 

If PEr, we leave the special case to you (Exercise 37.5). 
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For our last general result about the properties of circular inversion, we look 
at what happens to distances. Of course, distances are not preserved, because a 
very small distance near 0 will be transformed into a very large distance far 
away. Even ratios of distances are not preserved, as you can see by simple 
examples. However, a remarkable fact is that if we take four points, a certain 
ratio of ratios of distances, called their cross-ratio, is preserved. 

Definition 
Let A, B, P, Q be four distinct points in the Cartesian plane. Their cross-ratio 
(an element of the field F) is defined to be the ratio of ratios 

which can also be written 

Proposition 37.6 

AP BP 
(AB, PQ) = AQ ...:.. BQ' 

AP BQ 
-.-
AQ BP 

Let A, B, P, Q be four distinct points in the plane, different from O. Then circular 
inversion in r preserves the cross-ratio: If their inverses are A', B', p', Ci, then 

(AB,PQ) = (A'B',P'Ci). 

Proof Given two points A,P and their inverses A',P', we know by definition 
that 

OA· OA' = r2 = Op· OP'. 

Thus 
OA 
OP 

Case 1 Suppose 0, A, P are not col­
linear. Since the triangles t'1.0AP and 
t'1.0P' A' have the angle at 0 in common, 
they are similar (20.4), and we conclude 
that 

AP OA 

NP' OP' 
(1) 

OP' 

OA' 

A' 

~ 
p P' 

Case 2 If O,A,P are collinear, then AP= OP- OA and A'P' = OA'- OP'. 
Using the fact that in a field F, 

a c a c-a 
b=Ci '* b= d-b' 

we conclude the same result (1). 



EVCLIDIS 
POSTERIORES 

LIBRI IX. 

eAcccJit xn. de SOLJDOR,.lo/ RE Cr­
L.A R I r M cuimli ht intra quod­

li6ct comparatione . 

. Omnes perfpicuis DE M 0 N S T R A TI O­

NIB V s ,accuracisq; S C H 0 L I I 5 

ill uttraci: 

Nil/it /(1'1;0 (dlli. <Ie mllll4rllm 1'(1'11111 /1(. 

ufmu l'(1I1k/4/i. 

"uflore 
CHRISTOPHORO CLAVIO 

~2R(i I ,.",.Socie[a[e I .,v. 

COL 0 N I AF, 
Expenfis 10 H. B APT 1ST" E 

C I;) I=> X C I. 

Plate XIII. Title page of volume II of the important edition of the Elements by the Jesuit 
mathematician Christopher Clavius (1591). 

340 



37. Circular Inversion 341 

Now if Q is another point, we find similarly that 

AQ OA 

A'O,! DO,! 
(2) 

Dividing, we get 

AP . AQ 00: 

A'P' A'O,! OP' 
(3) 

Now let B be another point. Working with P and Q as before, we obtain similarly 

BP . BQ 00: 

B'P' B'O,! OP' 
(4) 

So the expressions (3) and (4) are equal. Moving the primed letters to one side 
and the unprimed letters to the other side shows that the cross-ratios (AB, PQ) 
and (A'B',P'O:) are equal. 

Remark 37.6.1 
At this point I can just hear someone asking, "What is the geometrical signifi­
cance of the cross-ratio?" Although I first encountered cross-ratios as a senior 
in high school, and have dealt with them many times since then, I must say 
frankly that I cannot visualize a cross-ratio geometrically. If you like, it is magic. 
Here is this algebraic quantity whose significance it is impossible to understand, 
and yet it turns out to do something very useful. It works. You might say it was a 
triumph of algebra to invent this quantity that turns out to be so valuable and 
could not be imagined geometrically. Or if you are a geometer at heart, you may 
say that it is an invention of the devil and hate it all your life. 

Let me say a few words in defense of the poor cross-ratio. 
In the present context of transformations of the Euclidean plane, there are 

rigid motions, which preserve distance. Then there are dilations, which do not 
preserve distance, but do preserve ratios of distances. Then there is circular 
inversion, which does not preserve distances or even ratios of distances. Since it 
does preserve the cross-ratio, that particular ratio of ratios, it is the best we can 
do. It is something to hang on to, a pillar of support, when the distances and 
their ratios are changing all around us. In Section 39 we will use the cross-ratio 
to define the notion of distance in the Poincare model of non-Euclidean geome­
try: It plays an essential role there. 

In projective geometry the cross-ratio is also important. A projectivity from 
one line to another is defined as a composition of a finite number of projections 
from one line to another in the plane. A projectivity preserves neither distances 
nor ratios of distances, but it does preserve the cross-ratio (Exercise 37.14). In 
fact, a fundamental theorem of projective geometry is that a transformation of 
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one line to another in the projective plane is a projectivity if and only if it pre­
serves the cross-ratio of every set of four distinct points on the line. 

If you have studied complex variables, the projectivities of the projective line 
over the complex numbers correspond to the fractional linear transformations of 
the Riemann sphere <C U {Cf)}, given by 

I az+b z = -- ad - bc "# O. 
cz+d' 

If you are given four points A, B, C, D, there is always a fractional linear trans­
formation sending A,B, C to 0,1,00. In that case the image of D, say A, is the 
cross-ratio of the original four points, in a suitable order. 

Finally, if you have four points on a line, and you take signed distances ( + or 
- depending on a chosen preferred direction), then the cross-ratio is equal to -1 
if and only if the four points form a set of four harmonic points (Exercise 37.15). 
This notion of harmonic points is also important in projective geometry. 

The notion of cross-ratio already occurs in the work of Pappus (300 A.D.). It 
came into prominence again in the early nineteenth century with the projective 
geometry of Poncelet and Monge. 

Exercises 
Unless otherwise noted, the following exercises take place in the Cartesian plane over a 
Euclidean ordered field F. 

37.1 Stereographic projection. In three­
dimensional space, imagine our plane 
II and a circle r of radius r and center 
O. Now take a sphere of radius ~r, and 
set it on the plane II so that its south 
pole is at O. Then stereographic projec­
tion associates to each point B of the 
sphere, B =1= N = north pole, that point 
of II obtained by drawing the line NB 
and intersecting with II. (In the limit, 
N would go to infinity, so you can 
think of the sphere as a completion 
of the plane by adding the point N.) 
Under this projection, the equator of 
the sphere is mapped to the circle r. 

Show that circular inversion in the circle r corresponds to the operation of reflec­
tion in the equator of the sphere, which interchanges the northern and southern 
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hemispheres. In other words, if B is a point on the sphere, and B' its reflection in 
the equator (same longitude, but latitude has changed from north to south or from 
south to north), then the projected points A,A' are inverses under inversion in r. 

37.2 Prove that the following construction 
with compass alone gives the inverse 
of A in r (provided that OA > ~r): 
Draw a circle with center A through 0 
to meet r at P and Q. Then draw cir­
cles with centers P and Q through 0 to 
meet at A' (3 steps). (The diagram 
shows A inside r, but the construction 
works equally well if A is outside r.) 

37.3 Let lbe a line that meets the circle r in 
two points A,B. Let y be the (unique) 
circle through O,A,B. Prove that y is 
the transform of 1 under inversion 
in r. 

37.4 Prove the other case of(37.4), namely, 
if y is a circle containing 0, then Pr(Y) 
is a circle. For any points A, Bon y, let 
A',B' be their inverses in r, and let 
A",B" be the points where the lines 
OA, OB meet y again. By (III.3S) (cf. 
(20.8)), 

OA· OA" = OB· OB" = c 

is a constant independent of the points 
A, B, depending only on 0, y. 

r' 

Let us use signed lengths from 0, so that c < O. Since OA . OA' = r2, then show that 
OA' = k· OA" for a certain constant k < O. Thus y' is obtained from the circle y by 
dilation with a negative constant k. Conclude that Pr(Y) = y' is a circle. 

37.5 If two lines or circles meet at a point PEr, show that their two transforms by 
circular inversion in r meet at the same angle at P. 

37.6 If we identify the real Euclidean plane JR2 with the complex numbers <C, show that 
the transformation z' = 1/ z (where z = a + bi, Z = a - bi) is just inversion in the 
unit circle Izl = 1. 
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37.7 If A is a point inside the circle r, improve the ruler and compass construction of 
the inverse of A given in (37.1.1) by constructing the circle through 0, P, Q instead 
of constructing the tangent line at P (par = 7 steps). 

37.8 Given the circle r and its center 0, and given a line 1 not containing 0, give a ruler 
and compass construction of the circle Pr(l) (par = 7 steps). 

37.9 Given r, given its center 0, and given a circle y passing through ° (but not given 
the center ofy), construct the line Pr(Y) (par = 15 steps). 

37.10 Given r and its center 0, and given a circle y not through 0, construct the circle 
PI'(Y) (par = 15 steps). 

37.11 Verify the following ruler-only con­
struction of the inverse of a point A 

(7 steps): Draw OA, get R, S. Draw any 
line 1 through A meeting r in P, Q. 
Draw RP and SQ to meet at T. Draw 
RQ and PS to meet at U. Draw TU to 
meet OA at A'. Show also that TU is 
perpendicular to OA. 

37.12 Verify the following 5-step construc­
tion for the inverse of a point A with 
respect to the circle r. Take a circle of 
any radius with center A, to meet rat 
P and Q. Let AP and AQ meet r in 
further points R, S. Join PS and RQ. 
Their intersection is A'. (This works 
equally well if A is inside r.) 

37.13 (a) Given four points A, B, P, Q, if you permute A and B, or if you permute P and 
Q, the cross-ratio is replaced by its inverse: (BA, PQ) = (AB, QP) = (AB, PQ)-l 

(b) More generally, if A, B, P, Q are four points on a line, and if (AB, PQ) = )., then 
the 24 possible permutations ofthe points give rise to 6 possible values of the cross­
ratio, namely 

A, 1 - A, 
1 - A' 

A-I 
A 



37.14 (a) Given four points on a line I, and 
given a point 0 not on I, let the angles 
at 0 subtended by AP,AQ,BP,BQ be 
rxp,rxQ,{Jp,{JQ. Use the law of sines to 
show that 

( ) _ sin rxp -'- sin{Jp 
AB,PQ --.- . -.-. 

smrxQ sm{JQ 

(b) If the four points A , B, P, Q on I are 
projected from 0 to four points 
A', B', pi, O!. on another line m, then 
the cross-ratio is preserved: 

(AB,PQ) = (AIB',pIO!.). 

Conclude that cross-ratio is preserved 
by any projectivity, that is, a finite 
succession of projections from one 
line to another. 
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() 

Q 

A 
() 

37.15 We say that four points A, B, P, Q on a line form a set offour harmonic points if their 
cross-ratio (AB , PQ) is equal to -l. 

(a) Given A,B,P, show that the fourth harmonic point Qis uniquely determined. 

(b) Verify the following ruler-only 
construction of the fourth harmonic 
point: Given A,B,P on a line I, take a 
point X not in the line. Draw XA, XB, 
XP. Take any point Y on AX. Draw 
BY, get W. Draw A W, get Z. Draw YZ, 
get Q. Hint: Project the four points 
A, B, P, Q from X to the line YQ , and 
then from W back to the original line 
I, and use Exercise 37.14. Q 

J 

( c) If A, B, P, Q are four harmonic points, show that Q is the inverse of P in the 
circle with diameter AB. 

37.16 IfF is a Pythagorean ordered field, we can still define inversion in a circle r by the 
same method as at the beginning of this section. If y is a circle with Pr(Y) = y, show 
that Y still meets r in two points, even though we do not have the axiom (E). 

37.17 Let Fbe a Pythagorean ordered field, and let d be a positive element of F that has 
no square root in F. We consider the virtual circle r defined by the equation 
x2 + y2 = d. Since F is Pythagorean and Jd i F, this equation has no solutions. So r 
has no points. Nevertheless, it is useful to refer to r as a virtual circle, because we 
can still define circular inversion P in r by the formula OA . ~A' = d. 
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(a) Show that the results (Propositions 37.2, 37.4, 37.5, 37.6) still hold for p. 

(b) Show that a part of Proposition 37.3 holds: A circle y is sent to itself by p if and 
only if it contains a pair of inverse points. In this case we say by abuse of language 
that y is orthogonal to f. 

(c) Given 0 and given one pair A, A' of inverse points by p, give a construction 
with Hilbert's tools (Section 10) for the inverse B' of a point B. (Par = 4 if O,A,B 
are not collinear.) 

37.18 Give a new proof of Exercise 1.15 by doing a circular inversion with center P and 
suitable radius, and solving the transformed problem. 

Poor John has lost his ruler. Can you help him do his construction problems (follow­
ing) using his compass alone? 

37.19 Given two points A, B construct a third collinear point C with AB = BC (par = 4 
steps). 

37.20 Given two points A,B, construct the midpoint C of the segment AB (par = 7 steps). 
Hint: Use Exercise 37.2. 

37.21 Given two points A, B, construct C, D such that ABCD will be a square (par = 8 
steps). 

37.22 Given points A,B, C, 0, with O,A,B not collinear, construct the intersection points 
of the line AB with the circle OC (assuming that they meet) (par = 4 steps). 

37.23 Given noncollinear points A, B, C, construct the foot of the perpendicular from C to 
the line AB (par = 9 steps). 

37.24 Given noncollinear points 0, A, B, show that it is possible to construct the inter­
section of the circle OA with the line OB using compass alone. Hint: Perform a cir­
cular inversion that leaves the circle OA fixed and transforms the line OB into a 
circle. (Par = 13 to get one intersection point.) 

37.25 Given points A, B, C, D show that it is possible to construct the intersection point of 
the lines AB and CD using compass alone. Hint: Use a circular inversion to trans­
form the two lines into circles. (Par = 13 steps if the points are in favorable posi­
tion; otherwise 18 steps.) 

37.26 Using the experience gained in the previous exercises, prove the following theorem 
of Mascheroni: Any point that can be constructed from given data by ruler and 
compass construction can also be constructed using compass alone. 

38 Digression: Circles Determined by Three 
Conditions 

In order to specifY a circle in the plane, you give its center, which is a point, and 
its radius, which is a line segment, or distance. A point moves in a 2-dimensional 
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plane, while the length of a line segment is a I-dimensional quantity, so we can 
say roughly that the set of all circles forms a three-dimensional family, or that a 
circle depends on three parameters. If we are working in the Cartesian plane 
over a Euclidean field F, then a general circle has an equation 

(x - a)2 + (y - b)2 = r2, 

where a, b, r are elements of the field F. In this case the circle is determined by 
the three quantities a, b, rEF, so again it makes sense to say that a circle depends 
on three parameters. 

From this informal discussion it is reasonable that we can impose three con­
ditions and then expect to find a unique circle satisfying those three conditions. 
Of course, there will be situations where this does not work. For example, you 
cannot find a circle passing through three collinear points (unless you allow the 
line containing the points to count as a limiting case of a circle). Another exam­
ple is, you cannot find a circle tangent to two given parallel lines 1, m and pass­
ing through a point P not between the two lines. 

In general, however, we can expect to find a circle satisfying three con­
ditions. Among conditions we can impose are: 

(P) to require that the circle pass through a given point A; 
(L) to require that the circle be tangent to a given line 1; 
(C) to require that the circle be tangent to a given circle y. 

Furthermore, it is natural to expect that the required circle be constructible 
by ruler and compass. In this way, taking all possible combinations of three 
conditions of types (P), (L), and (C), we obtain the following ten construction 
problems. 

PPP. To construct a circle through three given points A, B, C. This is the 
circumscribed circle to the triangle ABC. 

LLL. To construct a circle tangent to three given lines 1, m, n. This is the 
inscribed circle or one of the exscribed circles of the triangle formed by 1, m, n. 

The remaining eight problems we designate as PPL, PLL, PPC, PLC, PCC, 
LLC, LCC, and CCC, according to the conditions imposed. The last one, to find a 
circle tangent to three given circles, is classically known as the problem of 
Apollonius. Apollonius of Perga (c. 262-c. 200 B.C.) is best known for his book on 
conics, but he also wrote a book On Tangencies, which is now lost, in which he 
discussed this problem of the three circles. We know of Apollonius's book from 
the commentary of Pappus (1876), Book VII, Sections 11,12. Based on this, Viete 
made a restitution of the lost book of Apollonius, and later Camerer (1795) 
edited both Pappus's commentary and Viete's restitution with added work of his 
own. One of Pappus's constructions was given in (5.11). 

In this section we give another method for solving these problems, using 
circular inversion. 

Advice to the reader: The best way to study this material is to stop reading 
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now, and attempt to solve each of these problems yourself. Then come back 
for hints if you need some help. If you read on further, you will find my solu­
tions, but I expect you will find other, perhaps even better, solutions on your 
own. 

As hints let me list the general techniques we will use. First of all, we use the 
basic mini constructions of three or four steps each that we have often used 
before. With these techniques you should be able to solve problems PPP, PPL, 
PLL, and LLL. 

For the problems involving circles, 
there is sometimes an easy method to 
reduce one problem to another. For ex­
ample, in LLC, given two lines 1, m and 
a circle y with center 0, we are trying to 
find the small dotted circle tangent to 
1, m, and y. Let I' and m' be lines parallel 
to 1 and m, and at a distance from 1 and 
m equal to the radius of y. Then the cir­
cle through ° (the center of y) and tan­
gent to I' and m' will have the same 
center as the circle we are looking for 
(verifY!). Thus we can reduce LLC to 
PLL. 

\ 
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In the most difficult problems we can make use of circular inversion. For 
example, in CCC, the problem of Apollonius, by adding or subtracting the same 
quantity to the radius of each circle, we reduce to a problem where two circles 
meet. Let ° be an intersection point of two circles, and let r be a circle with 
center 0. Perform a circular inversion in the circle r. Then the two circles 
through ° are transformed into straight lines, while the third circle becomes 
another circle. By LLC we can find a circle tangent to the two lines and circle 
obtained by circular inversion: Applying a circular inversion r to this newly 
constructed circle, we obtain a solution to the original problem. 

Of course, these constructions may get rather long, and in carrying them out 
on a piece of paper with pencil or pen, the accumulated error may be greater 
than what one could achieve by guessing. But that is not the point. The point is 
to have a correct theoretical procedure that gives a mathematically exact answer 
when carried out in ideal conditions. 

Construction 38.1 (PPP) 
To construct a circle through three given points A, B, C. The center of this circle 
must lie on the perpendicular bisectors of AB and BG. So construct the perpen­
dicular bisectors (3 steps each) to get the center 0, and then draw the circle (7 
steps altogether). However, we can save one step by making one of our circles 
do double duty: 
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1. Circle center B, radius BC. 
2. Circle center A, same radius. Get E, D. 
3. Draw line ED. 
4. Circle center C, same radius. Get F, G. 
5. Line FG. Get O. 
6. Circle center 0, radius OA, passes through E, C. 

Construction 38.2 (LLL) 
To find a circle tangent to three given 
lines 1, m, n. Let ABC be the triangle 
formed by the three lines. The center 
of the inscribed circle must lie on the 
angle bisectors of the three angles. So 
we bisect the angles at A and B to get 
the center of the circle o. Then we drop 
a perpendicular from 0 to one side to 
find the radius, then draw the circle. 
Adding miniconstructions comes to 13 
steps. But with care, we reduce the con­
struction to 10 steps: 

Bisect angle A, using circles centered at 
A, B, D, all of radius AB (4 steps). 
Bisect angle at B, using F, G (2 more 
steps). 
Perpendicular from 0 to AC, using H,I,K (3 more steps). 
Circle center 0, radius OK (1 step). 

c 
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Construction 38_3 (PPL) 
To construct a circle through two given points A, B, tangent to a given line 1. 

First draw the line AB to meet 1 at P (1 step). If we imagine the circle already 
drawn being tangent to 1 at Q, then PQis a tangent to the circle and PAB cuts the 
circle , so by (III.36) PA . PB = PQ2. SO our method will be to use this fact to find 
Q , and then draw the circle. According to (III.36) again, if we take any circle 
through AB, the tangent from P to that circle will have the same length as PQ. 
SO let us bisect AB, using CD (3 steps) and get its midpoint E. Draw the circle 
with center E passing through A and B (1 step) . To find the tangent from P to 
this circle, bisect PE, using F , G (3 steps) and get H. Draw the circle with center 
H through P, E (1 step) and let it meet the circle through AB at K. Then PK will 
be tangent to the circle. Find Qand 1 with PQ = PK (1 step). Now to get the circle 
through A,B, Q, bisect AQ (2 more steps), get 0, and draw the circle with center 
o through A, B, Q ( 1 step). Total: 13 steps. 

Construction 38.4 (PLL) 
To construct a circle through a given point A and tangent to two given lines 1, m. 

One method is to reduce to PPL as follows: Imagine a r eflection in the angle 
bisector of the angle at O. This will give a new point A', symmetrically located, 
and any circle through A tangent to 1 and m must also pass through A'. Thus we 
need only construct the circle through A, A' tangent to 1 by PPL. We can con­
struct A' in 2 steps: Circle center 0 through A , get B, C. Circle through C, radius 
AB. Get A'. Then do PPL. Total: 15 steps. 

Another method is to use the fact that circles tangent to two lines 1, m are all 
related by dilations from center 0 where 1 and m meet. So this time our strategy 



38. Digression: Circles Determined by Three Conditions 351 

is to construct any other circle tangent to 1 and m, and then scale it down or up 
so as to pass through A. First bisect the angle at 0, using B, C, D and circles all of 
the same radius (4 steps). Get E, F where the circle with center B through 0 
meets 1, m. Draw EF (1 step), which will be perpendicular to 1, since it is con­
tained in a semicircle (III.31). Get G, and draw a circle with center G and radius 
GF (1 step). This is our comparison circle y'. Draw OA to meet y' at A' (1 step). 
The desired circle y will have center K on OD, and with KA parallel to GA'. So 
construct AH parallel to GA' (3 steps), and get K. Draw the circle y with center K 
and radius KA ( 1 step). Total: 11 steps. 

Construction 38.5 (PPC) 
As an application of the use of circular inversion, we will construct a circle 
passing through two given points A, B, and tangent to a given circle y. Since cir­
cular inversion sends circles to circles (or lines) and preserves incidence and 
tangencies, any circular inversion will transform one of our ten problems into 
another of our ten problems, and solving one is equivalent to solving the other, 
since the constructed circle can also be transformed by the same circular inver­
sion. The point is to make a judicious choice of which circular inversion to per­
form so that our job becomes as simple as possible. 

In this case, let A, B be the given points, and let y be the given circle. Draw 
the perpendicular bisector of AB (using C, D, 3 steps) and let it meet y at O. (If it 
does not meet y, then the construction will be longer.) Take the circle r with 
center 0, passing through A, B (1 step) as our circle to invert in. Let r meet y at 
P,R. Draw the line 1 through P,R (1 step). Since y passes through 0,1 will be the 
inverse of the circle y, while A, B are fixed, since they lie on r. So we have the 
new problem to find the circle b through A, B, tangent to 1. Suppose this is solved 
by PPL (13 steps, not shown), and let Q be the point of tangency of b with 1. We 
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find the inverse 0:. of Q by drawing the line OQ and intersecting with y (1 step) . 
So the desired circle is the circle through A, B, and 0:.. This is PPP. We need only 
construct the perpendicular bisector of Ao:. (using E,F, 3 steps) to find G, and 
then draw the circle with center G through A ,B, 0:. (1 step). Total: 23 steps. 
Actually, in applying PPL, we already have the perpendicular bisector of AB, so 
that saves 3 steps. Also, we do not need the actual circle y, only its point of tan­
gency Q with 1. That saves 3 more steps, so the count becomes 17 steps. 

\ 

To complete this section, we will do a special case of LLC, and then show 
how to use that to solve CCC, the problem of Apollonius. The remaining prob­
lems we will leave as exercises for the reader. 

Construction 38.6 
Given two parallel lines 1, m, and given a circle y with center 0 , to find a circle 
tangent to 1, m, and y. 

The idea is to construct the line parallel to 1 and m that is halfway between 1 
and m. The center of the desired circle will be a point on this midline whose 
distance from the center 0 ofy is equal to (its radius) ± (radius y) depending on 
whether we want a circle containing y or not. 

Pick any point A on 1, and draw circle with large enough radius to intersect 
mat B, C (1 step). Bisect BC (3 steps) using A, D, get E. Circle with center E, ra­
dius AB to get F, G (1 step). Draw FG (1 step) and get H. This is the midline. 
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Make HI = radius of y (1 step). Center 0 , radius EI, find K on the midline (1 
step) . Center K, radius EH, draw the required circle 0"] (1 step). Total: 9 steps. To 
get another solution 0"2, center 0, radius AI to get L. Center L, radius EH is 0"2. Of 
course, there are two more solutions with centers K', L' on the other side of O. 

A. 

c.. 

D 

Construction 38.7 (The problem of Apollonius) 
Given three circles y] , Y2' and Y3' with their centers 0] , O2 , 0 3 , to find a circle 
tangent to all three given circles. 

Note first that if we were not given the centers of the circles, we could find 
them with little constructions of 5 steps each, so to make life a little easier for 
ourselves, we suppose 0] , O2 , 0 3 also given. 

The idea is to expand the three circles by adding a fixed length to each of 
their radii. This will not change the center of the circle in the middle tangent to 
all three. (If we wanted a circle containing one of the y;, then we should subtract 
from its radius.) Doing this expansion carefully, we can arrange that two of the 
new circles are tangent to each other. 

This first part of the construction goes as follows: Draw 0] O2 (1 step), get 
A, B. Bisect AB, using C, D ( 3 steps), get E. Draw 03E, get F' (1 step) . Make 
FF' = AE (1 step). Now draw the new circles y;: center 0], through E; y~: center 
O2 , through E; and y~: center 0 3 , through F (3 steps). Then, by this operation, we 
have reduced to a special case of CCC where two of the circles are tangent (9 
steps). 

For the next stage of the construction, we will perform a circular inversion 
in a circle r with center E. This will transform y; and y~ into two parallel 
straight lines, and y~ will become another circle. It seems worthwhile to choose 
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r orthogonal to y~, because then y~ will be sent into itself, saving us the trouble 
of finding its image under the circular inversion. 
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So we proceed as follows: Bisect 03E using G,H (3 steps), and get K. Draw 
the circle with center K, radius KE (1 step), and let it intersect y~ at L. Draw the 
circle r with center E through L (1 step). Then r will be orthogonal to y~, and so 
will be left fixed by circular inversion in r. Let r meet y~ in M, N, and draw the 
line 1 = MN (1 step). Let r meet y~ in P, Q, and draw the line m = PQ (1 step). 
Thus we have transformed y~, y~, y~ into 1, m, and y~, and we have the new prob­
lem of finding a circle tangent to these three. Furthermore, since y~ and y~ were 
tangent to 0, their transforms 1, m do not meet. In other words, 1 and m are par­
allel, so we have a case of (38.6) treated above. This portion of our construction 
was 7 steps. 

Now perform (38.6) to find a circle (1 tangent to 1, m, y~, and let the points of 
tangency be R, S, T (9 steps). Actually, since we already have a line 0, O2 per­
pendicular to 1 and m, we can get the midline in 3 steps instead of 6, thus saving 
3 steps. So this part of the construction counts 6 steps. 

The last stage of the construction is to transport back (1 by the circular 
inversion in r to get a circle tangent to y~, y~, y~. Then for the same center we 
can draw the desired circle r tangent to Yl' Y2' Y3. 

It is actually sufficient to pull back two of the points of tangency. Draw ER 
and let it intersect Y~ at U (1 step). Then U is the inverse of R in r. Draw ET and 
let it meet Y~ at V (1 step). Now U, V are two of the points of tangency of a circle 
(dotted) tangent to Y~, Y~, Y~. To find its center, draw 0 1 U and 02 V and let them 
meet at X (2 steps). Now the circle r with center X and radius XY is the desired 
circle (1 step). This last part of the construction is 5 steps. (In the drawing I also 
found the inverse Z of S and drew 03Z to check for accuracy, but this is not 
really part of the theoretical construction.) Total: 27 steps. 

Exercises 
Garry out the following ruler and compass constructions. 

38.1 PLG. Treat as a special case ofLGG. 

38.2 LLG. Follow hint given earlier in text. 

38.3 PGG. Treat as a special case of GGG. 

38.4 LGG. Use a technique similar to the one we used for GGG to reduce to (38.6). 

38.5 PPG. Do the general case, where the perpendicular bisector of AB does not meet y. 

38.6 Describe how you would construct all eight solutions to the problem of Apollonius. 

39 The Poincare Model 
In this section we will show the existence of a non-Euclidean geometry, and 
hence the consistency of the axioms of non-Euclidean geometry, by exhibiting a 
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model for a non-Euclidean geometry. Ironically, our model of a non-Euclidean 
geometry will be constructed within the logical framework of Euclidean geome­
try. So what we must do is to give an interpretation of the undefined notions of 
geometry in the model: point, line, betweenness, and congruence for line seg­
ments and angles, and then we must prove that the axioms all hold in this 
interpretation. 

Our starting point will be the Carte­
sian plane rr over a Euclidean ordered 
field F. In this plane we fix a circle r 
with center O. (For a weakening of the 
Euclidean hypothesis on F, see Exercises 
39.25 ff.) 

The points of our model (which we 
will call P-points) will be the set of points 
of n inside r, not counting the points on Q 
r. A Nine will be the set of all P-points 
lying on a circle y that is orthogonal to 
r, or that lie on a line through o. (To 
keep our language straight, the words 
point, line, circle will refer to the Eucli-
dean notions in n, and we will prefix a P P 
to any word to mean the corresponding 
concept in the model we are building.) 

Having thus defined the P-points and P-lines of our model, we can verify the 
incidence axioms (Il), (12), (13). 

Proposition 39.1 
The P-model satisfies (Il), (I2), and (13). 

Proof For (Il), suppose we are given 
two P-points, A, B. If the line AB passes 
through 0, then it is a P-line containing 
them and is the only such. If A, B, and 0 
are not collinear, let A' be the inverse of 
A under inversion in the circle r (cf. 
Section 37). Then there is a unique 
circle y passing through A,A', and B. 
By (37.3), Y is orthogonal to r, so that 
portion of y that is inside r becomes a P­
line containing A and B. It is unique, 
because again by (37.3), any circle y 
orthogonal to r that contains A also 
contains A'. 
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The other two axioms (12), existence of at least two points on a line and (13) 
existence of three noncollinear points, are obvious. 

We see immediately that this geometry will be non-Euclidean because the 
parallel axiom (P) does not hold. 

Proposition 39.2 
The parallel axiom (P) does not hold in the 
P-model: There is a P-line y and a P-point 
A such that there is more than one P-line 
through A that is P-parallel to y. ( Of course, 
P-parallel means that two P-lines do not 
intersect. ) 

Proof Take a P-line y in one part of our r 
P-plane and take a point A far away. Let 
A' be the inverse of A. Then (by 37.3)), 
any circle through A and A' will be or­
thogonal to I', so it gives a P-line passing 
through A. There are many of these 
that do not meet y, and these are all P-
lines through A that are P-parallel to y. 

Definition 
If A, B, Care P-points on a P-line y, 
we define the P-betweenness relation 
A * B * C as follows. Let 0' be the center 
of y (which is always outside r), draw 
the line PQ, and project the points 
A, B, C to points A', B', C' E PQ from the 
point 0'. Then we will say A * B * C (P­
betweenness) if and only if A' * B' * C' 
on the line PQ (usual betweenness). If 
A, B, C lie on a P-line that is an ordinary 
line through 0, we take the usual notion 
of betweenness. 

Proposition 39.3 
The notion ofP-betweenness for P-points satisfies axioms (Bl)-(B4). 

Proof Axioms (Bl), (B2), and (B3) follow immediately from the corresponding 
statements for ordinary betweenness on the line PQ . For (B4), taking into 
account the circle-circle intersection property (E) in II and noting that two cir­
cles orthogonal to r can meet at most once inside r, we see that to say that P­
points A, B are on the same P-side of a P-line y is equivalent to saying that A, Bas 
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ordinary points are either both inside y or both outside y. Thus we can define the 
inside of a P-triangle, and (B4) is clear. 

Definition 
We define congruence in our P-model as 
follows. Two P-angles are P-congruent if 
the Euclidean angles they define are 
congruent in the usual sense. For line 
segments, we proceed as follows. Given 
two P-points, let the P-line joining them 
be the circle y orthogonal to r. Let y 
meet r in two points P, Q, and label 
them so that P is the one closer to A. 
For another pair of points A', B' lying 
on a P-line y', label pi, Ci similarly. 
Then we say that the P-segment AB is 
P-congruent to the P-segment A' B' if 
the cross-ratio (AB, PQ) is equal to the 
cross-ratio (A' B', pi Ci) (cf. Section 37 for 
cross-ratios) . 

o 
(/ 
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Now the real work begins, to verify the congruence axioms. We start with 
the easy ones. 

Proposition 39.4 
P-congruence satisfies axioms (C2)-(C5). 

Proof (C2) is obvious from the definition, since congruence of segments is 
defined by equivalence of associated quantities in the field. 

(C3) requires a calculation. From the definition of cross-ratio it follows that 
(AB,PQ)' (BC,PQ) = (AC,PQ) (verify!). So when two segments are added to­
gether, the associated cross-ratios multiply. From this (C3) follows immediately. 

To prove (C4), laying off angles, first 
suppose that we are given a point A 
inside r and a line m through A. Let A' 
be the inverse of A. Then there exists a 
unique circle y passing through A and 0 
A' and tangent to the line m. By (37.3) Y 
is orthogonal to 1'. This shows that there 
exists a P-line at A with any given tan­
gent direction. Now, if an angle r:t. is 
given and a P-line 15 given at A, by (C4) 
in rr there is a unique line m forming the angle r:t. with 15 at A (and on a given 
side of 15). Then the P-line with tangent m gives the required P-angle at A, and is 
unique. 
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(C5) follows from the same statement for Euclidean angles, because congru­
ence of angles is the same. 

Before proceeding to a discussion of the remaining axioms (C1), (C6), (E), 
(A), and (D), we will establish the existence of rigid motions (ERM) in this 
model. Recall from Section 17 that a rigid motion is a transformation of the ge­
ometry that preserves the undefined notions of point, line, betweenness, and 
congruence. In our case, a P-rigid motion will be a transformation of the set of 
points inside r that is 1-to-1 and onto, sends P-lines to P-lines, and preserves P­
betweenness and P-congruence of angles and segments. 

Proposition 39.5 (Existence of rigid motions (ERM) for the Poincare model) 
There are enough P-rigid motions of the Poincare model so that: 

(1) For any two P-points A,A', there is a P-rigid motion sending A to A', 
(2) Given P-points A,B,B', there is a P-rigid motion leaving A fixed and sending 

~ ~ 

the ray AB to the ray AB', 
(3) For any Nine y there is a P-rigid motion leaving all the points of y fixed and 

interchanging the two sides of y. 

Proof We start with the last property. 
Given a P-line y, let Py be the circular 
inversion in y. Since r is orthogonal to 
y,py sends r to itself (37.3). Also, the 
inside of r is sent to the inside of r, so 
that the P-plane is mapped to itself, in a 
way that is clearly I-to-l and onto. Since 
circular inversion sends circles into cir­
cles (37.4) and is conformal (37.5), a 
circle orthogonal to r will be sent to 
another circle orthogonal to r, in other 
words, Py sends P-lines into P-lines. 
(Note that this works also for the limit­
ing case of a line through 0, which is 
also orthogonal to r.) 

Circular inversion clearly preserves betweenness (Exercise 39.1). It pre­
serves P-congruence of angles because this is the same as usual congruence 
of angles, and inversion is conformal (37.5). Also, Py preserves P-congruence of 
P-segments, because this is defined by the cross-ratio, which is invariant under 
circular inversion (37.6). Finally, note that Py interchanges that part of the P­
plane that is inside y with that part that is outside y, so Py is a P-rigid motion as 
required for the third statement of (ERM). Since it leaves the points of y fixed 
and interchanges the sides of y, it is the P-reflection in y (Section 17). 
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Next we will show that for any 
A =1= 0, there is a circle y orthogonal to r 
(a P-line) such that the P-reflection in y 
interchanges 0 and A. Let A' be the in­
verse of A; let y be the circle with center 
A' that is orthogonal to r. Then the 
construction (37.1) for the circle y, us­
ing the same diagram (!), shows that in­
version in y sends A to o. Thus the P­
reflection in y interchanges A and o. 

O AI 
~+--4~-+----+--

Now, since a composition of P-rigid motions is again a P-rigid motion, given 
two points A,A', we can first send A to 0 as above, then send 0 to A'. The com­
position of these two reflections will be a P-rigid motion sending A to A', which 
proves (1). 

Now suppose that we are given three points A, B, B'. Let p be a P-rigid motion 
taking A to 0, and let p(B) = C, p(B') = C'. If we can solve problem (2) for 
0, C, C', in other words, if there is a P-rigid motion e leaving 0 fixed and sending 
the ray OC to the ray OC', then p-1ep will solve the problem (2) for A,B,B'. So 
we reduce to solving the problem for 0, C, C'. 

Let I be the angle bisector of angle 
COC'. Then I is a line through 0, which 
is also a P-line. The ordinary reflection 
in I is clearly a P-rigid motion that 

--+ 
leaves 0 fixed and sends the ray OC to 

--+ 
the ray OC'. 

This completes the proof of (ERM) for the Poincare model. 

Proposition 39.6 
Axioms (C1) and (C6) hold in the Poincare model. 

Proof Suppose it is required to find a point B' on a P-ray emanating from a 
point A' such that A' B' is P-congruent to a given P-segment AB. By (ERM) = 
(39.5), there is a P-rigid motion rp taking A to A'. There is also a P-rigid motion 

-=-+ 
ljI taking the ray rp( AB) to the given ray from A'. Then B' = ljIrp(A') is a point 
on the given ray, and AB ~ A'B' because rigid motions preserve congruence. 
Thus (C1) holds in the Poincare model. The uniqueness of(C1) follows from the 
uniqueness of(C1) in the Euclidean plane, using (39.7) below. 

To show that (C6) holds, since we have already established (C1)-(C5), we sim­
ply apply (17.1), which shows that under those circumstances, (ERM) implies (C6). 
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In order to discuss (E) in the Poincare model, we first need to identify what 
is a P-circle. By definition, of course, it is the set of all P-points B' such that the 
P-segment A'B', for a certain fixed point A', is P-congruent to a given P-segment 
AB. Since the definition of P-congruence of segments is not very intuitive, it is 
not easy to see immediately what kind of curves these are. First we need a 
lemma. 

Lemma 39.7 
IfC, C' are two points inside r, not equal to the center ofr, 0, then the P-segment OC 
(which is equal to the Euclidean segment OC, since the P-line joining 0 and C is just 
the usual line ~C) is P-congruent to the P-segment Oc' if and only if OC is congruent 
to OC' in the ambient Euclidean plane IT. 

Proof Let P and Q be the endpoints of the diameter of r passing through 0 and 
C. Then the P-congruence of OC is determined by the cross-ratio 

OP CP 
(OC,PQ) = OQ -:- CQ· 

Let r = radius of r and let x = Euclidean distance from 0 to C. Then the cross­
ratio is 

r r+x r-x 
r r-x r+x 

If C' is another point, and if the distance from 0 to C' is y, then we obtain 
similarly 

( OC', P' 0') = r - y . 
r+ y 

Thus, to say that OC is P-congruent to OC' is to say that 

Cross multiplying, we obtain 

r-x r-y 
r+x r+y 

r2 - rx + ry - xy = r2 + rx - ry - xy, 
so 

2rx = 2ry. 

Since our field has characteristic 0, this is equivalent to x = y, i.e., OC is con­
gruent to OC' in the usual sense. 

Proposition 39.8 
Every P-circle is an ordinary circle that is entirely contained in the inside of r, and 
conversely, every circle entirely inside r is a P-circle. (Warning: The P-center of a P­
circle is usually not equal to its ordinary center.) 
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Proof Given a P-circle ( with P-center A', consider a rigid motion 0 that takes A' 
to O. This will transform ( into a P-circle with P-center O. Since P-congruence 
and ordinary congruence are the same for segments beginning at 0 by the 
lemma, this image 0(0 is an ordinary circle with center o. Then 0- 1 will carry 
this ordinary circle back to the given P-circle (. Now observe that in the proof 
of (ERM), all the rigid motions we needed were made out of compositions of P­
reflections (which are circular inversions in suitable circles) or reflections in a 
line through o. Since all of these transformations send circles into circles (37.4), 
it follows that ( is a circle. Since the transformed circle was a circle around 0 
entirely contained inside r , the image is also entirely contained inside r . 

Conversely, given an ordinary circle 
( completely contained inside r, with 
(ordinary) center 0', draw 00'. Let it 
meet ( at A, B. P-bisect the segment AB 
at A' , and choose a P-reflection Py that 
sends A' to o. Then py(O will be a cir­
cle, the images of A and B will be equi­
distant from 0, and this circle will be 
symmetric about the line l = 00', which 
is sent into itself by py. Hence Py(() is a 
circle with center 0, which is also a P­
circle. Applying p; 1, it follows that the 
original circle ( is a P-circle with P­
center C. 

Proposition 39_9 
The circle-circle intersection property (E) holds in the Poincare model over a 
Euclidean ordered field F. 

Proof Since P-lines and P-circles are all either usual circles or lines through 0 , 
and since betweenness is the same in the P-model as in the ambient Euclidean 
space, (E) in the P-model follows directly from (E) in the Cartesian plane 11, and 
this in turn follows from the Euclidean hypothesis on F (16.2). Since P-circles are 
usual circles entirely contained inside r, there is no problem about any of the 
intersections falling outside r . 

For the next proposition it will be convenient to introduce the notion of a 
distance function. In ordinary Euclidean geometry the distance function assigns 
to each interval a positive number, and adding segments corresponds to adding 
numbers. More generally, we make the following definition. 

Definition 
A distance function on a Hilbert plane is a function d that to each segment assigns 
an element of an ordered abelian group G such that 



(1) d(AB) > 0 for any segment AB. 
(2) d(AB) = d(A'B') if and only if AB ~ A'B'. 
(3) if A * B * C, then d(AC) = d(AB) + d(BC). 
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If the group happens to be written multiplicatively, we will call it a multiplicative 
distance function. The usual distance function on the Cartesian plane over a 
field F (Section 16) is an additive distance function with values in the additive 
group of the field (F, + ) 

Lemma 39.10 
In the Poincare model over a field F, the function f1(AB) = (AB,PQr 1 is a multi­
plicative distance function with values in the multiplicative group of the field (F>o, .). 

Proof Because of our convention that P is the endpoint closer to A, the cross­
ratio (AB,PQ) is in the interval (0,1) in F. Therefore, f1(AB) > 1. We 
have already used it to define congruence, and we have seen that it is multi­
plicative (proof of 39.4). Hence f1 is a multiplicative distance function. 

Proposition 39.11 
Archimedes' axiom (A) will hold in the P-model if we assume Archimedes' axiom (A') 
for the field F. Similarly, Dedekind's axiom (D) will hold if we assume (D') in the 
field. (Cf (15.4) for (A') and (D').) 

Proof Using the multiplicative distance function f1 of(39.10), Archimedes' axiom 
in the P-plane is equivalent to the following statement in F: Given c, d E F, 
c, d > 1, 3n > 0 such that cn > d. 

We will show that this property is a consequence of Archimedes' axiom (A') 
for F. Write c = 1 + x, so X E F, x > O. Then 

cn = (1 + xt = 1 + nx + positive terms ~ 1 + nx. 

Now (A') says that for some n, nx > d. Hence also cn > d, as required. 
For Dedekind's axiom, (D') in F implies (D) in IT (15.4), and this clearly 

implies (D) in the P-plane because of the way we defined betweenness by pro­
jecting onto a line segment. (For a converse to (39.11), see Exercise 39.7.) 

Proposition 39.12 
For any point A and any ray Bb in the Poincare model, there exists a limiting parallel 
ray (cf Section 34) Aa to Bb. 

Proof Let the P-ray Bb meet the defining circle r of the Poincare model in a 
point Q. Let A' be the circular inverse of A in r, and let y be the circle through 
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A, Q, AI. Then y defines a P-line, and we take Aa to be the P-ray of that P-line 
having Q at its end. Then it is clear that Aa and Bb are limiting parallel rays in 
the Poincare model. 

Using a little Euclidean geometry in the ambient Cartesian plane, we can 
derive a marvelous relationship between the length of a segment and the angle 
it makes with a limiting parallel. 

Proposition 39.13 (Bolyai's formula) 
Suppose we are given in the Poincare 
model a point P, a line 1, the perpendicular 
PQ to 1, and a limiting parallel line m, 
making an angle a with PQ. 

Then 

a ( )--1 tan 2=f.1 PQ , 

where the tangent is understood to be of 
the corresponding Euclidean angle, and f.1 
is the multiplicative distance function. The 
equality takes place in the field F. 

Proof We may assume that the Poincare model is made with a circle r ofradius 
1 (cf. Exercise 39.23). We can move P, Q, 1, m so that Q becomes the center of r, 
the line 1 becomes a radius QA, and P lies on an orthogonal radius QB. The lim­
iting parallel through P to 1 will be part of a circle ~, orthogonal to r at A. Its 
center therefore is at a point C = (1, c) on the line x = 1. Let Pbe the point (0, y). 
Then CP = CA, so 

Therefore, 

1 + y2 
c=---. 

2y 
(1) 

Draw a diameter EF of ~ parallel to the x-axis. Then the angle a between our 
limiting parallel and PQ, called the angle of parallelism of the segment PQ, is 
equal to the angle PCF. Ifwe draw EP, then the angle PEF= a/2 (111.20). Now 

a c-y 
tan - = DP/DE = --. 

