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PREFACE

This book has developed from courses of lectures given by the
author over a period of years to the students of the Moscow Physico-
Technical Institute. It is intended for the students having basic
knowledge of mathematical analysis, algebra and the theory of
ordinary differential equations to the extent of a university course.
All the necessary information can be found, for instance, in the
following textbooks: S.M. Nikolsky, A Course of Mathematical
Analysis, 2 vols., Mir Publishers, Moscow, 1977; A.I.Mal’cev,
Foundations of Linear Algebra, W.H. Freeman, San Francisco,
1963; L. S. Pontryagin, Ordirary Differential Equations, Pergamon
Press, Oxford, 1964.

Except Chapter I, where some general questions regarding partial
differential equations have been examined, the material has been
arranged so as to correspond to the basic types of equations. The
central role in the book is played by Chapter IV, the largest of all,
which discusses elliptic equations. Chapters V and VI are devoted
to the hyperbolic and parabolic equations.

The method used in this book for investigating the boundary value
problems and, partly, the Cauchy problem is based on the notion
of generalized solution which enables us to examine equations with
variable coefficients with the same ease as the simplest equations:
Poisson’s equation, wave equation and heat equation. Apart from
discussing the questions of existence and uniqueness of solutions of
the basic boundary value problems, considerable space has been
devoted to the approximate methods of solving these equations:



8 PREFACE

Ritz’s method in the case of elliptic equations and Galerkin’s
method for hyperbolic and parabolic equations.

Information regarding function spaces, in particular, S. L. Sobo-
lev’s embedding theorems, necessary for such arrangement of subject
matter is contained in Chapter III. It is not assumed on the part
of the reader that he is familiar with the required portions of the
theory of functions and functional analysis; these have been treated
in Chapter II which is of auxiliary nature.

Problems have been given on all the chapters except Chapter II.
The majority of them are intended to deepen and broaden the con-
tents of respective chapters; precisely with the same aim have the
lists of suggested reading been supplied. For exercises we recommend
the following books: V. S. Vladimirov et al., A Collection of Problems
on Equations of Mathematical Physics, Nauka, Moscow, 1974 (in
Russian); B. M. Budak, A. A. Samarskii and A. N. Tikhonov, 4 Col-
lection of Problems on Mathematical Physics, Pergamon Press, Oxford,
1964; M. M. Smirnov, Problems on Equationsof Mathematical Physics,
Pergamon Press, Oxford.

In conclusion the author expresses his sincere thanks to V. S. Vla-
dimirov for his constant interest in this book, and to T. I. Zelenyak,
I. A. Kipriyanov and S. L. Sobolev who, having gone through the
manuscript, made a number of valuable comments. The author
is especially indebted to his colleagues A. K. Gushchin and L. A. Mu-
ravei with whom he had fruitful discussions that led to considerable
improvement in the book.
' V. Mikhailov
July 1975



CHAPTER I

INTRODUCTION.
CLASSIFICATION OF EQUATIONS.
FORMULATION OF SOME PROBLEMS

Differential equations are those equations where the unknowns
are functions of one or more variables and which contain not only
these functions but their derivatives as well. If the unknowns are
functions of several variables (not less than two), then the equations
are called partial differential equations. We shall deal with only
such equations, and shall consider a single partial differential
eguation in one unknown function.

A partial differential equation containing derivatives of the un-
known function w with respect to the variables z;, .. ., z, is said
to be of Nth-order if it contains at least one Nth-order derivative
and does not contain derivatives of higher orders, that is, the equa-

tion

ou du 0%u 0%u oVu
@(11,...,.1”,11/,0—11,...,67,1,a—ﬁ,m,...,@—)——o. (1)
du oNu

Eq. (1) is said to be linear if @, as a function of u, ——, ..., —,
0z, ozl

is linear. Henceforth we shall consider linear equation of the second
order, that is, equation of the form

D
S a1 () g +? @ (@) g +a@u=f@); ()
i,5=1
here z = (25, ..., Z,). The functlons a;j (@), i, j =1,
a; (), i =1, ..., n and a (z) are called coefﬁczents of Eq (2)
and f (z) the free term.

Let R, denote an n-dimensional Euclidean space, and let z =
=(z, ..., Z,) be a point of R,, |z|= (a2 + ...+ 23)"/2.
As usual, by a region in R, or an n-dimensional region we mean an
open connected (nonempty) set of points of R,. In what follows,
unless stated otherwise, all the regions are assumed to be bounded.
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Let Q be an n-dimensional region. A set E — Q is said to be strictly
interior with respect to Q, E € Q, if E— Q, where E is the closure
(in the sense of distance in R,) of E.

The set of functions having in Q continuous partial derivatives

up to order k, k being a nonnegative integer, is denoted by C”(Q),
while its subset consisting of those functions whose all the partial

derivatives up to order k are continuous in Q by C* (Q). For the
sets C° () and C°((Q) of functions which are continuous in Q and Q

respectively, we shall also use the notation C (Q) and C (Q). We
designate by C~(Q) the set of functions which belong to each of

C*(Q), k=0, 1, ..., that is, C=(Q)= ) C*(Q), and by C=(Q)
h=0
the set of functions belonging to each of C*(Q), k=0, 1, ..., that
is, €~ (@)= n C"Q)-
A function f(z) is said to hkave compact support in Q if there
exists a subregion Q' € Q such that f(x)=0 in Q ~_Q’. The set

C*(Q) is composed of all the functions belonging to C*(Q) and
having compact support, and the intersection of all these sets is

denoted by C> ) : b“(6)=k§0 Cc* Q).

Let o =(ay, ..., ;) be a vector with nonnegative integer com-
ponents, and put |a|=oy+...+a,. If f(z) € C*(Q), then the
oc1+...+anf

partial derivative —— will be often denoted for brevity by
dzyt.. .0z, "

D%f. The first-and second-order derivatives will also be written as

fx;0 fxi,\-j. For the gradient (fx, ..., fx,) of a function f € C*(Q)

we use the notation V f(z).

By an (n — 1)-dimensional closed surface S we shall mean a bound-
ed and closed (n — 1)-dimensional surface, without edge, of class
C* for a certain k > 1, that is, a connected, bounded and closed
surface (S = S) lying in R, and having the following property:
for any point z° € S there exist an (rn-dimensional) neighbourhood
U, of it and a function F., (z) € C* (U,?) such that VF,° (z°) 5= 0
so that the set S () Uy is described by the equation F (z) = 0.
(That is, all the points of the set S (] Uy satisfy the equation
F. () = 0 and any point of U, satisfying the equation F, o (z) = 0
belongs to S.)

The boundary of Q will be denoted by dQ. In what follows, without
further qualification, the boundaries of regions in question are as-
sumed to consist of a finite number of disjoint closed (n — 1)-dimen-
sional surfaces (of class C). By | Q | we indicate the volume of Q.
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We note that if an (n — 1)-dimensional closed surface S belongs
to the class C*, then for a point z° on it there exists a small neigh-
bourhood U, such that the intersection S (| Uso is uniquely project-
ed onto an (n — 1)-dimensional region D,o, with boundary of class
C*, which lies in one of the coordinate planes, that is, for some
i, i=1, ..., n, the surface is described by the equation z; =
= Qxo (Tyy « « oy Ticgs Tiwgs - - o )y (@1, - Timgy Tirps - -
..+ @) € Dy, and @ € C* (D). The intersection S | Ui will
be called a simple piece (or piece) of the surface S.

Since S is bounded and closed, one may choose a finite subcover
from the cover {Ui, z € S} of S. The collection of simple pieces
Si, ..., Sy corresponding to such a finite cover will be called the
cover of the surface S by simple pieces.

By an (n — 1)-dimensional surface S of class C*, k > 1, we shall
mean a connected surface which can be covered by a finite number
of (n-dimensional) regions U;, i =1, ..., N, so that each of the
sets S; =S8SNU;, i=1, ..., N, is uniquely projected onto an
(n — 1)-dimensional region D; having boundary of class C* and lying
in one of the coordinate planes, that is, for some p = p (i), p =
=1, ..., n, the surface is represented by the equation z, =
= @i (Ty, « - s Tp-py Tptry - - o Zp), (Tyy « vy Tpogs Tptyy - --)E
€ D;, and ¢; € C* (D;). The collection of surfaces S;, which are
simple pieces of S, corresponding to such a cover U,, ..., Uy
of S will be called a cover of S by simple pieces. Henceforth an (n — 1)-
dimensional surface will mean an (n — 1)-dimensional surface of
class C* for a certain k > 1.

We denote by Qé, 6 > 0, the region obtained by taking the
union over all z0¢€ Q of balls {|z—z0| < 8): Q°= U {|z—20| <8}
X0EQ

Q € Q% Qs 6 >0, denotes the set containing all the points of
Q whose distance from the boundary 0Q exceeds 8; Qs € Q; for
sufficiently small § > 0, Qs is a region. We shall show that for an
arbitrarily small enough & > 0 there exists in R, an infinitely
differentiable function {s (z) which equals unity in Qs and vanishes
outside Qs/o. The function s (z) will henceforth be called 6-slicing
function (or, simply, slicing function) for the region Q. Before con-
structing the function {s(x), we introduce an important notion of the
averaging kernel.

Suppose that o, (¢) is an infinitely differentiable and nonnegative
even function of a single variable ¢ (—oo << t << +o0) which van-
ishes for | ¢ | > 1, and is such that

[ oehde= | w(aphde=1. (3)

R, lxl<1
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For o, (£) we may take, for instance, the function

1 e, 0|t <,
0 (f)=9 Cn

0, [t]>1,

where the constant C, has been chosen so as to satisfy (3). Let & be
any positive number. The function

o (| 2 |) = o 01 (| 2 |/R)

is called the averaging kernel (of radius %). The averaging kernel
®p (] z |) has the following obvious properties:
(@) op (|z]) €C> (Ry), 0p (2) =0 in Ry,
(b)or (|z|)=0 for |z|>h,
© [on(z))de=1,
Rn
(d) for any aa=(ay, ..., &,), |a|>=0, and for all z€ R,

| D%op (| 2 )| < Calh™ T,

where C, is a positive constant independent of %.
Let o, (| z |) be an arbitrary averaging kernel. It is directly
verified that for sufficiently small § > 0 the function

G@= | esn(a—yldy
Q3674

is a slicing function for the region Q; moreover, {; (z) satisfies in R,
the inequalities 0 << {; (2) << 1.