2 c+1 
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Substituting from (1) we obtain 

rx 1 - Y 
tan-=--. 

2 l+y 

On the other hand, the multiplicative distance function is 

/1(PQ) = (PQ,BG)-I 

= (~~ 7 ~)-I 
= G ~ ~ 7 D-1 

l+y 
l-y 

From (2) and (3) we conclude that 

rx ( )- 1 tan 2 = /1 PQ , 

as required. 

Remark 39.13.1 

(2) 

(3) 

From this it follows that given any angle rx less than a right angle, there exists a 
segment PQ with angle of parallelism equal to rx. Indeed, tan( rx/2) will be an el­
ement of the field F, and then we can find ayE F satisfying (2) above. In par­
ticular if we take rx = ! RA (one-half right angle), there will be a corresponding 
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segment PQ uniquely determined up to congruence. In this sense there is an 
absolute standard of length in the Poincare model, whereas in Euclidean geom­
etry the choice of unit length is arbitrary. 

Exercises 
All exercises take place in the Poincare model over a Euclidean ordered field F, unless 
otherwise noted. Proofs should be based on the Euclidean geometry of the Cartesian 
plane over F. In particular, do not use any of the results of Section 34 or Section 35 that 
depend on Archimedes' axiom. 

39.1 Verity that circular inversion preserves betweenness in the Poincare model (cf. 
proof of Proposition 39.5). 

39.2 Show that the angle sum of any triangle in the Poincare model is less than 2RA so 
this geometry is semihyperbolic (Section 34). 

39.3 For any angle IX, show the existence of a line entirely contained inside the angle IX 
(cf. Exercise 35.4). 

39.4 Show that for any angle IX < 600 there exists an equilateral triangle with all of its 
angles equal to IX. 

39.5 If an equilateral triangle has sides equal to AB and angles equal to IX, show that 

2a 2t2 

1 + a2 1 - t2 ' 

where a = Jl(AB) is its multiplicative length, and where t = tan(IX/2) (cf. Example 
42.3.2). 

39.6 Given any three angles IX, fl, y with 
IX + fl + Y < 2RA, show that there ex­
ists a triangle with angles IX, fl, y in the 
Poincare model. Hint: First show in 
the Cartesian plane that you can find 
an angle IX meeting a circle at angles fl 
and y. Then shrink or expand this fig­
ure so that it becomes a triangle in the 
Poincare model. 

39.7 Prove the converse of Proposition 39.11, namely, if(A) or (D) holds in the Poincare 
model, then (A') resp. (D/) holds in F. 

39.8 If two lines are parallel, but not limit­
ing parallel, then they have a unique 
common orthogonal line. 



39.9 For any angle IX, there is an enclosing 
line, which is a line limiting parallel to 
both arms of IX. 

39.1 0 Give an alternative proof of (C1) in 
the Poincare model, without using 
rigid motions, as follows . Given a 
point A, a P-line y, and given a quan­
tity b E F, 0 < b < 1, we need to find a 
point BEY such that 

(AB,PQ) = b. 

Do this by showing that in Euclidean 
geometry, the locus of points B such 
that BP / BQ is a given ratio kEF is a 
circle. Then use (E), in the Cartesian 
plane, to show that this circle inter­
sects y and thus find the required B. 
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39.11 Given the circle r, its center 0, and another circle ( entirely contained inside r, 
give a ruler and compass construction (in the ambient Euclidean plane) of the P­
center ( regarded as a P-circle (cf. Proposition 39.8). 

39.12 (Euclidean geometry). Find all possi­
ble ways of filling the entire Euclidean 
plane with triangles satisfYing the fol­
lowing conditions: 

(a) The triangles are all congruent to 
each other. There is no overlap, and 
they fill the entire plane. 

(b) At each vertex of the triangula­
tion, all the angles are the same 
(though they may be different from 
the angles at a different vertex). 

We consider two "ways" of filling the plane "the same" if one can be moved to 
the other by a dilation followed by a rigid motion. 

One such triangulation is shown, where the angles at each vertex are all 600 • 

This is the only possibility if all angles are equal. Expect to find three more ways, 
allowing angles at different vertices to be different, and prove that you have found 
all possibilities. 
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39.13 In the Poincare model of non-Euclidean geometry, show, in contrast to the Eucli­
dean situation described in Exercise 39.12 above, that there are infinitely many 
different ways to cover the P-plane by congruent P-triangles satisfying properties 
(a) and (b). 

In particular, prove that the plane can be covered by equilateral triangles with 
all angles equal to 45° and with eight meeting at each vertex. If AB is a side of one 
of these triangles, find f.l(AB). 

Draw a big circle r on a piece of paper, and then accurately draw enough of 
these P-triangles inside r to show how they cover the whole P-plane. (This drawing 
can be accomplished entirely by ruler and compass, but don't bother listing the 
steps, except to show how you got the first triangle.) 

Congruent, isosceles, 72° -45° -45° triangles, filling up the Poincare model of 
the non-Euclidean plane (cf. Exercise 39.13). 

39.14 In the Poincare model made inside a circle r in the Cartesian plane over F, we 
have seen that any Euclidean circle y entirely contained inside r is a P-circle 
(Proposition 39.8). 



(a) If Y is a Euclidean circle inside r 
and tangent to r, show that there is a 
pencil of limiting parallel lines (a pen­
cil means the set of all lines that are 
mutually limiting parallels at one end) 
such that the curve y is orthogonal to 
all the lines of the pencil. Such a 
curve is called a horocycle in the Poin­
care model. 

(b) If y is a Euclidean circle that cuts 
r at points P, Q, let 1 be the P-line 
having the endpoints P, Q. Show that 
the points of y inside r form a curve 
of points equidistant from the P-line 1. 
Such a curve is called an equidistant 
curve or hypercycle. 
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(c) Given any three distinct points A, B, C in the Poincare model, show that they 
are contained in a unique P-line or P-circle or horocycle or hypercycle. (Contrast to 
Euclidean geometry, where only the first two possibilities occur.) 

39.15 Show in the Poincare model that it is in general not possible to trisect an angle (i.e., 
ira is an angle, the angle ~ ()( may not exist) (cf. Section 28). 

39.16 Show in the Poincare model, in contrast to the Euclidean case (Exercise 2.14), that 
it is in general not possible to trisect a line segment (i.e., the 3-division points may 
not exist). 

39.17 In the Poincare model, show that if 
two altitudes of a triangle meet in a 
point, then the third altitude also 
passes through that point. Here is a 
method. Let the triangle be ABC, and 
suppose that the altitudes from A and 
B meet. By a rigid motion of the Poin­
care plane we move that meeting 
point to the center 0 of the defining 
circle r. Then those altitudes become 
Euclidean lines through O. We must 
show that the line OC is orthogonal to 
the side AB. 

n 

The P-lines AB, AC, BC are Euclidean circles orthogonal to r. Let D, E, F be the 
centers of these circles. Show that the altitudes of the P-triangle ABC are at the 
same time altitudes of the Euclidean triangle DEF. Then use the Euclidean theo­
rem that the altitudes of a triangle meet (Proposition 5.6) to finish the proof. 
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Note: This is a curious method, whereby the Euclidean result is used to show 
(via Euclidean geometry) that the same result holds in the non-Euclidean Poincare 
model. Since we now know that this result holds in both Euclidean and non-Eucli­
dean geometry, it would be nice to have a single proof in neutral geometry that 
applies to both cases-cf. Exercise 40.14 and Theorem 43.15. 

39.18 Show that the result of Exercise 1.15 is also valid in the Poincare model, by moving 
the figure so that P becomes the center of f' and using the Euclidean result already 
proved. Can you find a proof in neutral geometry that will cover both cases at 
once? 

39.19 Prove a non-Euclidean analogue of 
(III.36) in the Poincare model, as fol- P 

A 

lows. Let P be a point outside a circle ..,::::'-----+--------~r__­

y, let PA be a tangent to y, and let PBG 
be a secant. Let a = p(PA), b = p(PB), 
and c = p(PG) . Then 

Hint: Move P to the center ° of the Poincare model, use the Euclidean (III.36)­
cf. Proposition 20.9-and compute p as in the proof of Proposition 39.13. Cf. also 
Hartshorne (2003). 

39.20 In the Poincare model, if three circles 
each meet the others in two points, 
show that the three radical axes (Ex­
ercise 2004) meet in a point. 

(a) One method is to suppose that two 
of the radical axes meet in a point A. 
Move that point to 0, and use the Eu­
clidean result (Exercise 20.5). 

(b) Another method is to use Exercise 39.19 to define the power of a point with re­
spect to a circle, and imitate the proofs of Exercises 2004, 20.5. 

39.21 There is another model of a non­
Euclidean geometry, due to Felix 
Klein, constructed as follows. In the 
Cartesian plane over a field F, fix a 
circle t:. . Then the K-points are the 
points inside t:., and the K-lines are 
chords of Euclidean lines contained 
inside t:.. In this model the incidence 
axioms (11)-(13) and the between­
ness axioms (Bl)-(B4) are immediate, 
taking betweenness to be the same as 
in the Cartesian plane. 
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However, the model is not conformal (i.e., angles are not the same as Eucli­
dean angles), so the definition and properties of congruence for line segments and 
for angles are more complicated. Rather than doing this directly, we will show in 
this exercise how to obtain the Klein model from the Poincare model. 

Let !:J. be a circle of radius 1 centered at the origin, and in the Cartesian 3-space, 
place a sphere of radius 1 on the plane, with its south pole at the origin (cf. Exer­
cise 37.1) . Let r be the circle of radius 2 centered at the origin. For each K-point 
inside !:J., project it straight up to obtain a point of the southern hemisphere of the 
sphere, and then use the stereographic projection (Exercise 37.1) from the north 
pole to obtain a P -point inside r . 

Show that this transformation gives a 1-tcr1 correspondence between the points 
of the K-plane inside !:J. with the points of the P-plane inside r, which sends K-lines 
to P-lines and vice versa. Then we can transport the notions of congruence for P­
segments and P-angles to the K-plane, so that the K-plane becomes a model of a 
non-Euclidean Hilbert plane, isomorphic to the Poincare model. 

39.22 If ABC is a triangle having a circum­
scribed circle, prove that the medians 
of ABC meet in a point, as follows. 
Use the Klein model (Exercise 39.21) 
and place the center of the circum­
scnbed circle at the center 0 of the 
circle !:J.. Then the perpendicular 
bisectors of the sides of ABC become 
diameters of the circle !:J.. Conclude 
that the K-midpoints of the sides of 
the triangle are equal to the Euclidean 
midpoints, and then use the Euclidean 
theorem about medians in the ambi­
ent plane. 

39.23 In the Cartesian plane over the field F, let r be a circle of radius r centered at the 
origin, and let r' be a concentric circle of radius r' . Consider the map f{J from the 
set of points inside r to the set of points inside r' given by 

{
X' = kx, 

y' =ky, 

where k = r' /r. Show that f{J gives an isomorphism of the Poincare model made 
with r to the Poincare model made with r', which preserves the multiplicative 
distance function of Lemma 39.10. Conclude that ifr and r' are any two circles in 
the Cartesian plane over F, the associated Poincare models are isomorphic Hilbert 
planes. 

39.24 Let F be a non-Archimedean Euclidean field such as the one descnbed in Proposi­
tion 18.4. Let n be the Poincare model over F and let no be the subset of points that 
are at finitely bounded multiplicative distance p, from some fixed point o. Show 
that no is a non-Euclidean Hilbert plane with properties (a) and (b) below. 
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(a) The angle sum of any triangle is less than 2RA, so it is semihyperbolic. 

(b) Limiting parallel rays on distinct lines do not exist. 

(c) Let nj be the subset of those points of n whose distance from a is in­
finitesimal. Show that nj is another Hilbert plane satisfying (a) and (b) above. 

(d) Show that no and n j are not isomorphic Hilbert planes. 

Compare Exercises 18.3-18.6. 

39.25 In this and the following exercises we investigate the Poincare model over a field 
that need not be Euclidean. Let F be a Pythagorean ordered field, let d E F, and let 
r be the circle x2 + y2 = d, which may be a virtual circle if v'd ¢ F (Exercise 37.17). 
We define the Poincare model in r as in the text. The interior of r is the set of points 
(x, y) with x2 + y2 < d. These are the P-points. The P-lines are segments of circles y 
orthogonal to r (which means stable under circular inversion in r (Exercises 37.16, 
37.17)) as before. 

(a) Show that the incidence axioms (U)-(I3) holds, as in Proposition 39.1. 

(b) If Y is a P-line, the intersection points P, Q of y with r may not exist, but the line 
PQ is still well-defined: It is the perpendicular to 00' at the inverse of 0', where 0' 
is the center of y. So we can define betweenness as before. Show that betweenness 
satisfies axioms (B1)-(B3) as in the text. 

39.26 With hypotheses as in Exercise 39.25, now suppose that F satisfies the additional 
condition (*d): For any a E F, if a2 - d > 0, then v' a2 - d E F. 

(a) Show that the circle-circle intersection property (E) holds for circles y,J or­
thogonal to r. Hint: Write the equations of y,J, and show that the square root 
needed to find their intersection exists because of condition (*d). 

(b) Conclude that axiom (B4) also holds in this model. 

39.27 Continuing with the situation of the two previous exercises, if y is a P-line, the 
points of intersection P, Q with r do not exist, but at least they have coordinates in 
the field F(v'd). Hence we can compute the cross-ratio (AB,PQ) in that field, and 
define congruence of angles and segments as in the text. 

(a) Using condition (*d), show that for any point A' outside r, there exists a circle y 
with center A' and orthogonal to r. 

(b) Verify that Propositions 39.4, 39.5, 39.6 hold in this model, so it is a Hilbert 
plane. We call it the Poincare model in the (virtual) circle x2 + y2 = d. You will 
need part (a) of the proof of Proposition 39.5. 

39.28 In the model of Exercise 39.27, if v'd ¢ F, show that there are no limiting parallel 
rays on distinct lines, but that any two parallel lines have a common orthogonal. 

39.29 For an example of a field F satisfying the conditions of Exercises 39.25-39.28, let K 
be a Pythagorean ordered field, for example the field of constructible real numbers; 
let F = K((z)) be the field of Laurent series over K (Exercise 18.9); and let d = z. 
Verify that d > 0, v'd ¢ F, and that F satisfies condition (*d). 
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39.30 For an Archimedean example of a field as in Exercise 39.29, let Fbe the field of all 
those real numbers that can be expressed using rational numbers and a finite 
number of operations +, -, ., -;- , a 1--+ VI + a2 , and a 1--+ J a2 - J2, provided that 
a2 - J2 > o. 

(a) F is a Pythagorean ordered field, d = J2 is in F, and F satisfies condition (*d) of 
Exercise 39.26 for d = J2. 
(b) Let rp: <Q( J2) -> JR. be the homomorphism that makes rp( J2) = -J2. Show 
inductively that rp extends to a homomorphism rp of F to JR.. 

(c) Since rp( J2) < 0, conclude that J2 cannot be a square in F. 

39.31 Show that in the Poincare model in the virtual circle x2 + y2 = J2 over the field F 
of Exercise 39.30, not every segment can be the side of an equilateral triangle, as 
follows. 

(a) Ifx E Fwith 0 < x and x2 < J2, let AB be the segment from (0,0) to (x, 0) in the 
Poincare model, and show that 

Vz+x 
J.l(AB) = --.-;;:;- . 

v 2 -x 

(b) If there is an equilateral triangle with side AB, let the angle at a vertex be IX, 
and let t = tan(IX/2). Use Exercise 39.5 to show that 

t = J2 - x2 = 1 V 6 _ 2X2 v2 _ X4. 

3v1z + x2 3v1z + x2 

(c) Now take a suitable x, such as x = v'3 - 1, and use an argument similar to the 
previous exercise to show that the corresponding t is not in F. Hence the equilat­
eral triangle with side AB does not exist. Hint: For these two exercises, it may be 
useful to review the techniques used in Exercises 16.10-16.14. 

40 Hyperbolic Geometry 
In the earlier sections of this chapter we have seen something of the develop­
ment of neutral geometry and the study of the angle sum of a triangle using 
Archimedes' axiom. We have also seen the Poincare model of a non-Euclidean 
geometry over a field. For the full development of the geometry of Bolyai and 
Lobachevsky, we need the limiting parallels. The existence of these limiting 
parallels, which we have seen in the Poincare model (39.12), does not follow in 
the axiomatic treatment from what we have done so far (Exercises 39.24,39.28). 
Therefore, following Hilbert, we will take the existence of the limiting parallels 
as an axiom. This axiom is quite strong. It will allow us to develop non-Euclidean 
geometry independently of Archimedes' axiom. It also allows the construction of 
an ordered field out of the geometry (Section 41), and a proof that the abstract 
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geometry is isomorphic to the Poincare model over this field (Section 43). Using 
coordinates from this field we can develop non-Euclidean analytic geometry and 
trigonometry (Section 42). 

So at this point we start the axiomatic development of hyperbolic geome­
try, which is essentially the "classic" non-Euclidean geometry of Bolyai and 
Lobachevsky, freed from hypotheses of continuity. In particular, we will not use 
the circle-circle intersection axiom (E) nor Archimedes' axiom (A). Instead, we 
use Hilbert's axioms of incidence, betweenness, and congruence plus the fol­
lowing hyperbolic axiom (L): 

L. For each line 1 and each point A not 
on 1, there are two rays Aa and Aa' 
from A, not lying on the same line, and 
not meeting 1, such that any ray An in 
the interior of the angle aAa' meets 1. 

Note that (L) immediately implies that the geometry is non-Euclidean, be­
cause the two rays Aa and Aa' lie on distinct lines through A that will both be 
parallel to l. 

Definition 
A Hilbert plane satisfYing (L) will be called a hyperbolic plane, or a hyperbolic 
geometry. 

We will see shortly (40.3) that the angle sum of a triangle in a hyperbolic 
plane is less than 2RA, so this terminology is consistent with the term semi­
hyperbolic introduced earlier (Section 34). 

Recalling the definition of limiting parallel rays from Section 34, we see that 
if we pick any point B on 1 and let Bb, Bb' be the two rays from B lying on 1, then 
Aa will be limiting parallel to Bb and Aa' limiting parallel to Bb'. Thus (L) im­
plies that for any point A and any ray Bb, there exists a limiting parallel Aa to 
Bb. We define an end to be an equivalence class oflimiting parallel rays (34.13). 

Definition 
For any segment AB, let b be a line per­
pendicular to AB at B; choose one ray 
Bb on the line b, and let Aa be the lim­
iting parallel ray to Bb, which exists by 
(L). Then we call IX = LBAa the angle of 
parallelism of the segment AB, and we 
denote it by IX(AB). (Lobachevsky uses 
the notation n(AB).) 
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Note that the angle of parallelism in well-defined: If we reflect Aa in the line 
AB, then clearly it will be limiting parallel to the other rayon b, so that the angle 
a is independent of which ray we chose on the line b. Note also that the angle of 
parallelism a is necessarily acute, because the two limiting parallels from A to b 
do not lie on the same line, by (L) . 

Proposition 40.1 
The angle of parallelism varies inversely with the segment: 

(a) AB < A'B' {:} a(AB) > a(A'B'). 
(b) AB ~ A'B' {:} a(AB) = a(A'B'). 

Proof First suppose that AB ~ A'B'. Then by the (ASL) congruence theorem for 
limit triangles (Exercise 34.10) it follows that a(AB) = a(A'B'). 

Next, suppose AB < A'B' . Mark off 
----+ 

C on the ray AB such that AC = A'B', 
draw the perpendicular c to AC at C, 
and let Aa' be the limiting parallel from 
A to Cc. Then a' = LCAa' is a(AC) = 
a(A'B'). 

Let Bb be the ray perpendicular to 
AB at B on the Sdme side of AC as a' 
and c. I claim that Bb meets a'. If not, 
then the ray Bb would be in the interior 
of the angles CAa' and ACc, meeting 

A 
r/.. ' 

c c. 

neither the ray a' nor c, and so it would be also limiting parallel to Aa' and Cc by 
(34.12 .1). But this contradicts the fact that the angle of parallelism is always 
acute, since Bb III CC and the angles at Band C are both right angles. 

So Bb meets Aa', and this implies that the limiting parallel from A to Bb 
makes an angle a greater than a', i.e., a(AB) > a(A'B'). 

Reversing the roles of AB and A'B' we find that if AB > A'B', then 
a(AB) < a(A'B'). Combining all three results now gives the desired reverse 
implications. 

Remark 40.1.1 
We will see later (40.7) that for every acute angle a, there exists a segment AB 
with a(AB) = a. 

Our next goal is to establish some results about limiting parallel rays, limit 
triangles, and parallel lines that are not limiting parallel. We have already seen 
two congruence results (ASL) = (Exercise 34.10) and (ASAL) = (Exercise 34.9). 
We will prove some others, analogous to those for ordinary triangles in Euclid's 
Elements, Book I. 
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Proposition 40.2 (Exterior angle 
theorem) 
If AB is a segment, with limiting parallel 
rays emanating from A and B, then the 
exterior angle fJ at B is greater than the 
interior angle rx at A. 

Proof Because the ray through A making an angle fJ with AB is parallel to I 
(I.27) we know at least that rx ~ fJ. 

So suppose rx = fJ. Let a' and b' be 
the opposite rays to a and b. The sup­
plementary angles at A and B will also 
be equal. Since AB is equal to itself, we 
can apply (ASAL) = (Exercise 34.9) to 
AB, a, b, and BA, b' , a' . We conclude that 
a' is also limiting parallel to b' . 

b' 

A 

But this contradicts the axiom (L), which says the two limiting parallels from 
A to b do not lie on the same line. Therefore, rx < fJ, as required. 

Corollary 40.3 
In a hyperbolic plane, the sum of the angles of any triangle is less than two right 
angles. 

Proof According to (34.6), for any triangle there is a Saccheri quadrilateral 
whose top two angles are equal to the angle sum of the triangle. So we have 
only to prove that the top two equal angles of any Saccheri quadrilateral are 
acute. 

Let the Saccheri quadrilateral be 
ABCD, with base AB = I. Draw limiting 
parallels from C and D to I, with end w 
by axiom (L). Then by (40.1) the angles 
of parallelism rx are equal. 

Looking at the limit triangle CDw, 
by the exterior angle theorem (40.2), 
fJ> y. On the other hand, by (34.1), the top angles rx + y and J of the Saccheri 
quadrilateral are equal. We conclude that ex + fJ > rx + y = J, and so J must be 
acute. 

Remark 40.3.1 
Note how different this proof is from the proof of the Saccheri-Legendre 
theorem (35.2), which reaches the same conclusion under different hypotheses. 
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There we made use of Archimedes' axiom and a countable limiting process. 
Here we do not need (A), but we use instead the powerful axiom (L) on the exis­
tence of limiting parallels. This result says that a hyperbolic plane is semi­
hyperbolic, thus justifying the terminology introduced earlier (Section 34). 

Proposition 40.4 (AAL) 
Given two limit triangles ABlm and A'B'I'm', suppose that the angles at A and Bare 
equal respectively to the angles at A' and B'. Then also the sides AB and A' B' are 
equal. 

Proof If not, let us suppose that AB > 
A'B' . Choose a point C on AB such that fJ. 
CB = A' B', and draw a ray n at C, on the 
same side of AB as I and m, making an 
angle equal to the angle at A' , which is 
also equal to the angle at A. Now com­
paring C, B, n, m to the limit triangle 
A'B'I'm', it follows from (ASAL) = 6 _ _ _________ ----,_ 
(Exercise 34.9) that n is limiting parallel 
to m . 

Then by transitivity (34.11) it follows also that I is limiting parallel to n. But 
this contradicts the exterior angle theorem (40.2) because the angle at C, which 
is exterior to the limit triangle ACln, is equal to the angle at A. 

We conclude that AB = A'B', as required. 

Remark 40.4.1 
For some results about triangles with two or three "limit angles," see Exercises 
40.2, 40.8. 

Theorem 40.5 
In a hyperbolic plane, if 1 and m are two parallel lines that are not limiting parallels, 
then there is a unique line in the plane that is perpendicular to both of them. 

Proof Let 1 and m be two parallel lines that are not limiting parallels. Let AB 
and CD be two perpendiculars from points A, C on 1 to m . If AB = CD, then 
DBCA is a Saccheri quadrilateral, and hence the line joining the midpoints of AC 
and BD will be perpendicular to both 1 and m, by (34.1). 

If AB "# CD, we may assume CD > AB, and we proceed as follows. Take E on 
CD such that AB = ED. Let n be a ray through E making the same angle with ED 
as I makes with AB. I claim that n will meet 1 in a point F. Indeed, let p be a 
limiting parallel from B to 1. Since by hypothesis I and m are not limiting paral­
lels, this ray does not lie on the line m. Let q be the ray through D making 
the same angle with m as p does at B. Then q is parallel to p by (I.28), but not 
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a limiting parallel, by the exterior angle theorem (40.2). On the other hand, 
applying (ASAL) to ABlp and EDnq, we find that q is limiting parallel to n. 
Therefore, n is not limiting parallel to p, and hence n must meet I at some point 
F. (In the figure we put F on the far side of A from C, but the proof works 
equally well if F is between A and C.) Let FG be perpendicular to m. 

Now take H on I such that AH = EF, and take K on m such that BK = DG. 
Then comparing the quadrilaterals EFDG and AHBK, two applications of (SAS) 
show that FG = HK and HK is perpendicular to m. Thus GKFH is a Saccheri 
quadrilateral, and the line joining the midpoints of FH and GK will be perpen­
dicular to both I and m. 

1) 

It remains to show the uniqueness of the line perpendicular to both I and m. 
Suppose to the contrary that AB and CD were two common perpendiculars to I 
and m . Then ABCD would be a rectangle, which is impossible-cf. (40 .3) and 
(34.7). 

Proposition 40.6 
Given an angle in the hyperbolic plane, there is a unique line (called the enclosing 
line of the angle) that is limiting parallel to both arms of the angle. 

Proof Let 0 be the vertex of the angle, 
and choose points A, B on the two arms 
of the angle, at equal distance from o. It 
will be convenient at this point to intro­
duce a new notation. We denote by ex 
the end of the ray OA, that is, the 
equivalence class of all rays limiting 
parallel to ~A. Then we may draw the 
line Ba, meaning, let Ba be the ray 
through B limiting parallel to ~A. We 
may also speak of the limit triangle 
ABa, consisting of the segment AB plus 
the two limiting parallel rays Aa and Ba. 
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To continue our proof, let a be the end of OA, and let /3 be the end of OB. 
Draw Ba and A/3. Let a be the ray bisecting the angle aA/3, and let b be the ray 
bisecting the angle aB/3. Note by symmetry (!) that the bisected angles at A and B 
are equal. We distinguish three cases. 

Case 1 The lines a and b meet at a point C. By symmetry (!) AC = BC. Draw 
the line C/3. Then by (ASL) = (Exercise 34.10) applied to the limit triangle AC/3 
and BC/3, the angles at C of these two triangles are equal. But this is clearly not 
so, so this case cannot occur. (See diagram on previous page.) 

Case 2 The rays a and b are limiting 
parallel with an end y. In this case the 
ray By is in the interior of the angle 
AB/3, so it meets A/3 in a point C. By 
(AAL) = (40.4) applied to the limit tri­
angles ACy and BC/3, the sides AC and 
BC are equal. Therefore, by (I.5) the 
angles BAC and ABC are equal. But this 
is not so, because the angle BAC is also 
equal to the angle ABa, which is prop­
erly contained in the angle ABC. So this 
case cannot occur either. 

Case 3 The only remaining possibility 
is that a and b are parallel but not limit­
ing parallels. Then by (40.5) there is a 
common perpendicular line I, meeting 
a at C and b at D. I claim that 1 is the 
required enclosing line, i.e., 1 has the 
ends a and /3. 

By symmetry it is enough to show 
that 1 has end /3. If not, draw the lines 
C/3 and D/3, which will be distinct from l. 
We compare the limit triangles AC/3 and 
BD/3. The angles at A and B are equal, 
by construction. The sides AC and BD 
are equal by symmetry (!), so by (ASL) 
the angles at C and D are equal. It fol­
lows that C/3 and D/3 make equal angles 
with 1 at C and D, which contradicts 
the exterior angle theorem (40.2). We 
conclude that 1 has ends a and /3, as 
required. 
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The uniqueness of the enclosing line is clear, because by (L) we cannot have 
two distinct lines that are limiting parallel at both ends. 

Corollary 40.7 
For any acute angle Ct:, there exists a line that is limiting parallel to one arm of the 
angle and orthogonal to the other arm of the angle. In particular, there is a segment 
whose angle of parallelism is equal to Ct:. 

Proof Given the acute angle Ct:, we 
double it, and consider the enclosing 
line (40.6) of the angle 2Ct:. This will be 
orthogonal to the angle bisector of 2Ct:, 
which is one arm of the original angle Ct:. 

Thus Ct: becomes the angle of parallelism 
of the segment cut off on that arm of the 
angle. 

Remark 40.7.1 
Combining with (40.1), we see that there is a one-to-one correspondence be­
tween the set of congruence equivalence classes of line segments and the set 
of congruence equivalence classes of acute angles, given by associating a seg­
ment AB to its angle of parallelism Ct:. In particular, there is a uniquely deter­
mined standard or absolute segment size corresponding to one-half of a right 
angle. 

Be careful, however, because this correspondence does not send sums of 
segments into sums of angles. There is a more complex relationship that we will 
see later (Exercise 42.7). 

Proposition 40.8 
In a hyperbolic plane, Aristotle's axiom holds, namely, given an angle Ct: and a seg­
ment AB, there exists a point C on one arm of the angle such that the perpendicular 
CD from C to the other arm of the angle is greater than AB. 

Proof Given the angle a at A, let I be a 
line limiting parallel to one arm of Ct: 

and meeting the other arm at right an­
gles at a point F ( 40. 7). Take E on I such 
that EF = AB. Draw a perpendicular to I 
at E, and let it meet the other arm of the 
angle Ct: at C (cf. Exercise 34.12). Drop a A.,.:::..._ -=-cJ..-'--___ ~--...u.. __ 
perpendicular CD from C to AF. 
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Plate XIV. Beginning of the first German translation of Euclid's Elements, by Wilhelm 
Holtzman, known as Xylander (1562). He says the simple German reader may have some 
difficulty understanding the proofs, so he will just give explanations instead. 
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Consider the quadrilateral DFCE. Because of (40.3), the angle at C must be 
acute. Therefore, CD> EF = AB (34.2), as required. 

Remark 40.8.1 
In fact, a stronger result is true, namely, given rl and AB as above, one can find 
C such that CD = AB. The proof uses hyperbolic trigonometry (Exercise 42.8). 

Now, as an illustration of the techniques of this section, we will give the 
hyperbolic version of a familiar Euclidean theorem on the angle bisectors of a 
triangle. The fact that the (internal) angle bisectors of a triangle meet in a point 
is true in neutral geometry, hence both in Euclidean and hyperbolic geometry, 
as we have seen before (Exercise 11.6). The following result has to do with the 
external angle bisectors of a triangle. 

Proposition 40.9 
In a hyperbolic plane, let ABC be a triangle, and consider the (internal) angle bisector 
at A and the external angle bisectors at Band C. 

( a) If two of these angle bisectors meet in a point, so does the third. 
(b) If two of these angle bisectors have a common perpendicular line I, then the third 

is also perpendicular to I. 
( c) If two of these angle bisectors are limiting parallels, so is the third, at the same end. 

Proof (a) If two of them meet in a 
point Y, then Y is equidistant from all 
three sides of the triangle; hence it lies 
on the third angle bisector. The proof in 
this case is the same as the Euclidean 
case (IV.4). 

(b) Suppose that the angle bisectors 
at A and B have a common perpendicu­
lar line l. 

We first claim that I cannot meet 
any side of the triangle. If it meets one 
side, then by reflecting in the two angle 
bisectors, it will meet the other two 
sides, and it will meet all three at the 
same angle. Two out of three of these 
intersections (in the diagram V, W) will 
have the angles in corresponding posi­
tions, so that by (1.28) the lines BC and 
AC will be parallel. This contradicts 
their meeting at the point C. Thus I 
cannot meet any side of the triangle. 

y 

A~~ ______ ~~ ______ __ 
c 

c 
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Secondly, we note that 1 cannot be a limiting parallel to any side of the 
triangle. If it were, then by reflecting in the angle bisectors, it would be 
limiting parallel to the other two sides, and so would have three ends, which is 
absurd. 

So 1 neither meets nor is limiting 
parallel to any side of the triangle; 
hence by (40.5) it has a common per­
pendicular with each side of the trian­
gle. Using the lemma below, the first 
and second of these common perpen­
diculars are equal. Similarly, the first 
and third are equal, because the angle 
bisectors at A and B are orthogonal to 1. 
Therefore, the second and third are 
equal, and using the lemma in the other p.~-'--_____ ~ __ .Jl.. _ _ _ _ 

direction, we see that the angle bisector c... 
at C is also perpendicular to 1. 

(c) This third case of the proposition follows by elimination. Suppose two 
angle bisectors are limiting parallel. If the third is not, then it either meets one 
of the others or has a common perpendicular, which puts us in case (a) or (b), 
contradicting the first two being limiting parallel. 

Lemma 40.10 
Consider a five-sided figure ABCDE with right angles at A, B, C, D. Then AC = BD 
if and only if the angle bisector at E meets the opposite side at a point F at right 
angles. 

Proof First suppose that the angle 
bisector at E meets AB at a point F, 
making a right angle there. Then reflec­
tion in the line EF sends the line AB 
into itself and interchanges the lines CE 
and DE. So the segments AC and BD 
are interchanged, because they are the 
unique common perpendiculars (40.5) 
between the lines AB and CE and AB 
and DE. Hence AC = DB. 

A 

o 

Conversely, suppose AC = DB. Draw the line CD. Then ABCD is a Saccheri 
quadrilateral, and the angles at C and D are equal (34.1). It follows that the base 
angles of the triangle CDE are equal. Hence it is an isosceles triangle, and the 
angle bisector at E will meet CD at its midpoint at right angles. Now it follows 
from (34.1) that this line continued will meet AB at its midpoint F, at right 
angles. 
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Remark 40.10.1 
To make a more unified statement of (40.9) we will define an ideal point P* to be 
an equivalence class of lines, all of which have a common perpendicular line p. 
We will say that P* lies on a line 1, if L1.. p. We define a generalized point to be 
either a usual point, or an end, or an ideal point. Using this language, we can 
say that the three angle bisectors of (40.9) meet in a common generalized point. 

Exercises 

The following exercises all take place in a hyperbolic plane, that is, a Hilbert plane 
satisfying (1). 

40.1 If two lines 1, m have a transversal 
n that makes equal alternate interior 
angles, then 1, m are parallel but not 
limiting parallel. Furthermore, in that 
case there is a unique point P such 
that every transversal that makes 
equal alternate interior angles to 1 and 
m passes through P. 

40.2 (ALL) Suppose we are given equal an­
gles at two points A and A', and let 1 
and I' be their enclosing lines. Show 
that the perpendicular AB from A to 1 
is equal to the perpendicular A'B' 
from A' to I'. 

40.3 If 1 and m are two parallel, but not 
limiting parallel, lines, show that their 
common perpendicular AB is the 
shortest distance between the two 
lines. Namely, show for any other 
points C Eland D E m that CD > AB. 
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40.4 Show that ends of lines behave somewhat like points, as follows. 

(a) Given a point P and an end IX, there exists a unique line 1 passing through P and 
having end IX. 

(b) Given two distinct ends IX, p, there exists a unique line 1 having ends IX and p. 

40.5 Given two lines 1 and m, limiting par­
allel at one end, show that there exists 
a line n, limiting parallel to (the other 
end of) 1, and orthogonal to m. 

40.6 Given two lines 1, m, limiting parallel 
at one end, show that there exists a 
third line n, limiting parallel to the 
other ends of both 1 and m. 

40.7 Given two lines 1, m, limiting parallel 
at one end, and given a segment AB, 
no matter how large or how small, 
there exists a point C on 1 such that 
the perpendicular CD to m is equal to 
AB. Hint: Take m' perpendicular to 
AB through B and let I' be the limiting 
parallel to m' through A. Apply Exer­
cise 40.5 to both the pair 1, m and the 
pair 1',m', and compare. 

40.8 (LLL). Let 1, m, n be three lines, each 
limiting parallel to the other two at 
opposite ends. 

(a) Show that the three midlines (Ex­
ercise 34.11) to the three pairs of lim­
iting parallel rays are orthogonal to 
the opposite sides of the trilimit tri­
angle 1, m, n, and all meet in a single 
point A, which is equidistant from 
l,m,n. 
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(b) If 1', m', n' is another such trilimit triangle, with corresponding point A', show 
that the distance from A to the three sides 1, m, n is equal to the distance from A' to 
the three sides 1', m', n' of the second triangle. 

(c) Given any point P on one side of the trilimit triangle, show that the perpendic­
ulars PQ, PR from P to the other two sides make a right angle at P. 

40.9 Given two angles rx,p, with rx + P < 2RA, show that there exists a limit triangle with 
angles rx, p. 

40.10 A limit quadrilateral is a figure consist­
ing of four lines 1, m, n, p, with each 
limit parallel at opposite ends to the 
next, in cyclic order, and no one 
meeting another. 

(a) If lmnp is a limit quadrilateral, 
show that opposite sides are parallel 
but not limit parallel. 

(b) Show that the common orthogonals AB of 1 and n and CD of m and p meet at 
right angles at a point E. 

(c) Show that there exists a limit quadrilateral with AB equal to any prescribed 
segment. 

(d) Two such limit quadrilaterals can be moved one to the other by a rigid motion 
of the plane if and only if the segment AB of the first is equal to one of the seg­
ments A'B' or C'D' of the second. 

40.11 Show that ideal points (40.10.1) behave somewhat like regular points, as follows. 

(a) Given a (regular) point P and an ideal point Q*, there is a unique line contain­
ing them both. 

(b) Given an end rx and an ideal point Q*, and assuming that rx is not an end of the 
defining line q of Q*, then there is a unique line containing Q* with end rx. 

(c) Any two distinct lines have a unique generalized point in common. 

40.12 You may have noticed while doing Exercise 40.11 that two ideal points do not nec­
essarily lie on a line. So we define a generalized line tc be either. 

( 1) a regular line, together with its two ends and ideal points, or 

(2) a limit line, which consists of an end rx, together with all ideal points P* whose 
defining line p contains rx, or 

(3) an ideal line, which consists of all ideal points P* whose defining line p contains 
a fixed (regular) point L. 

Show that the set of all generalized points of the hyperbolic plane, together with 
the subsets of generalized lines, forms a projective plane (Exercise 6.3). In particu­
lar, any two generalized points lie on a unique generalized line, and any two gen­
eralized lines meet in a unique generalized point. 
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40.13 Let ABC be any triangle. Show that l A y 
the external angle bisectors at A, B, C 1iII:::"---------1-- - - ----, 
form a "generalized triangle," i.e., a 
set of three lines meeting in general­
ized points X, Y, Z. Show that the in­
ternal angle bisectors of ABC, which 
meet at a point W, are the altitudes of 
the new triangle XYZ. 

40.14 Reverse the argument of Exercise 40.13 to prove that in any triangle ABC, the three 
altitudes will meet in a generalized point. 
Hint: Let BD and CE be two altitudes. G-
Reflect the line DE in AB and in AC to 
get two new lines, which meet at a 
generalized point F. Show that B is 
equidistant from the three sides of the 
(generalized) triangle DEF, and from 
this conclude that F is a real point (not 
an end or an ideal point) . Now apply 
Exercise 40.13 to the triangle DEF. 
Conclude that BD, AF, CE meet in a 
generalized point G, and that F lies on 8 c. 
BC, and AF is orthogonal to BC, so in 
fact, AF is the third altitude of the r 
original triangle. 
Note that if we assume that two altitudes of the triangle meet in a (regular) point, 
then the entire proof can be carried out in a Hilbert plane with no further hypoth­
esis, i.e., in neutral geometry. 

40.15 Extend the theorem on (internal) angle bisectors of a triangle as follows. Consider a 
generalized triangle, consisting of three nonconcurrent lines (meaning they have 
no generalized point in common). Let the vertices be generalized points A , B, C. 

(a) Define the analogue of an angle bisector for two lines meeting at an end or an 
ideal point. 

(b) Show that the three (internal) angle bisectors of the generalized triangle ABC 
always meet at a (regular) point W. 

(c) Show that W is the center of an inscribed circle that is tangent to the three sides 
of the triangle. 

40.16 Prove the results of Exercises 35.8, 35.9 in a hyperbolic plane, without using Archi­
medes' axiom. 
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41 Hilbert's Arithmetic of Ends 

We come now to one of the most beautiful parts of the theory of non-Euclidean 
geometry, which is another illustration of the usefulness of abstract algebra. 
This is Hilbert's tour de force, the creation of an abstract field out of the geome­
try of a hyperbolic plane. In the same way that the field of segment arithmetic 
(Section 19) helped us to understand Euclidean geometry, this field will help us 
in our study of non-Euclidean geometry. Using it we can prove results such as 
Bolyai's parallel construction, or the theorem on the three altitudes of a triangle. 
We also set up a hyperbolic analytic geometry and hyperbolic trigonometry, 
whereby any geometric problem can (in principle) be translated into an alge­
braic problem in the field. This is analogous to ordinary analytic geometry, but 
the particulars are all different, having "suffered a sea change into something 
rich and strange." Finally we will be able to show that the hyperbolic plane is 
uniquely characterized by its associated field, and is in fact isomorphic to the 
Poincare model over that field. 

We start with a hyperbolic plane, as in the previous section, which is a 
Hilbert plane satisfying the axiom oflimiting parallels (L). 

Proposition 41.1 
Let A, B, C be three noncollinear points in a hyperbolic plane and consider the three 
perpendicular bisectors 1, m, n of the sides of the triangle ABC. 

( a) If two of the lines 1, m, n meet at a point P, then the third line also passes through 
P, and in this case A, B, C all lie on a circle with center P. 

(b) If two of the lines 1, m, n have a common perpendicular p, then the third is 
also perpendicular to p, and the three points A, B, C are equidistant from the 
line p. 

( c) If two of the lines 1, m, n are limiting parallel, the third is also, and all three have 
a common end. 

Proof (a) This is essentially what Euclid 
proves in (IV.S), the only difference be­
ing that we must assume that two of the 
lines meet. 

(b) Suppose that two of the lines, say 
I and m, have a common orthogonal 
line p . Dropping perpendiculars AG and 
BH to p, one application of (SAS) and 
one application of (AAS) show that 
A G = BH (see second diagram) . In other 
words, A and B are equidistant from p. 

6 f-_+-+-_--tr--+-___ .....;::".G 
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The same reasoning applied to m 
shows that Band C are equidistant 
from p. Therefore, A and C are also 
equidistant from p, and then it follows 
from (34.1) that n is orthogonal to p, as 
required. 

~ F A 

(c) Now suppose that land m are limiting parallels. If the third line n meets 
1 at a point, we apply (a) above to find that land m also meet, which contra­
dicts our hypothesis. If nand 1 have a common perpendicular, then by (b) so 
do land m, which again contradicts our hypothesis. It follows from (40.5) that 
the only remaining possibility is that nand 1 are limiting parallels. (We leave 
to the reader to figure out why all three lines are limiting parallel at the same 
end.) 

Proposition 41.2 (Theorem of three reflections) 
Given three lines a, b, c in the hyperbolic plane, with a common end OJ, there exists a 
fourth line d with end OJ such that reflection in d is equal to the product of the 
reflections in a, b, c: 

Here (f/ for any line 1 denotes reflection in the line 1. 

Proof Take any point A on the line a. 
Let B be its reflection in the line b. Let C 
be the reflection of Bin c. Draw AC, and 
let d be the perpendicular bisector of 
AC. Then d will be the required fourth (3 

line. 
To show this, it is equivalent to 

show that the product 

is equal to the identity. Note first that If!(A) = A by construction of d. Note also 
that band c are two perpendicular bisectors of sides of the triangle ABC and 
they are limiting parallels with end OJ. It follows from (41.1) that d also has end 
OJ. Therefore, If! preserves the end OJ, and because of this If! fixes every point of 
the line a. Therefore, If! is either the identity or reflection in the line a (cf. (17.4) 
and Exercise 17.3) . 

Suppose that If! = (fa. Then (fd(fc(fb is equal to the identity. Then for any point 
P E b we would have (fd(fc(P) = P, so (fc(P) = (fd(P), and this implies c = d, which 
is absurd. We conclude that If! = identity, as required. 
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Remark 41.2.1 
This result shows for a pencil of lines with a common end what we have already 
seen for a pencil of lines through a point, or a pencil of lines with a common 
orthogonal line (Exercise 17.14) . 

Now we are ready to define the arithmetic of ends. Fix a hyperbolic plane IT . 
Recall that an end is an equivalence class of limiting parallel rays (34.13) . Fix 
one line and label its ends 0 and 00. We let F be the set of all ends in the plane II 
different from 00 , and then we set F' = F U {oo}, so that F' is the set of all ends 
of the plane. We will make the set F into an ordered field by defining arithmetic 
operations +, ., and an ordering on it. 