§ 1. THE CAUCHY PROBLEM. KOVALEVSKAYA’S THEOREM

1. Formulation of the Cauchy Problem. In a region Q of the
r-dimensional space R, (Q is not necessarily bounded, and, in partic-
ular, may coincide with the whole of R,), we consider a linear
differential equation of the second order

n n
xu—=—i21 a;z () uxixj—i- '21 a; (2) Ug, +a(z) u=f(), 1)
V= 1=
where the coefficients and the free term are assumed to be sufficiently
smooth complex-valued functions. We denote by A(z) the matrix
lla;; () Il, i, 7 =1, ..., n, which is composed of the coefficients
of the highest derivatives; at no point of Q, A(x) is a null matrix.
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When n = 1, Eq. (1) is an ordinary differential equation which
can be written as (a,; 5= 0)

u +b@u +c@u=g@). (2)

In this case the simplest problem is the Cauchy problem which con-
sists in finding the solution of this equation that satisfies for some
z = z° the initial conditions u (z°) = u,, u'(2%) = u,.

We shall now formulate an analogous problem for the partial
differential equation (1). We take a sufficiently smooth (of class
C?) (n — 1)-dimensional surface S lying in Q that is given by the
equation

F (z) =0, ©)

where F (z) is a real-valued function and | VF |5~ 0 for all z € S.
Suppose that in Q there is given a vector field I (x) = (I, (2),

« v« ln(x)), where [; (z), i =1, ..., n, are real-valued functions

belonging to C* (Q), |l >?=16+ ...+ i >0, such that for no

z € S the vector [ (z) is tangent to the surface S, that is,

oF (LVF)

ol lsT T
(In what follows, we shall be interested in the values of the field
l(z) on S only.)

We take an arbitrary point z°€.S, and consider Eq. (1) in a suf-
ficiently small neighbourhood U of this point. (Let U be a ball of
sufficiently small radius with centre at 2°.) Let S, denote the inter-
section S N U.

Let u, u € C? (U), be a solution of Eq. (1) in U, and let u, ()

be the value of v on S, and u, (z) the value of %‘- on Sy:

i+

e |so=to (2), (%)
3 ls, = w @ (5)

We shall show that for a partial differential equation, in contrast
to an ordinary differential equation, u, and u, cannot be, generally
speaking, arbitrary (smooth) functions.

Since VF(2®) == 0, one of the components of VF (z°) is not zero;
suppose, for example, Fe, (2°) == 0. We assume the neighbourhood U

to be so small that F. ()% 0in U and Eq. (3) may be written as
Zn = @ (,1:'), I = (T, -« o Tn_1),

where ¢ (z) is a smooth function. We denote by F, (z) the function
F (z) and by F; () the functions z; — 2%, i =1, ..., n — 1, and
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consider one-to-one mapping
y;=F; (z), i=1,...,n, (6)

of the region U into a neighbourhood V of the origin —the image

of the point z°. Let £ denote the image of S, lying in the plane

Un=0: 2=V N {¥=W1, --+» Yn-1) € Rpy, Yyo=0}. The function
n

u (z (y)) is denoted by v (y). Since u,,= D) v, Fpe, and Uy, —
e i i*j

n n
= 3 Uy y Fpx.+Fgu.+ 2 Uy Fprx., in new variables Eq. (1) has
p,q=1 p°q i J p=1 p L
the form

2, B ) v+ 2 BiW) vy B W) v=F ), (1)

where B;; (y) are elements of the square matrix || (4 (z (y)) X
X VF; (z (y)), VF; (z (y))) |, in particular,

Brn (¥ (2)) = (4 () VF(2), VF(2)). 0
Conditions (4) and (5) respectively become
viz=uvo(y") ®)
and
(Vyvv A (y)) IZ = U; (yl)v (5’)
where v (¥') =uo (¥, @ (¥)), vi(¥")=us (¥, ¢(¥'), and the vec-
tor A(y(x))= ('aa—ll’ cee adln ), z €S, moreover,
oFy

oF
T——WZJEO on SO‘

We shall first show that the value of the vector Vv on the surface =
is uniquely determined by v, and v;. In fact, the derivatives

v,,!lz, i=1, ..., n—1, are computed from (8): vy‘lz = Voy, i=
=1, ..., n—1, and according to (5)
vy, l2=v1(¥"), 9)

n-1
where v (5') =57 (vi0) — 3} voy, ).
v i=1

Clearly, the conditions (8), (5") and (8), (9) are equivalent.

We now consider the values on X of the second derivatives of
v(y). First, we note that by (8) and (9) the values on = of all the
second derivatives, except v, , , of v (y) are uniquely determined
by the functions vy, and v;. To find the value of Uy, v, On 2, we use
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Eq. (1'). Noting (7), by (1") we obtain
(A (z (y)) Vil (z (), VaF (x (1)) vy,

n-1 n-1 n
= (!/)—1_]_2_'1 ﬁijl’yiyj“iz1 5invyiyn —121 ﬁivyi—ﬁv- (1%)

If the function (4 (z) VF. VF) 5= 0 on the surface S,, then the
function (4 (z (y)) V.F (z (¥)), VF (z (y))) does not vanish on I,
and therefore also in V (the neighbourhood U is assumed to be small).
In this case Eq. (1”) in V" can be written as

n—1 n-1 n
Uy v, = ; ;1 vijvyiyj —+ 1-21‘ Vinlyu, -+ iZ; 'Yivyi+ YU+ h. ('10)
Setting y, = 0 in (10), we obtain the value of Uy, oD 2.
Hence, if (A(x) VF, VF) =0 on S,. all the derivatives of u (z)
up to second order are uniquely determined on S,. _
However, if at some point z € S, (4 (Z) VF (), VF (2)) = 0,
then at the corresponding point y (4 (z (3)) V.F (2 W), VF (x )=
= 0. Then at the point y the equality (1”) connects the known quanti-

ties v (y), vy, ), Vi, ), i=1...,n j=1,....n—1.
Thus the values of v, and its derivatives up to second order and those
of v; and its derivatives of first order at the point y, and hence the

values at the point Z of u, and u, and their corresponding derivatives
are subject to some relation, that is, they cannot be, generally speak-
ing, arbitrary.

A point z on the surface S of class C* and given by the equation
F = 0 (F is a real-valued function, VF == 0 on S) is called the char-
acteristic point for Eq. (1) if at this point

(A@) VF(2), VF(z)) = 0.

The surface S is called a characteristic surface for Eq. (1) or character-
istic (for) of Eq. (1) if all its points are characteristic points.

In this section we shall study the Cauchy problem for Eq. (1). that
is, the problem of finding solution of (1) satisfying conditions (4)
and (5) with given functions u, and u, in the case when the surface S
does not contain characteristic points.

The case when the surface S contains characteristic points is far
more difficult. As it was shown, if the point 2° € S is a characteristic
point, then there are (smooth) functions u, and u, such that Eq. (1)
has no smooth solution (in C* (U)) in any neighbourhood of this
point that satisfies conditions (4) and (5) on S, = S N U. It is easy
to see that if U* is one of the parts into which S, divides U (it is
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assumed that U is a ball of sufficiently small radius with centre at
z%), then there is no solution in C? (U*J S,) too which satisfics con-
ditions (4) and (5) on S,. If still a smooth solution exists, it may not
be unique.

Suppose, for example, » = 2. In a disc U with the origin as its
centre let us consider the equation

Uy, = [ (2),

for which the line z, = 0 is a characteristic (to this form is trans-
formed the wave equation u, . — u,., = f; by a change of variab-
les). It is easy to see that for the existence in U of a smooth solution
(belonging to C%*U)) of this equation that satisfies the conditions,
Uley—mo = U (Z1), Us,lv,—0 = Uy (2;) it 1is necessary and sufficient

d”l (xl)

that =f (2, 0). Furthermore, if this condition is satisfied,

then the solution can be expressed in the form

2, a,

w (e m) = | a8 | £ B) dEatuo (20 + £ (22),

0 0
where g is a twice continuously differentiable arbitrary function

satisfying the conditions g (0) =0, dg &0 _ = u, (0).
Lo

If S is a characteristic surface, then there may be situations where
the problem for Eq. (1) should be posed in analogy with the Cauchy
problem for an ordinary differential equation not of the second order
but of the first order. Thus, for example, for the equation (again
n=2)

ux,xl — Uy, = f (x)

(the heat equation) having the line x, = 0 as a characteristic in
Chap. VI we shall study the problem (the Cauchy problem) of finding
a solution of this equation in the half-plane z, > 0 satisfying only
one condition (4): u|y,—0 = U, (xy)-

We shall now consider the problem (1), (4), (5) in the case where the
surface S does not contain characteristic points. Let Q be an n-dimen-
sional region, and let S be an (» — 1)-dimensional surface given by
Eq. (3) that lies in Q and divides Q into two disjoint regions Q* and
Q-, that is, NS = Q* U Q-, Q*N Q- = . Suppose that Eq. (1)
is given in Q (that is, the coefficients and the free term of Eq. (1)
are defined in Q), and a vector field I (z) = (}, (z), . .., ln (%)),
| 1(x)] > 0 on S, is defined on S that is nowhere tangent to S. Let
there be given two functions u, (x) and u, (z). Suppose that S does
not contain characteristic points of Eq. (1), that is, on .S

(A(z) VF, VF) 0. (11)



INTRODUCTION ) 17

It is required to find a function u (z) belonging to C? (Q) and satis-
fying Eq. (1) in Q together with initial conditions (4) and (5) on S.
This problem will be called the noncharacteristic Cauchy problem.
The given! functions, that is, the coefficients and the free term of
Eq. (1), the function F of (3), the vector function / and the functions
u, and u, will be referred to as the data of the problem.