Note that given any end rx and any point P, there exists a unique line m 
passing through P and with end a. Just take 1 a line having end a, and use the 
axiom (L) to find a line m through P limiting parallel to 1. Similarly, given two 
ends a, /3, there exists a unique line 1 having ends rx and /3. Just take any point P, 
consider the angle formed by the rays Prx and P/3, and let 1 be the enclosing line 
of the angle aP/3 (40.6) . We will denote the line with ends a,/3by (a ,/3) . 

Definition 
Given two ends a, /3 not equal to 00, we 
define their sum rx + /3 as follows. Take 
any point C on the line (0, 00 ). Let A be 
its reflection in the line (a, (0). Let B be 
its reflection in the line (fJ, 00). Then 
rx + fJ is the end of the perpendicular bi­
sector of AB other than 00. 

Proposition 41.3 

D __ ~ __ ~======~r~ 
G 

The addition of ends is well-defined, and makes the set (F, +) into an abelian group 
with additive identity o. 

Proof First note that by ( 41.1) the perpendicular bisector of AB has one end 00, 

so the definition makes sense. Second, note by (41.2) that the. sum a + fJ is char­
acterized by the property 

where for any end rx, (Ja denotes reflection in the line (rx, (0). Thus a + fJ is inde­
pendent of the choice of C, and so is well-defined. 

From the definition, it is clear that rx + fJ = fJ + rx. It is also clear that 
o + a = a for any a. If we denote by -a the reflection of a in the line (0, 00 ), then 



41. Hilbert's Arithmetic of Ends 391 

a + (-a) = 0, so we have additive inverses. For the associative law, just note that 

which is independent of the order of the operations. 

Definition 
In order to define multiplication of ends, 
we first fix a line perpendicular to the 
line (0, 00), and label one of its ends l. 
Note that the other end is then -l. 
Given ends a, (J, draw the lines (a, -a) 
and ((J , -(J), which will meet the line 
(0,00) at right angles at points A, B. Let D ~ 
o be the point where the line (1 , -1) ---O....f!-A-fL--g-fL--c.-:fL--~~ 
meets (0,00). Find C on the line (0,00) 
such that OC = OA + OB, treating these 
as signed distances: If A is on the ray 
000, then OA is positive; if A is on the 
ray 00, then OA is negative. -\ 

Take the line through C, perpendicular to (0,00), and its ends will be a(J and 
-a(J. Adjust the sign as follows: Ends on the same side of (0, ex)) as 1 will be 
called positive, and ends on the same side of (0, (0 ) as -1 will be negative. We 
choose the sign so that pos x pos = pos, pos x neg = neg, and neg x neg = pos, 
as usual. 

Theorem 41.4 
In a hyperbolic plane n, fix two perpendicular lines and label their ends 0, ex) , 1, -1 
as above. Let F be the set of all ends of n different from 00. Then F, with the two 
operations +, . and the notion of positive elements defined above, is a Euclidean 
ordered field. 

Proof We have already seen (41.3) that (F, +) is an abelian group with identity 
o. 

From the definition of multiplication we see immediately that (F\{O} , .) is 
an abelian group with identity 1. Indeed, multiplication of ends corresponds to 
addition of signed segments on the line (0, ex)), which is an abelian group . Re­
flection in the line (1 , -1) sends a to a-I . 

Multiplication by zero was not defined, so we define 0 . a = 0 for alIa E F. 
For the distributive law, we proceed as follows. Given an end y, which we 

may assume to be positive, let the line (y, -y) meet (0, ex) ) at C. We define a rigid 
motion r of the plane, called translation along the line (0, ex)) by OC, as follows. 
For any point P, let PQ be the orthogonal to (0, (0 ). Choose Q! on (0, (0) such 
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that OC = QO! as signed intervals. Take pi on the line through O!, orthogonal to 
(0,00), on the same side as P, such that PQ = pIO!. 

One can verify easily that r is a rigid motion of the plane (Exercise 4l.1). 
It leaves the ends ° and 00 fixed, and sends any other end rx to yrx. Applying 
this rigid motion to the diagram used to define rx + {3, the diagram is sent to 
another diagram with the same properties, and from this it is clear that 
y( rx + {3) = yrx + y{3. 

o 
o c 

-I 
-y 

f r pi 
t 

We have defined the positive ends to be those on the same side of the line 
(0,00) as l. From our definitions it is clear that sums and products of positive 
ends are positive. It is also clear by definition that for any rx E F, either rx is posi­
tive, or rx = 0, or -rx is positive. Hence F is an ordered field. 

To show that F is Euclidean, let rx be a positive end, let the line (rx, -rx) meet 
(0,00) atA, and let Bbe the midpoint ofOA. Then the line perpendicular to (0, 00) 
at B will have an end {3 with the property {32 = rx. Thus rx has a square root in F. 

To relate this newly constructed field of ends with the geometry of the 
plane, our first step will be to describe some useful rigid motions and their effect 
on the ends. Also, to simplify notation, we will now write elements of the field F 
with Latin letters, even though as ends, they were originally written with Greek 
letters. 

Proposition 41.5 
Let n be a hyperbolic plane and F its field of ends, as above. We describe various 
rigid motions and their effect on ends. 

( a) 
(b) 
( c) 
( d) 

The reflection in (0,00) sends x E F to -x. So we write x' = -x. 
The reflection in (1, -1) gives x' = 1/ x. 
Translation along (0, 00) is represented by x' = ax for any a E F, a> 0. 
For any a E F, there is a rigid motion 01 aO"Q, the composition of reflection in the 

2 

line (0,00) and reflection in the line (!a, 00), which we call "rotation around 
00," which gives x' = x + a. 
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(e) The rotation around the point 0, which sends 0 to a for any a E F, gives 

I x+a x =---
-ax+l 

1 
on ends. The rotation around 0 sending 0 to 00 gives x' = --. 

x 

Proof (a) We saw this in the definition of addition. 
(b) We saw this in the definition of multiplication. 
( c) We saw this in the proof of the distributive law in ( 41. 4). 
(d) From the definition of addition, we see that (ja sends 0 to 2a, and (jb sends 

o to 2b. Then (ja+b sends 2a to 2b. Changing variables, let c = a + band d = 2a. 
Then (jc sends d to 2c - d. Using these relations, we see that (j!a(jQ sends any x to 
x + a, as required. 

( e) We give an indirect proof that rotation around 0 has the given effect on 
ends. If a = 0 we have the identity. If a = 00, we have the composition ofreflec­
tion in (0,00) and reflection in (1, -1), which is a rotation of 2RA. So we may 
assume a #- 0, 00. 

Note that 

x+a 
-ax + 1 

which is a composition of operations of the types given in (a), (b), (c), (d) above. 
So there is a rigid motion having the effect 

I x+a x =---
-ax + 1 

on ends. Next we will show that any rigid motion having that effect on ends 
must be the rotation around 0 taking 0 to a. Indeed, substituting 0 and 00 in this 
expression, we find that 0 goes to a and 00 goes to _a-1 , so the line (0,00) goes 
to (a, -a-1 ), which passes through O. 

Next, we compute and find that the line (1, -1) goes to the line 
((1 + a)/( -a + 1), (-1 + a)/(a + 1)), which also passes through O. Indeed, a line 
(c, d) passes through 0 if and only if d = _c- 1, as we see by applying reflections 
in (0,00) and (1,-1). Hence the point 0, which is the intersection of the two 
lines (0,00) and (1, -1), goes to the intersection of the images of those lines, 
which is O. 

Finally, if we try to solve the equation X= (x+a)/(-ax+l), we obtain 
x2 = -1, which has no solution because F is an ordered field. Thus no end is 
fixed under this transformation. Now, a rigid motion that fixes a point 0 and has 
no fixed ends must be a rotation around 0 (Exercise 17.4), so we are done. 
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Proposition 41.6 
Let n be a hyperbolic plane with field of ends F, a13 above. 

(a) A line is represented by an unordered pair (u}, uz) of distinct elements of 
F'=FU{oo}. 

(b) A point is given by the equation of all lines containing it, which is of the form 

u}UZ - b(u} + U2) + aZ = 0 

with a, b E F, a > 0, and Ibl < a. 

Proof (a) Indeed, a line is uniquely determined by its two ends, which are dis­
tinct elements of F', and any two ends lie on a line. 

(b) First consider the point O. A line (u}, uz) contains 0 if and only if 
u} U2 = -1. Indeed, such a line is stable under the rotation around 0 by 2RA, 
which sends x' = -l/xby (41.5). 

Now we can move 0 to any other point by first making a translation along 
(0, ex)) and then a rotation around 00 . A translation along (0,00) gives x' = cx, so 
we get a new equation u} Uz = _c2 . Then a rotation around 00 gives x' = x + b, so 
we get a new equation 

(u} - b)(U2 - b) + c2 = 0, 

or 

U}U2 - b(u} + U2) + b2 + c2 = O. 

Here b is any element of F, and we can set b2 + c2 = a2 with a positive, a> Ibl. 

Remark 41.6.1 
We can think of the point with equation 

U}U2 - b(u} + U2) + a2 = 0 

as having coordinates (a, b). It is the 
intersection of the lines (a, -a) and 
(b, 00). However, we have found that 0 
calculations seem to work out better if ......... -----+--+----=~ 
we continue to think of a line as given 
by coordinates (u}, uz), and a point as 
given by an equation. This is the oppo­
site of the analytic geometry we are 
used to, where a point has coordinates 
and a line has an equation. 

Proposition 41. 7 

-( 

For any segment AB in the hyperbolic plane, layoff a congruent segment OC on the 
ray 000, and let the line perpendicular to (0,00) at C be (a, -a) with a > O. We de-
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fine f1(AB) = a. Then f1 is a multiplicative distance function on the plane (Section 
39) with values in the multiplicative group of positive elements of the field F, namely: 

(a) f1(AB) > l. 
(b) AB ~ A'B' if and only if f1(AB) = f1(A'B'). 
(c) AB < A'B' if and only if f1(AB) < f1(A'B'). 
(d) f1(AB + CD) = f1(AB) . f1(CD). 

Proof These properties are all immediate from the definition of multiplication 
in F. 

Proposition 41.8 
For any angle () in the hyperbolic plane, 
layout an equal angle centered at 0, and 
reaching from 0 to a on the positive side 
of (0, (0). Then we define tan()/2 = a. 
This tangent function has the following 
properties. 

(a) tan()/2 E F, and tan()/2 > o. 
(b) tan () /2 = tan t/J/2 if and only if () = 1jJ. 
(c) If () < IjJ then tan () /2 < tan t/J/2. 
(d) If() = RA, tan()/2 = l. 

o 

( e) If () and IjJ are two angles for which () + IjJ is defined, then 

() IjJ 
(0 + 1jJ) tan 2" + tan "2 

tan 2 = () 1jJ. 
1 - tan- tan-

2 2 

co 
o 

-I 

Proof (a), (b), (c), (d) are immediate by construction. For (e), let tan()/2 = a, 
tan IjJ /2 = b, and tan( () + 1jJ) /2 = c. Then the rotation around ° from 0 to c is the 
composition of the rotations from 0 to a and 0 to b. Using the formula of (4l.5), 
we have 

A brief calculation gives 

x+c 
-cx+ 1 

which is the desired result. 

( x+a )+b 
-ax + 1 

- + 1 b( x+a) . 
-ax+ 1 

a+b 
c=--

1 - ab' 
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Remark 41.8.1 
We cannot define the tangent of an angle as in Euclidean geometry by using 
right triangles, because in non-Euclidean geometry, right triangles of different 
sizes are not similar to each other. Therefore, we use this ad hoc definition. 
However, the terminology tan () /2 for this function is justified by the properties 
it enjoys. In the presence of Archimedes' axiom, one can define the radian 
measure of an angle by a limiting process using dyadic rational multiples of a 
right angle. Then, viewing the field F as a subfield of IR (15.5) it is easy to prove 
that this tangent function is the same as the usual one as a function from IR to IR 
(Exercise 41.16). 

Proposition 41.9 (Bolyai's formula) 
If Q: is the angle of parallelism of a segment 
AB, then using the distance function and 
the tangent function defined above, we 
have 

Q: ( )-1 tanZ=IlAB. 

Proof Layout the angle IX as OOa. Then 
the line (a, -a) will meet the ray 00 at 
right angles at a point C, and Q: will be 
the angle of parallelism of the segment 
OC which is therefore equal to AB. To 
find Il( OC), reflect in the line (1, -1) to 
get OD and the line (a-I, _a-I). Then 
Il(AB) = a-I and tan 1X/2 = a, which 
gives the desired result. 

Remark 41.9.1 

o c 

-I 

-0. 
-\ 

We recover the same result as (39.13) under different hypotheses and different 
definitions of tan and Il. 

Now we have enough basic results to be able to apply this "hyperbolic ana­
lytic geometry" to problems in the hyperbolic plane . By way of illustration of 
these techniques, we will give Bolyai's parallel construction, and prove the 
theorem about the altitudes of a triangle. 

Proposition 41.10 (Bolyai's parallel construction) 
Suppose we are given a line 1 and a point P not on 1 in the hyperbolic plane. Let PQ be 
the perpendicular to 1. Let m be a line through P, perpendicular to PQ. Choose any 
point R on 1, and let RS be the perpendicular to m. Then the circle of radius QR 
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around P will meet the segment RS at a point T, and the ray n = PT will be the lim­
iting parallel ray to l through P. 

Proof To prove this, we use the field 
of ends introduced above. By a rigid 
motion of the plane, we may assume 
that P is the center of our coordinate 
system, and PQ is the line (0,00) and PS 
is the line (1, -1). We will take n to be 
the limiting parallel to l, and let it meet 
RS at T. Then we must prove that 
QR = PT. To show this, we will apply 
rigid motions to move each of these 
segments to the line (0,00), with one 
end at P. Then we will verity that the 
other ends of the segments land in the 
same place. For this we need a lemma. 

Lemma 41.11 

o 

_ a-l 

Two lines (Uj, uz) and (VI, Vz) in the hyperbolic plane meet the line (0,00) at the 
same point if and only if UI Uz = Vj Vz, and Uj Uz is negative. 

Proof Indeed, we have seen in the proof of (4l.6) that a point on the line (0,00) 
has an equation of the form Uj Uz = _cz for some c E F. So the two lines (UI' uz) 

and (VI,VZ) pass through the same point of (0,00) if and only if UIUZ = 
_cz = Vj Vz. Since every positive element of F is a square (4l.4), such a c will 
exist if and only if UI Uz = VI Vz and UI Uz is negative. 

Proof of (41.10), continued Let us start with the segment PT. We let the ends of 
the line l = QR be a and -a. The line RS we let have ends band b- j • Then n is 
the line (a, _a-I). We use the rotation around P that sends a to 0. Its effect on 
ends, by (4l.5), is 

x-a x'=--ax+ 1 

Hence it sends the line (b, b- j ) to the line 
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( b - a b- I - a) 
(UI' U2) = ab + 1 'ab- I + 1 . 

The image of T will be the point where this line meets the line (0,00). In order 
to apply the lemma, we compute 

( b-a) (b-I-a) (b-a)(I-ab) 
UIU2 = ab + 1 ab-I + 1 = (1 + ab)(a + b)· 

Now consider the segment QR. First we make a translation along (0, (0) to 
send Q to P. Its effect on ends will be x' = a-Ix, so it will send the line (b, b-I ) to 
the line (a-Ib,a-Ib- I), and the line (a,a- I) will become (1, -1). Next we do a 
rotation around P sending 1 to 0, whose effect on ends is 

x-I 
x'=--

x+1 

So this line just mentioned will go to 

( a-Ib - 1 a-Ib-I -1) 
(VI,V2)= a-1b+l'a-Ib-1 +l· 

The image of R under the two rigid motions will be the intersection of (VI, V2) 
with (0,00). So we compute 

( a-Ib - 1) (a-Ib- I - 1) (b - a)(1 - ab) 
VIV2= a-Ib+l a-Ib-I+l =(b+a)(I+ab)" 

Observing that UIU2 = VIV2 and UIU2 < 0, since b > a > 1 in our situation, and 
using the lemma, we conclude that QR ~ PT, as required. 

Remarks 41.11.1 
This remarkable result gives a ruler and compass construction for the limiting 
parallel line. In other words, by making constructions such as dropping a per­
pendicular from a point to a line, or intersecting a line with a circle - con­
structions that are possible in any Hilbert plane with axiom (E) -one obtains the 
limiting parallel ray from a point P to a line 1. However, the curious feature of 
our proof is that we prove that this construction works only by first assuming 
(via axiom (L)) that the object we wish to construct already exists. And in fact, 
without assuming the existence of the limiting parallel line ahead of time, this 
result may fail. For example, in the non-Archimedean geometries of (18.4.3) or 
Exercise 39.24, the construction gives a line n that is not limiting parallel to 1. 
These examples suggest that this construction may work in a Hilbert plane sat­
isfying (A) and (E). Indeed, it follows from the classification of Hilbert planes 
due to Pejas that any non-Euclidean Hilbert plane satisfying (A) and (E) is 
hyperbolic (43.8), and so Bolyai's construction works. Greenberg (1993, p. 222) 
says that if you could find a direct geometric proof of this result, you would 
probably receive an instant Ph.D. 
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Proposition 41.12 
If (UI, uz) and (VI, Vz) are any two lines 
that meet in the plane, and if 0 is the angle I , 

"'I between the rays UI and VI, and UI < VI, 
then 

tan 0/2 = V-(VI,VZiUI,Uz), 

where the expression under the radical is 
the cross-ratio defined as 

Proof First consider the case (UI, Uz) = (0,00) and (VI, Vz) = (a, -a-I) with 
a > O. In this case we know that tan 0/2 = a by definition of the tangent func­
tion. We compute the cross-ratio 

-1 a - 0 _a- I - 00 z 
(a,-a iO, (0) =--. 1 = -a . 

a - 00 -a- - 0 

So the formula holds in this case. 
In the general case, we consider a rigid motion that takes (UI, U2) to (0,00) 

and (VI, V2) to (a, -a-I) for suitable a E F with a> O. Since a rigid motion pre­
serves angles, we need to show only that a rigid motion preserves cross-ratios of 
ends. In fact, we can accomplish the rigid motion we need using a composition 
of rigid motions of types (a)-( e) of (41.5), and type (e) is itself a composition of 
the four earlier types, so we need only verify that the cross-ratio of four ends is 
stable under the transformations of types (a) x' = -x; (b) x' = X-I; (c) x' = ax for 
a E F, a > 0; and (d) x' = x + a. These verifications are immediate from the defi­
nition of cross-ratio, so we are done. 

Proposition 41.13 (Altitudes) 
If two of the altitudes of a triangle meet in a point, so does the third. If two of the al­
titudes are limiting parallels, then all three have a common end. If two of the altitudes 
have a common perpendicular, then all three have the same common perpendicular. 

Proof By a rigid motion of the plane, 
we may assume that our triangle ABC is 
so placed that AB is the line (1, -1), and 
C lies on the line (0,00), so that DC is 
one of the three altitudes. Our method 
is to let (UI, U2) be one of the other alti­
tudes, find the intersection of this line 
with (0,00), and then show that the 
third altitude passes through this same 
point. 

-I 
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Let AC be (aI, az) and let BC be (bl , bz). Since these two lines meet at C on 
the line (0,00), we must have aIaZ = bIbz < 0 by (41.11). 

First we will find the equation of the point B. By (41.6) it is of the form 

UIUZ - d(UI + uz) + eZ = o. 
Since B lies on the lines (1, -1) and (bl , bz) we obtain 

-1 - d· 0 + eZ = 0, 

bIbz - d(bl + bz) + eZ = o. 
Solving for d and eZ, we find that eZ = 1, and d = (1 + bIbz)/(bl + bz), so the 
equation of B is 

(1) 

Now, the altitude (UI' uz) through B satisfies this equation. It is also orthog­
onal to (al,aZ), so by (41.12) the cross-ratio 

(UI,uzial,aZ) =-1. 

This gives 

(2) 

We solve the equation (2) for UI + Uz and substitute in the equation (1). We 
obtain 

(3) 

Since aIaZ = bIbz as noted above, this equation is stable under interchanging 
a's and b's. So if (VI, Vz) is the third altitude of the triangle, then VI Vz satisfies the 
same equation (3), and so UIUZ = VIVZ. 

Now, if the altitude (UI,UZ) meets the line (0,00), then by (41.11), UIUZ < 0, 
and (VI,VZ) meets (0,00) in the same point. If (UI,UZ) is limiting parallel to 
(0,00), then one oful or Uz is equal to 0 or 00, in which case UIUZ = 0 or 00. The 
same is true of (VI, Vz), so one of VI, Vz is equal to 0 or 00, respectively, so all 
three have a common end. 

We leave as an exercise (Exercise 41.2) to show that if UIUZ = VIVZ > 0, then 
all three altitudes have a common perpendicular. 

Exercises 
These exercises all take place in a hyperbolic plane. 

41.1 VerifY that translation along a line, defined in the proof of Theorem 41.4, is a rigid 
motion. 
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41.2 In the proof of Proposition 41.13, show that if two of the altitudes have a common 
perpendicular, then all three altitudes have a common perpendicular. 

41.3 Consider the pencil (set) of all lines (u}, uz) having a fixed common orthogonal 
line. Show that the lines of such a pencil satisfy an equation of the form 

UIUZ - b(Ul + uz) + a Z = ° 
with a < Ibl, or an equation of the form 

Ul +uz = c 
for some C E F. 

41.4 Find the two ends (as elements of F) of the angle bisector of the angle 1000. 

41.5 Find the multiplicative distance p between the points 0 = (1,0) and A = (1,a), 
using the point coordinates of ( 41.6.1). 

41.6 In the trilimit triangle of Exercise 40.8, find the multiplicative distance p from the 
center point A to one of the sides. 

41.7 In the limit quadrilateral of Exercise 40.10, express p(CD) in terms of p(AB). 

41.8 Prove that an angle of iRA exists in the hyperbolic plane. 

41.9 Prove that an angle oqRA exists in the hyperbolic plane. 

41.10 In this exercise we describe the group G of all rigid motions of the hyperbolic 
plane, as follows. 

(a) Show that every rigid motion of the plane can be expressed as a composition of 
motions of the four types (a), (b), (c), (d) of Proposition 41.5. In other words, ele­
ments of those four types generate the group G. 

(b) Show that an element of G is uniquely determined by its effect on the set F' of 
ends. 

(c) If ffJ EGis any rigid motion, then ffJ acts on F' as a fractional linear transforma­
tion of the form 

I ax+b 
;It = cx+d 

for suitable a, b, c, d E F', with ad - be .;, 0. 

(d) Every fractional linear transformation of F' arises as the action of some ele­
ment ffJ E G on the set of ends. Thus G is isomorphic to the group of fractional linear 
transformations of F'. 

Because of this result, we can say that the group of rigid motions of the hyper­
bolic plane is composed of four components: a copy of the additive group of the 
field corresponding to (41.5d)j a copy of the multiplicative group of positive ele­
ments of the field (41.5c)j a copy of the circle group of the field (41.5e), cf. Exercise 
41.11 belowj and possibly a reflection. 

This is in contrast to the Euclidean situation, where the group of rigid motions 
is made up of two copies of the additive group of the field, corresponding to 
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the translations, and one copy of the circle group for rotations, plus a possible 
reflection. 

41.11 To each rotation p around the point 0, let us associate that element a E F' to which 
p sends O. Show that this correspondence gives an isomorphism of the group of 
rotations around ° with the circle group of the field F, as defined in Exercise 17.6. 
In particular, we find the curious result that the group of rotations around a pOint 
in the hyperbolic plane is isomorphic to the group of rotations around a point in 
the Cartesian plane over the field F. 

41.12 Let 1, m be two lines with a common end IX. Generalizing (41.5d), we call the com­
position alam of the reflections in 1 and m, a "rotation around the end IX." Fix an end 
IX and a point A. Then the set of all points peA), where p ranges over all the rota­
tions around the end IX, will be called a horocycle. We think of it as analogous to a 
circle, but one whose center is an end instead of a point. 

(a) Show that a horocycle could also be defined as the set of all points a(A), where 
a ranges over all the reflections in lines with end IX. 

(b) If m is the line through A, orthogonal to the line 1 = AIX, then m meets the 
horocycle only at A. We call m the tangent line to the horocycle at A. Show that any 
other line through A different from 1 or m will meet the horocycle in one other 
pointB #A. 

(c) In the case of the Poincare model, show that the horocycles defined here are 
the same as those defined in Exercise 39.14. 

41.13 Let (UI' uz) and (VI, Vz) be two parallel, not limiting parallel, lines. Show that the 
multiplicative distance between the two lines along their common perpendicular is 

a-I 
f1=I-a' 

where a is the square root of the cross-ratio 

a= J(UI,UZ;VI,VZ)' 

41.14 If F is a subfield of the field of real numbers JR, we can define a function 
A(AB) = In(f1(AB)) where f1 is the multiplicative distance function of Proposition 
41.7 and In is the natural logarithm. 

(a) Show that A is an additive distance fUnction (Section 39) with values in the group 
(JR, +), namely, 

(1) for any interval AB, we have A(AB) > 0; 
(2) AB ~ A'B' if and only if A(AB) = A(A'B'); 
(3) A(AB + CD) = A(AB) + A(CD). 

Note, however, that the values of the function A may not belong to F. 

(b) Show that Bolyai's formula (Proposition 41.9) then becomes 

tan 1X/2 = e--«AB) , 

where IX is the angle of parallelism of the segment AB. 
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41.15 Suppose again that F is a subfield of JR. Show that if A. is any additive distance 
function with values in (JR, + ), in the sense of Exercise 41.14, then there is a real 
constant k > 0 such that for all AB, 

A.(AB) = kln(fl(AB)). 

41.16 Assume that F is a subfield of JR. Replacing angles by their radian measure ( 41.8.1), 
show that any function having the properties (a)-( e) of Proposition 41.8 is the same 
as the usual tangent function. 

42 Hyperbolic Trigonometry 

The usual trigonometry that we learn in high school could be described as a 
collection of relationships between the sides and angles of a triangle, together 
with rules of operation (the trigonometric identities) that allow us to compute all 
the parts of a triangle from a few given parts. 

To be more precise, if ABC is a right 
triangle, with angles ct, P at A and B, 
and sides a, b, c opposite the vertices 
A, B, C, then we have the relations 

. a 
SIn ct = -, 

c 

b 
COSct =-, 

c 

a 
tanct = b' 

and trigonometric identities such as 

sin2 ct + cos2 ct = 1 

and 

sin(RA - ct) = COSct, 

and many others. 

B 

A ..c--'-______ ..... C 
b 

Using these relations, if we are given any two sides of a right triangle, or 
one side and one angle, then we can compute the remaining sides and angles 
of the triangle. Substituting the formulas for sin ct and cos ct in the relation 
sin 2 ct + cos 2 ct = 1 we recover the Pythagorean theorem a2 + b2 = c2 (20.6). 

The hyperbolic trigonometry that we develop in this section accomplishes 
the same thing in the hyperbolic plane. We develop a series of relationships be­
tween the sides and the angles of a right triangle, together with rules of opera-
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tion on the trigonometric functions, so that if any two of the quantities a, b, c, 0(, p 
are given, we can compute the others from those two. This is a slightly stronger 
result than in the Euclidean case, because in hyperbolic geometry there are no 
similar triangles, so even giving the two angles 0(, P uniquely determines the 
triangle. The situation is also somewhat complicated by the fact that in hyper­
bolic geometry we have only 0( + P < RA, whereas in Euclidean geometry, P is 
uniquely determined by 0(, since 0( + P = RA. 

Since we use the multiplicative distance function and the tangent function 
defined in the previous section, which take values in the field of ends F instead 
of the real numbers, our formulae look different from the formulae in most 
books on non-Euclidean geometry. The advantage of this method is that every­
thing takes place in a field naturally associated with our geometry, and works 
also in the non-Archimedean case. See Exercise 42.15 for a translation into the 
usual terminology for the case F S; IR. 

To derive the formulas of hyperbolic 
trigonometry, we put a right triangle in 
special position as shown, with A at the 
center of our coordinate system and G 
on the line (0,00). Then the side AB 
describes the angle 0(, so that it is the 
line (t,-t- 1), where t=tanO(/2 (41.8). 
We let a, b, c represent the multiplica­
tive lengths of the sides opposite A, B, G, 
so that BG is then the line (b- 1 , -b-1 ) 

( 41.7). 

o t--+-:-~'k-----~ ()CJ 

-( 

We will use suitable rigid motions to compute the lengths a and c in terms of 
band t. For a, we first perform a translation along (0,00) to move C to A. This 
acts by Xl = bx on ends, so the line (t, _c1) goes to (bt, -bt-1). Now do a rotation 
by a right angle that sends 1 to 00, and ° to 1. This acts on ends by 
Xl = (x + 1 )/( -x + 1) (41.5), so the line (bt, -bt-1) becomes the line 

( bt+ 1 -bt-1 + 1) 
(Ul,UZ)= -bt+1' bt-1+1 . 

This line will meet (0,00) at the point that is the image of B under these two 
maps. To find the multiplicative length a of the segment BG, we need to find the 
line (a, -a) that meets (0,00) in the same point as (Ul' uz). Therefore, by (41.11), 
Ul Uz = -az. Substituting for Ul and Uz and simplifYing, we obtain 

z (l+bt)(b-t) 
a = 7-( l---=b:-'t ):--O:(bo-+--:-t r (1) 

Next, to find c, we perform a rotation around A that sends t to 0. This acts 
by Xl = (x - t)/(tx + 1) on ends, so that the line (b-1 , _b-1) goes to 
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( b-I - t -b-I - t) 
(VI, V2) = b-It + 1 '-b-It + 1 . 

If c is the multiplicative length of AB, the line (c- I , -c l ) will meet (0,00) at the 
same point as (VI, V2). Again using (41.11), we obtain VIV2 = -c-2, from which 
we obtain 

2 (b+t)(b-t) 
c = (1 + bt)(l _ bt)" (2) 

To compute the angle [3, we use (41.12). If s=tan[3/2, then _S2= 

(b- I , -b-I; t, -t- I ). Writing out the cross-ratio and simplifying, we obtain 

2 (l-bt)(b-t) 
s = (b + t)(l + bt)" (3) 

In some sense, the formulae (1), (2), (3) accomplish our purpose, because 
thereby the quantities a, b, c, t, and s are all related to one another. However, to 
bring this information into a form that is easier to manage, we will transform 
these equations. 

From (1) an elementary calculation gives 

From (2) we obtain 

and from (3), 

2t 1 - b2 
-_._-
1 - t 2 2b 

1 - c2 1 - b2 1 + t2 

1 + c2 1 + b2 . 1 - t2 ' 

2t 1 - b2 
-_._-
1 + t2 2b 

(4) 

(5) 

(6) 

These formulae, which separate the variables in question, suggest the fol­
lowing definition (cf. Exercise 17.6). 

Definition 
For any angle 0(, if t = tan 0(/2, define 

. 2t 
sm 0( = 1 + t2 

Proposition 42.1 

and 
1 - t2 

cos 0( = 1 + t2 . 

With these definitions, the functions sin 0( and cos 0( for angles in the hyperbolic plane 
enjoy the usual identities of the trigonometric functions. In particular, 

(a) tan 0( = (sin O() / (cos O(), and 
(b) sin2 0( + cos2 0( = 1. 
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Proof From (4l.8e) it follows that tan IX = (2t)/(1 - t2 ), which gives (a). The 
formula (b) is a simple computation from the definitions. 

Proposition 42.2 
In the hyperbolic plane, let ABC be a right triangle, with angles IX, f3 at A, B, and let a, 
h, e be the angles of parallelism of the sides opposite A, B, C. Then 

(a) tan IX = cos a tan h, 
(b) cosh = CoslXcose, 
( c) sin IX = cos /3 sin h. 

Proof By (4l.9) we have tana/2 = a-I (where as before, a is the multiplicative 
length of the side opposite A). Therefore, 

. _ 2a-1 2a 
Slna= =--

1 + a-2 1 + a2 ' 

1 - a-2 a2 - 1 
cosa= =--

1 + a-2 a2 + 1 ' 

and 

2a-1 2a 
tan a = 2 1 - a- a2 -1' 

There are similar expressions for hand e. We use these to interpret the equa­
tions (4), (5), (6), which then become (a), (b), (c). 

Proposition 42.3 
With the same hypothesis as (42.2) we have the further relations 
(d) tane = sin IX tan a, 
(e) sine = tan IX tan/3, 
(f) sine = sinasinh. 

Proof We will prove (f) and leave (d), (e) as Exercise 42.5. To do this we elimi­
nate IX from (a) and (b) of(42.2). From (a), 

tan IX = cos a tan h, 

and from (b), 

cos IX = cos h cos- I e. 

Multiplying, we obtain 

sin IX = cos a sin h cos- I e. 

Substituting these expressions in cos 2 IX + sin 2 IX = 1, we obtain 

cos2 hcos-2 e + cos2 asin2 hcos-2 e = l. 
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Multiplying by cos2 C, we get 

cos2 b + cos2 a sin2 b = cos2 C. 

Now use cos 2 = 1 - sin2 on a, b, c. We get 

1 - sin2 b + (1 - sin2 a) sin2 b = 1 - sin2c. 

This simplifies to 

Since the sin function on angles is always positive, we conclude that 

sinc = sin a sin b, 

as required. 

Remark 42.3.1 
The statements of(42.2) and (42.3) plus four more obtained from (a), (b), (c), (d) 
by reversing the roles of A and B give one equation for each subset of three of 
the five quantities a, b, c, (I., fJ. Thus given any two of these, we can calculate the 
others. 

Example 42.3.2 
As an application, let us find the rela­
tion between the sides and the angles of 
an equilateral triangle. Let CD be an al­
titude, let IY.. be the angle at each vertex, 
and let c be the multiplicative length of 
the side. Then ACD is a right triangle 
with fJ = (1./2. Using (42.3e) we obtain 

sin c = tan (I. tan (1./2. 

Translating back in terms of t = tan (1./2 and c, this gives 

2c 2t2 

1 + c2 1 - t2 ' 

c 

B 

which we obtained by a different method in the Poincare model (Exercise 39.5). 
As another application, we will derive a formula for the area of a circle. 

Proposition 42.4 
Let n be a hyperbolic plane whose field of ends F is a subfield of the real numbers IR. 
To each angle we associate its radian measure (41.8.1), so as to obtain a measure of 
area function (36.2) with values in IR. Let r be a circle whose radius has multi-
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plicative length r. We define the area of r to be the limit of the areas of regular in­
scribed n-gons as n - 00. This limit A exists (as a real number), and 

n(r-1)2 
A = ----'---"--­

r 

Proof First we will express the area of a right triangle in a particular form. Let 
ABC be a right triangle, with our usual notation, and let J be its area (as an 
angle). Then I claim that 

sin a cos a 
sinJ = . (1 - sine). 

smb 

Indeed, since it is a right triangle, J = n/2 - a - 13, and 

sinJ = cos(a + 13) = cos a cos 13 - sin a sin 13. 
We first use (c) and (d) of (42.2) and (42.3) to replace cosf3 and sin 13 by expres­
sions in a, b, and a. Then use (f) to replace sin a by an expression in band e. 
This gives the formula above. 

Now consider a regular n-gon in­
scribed in the circle, and consider the 
triangle formed by the radius to one of 
the vertices and the orthogonal to the 
midpoint of one side. Its angle a is n/n, 
its hypotenuse is r, and its side we call 
bn. Its area is A n/2n, where An is the 
area of the inscribed polygon. Hence 

. An sin n/n cos n/n ( ._) 
sm - = 1 - SIn r . 

2n sinbn 

Multiply both sides of this equation by 2n and take the limit as n - 00. The limit 
of An will be A, the area ofthe circle. The limit of bn is r. We use the convenient 
results from calculus that 

and 

In the limit we obtain 

Substituting 

I sin x 
im--= 1 

"' .... 0 x 

lim cosx = 1. 
"' .... 0 

A =2n . ( 1 - sin f) 
sin r 
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. _ 2r 
slnr=--2' 1+r 

n(r - 1)2 
A =--'--~ 

r 

as required. Note that before we took the limit, all our terms were elements of 
the field F. However, in the limit we obtain quantities n and A that are real 
numbers, but not necessarily in F. 

Remark 42.4.1 
Using this result, we can study the question of "squaring the circle" in non­
Euclidean geometry. Of course, there are no squares in a hyperbolic plane, so 
the appropriate question would be, given a circle in the hyperbolic plane, does 
there exist a rectilineal figure with area equal to the area of the circle? 

In the Euclidean case, if we work over the field K of constructible numbers, 
for example, the answer is never. Indeed, the formula A = nr2 and the fact that 
n is transcendental imply that if r E K, then A ¢ K; and conversely, if A E K, then 
r¢K. 

In the non-Euclidean case, that is, in a hyperbolic plane whose field of ends 
F is a subfield of JR., we find the surprising answer, sometimes yes and some­
times no. Consider a circle of radius rEF. The question is whether the real 
number A can be written as a sum of real numbers that are the radian measures 
of angles in our geometry. For every angle less than a right angle can be made 
equal to the area of some right triangle (Exercise 42.9). 

If, for example, the quantity x = (r - 1)2/r E F is a dyadic rational number, 
then nx will be the sum of radian measures of angles, because we can bisect a 
right angle any number of times. Thus if r = 2, or if r is any power of 2, we ob­
tain circles each of whose area is that of a rectilineal figure. 

On the other hand, if F is the field of constructible numbers, and if x = ~, say, 
we can find an rEF with x = (r _1)2 /r, for example r = 14(15 + v!z9), and a 
circle of that radius has area not corresponding to any rectilineal figure, because 
an angle ofn/7 does not exist in that plane (cf. (29.4) and Exercise 4l.11). 

Thus the problem of "squaring the circle" is solvable for some circles, and 
unsolvable for others. 

As another application of our trigonometric formulae, we will give Engel's 
associated triangles. Given a right triangle ABC, with right angle at C, we denote 
by a, b, c the multiplicative lengths of the sides opposite A, B, C, and by IX, P the 
angles at A, B. We say that the triangle has the five elements (a, b, c, IX,P). We will 
use the following notation: For any segment a, the corresponding angle of par­
allelism is ii, and conversely, for any acute angle IX, the segment having that 
angle of parallelism is ii (40.7.1). Also, for an acute angle IX we denote by 
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!X' = RA - !X its complementary angle. If a is a segment, then by abuse of notation 
we write a' for ((a)')-. 

B 

A 
c 

Proposition 42.5 
In a hyperbolic plane, given a right triangle with elements (a, b, c, IX, 13), there is an 
associated right triangle with elements (b, P', fi, a', c). 

Proof From (42.2c) we have 

sin !X = cos 13 sin b. 
Replacing 13 by its complementary angle 13', we can write this as 

sin !X = sin 13' sin b. 

Consider a right triangle with sides band P' around the right angle. Then by 
(42.3f) applied to this new triangle, the third side x will satisfY 

sin x = sinbsinf3'. 

Thus sinx = sin !X. Since the angles x and !X are both acute, it follows that x = !X, 

and so x = fi. Thus our new triangle has sides b,P', fi as required. 
To find the angles of the new triangle, call them A, fl for the moment. Then 

by (42.2a) applied to the new triangle, 

tan A = cosbtanf3'. 

Since the tangent of a complementary angle is the inverse of the tangent of the 
angle, we can rewrite this as 

tanf3 = cosbtanA'. 

But (42.2a) for the original triangle, with the roles of a and b reversed, gives 

tan 13 = cos b tan a. 

Hence tanA' = tan a, so A' = a and A = a'. 
To find fl, use (42.2a) with a, b reversed: 

tan fl = cos 13' tan b. 

Now, cosf3' = sinf3, so this gives 

tanfl = sinf3tanb. 
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But (42.3d) with a, b reversed gives 

tanG = sinptanb. 

So tan f.J. = tan G, and f.J. = G, as required. 

Remark 42.5.1 
Ifwe repeat the operation of taking the associated triangle five times, we recover 
the original triangle (Exercise 42.22). Thus one triangle gives rise to a cycle of 
five associated triangles. Our definition of the associated triangle depends on the 
ordering of the vertices A,B. If we use the reverse ordering, we will go around 
the cycle offive triangles in the reverse order. 

There is also a geometrical construction of the associated triangle, which 
depends on Bolyai's parallel construction (Exercise 42.23). 

Exercises 
The following exercises all take place in a hyperbolic plane. 

42.1 Find the sides and (i.e. their multiplicative lengths) angles of the equilateral trian-
gle formed by the feet of the altitudes of the trilimit triangle of Exercise 40.8. 

42.2 Find the side of an equilateral triangle with angles of 45°. 

42.3 Find the sides of an isosceles right triangle with angles 30°, 30°, 90°. 

42.4 Find the side of an equilateral pentagon with all right angles. 

42.5 Derive the formulae of Proposition 42.3d,e from Proposition 42.2. 

42.6 Prove the law of sines: In an arbitrary 
triangle ABC, with angles a.,p,yand 
opposite sides a, b, c, 

sina.tanli = sinptanb 
= sin I' tan c. 

Hint: Use an altitude to divide the tri­
angle into two right triangles. 

42.7 Let AB and BC be two consecutive segments on a line, so that AC = AB + BC as 
segments. Let a.,P, I' be the angles of parallelism associated to AB, BC, and AC, 
respectively. 

(a) Show that 
. sin a. sinp 

smy= . 
cos a. cosp + 1 

(b) Derive analogous formulae for cosy and tany. 

(cl Verify the following formula, due to Lobachevsky, analogous to the law of 
cosines in Euclidean geometry. Let ABC be any triangle, with angles a., p, 1', and 
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opposite sides a, b, c. Then 
- sinasinb 

cos y cos a cos b + . = 1. 
smc 

Note that if y is a right angle, this reduces to Proposition 42.3f. 

42.8 Given an acute angle IX at A, and given 
a segment DE, show that there exists a 
point B on one arm of the angle such 
that the perpendicular BC to the other 
arm is equal to DE. This is a strength­
ening of Aristotle's axiom-cf. (40.8.1). 

c 

D 

42.9 Given two angles IX,P with IX + P < RA, show that there exists a right triangle with 
angles IX, p. 

42.10 Given three angles IX,P, y whose sum is less than 2RA, prove that there exists a tri­
angle with angles equal to IX,P, y. Hint: Glue together two suitable right triangles, 
and make them fit by solving a quadratic equation. 

42.11 Let T be a right triangle with angles IX,P and sides a,b,c. Let (j be the area of T 
(Theorem 36.2). Show that 

~ cosacosb 
tanu = . 

sin a + sinb 

42.12 Given a triangle ABC, let (j be its area, 
and suppose we are given an angle (j' 

with 0 < (j' < (j. Show that there is a 
point D between Band C such that the 
area of ABD is equal to (j'. Hint: First 
draw an altitude from A to BC, and 
thus reduce to the case of a right tri­
angle. Then show that the point D can 
be found by solving a suitable qua­
dratic equation in F. 

42.13 Given a point P, a line I, and an acute 
angle IX, show that there is a line m 
through P making an angle IX with the 
line I. 

42.14 Given a point A on a line 1 and an end 
A of I, let r be the horocyc1e defined 
by A and A (Exercise 41.12). Let m be 
a line that meets the ray AA in a point 
C i= A. Prove that the line m meets 
the horocyc1e in two points B,B'. Hint: 
First reduce to the case m..l A. Then 
find B using trigonometry and solving 
a quadratic equation. 

s 

, , 
'-

"-
rf.. \ .. 

c 

a' 



____________________________________ ~4=2.~H~yp~er~b~o=li=c~Tri~·go~n=o=m=e=tty~ ___ 413 

42.15 In this exercise we show how to translate the fonnulae of hyperbolic trigonometry 
into relations among the hyperbolic trigonometric functions, in the case where our 
field F is a sub field of the real numbers. 
For any x E JR., we define the hyperbolic trigonometric functions 

tanhx = sinhx/coshx. 

(a) Assume F c:;::;: JR., and let A. be the additive distance function of Exercise 4l.14. 
With our usual notation for a triangle, let ii, b, c be the additive lengths A. of the sides 
opposite A, B, C. Show that 

sin a = l/coshii, 

cos a = tanh ii, 

tana = l/sinhii. 

(b) Use these to translate the fonnulae of Proposition 42.2 and Proposition 42.3. In 
particular, show that 

tanhb 
cos IX = tanh c 

_ cos IX 
and cosh a = -:--p . 

SIn 

42.16 Again assume F c:;::;: JR. and let r be a circle of radius r, and let x = In rbe the additive 
length of the radius (Exercise 42.15). 

(a) Show that the area can be written as 

A = 471sinh2 (x/2). 

(b) Expand in power series to show that 

( 2 1 4 ) A=71 x +12x + .... 

Thus the area of a hyperbolic circle is "bigger" than the area of a Euclidean circle 
with the same radius. 

42.17 Use a limiting process similar to the one in Proposition 42.4 to define the multi­
plicative length p of the circumference of a circle of radius r, and show that 

In( ) =~. 
p tanr 

If F is the field of constructIble numbers, do you think that the circumference of a 
circle can ever be rectifiable, i.e., have length equal to the length of a segment in 
the plane? 
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42.18 Let Tbe an equilateral triangle with all angles equal to 30°. Find, and express using 
square roots in standard form (Exercise 13.2), 

(a) the radius of the inscnbed circle; 

(b) the radius of the circumscribed circle; 

(c) the radius of the circle with the same area. 

Check: Decimal answers to two of the above are l.6093 and 8.1266. 

42.19 Let S be a regular quadrilateral (all 4 sides equal and all 4 angles equal) whose area 
is equal to the area of a circle ofradius 3. 

( a) find the radius of the inscribed circle 

(b) find the radius of the circumscribed circle 

(c) find the side of the quadrilateral. 

Check: Decimal equivalents to two of these are 7.3276 and 27.8205. 

42.20 Find an element REF such that a circle ofradius r admits a circumscribed hexagon 
if and only if r < R. 

42.21 Use Proposition 42.3f and Exercise 42.7c to derive the non-Euclidean (IJI.36) for­
mula of Exercise 39.19. If d = 1l(!PA), e = 1l(!PB), and f= 1l(!PC), show that this 
formula can be written cos2 {j = cos e cos!. Cf. also Hartshorne (2003). 

42.22 Show that the operation of taking the Engel associated triangle (Proposition 42.5) 
five times gives back the original triangle. 

42.23 In the figure of Bolyai's parallel con­
struction (Proposition 41.10), consider 
the right triangle ABC = TPS. 

(a) Show that any right triangle ABC 
can be embedded as the triangle TPS 
in the figure of Bolyai's construction. 

(b) Draw the limiting parallel ray 
--> 

from P to the ray SR, and let it meet 
QR at U. Show that the triangle 
A'B'C' = PUQ is the associated trian­
gle to ABC (Proposition 42.5). Hint: 
Get two elements of the new triangle 
from the figure; then use the formulae 
of Propositions 42.2 and 42.3 to get the 
others. 

42.24 If ABC is a right triangle with elements (a, b, c, a.,P), and if a, b, c E ~, show that also 
fi,p, fi', P', a', b', c' are in ~ (using the notation of Proposition 42.5). Hint: Use the 
formula tan a./2 = sin a./(1 + cos a.). 
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42.25 In Euclidean geometry, if we have a right triangle whose sides a, b, c are integers, 
then a 2 + b2 = c2 , and we call the triple (a, b, c) a Pythagorean triple. For example 
(3,4,5) and (5,12,13) are Pythagorean triples. Ifwe have a right triangle with a, b, c 
rational numbers, then multiplying by a common denominator, we can replace it 
by a similar triangle with integer sides. 

In hyperbolic geometry, if we have a right triangle with sides a, b, c E <Q, we will 
call this a non-Euclidean Pythagorean triple. Since there are no similar triangles, we 
cannot reduce these necessarily to integers. 

(a) Show that (a, b, c) is a non-Euclidean Pythagorean triple if and only if a, b, c E <Q, 
a,b,c> 1, and 

2a 2b 2c 
1 + a2 . 1 + b2 1 + c2 . 

(b) VerifY that (~, ~ ,~) satisfies the equation of ( a). 

(c) Use Engel's associated triangles to find four more solutions to (a). 

(d) Show that (a) has no solutions in integers greater than l. Hint: Estimate the 
sizes of the quantities involved. 

(e) Find more solutions to (a), besides the ones in (b) and (c). 

43 Characterization of Hilbert Planes 

Thinking back to our study of Euclidean geometry, recall that we pursued two 
different logical paths. One was the abstract development of a geometry from 
axioms. The other was the analytic approach given by the Cartesian plane over 
an ordered field F. We brought these two paths together by introducing the field 
of segment arithmetic into the abstract geometry (Section 19) and then showing 
that any Hilbert plane with (P) is isomorphic to the Cartesian plane over its field 
of segment arithmetic (Section 21). To express this in other words, a Hilbert 
plane with (P) is characterized as the Cartesian plane over a certain Pythagorean 
ordered field F. It follows that two Hilbert planes with (P) will be isomorphic, as 
abstract geometries, if and only if their associated fields are isomorphic, as 
ordered fields. 

In this section we will do the same thing for non-Euclidean geometry. For 
Hilbert planes satisfying (L), which we have called hyperbolic planes, we will 
prove a coordinatization theorem analogous to the one in the Euclidean case. 
For more general Hilbert planes we will discuss the theorem of Pejas, some 
ideas of its proof and some consequences, but we cannot enter into full details. 
We also describe the calculus of reflections initiated by Hjelmslev, and use it to 
give a proof of the three altitudes of a triangle theorem in neutral geometry. 
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We have developed some properties of the abstract hyperbolic planes in 
Section 40. On the other hand, we have introduced the Poincare model over a 
field in Section 39, and have used the ambient Cartesian geometry to investigate 
some of its properties. Then in Section 41 and Section 42 we have introduced the 
field of ends into an abstract hyperbolic plane, and have used the field to create 
a sort of hyperbolic analytic geometry and trigonometry. 

The last step in this logical progression is to characterize the hyperbolic 
planes by showing that a hyperbolic plane is determined, up to isomorphism, by 
its associated field of ends, and that any hyperbolic plane is isomorphic to the 
Poincare model over its associated field. 

Proposition 43.1 
Given a hyperbolic plane IT, the field of ends is uniquely determined, up to iso­
morphism. Two hyperbolic planes ITl and ITz are isomorphic as Hilbert planes if and 
only if the associated fields F1 and Fz are isomorphic as ordered fields. 

Proof Of course, the set of ends in the plane IT is uniquely determined. But in 
order to define the field structure on this set (41.4), we made a choice of two or­
thogonallines, and labeled their ends 0, 00, I, -1. If we made a different choice, 
a different end might become the zero element of the field, so clearly the field 
structure on the set of ends is not unique. But we will show that the field is 
unique up to isomorphism. 

So suppose II, m1 are two orthogonal lines with ends labeled 01,001, II, -II, 
giving rise to a field structure F1 on the set of ends (minus 001). Suppose lz, mz is 
a second choice of orthogonal lines with ends labeled Oz, OOz, lz, -lz, giving a 
second field structure Fz. We can find a rigid motion rp of the plane that takes 11 
to lz and m1 to mz, in such a way that the ends 01,001, h, -11 are sent to the 
corresponding ends Oz, OOz, l z, -lz. This rigid motion induces a one-to-one cor­
respondence from the set of ends of IT to itself, which therefore gives a one-to­
one map of F1 to Fz sending the elements 01, 11, -11 of F1 to the corresponding 
elements of Fz. The constructions that we used to define addition and multipli­
cation in F1 are now carried over to the corresponding constructions for Fz, and 
the ordering is preserved. Therefore, rp induces an isomorphism of F1 and Fz 
as ordered fields, which shows that the field associated to IT is unique up to 
isomorphism. 

Now suppose that IT1 and ITz are isomorphic hyperbolic planes. If 
rp: IT1 ---> ITz is an isomorphism, we can choose orthogonal lines 11 and m1 in IT1 
with which to construct the field of ends F1 of IT 1, and then take lz = rp(ll), 
mz = rp(m1) to construct the field of ends Fz to IT z. Then it is clear that the 
induced map rp' : F1 ---> Fz on ends will give an isomorphism of fields. 

Finally, let IT1 and ITz be hyperbolic planes, and suppose that we are given 
an isomorphism t/I : F1 ---> Fz of the associated fields of ends. We wish to show 
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that Il 1 and Ilz are isomorphic Hilbert planes. That is to say, there is a map 
({J: Il1 ---- Il2 of the points that is one-to-one and onto, and ({J preserves lines, 
betweenness, and congruence line segments and angles. 

We construct ({J as follows. First extend the map 1/1 : F1 ---- Fz to the set of all 
ends by setting 1/1 ( (01) = ooz. Any line of Il1 is given by an unordered pair (a ,p) 
of distinct elements of F; = F1 U {ood. So by sending (a ,p) to (I/I(a) , I/I(P)), we 
obtain a one-to-one map of the set of lines of Il1 onto the set of lines of Il 2. A 
point P of Il1 is determined by the set of all lines passing through it, and this set 
of lines satisfies an equation of the form 

with a, bE F1 , a> 0, and Ibl < a (41.6). Since 1/1 is an isomorphism of ordered 
fields, the set of images by ({J of the lines containing P will satisfy a similar equa­
tion in Fz, and so they will define a unique point that we denote by ({J(P) . Then 
by construction ({J is a one-to-one map of the set of points of Il1 onto the set of 
points of rI 2 , sending lines into lines. 

Since betweenness of points can be expressed in terms of the ordering 
of the field of ends, and 1/1 is an isomorphism of ordered fields, ({J preserves 
betweenness. 

Congruence of line segments can be measured by the multiplicative distance 
function f1 (41.7), and congruence of angles can be measured by the tangent 
function (41.8). Therefore, the map ({J: Il1 ---- rIz also preserves congruence of 
line segments and angles. Thus ({J is an isomorphism of Hilbert planes, as 
required. 

Theorem 43.2 
Let F be a Euclidean ordered field, and let Il be the Poincare model constructed over 
the field F (Section 39). Let F1 be the field of ends of Il. Then F and FJ are isomorphic 
ordered fields. 

Proof Our strategy is to establish a one­
to-one correspondence between the sets 
F and F1 , and then carry out the con­
structions of addition and multiplication 
in F1 in the geometry of the Poincare 
model, to show that the field structures 
are isomorphic. 

We may assume that the Poincare 
model is constructed using the unit 
circle I' in the Cartesian plane over 
F (Exercise 39.23). Let us choose the 
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x-axis and y-axis to be the orthogonal lines used in the construction of the field of 
ends Fl. Recall that the points of the Poincare model are those points of the 
Cartesian plane inside r. It follows that the ends of the Poincare model n are 
exactly the Cartesian points ofthe circle r. We label the ends of our two axes so 
that 

in Cartesian coordinates. 

01 = (-1,0), 

001 = (1,0), 

I) = (0,1), 

-11 = (0, -1), 

The next step is to give a mapping of sets between the elements of the fields 
F and Fl. The elements of Fl are all the points of the circle r except 00 = (1,0). 
We define a map rp : Fl ~ F as follows. First we set rp(OJ) = O. Next, for any end r:t. 
in the upper semicircle of r, we set rp( r:t.) = tan 0/2, where 0 is the angle from 01 

to r:t. subtended at the center of the circle. If -r:t. is the reflection of this point in 
the x-axis, we set rp( -r:t.) = -rp(r:t.). Here we understand 0 to be the angle in the 
Cartesian plane, and the tangent function has its usual meaning (Section 16). As 
r:t. ranges over the upper semicircle, 0 ranges over all possible angles (between 0 
and 2RA), so the function tan 0/2 ranges over all positive elements ofthe field F. 
Given any element a E F, a > 0, there is an angle 0 such that tan 0/2 = a, so this 
mapping rp is a one-to-one correspondence between the sets Fl and F. Clearly, rp 
preserves the ordering on the two sets. 

The hard work we must do is to show that rp is compatible with the oper­
ations of addition and multiplication in the two fields. We start by computing the 
Cartesian coordinates of an end r:t. E Fl , which is a point of the circle r, in terms 
of rp(r:t.). We will do all our calculations for points r:t. in the upper semicircle, since 
the results for their negatives will follow immediately. 

So let r:t. E F l , r:t. > O. Let rp(r:t.) = a = tan 0/2. It follows that the Cartesian coor­
dinates (x, y) of r:t. are given by 

{
x= -cosO=~ 

1 +a2 ' 

2a 
y= sinO=--. 

1 +a2 

Here we use the usual trigonometric formulae expressing sin 0 and cos 0 in 
terms oftan 0/2 (cf. the calculations of Exercise 17.6). 
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To study addition, we will compute 
the reflection (jrx in a line (IX, (0). In the 
Poincare model, reflection is given by 
circular inversion in the corresponding 
Cartesian circle (39.5). So given a point 
IX on r, let ~ be the P-line (IX, 00 ), which 
is a circle orthogonal to r at the points IX 

and 00. Let A be the center of this cir-
cle. Then by a little elementary Eucli­
dean geometry we see that the angle DI 
OAoo I is equal to B/2, so the coor­
dinates of A are (1, a- I) . 

A 

A 

00, 

The P-reflection in ~ is circular inversion in ~ in the Cartesian plane. To 
study its effect on ends, let (J be any end, and let y be its image under reflection 
in ~. Since r and ~ are orthogonal circles, y is just the intersection of the line A(J 
with r. Let qJ((J) = band qJ(Y) = c. Then (J and y have Cartesian coordinates 

( b2 - 1 2b) 
(J = 1 + b2 ' 1 + b2 ' 

(C2 - 1 2C) 
y = 1 + c2 ' 1 + c2 . 

To express the fact that A, (J, yare collinear, we set the slopes of A(J and Ay equal 
to each other. This gives 

2b -I ---a 
1 + b2 

Simplifying, we get 

2c -1 ---a 
1 + c2 

c2 - 1 
---1 
1 + c2 

Assuming (J =f- y, so b =f- c, we can divide out b - c, and so 

c = 2a - b. 

Thus the reflection in ~, which is (jrx, has an effect on ends in F l , which is trans­
formed by qJ into the transformation 

X' = 2qJ(lX) - X 

for elements of F. 
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Recall that addition of ends is characterized by 

(Jrx+j3 = (Jj3(Jo(Jrx 

using reflections (4l.3). Via the mapping rp : F l ---> F, therefore, (Jrx+j3 becomes 

x' = 2rp(rx + 13) - x. 

On the other hand, (Jj3(Jo(Jrx becomes a transformation that first sends x to 

2rp(rx) - x, 

then to 

2rp(0) - (2rp(rx) - x) , 

then to 

2rp(f3) - [2rp(0) - (2rp(rx) - x)] = 2rp(rx) + 2rp(f3) - x. 

We conclude that 

rp( rx + 13) = rp( rx) + rp(f3), 

so that rp is a homomorphism for addition. 
Now let us consider multiplication. 

To do this (changing notation) we con­
sider the reflection (Jrx in a line (rx , -rx) in 
the Poincare model. This is given by 
circular inversion in a circle Il, orthogo­
nal to r, passing through the points rx 
and -rx. Let A be the center of this 
circle. Then the angle OArx is equal to 
() - RA in our diagram. Thus OA = 
-l/cos(). Ifrp(lX) = a = tan ()/2, then 

A = Gt:; ,0)-
Now let 13 be another end, and let y be its image under (Jrx, which is circular 

inversion in 6.. Then A, 13, yare collinear. Letting rp(f3) = band rp(y) = c as before, 
we express the collinearity by equating the slopes of the lines Af3 and Ay. This 
time we get 

2b 2c 

1 + b2 1 + c2 

b2 - 1 1 + a2 - c2 - 1 1 + a2 . 

Simplifying gives 
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bc(b - c) = a 2 (b - c). 

Assuming b #- c, we get 

Thus the reflection (Jr;. is transformed by qJ into the transformation 

x' = qJ(IX)2X-1 

inFo 
Going back to the hyperbolic plane, it is easy to see that the composition 

(Jr;.(Jl is equal to a translation along the line (0,00) (cf. proof of (41.4)) that sends 
1 to 1X2. On the other hand, multiplication is defined by composing translations. 
So multiplication is characterized by the formula 

or simply 

(Jr;.p = (Jp(Jl (Jr;.. 

Transporting this by qJ, we find that for elements of F, the transformation 

x' = qJ( IXP)2 X- 1 

is equal to 

x' = qJ(p)2 qJ(IX)2 X- 1 • 

We conclude that qJ(IXP) = qJ(lX)qJ(P) as required. 
We have now shown that qJ : Fl --t F is a one-to-one transformation com­

patible with addition, multiplication, and the ordering. Hence Fl and F are iso­
morphic as ordered fields. 

Corollary 43.3 
If IT is a hyperbolic plane with associated field of ends F, then IT is isomorphic to 
the Poincare model over the field F. 

Proof Indeed, the field F is Euclidean (41.4), and the plane IT and the Poincare 
model over Fboth have isomorphic fields of ends by (43.2), so by (43.1) they are 
isomorphic planes. 

Corollary 43.4 
The circle-circle intersection property (E) holds in a hyperbolic plane. 

Proof Indeed, the field of ends is Euclidean (41.4), the hyperbolic plane is iso­
morphic to the Poincare model over that field, and (E) holds in the Poincare 
model (39.9). 
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Remark 43.4.1 
Thus in a Hilbert plane, the axiom (L) of existence of limiting parallels implies 
(E). 

Remark 43.4.2 
In fact, a stronger result holds. Namely, in any hyperbolic plane, given any two 
curves each of which is either a line or a circle or a horocycle or a hypercycle, 
they will intersect if a certain betweenness condition is satisfied (which we leave 
to the reader to make explicit). Indeed, these all correspond to various Euclidean 
circles in the Poincare model (Exercise 39.14), and these will meet by (E) in the 
ambient Cartesian plane. 

The Classification of Hilbert Planes According to Pejas 

So far in this book we have seen two classification theorems. One was that any 
Hilbert plane with (P) is isomorphic to the Cartesian plane over a Pythagorean 
ordered field (21.1), and in this section we have seen (43.3) that any hyperbolic 
plane is isomorphic to the Poincare model over a Euclidean ordered field. These 
are both special cases of a more general theorem due to Pejas (1961), which 
gives an algebraic model of any Hilbert plane. The value of a classification 
theorem is that it allows one to prove theorems essentially by checking what 
happens in all possible planes, even when one does not have a direct proof. 
Examples of such reasoning that we have already used are (21.2), that (LCI) is 
equivalent to (E) in a Hilbert plane with (P), and (43.4), that (E) holds in any 
hyperbolic plane. A consequence of Pejas's general theorem is that (LCI) is 
equivalent to (E) in any Hilbert plane. 

To explain properly the complete statement of Pejas's theorem would carry 
us too far beyond the realm of the present book, so I will give only some partial 
statements of the theorem, some applications, and some comments on the main 
ideas of the proof. For full details, see the paper of Pejas (1961) and the books of 
Bachmann (1959) and Hessenberg-Diller (1967). 

To begin with, let us consider a general method of constructing subplanes of 
a given Hilbert plane. 

Definition 
A full subplane of a Hilbert plane II is a Hilbert plane 110 whose points are a 
subset of the points of II, whose lines are the intersections of the lines of II with 
the points of 110 whenever that intersection is nonempty, and whose between­
ness and congruence are induced from the ambient plane. (See, for example, 
(18.4.3), Exercise 18.5, and Exercise 39.24.) 

For any Hilbert plane we will consider the group G of segment addition of the 
plane. This is an ordered abelian group whose positive elements are the con­
gruence equivalence classes of line segments (cf. (19.1) for the addition of seg­
ments, and the additive part of(19.3) for the existence of the group G). For ex-
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ample, in the Cartesian plane over a field F, the group G is just the additive 
group of the field (F, +). In the Poincare model over a Euclidean field F, it is the 
group of positive elements of the field under multiplication (F>o,·) using the 
multiplicative distance function (39.10). 

We say that a subgroup M of an ordered abelian group G is convex if a, bE M 
and a < c < b in G implies c E M. 

Proposition 43.5 
Let IT be any Hilbert plane with group of segment addition G. 

(a) If ITo <:; IT is a full subplane, then the group of segment addition of ITo is a 
nonzero convex subgroup M of G. 

(b) Each nonzero convex subgroup M of G arises from a full subplane as in (a). 
(c) Two full subplanes ITo and IT1 of IT give the same subgroup M <:; G if and 

only if there is a rigid motion of IT taking ITo to IT 1. 

Proof (a) Obviously, M is a nonzero subgroup of G. To show that M is convex it 
is sufficient to show that ITo is convex, namely, if A, B are points of ITo and C is a 
point of IT that lies between A and B, then C is in ITo. 

To do this, take points D, E in ITo 
such that D is not on the line AB, and E 
is between A and D. Let 1 be the line EC 
of IT . Since ITo is a full subplane of rI 
and the line 1 contains a point E of ITo, it 
follows that l' = 1 n ITo is a line of rIo. 
Now, l' meets one side of the triangle 
ABD. It cannot meet BD, since 1 does 
not, so by Pasch's axiom it must meet 
AB. The intersection point is C, so 
C E ITo. 

B 

(b) Given M a nonzero convex subgroup of G, fix a point 0 E IT, let ITo be the 
set of points A of IT such that the segment class [~Al is in M, and take for lines of 
ITo the nonempty intersection oflines in IT with rIo. We must verifY that ITo sat­
isfies all the axioms of a Hilbert plane. They all follow immediately from the 
corresponding axioms of IT or from (Cl), which is the only nontrivial one. 

To verifY (Cl), let AB be a segment in ITo, and suppose we are given a point 
C and a ray r emanating from C. By the axiom (Cl) in IT, there is a unique point 
DE IT on the ray r such that AB ~ CD. We have only to show that D E ITo. From 
(1.20) it follows that AB ~ OA + OB. Since A, BE rIo, we have lOA] EM and 
[OB] EM. But M is a convex subgroup of G; therefore, [AB] EM also. This shows 
that M is equal to the group of segment addition of ITo. 

To continue the proof of (Cl), use (1.20) again to see that OD ~ OC + CD. 
Now, C E ITo implies rOc] EM. Also, CD ~ AB implies [CD] EM. Since M is a 
convex subgroup of G, it follows that [OD] EM, so D E ITo. We leave to the reader 
to check special cases where some points coincide with o. 
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(c) If there is a rigid motion taking ITo to IT1, then they clearly give the same 
subgroup M ~ G. Conversely, suppose ITo and IT1 give the same subgroup M. Fix 
a point Ao E ITo and a point AlE IT 1. Then ITo is equal to the set of points E E IT 
for which [AoE] EM, and similarly for IT1. Thus any rigid motion of IT that takes 
Ao to Al will take no to IT 1 . 

Corollary 43.6 
If a Hilbert plane is Archimedean, it has no proper full subplanes. 

Proof The group of segment addition of an Archimedean plane satisfies the 
Archimedean property (A'), namely, for any a, bEG, a, b > 0, there exists an 
integer n such that na > b. In this case the only nonzero convex subgroup is the 
whole group, so there can be no proper subplanes. 

Now we can state (without proof) a somewhat restricted form of the theo­
rem ofPejas (1961), using the language offull subplanes. 

Theorem 43.7 (Pejas) 
(a) Any semi-Euclidean Hilbert plane is a full sub plane of the Cartesian plane 

over a Pythagorean ordered field F. 
(b) Any semielliptic Hilbert plane satisfying (E) is a full subplane of a plane of the 

form given in Exercise 34.14b over a non-Archimedean Euclidean ordered field F. 
( c) Any semi hyperbolic Hilbert plane satisfying (E) is a full subplane of the Poin­

care model in the unit circle over a Euclidean ordered field F. 

For Hilbert planes that do not satisfy- the circle axiom (E), the statements are 
more complicated. For example, in the semihyperbolic case one must allow 
Poincare models in (possibly virtual) circles of the form x2 + y2 = d over Pytha­
gorean ordered fields satisfYing additional conditions similar to (*d) of Exercise 
39.26. We omit the details. 

For the cases treated in (43.7) we see using (43.5) that to give a complete 
description, we need only specify- the field giving the main model and then a 
nonzero convex subgroup M of its group of segment addition G. In the semi­
Euclidean case, G is the additive group of the field (F, +). In the semi elliptic 
case, G is the subgroup of infinitesimal elements in the circle group of the field 
(Exercise 17.6), since arcs on the sphere are measured by the angles they sub­
tend at the center of the sphere. In the semihyperbolic case, G is the multi­
plicative group of positive elements (F>o,') ofthe field. 

In the original paper of Pejas, he gave two apparently unrelated con­
structions for the semihyperbolic planes, which Hessenberg and Diller (1967, 
Section 68) called the modular and the nonmodular case. In our formulation 
there is a single construction for both-the distinction being whether M consists 
entirely of infinitesimal elements or not (Exercise 43.6). 
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Now let us consider some consequences of this theorem. 

Corollary 43.8 
A Hilbert plane satisfYing (A) and (E) is either the Cartesian plane or the Poincare 
model over a Euclidean ordered field F. 

Proof From the hypothesis (A), it follows that the field F of the theorem is Ar­
chimedean (Exercise 43.9). This rules out the semielliptic case, so our plane is a 
full subplane of a Euclidean or hyperbolic plane. But by (43.6) there are no 
proper full subplanes. So our plane must be Euclidean or hyperbolic. 

In the semi-Euclidean case this result follows from our earlier work without 
using Pejas's theorem (35.4). In the semihyperbolic case, the corollary gives the 
remarkable implication 

(A) + (E) + (",P) =? (L). 

There is no direct proof (without classification) for this result, which is essen­
tially the same as the problem we discussed earlier of proving Bolyai's parallel 
construction without assuming beforehand the existence of the limiting parallel 
ray (41.11.1). 

See the exercises for further consequences of Pejas's theorem. 

Now let us say a few words about the proof of Pejas's theorem. It proceeds in 
three stages. The first stage is to extend a given Hilbert plane by the addition of 
new "ideal" points and "ideal" lines, so that the original plane is embedded in a 
projective plane. We have already seen two examples of this procedure. One 
was in Exercise 6.7, where we add ideal points to an affine plane, or for example 
a Euclidean Hilbert plane, to obtain a projective plane. The other was in 
(40.10.1) and Exercises 40.11,40.12, where a similar but more subtle construc­
tion is given for a hyperbolic plane. 

The idea of introducing ideal points seems to go back to von Staudt (1847) 
for the Euclidean plane, and to Klein for the hyperbolic case. Pasch (1882) car­
ried out this procedure using properties of three-dimensional space. The first 
person to succeed using plane geometry only, in the form of Hilbert's axioms, 
was Hjelmslev (1907). Making extensive use of reflections and the group of all 
rigid motions of the plane, he showed how to embed an arbitrary Hilbert 
plane in a projective plane, and he was able to prove that this projective plane 
satisfies "Pascal's theorem," which is a projective analogue of Pappus's theorem 
(14.4). 

The second stage is to introduce coordinates into the projective plane. This 
problem also has its roots in the early nineteenth century. Again, von Staudt was 
probably the first, with his theory of "Wiirfe," to introduce a rational net of 
points, and thus by continuity to obtain real-number coordinates. But by the end 
of the nineteenth century there was growing interest in building foundations of 
geometry without continuity. The significance of Pascal's theorem was made 
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clear by Hilbert (1899), who showed that it was precisely the condition for the 
field of segment arithmetic to be commutative. The construction was general­
ized by Schwan, and finally reached its modern form in the book of Artin (1957), 
where the elements of the field appear as operators on the group of translations 
of an affine plane. 

These two stages are explained in detail in the book of Hessenberg-Diller 
(1967), Sections 37-44 for the work of Hjelmslev, and Sections 55-58 for the in­
troduction of coordinates in the projective plane. 

The third stage, which was accomplished by Pejas in his thesis, is to identify 
those subsets of the projective planes that give Hilbert planes. We will not give 
any details here, except to point out that Pejas's work was done in the context of 
the "metric planes" of Bachmann (1959). 

Bachmann's observation was that the work of Hjelmselv took place almost 
entirely in the group of rigid motions of the plane and made little use of the 
order relation. So Bachmann defined the notion of a "metric plane" in which 
you retain the properties of incidence and orthogonality, but forget order and 
congruence. To any line we associate the reflection in that line, and to any point 
we associate the reflection in that point. Then we forget the original points and 
lines, and axiomatize geometry purely within the group of rigid motions (see 
Bachmann (1959), Section 3.2, for his axiom set). 

Bachmann's metric planes include all Hilbert planes, but also include elliptic 
geometry, some finite geometries, and many others. Generalizing the work of 
Hjelmslev, Bachmann is able to embed anyone of his metric planes in a projec­
tive metric plane. The Hilbert planes appear as those metric planes with an 
order relation satisfying Hilbert's axioms (Bl)-(B4) and having free mobility­
essentially what we call (ERM). 

It is based on Bachmann's formulation of this whole theory that Pejas proves 
his theorem. 

The Calculus of Reflections 

To illustrate this new approach to geometry, we will give some elementary 
results in the calculus of reflections, initiated by Hjelmslev, and elevated by 
Bachmann to a position of central importance in the theory of metric planes. 
This calculus of reflections is analogous to analytic geometry, in that it gives an 
algebraic method of treating geometric problems. It has advantages over the 
usual analytic geometry in that there is no arbitrary choice of coordinate axes 
and it works in an arbitrary Hilbert plane. 

Fix a Hilbert plane. We denote by G the group of all rigid motions of the 
plane, and by S the subset of G consisting of reflections in a line. We know that 
for every line a there is a reflection (Ja in that line, and these reflections gener­
ate the group of rigid motions (cf. proof of (17.4) and Exercise 17.3). For sim­
plicity we will denote (Ja simply by a E S, and for any point A, we denote by 
A E G the point reflection ( = rotation through 2RA) around that point. 
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Proposition 43.9 
If a, b are two distinct lines, then ab = ba (in the group G) if and only if a -1 b. In 
that case the product A = ab is the point reflection in the intersection point A of a 
andb. 

Proof If a-1b, then clearly A = ab is the point reflection and ab = ba. 
Conversely, suppose ab = ba. Let P be any point of a not lying on b. Let 

ba(P) = b(P) = pi be the reflection of Pin b. Then ab(P) = a(pl) = p'. So pi also 
lies in a. Since P ¢ b, P =1= p'. Then b is the perpendicular bisector of the segment 
ppl, which lies on the line a, so a-1b. 

Proposition 43.10 
Iffour lines a, b, c, d pass through a point, 
then ab = cd if and only if the acute (or 
right) angles formed by a, band c, dare 
equal and the (acute) rotation from a to b 
has the same orientation as from c to d. 
In that case also ba = de, ac = bd, and 
ca = db. 

Proof The motion ab is a rotation 
through twice the acute angle between 
a and b, in the opposite direction (cf. 
Exercise 17.4). So if ab = cd, they give 
the same rotations, and the result is 
clear. If we take the same rotations in 
the reverse direction we get ba = de. If 
we add (or subtract) the rotation from b 
to c, we get ac = bd and ca = db. 

Proposition 43.11 
If a, b, c, d are four lines perpendicular to a 
line 1, and meeting 1 in A, B, C, D, then 
ab = cd if and only if the segments AB 
and CD are equal and have the same ori­
entation on 1. In that case also ba = de, 
ac = bd, and ca = db. 

Proof Note that ab is a translation 
along the line 1 (cf. proof of (41.4)) of 
twice the segment AB, in the opposite 
direction. So the proof is analogous to 
the previous proof. 

------~~~--~------~ 

, 
B c b 

b <.. 
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Proposition 43.12 
Let a, b be lines, and let C, D be distinct 
points. Then aC = bD if and only if a, b 
are perpendicular to the line CD, and the 
segments AC and BD are equal, in the 
same orientation, where A, B are the 
points an CD, b n CD. 

Proof Note that aC is a glide reflection 
along the line through C, perpendicular 
to a, in an amount equal to twice the 
segment AG. So if aC = bD, they have 
the same axis, which must be the line 
CD. The rest is clear. 

Proposition 43.13 
Let a, b be lines and C, D distinct points. 
Then aC = Db if and only if a, b are per­
pendicular to the line CD, and the seg­
ments AC, BD are equal, in reverse order. 

Proof Similar to previous proof. 

Proposition 43.14 (Hjelmslev) 
In any Hilbert plane, given a quadrilateral 
ABCD with right angles at B, D, draw the 
diagonals e, f, and drop perpendiculars 
AG, CH from A and C to f as shown. Then 
(in the notation of the diagram): 

(1) ag = ed. 
(2) be = hc. 
(3) Bg = hD. 

In particular, the angles marked at A and 
at C are equal, and the segments BG, HD 
are equal. 

A ( B D 

b 

c D B 

B 

Proof By the theorem of three reflections (Exercise 17.14), we can find lines 
g', h' such that ag' = ed and be = h'c. Using B = ba and D = cd (43.9) and sub­
stituting, we obtain 

Bg' = bag' = bed = h'cd = h'D. 

Now, by (43.13), g' and h' are perpendicular to the line BD = f, so g = g', h = h'. 
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This gives (1) and (2) and (3) above. The equalities of angles and segments fol­
low from (43.10) and (43.13). 

Remark 43.14.1 
We call ABCD as above a Hjelmslev quadrilateral. This important result plays a 
role in neutral geometry analogous to the role of cyclic quadrilaterals in Eucli­
dean geometry. In fact, it can also be proved easily in Euclidean geometry using 
cyclic quadrilaterals (Exercise 5.19). 

Note that the result and its proof work equally well if A, C are on the same 
side of BD. 

As an application, we prove the theorem on the intersection of the altitudes 
of a triangle in neutral geometry. 

Theorem 43.15 
In any Hilbert plane, if two of the altitudes of a triangle meet, then all three meet at 
the same point. 

Proof In the triangle ABC, let the altitudes BE, CD meet at H. Draw the line DE, 
and drop perpendiculars x, y, z, w from B, C, A, H to that line. Let AH be the line 
f We want to show f -.l a. 

We have a Hjelmslev quadrilateral AEHD, which by (43.14) gives fe = dw at 
H, bz = fc at A, and DW = ZE. There is another Hjelmslev quadrilateral BECD, 
which gives ex = ae at B, ad = by at C, and XD = EY. Combining the last state­
ments of each and adding ZW, we obtain ZX = YW, so zx = yw by (43.11). Now 
let us calculate: 

afe = adw = byw = bzx = fex = fae. 

Canceling e gives af= fa, so by (43.9), fis perpendicular to a, as required. 

A 
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Exercises 

43.1 Show that the result of Exercise 1.15 holds in an arbitrary hyperbolic plane. 

43.2 If a semihyperbolic plane TI satisfies Dedekind's axiom (D), show (without using 
Theorem 43.7) that TI is isomorphic to the Poincare model over the real 
numbers lR. 

43.3 (a) Use Theorem 43.7 to show that in a semi-Euclidean plane, Aristotle's axiom 
(Section 33) implies (P). 

(b) Now prove the same result without using Theorem 43.7, by strengthening the 
proof of Proposition 35.4 to replace (A) by Aristotle's axiom. 

43.4 Use Theorem 43.7 to show that in any semi-Euclidean Hilbert plane, the following 
three conditions are equivalent: 

(i) (LCI) holds. 

(ii) The field F is Euclidean. 

(iii) (E) holds. 

43.5 Use Theorem 43.7 to prove that in a semi-Euclidean plane, given any segment AB, 
there exists an equilateral triangle with side AB. Can you prove this without using 
Pejas's theorem? 

43.6 We say that the Lotschnitt axiom of Bachmann holds in a Hilbert plane iffor any 
four lines a, b, c, d with a..l b, b ..1 c, c ..1 d, it follows that a meets d. 

(a) Show that the Lotschnitt axiom holds in any semi-Euclidean or semielliptic 
plane. 

(b) If TIo is a full subplane of the Poincare model TI over a Euclidean ordered field 
F, corresponding to a nonzero convex subgroup M of the group G = (F>o, .), show 
that the following conditions are equivalent: 

(i) The Lotschnitt axiom holds in TIo. 

(ii) All elements of M are infinitesimal (i.e., of the form 1 + x for x E F 
infinitesimal). 

(iii) The angle sum of any triangle differs from 2RA by an infinitesimal angle. 

These conditions describe what Hessenberg-Diller call the "modular" case; other­
wise, TIo is called nonmodular. Thus we see that the Lotschnitt axiom characterizes 
geometries in which the angle sum of a triangle differs at most infinitesimally from 
2RA. 

43.7 Show that the Lotschnitt axiom (Exercise 43.6) is equivalent to Legendre's axiom 
(cf. Section 35) for a right angle: Namely, for any point P in the interior of a right 
angle, there exists a line meeting both sides of the angle. 

43.8 Show in any Hilbert plane (without using classification) that (A) plus Lotschnitt 
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implies (P). (Pambuccian (1994) strengthens this result to Aristotle's axiom plus 
Lotschnitt implies (P).) 

43.9 Let F be a non-Archimedean ordered field, and let M be a nonzero convex sub­
group of either (F, +) or (F>o,') or the circle group of F (Exercise 17.6). Show that 
M cannot be Archimedean. 

43.10 Use Theorem 43.7 to prove the theorem of Greenberg (1988) that a Hilbert plane 
satisfying (E) plus Aristotle's axiom must be Euclidean or hyperbolic. 

43.11 (a) Let no and []] be two semi-Euclidean planes represented as full subplanes of 
Cartesian planes over Pythagorean ordered fields F], Fz by convex subgroups 
M] <;; (F],+) and Mz <;; (F2 ,+). Show that no and n] are isomorphic (as abstract 
Hilbert planes) if and only if there is an isomorphism rp : F] .::, Fz and a nonzero 
element A E Fz such that Mz = A . rp(M]). 

(b) Similarly, let no and n] be semi-hyperbolic planes represented in the Poincare 
models in the unit circles over Euclidean ordered fields F] and Fz by convex sub­
groups M] and Mz of the multiplicative groups of positive elements. Show that no 
and II] are isomorphic if and only ifthere is an isomorphism rp : F] .::, Fz such that 
rp(Md = M2 . 

43.12 This and the following two exercises take place in an arbitrary Hilbert plane, using 
the notation of the calculus of reflections. 

(a) If A is a point and b a line, show that A E b ¢} Ab = bA. 

(b) If a, b are two lines that meet, show that c is an angle bisector of one of the 
angles between a, b ¢} ac = cb. 

(c) If A, B are two distinct points, then a line h is the perpendicular bisector of the 
segment AB ¢} Ah = hB. 

43.13 Using the calculus of reflections, prove that the three angle bisectors of a triangle 
meet, as follows. Given the triangle ABC, let two angle bisectors d, e meet at a point 
P. Drop a perpendicular x from P to a. Let f = xed by the theorem of three re­
flections (Exercise 17.14). Then prove thatfis the angle bisector at C. 

A 

c 
B 

43.14 Using the calculus of reflections, prove that if two of the perpendicular bisectors of 
the sides of a triangle meet, then all three meet in the same point, as follows: Let 
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two perpendicular bisectors d, e meet at P. Let x be the line AP. Let f = xed. Then 
show that f is the perpendicular bisector of AG. 

c 

43.15 If you are curious about the theorem of the three medians in neutral geometry, 
look in Bachmann (1959) p. 74 and see whether you can understand the proof 
there. 

43.16 Given an angle BAG, two rays AD,AE making equal angles with the angle bisector 
of BAG are called isogonal conjugates. 

Let ABG be a triangle, and let AD, BE, GF be three concurrent lines in the tri­
angle. Prove that the isogonal conjugates of AD, BE, GF, with respect to the angles 
of the original triangle, are concurrent. 

B c 

D 

43.17 In a non-Archimedean hyperbolic plane, let r be a circle of infinite radius r (i.e., 
Jl(r) is an infinite element of the field of ends F). 

(a) Show that r is not contained inside any polygon (cf. Exercises 36.3, 42.20). 

(b) Show that the exterior of r is not a segment-connected set (cf. Exercise 1l.1). 

43.18 Show that de Zolt's axiom (Z) holds in any Hilbert plane. 



CHAPTER 

hind these five figures. 

Polyhedra 

olyhedra are solid figures bounded by plane poly­
gons. Most famous among these are the five regular, 
or Platonic, solids, identified classically with the four 
elements, earth, air, fire, water, and the whole uni­
verse. Euclid begins his Elements with the construc­
tion of an equilateral triangle (Ll) and ends in Book 
XIII with the construction of these regular solids. It 
has been suggested that Euclid's purpose in writing 
the Elements was to fully elucidate the geometry be-

Euclid defines the tetrahedron, cube, octahedron, icosahedron, and dodeca­
hedron by the number and type offaces they have. He then constructs each one 
inscribed in a sphere, and claims that only these five are possible. To make this 
exact, we need to supply the hypothesis of convexity, not stated explicitly by 
Euclid, and we need to prove that the figures so obtained are unique. In fact, it is 
not immediate what the definition of a regular polyhedron should be. We clarify 
this at the end of Section 44 by defining a regular polyhedron to be convex, with 
all of its faces congruent regular polygons, and with the same number of of faces 
meeting at each vertex. Then we can prove there are only five of these, and that 
in addition they have the further properties that all dihedral angles equal,' they 
can be inscribed in a sphere, and the group of symmetries is transitive on the 
vertices. 

To complete the proof we need Cauchy's rigidity theorem (Section 45), 
which says that a convex polyhedron is determined up to congruence by its 
faces and their combinatorial arrangement. 

435 
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The theory developed to study the regular polyhedra also suffices to classify 
the semiregular, or Archimedean, solids, which are those solids whose faces are 
all regular polygons and that have at each vertex the same kinds of faces in the 
same cyclical order. There are two infinite series, the prisms and the anti prisms, 
and thirteen others (Section 46). 

We also begin the study of a more difficult problem, to classify all face-regular 
polyhedra, which are those convex polyhedra having only regular polygons as 
faces. We complete the analysis for those having only equilateral triangles as 
faces in Section 45: There are five more besides the three regular solids with tri­
angular faces. For the general problem, we show that there are only finitely 
many nonuniform face-regular polyhedra (46.3), but refer to Johnson (1966) for 
the complete classification. 

In Section 47 we explore another interaction of geometry and abstract alge­
bra by identifying the rotation groups of the regular polyhedra and showing that 
they, along with the cyclic and dihedral groups, are the only finite subgroups of 
the group of rotations of the sphere. 

44 The Five Regular Solids 

Our concern in this section will be first, to see what Euclid has done, and then to 
formulate exact definitions and study the question of existence and uniqueness 
of the five regular solids. 
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Up to this point in this book we have considered almost exclusively plane 
geometry. Here we move into solid, or three-dimensional, geometry. We will not 
take the time to set up axiomatic foundations for this solid geometry; instead, we 
let the reader make the straightforward extensions from Euclidean plane geom­
etry to Euclidean solid geometry. A brief review of Euclid's Elements, Book XI, 
may be helpful. Or we may simply appeal to the "Cartesian" three-space over 
the real numbers IR, and use the methods of analytic geometry. 

To start, let us review what we 
know about regular polygons in the 
plane. A triangle with three equal sides 
(equilateral) also has three equal angles 
(1.5). Conversely, a triangle with three 
equal angles (equiangular) has three 
equal sides (1.6). For polygons with four 
or more sides, however, having equal 
sides does not imply equal angles, nor 
conversely. A square is equilateral and 
equiangular. A rectangle is equiangular 
but not equilateral. A rhombus is equi­
lateral but not equiangular. 

D 

We define a regular polygon in the plane to be a polygon that is both equilat­
eral and equiangular. 

Proposition 44.1 
In the real Cartesian plane, for any n 2': 3, there exists a regular polygon of n sides 
(n-gon) having a given segment as a side. Any two regular n-gons with a common 
side are congruent. The vertices of the regular n-gon lie on a circle. For any two ver­
tices, there is a rotation of the n-gon to itself sending the first vertex to the second. 

Proof For existence, just take a circle, and mark n equidistant points on the 
circumference, subtending angles of 2n/n at the center. Expanding by a scale 
factor will make the side equal to any given segment. 

To prove uniqueness, suppose we are given a regular n-gon with side AB. 
Bisect the equal angles at A, B, and let the angle bisectors meet at O. Then 
o is equidistant from A and B. Continuing this construction at the other ver-
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tices, one sees easily that 0 is equidistant from all the vertices, so they lie on a 
circle with center O. Thus any two regular n-gons with a common side will be 
congruent. 

A rotation through an angle of 2n/n at the center will send one vertex to 
the next. Multiples of this rotation will send the first vertex to any other desired 
vertex. 

Remark 44.1.1 
We make these elementary observations about regular polygons explicit to em­
phasize the analogy with the three-dimensional case to follow. 

Note that we used the real numbers to be able to divide the angle 2n into n 
equal pieces. If we work in the Cartesian plane over the field of constructible 
numbers, or if we ask for those regular polygons that are constructible using a 
compass and marked ruler, not all values of n are possible. For detailed discus­
sion of these questions, see Sections 29, 30, 3l. 

Now we come to the definition of the regular solids. Euclid does not give a 
general definition of a regular solid (we will do that later at the end of this sec­
tion). Instead, in the definitions of Book XI of the Elements, he defines each one 
individually. A pyramid is a solid figure formed by joining a point to each of the 
vertices of a polygon in a plane not containing the point. Euclid does not use the 
word tetrahedron, but we will, defining it to be a triangular pyramid formed of 
four equilateral triangles. Euclid goes on to define a cube as a solid figure con­
tained by six equal squares, the octahedron and icosahedron as solid figures 
bounded by 8 Crespo 20) equilateral triangles, and a dodecahedron as a figure 
bounded by 12 regular pentagons. 

Let us also fix some terminology that we will use in discussing solid figures. 
A polyhedron is the surface of a solid figure bounded by plane polygons. When 
two polygons meet, they must have an entire edge in common. These plane 
polygons are the faces of the polyhedron. Their edges are the edges of the poly­
hedron, and their vertices are the vertices of the polyhedron. Where two faces 
meet along an edge, we have a dihedral angle. This is the angle between two 
rays, drawn in the two faces, from a point on the common edge, and both per-



pendicular to that edge. At a vertex, the 
angle in any face passing through that 
vertex is called a face angle. The collec­
tion of all the faces at a vertex makes a 
solid angle. The solid angle is not mea­
sured by a number, but we can speak 
of one solid angle being congruent to an­
other if there is a rigid motion of the 
space (plus possibly a reflection) mak­
ing one coincide with the other close to 
the vertex. 
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If all the vertices of a polyhedron lie on a sphere, we will say that the poly­
hedron is inscribed in the sphere. If all the faces of a polyhedron are tangent to a 
sphere, we will say that the polyhedron is circumscribed about the sphere. 

Of course, defining something is no guarantee of its existence (think of a 
unicorn, for example). So our first job is to construct examples of these figures. 
Euclid does this in Book XIII, Propositions 13-17, by a very explicit and quite 
complicated method. For brevity we will use simpler methods, due to Legendre 
(1823), Appendix to Books VI, VII. 