We shall assume that the data of the problem (1), (4), (5) are
infinitely differentiable: the coefficients and the free term of Eq. (1)
and the function F (z) of (3) belong to C%(Q), while the functions
L), ..., l(2), ue(z), uy(x) belong to C7(S) (that is, the func-
tions L(z (%)), ..., u(z(y)), where z = z (y) is a mapping, defi-
ned by (6), of a neighbourhood U of any point 2° € S into a neighbour-
hood V of the origin, are infinitely differentiable in an (n — 1)-
dimensional region ¥ =V (| {y’ € Rp_y, Yn = 0}). We also assume
that there is a solution u (z) of the problem (1), (4), (5) that is
infinitely differentiable in Q.

As shown above, all the derivatives of u (z) up to second order are
determined uniquely on S in terms of the data of the problem. We
shall show that on the surface S all the derivatives of u (z) of any
order are uniquely determined in terms of the data of the problem.
Since in this case the mapping (6) of the neighbourhood U of any
point 20 € S into the neighbourhood V of the origin is given by func-
tions F;(z), i =1, ..., n, that are infinitely differentiable in U,
as a consequence of mapping (6) the problem (1), (4), (5) in U (by
this we mean the problem of finding in U a solution of Eq. (1) satis-

fying the initial conditions u| o = Uo(z), % | s, = W (x), where

S, = U N S) is replaced by an equivalent problem (8)-(10) for the
function v (y) in V with infinitely differentiable data. And because
there exists a solution u (z) of theTproblem (1), (4), (5) that is infi-
nitely differentiable in U, the problem (8)-(10) has also an infinitely
differentiable solution v(y) = u(z (y)) in V. To establish this asser-
tion, it suffices to show that all the derivatives Dy v (y) are uniquely
determined on X in terms of the data of,the problem (8)-(10).

For any a'=(ay, ..., ®,4), |&’|>=0, the values of
the derivatives D@ 0y (y) and D@Dy (y) on X are determined
directly from (8) and (9):

D@0y |3 = D&’ p,, D@ Op|5=Dv,.

If v, denotes the value of the function -O%—l-D“u (=04l ... a,l)

at the origin:

va=—r D (0), |a|>0, (12)

2-0594
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then vy o and vgr,1, |@'| = 0, are uniquely determined in terms
of pg and vyt
va’.o (a) ! D 4 IZ[ =0, (13)
Va’, 1 = — D’ 2 ly =0 (14)

(a @7
((@'N=0ayl ... ap,!).
To find the value of D2 v (y), |a' | >0, on =, we use (10).

Differentiating (10) with respect to ¥;, . . ., ¥n 4 and settingy, = 0,
we obtain

D@ 2y |y =D OH, |z, |e'| =0,
where the function H, (y) is defined in V by the formula
n-1

H(y)= Z Yiy () v yyj+ 2 Yin (4) Vyp,

+i§1 V@) vy, +7 @) v+h ()

(in which v (y) is the solution of the problem (8)-(10)). Now D®" VH, |5
is a function (which is linear with known coefficients) of known quan-
tities D® D)y and DY Vyly for 0 |P I<|a |+2 0<
< |y 1< |a | + 1. Therefore, on X, all the derivatives
D" ¥y (y), |a’ | >0, are uniquely determined in terms of the
data of the problem, and, in particular,

var, 2= (21 (@"))D@ O (y) [y=0, || = 0.

We assume that for some k > 2 all the derivatives D"~ Yp (y),

| @ | > 0, have been uniquely determined on ¥ in terms of the
data of the problem. We now find the derivative D*"™p (y) |5,
| &' | > 0. For this, we differentiate in ¥V Eq. (10) a, times with
respect to Yy, . .., ®,_; times with respect to y,_, and k¥ — 2 times
with respect to y,, and then set y, = 0. This yields

D@ k) (y) |g=D@" B=DH, (y) |5

Now D@ k-2l |z is a function (linear with known coefficients)
of already-known quantities DB pls 0<<i<hk—1 (0 H.’) | <
<o |+2for0<<i<<hk—2and 0 < |f> |<|a'|+1 fori= —1)
Hence all the derivatives D@’ Ry, |a | =0, are uniquely deter-
mined on X in terms of the data of the problem, and, in
particular,

Var,n = ((@')! K1)~ D@ 2= H  (y) |y=o. (15)

This proves the assertion.
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Remark. Let v (y) be any infinitely differentiable function in V.
Consider the following infinitely differentiable function in V:

n-1 n-1 n
H(y)= Uvnv,,_ijz;i '\’ijvyiy_,-‘_iz; Yinvuiun'_ig1 Yi’-’yi_?v_h- (16)

It follows from the above discussion that if the values of the function
v (y) and its derivatives satisfy conditions (12), where the numbers
Uy, | @ | > 0, are defined by (13)-(15), then

DeH (y) ly=o=0 for all a, |a| > (. (17)

Thus we have shown that if the surface S does not contain character-
istic points, then the data of the problem uniquely determine on S
all the derivatives of the infinitely differentiable solution of the
problem (1), (4), (5). Hence the solution of the problem (1), (4),
(9) is unique in the class of functions that are uniquely determined
by their values and those of all their derivatives on S. One of such
classes is the class of analytic functions. Later in this section we
shall show that in the class of analytic functions the problem (1),
(4), (5) is solvable with analytic data.

It should be noted that in contrast to the case of an ordinary differ-
ential equation, the analyticity condition of the data in such
a generality (if no additional conditions are imposed on the coeffi-
cients of Eq. (1)) is, in a definite sense, necessary for the solvability
of the problem. Thelfollowing example, due to H. Lewy, shows that
a partial differential equation with infinitely differentiable coeffi-
cients and free term may not, in general, have a solution.

Example 1. The differential equation

Usx,x, + iuxgx. + 2i ($1 + izz) Unyxy = f (.1:3) (18)

does not have twice continuously differentiable solutions in any
neighbourhood of the origin (in Ry) if the real-valued function f (zg)
is not analytic.

To prove this statement, it is obviously enough to check that the
equation

Uy + iU, + 20 (T4 + iZ3) Ux, = [ (23) (19)

does not have continuously differentiable solutions in any neigh-
bourhood of the origin.

Suppose, on the contrary, that in the cylinder Q = {2} + 2 <<
< R?, |z3 | << H} for some R > 0 and H > 0, there is a solution
u (z) belonging to C! (Q) of Eq. (19) with a real-valued function:
f (z5) that is nonanalytic on the interval | z; | << H. Then in the:
parallelepiped II = {0<<p <R, 0<o9o<2m, |2;|<<H} the
function wu, (p, 9, zz) = u (pcos ¢, psin @, z;) is a solution of

2%
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the equation
Uypei® i Lg‘l €i® 4 2ipeiduy,, = f (z3),

where u; € C* (I) and u, (p, 0, z5) = u,; (p, 2%, z;). Integrating
this equation (for fixed p and z;) with respect to @ € (0, 2n), we
fﬁnd that in the rectangle K, = {0 <<p<<R, |z;|<<H} the
unction

27

Uy (P, x3) = S uy (P, @y x3)e™® do,
0

uy (p, z3) € C*(K,), satisfies the equation
Ugp + % + 2ipusx, = 20f (z5).

Therefore the function
v (rv za) = V’TuZ (V71 1'3)

belonging to CY(K,) | C(K,), where K, is the rectangle
{0 <r<<R?% |z3 | << H}, is a solution of the equation

v, + ivx3 = nf (z3)

in K,, or, which is the same, is a solution of the equation

0 (r, 2 +im | F© @+ (v, 2 +in | E)dE), =0,

0 0

But the last equation is the Cauchy-Riemann equation for the func-
tion
w(r, 2 =v(r, z)+in | £ ) 5.

0

Hence the function w (r, z;) as a function of the complex variable

r + iz, w(r, x3) = g (r + izg), is analytic in K, and continuous

in K,. Since Re g|,.—o = 0, by the principle of symmetry the func-

tion g (r + iz;) can be continued analytically into the rectangle

K; = {|r|<R? |z3|<< H}, and, in particular, is analytic in
X3

z3 on the segment {r =0, | z; | < H}. But gl.—p = in S}'(g) dt;

0
consequently, for | z3 | << H the function f (z;) is also analytic,
contradicting the hypothesis.

Let us note that the plane z, = 0, for example, does not contain
characteristic points for Eq. (18). Thus for any initial functions the
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Cauchy problem for Eq. (18) (with initial conditions given on the
plane z; = 0) does not have solutions in any neighbourhood that
contains the origin.

2. Analytic Functions of Several Variables. Let Q) be a region in
the n-dimensional space R, and g (z) a complex-valued function
defined in Q.

The function g (z) is said to be analytic at the point 2° € Q if in
a neighbourhood U of this point it can be represented as an absolutely
convergent power series

g@)y= 2 2 ... 2 fay..a (@—20)%.. . (2,—20)%
a=0 a,=0 an::O n

= ; ga (x—2%%, (20)

where o= (g, ..., @), (z—20)%= (23— ... (xn—zg)“n.

The function g (z) is said to be aralytic in a region if it is analytic
at every point of this region.

Let the function g (z) be analytic at the point 2° € Q. Then in the
cube Kp(2°) = {|z; — 2} |<R, i=1,..., n}, R>0, this
function is represented by an absolutely convergent (in Kg(z))
series (20). Since a power series that converges absolutely in Kg(z?)
converges uniformly in any strictly interior subregion K of the cube
Kgr(2®), K € Kg(z°), together with all its derivatives, the function

g(z) € C™(K), and, consequently, g (z) € C*(Kg(z®)). Moreover,
it is evident that g, = -ail—D“g(z°), wherea! = a,! . ..a,!, thatis,

the series (20) is the Taylor series of g (z) at the point z°. Hence it
follows that a function which is analytic in the region Q is uniquely
determined in all of Q by its own value and the values of all its
derivatives at an arbitrary point of Q; in particular, if the function
vanOishes together with all its derivatives at a point of Q, then g (z) =
=0 in Q.

Let us show that if the function g () is analytic at the point 2° € Q,
then it is also analytic in some neighbourhood of this point. For this
it is enough to prove that if Kg(z°) is a cube in which g () is repre-
sented by the (absolutely convergent) series (20), then g (z) is analy-
tic in the cube Kpg/4(2°).

Since the series (20) is absolutely convergent in K y(z°), it fol-
lows that for any p € (0, R)

% | ga | p'*! < co. (21)
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We take an arbitrary point 2! € Kg/4(2°). Then for all z € Kg/s(2?)
we have

2}
g(z) = 2 8a (pzo Cg; (x‘ — xi)pl (xi- _z?)ax-p‘)
@ =
an

oo x( 2,0 CZ’; (zp — z2)Pn (x,il—:z:g)“n‘l’n)
n=

a %n
=ZZ c o 2 gacgil-o-czn
a p=0 pp=0 n
X @i gl e (2P (@ — gD .. (g aYen P,
Since for all z¢€Kgis(z') and any a= (0, ee., &p), P=
'::(pii"'v pn)r pigai, i=1,...,n,

1 Ova,-
| gaC% ... Cg: (y—z)® ... (Zo—zn)*n Pn |

< Iga|2|“|(%)lp' (%)Ial—lpl ~|gal (Tit_)lalz‘%

and since by (21) the series
3 Sl (5) g =2" S leal ()" <o
a p ]

it follows that the function g(z) is represented in Kg/s(z!) by
an absolutely convergent series

g(x)= ; gr(z—2")?,

where gp = D) ... D) guCB (zi—z)-Pi ... (5 (zh — z0)®n"Pn,
=Py @n=Pp n

Therefore the function g(z) is analytic at the point z!, and hence

in Kpg/u(z®) because z!€ Kgju(z®) is arbitrary. The assertion is

proved.

A real-valued function g (z) = D) g (z — z°)* which is analytic at

z° is called majorant at z° of the f?mction g () (of (20)) if for all a,

2 1>0, |8 | < &ae .
Let {gs, | @ |> 0} be a complex number sequence for which

there is a real number sequence {g,, | @ | > 0} such that for all a,

| @ | >0, |gy | <<g, and the series ), g, (z — 2°)* converges abso-
¢/

lutely in a neighbourhood of the point z°. Then it is evident that
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the funetion g (z) = D) g, (z — z°* is analytic at the point z°,
v/
and the function g (z) = X\ g, (z — z°® is its majorant at z°.
[+7

It is also evident that any function which is analytic at the point
z° has a majorant (at z%. As a majorant for the function g (z) of (20)
one can take, for example, the function D) | g, | (z — z°%. A majo-

a

rant of g (z) from (20) can also be constructed as follows. Suppose

that the series (20) converges absolutely in the cube Kpg(z% for
some R > 0. Take some p from the interval (0, R). In view of (21),

there is a positive M such that | g, | o™ << M, that is, | g, | <

< M/p!™ for all @ = (&4, . .., &,). This means that a majorant
of the function g (z) at the point 2° is the function
~ M (z— 20)% M
g(x)zz i)xlaf) :(1 z; —af (1 Tpn—xd \°
* P ) ' P )

The function, with any N > 1,

g (@)= -
E = T m— Dt F Eno— B+ N @n—2B)
P
is also a majorant of g(x) at the point z° since for all a=
_ MN*m(a !
= (@1, - @)y g =gl

3. Kovalevskaya's Theorem. In this subsection we shall study
the Cauchy problem in the class of analytic functions, that is, we
shall consider solutions of the problem (1), (4), (5) that are analytic
in Q or in its subregion Q' containing the surface S. We shall assume
that the data of the problem (1), (4), (5) are analytic, that is, we
shall assume that the coefficients and the free term of Eq. (1) and the
function F in (3) (defining S) are analytic in @, and the functions
L (@), ..., I (x), uo (), u, (x) are analytic on S (that is, the fun-
ctions L (z (1), - - - ln @ ) Uy (& (4)), 1y (& (3)), where  (y),
given by formula (6), is the mapping of some neighbourhood U of
an arbitrary point z° € S into a neighbourhood V of the origin, are
analytic in an (» — 1)-dimensional region X =V | {y’ € R, 4,
Yo = 0}). We recall that the solution of the problem, the coeffic-
ients and free term of Eq. (1) and the initial functions are complex-
valued, whereas the components I, (z), ..., I, (z) of the vector
! (z) and the function F (z) are real-valued. We shall assume that S
does not contain characteristic points for Eq. (1).

First of all, we shall prove a local theorem regarding the existence
and uniqueness of the solution of this problem.
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Theorem 1 (Kovalevskaya). Let the data of the problem (1), (4),
(5) be analytic, and let the surface S not contain characteristic points
for Eq. (1). Then for any point a° € S there is a neighbourhood U ,°
of this point where this problem has an analytic solution. Moreover,
there cannot be more than one analytic solution of this problem in any
neighbourhood of a°.

We recall (Subsec. 1) that by problem (1), (4), (5) in the region
U, we mean the problem of finding solution u(z) of Eq. (1) in U,
satisfying the initial conditions u|s, = u,, % s = Y where S, =
= S ) U,o; moreover, the neighbourhood ng is supposed to be
so small that the surface S, divides it into two disjoint regions.

Let z° be an arbitrary point on S. We consider one-to-one map-
ping (6) of a sufficiently small neighbourhood U of this point into
a neighbourhood V of the origin—the image of z°. Since the data of
the problem (1), (4), (5) and the functions F;(z),i =1, ..., n — 1,
are analytic, the Cauchy problem (1), (4), (5) in U transforms under
this mapping to an equivalent problem (8)-(10) (in V) with analytic
data. For the proof of Theorem 1, it is enough to show that we can
find a neighbourhood V of the origin where the problem (8)-(10)
has an analytic solution v (y) and that this solution is unique.

We start by proving the uniqueness. Suppose that in a neighbour-
hood V, of the origin there is an analytic solution v (y) of the prob-
lem (8)-(10). As v (y) € C=(V,), it follows from considerations of
Subsec. 1 that the values on the surface X of all the ‘derivatives

D%v, | a | > 0, are determined uniquely by the data of the problem.

In particular, all the values D*v (0), |a | >> 0, are uniquely determi-
ned. Hence (see Subsec. 2) the solution v (y) is uniquely determined
by the data of the problem in V,;. This establishes the uniqueness.
Now we prove the existence of a solution. First, we note that
it is enough to prove the existence of a function v (y) that is analytic
at the origin (it is also analytic in a neighbourhood V of the origin,
by the properties of analytic functions; see Subsec. 2) and is a solu-
tion of the problem (8)-(10) in V.
According to (12)-(15) (see Subsec. 1), the quantities v,, | @ | > 0,
are (uniquely) determined by the data of the problem (8)-(10). We
shall show that the formal power series

g Vay® (22)

is an analytic function at the origin. Then the sum of this series,
denoted by v (y), which converges.absolutely in a neighbourhood V
of the origin will be the desired solution.

In fact, it follows from (13) that the value of the function v (y’, 0)
analytic in ¥y’ and the values of all its derivatives with respect to
Y1y - « +» Yn—y for ¥y = O coincide with corresponding values for the
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function v, (y’) which is analytic in y’. Consequently, v (y’, 0) =
=1, (') on 2 =V N {y €R,_y, Yo = 0}. Similarly, from (14)
we obtain v, (y', 0) = v, (¥') on 2. That the function v (y) satis-
fies Eq. (10) in V can be verified in the following manner. Let us
consider a function H (y) which is analytic in V and is defined by
(16), where for v (y) we take the analytic function (22) which is
under consideration. In view of the choice of quantities vy, | & | > 0,
by Remark in Subsec. 1, equalities (17) hold, that is, the function
H (y) and all its derivatives at the origin vanish. Accordingly,
H (y) is analytlc in V, and H ( y) = 0. This means that v (y) satis-
fies Eq. (10) in V.

Thus we must prove that the senes (22) converges absolutely in
some neighbourhood of the origin. For this (see Subsec. 2) it is
enough to show that this series has majorants at the origin.

The Cauchy problem (in V)

~

n-1
Yy, = ; >_= YljUyu + E 'anbv,un+ 2.1 Ylvv —{—‘YU—I—h (10)

v ’vn=0 =uy (¥), ®)
vy, Iy, =0 =13 (¥) )

with analytic data will be referred to as a majorant problem for the
problem (8)-(10) if the data of the former are majorants at the origin
for corresponding data of the problem (8)-(10).

If the problem (8)-(10) has an analytic solution

b (y)=2 ey, (22)

at the origin, then this solution is a majorant there'for the series
(2'2).and, consequently, (22) represents an analytic function at the
origin.

Ign order to prove this statement, we must check the validity of
the inequalities | v, | << v, for all @, |a | > 0. According to the
definition of the majorant problem, the functions u, and u, are
majorants at the origin of functions u, and u,, respectively. There-
fore (see (13) and (14)) | var, ol <Var,o and |var 1 | < Uy, for
all a’, |a' | >0

Now assume that for some k>1 we have already established
the inequalities |vg:, | <Va-,, for all 5, 0<s<k—1, and all a’,
|o"|=0. We shall demonstrate that then ]va,hl<va Ry | l>O

According to (15)
R-2
Var, k= > Cpr, n-1Up, k-1 + 2 D g, Vs thar ke
IB1< e’ |+1 =0 |B’|<|a’|4-2
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and
Va’, n = 2 CB’, R—1UP’, k-1 T Z Z cB’.sz',s+ha’,ka
1B l<la’|+1 s=0 |B’I<la’|+2
where
(', k)
b= G DO,
Ras, n= D" % (0),

@ )lkl
the constants cp.,, are linear combinations with nonnegative coef-
ficients of values at the origin of derivatives of the coefficients in
Eq. (10), while ¢ , are the same linear combinations of correspond-
ing (nonnegative!) derivatives of the coefficients of Eq. (ﬁ)) Since
®)- (10) is a majorant problem for the problem (8)-(10), it follows that
| g, k|<ha r and lCﬁ's|<Cﬂ s Hence |vg | << va'k.