Proposition 44.2 
There exist tetrahedra, cubes, octahedra, icosahedra, and dodecahedra having the 
follOWing properties: 

(a) In each figure, all the dihedral angles are equal. 
(b) The vertices of each figure lie on a sphere. 
(c) For any two vertices, there is a rigid motion of the figure onto itself sending the 

first vertex to the second. 

Proof To make a tetrahedron, take an equilateral triangle of side I, say. At its 
center, erect a line perpendicular to the plane of the triangle. On this line, find a 
point at distance 1 from one of the vertices of the triangle. This point will then 
be at distance 1 from all three vertices, so the pyramid from this point will be a 
tetrahedron. 

The dihedral angles between the three new faces are obviously equal. But we 
observe that the construction could also have been made starting from one of 
these new faces, giving the same figure. Hence all the dihedral angles are equal. 

Any four points not in a plane lie on a sphere, so the tetrahedron is inscribed 
in a sphere. A rotation about an axis passing through one vertex and the center 
of the opposite face will send anyone vertex to another. 

The cube we leave to the reader (Exercise 44.1). 
To construct an octahedron, take a sphere of radius 1 and three mutually 

perpendicular diameters. Join the six points where these diameters meet the 
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sphere, making 8 equilateral triangles. These form an octahedron. Any pair of 
adjacent vertices can be sent to any other by a succession of rotations about 
these axes, and this implies also that the dihedral angles are all equal. 

The construction of the icosahedron 
is a little more complicated. We start 
with a regular pentagon (say of side 1) 
BCDEF in a plane. The pentagon lies on 
a circle (44.1), so from the center of the 
circle, erect a perpendicular to the 
plane of the pentagon, and on that line 
find a point A at distance 1 from B. 
Then A will also be at distance 1 from 
C,D,E,F. Joining A to the points 
B, C,D,E,F, we obtain a pentagonal 
pyramid with equilateral triangles as its 
upper faces. By symmetry, the dihedral 
angles between any two adjacent tri­
angles are the same. 

t>' 

G 

Make another such congruent pentagonal pyramid starting with a pentagon 
B'A'D'GH and label its top vertex C'. The dihedral angles in this new pyramid 
are equal to those in the other. Hence, if we glue the triangle A'B'C' onto the 
triangle ABC, the points D and D' will coincide. We get a figure made of eight 
equilateral triangles, with all dihedral angles equal. 

Doing this once more, we get a convex figure of ten equilateral triangles with 
ABC in the center, and having all its dihedral angles equal. Furthermore, as we 
go around the six edges that form the outer boundary of this figure, the angle 
between any two successive edges is equal to the interior angle of a regular 
pentagon. 

Now make another such figure of ten equilateral triangles. Because of the 
equality of edge angles and dihedral angles, the two will fit together perfectly to 
make an icosahedron with all dihedral angles equal. 

The perpendiculars at the centers of any two adjacent faces will meet at a 
point 0 equidistant from the four vertices bounding these two faces. Because the 
dihedral angles are all equal, this construction propagates around the whole 
surface to show that the point 0 is equidistant from all the vertices. Hence the 
icosahedron is inscribed in a sphere with center o. 

The construction we have given is clearly symmetric under a rotation of the 
initial triangle ABC into itself. On the other hand, since all the dihedral angles 
are equal, the construction could have been started anywhere. Thus there are 
rotations sending any vertex to an adjacent vertex, and a succession of these will 
be a rigid motion sending any vertex to any other vertex. 

Lastly, to make a dodecahedron, take the icosahedron previously con­
structed. For each vertex of the icosahedron, join the five midpoints of the tri-
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angles meeting at that vertex. This makes a regular plane pentagon. The 12 
pentagons thus constructed form a dodecahedron. Because of the symmetry of 
the icosahedron, the relation between any two adjacent pentagons is the same, 
so all the dihedral angles are equal. 

The vertices of the dodecahedron are the midpoints of the faces of the icosa­
hedron. These are all equidistant from the center of the sphere containing the 
icosahedron, so the vertices of the dodecahedron lie on a new smaller sphere, 
which is inscribed in the icosahedron. 

A rotation of the icosahedron about an axis passing through two opposite 
vertices will send one triangle to an adjacent one, hence one vertex of the do­
decahedron to an adjacent one. Successions of these will make rigid motions 
sending any vertex of the dodecahedron to any other. 

Remark 44.2.1 
In this proof we have made use of some rotations and rigid motions of the five 
solids. We will study these rotations and rigid motions in more detail later, to­
gether with their group structure (Section 47). 

Remark 44.2.2 
All of the steps in the above constructions could be carried out with ruler and 
compass in suitable planes. In particular, finding a point on a line at unit dis­
tance from a given point is just a matter of intersecting the line with a circle. 
Hence these polyhedra are all constructible with Euclidean tools. In particular, 
if we work in the real Cartesian three-space, their coordinates will lie in the field 
K of constructible numbers. Put otherwise, these five solids exist in the Carte­
sian three-space over the field K. 

Now we come to the question of uniqueness. Are the figures we have con­
structed the only polyhedra that satisfy Euclid's definitions? 

Euclid himself gives us an answer, stated as an unnumbered proposition just 
after (XIII.l8). He says that no other figure besides these five figures can be 
constructed that is contained by equilateral and equiangular (i.e., regular) poly­
gons equal to each other. 

His reasoning is as follows: If we use equilateral triangles, then we can put 
together 3, 4, or 5 of them at one vertex, but 6 would lie flat. If we use squares, 
we can put 3 at one vertex, but no more. If we use regular pentagons, again we 
can put 3 at a vertex. If we try to use hexagons, three of them would lie flat, so 
for a stronger reason we cannot use regular polygons of more sides. 

These five cases, he says, correspond to the tetrahedron, octahedron, icosa­
hedron, cube, and dodecahedron, respectively; hence there are no others. 

Unfortunately, Euclid's conclusion is not correct as stated, because of some 
missing implicit hypotheses, nor is his proof of the corrected result complete. 

To make a correct statement, we need first to require that the figures in 
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question be convex. This means that for any two points on the surface of the 
polyhedron, the line segment between those points is entirely contained in the 
solid figure bounded by the polyhedron. We use the word convex in the strict 
sense, meaning also that no two faces lie in the same plane. 

Example 44.2.3 
Otherwise we could have a figure such as the "punched-in icosahedron." Con­
sider one vertex A of an icosahedron, and let BCDEF be the pentagon formed by 
the five adjacent vertices. Take off the pentagonal pyramid made by ABCDEF, 
and replace it by the pentagonal pyramid A'BCDEF, where A' is the reflection of 
the point A in the plane of BCDEF. The point A' is then inside the original ico­
sahedron, so the new figure is like an icosahedron elsewhere, but has a concav­
ity at A'. Think of the shape of a soccer ball at the moment it is being kicked, so 
that the toe of the boot makes a concave spot in the ball. This is a figure 
bounded by 20 equal equilateral triangles, but it is not congruent to the one we 
constructed. So we must require convexity in order to have uniqueness. 

Now Euclid's argument becomes correct insofar as it relates to what happens 
at a single vertex: 

Proposition 44.3 
In a convex polyhedron all of whose faces are equal regular polygons, the only possi­
ble configurations at a single vertex are 3, 4, or 5 triangles, 3 squares, or 3 pentagons. 

Proof The argument given above now works. Because of the convexity at a 
vertex, the sum of the face angles at the vertex must be less than 2n (cf. Euclid 
(XI. 21 )), and the listed five cases are the only possibilities. 

But even with the hypothesis of convexity, Euclid's original global statement 
is still not correct. Think of two equal tetrahedra, glued together along one face. 
This is a convex polyhedron (a triangular dipyramid) whose faces are 6 equilat­
eral triangles, but it is not in our list. 

What we need to assume (and this also was probably implicit in Euclid's 
thinking) is that the number of faces meeting at each vertex is the same. In the 
triangular dipyramid, we have three faces meeting at the two farthest points, 
and four faces meeting at each of the vertices along the glued face. 

Now we can state a corrected version of Euclid's classification. 

Theorem 44.4 
Any polyhedron that is 

(a) bounded by equal regular polygons, 
(b) convex, 
(c) has the same number offaces at each vertex, 
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is congruent (up to a scale factor) to one of the five constructed in (44.2). Further­
more, these five all have the additional properties 

(d) all dihedral angles are equal, 
(e) the vertices lie on a sphere, 
(f) for any two vertices, there is a rigid motion of the figure taking one to the other. 

Lemma 44.5 
If a vertex V of a polyhedron has three faces meeting it, with face angles IX, [3, y, then 
the three dihedral angles between these faces are uniquely determined by IX ,[3, y. In 
particular, if IX , [3, yare equal, the three dihedral angles will also be equal. 

Proof Take points A,B, e equidistant 
from V (say distance 1) on the three 
edges meeting at V. Holding the triangle 
A VB fixed, let the triangle A ve rotate 
around the line A V. As it does so, the 
point e describes a circle on the unit 
sphere with center V. Similarly, as Bve 
rotates around BV, the point e describes 
another circle on the unit sphere cen­
tered at V. The point where these two 
circles meet is e (or its reflection in the 
plane of A VB). Now it is clear that all 
three dihedral angles are uniquely de-
termined by the three face angles of the 
triangles at V. 

A 

B 

Another way to see this is to intersect the three faces with the unit sphere 
around V. We obtain a spherical triangle, which we call the vertex figure of the 
polyhedron at the vertex V. The sides of this spherical triangle are portions of 
great circles, subtending angles IX, [3, y at the center of the sphere, so the lengths 
of the sides are just IX, [3, y (in radians). Now use the fact that the three angles of a 
spherical triangle are determined by the three sides (and in fact can be calcu­
lated explicitly by the formulae of spherical trigonometry). These three angles, 
measured by their tangent lines, perpendicular to the radii of the sphere, are 
nothing but the dihedral angles of the original polyhedron. 

Remark 44.5.1 
Of course, the conclusion of the lemma is false for four or more faces . If you 
make an open figure of four equilateral triangles meeting at a single vertex, it is 
quite flexible: You can decrease two opposite dihedral angles while increasing 
the other two. 
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Proof of Theorem Since we have assumed that the figure is convex and has the 
same number of faces at each vertex, we can apply (44.3), and so have to con­
sider five cases. 

Case 1 Three equilateral triangles at each vertex. Let A be one of the vertices, 
and let B, C, D be the adjacent vertices. Because the sides AB, AC, AD, BC, BD, BC 
are all equal, B, C, D form an equilateral triangle. The vertices B, C, D each have 
two triangles already, so BCD makes the third, and the whole figure has just 
these four equilateral triangles as faces. Because of (44.5), the dihedral angles 
are the same as those in the tetrahedron constructed in (44.2), so the two tetra­
hedra are congruent up to scale factor. Properties (d), (e) , (f) follow from (44.2). 

Case 2 Three squares at each vertex. By the lemma (44.5) the dihedral angles 
are uniquely determined. In this case they are right angles. Starting at one ver­
tex, the three square faces fit on a cube. Continuing to adjacent vertices, the 
faces of our solid must coincide with those of the cube; hence it is a cube. 

Case 3 Three regular pentagons at a vertex. This is similar to Case 2. Because 
the dihedral angles are uniquely determined, they must coincide with the dihe­
dral angles of the dodecahedron constructed in (44.2). Staring at one vertex and 
working our way around, our figure must coincide with that dodecahedron, so 
the extra properties (d), (e), (f) follow from (44.2). 

Case 4 Four equilateral triangles at a 
vertex. Here the lemma does not apply, 
so we must work harder. First we make 
a combinatorial argument to show that 
our figure is composed of eight equilat­
eral triangles, in the same relative posi­
tions as the octahedron of (44.2). 

Let A be one vertex. Since there are 
four faces meeting at A, there are four 
adjacent vertices B, C, D, E. Now, at B 
we already have two of our faces and 
three of our edges, so there must be an­
other vertex F such that BCF and BEF 
are equilateral triangles. Now, at C we 
have three of the required four faces: It 
follows that CDF must be an equilateral 
triangle forming the fourth face. Similarly, DEF is the fourth face at E, and now 
the figure is complete. Thus our figure is bounded by eight equilateral triangles 
in the same arrangement as the octahedron of (44 .2). 
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However, this does not yet prove that our figure is congruent to the one 
constructed earlier. If you have built an octahedron or an icosahedron, you will 
have noticed that it is quite flexible in the intermediate stages of construction, 
and becomes rigid only when the last face is glued in position. So we are in­
clined to believe that the final shape is uniquely determined, but our model­
building experience does not make a mathematical proof. 

To prove that our figure is congruent to the earlier one, we argue as follows. 
Let A,F be opposite vertices of our figure. Then B,C,D,E are all equidistant 
from A and F, so they must lie in the plane that bisects the segment AF. But they 
are also equidistant from A, so they lie on a sphere with center A that intersects 
that plane in a circle. So B, C, D, E lie on a circle. But they are also equidistant 
from each other, in order, so they form a square. Let 0 be the center of the 
square. Then the segments AF,BD, CE all pass through 0, and are mutually 
perpendicular. If an edge of our figure has length I, then 0 is at distance ../2/2 
from B, C, D, E, and one then sees easily that 0 is also at distance ../2/2 from A 
and F. Thus A, B, C, D, E, F lie on a sphere with center 0, and we have recovered 
the construction of (44.2). The properties (d), (e), (f) follow. 

Case 5 Five equilateral triangles at each vertex. First we make a combinatorial 
argument to show that a figure made of triangles having five meeting at each 
vertex has 12 vertices and 20 faces, in the same arrangement as the icosahedron 
of (44.2). This step is left to reader (Exercise 44.5). 

Now we have to show that a convex figure made of 20 equilateral triangles in 
the same arrangement as the icosahedron of (44.2) is congruent to that one. In 
that case the extra properties (d), (e), (f) will follow from (44.2). This is again 
the question of rigidity we encountered in Case 4, but for the icosahedron we do 
not know an elementary argument. We must refer to Cauchy's rigidity theorem 
(45.5) in the next section to complete the proof. 

Remark 44.5.2 
Even when this theorem is completely proved, there still remains another ques­
tion: Are the five figures constructed in (44.2) the only convex figures satisfying 
Euclid's definitions of tetrahedron, cube, octahedron, icosahedron, dodecahe­
dron? This is a slightly different question, because instead of assuming (c) of 
(44.4) that each vertex has the same number of faces, we assume only that the 
total number off aces is given. For the tetrahedron it is obvious. For the cube and 
the dodecahedron, since it is possible only to have three faces at a vertex, the 
result follows from (44.4). But for the case of a convex figure made of 8 or 20 
equilateral triangles, it is not obvious because there might be a different way of 
arranging the triangles with different numbers of them at different vertices. The 
result is nevertheless true, as we will see later when we classify convex poly­
hedra whose faces are all equilateral triangles ( 45.6.1). 



446 8. Polyhedra 

Definition 
We can now define a regular polyhedron to be a convex polyhedron whose faces 
are all equal regular polygons and having the same number of faces meeting at 
each vertex. It follows from (44.4) that the only regular polyhedra are the five 
Platonic solids constructed in (44.2), and that they all have the extra properties 
(d), (e), (f) of (44.4). Alternatively, one could define a regular polyhedron to be a 
convex polyhedron all of whose faces are equal regular polygons and that sat­
isfies anyone of the properties (d), (e), (f) of (44.4). See Exercise 44.6. 

Exercises 

In these exercises, the words tetrahedron, cube, octahedron, dodecahedron, icosahedron 
refer to the regular polyhedra with 4, 6, 8, 12, 20 faces respectively. 

44.1 Verify the existence of a cube having all the properties of Proposition 44.2. 

44.2 If you join the centers of the faces of a cube by lines, show that this makes an octa­
hedron. Conversely, show that joining the centers of the faces of an octahedron 
makes a cube. We say that the cube and the octahedron are dual solids. 

44.3 Take a tetrahedron of side length 1, and around each vertex cut off a smaller tetra­
hedron of side length ~. Show that what remains is an octahedron. Conclude that the 
dihedral angle of an octahedron and the dihedral angle of a tetrahedron are supple­
mentary angles. 

44.4 Make a model of each of the five regular solids. There are many ways to do this, and 
I would not want to limit your creative ingenuity, but I will tell you my favorite 
method. Layout the faces on a flat piece of cardboard, with as many attached to 
each other as possible. Part of the fun is figuring out how to lay them out, but you 
can skip this step by looking in almost any geometry book (except this one) for a 
diagram. Then cut out the figure, and score with a knife the edges to be folded. Fold 
up and join edges of the solid figure by making a small double tab of cardboard to be 
glued inside the adjoining edges of the two faces. How to glue down the last face is 
another interesting problem I leave to you. When it is complete, you can paint the 
entire solid with different colors to emphasize the symmetries. 

Another good medium for making quick models and experimenting is jelly beans 
(the small kind) and toothpicks. And when you are done, you can eat the jelly 
beans. One student of mine even made tetrahedra out of gingerbread triangles, 
glued together with cake frosting. That time the whole class enjoyed the models. 

44.5 Show that a convex polyhedron whose faces are all triangles (not necessarily equi­
lateral) having five faces meeting at each vertex must have 12 vertices and 20 faces. 

44.6 In Theorem 44.4, if we assume (a) and (b), but instead of assuming (c), we assume 
anyone of( d), (e), or (f), show that ( c) and hence the rest of the theorem follows. 
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44.7 Take three 3 x 5 cards and arrange them so that they are in three mutually perpen­
dicular planes, they all have the same center, and each one passes through a 3/1 slit 
in one of the others. Then the 12 corners of these three cards approximate the ver­
tices of an icosahedron. Prove this as follows: Assume that the ratio of the sides of 
the cards is! (1 + vIs) ~ 1.618 instead of its actual value ~. Compute the coordinates 
of the twelve corners in a Cartesian 3-space whose axes run through the cards, and 
show that the distance between any two adjacent vertices is the same. (Use symme­
try to limit your calculations to two, instead of 30.) 

44.8 Let d be the diameter of a sphere, and let s be the side of an inscribed regular poly­
hedron. Show that d and s are related as follows: 

(a) For a tetrahedron, d 2 = ~S2. 

(b) For an octahedron, d2 = 2S2. 

(c) For a cube, d2 = 3s 2 . 

(d) For an icosahedron, d2 = ! (5 + v's)S2. 

(e) For a dodecahedron, d 2 = ~ (3 + v's)S2. 

44.9 Let!], be the dihedral angle of a regular polyhedron. Verify that: 

(a) For a tetrahedron, cos!]' = ~. 

(b) For an octahedron, cos!]' = -~. 

(c) For a cube, cos!]' = O. 

(d) For an icosahedron, cos!]' = -(v's/3), sin!],=l 

(e) For a dodecahedron, cos!]' = -(v's/5), tan!]' = -2. 

45 Euler's and Cauchy's Theorems 
To complete the classification of the regular solids, and for use in studying other 
classes of solids, we prove here two results of a more general nature about poly­
hedra. Euler's theorem gives a relation between the number of vertices, edges, 
and faces of a convex polyhedron. This is a special case of the so-called Euler 
characteristic of a surface studied in topology. Cauchy's rigidity theorem tells us 
that if two convex polyhedra have congruent faces, similarly arranged, then 
they are congruent as a whole. As an application we will classify all convex poly­
hedra made with only equilateral triangles. 

Theorem. 45.1 (Euler) 
Given a convex polyhedron, let v be the number of vertices, let e be the number of 
edges, and let fbe the number offaces. Then 

v - e+ f= 2. 
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Proof There are many proofs of this 
theorem, but here is one that is particu­
larly easy to visualize. Since the poly­
hedron is convex, if you place your eye 
in the center of one face, you can see all 
the other faces with no overlap. If you 
pull your eye back just a little, you will 
also be able to see the edges of the face 
you are looking through. Then we proj­
ect this image onto a plane. This dis­
torts angles and distances, but the edges 
remain straight, so we obtain in the 
plane a figure made of various points 
and line segments connecting them, 
and the faces of the original polyhedron correspond to the plane polygons in this 
figure, plus one more face (the one you were looking through) that corresponds 
to the area of the plane outside the figure. Here, for example, is the plane figure 
you would get from an octahedron. 

Now we perform two kinds of operations on this figure. 
(a) Choose an edge that separates two faces, or that separates one face from 

the area outside the figure, and remove that edge. This decreases the number of 
edges by one, and also decreases the number offaces by one, since two faces are 
now joined together. So the expression v - e + fis unchanged. 

(b) If at some point in the procedure 
there is a vertex that has only one edge 
coming out of it, remove that vertex and 
that edge. This decreases both v and e by 
one, so again the expression v - e + f is 
unchanged. For example, after remov­
ing edges a, b, c in the diagram above, 
we are left with a vertex A with just one 
edge d. 

Let us think about what happens. We do step (a) as many times as possible. 
If step (a) is no longer possible, then there are no loops in the remaining graph 
of vertices and edges, so there must be some ends to the graph (since the graph 
is finite), and then we can do step (b). If there are no edges at all remaining, 
then the figure must be reduced to points only. But the original figure is con­
nected, and it remains connected by performing step (a) or (b), so it is just one 
point. Then v = 1, e = 0, f= 1, so v - e + f= 2. Since the expression v - e + f 
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was unchanged by all the steps, the original v - e + f also is equal to 2, as 
required. 

Remark 45.1.1 
The hypothesis "convex" in this theorem is stronger than necessary. For exam­
ple, the result is still true for the punched-in icosahedron (44.2.3) even though it 
is not convex. The correct hypothesis for this theorem is that the polyhedron 
should be simply connected. However, to explain properly what this means, and 
to prove the theorem in this more general setting, we must refer the reader to a 
book on algebraic topology. 

Euler's theorem has a very useful consequence relating to the face angles of 
a polyhedron. At any vertex of a convex polyhedron, the sum of the face angles 
of the faces at that vertex must be less than 2n, as we have seen earlier (XI.21). 
So we define the defect <>v at the vertex V to be 2n minus the sum of the face 
angles at V. The defect <>v is always positive. 

Corollary 45.2 (Descartes) 
In a convex polyhedron, the sum of the defects at all the vertices is equal to 4n. 

Proof We compute as follows: 

L<>V = L(2n - L(face angles at V)) 
v v 

= 2nv - L (all face angles), 

where v is the number of vertices. Now the sum of the face angles of an n-sided 
polygon is (n - 2)n. For each n, let fn be the number of faces having n sides. 
Then the total number of faces is f = L fn, and the number of edges e is just 
~ L n fn. Combining these observations with the above, we have 

L<>v = 2nv - L(n - 2)nfn 
v n 

= 2nv - n L n fn + 2n L fn 
n n 

= 2n( v - e + f) = 4n, 
as required. 

Remark 45.2.1 
This result is a powerful tool in that it limits the possible number of vertices 
with a particular configuration of faces in a convex polyhedron. We will see ap­
plications in several results below: (45.6), (46.3), (46.4.1). 

Now we come to Cauchy's rigidity theorem. This was Cauchy's first mathe-
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matical accomplishment, before he went on to lay the foundations of a rigorous 
theory of convergence (Cauchy sequences) and develop the theory of functions 
of a complex variable (Cauchy-Riemann equations, Cauchy integral formula, 
etc.). A gap in the first lemma was discovered and repaired by Steinitz one hun­
dred years later. 

The problem is this. Suppose we have two convex polyhedra, made of con­
gruent faces, similarly arranged. More precisely, this means we are given a one­
to-one correspondence rp from the set of faces FI , ... , Ff of the first polyhedron to 
the set of faces F~, .. . , F[ of the second polyhedron, so that for each i, Fi is con­
gruent to rp(Fi) , and furthermore, rp extends to one-to-one correspondences of 
vertices and edges preserving all incidence relations. Then we wish to conclude 
that the two polyhedra are congruent. Note that this formulation allows mirror 
images, so that congruence means rigid motion in space followed possibly by 
reflection in a plane. 

Cauchy's idea is to study how the dihedral angles compare along corre­
sponding edges. If all the dihedral angles are the same, then we can build the 
two polyhedra step by step into congruent figures. On the other hand, if the di­
hedral angles change, then we will track their increase or decrease around each 
vertex and eventually use Euler's theorem to make a contradiction. To study 
what happens at a single vertex, we intersect the faces of the polyhedron with a 
small sphere around the vertex. This produces a spherical polygon whose inte­
rior angles are precisely the dihedral angles of the original polyhedron. We call 
it the vertex figure at the vertex V. This leads us to the study of polygons with 
changing angles, which is the first lemma. 

Lemma 45.3 (Steinitz) 
Suppose given in the plane two convex polygons AIAz ... An and BIBz ... Bn with all 
sides equal except possibly the last: AiAi+1 = BiBi+1 for all i = 1,2, ... , n - 1. Sup-
pose also that the angles of the first polygon are less than or equal to the angles of the 
second, LAi::; LBi , for i = 2, .. . , n - I, with at least one strict inequality. Then 
AlAn < BIBn. 

Proof We proceed by induction on n. 

Case 1 For n = 3 it is elementary. In fact this is Euclid (1.24). 

Case 2 Suppose that n 2 4 and for 
some i that LAi = LBi . Then the trian­
gle Ai- 1AiAi+1 is congruent to the tri­
angle Bi-IBiBi+l . So Ai-IAi+1 = Bi- IBi+I, 
and the result follows by applying the 
induction hypothesis to the new poly­
gons of n - 1 vertices obtained by omit­
ting Ai and Bi. 

A, 

, , 
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Case 3 Suppose that n ~ 4 and all the B angles are strictly bigger than the A 
angles. Construct a point A~ such that AIA2 = A~A2 and LA~A2A3 = LB2. We 
compare Al ... An to A~A2 ... An and then the latter to B] ... Bn. In the first com­
parison, LA3 = LA3, so AIA2 < A~A2 by Case 2. In the second comparison, 
LA2 = LB2, so A~A2 < B]B2 again by Case 2, and we are done. 

But wait! There is a snag. If the new polygon A~ A2 ... An is not convex, we 
cannot apply the earlier cases, and the proof fails. 

Case 4 If this happens, then there 
must be a point A~ intermediate be­
tween Al and A~, for which A~A2 = 

A]A2, and A~ , An,An-1 are collinear. 
Then we first compare A] ... An to 

A~ A2 ... An and obtain AlAn < A~ An by 
Case 2. Next we compare the polygon 
A~A2" ·An-] to B]B2 ·· · Bn- l , and obtain 
A~An-] < BJBn-] by the induction hy­
pothesis. On the other hand, since 
A~,An,An-1 are collinear, we have 
A~ An = A~ An-l - An- IAn. Putting these 
together, we get 

AlAn < A;An 

= A; A n- l - An-IAn 

< BJBn-l - Bn-IBn 

A .... 

where the last inequality is just the triangle inequality (1.20). Thus the proof is 
complete. 

Remark 45.3.1 
In fact, what we need for Cauchy's theorem is not this lemma for plane poly­
gons, but the analogous result for polygons on the surface of a sphere. The ex­
tension to spherical polygons is not too difficult because the proof uses results 
from only the first part of Euclid, Book I, before the introduction of the parallel 
postulate. The verification that the needed results hold in spherical geometry is 
left to the reader (Exercises 45.3-45.8). 

Lemma 45.4 
Let AJ ... An and BI ... Bn be two convex polygons in the plane or on the sphere, with 
corresponding sides equal: AiAi+l = BiBi+J for i = 1, ... ,n (interpreting n + 1 = 1). 
For each i, mark the vertex Ai with + if LAi < LBi, with - if LAi > LBi, or with no 
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mark if the angles are equal. Then either all corresponding angles are equal, or, as we 
make a circuit of the first polygon, ignoring unmarked vertices, the sign must change 
at least four times. 

+ 

Proof Of course, the number of 
changes of sign is even, so if there were 
some, but less than four, there would be 
exactly two changes of sign. In that case 
one could draw a diagonal AiAj cutting 
the polygon into two convex polygons, 
one of which contains only - vertices, 
and the other only + vertices. Applying 
the previous lemma to the - side, we 
obtain AiAj > BiBj. Applying it to the + 
side gives AiAj < BiBj, a contradiction. 

Theorem 45.5 (Cauchy's Rigidity Theorem) 

A-I 

Suppose we are given two convex polyhedra and a one-to-one map rp from the set of 
faces of one to the other, so that corresponding faces are congruent, and are similarly 
arranged (as described above). Then the two polyhedra are congruent. 

Proof For each edge of the first polyhedron, we mark it +, -, or no mark, ac­
cording as its dihedral angle is less than, greater than, or equal to the corre­
sponding dihedral angle of the second polyhedron. At each vertex we intersect 
the polyhedron with a small sphere, and look at the resulting vertex figure. This 
is a convex spherical polygon, and its vertices inherit markings + or - from the 
edges, which by construction correspond to the increase or decrease of this 
polygon angle as compared to the vertex figure of the second polyhedron. We 
conclude from the lemma (45.4) that for each vertex, if we make a circuit of the 
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edges meeting that vertex, either they are all unmarked, or there are at least 4 
changes of sign. We will arrive at a contradiction by counting the total number 
of changes of sign in two different ways. 

Case 1 Suppose that all edges are marked + or -, in other words, all the dihe­
dral angles are changing. Let t denote the sum over all the vertices of the num­
ber of changes of sign of edges around that vertex. Then by the lemma (45.4) 
clearly t ~ 4v, where v is the number of vertices. 

On the other hand, let us count by faces. On a triangular face, two adjacent 
edges must have the same sign, so that face can contribute at most two changes 
of sign to its three vertices. Similarly, a face of n sides can contribute at most n 
changes of sign if n is even, or n - 1 if n is odd. In particular, 

t~2f3+ Lnfn, 
n;;,:4 

where fn denotes the number of faces of n sides. Putting together the two in­
equalities for t gives 

4v ~ 2f3 + Lnfn. 
n;;':4 

Now we use Euler's theorem, which can be written v = e - f + 2, and substi­
tute e = ~ I: n fn and f = I: fn. This gives 

2 L(n - 2)fn + 8 ~ 2f3 + Lnfn, 
n;;':4 

or 

L(n - 4)fn + 8 ~ 0, 
n;;':4 

which is impossible, because the terms in the sum are all nonnegative. 

Case 2 Now suppose there are some marked and some unmarked edges. Of 
course, if no edges are marked, all the dihedral angles are equal, and the two 
polyhedra are congruent. We will imitate the previous proof using only those 
vertices and edges that are marked. We call this a net. The vertices of the net are 
those vertices of the polyhedron that have a marked edge coming out of them. 
The edges of the net are the marked edges of the polyhedron. A net-face of the 
net is any maximal union of faces of the polyhedron that are not separated by 
edges of the net. A net-face is no longer a plane polygon, but it is a connected 
surface bounded by edges of the net. 

Now we repeat the previous argument using only the vertices, edges, and 
net-faces of the net. Denote the numbers of these by v', e', f'. The argument is 
all the same, except for the application of Euler's theorem, which does not apply 
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as stated, because a net may not be a polyhedron. Nevertheless, we can apply 
the proof of Euler's theorem (45.1) to the net, and the only difference is that the 
plane figure of points and lines may not be connected. At the end of the proof, 
there may be more than one point, so we find that v' - e' + f' ~ 2. With this 
inequality, the argument of Case 1 still works, so we have a contradiction. 

The only remaining possibility is that all the dihedral angles are equal, so the 
two polyhedra are congruent. 

Remark 45.5.1 
This result is false without the hypothesis of convexity. See Cromwell (1997), 
Chapter 6, for an interesting discussion of nonconvex flexible polyhedra. 

As an application of the theorems of this section, we will classify all convex 
polyhedra that can be formed using only equilateral triangles (called deltahedra 
by some authors). 

Theorem 45.6 
There are exactly eight convex polyhedra all of whose faces are equilateral triangles. 
Each one is uniquely determined up to congruence, once the length of an edge is 
specified. 

Proof Our strategy is this. Since the faces are all equilateral triangles, we know 
from (44.3) that at each vertex there must be 3, 4, or 5 triangles. Since the tri­
angles are equilateral, the corresponding defect at such a vertex will be n,2n/3, 
or n/3. Let a be the number of vertices with 3 triangles, b the number with 4 
triangles, and c the number with 5 triangles. Then a, b, c are nonnegative in­
tegers, and according to Descartes's theorem (45.2) we have 

or 

2 1 
na+-nb+-nc = 4n, 

3 3 

2 1 
a+-b+-c = 4. 

3 3 

This equation has only a finite number of solutions in nonnegative integers. 
So we will list all possible solutions, then discuss existence or nonexistence of 
the corresponding polyhedron until we have a complete classification. See Table 
1 for the list of possible a, b, c. 

As a first step, we can fill in the tetrahedron, octahedron, and icosahedron, 
which we know to exist. Next let us show that some combinations of a, b, care 
impossible. I claim that we cannot have a 3-face vertex adjacent to a 5-face ver­
tex. Indeed, at a three-face vertex, the dihedral angles are uniquely determined 
(44.5) and are those of a tetrahedron. So imagine a tetrahedron sitting on one 
face of an octahedron. The joined vertices are then 5-face vertices, and two of 
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Table 1. Convex polyhedra with equilateral triangular faces. 

a b c Name or Note v e f 
4 0 0 tetrahedron 4 6 4 
3 1 1 (1) 
3 0 3 (1) 
2 3 0 triangular dipyramid 5 9 6 
2 2 2 (1) 
2 1 4 (1) 
2 0 6 (1) 
1 4 1 (2) 
1 3 3 (2) 
1 2 5 (2) 
1 1 7 (2) 
1 0 9 (2) 
0 6 0 octahedron 6 12 8 
0 5 2 pentagonal dipyramid 7 15 10 
0 4 4 snub disphenoid 8 18 12 
0 3 6 tricapped triangular prism 9 21 14 
0 2 8 bicapped square antiprism 10 24 16 
0 1 10 (3) 
0 0 12 icosahedron 12 30 20 

the faces of the octahedron are in the same planes as faces of the tetrahedron 
(Exercise 44.3), so the figure is not convex in our strict sense. Ifwe push one of 
the faces of the 5-vertex inward, to be no longer in the same plane as the face of 
the tetrahedron, the other one will be forced outward, so the figure will not be 
convex. Thus we cannot have a 3-vertex adjacent to a 5-vertex. Consequently, if 
a> 0, then a + b 2 4, and if c > 0, then b + c 2 6. This rules out all those cases 
indicated by note (1). 

Next, suppose there is just one 3-vertex. The 3 adjacent vertices must be 4-
vertices by the above argument, and then the figure closes at 6 faces to make a 
triangular dipyramid, that is, two tetrahedra glued together along one face. This 
gives the existence of the dipyramid (a, b, c) = (2,3,0), and shows the impossi­
bility of a = 1. This is note (2). 

Now let us consider existence. For (0,5,2) we have the pentagonal dipyramid, 
which is two pentagonal pyramids glued along their pentagonal face. For (0,3,6) 
we have the tricapped triangular prism, which is formed as follows. Take a trian­
gular prism-that is, two equilateral triangles in parallel planes, joined by three 
squares-and onto each square face glue a square pyramid. For (0,2,8) we have 
the bicapped square antiprism. A square antiprism is made of two squares, in par­
allel planes, but with their axes tilted at 45° angles to each other, and joined by 8 
equilateral triangles. On each square face, glue a square pyramid. 
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We can show that the case (a, b, c) = (0,1,10) is impossible by an argument 
similar to note (2) above. If there were only one 4-vertex, and all the rest 5-
vertices, the figure would grow from the 4-vertex the same as the bicapped 
square antiprism, and this would force another 4-vertex on the other side. This 
is note (3). 

We have saved the case (a, b, c) = 
(0,4,4) for last, since its existence is 
less elementary than the others. We call 
it the snub disphenoid after Johnson 
(1966). It has also been called a triangu­
lar dodecahedron, or Siamese dodeca­
hedron. To show the existence of this 
figure, take a triangular dipyramid, and 
cut it open along two of its edges, from 
top to bottom. Now push the top and 
bottom vertices A, B toward each other, 
forcing apart the split vertex C, D, and 
keeping EF fixed. If you continue this 
process all the way, eventually the fig­
ure will lie flat, with A on Band C, D at 
the outside corners. 

Somewhere in between, there is a 
point where the distance of AB and CD 
are equal. Then the angles of the non­
planar quadrilateral ACBD are all equal. 
So you can take a second one of these 
figures and glue the two together along 
ACBD, with the roles of AB, CD re-

B 

versed, and obtain the desired figure. {3 

p 

Note that all the other polyhedra in this list are easily seen to be con­
structible by ruler and compass constructions. For the snub disphenoid, our ex­
istence proof used the intermediate value theorem in the real numbers to argue 
that as AB decreases and CD increases, there is a point where they become 
equal. In fact, this figure is not constructible-it requires the solution of a cubic 
equation to find its dimensions (Exercise 45.10). 

Now we have ruled out the impossible cases, and have shown existence for 
the remaining cases. To show uniqueness, observe that for each total number of 
faces, there is only one triple (a, b, c) possible, and this determines the arrange­
ment of the faces. So by Cauchy's theorem (45.5) we conclude that the figures 
are unique up to congruence, after fixing a scale factor. 
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Remark 45.6.1 
This also settles a question raised earlier (44.5.2), namely, the only convex fig­
ures that can be made with 8 or 20 equilateral triangles are the octahedron and 
the icosahedron, thus vindicating Euclid's definitions. 

Exercises 

45.1 For each of the five regular solids: 

(a) Calculate the number of vertices, edges, and faces, and verifY Euler's theorem. 

(b) Calculate the defect at a vertex and verifY Descartes's theorem (Corollary 45.2). 

45.2 Make an example to show that the result of Lemma 45.3 may fail if the polygons 
are not convex. 

Spherical Geometry 
In the following exercises we develop some elementary results of spherical geom­
etry that are needed for the spherical form of Steinitz's lemma. We fix a sphere (of 
radius I for convenience) in Euclidean three-space IR3. The points of the spherical 
geometry are points on the surface of the sphere. The lines are great circles on the 
sphere, that is, circles lying in a plane passing through the center of the sphere. A 
circle will be the set of points equidistant from a given point, or equivalently, the 
intersection of any plane with the sphere. We measure angles between lines and 
circles by the angle between their tangent lines in 3-space. We measure length of a 
line segment by the angle (in radians) that it subtends at the center of the sphere. 
So a complete great circle has length 2n. A line from the north pole to the equator 
has length n/2. 

We have seen earlier (Exercise 34.13) that this geometry does not satisfY Hilbert's 
axioms. However, we will see in these exercises that most of the results of the first 
part of Euclid's Book I still hold, with suitable modifications. When we speak of a 
triangle or a polygon we will always assume that it lies in a single hemisphere. In 
particular, the length of any side must be less than n. If we restrict our attention to 
one hemisphere, then the concepts of betweenness function well, and we can 
speak of the inside of a triangle, or of a convex polygon. To any of Euclid's propo­
sitions we will prefix "s" to denote the corresponding statement in spherical geom­
etry. Thus for example, (s1.4) is the SAS theorem for spherical triangles. 

45.3 Show that the construction of an equilateral triangle (sI.l) works for a line segment 
AB of length less than 2n/3, but fails if 2n/3 < AB < n. What happens if the length 
of AB is exactly 2n/3? 

45.4 VerifY that (s1.2)-(sI.l5) are all true, and note carefully when a different proof is 
necessary. Feel free to use the existence of rigid motions to prove congruences (cf. 
Exercise 34.13). 
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45.5 Give examples to show that (sI.16) and (sI.17) are false. What goes wrong with the 
proof of (I.16) ? 

45.6 Euclid uses (I.16) to prove (U8), (I.19), and (1.20). This will not work in the spher­
ical case. Instead, use (XI.20) to prove (sI.20). Then use (sI.20) to prove (sI.19), and 
finally use (sI.19) to prove (sI.18) by contradiction. 

45.7 Coming to (sI.22), the construction of a triangle from three given sides, recall that 
in our definition of a spherical triangle, we assume that it is contained (properly) in 
a single hemisphere. Show then that the sum of the sides of any triangle must be 
less than 27[, and this condition must be added to the condition of (1.22) to make the 
construction possible. 

45.8 Show that (sI.23) -( s1.26) are all ok, using the results proved above. In particular, 
this gives us (sI.24) used in the Steinitz lemma. 

45.9 Make models of each of the new polyhedra in Table 1. 

45.10 In the construction of the snub dis­
phenoid described in the proof of 
Theorem 45.6, let H be the point 
where AB meets the plane of CEFD. 
Let 0 be the angle EHF, and let 
x = cosO. 

(a) Show that for AB = CD, x satisfies 
an irreducible cubic equation with 
integer coefficients (taking the edge 
length EF to be 1). Hence the dis­
phenoid is not constructible by ruler 
and compass. 

c~----------~~ 

(b) Does this cubic equation require a real square root or an angle trisection for its 
solution (cf. Section 31)? 

(c) Solve the equation above and use it to get an approximate value for d = AB = 

CD. Answer: d ~ 1.28917. 

(d) Compute the dihedral angle along the edge EF. Answer: 96°11'54". 

45.11 Imitating the constructions used to make the solids in Table 1, 

(a) show that a square dipyramid is the same as an octahedron, and 

(b) a bicapped pentagonal antiprism is the same as an icosahedron. 

46 Semiregular and Face-Regular Polyhedra 

After discussing the regular polyhedra and the polyhedra made from equilateral 
triangles, it is natural to ask what other convex polyhedra can be made using 
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only regular polygons as faces. We call these face-regular polyhedra. Among 
these the most symmetric are the semiregular, or Archimedean, solids. We define 
these to be convex polyhedra having only regular polygons as faces, and uniform 
in the sense that each vertex has the same number ofthe same kinds offaces, in 
the same cyclic order at each vertex. (This terminology is not universal. Some 
authors use the word "uniform" to denote the stronger condition that there is a 
rigid motion sending any vertex to any other-cf. (46.2) below.) 

We can describe a semiregular solid by giving the configuration of faces at a 
single vertex. The symbol (al, ... , ak) will describe a vertex having an aI-sided 
regular polygon, an az-sided polygon, ... , and an ak-sided polygon, in that order. 
So the symbol (3,3,3) would mean three equilateral triangles at each vertex­
this is the regular tetrahedron. The symbol (3,4,3,4) describes a solid in which 
each vertex has two equilateral triangles and two squares, alternating with each 
other as you make a circuit around the 
vertex. An example of this is the cu­
boctahedron. Take a cube and mark the 
middle of each edge. Join the markings 
on each face to make a smaller square. 
Then cut off each corner of the cube 
along the lines. This leaves a solid with 
6 squares and 8 equilateral triangles 
having the configuration (3,4,3,4) at 
each vertex. 

Another way to cut down a regular 
solid is illustrated by the truncated tetra­
hedron. Take a tetrahedron and mark 
the thirds of each edge. Join the mark­
ings on each face to make a regular 
hexagon. Cut off the vertices of the tet­
rahedron along the lines. This leaves a 
figure with four regular hexagons and 
four equilateral triangles as faces, and the arrangement (3,6,6) at each vertex. 

By these methods you can make many more semiregular solids. Try it. 
Another construction is to take two congruent regular n-gons, for any n ;;::: 3, 

in parallel planes, lined up with each other, and join corresponding edges with 
squares. This makes an n-sided prism. Its symbol is (4,4, n). When n = 4 it is a 
cube. 

If you again take two regular n-gons in parallel planes, but rotate one by n/n, 
so that the vertices of one are lined up with the edges of the other, and join them 
by equilateral triangles (adjusting the height as needed), you get an n-sided anti­
prism. For n = 3 this is an octahedron. 

Now we will see that aside from the infinite families of prisms and anti­
prisms, there is only a finite number of semiregular solids. They are often called 



Plate XVII. The snub cube (left), made of 6 squares and 32 triangles, is one of the Archimedean 
semi-regular polyhedra (46.1), (Exercise 46.4). The truncated tetrahedron (middle), made of 4 
hexagons and 4 triangles, is another of the Archimedean solids (46.1). The disphenocingulum (right) 
is a face-regular solid made of 4 squares and 20 triangles (Exercise 46.7). 

Plate XVIII. The stretched cube (left), made of 6 squares and 12 triangles, does not exist: cf. 
(46.4.1), (Exercise 46.8). The snub disphenoid (middle), made of 12 triangles, is one of the facc­
regular solids (45.6), (Exercise 45.10). The tricapped triangular prism (right), made of 14 triangles, 
is another of the face-regular solids (45.6) . 



Plate XIX. The bilunabirotunda (left) is a face-regular solid made of 4 pentagons, 2 squares, and 8 
triangles (Exercise 46.9). The dodecahedron (middle), made of 12 pentagons, is one of the five 
regular solids (44.2). This model is made from 6 sheets of origami paper by folding only (no glue). 
On the right is an icosahedron (20 triangular faces) made of jellybeans and toothpicks, with a tetra­
hedron inside it, to help visualize how the tetrahedron group is a subgroup of the icosahedral group 
(Exercise 47.9). 

Plate XX. The snub dodecahedron (left) is made of 12 pentagons and 80 triangles. The truncated 
icosahedron, also called a soccer ball (right), is made of 12 pentagons and 20 hexagons. Both are 
Archimedean semi-regular solids (46.1). These models were made as a group project by my 
freshman seminar class. Each person made one pentagon with attached triangles or hexagons, then 
we assembled the pieces with tape. 
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Archimedean solids, because they were studied in a lost book of Archimedes (cf. 
Pappus (1876), Book V, Sections 19 ff). They were rediscovered and classified by 
Kepler. 

Theorem 46.1 
Aside from the five regular polyhedra and the two infinite families of prisms and 
antiprisms, there are just thirteen (and one variant) other semiregular polyhedra. 

Proof Our strategy is similar to that used in classifying the convex figures made 
of triangles. First we will use numerical criteria to limit the possible behavior at 
a vertex, and then we will discuss existence and uniqueness of the correspond­
ing solids. 

Since the solids are convex, the sum of the face angles at a vertex must be 
less than 2n (cf. proof of (44.3)). The face angle of a regular n-gon is (n - 2)/nn, 
so at a vertex (al,'" ,ak) we must have 

which gives 

2: a;-2 
--n<2n, 

a; 

k 2 2: -> k-2. 
;=1 a; 

This is our main numerical restriction on possible vertex configurations. 

Case 1 Each vertex has three faces, say (a, b, c). Then our inequality is 

1 1 1 1 -+-+->-. abc 2 

If a, b, c are all equal, then a = 3,4, or 5. These correspond to regular solids, 
as we have seen before. 

If at least two of a, b, c are different, say a #- b, then as we go around the 
edges of a c-face, the adjacent faces must alternate between a and b. It follows 
that c is an even number. This restriction, together with our inequality, limits 
the possible triples (a, b, c) to those shown in Table 2 (Exercise 46.1). 

Case 2 Each vertex has four faces, say (a,b,c,d). In this case our inequality is 

111 1 -+-+-+-> l. 
abc d 

If a = 3, there is another limitation. Look at what happens around a triangle. At 
each vertex of the triangle, band d are adjacent faces, sharing an edge with the 
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Table 2. The semiregular polyhedra. 

Vertex 
Figure Name v f3 f4 f5 Other fn 

(3,3,3) tetrahedron 4 4 
(4,4,4) cube 8 6 
(5,5,5) dodecahedron 20 12 
(4,4,n) n-sided prism, n ~ 3, n '" 4 2n n fn = 2 
(3,6,6) truncated tetrahedron 12 4 f6 =4 
(4,6,6) truncated octahedron 24 6 f6 = 8 
(5,6,6) truncated icosahedron 60 12 f6 = 20 
(3,8,8) truncated cube 24 8 f8 = 6 
(3,10,10) truncated dodecahedron 60 20 flO = 12 
(4,6,8) truncated cuboctahedron 48 12 f6 = 8, f8 = 6 
(4,6,10) truncated icosidodecahedron 120 30 f6 = 20, flO = 12 
(3,3,3,3) octahedron 6 8 
(3,3,3,n) n-faced antiprism n ~ 4 2n 2n fn = 2 
(3,4,3,4) cuboctahedron 12 8 6 
(3,5,3,5) icosidodecahedron 30 20 12 

(3,4,4,4) { rhombicuboctahedron } 
pseudorhombicuboctahedron 

24 8 18 

(3,4,5,4) rhombicosidodecahedron 60 20 30 12 
(3,3,3,3,3) icosahedron 12 20 
(3,3,3,3,4) snub cube 24 32 6 
(3,3,3,3,5) snub dodecahedron 60 80 12 

triangle, while c is opposite the triangle at each vertex. It follows that b = d. This 
restriction, together with the inequality, limits possible vertex types to those in 
Table 2 (Exercise 46.2). 

Case 3 Each vertex has five faces. Our inequality is 

5 2 
L->3, 
i=l ai 

and this already limits us to the three cases shown. As we cannot have six or 
more faces at a vertex, these are all the possibilities (Exercise 46.3). 

Next we come to the questions of existence and uniqueness. Once we have 
fixed a vertex arrangement, one can check easily that the global arrangement of 
the polyhedron is uniquely determined (with one exception noted below), so 
uniqueness will follow from Cauchy's theorem ( 45.5). 

As for existence, all except the last two can be constructed using Euclidean 
tools, by methods similar to those suggested above, so I will leave to you the 
pleasure of figuring out the details and building models of as many as you like. 
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One word about the rhombicubocta­
hedron, which is a special case. This 
solid can be made as follows. Take a 
cube, and in the middle of each face 
draw a smaller square with edges paral­
lel to the edges of the cube. Now re­
move the edges of the cube, and join 
squares in adjacent faces by squares 
(after adjusting the size of the smaller 
squares appropriately). The corners of 
the original cube are then replaced by 
equilateral triangles, and we obtain the 
rhombicuboctahedron. It is a sort of 

...... -
I 

I 

'- - - --

sphere wrapped up around the equator with a ribbon of 8 squares, and two other 
similar ribbons in mutually perpendicular north-south axes. Or you can think of 
it as an octagonal prism containing the equator, with caps on the top and bot­
tom. If you rotate the top cap by 45°, you get a new figure, which is still semi­
regular with vertex (3,4,4,4), but not congruent to the original figure . This is 
the pseudorhombicuboctahedron, discovered only in 1930 (see Ball (1940), p. 137). 

The last two in the list, the snub cube and the snub dodecahedron, are dif­
ferent in that they cannot be constructed by any simple operation applied to the 
regular solids. They are also different in that each one comes in a left-handed 
and a right-handed version, congruent to each other by reflection, but not by 
any orientation-preserving motion of 3-space. We give in Exercise 46.4 a method 
of constructing the snub cube by solving a cubic equation, and I leave to you to 
find a construction of the snub dodecahedron. 

Corollary 46.2 
The semiregular polyhedra have the following additional properties (cf. (44.4)): 

(d) The dihedral angles at one vertex are equal to the dihedral angles at every 
other vertex. 

( e) The vertices lie on a sphere. 
(f) Except for the pseudorhombicuboctahedron, there is a congruence of the solid 

taking any vertex to any other vertex. 

Proof This is a consequence of the classification, because we note in each case 
that the vertex figure determines the global arrangement of faces, and that 
arrangement is the same starting from any vertex. Thus Cauchy's theorem 
(45.5) gives a congruence. This proves (f), which implies (d) and (e). 

In the case of the pseudorhombicuboctahedron, its construction from the 
normal rhombicuboctahedron shows that it satisfies (d) and (e). But the rigid 
motions of this figure are not transitive on the vertices (Exercise 46.5). 
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Next we consider the nonuniform convex face-regular polyhedra. We have 
seen five of these in the classification of solids bounded by equilateral triangles 
(45.6). Others can be made by cutting or gluing polyhedra we already know. For 
example, start with an icosahedron. The five faces at a single vertex are 
bounded by a regular pentagon. Cutting the figure by the plane of that pentagon 
gives a pentagonal pyramid on one side, and leaves a diminished icosahedron, 
with one pentagonal face and 15 triangle faces, on the other side. If we cut off a 
second pentagonal face parallel to the first one, we get a pentagonal antiprism. 
But if we cut off a second pentagonal face adjoining the first, we get a bidimin­
ished icosahedron. Then we can cut off a third pentagonal face, making a tridi­
minished icosahedron with 3 pentagonal and 5 trianuglar faces. This last figure is 
minimal in the sense that it cannot be separated further into the union of regu­
lar-faced polyhedra, so it is called an elementary face-regular polyhedron. The 
tetrahedron is already elementary as it stands. But the octahedron can be sepa­
rated into two square pyramids. 

On can also make face-regular poly­
hedra by gluing others together. For ex­
ample, one can glue a square pyramid 
onto one face of a cube, or onto two op­
posite faces of a cube. Or one could cut 
out the middle section of the rhombi-
cuboctahedron and glue the top and 
bottom caps together (in two different ) - - - -
ways) to make new figures. 

According to Johnson's classification (1966) there are 91 nonuniform convex 
face-regular polyhedra. The complete classification of these is not a simple 
matter, so we will confine ourselves to proving that their number is finite. 

Theorem 46.3 
There is only a finite number of nonuniform convex face-regular polyhedra (up to 
congruence, after fixing the length of an edge). 

Proof The key point (see lemma below) is to show that for n sufficiently large, 
any convex face-regular polyhedron with an n-face must be a prism or an anti­
prism, which is uniform. It follows that for nonuniform solids, there is only a 
finite number of possible face types, and hence only a finite number of possible 
vertex configurations. Each of these has a positive defect, and there is only a 
finite number of ways of choosing these to add up to 4n (45.2). Then there is 
only a finite number of ways of arranging these vertex types into a global figure, 
and by Cauchy's theorem any two with the same arrangement are congruent. So 
it remains only to prove the following lemma. 
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Lemma 46.4 
There is an no such that if a convex face-regular polyhedron has a face with n ;::: no 
sides, then it is either a prism or an antiprism. 

Proof This lemma is actually true for no = 11, but to make the proof simpler, 
we will prove it for no = 42. Let us consider what happens at a vertex of the n­
gon, and to begin with we consider a 3-face vertex (a, b, n). We know from the 
proof of (46.1) that 

1 1 1 1 -+-+- >-. 
a b n 2 

On the other hand, in order to make a 3-dimensional figure, the sum of the face 
angles of the a and b faces must be greater than the face angle of the n-gon. This 
gives a second inequality 

From these two it follows that 

1 1 1 1 -+---<-. a b n 2 

1
1 1 11 1 ----- <-. 
2 a b n 

Now, the minimum nonzero value of the expression on the left, for a, b ;::: 3, is 
1/42 (Exercise 46.6). So if we take n ;::: 42, this inequality implies 

1 1 1 
a+Z;=Z' 

so (a, b) = (3,6) or (4,4). Thus we have shown that for n;::: 42, the only possible 
3-faced vertex configurations at a vertex of the n-gon are (3,6, n) and (4,4, n). 

A 5-faced vertex including an n-face for n ;::: 6 is impossible, so let us con­
sider a 4-face vertex (a, b, c, n). In this case, the same argument as above shows 
that 

1 1-~-~-~1<~· abc n 

The minimum nonzero value of this expression for a, b, c ;::: 3 is 1z, so for n ;::: 12, 
we obtain 

111 
-+-+-=1, 
abc 

in which case a = b = c = 3. So if we have a 4-face vertex along the n-gon, it 
must be (3,3,3, n). 
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Now we will show that the resulting 
figure must be a prism or an antiprism. 
First suppose A is a (3,6, n) vertex, and 
let B be the vertex at the other end of 
the 3-6 edge. Because of the dihedral 
angle along the 3-6 edge, the angle be­
tween the two other edges at B will be 
the same as the face angle at A - cf. 
(44.5) . Therefore, the remaining faces at 
B must be another n-gon, or (3, 6), (4, 4), 
or (3,3,3) by the argument above. But 
the latter three cases lead to face angles 
at B totaling 2n, which is impossible. 
Therefore, the third face at B is another 
n-gon. Then the third vertex C of the 
triangle ABC becomes a (3 , n, n) vertex, 
which is impossible. Thus (3,6, n) can-
not occur. 

Next suppose there is a (4,4, n) ver-
tex A. Let B be the vertex at the other 
end of the 4-4 edge . Then as above, the 
angle between the edges at B is the 
same as at A. We cannot add (3,6) or 
(4,4) or (3,3,3), as before, so we must 
have another n-face at B. This forces the 
whole figure to be an n-prism. 

Now suppose there is a (3 , 3,3, n) 

~---~( 

A 

vertex at A. At the next vertex of the n- c D 
gon we then have at least one triangle. ~ 
We have seen that (3 , 6, n) is impossible, }' ~ I ~ 
so it is also a (3 ,3,3,n) vertex. Thus all ~ 
the vertices of the n-gon are (3,3,3, n) A 13 
vertices. These vertices are not rigid, ~ 

but if we fix one dihedral angle IX along the edge AB, the other dihedral angles 
between the triangles are all determined, as are the angles between edges at the 
new vertices C, D, etc. Furthermore, we see that the possible values of these an­
gles repeat after moving over two vertices. If the angles IX ,O along the n-gon are 
all equal, then the angles at C, D will be equal to those at A, B, and by the same 
reasoning as in the two previous cases, the remaining face at C must be another 
n-gon. This forces the figure to be the n-antiprism. 

If, on the other hand, IX and 0 are different, then the angles at C, D will be one 
greater and one lesser than those at A,B. We may assume that the angle at C is 
greater than the one at A. Then the remaining face at C will be an n'-gon for 
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some n' > n. But the n'-gon also passes through D, so the angle at D must be 
equal to the one at C, a contradiction. 

Thus we see that the only convex face-regular polyhedra containing an n-gon 
for n ;::: 42 are the prisms and the antiprisms, as required. 

Example 46.4.1 
To illustrate the process of finding face-regular solids, let me give an example. 
One day I was searching for solids made of only squares and triangles (Exercise 
46.7) and discovered the following one, which I call a stretched cube. Take a 
cube, choose two opposite vertices A, B, and cut it in two pieces so that one 
piece has the three faces at A and the other piece has the three faces at B. Now 
pull the two pieces apart just far enough so as to fill in the gap with equilateral 
triangles. First I imagine the construction. Then I make a sketch, to see how the 
faces will fit together. Then I list the vertex types and check that the sum of the 
deficiencies is 4n. 

Number Vertex Type Deficiency Total Deficiency 
2 (4,4,4) n/2 n 
6 (3,3,4,4) n/3 2n 
6 (3,3,3,3,4) n/6 n 

4n 

Then I make a cardboard model. I had to squeeze a bit to make the last 
couple offaces fit in place, but that inaccuracy did not seem more than the usual 
margin of error in my models. It was only later that I realized that this poly­
hedron is impossible (Exercise 46.8). So now I like to hold the model up in front 
of my class and say, "This polyhedron does not exist." 

Exercises 
46.1 Show that the only possible triples of integers (a, b, c) all greater than or equal to 3, 

satistying the inequality 
1 1 1 1 
-+-+->­
abc 2 

and the additional property that whenever two are distinct, the third is even, are 
those listed in Table 2. 

46.2 Show that the only possible quadruples (a, b, c, d) of integers greater than or equal to 
3 (up to cyclic permutation) satistying 

1 1 1 1 
-+-+-+->1 
abc d 

and if a = 3, then b = d, are those listed in Table 2. 
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46.3 If ai , . . . , a k is a collection of k ;::: 5 integers, all greater than or equal to 3, s atisfying 
the inequality 

k 2 
L->k-2, 
i=l at 

show that k = 5, and the only possibilities are those listed in Table 2. 

46.4 (The snub cube.) In a plane, consider a 
tilted square with vertices (±a, ±b), 
(±b, =Fa). Now consider a cube of side 
2 in three-space, centered at the origin, 
and put one of these tilted squares on 
each face, always with the same orien­
tation as seen from the outside of the 
cube. Thus the corners of the tilted 
square in the top face will have coor­
dinates (a, b, 1), etc. Join the vertices of 
these tilted squares to nearby vertices 
in the other faces, to get a figure of 
6 squares and 32 triangles. Now write 
equations in a, b to express that the 
sides of these triangles are all the same 
length (including the sides of the tilted 
squares). Show that two of these equa­
tions imply the rest, and then elimi­
nate a or b to obtain one irreducible 
cubic polynomial with integer coeffi­
cients. Solving this equation will con­
struct the snub cube, which is there­
fore not constructible with ruler and 
compass. 

I' 

(-b,Ii J 

" I 
, -

46.5 Explain in what way two vertices of the pseudorhombicuboctahedron are different 
so as to prevent the existence of a rigid motion or congruence sending one to the 
other. 

46.6 (a) Show that the minimum nonzero value of the expression 11 / 2 - (l/a) - (llb)1 as 
a, b range over all integers greater than or equal to 3 is -iz. 
(b) Similarly, the minimum nonzero value of 11 - (l/a) - (lib) - (l/e)1 for 
a,b,e;;:: 3 is h 

46.7 See how many convex face-regular polyhedra you can discover using only equilat­
eral triangles and squares. 

46.8 Give a convincing reason why the stretched cube of ( 46.4.1) does not exist. 
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46.9 Some of the most interesting of the nonuniform face-regular polyhedra are those 
elementary ones that do not arise from cutting up uniform solids. For example, see 
whether you can make a model (and prove the existence) of a bilunabirotunda, 
having four pentagonal faces, two squares, and 8 equilateral triangles. 

47 Symmetry Groups of Polyhedra 

We will make use of some group theory and a little linear algebra to study the 
symmetry of polyhedra. The purpose of this section is to elucidate the geometry 
of polyhedra by finding their symmetry groups, and at the same time to illus­
trate some concepts of group theory by their applications to geometry. 

We measure the symmetry of a figure by looking for ways in which the fig­
ure is congruent to itself. So we define a symmetry of a figure to be a one-to-one 
mapping of the figure onto itselfthat is a congruence, i.e., that preserves all dis­
tances and angles. One symmetry followed by another is again a symmetry; the 
inverse mapping of a symmetry is a symmetry; and composition of symmetries 
is an associative operation. Hence the set of all symmetries of a figure (includ­
ing the identity map) is a group, which we call the symmetry group of the figure. 

For a simple example, look at an 
equilateral triangle in the plane, and la- I 
bel its vertices 1,2,3. A clockwise rota- L 
tion through an angle of 27T./3 maps the 
triangle onto itself by a congruence, so 3 2-
that is a symmetry. This symmetry in-
duces a permutation of the vertices, 
1 ---+ 2 ---+ 3 ---+ 1, which we represent by the symbol (123). If we perform this ro­
tation twice, we get another symmetry, which permutes the vertices by (132). A 
third application of the same rotation brings us to the identity, which we denote 
bye. 

Another kind of symmetry is obtained by dropping the altitude from the 
vertex 1 to the midpoint of the side 23, and reflecting the figure in that line. This 
induces the permutation (23) on the vertices. Reflections in two other axes give 
the permutations (12) and (13). 

A symmetry of the triangle is completely determined if we know what it 
does to the vertices. So we can list the symmetries so far mentioned by giving 
the corresponding permutations: 

e, (123), (132), (12), (l3), (23). 

It happens that these are all possible permutations of the three symbols 1,2,3. 
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We conclude (a) that we have now listed all possible symmetries of the triangle, 
and (b) that the group of symmetries of the triangle is isomorphic to the group of 
permutations of three symbols, called the symmetric group on three letters, and 
denoted by the symbol S3. We notice in this example that there are three differ­
ent kinds of symmetries: the identity, the rotations, and the reflections. 

An isosceles triangle has a group of only two symmetries: the identity and 
one reflection. A triangle of three unequal sides has a symmetry group consist­
ing of only the identity. This is a trivial symmetry group. 

A regular polygon of n sides has a symmetry group consisting of 2n ele­
ments. The rotation through an angle of 2n/n generates a cyclic subgroup of n 
elements, consisting of the identity and n - 1 rotations through angles 2ni/n for 
i = 1,2, ... , n - 1. Then there are n reflections in lines passing through the ver­
tices and the midpoints of the sides of the polygon, making 2n symmetries in all. 
This group is called the dihedral group Dn of order 2n. (Note that terminology in 
the literature is not consistent. Some authors call this group D zn .) 

Naturally, the situation in three 
dimensions is more complicated. To 
fix our ideas and to illustrate what can 
happen, let us consider the symmetries 
of a tetrahedron. We label its vertices 
1,2,3,4. 

1 

One way to make a symmetry is to 3 
rotate the figure around a line. Take, for 
example, the line through the vertex 1 and the midpoint of the opposite side. 
Rotating around this axis induces a symmetry of the equilateral triangle and a 
permutation of the vertices of the tetrahedron (234) that leaves 1 fixed. Twice 
this will give (243). 

On the other hand, if we take an axis through the vertex 2 and the midpoint 
of its opposite side, we obtain symmetries that induce the permutations (134) 
and (143). 

In the case of a plane figure, it is obvious that one rotation followed by 
another rotation is again a rotation (or the identity), since all the rotations are 
around the same point. But in three dimensions, if we rotate first around one 
axis and then around another axis, we will certainly obtain a symmetry of some 
kind (i.e., a congruence), but it is not obvious in general whether this will be 
another rotation. Try it with a model of a tetrahedron and see what happens! 
Since a symmetry of the tetrahedron is completely determined by what it does 
to the vertices, we can at least compute the permutation induced by the compo­
sition of two rotations. Let us do (234) first followed by (134). Then, reading 
from left to right 

(234)(134) = (13)(24). 



47. Symmetry Groups of Polyhedra 471 

So there is a symmetry that interchanges 1 and 3 and also interchanges 2 and 4. 
If we take an axis through the midpoint of the side 13 and the midpoint of the 
side 24, a rotation of n around this axis will induce this symmetry. So in this 
case, the composition of rotations around two different axes is equal to a rotation 
around a third axis. We will see later that this is true in general (47.2). 

Besides rotating the figure around an axis, there are several other ways we 
can contemplate making symmetries. 

One is reflection in a plane. For example, if we consider the plane contain­
ing the edge 12 and the midpoint of the edge 34, we can reflect the figure in this 
plane and obtain a symmetry (34) that leaves 1 and 2 fixed. 

Another method is to pick up the figure, turn it around any way, and then 
replace it in the same spot. Call this a rigid motion in 3-space. 

Among the abstract symmetries, defined simply as congruences of the figure 
with itself, we can consider those that preserve orientation. Imagine a creature 
sitting on one vertex of the figure who numbers the faces at that vertex in a 
clockwise order. If the ordering is still clockwise after the congruence, we say 
that it preserves orientation. Otherwise, it reverses orientation. For example, 
rotations preserve orientation, and reflections reverse orientation. 

How are all these kinds of symmetries related to each other? Let R denote 
the set of rotations, plus the identity. It is clear that rotations are rigid motions, 
but it is not obvious that they form a group-we have to show that the product of 
two rotations is ag-'lin a rotation. Let Go denote the group of rigid motions. This 
group is clearly contained in G], the group of all orientation-preserving symme­
tries. And G] is contained in G, the group of all symmetries: 

R c::::; Go c::::; G] c::::; G. 

We will now show, by a counting argument, that R = Go = G] and G1 < G. 
First we count elements in R. For each vertex, there are two rotations leaving 
that vertex fixed. For each pair of opposite edges, there is one rotation sending 
those edges to themselves. Adding in the identity makes at least twelve ele­
ments in R. On the other hand, G] =f. G because there are reflections that do not 
preserve orientation. And since a symmetry is determined by its effect on the 
vertices, G is isomorphic to a subgroup of the symmetric group S4, which has 24 
elements: 

Now, R has at least 12 elements, and S4 has 24 elements, and the order of a sub­
group divides the order of a group, so we conclude that R = Go = G] and G ~ S4. 
This shows that R is a group, the group of rotations of the tetrahedron, and the 
whole group of symmetries is isomorphic to S4. The permutations in Rare of the 
type (123) or (12)(34), which are even permutations, so in fact R is isomorphic to 
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the alternating group A4 of even permutations of four letters. Thus we have 
proved the following result. 

Proposition 47.1 
The group of all symmetries of the tetrahedron is isomorphic to the symmetric group 
S4. The rotations of the tetrahedron form a subgroup of order 12, isomorphic to the 
alternating group A 4 . 

A similar analysis of the rotations and symmetries of the octahedron is 
in Exercises 47.3-47.6. Before discussing the icosahedron, we prove a general 
result. 

Proposition 47.2 
The composition of two rotations of a polyhedron is again a rotation (or the identity). 
More generally, any orientation-preserving symmetry of a polyhedron is a rotation 
about some line (or the identity). 

Proof Since rotations preserve orientation, it will be sufficient to prove the 
second statement. So let rp be an orientation-preserving symmetry of a poly­
hedron. First we invoke the notion of centroid (or center of gravity) of a solid 
figure (see, e.g., Lines (1965), Chapter IX). It is clear that rp sends the centroid to 
itself. Taking the centroid to be the origin of a coordinate system for lR 3, we can 
extend rp to an isometry of lR 3 leaving the origin fixed. In other words, rp pre­
serves distances and angles. 

Now we think of lR 3 as a three-dimensional vector space over lR. Since vec­
tor addition is defined by the parallelogram law, rp(Vl + vz) = rp(Vl) + rp(vz). It is 
also clear that rp(AV) = Arp(V) for any A E lR. In other words, rp is a linear map of 
lR 3 into itself. The scalar product <v, w) can be defined as Ivi . Iwl . cos 0, where 0 
is the angle between the two vectors. Since rp is an isometry, it preserves this 
expression, and so rp preserves scalar product. In other words, rp is an orthogonal 
linear transformation. Its determinant will be ± I, with + 1 preserving orienta­
tion and -1 reversing orientation. 

The characteristic polynomial of rp has degree 3, so it will have a real root. In 
other words, there is a real eigenvector e with rp(e) = A(e). Because rp is orthogo­
nal, A = ± l. 

If there is an eigenvector e with rp( e) = e, then rp leaves the line containing e 
fixed, and induces an orientation-preserving orthogonal map of a plane perpen­
dicular to e. This will be a rotation in the plane, so rp is the rotation around the 
axis of e as required. 

If there is no eigenvector e with rp(e) = e, but only an e with rp(e) = -e, then 
the line of e is sent into itself, and rp induces an orientation-reversing map on the 
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perpendicular plane. This is the reflection in a line of that plane that has a fixed 
vector, contradicting the hypothesis that there was none. 

So we conclude that qJ is the rotation around a line, as required. 

Remark 47.2.1 
Thus it makes sense to speak of the rotation group of any polyhedron, and this 
group is identical with the group of rigid motions of the figure into itself and the 
group of all orientation-preserving symmetries. 

Now let us discuss the rotation group G of the icosahedron. Knowing that all 
the rotations form a group, we can use some group theory to find the order of 
the group, without listing all the individual elements. Let A be one vertex of the 
icosahedron, and let HA be the subgroup of G consisting of those rotations that 
leave A fixed. This is the stabilizer subgroup of A. If a rotation leaves A fixed, its 
axis must be the line through A and its opposite, or antipodal, point. A rotation 
through 2n/5 around this axis sends the icosahedron into itself, and generates 
the group H A , which has order 5. 

Next, we look for the orbit of A under the action of the whole group G, that 
is, the set of points to which A can be sent by elements of G. A rotation of order 
3 around an axis through the center of a face adjoining A sends A to one of its 
neighboring vertices B. In the same way, any vertex can be sent to any of its 
neighboring vertices, and thus the orbit of A under G is the entire set of 12 ver­
tices of the icosahedron. For any vertex C, the set of elements of G that send A 
to C is a left coset of HA, of the form gHA, where g E G and g(A) = C. The num­
ber of cosets is called the index of the subgroup, and one knows that the order of 
G is the product of the order of the subgroup H A , which is 5, and the index, 
which is equal to the number of elements in the orbit of A, which is 12. So the 
order of Gis 60. 

In fact, it is not too hard to count all the elements of G directly. Each vertex, 
together with its antipode, corresponds to a subgroup of order 5, which contains 
the identity and four elements of order 5. So there are 4 x ¥ = 24 elements of 
order 5. 

Rotation around an axis through the center of opposite faces has order 3. 
There are two of these for each pair of opposite faces, hence 2 x ~ = 20 ele­
ments of order 3. 

Rotation around an axis through the midpoints of opposite edges has order 2. 
So there are 1 x 3f = 15 elements of order 2. Summing up, we have 

identity 1 
elements of order 5 24 
elements of order 3 20 
elements of order 2 15 

60 
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Next, let us look at subgroups of G and their relation to the geometry of the 
icosahedron. We have already seen that the stabilizer of a vertex is a subgroup of 
order 5. Similarly, the stabilizer of the midpoint of a face is of order 3, and the 
stabilizer of the midpoint of an edge is of order 2. 

If we consider an axis through two opposite vertices, the stabilizer of this line 
includes the stabilizer of one vertex, but allows also rotations that send the vertex 
to its antipode. This is a dihedral group Ds. Similarly, the stabilizer of an axis 
through the middle of two opposite faces is a dihedral group D3 (isomorphic to 
the symmetric group 83). The stabilizer of an axis through the middles of two 
opposite edges is Dz (isomorphic to the Klein four-group V). 

These subgroups have orders 2,3,5,4,6,10. There are also subgroups of order 
12 (Exercise 47.9). On the other hand, we can show that certain other orders of 
subgroups are impossible. Let us show, for example, that there is no subgroup H 
of order 15. If there were, then by Cayley's theorem it would contain an element 
of order 5, which would be a rotation around a vertex A. Then H would contain 
the group generated by that element, which is H A . The orbits of the set of ver­
tices under the action of HA are A, its antipode, and two orbits of 5 vertices each. 
The group H would also contain an element of order 3, so the orbit of A under H 
would contain at least 6 elements, and so the order of H would be at least 
5 x 6 = 30, a contradiction. (See also Exercise 47.10.) 

Now let us discuss conjugation and normal subgroups. Two elements a, bEG 
are conjugate if there exists agE G with b = gag-I. If a is a rotation around a 
vertex A, then b is the same kind of rotation around the vertex B = g(A). Indeed, 
g-I takes the vertex B back to A, a performs the rotation, and g takes A back to B. 
So geometrically, two rotations are conjugate if they are rotations through the 
same angle around two different axes. In particular, since any point of the ico­
sahedron can be moved to its antipode, every rotation is conjugate to its own 
inverse. Thus all elements of order 2 are conjugate, and all elements of order 3 
are conjugate. But the elements of order 5 fall into two conjugacy classes: The 
rotations of ±2n/5 form one class, and the rotations of ±4n/5 form the other 
class. They are distinguished by the property that the first kind map some faces 
to an adjacent face, while the second kind map no face to an adjacent face. Thus 
the whole group is divided into conjugacy classes with 1,12,12,20, and 15 ele­
ments, respectively. 

A normal subgroup of a group G is a subgroup N that is stable under conjuga­
tion: gNg-I = N for any g E G. If a normal subgroup contains an element a, it 
must also contain all the conjugates of a. In this way we can verifY that the 
rotation group of the icosahedron contains no normal subgroups except the 
identity {e} and the whole group G. Indeed, a normal subgroup N contains I, its 
order divides 60, and N must be a union of 1 together with some subset of the 
conjugacy classes of orders 12,12,20,15. There is no sum of these numbers that 
divides 60 except 1 and 60. Thus G has no nontrivial normal subgroups, and we 
say that G is a simple group. 



47. Symmetry Groups of Polyhedra 475 

Finally, we show that the icosahedral group G is isomorphic to the alternat­
ing group As on 5 letters. Define a frame of the icosahedron to be a set of three 
mutually perpendicular axes through the middles of opposite edges. There are 
five such frames. Any rotation of the icosahedron induces a permutation of 
these five frames. An element of order 5 gives a permutation (abcde). An ele­
ment of order 3 gives a permutation of the form (abc). An element of order 2 
gives a permutation of the form (ab)(cd). These are all even permutations, so we 
obtain a homomorphism from G to As. Clearly the map is injective, and the two 
groups have the same order, so G ~ As. Thus we have proved the following. 

Proposition 47.3 
The group of rotations of the icosahedron is a simple group of order 60, isomorphic to 
the alternating group As. 

The exercises contain more examples of rotation groups, symmetry groups, 
and their properties. 

The rotations of a polyhedron induce rotations of the sphere, and so deter­
mine certain finite subgroups of the special orthogonal group SO(3) of orthogonal 
linear transformations with determinant 1. The next theorem shows that the 
rotation groups of the regular polyhedra (plus the cyclic and dihedral groups) 
are in fact the only possible finite subgroups of SO(3). 

Theorem 47.4 
Any finite subgroup of SO(3) (the rotation group of a sphere) is isomorphic to one of 
the following: 

en, cyclic, for n ?: I, 
Dn , dihedral, for n ?: 2, 
T, the tetrahedral group, ~A4, 
0, the octahedral group, ~S4, 
I, the icosahedral group, ~As. 

Furthermore, if two finite subgroups ofSO(3) are isomorphic as abstract groups, then 
they are conjugate as subgroups of SO(3). 

Proof Fix a sphere S centered at the origin, and regard SO(3) as the group of 
rotations of the sphere. Let G be a finite subgroup of SO(3), i.e., a finite group of 
rotations of the sphere S, and let N be the order of G. 

Each nonidentity element of G is a rotation about some axis passing through 
the center of the sphere (47.2). The points where this axis meets the sphere are 
the two poles of the rotation. Since the group G is finite, the set P of all the poles 
of all the rotations will be a finite set. Furthermore, G acts as a group of permu­
tations on this set, because if x E P is a pole of a rotation a E G, and if g is any 
element of G, then g(x) is a pole of the conjugate rotation gag-1 (cf. discussion of 
the icosahedron above). 
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For each x E P, let Hx S G be the stabilizer subgroup of x, and let Px S P be 
the orbit of x under the action of G. Then Yxnx = N, where Yx is the order of the 
subgroup H x , and nx is the number of points in the orbit Px (cf. discussion of 
stabilizers and orbits in the case of the icosahedron above). 

On the other hand, we can count the nonidentity elements of G as follows. 
Each one has two poles, and for each pole x there are Yx - 1 elements in the 
subgroup Hx. If we sum over the poles, then 

Now write P as the union of its orbits Pi, i = 1, ... , t, under G. Within an orbit, 
the numbers Yx and nx are the same, so we can rewrite this sum as a sum over 
the t orbits of P, 

1 t -L ni (Yi - 1) = N - l. 
2 i=1 

Now recall Yini = N for each i, and divide by N. This gives the fundamental 
equation 

t (1) 2 L 1-~ =2--. 
i=1 Y1 N 

We shall carry out the classification of possible subgroups G by examining 
possible solutions of this equation for integers Yi ~ 2 and N ~ 1, remembering 
that Yi divides N for each i. 

Since each Yi ~ 2, the left-hand side is at least !t, while the right-hand side is 
less than 2. We conclude that t S 3. 

Case 1 t = 1. The only solution of the equation is Y = N = 1, which does not 
satisfy our restriction Y ~ 2, but we can associate it with the trivial subgroup 
G = {e}. 

Case 2 t = 2. In this case the equation reduces to 

2 1 1 -=-+-. 
N YI Yz 

Remembering that Yini = N and multiplying through by N, we get 

The only solution here is nl = nz = 1, so YI = Yz = N. Thus there is just one axis 
with its two poles, and G is isomorphic to a cyclic group of order N, for any 
N~l. 



________________ 4_7_, ----'Symm'-----_e_try--"---G_ro_u ..... p_s_o_f_P_ol-"-y_h_ed_r_a __ 477 

Case 3 t = 3. In this case our equation gives 

1 1 1 2 
-+-+-=1+-. 
Y} Yz Y3 N 

In particular, the left-hand side must be greater than 1, and the only triples of 
Y}, Yz, Y3 ~ 2 that achieve this are (2,2, n), (2,3,3), (2,3,4), (2,3,5). 

If (Y}, Yz, Y3) = (2,2, n), then N = 2n, and n3 = 2. Thus there is one axis 
having a cyclic group of rotations of order n, and there are two other orbits of n 
axes each of twofold rotations. Thus G is a dihedral group Dn. 

Now suppose (Y}, Yz, Y3) = (2,3,3). Then we obtain N = 12 and (n}, nz, n3) = 
(6,4,4). Choose one of the orbits offour points and call them A, B, C, D. The sta­
bilizer HA is a group of order 3, leaving A fixed and permuting B, C, D cyclically. 
Hence B, C, D are equidistant from A. The same argument applies to B, C, D, so 
all four points are equidistant from each other. Joining them by lines makes a 
tetrahedron inscribed in the sphere. Now, G permutes A, B, C, D, so it induces 
rotations of the tetrahedron, and we get a group homomorphism G ---> T, where 
T is the rotation group of the tetrahedron. The image of G clearly generates T, 
and both groups have the same order, so G is isomorphic to T. 

We leave the remaining two cases to the reader (Exercise 47.16). 
For the last statement of the theorem, suppose that G} and Gz are two finite 

groups of rotations of the sphere that are isomorphic as abstract groups. Then 
they are isomorphic to the same one in the list. But the proof of the theorem 
shows more. In the cases Cn , Dn , there is a principal axis around which there are 
rotations through 2n/n, and this axis determines the group. For Cn, we can move 
the principal axis of G} to that of Gz by a rotation g of the sphere, and this same 
element creates a conjugacy Gz ~ gG}g-}. For D n, we can require in addition 
that g take a secondary axis of G} to Gz, and then again Gz = gG}g-}. 

In the case of T, 0, I, we showed that there is an inscribed tetrahedron, octa­
hedron, or icosahedron, and G is its group of rotations. We need only find a 
rotation g of the sphere that takes two neighboring vertices of the first figure 
to the second. The rest will follow, and then Gz ~ gG}g-} will be the required 
conjugacy. 

Exercises 

47.1 Label the vertices of a regular pentagon 1,2,3,4,5, and list all the symmetries of 
the pentagon as permutations ofthese five symbols. Show that the resulting group, 
isomorphic to Ds, is actually a subgroup of the alternating group As inside of Ss. 

47.2 (a) List all the rotations of a tetrahedron as permutations ofthe four vertices. 
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(b) List the other 12 symmetries of the tetrahedron. Which of these are given by 
reflection in a plane? Show that those that are not reflections can be described as 
screw reflections, namely, reflection in a plane followed by a rotation about an axis 
perpendicular to the plane. 

47.3 Mark the vertices of an octahedron 
1,2, ... ,6. List all the rotations of the 
octahedron by the permutations they 
induce on the vertices. How many el­
ements of each kind are there? What 
are their orders? How many in all? 

47.4 The octahedron has four axes a, b, c, d running through the centers of opposite 
faces. Any rotation induces a permutation of a, b, c, d. Thus we get a map rp : R ---> S4 
from the set of rotations to the symmetric group on the four letters a, b, c, d. Show 
that R has at least 24 elements, show that the map rp is injective, and conclude that 
R is a group isomorphic to S4. 

47.5 Find subgroups of the group of rotations of the octahedron isomorphic to 
Cz, C3, C4 ,Dz = V,D3 = S3,D4 , and describe them in terms of the geometry of the 
octahedron. 

47.6 Show that the group of all symmetries of the octahedron is a group of order 48. 

47.7 Give a geometric proof that the composition of two rotations of the sphere about 
arbitrary axes is equal to another rotation of the sphere, by using spherical geome­
try. Show that it must have a fixed point (cf. Exercise 17.11 and note that trans­
lations do not exist on the sphere). 

47.8 Extend the proof of Proposition 47.2 to show that any symmetry of a polyhedron 
is either the identity, a rotation, a reflection in a plane, or a screw-reflection (cf. 
Exercise 47.2). 

47.9 Show that it is possible to select 4 faces of an icosahedron in such a way that the 
subgroup of rotations that preserve that set offour faces is isomorphic to the group 
T of rotations of the tetrahedron. 

47.10 Show that the group of rotations of the icosahedron contains no subgroup of order 
20 or 30. 

47.11 Show that the full group of symmetries of the icosahedron is a group of order 120 
that is not isomorphic to the symmetric group S5. 

47.12 In the group G of rotations of the icosahedron, show that one can find elements a, b 
with the properties 
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(a) a and b together generate the whole of G; 

(b) a2 = e,b3 = e, (ab)5 = e. 
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Now show that G is the largest group with the properties (a), (b), in the following 
sense: If G' is another group, generated by elements x, y satisfying x2 = y3 = 
(xy)5 = e, and if rp : G' -> G is a homomorphism that sends x,y to a, b, then rp is 
an isomorphism. We say that G is the group given by generators a, b and relations 
(b) above. 

47.13 (a) Give a criterion in terms of the geometry of the axes and angles of rotation for 
two rotations of a polyhedron to commute with each other (Le., ab = ba). 

(b) Give a similar criterion for a rotation to commute with reflection in a plane. 

(c) Show that the antipodal map commutes with all other symmetries. 

47.14 (a) Show that the group of rotations of an n-sided prism and an n-sided antiprism 
are both isomorphic to the dihedral group Dn. 

(b) Show, however, that the full group of symmetries of the n-prism is not iso­
morphic (as an abstract group) to the symmetries of the n-antiprism. Hint: To show 
that two groups are not isomorphic, you must find some group-theoretic property 
true of one but not the other, such as having an element of a certain order, or having 
a certain number of elements of a given order, or having an element of order 2 in 
the center, Le., that commutes with every other elements. 

47.15 (a) Show that the rotation group and the full symmetry group of a cube are the 
same as for an octahedron. 

(b) Ditto for the dodecahedron and icosahedron. 

(c) Examine the list of semiregular polyhedra (Theorem 46.1) and find in each 
case the rotation group and the full symmetry group. Pay special attention to the 
snub cube and the pseudorhombicuboctahedron. 

47.16 Complete the proof of Theorem 47.4 by showing that in the cases (r1' r2, r3) = 
(2,3,4) or (2,3,5) there is an octahedron or icosahedron inscribed in the sphere in 
such a way that G is identified with its group of rotations. 

47.17 If H is any subgroup of one of the groups en, Dn, T, 0,1, then of course H is iso­
morphic to a subgroup of SO(3) also. Verify that this does not contradict Theorem 
47.4 by showing directly that any subgroup of any of the groups in this list is also 
isomorphic to one of the groups in the list. 

47.18 Show that the full symmetry group of the tetrahedron and the rotation group of the 
octahedron are isomorphic as abstract groups, but they are not conjugate as sub­
groups of 0(3), the orthogonal group of all symmetries of the sphere. 

47.19 Consider the group of transformations of the set <C U {oo} generated by the 
operations 
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0( : z' = -z, 

fJ: z' = Z-l, 

, Z+ i 
y:z =--.' 

Z-l 

(a) Show that O(,fJ, y generate a group G of order 12. 

(b) Show that G permutes the set {O, ±1, ±i, oo}. 
(c) Lift the operation of G on <C, considered as a plane, to the unit sphere by 
the stereographic projection, so that ±1, ±i land on the equator. Then show that 
G is identified with the group of rotations of the octahedron with vertices 
{O, ±1, ±i,oo}. 

It was on that night that he dreamed his 
dream of titanic basalt towers-dripping with 
slime and ocean ooze and fringed with great sea 
mats-their wierdly proportioned bases buried 
in gray-green muck and their non-Euc1idean­
angled parapets fading into the watery distances 
of that unquiet submarine realm. 

- from Rising with Surtsey 
by Brian Lumley 

in Tales of the Cthulhu Mythos 
by H. P. Lovecraft 

& divers hands 
Arkham, Sauk City (1990) p. 315 

Reprinted by permission of 
Arkham House Publishers, Inc. 

Sauk City, WI, USA 



Appendix: 
Brief Euclid 

For reference we include abbreviated statements of the most frequently quoted 
results from Euclid's Elements. 

Book I. Definitions 
1. A point is that which has no part. 
2. A line is length without breadth. 
4. A straight line lies evenly with its points. 
8. A plane angle is the inclination of two lines. 

10. When the two adjacent angles are equal it is a right angle. 
15. A circle is a line all of whose points are equidistant from one point. 
20. A triangle with two equal sides is isosceles. 
23. Parallel straight lines are lines in the same plane that do not meet, no mat­

ter how far extended in either direction. 

Postulates 
1. To draw a line through two points. 
2. To extend a given line. 
3. To draw a circle with given center through a given point. 
4. All right angles are equal. 
5. If a line crossing two other lines makes the interior angles on the same side 

less than two right angles, then these two lines will meet on that side when 
extended far enough. 

Common Notions 
1. Things equal to the same thing are equal. 
2. Equals added to equals are equal. 

481 
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3. Equals subtracted from equals are equal. 
4. Things which coincide are equal. 
5. The whole is greater than the part. 

Propositions 
1. To construct an equilateral triangle on a given segment. 
2. To draw a segment equal to a given segment at a given point. 
3. To cut off a smaller segment from a larger segment. 
4. Side-angIe-side (SAS) congruence for triangles. 
5. The base angles of an isosceles triangle are equal. 
6. If the base angles are equal, the triangle is isosceles. 
7. It is not possible to put two triangles with equal sides on the same side of a 

segment. 
S. Side-side-side (SSS) congruence for triangles. 
9. To bisect an angle. 

10. To bisect a segment. 
11. To construct a perpendicular to a line at a given point on the line. 
12. To drop a perpendicular from a point to a line not containing the point. 
13. A line standing on another line makes angles equal to two right angles. 
15. Vertical angles are equal. 
16. The exterior angle of a triangle is greater than either opposite interior 

angle. 
17. Any two angles of a triangle are less than two right angles. 
IS. If one side of a triangle is greater than another, then the angle opposite it is 

greater than the other. 
19. If one angle of a triangle is greater than another, then the side opposite it is 

greater than the other. 
20. Any two sides of any triangle are greater than the third. 
22. To construct a triangle, given three sides, provided any two are greater 

than the third. 
23. To reproduce a given angle at a given point and side. 
24. Two sides equal but included angle greater of two triangles implies base 

greater. 
25. Two sides equal and greater base implies greater angle. 
26. Angle-side-angle (ASA) and angle-angIe-side (AAS) congruence for 

triangles. 
27. Alternate interior angles equal implies parallel lines. 
2S. Exterior angle equal to opposite interior, or two interior angles equal to two 

right angles, implies parallel lines. 
29. A line crossing two parallel lines makes alternate interior angles equal. 
30. Lines parallel to the same line are parallel. 
31. To draw a line parallel to a given line through a given point. 
32. Sum of angles of a triangle is two right angles, and exterior angle equals the 

sum of opposite interior angles. 
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33. Lines joining endpoints of equal parallel lines are equal and parallel. 
34. The opposite sides and angles of a parallelogram are equal. 
35. Parallelograms on the same base and in the same parallels are equal. 
36. Parallelograms on equal bases in the same parallels are equal. 
37. Triangles on the same base in the same parallels are equal. 
38. Triangles on equal bases in the same parallels are equal. 
39. Equal triangles on the same base on the same side are in the same parallels. 
40. Equal triangles on equal bases on the same side are in the same parallels. 
41. A parallelogram is twice the triangle on the same base in the same parallels. 
42. To construct a parallelogram with a given angle equal to a given triangle. 
43. Parallelograms on opposite sides of the diagonal of a parallelogram are 

equal. 
44. To construct a parallelogram with given side and angle equal to a given 

triangle. 
45. To construct a parallelogram with a given angle equal to a given figure. 
46. To construct a square on a given segment. 
47. (Theorem of Pythagoras) The square on the hypotenuse is equal to the sum 

of the squares on the sides of a right triangle. 
48. If the sum of the squares on two sides equals the square on the third side, 

the triangle is right. 