Thus for the proof of absolute convergence of the series (22) in
some neighbourhood of the origin it is enough to construct the

majorant problem (g)-(fb) which has an analytic solution at the
origin. While constructing the majorant problem, it is more conve-
nient to deal with homogeneous initial conditions (8) and (9):

14 Iyn=0 = 01 (80)
Uyn |”n=0 = O. (90)

We note that for the proof of the existence of the analytic solu-
tion of the problem (8)-(10) it is enough to show the existence of the
analytic solution w (y) of the following problem with homogeneous
initial conditions:

n-1 n—-1 ‘ n
Wy, y, — i';:l y,-,wyiyj—igl VinWyy, —1';1 Yily, — YW — h'=0,
w 'u,,=0 =0,
Wy, ,vn=0 =0,
where
h'=h—wy , + ;_ Yuwu,v,'*‘ 2 Vinlyy, + 2 Viwy, +yw',
w' (y) =vo (¥') +ynavs (¥').

Indeed, it is easy to see that if w is an analytic solution of this prob-
lem, the function v = w 4 w', is the analytic solution of the prob-
lem (8)-(10).
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Consequently, we can regard the initial conditions (8) and (9)
as homogeneous, that is, it suffices to construct a majorant problem
for the problem (8,), (9,), (40). Since the coefficients and the free
term of Eq. (10) are analytic at the origin, as (see Subsec. 2) Eq. (10)
of the majorant problem we can take the following equation
> _ M

Valn ™ 1_y1+' <.+ Yn-1+Nyn
p

n—1 n-1 n
X (2 oyt D Byt 3 w0 H1) (1)

i, =1 i=1 =1
for some p>0, M >0 and arbitrary NV >1. Let us consider solu-
tions v =Y () of Eq. (10) that depend only on Yoot Unoat-Nyn .

All such solutions are solutions of the ordinary differential equa-
tion

yr — AY,tii]Y+1) , (23)
_ Mp(n—1+4N) g Mp* . M@(—1? (n—O)M
where A—_Nz_’ B——T’ a—l NE —_ N .

Choose N so large that the number a is positive, 0 <<a <<1.

Consider the solution Yy (1) of (23) that satisfies the homogeneous
initial conditions Y (0) = Y4(0) = 0. Since the coefficients of
Eq. (23) are analytic when 1 = O (even when | 1 | << a), it is easy
to see that Y y(n) is also analytic at zero.* Since all the derivatives

of the function are positive at the point n = 0, by (23)

a—n

>0 for all k=0,1, ...

Thus the function ;(y) = YO ( Vit +g"“1+Ny" ) which is ana-

lytic at the origin is a solution of Eq. (1%), and all its deriva-

* It can be most easily exhibited in the following manner, Consider the

equation -
T"=ﬁ(‘4?'+%ﬂ-), 23)
whose coefficients are majorants (since 0 < a < 1) of the corresponding coef-
ficients of Eq. (23). Eq. (23) is the Euler’s equation for the function ¥ + 1.
The solution of Eq. (23) ?o m) = 011_02 [o (1 — 1/a)% — 6, (1 — 1/a)®] —
— 1 satisfying the initial conditions ¥ (0) = ¥ (0) =0, where o; =

=M —A+ VI =421 4Bl2, o= —4 — V(I —A¢ T 4B)/2, is
analytic at zero and is a majorant of the function Yo(n) at the point n=0.
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tives are nonnegative at the origin. Consequently, we have construct-
ed an analytic solution of the Cauchy problem which is a majorant

problem for the problem (8,), (9,), (10) at the origin. [ *

The following proposition is a consequence of Theorem 1.

Theorem 2. Let the data of the problem (1), (4), (5) be analytic,
and let the surface S not have characteristic points. Then there is
aregion Q' (Q' — Q) containing S in which this problem has an analytic
solution, and this problem cannot have more than one analytic solution.
in any region containing S.

First of all we note that the statement regarding uniqueness of
the solution follows directly from Theorem 1 and the properties
of analytic functions.

We shall now prove the existence of the solution. According to
Theorem 1, for every point z° on the surface S there is a neighbour-
hood of this point where the problem (1), (4), (5) is uniquely solvable.
It is easy to see that by contracting each of the neighbourhoods
Uy, 2° € S, it is possible to obtain a cover {Uyo, 2° € S} for the
surface S which has the following property: if the intersection of
any two neighbourhoods is not empty, then it is an open set each
of connected components of which contains points of S (that is,
this intersection can be expressed as a union of not more than a count-
able number of disjoint regions each of which contains points of S).

In fact, in U, consider the ball {| z — 2° | << r,} of sufficiently
small radius ry = ry (z’) > 0 such that the angle between normals
to S at any two points of the intersection of this ball with § is less
than m/4. Let us take for Uje the region {z: z = z! + in (z'), 2' €
ESN {lx— 2| <rylb}, t € (—0y, 8,)}, where n (z!) is normal
to S at the point z'; moreover, we assume §, = §, (z°) << ry/4 to be
so small that through every point of this region there passes only
one normal to the surface S ] {| x — 2° | << ry} (that is, correspond-
ing to each point z € U, there is only one point z! () belonging to
SNA{lz—a"|<<ry} such that z lies on the straight line
{rix =2t 4+ n(z)t, t € Ry}). It is evident that the cover
{Uz, 2° € S} for the surface S is the desired one.

Since for every z, € S Ujo < Uy, the problem (1), (4), (5) has
a unique analytic solution in Ujo; let it be denoted by u,o (x). Note
that if 2° and 2! are two arbitrary points on S and Uy | U 5= &,
then u,o (2) = u, () in Uy ) Usa. Consequently, it is possible to
define the analytic function u (z) by the equality u () = uy ()
for € Uy in the region Q' = | U, Q"< Q. The function

x0€S

u(x) is the desired analytic solution in Q' of the problem (1), (4), (5). [}

* We will use Halmos’ l to indicate the conclusion of the proof.
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When the surface S does not contain characteristic points, the
Cauchy problem, as Kovalevskaya’'s theorem shows, for the second-
order partial differential equation which was formulated in Sub-
sec. 1 in analogy with the Cauchy problem for ordinary second-order
differential equation is in fact analogous to it in a definite sense.
The well-known Cauchy theorem in the theory of ordinary differen-
tial equations states that the ordinary differential equation (2)
whose coefficients and the free term are analytic on the interval
a < z<<b has in a neighbourhood of the point 2° a << 2° << b,
where the initial conditions are prescribed, a unique analytic solu-
tion satisfying these initial conditions. Kovalevskaya’'s theorem gene-
ralizes the Cauchy theorem to the case of partial differential equa-
tions: if the surface S where the initial conditions are prescribed does
not have characteristic points and the data of the problem (1), (4),
(9) are analytic, then the problem (1), (4), (5) has a unique solution
in some “neighbourhood” of S.

Nevertheless, the Cauchy problem for an ordinary differential
equation and the Cauchy problem for a partial differential equation,
and more so, the theory of ordinary differential equations and that of
partial differential equations are not totally analogous — the case
of partial differential equations is far more complicated.

In Subsec. 1 it was shown that when there are characteristic points
on the surface S, the existence of an analytic (even twice continuously
differentiable) solution of the Cauchy problem cannot be guaranteed:
if 2° € S is a characteristic point for Eq. (1), then there are smooth,
even analytic, initial functions u, and u, such that the problem (1),
(4),(5) has no solution (belonging to C? (U)) in any neighbourhood U
of this point. Moreover, it was noted that if S is a characteristic
surface, then there may be cases where the Cauchy problem must be
formulated in analogy with the first-order ordinary differential
equation. (For example, for the equation u.. — u,, = f (z), for
which the straight line z, = 0 is a characteristic, the Cauchy problem
will be examined in Chap. VI. The problem is to find a solution
of this equation in the half-plane z, > 0 satisfying one initial con-
dition u|,,—o = u, (z,).) In this case also, as the following example,
due to Kovalevskaya, shows, the analyticity of the data of the
problem does not guarantee the existence of an analytic solution.

Example 2. The equation

Ugye, — Uxg, = 0

has no analytic solution at the origin satisfying the initial condition
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It is directly verified that if the analytic solution of this problem
at the origin exists:
u (x11 12) = Z uan aazflzg"
Qg Ag
then the coefficients u,,, o, have the form u,, h=-——(2(;j)"i’?! (— 1)k
and ugeq, , =0, where s>>0, £>0. But the above series does not
converge in any neighbourhood of the origin since it diverges, for
example, at any point (0, z,) when x, = 0.

_As is well-known, the solution of the Cauchy problem for ordinary
differential equation (2) depends continuously on the initial data.
The following example, due to Hadamard, shows that, generally
speaking, partial differential equations do not have this property.

Example 3. Consider the Cauchy problem in the dise

Q={z}+a3<<1}:
Ux,x, = ==Ux x,9
Um0 =U, o=¢€" Vnginx,
Uz, [xym0 = Un, 1 =0,
where n is a natural number (the straight line z, = 0, obviously,
does not contain characteristic points for the equation u.,., =

= —U,,y,). As is easy to check, the solution of this problem (unique
in the class of analytic functions) is of the form u = u,(z) =

= e~ V7 cosh nz, einx1, Consequently, for any point x = (z,, z,) of the

disc Q,not lying on the initial line z, = 0, |up(2)| > 00 asn— oo

in spite of the fact that up, o(;)) = 0 (Jup,o | = € V) and even for
R

any k>1 ddu’;'°—>0, as n — oo, uniformly on [—1, 1].

X

What is moi‘e, it. is well known that any ordinary differential
equation (2) with continuous coefficients and free term on some inter-
val has always a solution (on all of this interval). However, for
partial differential equations in such a general situation, which we
considered up-to-now, the similar statement does not hold: as shown
by Lewy’s example (Subsec. 1), there are linear partial differential
equations of the second order that have no solution in any neigh-
bourhood of a given point; what is more, no conditions regarding
smoothness of coefficients (and even analyticity of coefficients) can
be imposed which would guarantee the existence of the solution with
any smooth (even infinitely differentiable) free term. Consequently,
in order to study nonanalytic solutions of linear second-order partial
differential equations, it is necessary to impose additional condi-
tions on the structure of the equation. In the next section we shall
select some classes of equations which will be the subject of our
study in the sequel.
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§ 2. CLASSIFICATION OF LINEAR DIFFERENTIAL
EQUATIONS OF THE SECOND ORDER

We consider a linear partial differential equation of the second
order
n

$u=“Z a;; (z) uxi,’—}—z; a; (z) uy, +a (z) u=f (z) 1)
in an n-dimensional region Q.