Book II. Propositions 
1. The rectangle contained by two lines is the sum of the rectangles contained 

by one and the segments of the other. 
4. The square on the whole line is equal to the squares on its two segments 

plus twice the rectangle on the two segments. 
5. The square on half a line is equal to the rectangle on the unequal segments 

plus the square of the difference. 
6. The rectangle on a line plus an added piece with the added piece, plus the 

square of half the segment, is equal to the square of the half plus the added 
piece. 

11. To cut a line so that the rectangle on the whole and one segment is equal to 
the square on the other segment (extreme and mean ratio). 

14. To construct a square equal to a given figure. 

Book III. Propositions 
1. To find the center of a circle. 
2. The segment joining two points of a circle lies inside the circle. 
5. If two circles intersect, they do not have the same center. 
6. If two circles are tangent, they do not have the same center. 

10. Two circles can intersect in at most two points. 
11, 12. If two circles are tangent, their centers lie in a line with the point 

of tangency. 
16. The line perpendicular to a diameter at its end is tangent to the circle, and 
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the angle between the tangent line and the circle is less than any rectilineal 
angle. 

17. To draw a tangent to a circle from a point outside the circle. 
18. A tangent line to a circle is perpendicular to the radius at the point of 

tangency. 
19. The perpendicular to a tangent line at the point of tangency will pass 

through the center of the circle. 
20. The angle at the center is twice the angle at a point of the circumference 

subtending a given arc of a circle. 
21. Two angles from points of a circle subtending the same arc are equal. 
22. The opposite angles of a quadrilateral in a circle are equal to two right 

angles. 
31. The angle in a semicircle is a right angle. 
32. The angle between a tangent line and a chord of a circle is equal to the 

angle on the arc cut off. 
3S. If two chords cut each other, the rectangle on the segments of one chord is 

equal to the rectangle on the segments of the other chord. 
36. From a point outside a circle, let a tangent and a secant line be drawn. 

Then the square of the tangent line is equal to the rectangle formed by the 
two segments from the point to the circle on the secant line. 

37. From a point outside a circle, if two lines cut the circle, so that the square 
of one is equal to the rectangle formed by the segments of the other, then 
the first is a tangent line. 

Book IV. Propositions 
1. To inscribe a given segment in a circle. 
2. To inscribe a triangle, equiangular to a given triangle, in a circle. 
3. To circumscribe a triangle, equiangular to a given triangle, around a circle. 
4. To inscribe a circle in a triangle. 
S. To circumscribe a circle around a triangle. 

10. To construct an isosceles triangle whose base angles are twice the vertex 
angle. 

11. To inscribe a regular pentagon in a circle. 
12. To circumscribe a regular pentagon around a circle. 
IS. To inscribe a regular hexagon in a circle. 
16. To inscribe a regular IS-sided polygon in a circle. 

Book V. Definitions 
4. Magnitudes are said to have a ratio if either one, being multiplied, can 

exceed the other. 
S. Four magnitudes a, b; c, d are in the same ratio iffor any whole numbers m, 

n, we have rna > nb or rna = nb or rna < nb if and only if me > nd or 
mc = nd or mc < nd respectively. 



Appendix: Brief Euclid 485 

Book VI. Propositions 
1. Triangles of the same height are in the same ratio as their bases. 
2. A line is parallel to the base of a triangle if and only if it cuts the sides pro­

portionately. 
3. A line from a vertex of a triangle to the opposite side bisects the angle if 

and only if it cuts the opposite side in proportion to the remaining sides of 
the triangle. 

4. The sides of equiangular triangles are proportional. 
5. If the sides of two triangles are proportional, their angles are equal. 
6. If two triangles have one angle equal and the sides containing the angle 

proportional, the triangles will be similar. 
8. The altitude from the right angle of a right triangle divides the triangle into 

two triangles similar to each other and to the whole. 
12. To find a fourth proportional to three given lines. 
13. To find a mean proportional between two given lines. 
16. Four lines are proportional if and only if the rectangle on the extremes is 

equal to the rectangle on the means. 
30. To cut a line in extreme and mean ratio. 
31. Any figure on the hypotenuse of a right triangle is equal to the sum of 

similar figures on the sides of the triangle. 

Book X. Propositions 
1. Given two unequal quantities, if one subtracts from the greater a quantity 

greater than its half, and repeats this process enough times, there will 
remain a quantity lesser than the smaller of the two original quantities. 

117. (not in Heath, but in Commandino). The diagonal of a square is incom­
mensurable with its side. 

Book XI. Definitions 
25. A cube is a polyhedron made of six equal squares. 
26. An octahedron is a polyhedron made of eight equal equilateral triangles. 
27. An icosahedron is a polyhedron made by twenty equal equilateral triangles. 
28. A dodecahedron is a polyhedron made by twelve equal regular pentagons. 

Propositions 
21. The plane angles in a solid angle make less than four right angles. 
28. A parallelepiped is bisected by its diagonal plane. 
29, 30. Parallelepipeds on the same base and of the same height are equal. 
31. Parallelepipeds on equal bases, of the same height, are equal. 

Book XII. Propositions 
2. Circles are in the same ratio as the squares of their diameters. 
3. A pyramid is divided into two pyramids and two prisms. 
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5. Pyramids of the same height on triangular bases are in the same ratio as 
their bases. 

7. A prism with a triangular base is divided into three equal triangular 
pyramids. 

Book XIII. Propositions 
7. If at least three angles of an equilateral pentagon are equal, the pentagon 

will be regular. 
10. In a circle, the square on the side of the inscribed pentagon is equal to the 

square on the side of the inscribed hexagon plus the square on the side of 
the inscribed decagon. 

13. To inscribe a tetrahedron in a sphere. 
14. To inscribe an octahedron in a sphere. 
15. To inscribe a cube in a sphere. 
16. To inscribe an icosahedron in a sphere. 
17. To inscribe a dodecahedron in a sphere. 
18. (Postscript). Besides these five figures there is no other contained by equal 

regular polygons. 



Notes 

Section 1. To appreciate this text you should have a copy of Euclid's Elements 
handy. The most natural choice for an English-speaking reader is Heath's 
authoritative translation and commentary (1926) available in an inexpensive 
Dover reprint. 

The "hard problem" in this section is discussed in Coxeter and Greitzer 
(1967). 

Section 5. For the history of the theorems of the three medians and the three 
altitudes of a triangle, see Tropfke (1923) vol. 4, pp. 163, 164. Both are implicit in 
the work of Archimedes, but were not included in the repertoire of elementary 
geometry until much later. The three altitudes theorem is used by Pappus in 
Book VII, Prop. 62 of his Mathematical Collection, but the first published proof 
seems to be due to Simson (1776), p. 170 (see Ver Eecke's note in Pappus 
(1933)). The proof given here for (5.6) appears in Gauss, (1870-77), vol. 4, p. 396, 
but is apparently due to Servois in 1804. 

We give several different proofs that the altitudes of a triangle meet in a 
point: 

(a) Gauss's proof (5.6) 
(b) using the Euler line (5.7) 
(c) using cyclic quadrilaterals (Exercise 5.7) 
( d) using the angle bisectors of the ortbic triangle (5.10) 
(e) by analytic geometry (13.1) 
(f) in the Poincare model (Exercise 39.17) 
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(g) using angle bisectors (Exercise 40.14) 
(h) by non-Euclidean analytic geometry (41.13) 
(i) using the calculus of reflections (43.15). 

The Euler line (5.7) was discovered by Euler in 1765. The nine-point circle 
appeared in a paper of Brianchon and Poncelet in 1821, and independently in a 
paper of Feuerbach in 1822. Feuerbach found only six of the nine points, but 
he also proved the remarkable result that this circle is tangent to the inscnbed 
circle and the three exscribed circles of the triangle. 

Section 6. The axioms presented in this and subsequent Sections 7, 8, 9 are 
essentially the same as the axioms proposed by Hilbert in his Foundations of 
Geometry (1971). We have made a few small changes. 

First of all, Hilbert postulates a set of points and a set of lines, together with 
a relation of incidence "a point lies on a line." We, however, postulate a set of 
points, and take lines to be subsets of the set of points, so that the incidence of a 
point and line simply becomes membership in the set. 

Second, Hilbert formulates his axioms for 3-dimensional space. We have 
taken only the plane axioms because they exhibit all the essential features of the 
geometry we need. 

Third, Hilbert is a minimalist. For example, in the (SAS) axiom (C6), having 
assumed AB ~ DE, AC ~ DF, and LBAC = LEDF, he postulates only that 
LABC = LDEF. He then proves as a theorem that LACB ~ LDFE and BC ~ EF. 
This degree of minimalism in the axioms seems unnecessary for an elementary 
text such as ours, so we have simplified in a couple of places by making an 
axiom slightly stronger than necessary. 

Exercise 6.3. Unfortunately, we do not have the space to develop the ideas of 
projective geometry further. But see, e.g., Hartshorne (1967) for an introduction. 

Exercise 6.9. Kirkman's schoolgirl problem was first published in the Lady's 
and Gentlement's Diary for (1850). See" Ball (1940), Chapter X, for an extensive 
discussion. One solution can be found by taking the fifteen points of the projec­
tive 3-space over the field of 2 elements to be the girls, and the 35 lines of 3 
points each to be the rows. Then with a little care you can find five lines that fill 
the space and an automorphism a of order 7 that cycles those five lines through 
the set of all the lines in such a way as to solve the problem. 

Section 7. It is possible to take (7.1) as an axiom and then prove (B4), as is done 
in Greenberg (1993). 

Section 12. Here is what Dedekind says about continuity (from Stetigkeit und 
Jrrationale Zahlen (1872)): 

I find the essence of continuity in the following principle: "If all the points of a 
line fall into two classes in such a way that each point of the first class lies to the 
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left of each point of the second class, then there exists one and only one point 
that gives rise to this division of all the points into two classes, this cutting of the 
line into two pieces." 

As mentioned before, I believe I am not wrong if I assume that everyone will 
immediately admit the truth of this assertion; most of my readers will be very 
disappointed to realize that by this triviality the mystery of continuity will be 
revealed. I am very glad if everyone finds the above principle so clear and so 
much in agreement with his own conception of a line; for I am not in a position 
to give any kind of proof of its correctness; nor is anyone else. The assumption of 
this property of the line is nothing else than an axiom by which we first recognize 
the continuity of the line, through which we think continuity into the line [die 
Stetigkeit in die Linie hineindenkenJ. If space has any real existence at all, it does 
not necessarily need to be continuous; countless properties would remain the 
same if it was discontinuous. And if we knew for certain that space was discon­
tinuous, still nothing could hinder us, if we so desired, from making it continuous 
in our thought by filling up its gaps; this filling up would consist in the creation of 
new point-individuals, and would have to be carried out in accord with the above 
principle. 

Section 14. The theorem of Pappus occurs in a different form in Pappus (1876), 
Book VII, Proposition 139. 

I got the idea for Exercises 14.4-14.13 from a paper of Sturmfels. 

Section 18. While the possibility of a non-Archimedean geometry was perhaps 
fore-shadowed by the controversy about the angle between a circle and its tan­
gent line, started by Peletier and Clavius in the sixteenth century, the first 
serious study of a non-Archimedean geometry is due to Veronese at the end of 
the nineteenth century. Our treatment follows Hilbert's approach via fields. See 
Enriques (1907), Chapter VII. 

Section 19. For the segment arithmetic, we follow Hilbert's Foundations (1971), 
Chapter III, with simplifications by Enriques described in Supplement II. The 
idea of making an arithmetic of line segments goes back to Descartes in La Geo­
metrie (1637), except that he made no effort to justifY the usual rules of arithme­
tic as applied to line segments. 

Section 20. Constructions with ruler and dividers appear already in the work of 
Schooten (1657). 

Section 22. Awareness of the problem of area grew in the nineteenth century 
(see Simon (1906), Section 15). We follow Hilbert's treatment in his Foundations 
(1971), Chapter IV. Hilbert was the first to recognize the importance of Archi­
medes' axiom in the theory. Terminology is not uniform. What we call "equal 
content" is sometimes called "equicomplementable" (German: erganzungs­
gleich). What we call "equidecomposable" or "equivalent by dissection" is some-
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times called "equivalent by finite decomposition" (German: zerlegungsgleich, or 
teilungsgleich). The axiom (Z) is named after A. de ZoIt, who attempted in 1881 
to prove this statement geometrically (cf. Simon (1906), Section 15). 

Section 24. For the history of the Bolyai-Gerwien theorem, see Simon (1906), 
Section 15. For practical notes on efficient dissections, see Lindgren (1964). For 
Exercise 24.8, see Dudeney (1929). A new book by Frederickson (1997) promises 
to become the standard reference for dissectors. 

Section 25. There is a vast literature on the problem of squaring the circle and 
attempts to understand the analytic as well as the geometrical significance of 
the number n. In fact, this single problem has been the catalyst for significant 
advances in many branches of mathematics over its 4000·year history. A full 
discussion of the subject would lead way beyond the confines of this book. For 
an approach to the literature, see, for example, Beckmann (1971), Hobson 
(1953), Simon (1906), Section 6, and Rudio (1892). 

Section 26. The correspondence between Gauss and Gerling can be found in 
Gauss, Werke (1870-77), vol. VIII, pp. 241 ff. 

Section 27. This treatment of the Dehn invariant is based on Cartier's Bourbaki 
seminar talk (1985). See also Boltianskii (1978) for a detailed treatment of the 
problem. 

Section 28. There is an extensive literature on these classical problems and 
attempts at their solution. See, for example, Klein (1895), Enriques (1907), or 
Lebesgue (1950). Descartes (1637) was already aware that the first two required 
cubic equations and could not be solved by quadratic equations. The first proof 
of the impossibility was given by Wantzel (1837), but his proof has a gap. The 
first complete proof is due to Petersen (1871), cf. also Petersen (1878). Our proof 
using the notion of the degree of a field extension and the characterization (28.7) 
using the Galois group are apparently due to van der Waerden (1930). 

For the squaring of the circle, see notes to Section 25. 

Section 29. Gauss's proof of the constructibility of the regular 17-gon can be 
found in his Disquisitiones Arithmeticae, reprinted in his Werke (1870-77), vol. I. 

The construction given in the text is due to Maywald: See the book of Gold­
enring (1915), p. 16, who collected more than twenty different constructions. 

Section 30. For references on the use of the marked ruler for solving the classical 
problems of trisecting the angle and doubling the cube, see Pappus (1876) Book III, 
Section 7, Enriques (1907) II, pp. 204 ff and pp. 233 ff and Knorr (1986) pp. 341 ff. 

In his history of the conic sections in antiquity, Zeuthen (1886) expresses the 
opinion that the early geometers accepted the use of the marked ruler (German: 
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Einschiebung; French: regIe a glissiere; Italian: riga segnata; Greek: neusis) 
along with the ruler and compass as a legitimate tool of construction, and that it 
was only from the time of plato and Euclid that a strict distinction was made of 
those problems that could be solved with ruler and compass only. Once the 
theory of conics was well developed, the use of conics to solve the "solid" prob­
lems was preferred to the marked ruler. 

The construction of (30.1) is ascribed by Pappus to "the ancients," but he 
says that the construction of (30.2) is due to Nicomedes (see Pappus (1878), 
Book IV, Proposition 32). 

Viete's construction of the regular heptagon was published in his Supple­
mentum Geometriae of 1593 (reprinted in Viete (1970)). Similar constructions 
have been rediscovered periodically: See Collins (1866), Plemelj (1912), Bie­
berbach (1952), Gleason (1988), among others. Archimedes' work on the hepta­
gon (Exercise 30.6) was lost until 1926, when it was found in an Arabic manu­
script (see Knorr (1986) pp. 178 ff). 

Section 31. The story of the discovery of the solutions to the cubic and quartic 
equations in the early sixteenth century by Ferro, Tartaglia, Cardano, and Fer­
rari is one of the most colorful chapters of the history of mathematics (see, for 
example, Eves (1953), Section 8-8). The solution of the casus irreducibilis of the 
cubic equation by trisecting an angle is due to Viete. 

Section 32. Consult your favorite algebra book. One I like is Stewart (1989). 

Section 33. References to the work of Proc1us, Tacquet, Clairaut, Clavi us, Sim­
son, and Playfair can be found under their names in the References. 

For more details on the history of the theory of parallels and the discovery of 
non-Euclidean geometry, see the book of Bonola (1955), which includes the texts 
of Bolyai and Lobachevsky, or the book of Engel and Stackel (1895), which in­
cludes selections from the work of Wallis, Saccheri, Lambert, Gauss, Schweikart, 
and Taurinus. 

Among more recent texts, the books of Wolfe (1945) and Greenberg (1993) 
have very readable accounts of the development of non-Euclidean geometry. 

Section 34. The results on Saccheri quadrilaterals are due to Saccheri (1733), 
except that he used continuity arguments in the proof of dividing all geometries 
into three cases (34.7). A proof of this theorem without using continuity was first 
given by Lambert (see his work in Engel and Stackel (1895), esp. Section 57, p. 
187). The present proof of the key proposition (34.4) is due to Bonola (1955), 
Section 14. 

The theory oflimiting parallel rays is originally due to Gauss (Werke (1870-
77), vol. 8, pp. 202-209), but there was a gap in his proof of transitivity (34.11), 
because you cannot assume of three nonintersecting lines that one is in between 
the other two (cf. Moise (1963) Section 24.2). This gap is filled by (34.12). 
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Section 35. Theorem (35.2), that the semielliptic case (Saccheri's hypothesis of 
the obtuse angle) is impossible, was first proved by Saccheri (1733). The present 
proof is the correct part of the proof given by Legendre (1823) for his Proposi­
tion 19, Book I, in which he claimed to show that the angle sum in any triangle 
is equal to 2RA. The last part of his proof used an untenable limit argument. 

The example of a semielliptic plane (Exercise 34.14) is essentially the same 
as an example given by Dehn (1900) of what he called a non-Legendrean geom­
etry, since it did not satisfy the conclusion of(35.2). 

Section 36. The main ideas for the proof of the non-Euclidean Bolyai-Gerwien 
theorem (36.6) are already present in Gerwien's second paper of (1833), in 
which he treated the case of spherical polygons. The full treatment without the 
use of Archimedes' axiom is due to Finzel (1912). The unwound circle group is 
my invention. While Finzel must have had something like this in mind, he did 
not make explicit in what group his area function took its values. 

Section 37. According to Max Simon (1906), p. 93, the notion of circular inver­
sion first appears in the work of Poncelet, followed by Steiner, Quetelet, Mag­
nus, and Plucker, all in the first half of the nineteenth century. Since then it has 
become a useful standard technique. 

Constructions with compass alone were studied by Mascheroni (1797), who 
proved that compass alone suffices to carry out any construction possible with 
ruler and compass (Exercise 37.26). 

The cross-ratio occurs in Pappus (1876), Book VII, Proposition 129, except 
that instead of a ratio of ratios, which could not be expressed in the language of 
that time, it was a proportion between the rectangle Ap· BQ and the rectangle 
AQ· BP. This proposition easily implies the invariance of cross-ratio under pro­
jection (Exercise 37.14). 

Section 39. A note on the consistency of non-Euclidean geometry. The discov­
erers of these geometries, Gauss, Bolyai, and Lobachevsky, seem to have been 
convinced of the existence of these geometries by the extensive theory they de­
veloped and its internal coherence. Lobachevsky also noted that the formulas of 
hyperbolic trigonometry could be obtained by taking the formulas of spherical 
trigonometry for a sphere whose radius is imaginary. 

Still, a rigorous proof of consistency (or at least consistency relative to Eucli­
dean geometry) is best made by producing a model. Credit for the first such 
model goes to Beltrami (1868), who found that the geometry on surfaces of con­
stant negative curvature in 3-space behaves like a hyperbolic plane. Beltrami 
seems also to have been aware of the several representations of hyperbolic ge­
ometry in the Euclidean plane, used later by Klein and Poincare. Klein preferred 
the "projective" model, where the plane is represented by the points inside a 
fixed circle, and the lines by chords of Euclidean lines in that circle. This gives 
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the most direct connection with the projective metric of Cayley, and allows one 
to use the powerful methods of projective geometry. 

Poincare (1882), on the other hand, was led through his investigations of 
automorphic functions to a conformal model using the points of the Euclidean 
upper half-plane, in which the lines become half-circles orthogonal to the x-axis. 
This model can be easily transformed into the model we use, whose points are 
the interior of a circle, and whose lines are segments of circles orthogonal to the 
fixed circle, which was developed extensively by Carslaw (1916). 

For references, see Bonola (1955), Poincare's Science and Hypothesis (1905), 
and Klein's Nichteuklidische Geometrie (1927). 

We chose the Poincare model for this book because it can be developed 
directly from Euclidean geometry using inversion in circles, and because it 
seems the most direct and elementary approach. We could not have developed 
the Klein model fully without a considerable excursion into projective geometry, 
which would extend beyortd the scope of the present book. 

Exercise 39.22. The theorem that the medians of a triangle meet in a point is 
still true without the hypothesis of a circumscribed Circle, but the proof, using 
projective geometry, is more difficult. See Greenberg (1993), p. 277, also Baldus­
LObell (1953), p. 102, Liebmann (1923), p. 22. There is a proof in neutral geom­
etry using the calculus of reflections (Exercise 43.15). 

Some authors call the example of Exercise 39.28 a halfelliptic plane, because 
any two lines have either a common point or a common orthogonal. However, I 
find this terminology misleading, because this plane is semihyperbolic, not 
semielliptic. 

The example (Exercise 39.31) of a plane in which not every segment is the 
side of an equilateral triangle is new, although Pambuccian (1998) has in­
dependently found a similar example. 

Section 40. The axiom (L) was proposed by Hilbert in his article "A new devel­
opment of Bolyai-Lobachevskian geometry," reprinted as Appendix III to his 
Foundations of Geometry (1971). This article also contains the proofs of (40.5), 
existence of a common perpendicular, and (40.6) existence of the enclosing line. 

The proof suggested in Exercise 40.14 is due to Liebmann (1923), p. 31. 

Section 41. The construction of the field of ends (41.2), (41.3), and (41.4), to­
gether with the equation of a line (41.6) is taken from Hilbert's article "A new 
development ... " cited above. After he has verified the field axioms, he says that 
"the construction of the geometry poses no further difficulties" (p. 147). 

In the remainder of the section we have worked out various applications of 
Hilbert's field. The proofs of (41.9)-(41.13), using the multiplicative distance 
function (41.7) to avoid the real numbers, are new. 

Bolyaj's parallel construction first appears in Bolyai (1832), Section 34. There 
are several different proofs in the literature: 
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(a) proofs using the relations between right triangles and quadrilaterals with 
three right angles (called Spitzecke by Liebmann), and using hyperbolic trigo­
nometry. See Greenberg (1993) p. 413, Bonola (1955), App. III, and Liebmann 
(1923) p. 35. 

(b) a proof using a prism in hyperbolic 3-space-Bonola (1955), App. III. 
( c) a purely geometric proof using the Hjelmslev midline theorem, due to 

Liebmann: See Carslaw (1916) p. 73 or Wolfe (1945) p. 95. 
(d) proofs in the Klein model, using the projective geometry of the ambient 

plane: Greenberg (1993) p. 269; Baldus-LObell (1953) p. 93. 

Section 42. The formulae of hyperbolic trigonometry (42.2) and (42.3) are in 
Lobachevsky (1914), pp. 38, 41. The hyperbolic law of sines and law of cosines 
(Exercises 42.6, 42.7c) are in (loc. cit.) p. 44. 

Our derivation of these formulae directly from Hilbert's field of ends, and 
independent of the real numbers, is, as far as I know, new, except that Szasz 
(1953) has derived equivalent formulae using the isomorphism of the hyperbolic 
plane with the Poincare model. 

Bolyai, in his Science of Absolute Space (1832; English translation in Bonola 
(1955)), Section 43, studied the area of a circle, and recognized that it could be 
"squared" or not, depending on the arithmetic properties of the number A/n. 

Section 43. The characterization of hyperbolic planes (43.3) is a natural conse­
quence of the ideas set forth in Hilbert's "Neue Begriindung ... " article (Appen­
dix III of Foundations (1971». It gives a direct and elementary proof of a result 
that otherwise could be derived only as a consequence of the much deeper the­
orem ofPejas (1961). We have reformulated Pejas's theorem somewhat for clar­
ity. To understand the development of the ideas leading to Pejas's theorem is 
tantamount to reviewing the entire history of the role of projective geometry in 
the foundations of elementary geometry. Some useful references are Greenberg 
(1979), the comments of Bachmann (1959) pp. 25-26, running comments in 
Hessenberg-Diller (1967), Dehn's appendix to Pasch-Dehn (1976), and the en­
cyclopedia article of Enriques (1907-10). 

Section 44. The picture of the five regular solids at the beginning of this section 
is from Kepler, Harmonices Mundi (1619). Reprinted courtesy of the Bancroft 
Library of the University of California at Berkeley. 

Section 45. The history of Euler's and Cauchy's theorems is explained nicely in 
Cromwell (1997), Chapters 5, 6. Descartes' theorem (45.2) was unpublished and 
rediscovered only in 1860. Cauchy's theorem was first proved in 1813, then a 
gap discovered and filled by Steinitz in the 1930's. Even in the proof presented 
by Cromwell there is still a small gap in case the net is not connected, which I 
have filled in my proof of (45.5). For Steinitz's lemma (45.3). I give the proof 
of Schoenberg from Cromwell's book, p. 235ff. 
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Il-I3 
P 
Bl-B4 
CI-C3 
C4-C6 
E 
A 
D 
Z 
L 

List of Axioms 

incidence axioms (Section 6) 
Playfair's axiom (Section 6) 
betweenness axioms (Section 7) 
congruence for line segments (Section 8) 
congruence for angles (Section 9) 
circle-circle intersection (Section 11) 
Archimedes' axiom (Section 12) 
Dedekind's axiom (Section 12) 
de Zolt's axiom (Section 22) 
existence of limiting parallel rays (Section 40) 

A Hilbert plane (Section 10) is a geometry satisfying (Il)-(I3), (Bl)-(B4), and (Cl)-
(C6). 

A Euclidean plane (Section 12) is a Hilbert plane satisfying (P) and (E). 
A hyperbolic plane (Section 40) is a Hilbert plane satisfying (L). 
A Hilbert plane is semi-Euclidean, semielliptic, or semihyperbolic (Section 34) according 

as the sum of the angles in a triangle is = 2RA, > 2RA, or < 2RA. 
The Cartesian plane (Section 14) over a field P is the usual analytic geometry on the 

set p2. 
The Poincare model (Section 39) over a field P is the non-Euclidean geometry on the 

set of points inside a fixed circle. 
For other axioms, acronyms, and definitions, see the Index. 
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Index of Euclid's 
Propositions 

Post. 1 2, 18, 82 
Post. 3 2, 18, 82 
Post. 4 95 
Post. 5 5, 29, 38-40, 68, 112, 148, 173, 295-304 

Com. Not. I 82, 91 
Com. Not. 2 84, 91 
Com. Not. 3 85, 96 
Com. Not. 4 34, 82 
Com. Not. 5 4,85,195,201 

I.l 19, 21, 97, 11 0, 458 
1.2 20, 97 
1.3 97 
1.4 (SAS) 2,14,31,32,34,92,97,148 
1.5 8, 14, 97 
1.6 14, 98 
1.7 15,35,96,99 
1.8 (SSS) 33, 99 
1.9 21, 99 
I.l0 22,100 
I.l1 100 
I.l2 101, III 
I.l3 93, 101 
I.l4 101, 103 
I.l5 38, 93, 101 
1.16 36, 38, 101, 298, 319, 320, 459 
1.17 101, 320 

I.l8 101,103,459 
I.l9 101, 459 
1.20 101, 103, 452, 459 
1.21 101 
1.22 31, 102, 109, 110, 111, 147, 459 
1.23 102 
1.24 102, 451, 459 
1.25 102 
1.26 (ASA), (AAS) 36, 102 
1.27 38, 102 
1.28 38, 102 
1.29 38, 113 
1.30 113, 119 
1.31 102, 113 
1.32 8, 113, 298, 304 
1.33 113 
1.34 52, 113 
1.35 40, 114, 196, 198, 202, 204, 210 
1.36 114, 202, 210 
1.37 29,41,114, 196,202,210,219,328,329 
1.38 114,203,210 
1.39 114, 196, 203, 210 
1.40-45 114,203,210 
1.46 19, 114,300 
1.47 (Pythagorean theorem) 3,8, 13, 19, 37,42, 

114, 140, 178, 203, 210 
by dissection 213, 217-219 

1.48 114, 196, 203, 210 
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506 Index of Euclid's Propositions 

ILl-4 114,210 
II.5 46, 114, 210 
11.6 46, 114, 210 
II.7-10 114, 210 
ILl 1 45,114,183,203,210 
II.12 114,210 
II.13 114, 185, 210 
II.14 114,203, 210 

IILl-19 III 
III.20 114 
III.21 8, 55, 114 
III.22 114 
III.23-30 114, 157 
IIL31 114 
III. 32 114, 180 
III.33 114 
III.34 114 
III.35 114, 180, 203, 210 
IIL36 47, 114, 180,203,210,336 

non-Euclidean analogue 370,414 
III. 37 47, 114, 203, 210, 337 

IV.1 115 
IV.2 115,116 
IV.3 115 
IV.4 51, Ill, 11~ 17~ 382 
IV.5 51, 115,388 
IV.6 116 
IV.7-9 115 
IV.10 45, 115, 183,203,210 
IV.ll 45-50, 115,250, 252 
IV.12-14 115 

IV.15 1~ 112, 115, 250 
IV.16 115, 250 

V.Def. 4 115, 167 
V.Def. 5 166 

VLl 178, 212 
VL2 9, 167, 177, 178 
VI. 3 178, 181 
VI.4 175, 178 
VI. 5 177, 178 
VI. 6 178 
VI.8 178, 179 
VI.9-13 178 
VI.l4-31 178, 212 

X.1 115 

X. 118,282 

XI. Definitions 438, 445 
XI.20 459 
XI.21 442, 450 
XI.28 226, 227 
XI.29-31 227 
XI.39 227 

XII.5 228, 230, 231 
XII.7 229 

XIII.5 127 
XIII.13-17 439 
XIILl8 441 



Index 

(fJ. See infinity 
Q. See Hilbert's field 
n. See pi 
An. See alternating group 
2ASA (double-side-angle-side), 53 
2SAS (double-side-angle-side), 59 
2SSS (double-side-side-side), 59 
A. See Archimedes' axiom 
AAA (angle-angle-angle), 316 
AAL (angle-angle-limit), 377 
AAS (angle-angle-side), 36 
abelian group, 232 

ordered, 205, 212, 326, 327 
absolute length, 366, 380 
abstract fields, 128-135 
abstract geometry, 415 
accuracy, 22 
acute angle, 141 

hypothesis of, 307, 311 
addition 

of angles, 93 
of ends, 390, 420 
of figures, 41 
ofline segments, 82, 84, 88, 168 

additive distance function, 363, 402, 403 
additive group of field, 333, 401 
affine plane, 71-73, 130 

number of points, 72 
alchemy, 163, 221 

algebra of areas, 43, 46 
algebraic numbers, 147, 281 
algebraic topology, 450 
Alhazen, problem of, 278 
ALL (angle-line-line), 384 
alternate interior angles, 38 
alternating group, 472, 475 
altitudes of triangle meet, 52, 54, 55, 58 

in Cartesian plane, 119 
in hyperbolic plane, 399 
in neutral geometry, 387, 430 
in Poincare model, 369 
in semi-Euclidean plane, 319 

altitudes of triangle, 51, 63, 487 
analytic geometry, 118, 415, 427. See also 

hyperbolic analytic geometry 
analytic proof 

of altitudes of triangle, 119 
of pentagon, 125 
of theory of area, 210 

angle bisector, 11, 21, 23, 111, 181, 349 
by Hilbert's tools, 103 
existence, 100 
generalized, 317 

angle bisector, external, 382 
angle bisectors meet, 16, 51, 111 

by calculus of reflections, 432 
in Hilbert plane, 318 
in hyperbolic plane, 382, 387 
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angle of parallelism, 296, 364, 374, 375, 380, 396 
of sum of segments, 411 

angle sum of triangle, 8, 12, 113, 162, 295, 304, 
310,319,374. See also (1.32) in Index of 
Euclid's Propositions 

in Archimedean plane, 320, 325 
in hyperbolic plane, 376 
in Poincare model, 366 
infinitesimally close to 2RA, 431 

angle trisector, 277 
angle, 8, 141,326 

acute, 141 
between circles, 336 
cosine function, 403 
definition of, 28, 77 
enclosing line of, 378 
exterior, 101 
in a semicircle, 16, 111,316 
not rational multiple of n, 237-239 
obtuse, 141 
of contingency, 111 
quintisection of, 277 
radian measure of, 396 
right, 141 
sine function, 403 
supplementary, 92, 94 
tangent function, 403 
tangent of, 141, 146, 396, 399 
transporter of, 82, 91 
trisection of, 167, 243, 260 

angle-angle-angle theorem, 316 
angles 

addition of, 93 
alternate interior, 38 
congruence of, 90-96 
difference of, 96 
equality of, 32 
group of, 326, 327 
inequality of, 94 
sum of, 12, 91 
vertical, 38, 93 

antipodal point, 473 
antiprism, 436, 460, 466 
Apollonius of Perga, 58, 61, 347 
Apollonius, problem of, 250, 260, 346-355 
apply one figure to another, 31 
Archimedean geometry, 115 
Archimedean Hilbert plane, 425 
Archimedean neutral geometry, 319-326 
Archimedean ordered field 

is subfield of JR, 139 

Archimedean solids, 436, 460, 461 
Archimedes' axiom, 4, 70, 115, 158, 167 

for a field, 139 
for angles, 319 
implies Aristotle's axiom, 324 
in Cartesian plane, 139 
in dissections, 215 
in Poincare model, 363 
in theory of area, 204 
independence of, 161 
used in exhaustion, 228 

Archimedes, 1, 52, 56, 60, 270, 278 
approximation of n, 222, 224 

area function, 40, 42 
is additive, 207 
uniqueness, 211 

area, 2, 40-43, 113, 114, 195-239 
algebra of, 43 
as integral, 40, 221 
Euclid's theory of, 195, 196, 210 
function, measure of, 205-212 
in construction of pentagon, 45 
in semielliptic plane, 333 
independent of triangulation, 210 
measure function, 326, 328 
non-Euclidean, 326-333 
of a figure, 205 
of circle, 221, 333, 407, 413, 414 
of isosceles triangle, 332 
of rectangle, 40, 196 
of right triangle, 408, 412 
of Saccheri quadrilateral, 333 
of triangle cut by median, 333 
of triangle, 40, 196, 206, 207 
properties of, 196 
used for similar triangles, 167 

Aristotle's axiom, 297, 302, 324, 380, 412, 431, 
432 

arithmetic of ends, 388-403 
arithmetic ofline segments, 2, 165-175 
Artin, Emil, 147, 248, 427 
ASAL (angle-side-angle-limit), 317, 376 
ASL (angle-side-limit), 317 
ASS (angle-side-side), 16 
associative law of multiplication, 172 
Atalanta Fugiens, 163 
automorphism offield, 282 
automorphism of geometry, 69 
automorphisms, group of, 69 
axiom. See also postulate 

as existence, 82 



hyperbolic, 70, 311 
Lotschnitt, 431 
of Archimedes, 70, 115 
of Aristotle, 297, 302 
of Bolyai, 302, 303 
of Clairaut, 299, 302 
of Clavi us, 299, 302 
of de Zolt, 201-206, 210, 211 
of Dedekind, 70, 115 
of Gauss, 332 
of Legendre, 322, 324 
of Playfair, 300, 301 
of Simson, 300, 302 
of Wallis, 301, 302 
rectangle, 162 
right triangle, 301 

axiomatic geometry, 118 
axiomatic method, 2, 13, 27-43 
axioms of congruence, 81-96 

in Cartesian plane, 142 
axioms, 2, 29 

based on rigid motions, 155 
categorical, 70 
complete system of, 71 
consistent, 70 
independence of, 69 
modelof,67 
of betweenness, 73-81 
of incidence, 66-73 
of projective plane, 71 

Bl-4. See axioms of betweenness 
Bachmann, Friedrich, 155, 423, 427, 431 
Ball, W. W. Rouse, 36 
Bancroft Library, 261, 447, 494 
beauty in proof, 50 
Beltrami, E., 305, 492 
betweenness, 34-37, 73-81, 98, 112 

in Cartesian plane, 135-140 
in Poincare model, 357 
over an ordered field, 137 
used in exterior angle theorem, 101 

bicapped pentagonal antiprism, 459 
bicapped square antiprism, 456 
bidiminished icosahedron, 464 
Billingsley, Henry, 1 
bilunabirotunda, 469, Plate XIX 
Birkhoff, George David, 31, 166 
Bischof, Anton, 303 
bisect angle, 21 
bisect segment, 22, 23 

blemishes in Euclid, 304, 305 
Bolyai's axiom, 302, 303 

Index 

Bolyai's formula, 296, 364, 396, 402 
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Bolyai's parallel construction, 388, 396-398, 411, 
414, 493 

Bolyai, Farkas, 302, 332 
Bolyai, Janos, 195, 295, 305, 326, 373 
Bolyai-Gerwien theorem, 213, 215, 230, 330 
Bonnycastle, John, viii 
Burnside's theorem, 275 

<C. See complex numbers 
Cl-6. See axioms of congruence 
calculus ofrefiections, 415, 427-430, 432, 433 
Callahan, J. J., 304 
Camerer, Johann Wilhelm von, 347 
Campanus, Giovanni, 45, 261 
Cardano's formula, 272 
Cardano, Girolamo, 272 
Cartesian plane, 2, 30, 33 

(A) plus (E) implies, 426 
axioms of congruence, 142 
circle-circle intersection, 144 
configurations in, 132-135 
congruence in, 140-148 
Desargues's theorem, 133 
ERM in, 151 
Hilbert's axioms in, 148 
incidence axioms in, 129 
inversion in, 334 
is Euclidean, 153 
is Hilbert plane, 153 
non-Archimedean, 198, 325 
over <Q, 143 
over a field, 71, 72, 129 
Pappus's theorem, 131 
rational, 89 
real (see real Cartesian plane) 
rotations in, 156 
used for Poincare model, 356 

casus irreducibilis, 273, 491 
categorical axioms, 70, 115 
Cauchy's rigidity theorem, 435, 445, 448, 450-

455 
Cayley's theorem, 474 
CCC, 347, 352-355 
center of circle, 88, 104 

is unique, 104 
center of group, 479 
centroid, 53, 54, 472 
Ceva's theorem, 182, 185 
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Ceva, Tommaso, 306 
change of variables, 130 
characteristic offield, 128, 131 
characteristic polynomial, 472 
characterization of Hilbert planes, 415-433 
chord of circle, 124, 180 
circle group 

isomorphic to group of rotations, 402 
offield, 156, 157,401 

circle-circle intersection, 108, 112 
equivalent to (LCI), 110, 145, 423, 431 
in Cartesian plane, 144 
in hyperbolic plane, 422 
in Poincare model, 362 

circle 
area in hyperbolic plane, 407, 413,414 
area of, 221, 333 
circumscnbed, 25 
definition of, 27, 88, 104 
exterior is segment-connected, 116 
exterior not segment-connected, 433 
given 2 points and circle, 351 
given 2 points and line, 350 
given point and 2 lines, 350, 351 
given three circles, 353 
in Poincare model, 361 
infinite number of points on, 88, 147 
inscnbed, 24 
meets circle in two points, 107 
nine-point, 51, 57, 59 
not contained in polygon, 433 
orthogonal, 25 
squaring of, 163, 195, 221-225 
tangent to 3 circles, 250 
tangent to circle, 61, 62, 106, 111 
tangent to line, 25, 43 
tangent to two lines, 44 
triangle inscnbed in, 47 

circles 
determined by three conditions, 346-355 
intersection of, 29 
radical axis of, 182 

circular inversion, 295, 334-346, 366 
circumcenter, 51, 54 
circumference of circle, 413 
circumscribed circle, 25, 116,302,347,348 

does not exist, 162 
circumscribed hexagon, 414 
circumscribed polygon, 222, 224 
circumscribed polyhedron, 439 
Clairaut's axiom, 299, 302 

Clairaut, Alexis Claude, 299, 281 
classical construction problems, 241-250 
Clavius's axiom, 299, 302 
Clavius, Christoph, 298, 306, 340 
en. See cyclic group 
coincide, equal things, 34 
collapsible compass, 20 
Commandino, Federigo, 289, 297 
commensurable magnitude, 117 
common notions, 28, 29, 82 

from axioms, 85 
common orthogonal line, 366, 377, 384, 386, 401 
commutative law of multiplication, 170 
compass, 20, 21 

collapsible, 20 
rusty, 25, 26 
used alone, 346 

complement of a figure, 204 
complete axiom system, 71 
complex conjugation, 276 
complex numbers, 251, 282, 342 

cannot be ordered, 137 
conchoid, 260, 263, 264 
conclusion, 14 
condition (*),142 
condition (**), 144 
condition (*d), 372, 425 
configurations 

construction of, 134, 135 
in Cartesian plane, 132-135 

conformal transformation, 338 
congruence, 28, 34 

as equivalence relation, 82 
defined by rigid motions, 154 
in Cartesian plane, 140-148 
in Poincare model, 358, 360 
of angles, 90-96 
of line segments, 81-90 
of segment of circle, 157 
of solid angles, 439 
of sums, 84 
of triangles, 35 

conics, intersection of, 260, 279 
conjugacy class, 474 
conjugate elements of group, 474 
connected. See segment-connected 
consistency of non-Euclidean geometry, 355 
consistent axioms, 70 
constructible field, 146, 147 
constructible figures, 19 
constructible numbers, 242, 246, 259, 372, 409 



by quadratic extensions, 242 
criterion for, 245 

constructible point, 242 
constructible polygons, 250; 258, 276 
construction, 14, 19 

angle bisector, 23 
as existence theorem, 99-101 
center of circle, 24 
fixed circle and ruler suffice, 194 
Galois group of, 292 
inscnbed circle, 24 
midpoint of segment, 23 
of ll-gon, 277 
of 13-gon, 269 
of 17-gon, 250-259 
of 19-9on, 277 
of circular inverse, 335, 344 
of configurations, 134, 135 
of heptagon, 264-269 
of inverse, 343 
of limiting parallel, 396-398 
of nonagon, 269 
of pentagon, 43, 45-51,184,252 
of perpendicular, 185 
of regular polygons, 241 
of square, 51 
of triangle, given medians, 59 
origami, 249 
parallel line, 24 
perpendicular line, 23, 24 
reproduce angle, 24 
tangent to circle, 24 
with auxiliary curve, 260 
with compass alone, 343, 346 
with compass and marked ruler, 259-270, 274, 

276-280 
with Hilbert's tools (see Hilbert's tools) 
with one-inch ruler, 25 
with parabola, 278 
with ruler alone, 185, 344 
with ruler and compass, 242 
with ruler and dividers, 185, 186 
with ruler, compass, and angle 
trisector, 277 
with ruler, given fixed circle, 192-194 
with rusty compass, 25, 26 

content, 40, 43, 113, 195 
in non-Archimedean plane, 198 

continuity, 30, 116,426,488 
used by Saccheri, 307 

continuous function, 30, 159 

Index 

convex polygon, 451 
convex polyhedron, 442, 450, 451, 453 
convex set, 80, 111 
convex subgroup, 424,432 
convexity, 435 
coordinates 

change of, 130 
introduction of, 186-194 
of a line, 394 

cosh function, 413 
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cosine function, 124, 126, 184, 237, 403, 405 
triple angle formula, 244 

cosines, law of, 125, 185 
coterminal rays, 312 
counting steps, 20 
Cromwell, Peter R, 455 
cross-ratio, 339-345, 358, 367, 399, 402, 492 

defines distance function, 363 
crossbar theorem, 77, 100 
cube root, 241, 248 

with marked ruler, 262, 270 
cube, 435, 438, 439,444,446 
cube, duplication of, 243, 260 
cubic equation, 241, 243, 244, 248, 270-280, 457, 

459, 491 
by trisecting angle, 271 
Cardano's method, 272 
discriminant of, 273, 279 
for heptagon, 266-268 
irreducible, 278 
with three real roots, 278, 279 

cubic field extension, 279 
cubic resolvent, 273, 274, 293 
cuboctahedron, 460 
curvature· of space, 33 
cyclic group, 436 
cyclic quadrilateral, 55, 57, 58, 60-62, 170, 174, 

212, 430 
cyclotomic extension, 237, 291 
cyclotomic field, 291, 293 
cyclotomic polynomial, 238, 251, 253, 290 

D. See Dedekind's axiom 
de Zolt's axiom, 201-206, 210, 211, 328, 433 
Dedekind cut, 167 
Dedekind's axiom, 31, 70, 115 

avoid use of, 116 
for a field, 139 
gives existence of limiting 
parallels, 31 7 
implies (E), 116 
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Dedekind's axiom (cont.) 
implies Archimedes' axiom, 116, 140 
in Cartesian plane, 139 
in Poincare model, 363 