The coefficients a;;(x), i, j=1,...,n, are assumed to be
real-valued, and the solutions of Eq. (1) are assumed to belong
to C2(Q). The matrix A (z)=| a;;(z)]| composed of the coefficients
of highest derivatives of the operator £ can be taken as symmet-

ric.1 In fact, Za”ulxixj.—: > aijuxiﬁ-}— > @3tz 0 where aj;j=
=3 (@iy+a;), aij=5 (ai;—a;). Since Us @) = Us 9 it follows

that 2 a’,’,-uxix )= 0, hence Z il ey = 2 a{,-uxix 5 where || aj; (z)]]|
is symmetric.

Let z° be an arbitrary point of Q, and A, (29, ..., A, (2°) the
eigenvalues (evidently, real) of the matrix 4 (z°). The number of
positive eigenvalues is denoted by ny = n, (z°), while that of nega-
tive eigenvalues by n_ = n_ (2°) and the number of zero eigenvalues
by ny, = ny (2%; = ny + r_ + n,.

Eq. (1) is called an equation of elliptic type af the point z° (or sim-
ply, elliptic at the point 2°) if ny = n or n_ = n. This equation is
said to be elliptic on the set E, E — Q, if it is elliptic at every point
of this set. An example of elliptic equation in R, is Poisson’s equation

Au=f,
a2 9% .
where A= 722 +ooit o is the Laplace operator.

Eq. (1) is said to be hyperbolic at the point 2° € Q (or an equation of
the hyperbolic type at 2°) if ny = n —1andn_ =1,orif ny = 1 and
n_=n — 1. If the equation is hyperbolic at every point of the
set E, E < Q, then it is said to be hyperbolic on E. An example of the

equation that is hyperbolic in the whole of space R, of variables
Zy, ..., T, is the wave equation

Uy, x, +...+ uxn_lxn_l —Ux x = f-

Eq. (1) is termed ulfra-hyperbolic at the point 2° if n, = 0 and
1<ny<<n—1. Eq. (1) is ultra-hyperbolic on E, Ec Q, if it is
ultra-hyperbolic at each point of E. The equation

Uz, + Usyzey — Uiegry — U 2, = f (x)

is ultra-hyperbolic in all of R,.
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Eq. (1) is designated parabolic (or, an equation of the parabolic
type) at the point 2° € Q if ny > 0. Eq. (1) is said to be parabolic on
the set E — Q if it is parabolic at every point of E. The heat equation

Uz, T ---'I‘uxn Fnog  Ux, =f(x)

provides an example of the equation that is parabolic in the whole
space R, of variables z;, . . ., Zn.

Of course, an equation need not be of the same type at all points
of a region. For example, Chapligin’'s equation (n = 2)

Us,x, + T (2:1) U,y = .f (x)’

where the function T(z;) >0 for =z, >0, T(z) <O for
z, <0, and T(z;) = O for z, = 0, is elliptic for z; > 0, hyper-
bolic for x; <<{0.and parabolic for z; = 0.

We recall that (see Sec. 1.1*) the surface S lying in Q and given
by the equation F(:v) = 0 (the real-valued function F € C! (Q) and
|{VF| =0 on S) is called the characteristic surface (characterlstlc)
for Eq. (1) if for all points z € S

(A(z) VF, VF) = 0. 2

If Eq. (1) is elliptic in Q, then the matrix A(z) is positive- or nega-
tive-definite at each point z € Q. This means that (2) holds only
when |VF| = 0. Hence elliptic equations do not have characteristic
surfaces (what is more, no surface S contains a characteristic point
of the elliptic equation).

If Eq. (1) is hyperbolic in Q, then it can be shown that a character-
istic surface can be made to pass through every point of Q. For
example, for the wave equation Us x, + .ot ue . = U x

Eq. (2) has the form n-1¥n-1
.Fil-*-...-}—Fin_l_.F;n:O. )

This equation is, in particular, satisfied by the function (x — 2%, m)=
= (z;, —a)my, + ...+ (zn — 2%) m,, where 2° is an arbitrary
point of R, and the vector m = (m,, ..., m,), | m | = 1, is subject
to the condition m? + ... 4+ m?2_; = mi. Eq. (2') is also satisfied
by the function (z; — a9)* + ...+ (Tpy — 20-1)? — (Tp — 27)%,
where z° is an arbitrary point of R,,. Hence the plane (z — 2°, m) =
= 0 and the canonical surface (z; — 28 + . . . 4+ (Zp 4 — Zh-1)* =
= (z, — a%)? are characteristics for the wave equation.

For the heat equation u,, + ...+ Ue x, = Ux, Eq. (2)
is of the form

Fi+...+F: =0.

n-1

* Here and in what follows the first number will denote the section and the
second its subsection.



INTRODUCTION 33

It is evident that any solution of this equation has the form F =
= @ (z,), where @ is an arbitrary continuously differentiable func-
tion (@’ 5= 0). Thus the characteristics for the heat equation are
the planes z, = const.

Let 20 be a point of the region Q. We denote by y=y (2)(y; =
=y;(z4y -..,2,), i=1,...,n) a transformation which maps
one-to-one a neighbourhood U of the point z° into the neighbour-
hood ¥V of the corresponding point y°, y®=y (2°), and by x==z(y)
the inverse transformation. We shall assume that the functions
yi(x) € C¥U), i=1, ...,n, and that the Jacobian matrix J (z)=

= % of the transformation y=y(z) is nonsingular, that is,
J

the Jacobian of transformation det J(z)=0 in U. Let v (y) denote
the function u (z (y)). Since

n n n

N ~
uxi = kzl VypYhaps uxixj = N ZJ . vllhllsykxiysxj + kE—‘Jl vyhvkxixjy

Eq. (1), as a result of the change of variables, assumes the form

n

> Gk (@ (1) iy, = F (s v, VO), 3)

y 8=

n
where ays (z)= 2 a;;(x) Ynx Ysx and F jis a function that does
i,j=

not depend on the second derivatives of v. Since the matrices A (r)=
= || ars (z) || and A(z) = || a;; () || are related by A(zx) = JAJ*,
by a well-known theorem of algebra the numbers of positive, nega-
tive and zero eigenvalues of A (z) coincide with the corresponding
numbers for the matrix A(z). This implies that at any point y € V
Eq. (3) is of the same type as Eq. (1) at the corresponding point
z € U. Hence the above classification of second-order equations is
invariant under smooth one-to-one nondegenerate transformations
of independent variables. This fact can be utilized for simplifying
Eq. (1).

Let us take an arbitrary point 2° € Q. It is known that for the
matrix A(z°) there exists a nonsingular matrix 7 = 7(2° =
= || ¢;; || such that

= = ©
TA(x0) 7%= A(x°)= 0*1 1\\13&0

3-0594
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We effect a linear change of variablesy = T' (2°) z. Since the Jacobian
matrix of this transformation is 7', Eq. (1), under this transformation,
reduces to (2) in which the matrix of coefficients of highest deriva-
tives is TA(x) T*. This implies that for x = 2° Eq. (3) has the form

vylyl + e o + vyn+yn+ -_ Uyn++1yn++1 T e e e ™ Uyn++n-yn++n-= Fl?

where the function F; does not depend on second derivatives of v.
This form is called the caronical form of Eq. (1) at the point z°.

Hence for any point £ = 2° € Q we can find a nonsingular linear
transformation of independent variables which reduces Eq. (1)
to the canonical form at the point z = z°. Since the transformation
depends only on the values of the coefficients of highest derivatives
in (1) at x = 29, in the case when the coefficients are constants in ¢
the resulting linear transformation reduces Eq. (1) to the canonical
form at each point of Q (in the region Q).

§ 3. FORMULATION OF SOME PROBLEMS

In this section we shall examine some physical problems which lead
to problems in partial differential equations.

1. Problems of the Equilibrium and Motion of a Membrane.
Let us consider the problem of determining the equilibrium position
of a membrane (a thin elastic plate) which is subject to the action
of a system of forces.

We shall assume that in any admissible position the membrane
is a surface lying in the space (z, u) = (2,, z,, w) that projects
uniquely onto a region Q of the plane z;0z,, and is given by the equa-
tion u = u (2), = € Q, where the function u () € C* (Q). If u =
= ¢ (z), € Q, is any admissible position of the membrane, then
we assume that any other admissible position u = u () is obtained
from the position u = ¢ (z) in such a manner that every point of
the membrane is displaced parallel to the Ou-axis.

Suppose that the external force acting on the membrane is directed
parallel to the Ou-axis and has continuous density f, (z, u) equal
to f (z) — a (z) u (the membrane is subject to the force with density
f (), z € Q, and to the resistance force of the elastic medium whose
density is a (z) u is proportional to the displacement and opposite
in sign, a (z) > 0 is the elasticity coefficient of the medium). The
work done by this force in displacing the membrane from the position
¢ (x) to the position u (x) is given by

u(x)
[ § fie waude=T 7@ @E@—0e@)
Q (%) Q

— 29 (42 (2) — g2 (2))] da.
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Besides this, the membrane is subject to the internal elastic force.
We assume that the work done by this force in displacing the mem-
brane from the position ¢ () to the position u (x) is equal to

— [ k@[ VIFIVuF —=VT+]Vol]de
Q

(the work done by this force with regard to the element (z,, z; + Az;)x
X (x4, x5 + Az,) of Q is proportional to the change in the surface
area of that part of the membrane which is projected onto this ele-
ment; the coefficient k (z) > 0 is called the tension of the membrane).