Dedekin~ Ftichard,4, 167,488 
defect 

as measure of area, 328 
at vertex of polyhedron, 450, 458 
is additive, 311 
oftria~e, 311, 324,325, 326,327 

definitions, 27, 28 
degree measure of angle, 166 
degree offield extension, 242, 280, 281 
degree three field extension, 248 
Dehn invariant, 232, 233, 234, 235, 238 

of cube, 233 
of octahedron, 238 
of tetrahedron, 234 
of triangular prism, 234 

Dehn,~ax, 195, 230, 231, 311 
deltahedra, 455-458 
Desargues's theorem, 133, 183 
Descartes's theorem, 450, 455, 458 
Descartes, Rene, 13, 118, 120, 121, 122, 123,171, 

273 
diagonal of quadrilateral, 55, 80 
diagonal of square incommensurable, 117 
dilference of angles, 96 
difference ofline segments, 85 
dihedral angle, 233, 435, 438, 443, 446 

of polyhedron, 448, 453 
dihedral group, 293, 436, 470, 474, 477, 479 
dilation, 338,341 
diminished icosahedron, 464 
direction oflines, 68, 303 
directrix,247 
discriminant of cubic equation, 273, 279 
disphenocingulum, Plate XVII 
dissatisfaction with Euclid, 304 
dissection, 195, 212-221 

Dudeney's, 220 
equilateral tri~e to square, 219, 220 
of solid figures, 227 
of tetrahedron, 231 
of triangular prism, 229 
of triangular pyramid, 228, 230 
parallelogram to rectangle, 214 
pentagon to square, 220 
possible if same area, 215 
Pythagorean theorem, 217-219 
rectangle to rectangle, 214, 215 

recta~e to square, 216, 219 
rectilineal figure to square, 217 
square into 3 squares, 219 
square into acute tria~e, 220 
tetrahedron to cube impossible, 236 
triangle to parallelogram, 213 
triangle to square, 221 
triangle to trapezoi~ 220 
using translations only, 220, 221 

distance function, 87, 89, 90, 152,362, 363, 364, 365 
Euclidean, 140, 143 
multiplicative, 296, 395 

distance-squared function, 141 
distance 

absolute value, 89 
between parallel lines, 297, 325, 326 
in Cartesian plane, 87, 89, 90 
signe~ 391 

dividers, 102, 185 
divine proportion, 447 
division ring, 133 
division ofline segments, 171 
Dn. See dihedral group 
dodecahedron, 435, 438, 439, 440, 444, Plate XIX 
Donne,John,221,294 
double of a triangle, 53 
dual solid, 446 
Dudeney, Henry Ernest, 220 
Dudley, Underwood, 23 
duplication of cube, 243, 247, 260, 271 

impossible, 243 
dyadic rational number, 333, 396, 409 

E. See circle-circle intersection 
edge of polyhedron, 438 
eigenvector, 472 
Einschiebung, 490 
Eisenstein's criterion, 255, 292 
elementary polyhedron, 464 
elliptic geometry, 311 
enclosing line, 367, 378, 384 
end of graph, 449 
end,378,390 

behaves like a point, 385 
definition of, 316, 374 
ofa ray, 296 
rotation aroun~ 402 

endpoint of segment, 74, 79 
ends 

arithmetic of, 388-403 
field of, 391 



multiplication of, 391 
sum of, 390 

Engel's associated triangles, 409-411, 414, 415 
enneagon, 269 
Enriques, Federigo, 168 
enunciation, 14 
equal content, 113, 195, 326 

as equivalence relation, 200 
definition, 197 
does not imply equidecomposable, 198 
equivalent to equidecomposable, 199 
if same area, 211 
implies equal area, 206 
implies equidecomposable, 216, 332 
of triangles, 202 

equality of angles, 32 
equality, definition of, 28 
equation of a point, 394 
equations, theory of, 241 
equiangular figure, 437 
equiangular triangles are similar, 175 
equicomplementable figures, 489 
equidecomposability is transitive, 199 
equidecomposable figures, 197, 199, 213, 326. See 

also dissection 
have same area, 206 

equidecomposable triangles, 330 
equidistant curve, 329, 369 
equidistant lines, 68, 298 
equilateral figure, 437 
equilateral pentagon over field, 147 
equilateral triangle, 19, 30 

by origami, 249 
construction, 110 
existence of, 97, 147, 184, 431 
in square, 126 
inscribed, 50 
may not exist, 373 
side related to angles, 366, 407, 411, 414 
with 45° angles, 368 
with given angle, 366 

equivalent by dissection, 213 
Erlanger Programm, 34, 149 
ERM. See existence of rigid motions 
error in construction, 22 
Euclid's Propositions proved from Hilbert's 

axioms, 97-102 
Euclid's Elements, 1, 7-18, 27, 63, 97, 112, 165-

167, 481-487 
constructive approach, 18 
in English, 109 

in French, 15 
in German, 281 
in Greek, 83 
in Italian, 289 
in Latin, 32, 84, 261 

Euclid, 1, 9 

Index 

Euclidean distance, 87, 140, 143 
Euclidean field, 144-146, 391 

non-Archimedean, 161 
Euclidean geometry, 39 

based on Hilbert's axioms, 112 
Euclidean metric, 87 
Euclidean plane, 112-116, 153 

as base for Euclid's Elements, 112 
Euclidean triangle, 311 
Eudoxus, 1, 4, 228 
Euler !p function, 238, 258, 290 
Euler characteristic, 448 
Euler line, 51, 54, 59, 488 
Euler's theorem, 448-450, 458 
Euler, Leonhard, 72 
even permutation, 471 
Eves, Howard, 9 
exactness, 22 
excess of a triangle, 333 
exercises, note on, 13 
exhaustion, 4, 115, 195, 222, 228 
existence of rigid motions, 149 

equivalent to (C6), 154 
implies SAS, 150 
in Cartesian plane, 151 
in Hilbert plane, 153 
in Poincare model, 359 
in spherical geometry, 318 

exposition, 14 
exterior angle theorem, 101,376 
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exterior angle, 36, 321. See also (U6) in Index of 
Euclid's Propositions 

exterior 
of circle, 105, 116 
of polygon, 205 
of triangle, 80, 96 

external angle bisectors, 382 
extreme and mean ratio, 46, 51, 114, 183 

face angle, 439, 450 
face of polyhedron, 438 
face-regular polyhedron, 436, 464-467 
feet of altitudes, 63 
Fermat number, 259 
Fermat prime, 259, 333 



514 Index 

Fermat, Pierre, 259 
field extension, 241 

algebraic, 283 
by angle trisection, 271 
by cube root, 271 
by square root, 271 
cubic, 279 
degree of, 242, 280, 281 
finite, 280-294 
isomorphic, 282 
normal, 285, 286 
of degree 2, 3, 4, 245, 248, 271 
of marked ruler construction, 274 
quadratic, 252-256 
totally real, 147 

field 
abstract, 118 
additive group of, 333, 401 
associated to hyperbolic plane, 388 
Cartesian plane over, 71, 72, 129 
circle group of, 156, 157, 401 
condition (*), 142 
condition (**), 144 
condition (*d), 372 
constructible, 146, 147, 372 
definition, 128 
Euclidean, 144-146, 391 
finite, 157 
fractional linear transformation, 401 
generated by elements, 280 
Hilbert's, 145, 147, 148 
multiplicative group of, 333, 401 
non-Archimedean, 158-163 
of characteristic 0, 2, 133, 136 
of characteristic 2, 131 
of constructible numbers, 409 
of ends in hyperbolic plane, 416 
of ends of Poincare model, 418 
of ends, 391 
of Laurent series, 163, 372 
of line segments, 168 
of rational functions, 158, 163 
of real numbers, 119 
of segment arithmetic, 179, 206 
ordered, 2, 117, 135-140 
Pythagorean, 142, 145 
skew, 132, 133, 140 

fifth postulate. See parallel postulate 
fifth roots, 277 
figure 

area of, 205 

as union of triangles, 197 
complement of, 204 
definition, 196 
interior of, 196 

figures 
equidecomposable, 197, 199, 326 
of equal content, 197, 326 
ordering of, 204 

filling plane with triangles, 367, 368 
finite element, 159 
finite field extension, 280-294 
finite field, 157 
finite geometry, 67, 72, 73, 129 
finite subgroups of SO(3) , 475 
finitely bounded element, 159 
finitely bounded Hilbert plane, 162 
Finzel, Anton, 492 
five regular solids, 436-448 
five-point geometry, 68 
flexible polyhedron, 455 
focus, 247 
four elements, 435, 436 
fractional linear transformation, 342, 401 
frame of icosahedron, 474 
Franceschini, Francesco Maria, 301 
free mobility, 427 
fringe mathematicians, 224 
full subplane of Hilbert plane, 423-425 
fundamental theorem 

of algebra, 282 
of Galois theory, 257, 276, 286 
of projective geometry, 341 

Galois group, 256, 258, 275, 276, 285-294 
as permutations, 286 
of constructible number, 245 
of construction problem, 292 
of cubic polynomial, 278, 279 

Galois theory, 4, 241, 252 
fundamental theorem of, 246, 257, 276, 286 

Gauss's axiom, 332 
Gauss, Carl Friedrich, vi, 4, 230, 241, 250, 252, 

295, 305, 326, 332 
generalized line, 386 
generalized point, 384 
generalized triangle, 387 
generators and relations of group, 479 
geometrical algebra, 46 
geometry 

Archimedean, 115 
automorphism of, 69 



axiomatic, 118 
finite, 67, 72, 73, 129 
five-point, 68 
high school, 118 
incidence, 66, 71 
neutral, 97 
non-Archimedean, 115, 158-163 
non-Euclidean, 97 
over a field, 117-163 
solid, 437 
taxicab, 89, 90 
three-point, 67, 68 
without numbers, 166 

Gerling, Christian Ludwig, 230 
Gerwien, P., 195 
Gibbon, Edward, 194 
gingerbread, 446 
Gleason, Andrew, 277 
glide reflection, 429 
graph, 449 
great circle, 318 
greater than 

for angles, 94 
for line segments, 85 

Greek text of Euclid, 83 
Greenberg, Marvin Jay, 398, 432 
Gregory, David, 188 
group 

cyclic, 436 
definition of, 27 
dihedral, 293, 436 
of angles, 326, 327 
of automorphisms, 69 
of rigid motions, 34, 149,426,427 
of rotations, 155, 156, 327, 436, 471 
of segment addition, 423 
of symmetries, 435 
of translations, 156 
ordered abelian, 205, 212 
solvable, 275 
symmetric, 69 
symmetry, 469-480 
unwound circle, 327, 333 

Giidel, Kurt, 70, 71 

Hadamard, Jacques, 65 
half-elliptic plane, 493 
halves of equals are equal, 29, 41, 88, 204, 

229 
harmonic points, 342, 345 
Heath, Sir Thomas L., 29, 116, 487 

Index 

Henrion, Denis, 15 
heptagon, 260, 264-269, 491 
Hessenberg, Gerhard, 423 
hexagon, 11, 12, 112 
high-school geometry, 40 
Hilbert plane, 96-103, 112, 305 

algebraic model of, 423 
Archimedean, 115, 425 
calculus ofreflections, 427-430 
ERM holds, 153 
Euclidean, 112-116, 153 
finitely bounded, 162 
full subplane of, 423-425 
hyperbolic, 373-387 
non-Archimedean, 115, 158-163 
Pejas's classification, 423-427 
rigid motions in, 148, 149 
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semi-Euclidean, 305, 311, 316, 318, 319, 425, 
431 

semielliptic, 311, 316, 318, 321, 425 
semihyperbolic, 311, 316, 372, 425, 

433 
with (P) and (D) is real Cartesian 
plane, 191 
with (P) is Cartesian, 186, 187 

Hilbert planes 
characterization, 415-433 
isomorphic, 416-418 

Hilbert's axioms, 65 
as base for Euclidean geometry, 112 
as tools, 102 
over a field, 128 

Hilbert's field, 145, 147, 148, 248 
Hilbert's hyperbolic axiom, 311 
Hilbert's third problem, 195, 230-239 
Hilbert's tools, 82, 102, 103, 182, 186, 248, 249, 

346 
constructible polygons, 259 
pentagon with, 249 
ruler and dividers suffice, 186 

Hilbert, David, 2, 4, 168, 230, 427, 488 
history of parallel postulate, 296-304 
Hjelmslev quadrilateral, 430 
Hjelmslev, Johannes, 415, 426, 427, 429 
Hobbes, Thomas, 239 
Holtzman, Wilhelm, 281 
homogeneity, 33, 148 
homology groups, 232 
homotopy groups, 232 
horned angle, 111 
horocycle, 369, 402, 412 
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hyperbolic analytic geometry, 388, 396-400 
coordinates ofline, 394 
equation of a point, 394 

hyperbolic axiom, 70, 374, 376, 377, 398 
implied by (A) + (E) + (-p), 426 
implies (E), 423 

hyperbolic geometry, 5, 311, 373-387 
is semihyperbolic, 374 
law of cosines, 411 

hyperbolic plane, 296, 374 
(E) holds, 422 
additive distance function, 402, 403 
altitudes oftriangle meet, 399 
angle bisector of triangle, 382 
angle sum of triangle, 376 
area of circle, 407, 413, 414 
area of right triangle, 408, 412 
Aristotle's axiom in, 380, 412 
cosine function, 405 
determined by field of ends, 416 
distance function, 395 
equilateral triangle, 407, 411, 414 
existence of common orthogonal, 377 
field of ends, 388 
group of rigid motions, 401 
horocycle, 402 
introduction of coordinates, 415 
isomorphic to Poincare model, 422 
law of sines, 411 
measure of area function, 407 
perpendicular bisectors of triangle, 388 
right triangle in, 404, 406 
rigid motions, 391 
sine function, 405 
squaring of circle, 409, 414 
tangent function, 395, 399 
trigonometry, 403-415 

hyperbolic trigonometric functions, 413 
hyperbolic trigonometry, 296, 388, 403-415, 494 
hypercyc1e, 329, 369 
hypotenuse, 42 
hypothesis 

of acute angle, 307, 311 
of obtuse angle, 307, 311 
of right angle, 307, 311 

Holder, theorem of, 294 

Il-3. See axioms of incidence 
icosahedron, 435, 438, 439, 445, 455, Plate XIX 

construction of, 440, 448 
punched-in, 442, 450 

rotation group of, 473-475, 478 
symmetry group of, 478 

icosidodecahedron, 462 
ideal line, 386, 426 
ideal point, 72, 384, 386, 426 
identity transformation, 149, 155 
impossible problem, 223, 224, 241 
incenter, 51 
incidence axioms, 66-73 

in Cartesian plane, 129 
in Poincare model, 356 
over a field, 128-135 

incidence geometry, 66, 71 
independence of axioms, 69, 158, 161 
index of subgroup, 473 
inequality 

in ordered field, 136 
of angles, 94 
ofline segments, 85 

infinite element, 159 
infinite number 

of parallel lines, 316 
of points on circle, 88, 147 
of points on line, 79 

infinitesimal element, 159, 425 
infinitesimal plane, 162 
infinity, 342 

arithmetic with, 146 
as end, 390 
as inverse of origin, 335 
as symbol, 142 
point at, 72 inscribed circle, 24, 127, 347, 349 

inscribed equilateral triangle, 50 
inscribed polygon, 222, 224 
inscribed polyhedron, 439 
inscribed square in triangle, 184 
inscribed triangle, 47 
inside. See interior 
integral to define area, 221 
interior angles, 38 
interior 

of angle, 34, 36, 77, 96, 141 
of circle, 105 
of figure, 196 
of polygon, 205 
of quadrilateral, 80, 81 
of triangle, 77, 80, 196 

intermediate value theorem, 30, 247, 457 
interpretation of undefined notions, 355 
intersection 

of circles, 29 



of conics, 260 
of figures, 197, 203 
of lines and circles, 104-112 

introduction of coordinates, 186-194, 415 
in projective plane, 426 

invariant of geometric object, 232 
inverse 

of circle, 335, 337 
of line, 335 
of point, 334, 335 

inversion 
in circle, 295, 334-346 
is conformal, 338 
over a pythagorean field, 345 

irrational numbers, 118, 125, 126, 166, 282 
irreducible polynomial, 244, 284 
isogonal conjugates, 433 
isometry, 472 
isomorphic models, 68 
isomorphism, 89 

of geometries, 187 
of Hilbert planes, 416-418 

isosceles triangle, 8, 35, 36 
base angles equal, 97 
constructed by Hilbert's tools, 102 
every one is, 36 
existence, 100 
with base angles twice vertex, 45 

jelly beans, 446, Plate XIX 
Johnson, N., 436, 464 
Jordan curve theorem, 205 

K-line, 370 
K-point, 370 
K. See constructible field 
KI-4 (Kirkman geometry), 72 
Kepler, Johann, 436, 447, 461 
Kirkman geometry, 72 
Kirkman's schoolgirl problem, 488 
Kirkman, T. P., 72 
Klein four-group, 291, 474 
Klein model, 370, 371 
Klein, Felix, 34, 149, 305, 426, 492 
Kline, Morris, 71 
knot in paper makes pentagon, 51 

L. See hyperbolic axiom 
Lambert quadrilateral, 316 
Lambert, Johann Heinrich, 305 
Laurent series, 163, 372 

law of cosines, 125, 185, 411 
law of sines, 185, 411 
LCC, 347, 355 

Index 

LCI. See line-circle intersection 
Legendre's axiom, 322, 324, 431 
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Legendre, Adrien Marie, 227, 305, 319, 322, 323, 
439 

Leistner, Joseph, 224, 225 
length, 2, 28, 42, 165 

absolute in Poincare model, 366 
in field of segment arithmetic, 175 
of chord of circle, 124 
of side of polygon, 124 

Lenstra, Hendrik, 127 
less than 

for angles, 94 
for line segments, 85 

limit line, 386 
limit quadrilateral, 386, 401 
limit triangle, 317 

existence of, 386 
limit, 228 
limiting parallels, 295, 296, 312-319, 373, 385 

construction of, 396-398 
definition of, 312 
distance between, 325, 326 
do not exist, 372 
existence of, 317, 374 
in Poincare model, 363 

Lincoln, Abraham, 13 
Lindemann, 223 
line segment, 74 

definition, 140 
congruence of, 81-90 

line separation, 76, 79 
line-circle intersection, 108, 111 

equivalent to (E), 145, 186, 191, 192, 423, 431 
in Cartesian plane, 144 

line 
coordinates of, 394 
definition of, 27, 83 
generalized, 386 
has infinitely many points, 79 
ideal,386 
in Cartesian plane, 119, 129 
in interior of angle, 322, 325, 366 
limit, 386 
linear equation of, 67 
meets circle in two points, 106 
parallel to base of triangle, 44, 52, 63, 177, 185 
unique through two points, 66 
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linear equation, 67 
linear map of vector space, 472 
linear ordering, 81 
linear problem, 260 
linear transformation, 130 
lines, 66 

cannot enclose a space, 66 
orthogonal if reflections commute, 428 
orthogonal, 94 
parallel, 68 
strictly parallel, 318 
with common end, 389 

LLC, 347, 352, 355 
LLL (line-line-line), 347, 349, 385 
Lobachevsky, Nicolai Ivanovich, 295, 305, 373, 

4ll,492 
loop of graph, 449 
Lotschnitt axiom, 431 
Lovecraft, H. P., 480 

magnitude, 117, 166, 167 
Maier, Michael, 163 
marked ruler, 4, 241, 259-270, 274 
Marvell, Andrew, 6 
Mascheroni, Lorenzo, 346, 492 
measure of area function, 195, 199, 205-212, 

326, 328, 407 
existence of, 206 

median of triangle, 59 
medians of triangle meet, 52, 53, 319, 37l, 433, 

487, 493 
Menelaus's theorem, 180, 262 
method of exhaustion, 115, 195 
metric plane, 427 
metric, Euclidean, 87 
midline, 385 

of limit triangle, 317 
of quadrilateral, 306, 309 
of triangle, 310, 329 

midpoint of segment, 88 
by Hilbert's tools, 103 
existence, 100 

Millay, Edna st. Vincent, 50 
minimal polynomial, 259, 283, 292 
Miquel point, 61 
Miquel, A., 61 
mirror image, 227, 230, 231, 451 
mirror symmetry. See symmetry, mirror 
model 

isomorphic, 68 
of axiom system, 67, 95 

of betweenness, 78 
of congruence axioms, 87, 89, 90 
over a field, 128 
Poincare, 70 
standard, 88, 90 
unique, 70 

models of axioms, 95 
models of polyhedra, 446 
modern algebra, 241 
modular Hilbert plane, 425, 431 
Monge, Gaspard, 342 
multiplication 

of ends, 391, 421 
ofline segments, 168, 170, 171 

multiplicative distance function, 296, 363, 364, 
365,396,401,493 

multiplicative group offield, 333, 401 

IN. See natural numbers 
natural numbers, 136 
negative x-axis, 136 
nested square roots, 124-126 
net on a polyhedron, 454 
net-face, 454 
neusis, 270, 490 
neutral geometry, 5, 39, 97, 304-319 

Archimedean, 319-326 
definition, 305 
theory of parallels in, 312-319 

Nicomedes, 263, 264 
nine-point circle, 5, 51, 57, 59, 488 
non-Archimedean field, 158-163 
non-Archimedean geometry, ll5, 158-163, 318 

existence oflimiting parallels, 398 
non-Archimedean universe, 161 
non-Euclidean area, 326-333 
non-Euclidean geometry, 97, 295, 304, 305 

existence, 355 
hyperbolic, 373-387 
Klein model, 370, 37l 
non-Archimedean model, 161, 162 
Poincare model, 356 
semielliptic, 318 
semihyperbolic, 372 

non-Euclidean Pythagorean triple, 414 
non-Euclidean theorem proved by Euclidean, 

370 
non-Euclidean triangle, 311 
non-Legendrean geometry, 311, 492 
non-modular Hilbert plane, 425 
nonagon, 269 



noncollinear points, existence of, 66 
nonoverlapping figures, 196, 197, 204 
nonuniform polyhedron, 464 
norm, in field extension, 157 
normal field extension, 256, 285, 286 
normal subgroup, 474 
number theory, 117 

obtuse angle, 141, 213 
hypothesis of, 307, 311 

octahedron, 435, 438, 439, 444, 446, 455 
rotation group of, 478, 480 
symmetry group of, 478 

one-inch ruler, 25, 62, 74, 110, 182, 199,202,210, 
213, 220, 259, 398, 426 

orbit under group action, 473 
order of group, 245 
order, 73 

for angles, 94 
for line segments, 86 
linear, 81 
of four points on line, 79 

ordered abelian group, 205, 212, 326, 327 
of segment addition, 423 

ordered field, 2,117,165,135-140 
Archimedean, 139 
betweenness over, 137 
constructed from positive elements, 173 
definition, 136 
finite element, 159 
inequality in, 136 
infinite element, 159 
non-Archimedean, 158-163 
of line segments, 173 
three associated groups, 333 

ordered set, 212 
ordering 

of angles, 34 
of points, 34 
on set of figures, 204 
on surd field, 137, l40 

orientation, 471 
origami, 249, Plate XIX 

equilateral triangle, 249 
pentagon, 249 
triangle given three sides, 250 

origin of a ray, 77 
origin, 119, 187 
orthic triangle, 58 
orthocenter of triangle, 54, 184 
orthogonal circles, 336 

Index 

orthogonal linear transformation, 472 
orthogonal lines, 94 

if reflections commute, 428 
orthogonal. See also perpendicular 
outside. See exterior 

p' (affine parallel axiom), 71 
P-betweenness, 357 
P-circle, 361 
P-congruence, 358 

compared to Euclidean congruence, 
363 

p-group has nontrivial center, 246 
P-line, 356 
P-model, 356 
P-point, 356 
P-reflection, 359 
P-rigid motion, 359 
P. See Playfair's axiom 
PI-4 (axioms of projective plane), 71 
painting the plane, 62 
Pambuccian, Victor, 432, 493 
paper folding. See origami 
Pappus's theorem, 62, 131, 133,426 

equivalent to commutativity, 132, 133, 
429 

Pappus, 58, 342, 347, 489 
parabola, 247 

intersected with line, 247 
intersection with circle, 247 
squaring of, 247 
to trisect angle, 277 

parallel axiom, 97 
false in Poincare model, 357 
in Cartesian plane, 130 

parallel lines, 38 
by Hilbert's tools, 103 
common orthogonal to, 366, 377 
construction of, 24 
cut equal segments, 59 
definition, 68 
distance between, 298 
in Cartesian plane, 119 

parallel postulate,S, 29, 38, 39, 68 
history, 296-304 
independence of, 65 

parallelepiped, 226 
parallelism, angle of, 364, 374, 375, 380 
parallelism, as equivalence relation, 72 
parallelogram, 40 

in the same parallels, 198 
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parallels 
in neutral geometry, 312-319 
in the same, 40, 41 
infinite number of, 316 
theory of, 37-40, 113 

Pascal's theorem, 426 
Pasch's axiom, 74, 77 

for limit triangle, 317 
Pasch, Moritz, 65, 74, 426 
PCC, 347, 355 
Pejas's classification, 423-427 
Pejas, theorem of, 425-427 
Pejas, W., 398, 415, 423, 427 
Peletier, Jaques, du Mans, 32, 44, 298 
pencil of limiting parallels, 369 
pencil of lines, 72, 389, 401 
pentagon,S, 17 

analytic proof, 125 
by marked ruler, 270 
by origami, 249 
construction of, 43, 45-51, 127, 184 
made by knot, 51 
uses all of Euclid's geometry, 115, 203 
using complex numbers, 251 
with all right angles, 411 
with Hilbert's tools, 248 
with ruler alone, 194 

pentagonal dipyramid, 456 
perpendicular bisectors meet, 16,51, 116, 318 

by calculus of reflections, 432 
in hyperbolic geometry, 388 

perpendicular line by Hilbert's tools, 103 
perpendicular to line, 23 
perpendicular. See also orthogonal 

construction of, 185 
perspective triangles, 183 
Petersen, Julius, 490 
philosopher's stone, 163 
pi (n) 

approximation of, 222-225 
transcendence of, 241, 244 

planar problem, 260 
plane separation, 74 
plane 

affine,7l-73 
Euclidean, 112-116 
Hilbert, 96-103, 112 
painting of, 62 
projective, 7l 
seven-point, 7l 

Plato, 1, 9, 10, 22, 42, 296 

Platonic solids, 435, 446 
Playfair's axiom, 39, 112, 158, 300, 301 

independence of, 161 
Playfair, John, 68, 300 
PLC, 347, 355 
PLL, 347, 350 
Poincare model, 70, 95, 295, 355-373 

(A) plus (E) implies, 426 
(E) holds, 362 
absolute unit of length, 366 
addition of ends, 420 
analogue of 111.36, 370 
angle sum in, 366 
betweenness, 357 
circle in, 361 
congruence, 358, 360 
distance in, 341 
equilateral triangle, 366 
ERM in, 359 
field of ends of, 418 
horocycle in, 369 
hypercycle in, 369 
in virtual circle, 372, 425 
incidence, 356 
independent of circle chosen, 371 
isomorphic to hyperbolic plane, 422 
limiting parallels, 363 
multiplication of ends, 421 
non-Archimedean, 37l 
over Pythagorean field, 372 
reflection of ends, 420-422 
trisection of angle, 369 
trisection of segment, 369 

Poincare, Henri, 305, 492 
point 

at infinity, 72 
definition of, 27, 83 
equation of, 394 
generalized, 384 
ideal, 72, 384, 386 
in Cartesian plane, 119, 129 

points, 66 
noncollinear, existence, 66 
on same side ofline, 103 

pole of rotation, 475 
polygon 

5-sided (see pentagon) 
6-sided (see hexagon) 
7-sided, 260, 264-269 
9-sided, 269 
ll-sided, 277 



13-sided, 269 
17-sided, 4, 241, 250-259 
19-sided,277 
circumscribed, 222, 224 
constructible with compass and marked ruler, 

276 
constructible, 250, 258 
exterior angles of, 16 
exterior, 205 
inscribed, 222, 224 
interior, 205 
simple closed, 204 
with Hilbert's tools, 259 

polyhedron, 435, 438 
constructible, 441 
made of equilateral triangles, 455-458 
making models, 446 
plane projection of, 449 
regular, 446 
symmetry group of, 469-480 

polynomial 
cyclotomic, 251 
irreducible, 244 

Poncelet, Jean Victor, 342 
Poncelet-Steiner theorem, 194 
positive elements, 159 

offield, 136 
of group, 205 

positive x-axis, 136 
Postulate 5. See parallel postulate 
postulate, 18, 28, 29. See also axiom 

as construction, 82 
parallel, 5, 29 
ruler, 2 

power of a point, 181, 182 
PPC, 347, 351, 355 
PPL, 347, 350 
PPP, 347, 348 
preserved orientation, 471 
primitive roots of unity, 290 
prism, 226, 436, 460, 466 
problem 

impossible, 241 
linear, 260 
of Alhazen, 278 
of Apollonius, 296 
planar, 260 
solid, 260, 279 

Proclus's lemma, 297, 301 
Proclus, 13, 14, 39, 42, 95, 296, 297 
product of line segments, 123, 170 

Index 

projective geometry, 341, 494 
projective plane, 7l, 311, 386, 426 

as lines in vector space, 71 
number of points, 72 

projectivity, 341, 345 
proof 

analytic versus geometric, 120 
parts of, 14 
what is a, 10-13, 19, 23, 30, 120 
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proportion, theory of, 4, 51, 166, 167, 168, 175 
pseudorhombicuboctahedron, 462, 468 
Ptolemy's theorem, 212 
Ptolemy, 296, 297 
punched-in icosahedron, 442, 450 
pure geometry, 166 
pyramid, 226, 438 
Pythagoras, 1, 9 
Pythagorean field, 142, 145, 151 

non-Archimedean, 159, 163 
Pythagorean ordered field, 345 

Poincare model over, 372 
Pythagorean theorem, 8, 42, 46, 203. See also 

(1.47) in Index of Euclid's Propositions 
by dissection, 213, 217-219 
by trigonometry, 403 
in field, 178 
using similar triangles, 179 

Pythagorean triple, 42, 415 

CQ. See rational numbers 
quadratic equation, 43, 46, 120, 122, 238 

solved by construction, 127 
quadratic field extension, 252-256 
quadratic formula, 252 
quadratic irrational numbers, 126 
quadratic polynomial, 245 
quadratrix, 223, 224, 260 
quadratura circuli, 221-225 
quadrilateral. See also Saccheri 

quadrilateral 
cyclic, 55, 57, 58, 60-62 
Lambert, 316 
limit, 386 
of Hjelmslev, 430 
regular, 414 
sides parallel, 103 
simple closed, 80 

quartic equation, 241, 260, 270-280 
Descartes's method, 273 

quartic polynomial, 285, 287 
quintic equation, 277, 283, 287 
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quintisection of angle, 277 
quotient ofline segments, 123 

IR. See real numbers 
RA. See right angle 
radian measure of angle, 396, 403, 407 
radical axes of three circles, 370 
radical axis of two circles. 182 
radius of circle, 88, 104 
RASS (right-angle-side-side), 16, 37, 103, 111 
Ratdolt, Erhard, 261 
ratio, 166, 167 

extreme and mean, 46, 51 
in field, 175 

rational Cartesian plane, 89 
rational net of points, 426 
rational numbers, 30, 89, 118, 136 

as ordered field, 137 
Cartesian plane over, 143 
dyadic, 333, 396 

ray, 77, 79, 141 
congruence of, 88 
limiting parallel, 312 

rays 
coterminal, 312 

real Cartesian plane, 34, 117-127 
area in, 40 
as categorical model, 70 
as complex numbers, 251 
as Hilbert plane with (P) and (D), 191 
as incidence geometry, 67, 68 
as model for axioms, 95 
as model for betweenness, 78 
congruence in, 87 
regular polygons in, 437 
unwound circle group in, 327, 333 

real Euclidean plane, 343 
real line, 78 
real number 

area as, 166 
length as, 166 

real numbers, 2, 4, 34, 158. See also real 
Cartesian plane 

as ordered field, 137 
constructible, 242, 259 
defined by Dedekind, 167 
imply circles meet, 30 
in axioms, 166 
in Euclid?, 167 
not in spirit of Euclid's geometry, 116, 166 
unnecessary, 296, 326 
used in high school geometry, 118 

real roots 
of cubic equation, 272, 273 
of equations, 271 
of polynomial, 247 
of quartic equation, 273 

rectangle axiom, 162 
rectangle, 16, 302, 378 
rectifiable circle, 413 
rectilineal figure, 196 
reductio ad absurdum, 14 
reduction mod p, 288 
reduction of one problem to another, 348 
reflection, 33, 152, 153, 155 

in equator, 342 
reflections 

calculus of, 415, 427-430, 432, 433 
equations among, 428 
generate rigid motions, 153, 427 
in Poincare model, 359 
product of, 157 
theorem of three, 158,389 

reflexivity, 82 
regular pentagon, 49 

exists over n, 147 
regular polygon, 241, 250, 437 

constructible, 276 
regular polyhedron, 435, 442, 443 

definition of, 446 
regular solids, 435-448 
resolvent of cubic equation, 273, 274 
reversed orientation, 471, 472 
rhombicosidodecahedron, 462 
rhombicuboctahedron, 462, 463 
rhombus, 16 
Riemann integral, 222 
Riemann sphere, 342 
right angle, 27, 141 

definition of, 94 
existence, 101 
hypothesis of, 307, 311 
in semicircle, 60 

right angles all equal, 33, 95 
right triangle axiom, 301 
right triangle, 42, 44 

area of, 408, 412 
Engel's associated, 410-411, 414, 415 
relation among sides and angles, 403, 404, 406 

right-angle-side-side. See RASS 
rigid motion, 33, 65, 334, 341, 359 

definition, 149 
generated by reflections, 427 
group of, 426, 427 



in 3-space, 471 
is product of three reflections, 155 
of hyperbolic plane, 392, 401 
of polyhedron, 439, 441 
reflection, 152, 153, 155, 392 
rotation around 00, 392 
rotation, 156, 393 
translation along a line, 391, 392, 400 
translation, 151, 155, 156 

rigid motions, 117, 148-158 
define congruence, 154 

rigidity theorem, 450-455 
roots expressedby real radicals, 294 
roots of equations, 270 
roots of polynomials, 281-284 
roots of unity, 251, 288, 290-293 
rotation group, 436 

of icosahedron, 473-475, 478 
of octahedron, 478, 480 
of polyhedron, 472 
of semiregular polyhedra, 479 
of tetrahedron, 471-473 

rotation, 33, 151, 155, 304 
around 00, 392 
around an end, 402 
of polygon, 437 
of polyhedron, 470 

rotations 
group of, 155, 156, 327 
in Cartesian plane, 156 
isomorphic to circle group, 402 
of sphere, 478 
product of, 157 

ruler alone constructions, 185, 344, 345 
with fixed circle, 192-194 

ruler and compass constructions, 18-26, 112 
as quadratic equations, 120, 122 

ruler and compass, 2 
ruler postulate, 2 
ruler, 21 
ruler, one-inch, 25 
ruler, marked, 241 
rusty compass, 25, 26 

s-line, 318 
s-point, 318 
Saccheri quadrilateral, 306-310, 316, 376, 383 

associated to triangle, 310, 328, 329 
Saccheri, Girolamo, 295, 305, 319 
Saccheri-Legendre theorem, 295, 320, 376 
Saccheri, theorem of, 309 
same area implies same content, 331 

same direction of lines, 303 
same side, 74 

Index 

as equivalence relation, 75 
sand, geometrical figures in, 56 
SAS (side-angle-side), 31, 34 

as axiom, 112 
Savile, Henry, 304 
Scheubel, Johann, 83 
School Mathematics Study Group, 31, 166 
schoolgirl problem, 72 
Schwan, E., 427 
screw reflection, 478 
secants of circle, 60, 181 
segment addition, group of, 423 
segment arithmetic, 165-175 
segment of circle, 114, 157 
segment, 74 
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segment-connected set, 80, 111, 116, 205, 433 
semi-Euclidean plane, 305, 316, 318, 319, 431 

Archimedean implies (P), 321 
characterization of, 425 
definition of, 311 
isomorphism of, 432 

semielliptic plane, 311, 316 
area in, 333 
characterization of, 425 
definition of, 311 
example, 318 
impossible if Archimedean, 321 

semihyperbolic plane, 316, 372, 431 
characterization of, 425 
definition of, 311 
isomorphism of, 432 
measure of area function, 328 

semiregular polyhedron, 459-463 
semiregular solids, 436 
separation, 73 

of line, 76 
of plane, 74 

seven-point plane, 71 
Shakespeare, William, 388 
Siamese dodecahedron, 457 
side of triangle, 74, 79 
side-angle-side, 31, 34 

as axiom C6, 65, 91, 92 
equivalent to ERM, 154 
for similar triangles, 178 
in Cartesian plane, 148-158 
over a field, 117 

side-side-side 
for similar triangles, 175 
from Hilbert's axioms, 99 
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side 
of 15-gon, 126 
of 16-gon, 126 
of 17-gon, 256 
of a line, 74 
of decagon, 124 
of pentagon, 125 
of polyhedron, 448 
of tetrahedron, 126 

sidedness, 73 
signed distance, 391 
Sim AAA (similar angle-angle-angle), 175 
Sim SAS (similar side-angle-side), 178, 181 
Sim SSS (similar side-side-side), 1 77 
similar triangles, 51, 52, 53, 165, 166, 167, 175-

186 
existence of, 301 
in semihyperbolic plane, 302 
prove 1.47, 178 
prove III.35, 180 
prove III.36, 180 

simple closed polygon, 204 
simple closed quadrilateral, 80 
simple group, 474 
simply connected polyhedron, 450 
Simson line, 61 
Simson's axiom, 300, 302 
Simson, Robert, 31, 109,299 
sine function, 124, 126, 184, 403, 405 
sines, law of, 185 
sinh function, 413 
skew field, 132, 133, 140 
slope CIJ, 119 
slope of line, 119, 120, 129, 142 
Sn. See symmetric group 
snub cube, 462, 463, 468, Plate XVII 
snub disphenoid, 456, 457, 459, Plate XVIII 
snub dodecahedron, 462, 463, Plate XX 
SO(3),475 
soccerball, Plate XX 
solid angle, 439 
solid geometry, 437 
solid problem, 260, 279 
solvable group, 275 
special orthogonal group, 475 
specification, 14 
spherical geometry, 311, 318, 452, 458, 459 
spherical polygon, 452 
spherical triangle, 443, 458 
spherical trigonometry, 443 
splitting field, 279, 284, 285, 292 

square antiprism, 456 
square dipyramid, 459 
square root of 2 

in field, 132 
is irrational, 117 

square root 
in ordered field, 140 
of line segment, 123, 171 
construction of, 125 
in constructions, 242 
nested, 124-126 

square, 51 
as sum of two squares, 198 
on side of triangle, 42 
with given content, 114 

squares 
of equal area, 211 
of equal content, 204 

squaring of circle, 23, 163, 195, 221-225, 244, 
490 

in hyperbolic plane, 409, 414 
squaring of parabola, 247 
SSS (side-side-side), 35 
stabilizer subgroup, 473, 474 
standard form of irrational numbers, 125, 126 
standard model, 88, 90 
Staudt, Georg Karl Christian von, 426 
Steiner, Jakob, 184, 194 
Steinitz, Ernst, 451 
steps of construction, 20-22 
stereographic projection, 342, 371, 480 
straight edge, 18, 21. See also ruler 
straight line, 27, 28 

definition of, 83 
stretched cube, 467, 468, Plate XVIII 
strictly parallel lines, 318 
subtraction of figures, 41 
sum of squares, 248 
sum 

of angles, 91 
of ends, 390 
of line segments, 84, 168 

superposition, 2, 31-34, 65, 112, 148, 334 
over a field, 117 
replaced by axiom C6, 92 

supplementary angle, 92, 94 
symmetric group, 69, 286, 469-480 
symmetry group, 435 

dihedral, 470 
of antiprism, 479 
of icosahedron, 478 



of octahedron, 478 
of pentagon, 477 
of prism, 479 
of tetrahedron, 470, 472 
of triangle, 469 

symmetry of a figure, 469 
symmetry, 84 

mirror (see mirror symmetry) 
used in proof, 379 

Tacquet, Andrea, 298 
tangent function addition formula, 192 
tangent function, 141, 146, 184, 395,396,399, 

403,405,419 
sum formula, 146 

tangent line 
to horocycle, 402 

tangent lines equal, 17 
tangent, 237 

to circle, 24, 105, 180 
to two circles, 26 

tanh function, 413 
taxicab geometry, 89, 90 
tensor product, 232 
tetrahedron, 126,435,438,439,444,446,455 

rotation group of, 472 
symmetry group of, 472 

Thabit b. Qurra, 217 
Thales,9 
Theaetetus, 1 
Theon, 299 
Thibaut, Bernhard Friedrich, 304 
three circles 

mutually orthogonal, 25 
mutually tangent, 62 
radical axes meet, 182 

three reflections theorem, 158, 389 
three-point geometry, 67, 68 
tiling of plane, 367, 368 
Todhunter, 63 
tools. See collapsible compass; compass; dividers; 

Hilbert's tools; marked ruler; one-inch ruler; 
quadratrix; ruler; rusty compass; 
transporter of angles; transporter of 
segments 

totally positive element, 147 
is sum of squares, 147 

totally positive number, 248 
totally real field extension, 147 
totally real number, 147, 248 
transcendence ofn, 241, 244 

transcendental numbers, 118 
transformation, 334 
transitive group action, 435 
transitivity, 84 

Index 

translation along a line, 391, 392,400,428 
translation, 33, 151, 155, 156 
transporter of angles, 82, 91, 102 
transporter of segments, 82, 102 
transversal to parallel lines, 384 
transversal to triangle, 180, 311 
triangle inequality, 90, 146 
triangle. See also altitudes; angle bisectors; 

medians; perpendicular bisectors 
altitudes meet, 52, 54, 55, 58, 119 
angle sum (see angle sum of triangle) 
area of, 206, 207 
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associated Saccheri quadrilateral, 310, 328, 
331 

by origami, 250 
centroid of, 53 
circumcenter of, 51 
circumscribed circle, 116 
construction, given medians, 59 
defect of, 311 
definition, 74, 196 
double of another, 53 
Engel's associated, 409-411, 414, 415 
equilateral, 19, 184 
Euclidean, 311 
every, is isosceles, 36 
excess of, 333 
generalized, 387 
given base, angle, and sum of 
sides, 26 
given three sides, 31, 102, 147 
incenter of, 51 
inscnbed square, 184 
isosceles, 35, 46 
limit, 317 
line parallel to base, 52, 63 
midline of, 310, 329 
non-Euclidean, 311 
oq area, 212 
oflarge area, 332 
orthic, 58 
orthocenter of, 54 
subdivision of, 208 
trilimit, 385, 386 
with given angles, 366, 412 
with no circumscribed circle, 162 
with very small angles, 325 
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triangles 
equiangular are similar, 175 
similar, 166, 175-186 
used to fill plane, 367, 368 
with equal content, 202 

triangular dipyramid, 442 
triangular dodecahedron, 457 
triangular prism, 226 
triangular pyramid, 226 

right isosceles, 231, 239 
volume of, 228, 229 

tricapped triangular prism, 456, Plate XVIII 
trichotomy, 136, 137, 148, 205 
tridiminished icosahedron, 464 
trigonometric identity, 403 
trigonometry, 184, 237 

in hyperbolic plane, 403-415 
trilimit triangle, 385, 386, 401 
triple angle formula, 266, 271 
trisection of angle, 23, 167, 241, 247, 248, 260 

by Campanus, 261 
by neusis with circle, 269 
impossible, 243 
in Poincare model, 369 
solves cubic equation, 271 
with marked ruler, 260 
with parabola, 277 

trisection of segment, 25 
in Poincare model, 369 

truncated cube, 462 
truncated cuboctahedron, 462 
truncated dodecahedron, 462 
truncated icosahedron, 462, Plate XX 
truncated icosidodecahedron, 462 
truncated octahedron, 462 
truncated tetrahedron, 460, Plate XVII 
truth, 28 
two-point formula, 67, 129 

undefined concept, 27, 41 
undefined objects, 66 

unicorn, 439 
uniform polyhedron, 460 
union of figures, 197, 204 
uniqueness of regular polyhedra, 441 
unit segment, 169 
unwound circle group, 327, 333, 492 

vector space, 71, 472 
Veronese, G., 489 
vertex figure of a polyhedron, 443, 451, 

455 
vertex 

of angle, 77 
of polyhedron, 438 
of ray, 77 
of triangle, 74, 79 

vertical angles, 38 
are congruent, 93 

vertical line, 119, 129 
virtual circle, 345, 372 
Viete, Franc;:ois, 264, 266, 347, 491 
volume, 195, 226-239 

of triangular pyramids, 228, 229 
theory of, 230 

Wallace, W., 61 
Wallis's axiom, 301, 302 
Wallis, John, 301 
Wantzel, Pierre-Laurent, 490 
Wentworth, George A., 63 
whole greater than part, 41, 195, 201, 203 
Wiirfe,426 

x-axis, 119, 187 
Xylander, 281 

y-axis, 119, 187 

7L. See integers 
Z. See de Zolt's axiom 
Zorn's lemma, 148 
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