If at the points of the boundary of the membrane a force is applied
with linear density g, (z, u) = g, (z) — 0, () u (0, (x) > 0 is the
coefficient of elastic fastening of the boundary), then the work done
by this force in displacing the membrane from the position ¢ (z) to the
position u (z) is given by

| [&:@ @@ —o@)—42 @ @) —¢* @) ] ds.
0Q
Thus, in the position u (z), the potential energy of the membrane is

U =0+ | [k@(VIF[VuF—VI+][VeP
Q

+5 @—g)—f(u—) Jda+ | [ F 2 — ) —gi (u—9)]ds,

oQ
where U (¢) is the potential energy of the membrane in the posi-
tion ¢.

To simplify the problem, we assume that the gradient of the func-
tion u (z) is small for all the admissible positions u (x) which the
membrane can have, and we neglect the terms of the order | vu |4
Then the potential energy of the membrane in position u becomes

Uw=U(@)+ | [5(VuP—VeP)+5@—o)—fu—0)]ds
Q

+ S [% (u*—¢?)—g; (u—cp)] ds.
5Q

If u is the equilibrium position of the membrane, then, by the
principle of virtual displacements, the polynomial (in £)

Pt)=U(u+tv)
=U(u)+t[S (kVu Vv + auv— fv) dz + S (oyuv— g4v) dS]
Q Q

+4 [S (k| Vo 2+ av?) dz + S ow?dS |
Q aQ
3
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has, for any admissible v, a stationary point for # = 0. Hence

__de§0) = 0, that is, for all v € C* (Q) the function u (z) describing

the equilibrium position of the membrane satisfies the integral
identity
[ (kv vo 4 auv) dx—i—S 0,uudS=S fodz+ | gwds. (1)
Q 3Q Q 5Q

If the boundary of the membrane is fixed (tightly stretched), then
all the admissible positions u of the membrane satisfy the condition

Ulog= @ loq- )
In this case the potential energy of the membrane in any position
u is (neglecting the terms of the order | vu |)

Uw=U@+ | [5(vaP—|VeP+ 5@ —e)—fu—0)]da.
Q

Let u be the equilibrium position of the tightly stretched mem-
brane. Then for any function v € C* (Q) satisfying the condition

v|og=0 (3)

the function u 4 fv satisfies condition (2) for all t. Therefore for
all such v the polynomial

P(t)=U (utto)=U (u) -+t 5 (kVu Vv + auwv — fo) dz
Q 2
+5 S (k| Vv 2+ av?) dz
Q
has a minimum when ¢ = 0. This means that for all v € C! (Q) satis-

fying (3) the function u (x) which describes the position of a tightly
stretched membrane satisfies the integral identity

i (kVu Vv 4 auv)dz = 52 fvdz. (4)

It will be shown in Chap. V that under suitable conditions on
the given functions k, a, 0,, f, g, and in the case of a tightly
stretched membrane also on @lsq, the integral identities (1) and (4)
determine unique functions u (z) subject to the condition (2). Further-
more, it will be shown that if the boundary 9Q is sufficiently smooth,

then the functions u (z) belong to C2 (Q). B B
However, assuming here that u (z) € C*(Q), % (z) € C* (Q),
k(z)>ke>0, a(2)€C(Q), 0,(2)€ C0Q), & €CQ), 9E
€ C (0Q), we shall obtain local conditions, in place of integral iden-
tities (1) and (4), that must be satisfied by the desired function u (z)-
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Since, by Ostrogradskii's formula,

5 kVu Vo dz = —S vdiv(kVu)dx-]—S k2 vds
Q Q aQ

for any v € C! (Q), we can rewrite (1) and (4), respectively, in the
form

S(div(kVu)—au—}—f)vdx—S (k2 +ou—g)vdS=0 (1)
Q oQ
and

[ (@iv(kve)—au+fvde=0. (4")
)

Because the function div (kvu) — au + f is continuous, from (4')
we obtain

div (kVu) —au +f=0, z€Q, ()

which together with the boundary condition (2) gives the required
local conditions that must be satisfied by the function u (z) in the
case of a tightly stretched membrane. The problem of finding the
solution of Eq. (5) satisfying the boundary condition (2) is called
the first boundary-value problem (the Dirichlet problem) for Eq. (9).

Since the function v (z) in (1’) is an arbitrary function belonging
to C! (Q), we find, in particular, that for v satisfying condition (3)
u (z) in this case also satisfies Eq. (5). Therefore the identity (1')
may be written as

5' (kZe+ou—gi)vdS=0.
Q

Because any function in C! (dQ) admits of an extension into Q

which belongs to C! (Q) (see Sec. 4.2, Chap. III), the last identity
yields the boundary condition

du
W_Hmlaq_ g, (6)
where ¢ = 0,/k > 0, g = g//k.

The problem of finding a solution of Eq. (5) satisfying the boundary
condition (6) is called the third boundary-value problem for Eq. (5).
When ¢ = 0, the third boundary-value problem is known as the
second boundary-value problem (the Neumann problem). In this case
the boundary condition becomes

ou
o= 8" (M
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Hence the equilibrium position of a membrane is described by the
solution of Eq. (5) satisfying some boundary condition. Eq. (5)
iselliptic and is called the equation of equilibrium for the membrane.

We shall now investigate the problem of the motion of a membrane.

Let u (z, £) define the position of the membrane at a given time £.
Then the function u; (z, f) and uy (z, t) (these derivatives are
assumed to exist) define the velocity and acceleration of the mem-
brane at a point € Q. Suppose that at a certain (initial) time moment
t = {, the position of the membrane and its velocity are given, that is,

Ul—to=Po'(2),  z€Q, 8)
Ut lt=to = V1 (2), z€Q. 9)

The conditions (8) and (9) are referred to as initial conditions.

By the D’Alembert’s principle, the equation of motion of the
membrane is the equilibrium equation (5) in which f (z) has been
replaced by the function —p (z) uy + f (2, 1) (—p (%) uy is the
density of the force of inertia at the point z, p () > 0 is the
density of the membrane at the point z, and f (z, ?) is the density
of the external force which, generally speaking, depends on ?):

div (kVau) —au +f(x, 1) —p @) up =0, 2 € Q, t > t,. (10)

As in the static case, the boundary conditions have the form (2),
(6) or (7), depending on the conditions defined on the boundary 9Q
and are fulfilled for all values of time ¢ > ¢, in question. The pro-
blems of finding a solution of Eq. (10) subject to conditions (2),
8), (9); (), (8), (9); (6), (8), (9) are called, respectively, the first,
second and third mized problems for Eq. (10).

Hence the motion of the membrane is described by the solution
of Eq. (10) satisfying the initial and some boundary conditions.
Eq. (10) is hyperbolic (in the three-dimensional space) and is called
the equation of motion of a membrane.

When the membrane is expanded infinitely (Q = R,), the func-
tion u (z, t) describing the motion of the membrane for all z € R,
and ¢ > ¢, is the solution of Eq. (10) and satisfies initial conditions
(8) and (9). In this case we say that u (z, ?) is a solution of the ini-
tial-value problem (the Cauchy problem) for Eq. (10).

If the coefficients in Egs. (10) and (5) are constants: k (r) =k,
p () = p, and a (x) = 0, then these equations are called, respec-
tively, the wave equation

a%u“—Au=i(-x;c—t), xEQv t>t0$ (10')

a =l/—§-, and Poisson’s equation
fu=—18, zeQ. (5"
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In the case of one space variable, Eq. (10") has the form

Truy =t =1E0 | ac(a,B), >t (10”)

It describes the motion of a string situated over the interval (a, f).
When z = (z,, z,, 3), the equation

Suy—Au=TE0 oo, iy, (10)

describes the motion of a gas in a region Q (the function u (zx, ?)
characterizes, for example, small deviations at the point z € Q at
time ¢ in the pressure of gas from the constant pressure). The quan-
tity @ in this case is the velocity of sound propagation in the gas.

2. The Problem of Heat Conduction. Suppose that a substance
in the three-dimensional region Q has the density p (z) > 0, heat
capacity ¢ (z) > 0, and the coefficient of heat conduction % (z) > 0.
Let u (z, t) denote the temperature at z € Q at a given time ¢. Assum-
ing that the temperature at the initial time ¢ = ¢, is known:

U (x, t) [i=to = o (), z€Q; (11)

it is required to determine it for ¢ > t,.

Let Q' be a subregion of Q. By Newton’s law, the amount of heat
passing through the boundary 4Q’ into Q' in an interval of time
(3, ty), Lo <<ty < By, 1s equal to

Tt2 .
_S drc) k(z) 2 dS,
7] 0Q’

where n is the normal to Q" which is outward with respect to Q’.

If the source of heat is present in Q with a given density f (z, ?),
then the increase in the amount of heat in Q' in an interval of time
(¢, ty) is equal to

fzdt S f(z,t) dz— j.zdt S k (2) 2% ds
o Q & ey '

and therefore the equation of heat balance in Q' has the form

—jzdt S k(x)g,'f dS+§2dtS f(x, t)dz
i 00 n Q’

= [e@e@ @ t)—u(, t) da.
J



40 PARTIAL DIFFERENTIAL EQUATIONS

t2
Noting that u (z, t;) —u (z, t)) = S ‘;—L:dt and using the Ostrograd-
121
skii’s formula, we obtain
t2

S dtS [¢(2)p (2) 5 —div (k (2) Vi) — £ (, t) | dz=0.
t1 Q’

If the integrand is continuous in Q, then, because Q' and the inter-
val of time (¢,, ¢,) are arbitrary, the last equation is equivalent to
the differential equation

c(@)p (@) S-—div (k@) Vu)=1(z. 1),  2€Q, t>t. (12)

This equation is of parabolic type (in a four-dimensional space of
the variables x;, x,, x5, t). When the functions ¢ (z), p (z) and % (x)
are constants, Eq. (12) is called the heat equation:

1 , '
ﬁut—-Auz—f-@C—pt—), (12%)

k
where a?2=—.

cp

It should be emphasized that Eq. (12) holds only for ¢ > ¢, and
only for the interior points of Q. The behaviour of the function
u (z, t) for t = t, is given by the initial condition (11), and for
r €0Q u(z, t) should be subject to some additional conditions.
This is motivated by the concrete physical problem establishing
heat relation of Q with the external medium.

In the simplest case, the value of the temperature u (z, t) is given
on the boundary 4Q:

ulaqg = fo (,f1) (13)

for all values of ¢ under consideration. In this case the temperature
is described by the solution u (z, t) of Eq. (12) satisfying the condi-
tions (11) and (13).

If the density g, (z, t) of the heat; flow through the boundary
is known, then, by Newton's law, the boundary condition is of
the form
fou
k@) e o= 90 @ 1)- (14)

If the temperature u, (z, t) of the medium external to Q is given,
and the density g, (z, t) of the heat flow through the boundary 6Q
is proportional to the difference in temperatures ulspo and uglsg,
then the boundary condition is of the form

kg—:+kaUIaQ= kiuglog, (15)
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where k; () > O is the coefficient of heat exchange of the body with
the surrounding medium.

The problem of finding solutions of Eq. (12) satisfying the condi-
tions (11), (13); (11), (14); (11), (15) are called, respectively, the
first, second, and third mized problems for Eq. (12).

When the substance occupies the whole of R;, Q = Rj, the
temperature u (z, t) satisfies Eq. (12) for ¢ > ¢, and the initial con-
dition (11) for ¢ = ¢,. In this case we say that u(z, t) is the solu-
tion of the initial value problem (the Cauchy problem) for Eq. (12).

PROBLEMS ON CHAPTER 1

1. Let a surface S of class C? divide the region Q into two disjoint regions.
Q+and Q-, and let the function u(z) belongto C*(Q) N C%(Q* U S) N C3(Q-US)
and satisfy in Q* and Q- the second-order linear differential equation

2 4@y + Y@ +e@u=1@) (1y
i, j=1 i=1

when coefficients and free term are continuous in Q. Show that if for a neigh-
bourhood U_. of a point z° € S the function u(z) does not belong to C¥(U ),
then z° is a characteristic point for Eq. (1).

2. Suppose that in a two-dimensional region Q there is given the second-
order linear differential equation (1) whose coefficient and free term are analytic,
and suppose that the two lines L; and L, which intersect at a point z° € Q are:
characteristics for this equation. Show that the problem (the Goursat problem)
has a unique solution u(z) of Eq. (1) satisfying the conditions ulp, = u; and
ulp, = us, where the functions u, and u, are analytic, in a neighbourhood of
the point 20 in the class of analytic functions (u;(z%) = us(2?)).

3. Suppose that a second-order linear differential equation with continuous
coefficients is given in a region Q. Show the following.

If the equation is elliptic (hyperbolic) at a point of Q, then it is also elliptic
(hyperbolic) in a neighbourhood of this point.

If there are two points in Q at one of which the equation is elliptic and at the
other is hyperbolic, then there is a point in Q where the equation is parabolic.

SUGGESTED READING ON CHAPTER I

Petrovskii, I. G. Lectures on Partial Differential Equations, Interscience
Publishers, New York, 1954.

Sobolev, S. L. Partial Differential Equations of Mathematical Physics, Addi-
son-Wesley, Reading, Mass., 1964.

Tikhonov, A. N. and Samarskii, A. A. Equations of Mathematical Physics,
Nauka, Moscow, 1972 (Engl. transl.: Pergamon Press, Oxford).

Vekua, I. N. Generalized Analytic Functions, Addison-Wesley, Reading,
Mass., 1962,

Vladimirov, V. S. Equations of Mathematical Physics, Nauka, Moscow, 1971
(in Russian).

Vladimirov, V. S. Methods of the Theory of Functions of Several Complex:
Variables, Nauka,” Moscow, 1964 (in Russian).



CHAPTER 1II

THE LEBESGUE INTEGRAL
AND SOME QUESTIONS
OF FUNCTIONAL ANALYSIS

§ 1. THE LEBESGUE INTEGRAL

The notion of an integral and that of an integrable function asso-
ciated with it are fundamental for mathematical analysis. Due to
the need of applied sciences, and of mathematics itself, these ideas
have undergone radical changes during the course of their develop-
ment. To solve some problems, it was enough to know how to inte-
grate continuous or even analytic functions, while for other pro-
blems it became necessary to enlarge these sets and sometimes even
consider the set of all functions which are integrable in the sense
of Riemann. What is more, in order to express mathematically a num-
ber of phenomena even the set of Riemann-integrable functions is
not rich enough. Naturally, this set was not sufficient even for the
need of mathematics itself.

In particular, some processes are described approximately by means
of a sequence of “well-behaved” functions fu(z), k=1, 2, ...,
whose convergence can be asserted only in some integral sense. Thus,
for example, the sequence fn(z), k¥ = 1, 2, ..., may have one of

the following properties: S | fo — fm |dx—0 as m, k— oo (the

sequence is fundamental in the mean), S (fa — fm)2dz— 0 (the

sequence is fundamental in the mean square) or, in more complicated
cases, the integrals containing derivatives of the functions converge
to zero (the sequence is fundamental in the energy). These properties,
in particular when the sequence is fundamental in the mean square,
may not guarantee convergence in the ordinary sense: the sequence
may not converge at any point. However, we can still show (it will
be done below) that there exists a unique function to which this
sequence converges in a definite sense (in the mean square). This
function, generally speaking, is nonintegrable in the sense of Rie-
mann, therefore the integral in the definition of convergence must
be understood in some wider sense—in the sense of Lebesgue.
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1. Set of Measure Zero. A set E — R, issaid to be a set of (n-dimen-
sional) measure zero if it can be covered by a countable system of
(n-dimensional) open cubes the sum of whose volumes (total vol-
ume) is arbitrarily small, that is, for a given € > 0 we can find a count-

able system of cubes K;, K,, ... such that E— U K; and the

1=1
oo

total volume of these cubes >, |K;|<Ce, where |K;| is the
i=1
volume of the cube K;, i =1, 2,

It readily follows from the deﬁmtlon that the set composed of
a countable number of points has measure zero. The intersection
and union of a countable number of sets of measure zero are sets
of measure zero. The smooth surfaces of dimension & << n are also
sets of measure zero.

The following criterion will prove useful in what follows.

Lemma 1. A set E is a set of measure zero if and only if it can be
covered by a countable system of cubes having finite total volume so that
every point is covered by infinitely-many sets of these cubes.

First, suppose that the covering mentioned in Lemma 1 exists.
Deleting from it a finite number of cubes with maximum volumes,
we can make the total volume of the remaining covering arbitrarily
small. This means that E is a set of measure zero. Conversely, if £
is a set of measure zero, then it can be covered by a countable system
of cubes with total volume less than 2-* for any integer k£ > 1. The
required covering is obtained by taking the union overk =1, 2,

of these covers. i

If a property holds for all the points x of a set G except, possibly,
for the set of measure zero, then we say that this property holds
for almost all points x € G, almost everywhere in G, a.e. (in G). Thus,
the Dirichlet’s function % (x) which equals 1 at points whose all coor-
dinates are rational and vanishes elsewhere, vanishes a.e. in R,.

Let Q be a region of R,,. Together with the functions defined every-
where in Q (that is, having finite value at every point of Q), we shall
also consider functions that are defined a.e. in Q, that is, functions
which are undefined on a set of measure zero. The functions f + g,
f-g (f and g are defined a.e.) are defined at those points where both
the functions f and g are defined.

2. Measurable Functions. Let Q be a region of the space R,. A se-
quence of functions (defined a.e. in Q) fr (z), k=1, 2, ..., is
said to converge a.e. in Q if for almost all 2° € Q the number sequence
of values of these functions at the point 2° has a (finite) limit. A func-
tion f(z) is called the limit of an a.e. convergent sequence fy(x),
k=1,2,... f)—>f(z) ae. in Q, as k— oo, if for almost
all 2° € Q lim f,(2% = f(z°). It is evident that if two functions

h—oo0
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f (z) and g (x) are limits of the same sequence of functions, that
converges a.e., they coincide a.e.
A function f (z) is said to be measurable in Q if it is the limit of an

a.e. convergent sequence of functions in C (Q).
Let us note some of the obvious properties of measurable functions.
Any linear combination of measurable functions is measurable;
the function f,-f, is measurable if so are f;, and f,. Together with f
the function | f | is also measurable. If the functions f;, fz, ...
are measurable, then so are max (f; (z)), nnn (f; (z)),
i<h

hm fr (x) (the limit is wunderstood in the sense of a.e.). Since
sup (a (@) = lim max (f, (2)) and inf (fx (2)) = lim min(/,(2)),
i<k i<k

h—o0

it follows that these functions are also measurable provided so are
fu, k=1, 2, . If the derivative of a measurable function exists
a.e., it is also measurable.

It follows from the definition that a function f (x) belonging to

C (Q) is measurable. An arbitrary function f (z) belonging to C (Q)
is also measurable, because it can be expressed as the limit of a se-

quence of functions belonging to C (_O) that converges in Q: f (z) =
= l1m f (z) Ts (), where s (2) is the slicing function for the

reglon Q (see Chap. I).

3. Lebesgue Integral of Nonnegative Functions. We shall often
consider sequences f, (), k =1, 2, ..., of measurable functions
that are monotone nondecreasing (nonincreasing) a.e. in Q, that is,
the sequences which, for all k> 1, satisfy the inequalities
fre1 (@) > fr (@) (Ffr+q (&) < fr (2)) a.e. in Q. If such a sequence of
functions is bounded a.e. (that is, for almost all 2° € Q the number
sequence f, (2%, k = 1, 2, ..., is bounded), then it converges a.e.
to some function. We shall denote this as follows: f, 1 f a.e. as
k — oo if the sequence is monotone nondecreasing, and f, | f a.e.
as k — oo if the sequence is monotone nonincreasing.

A function f (z) which is nonnegative a.e. in Q is said to be Lebes-
gue-integrable in Q (over Q) if there is a monotone nondecreasing se-

quence of functions f (z), k =1, 2, ..., in C (Q) which converges
to f (z) a.e. in Q and is such that the sequence of (Riemann) integrals
ka de L C, k=1, 2, , is bounded above. The exact

Q
upper bound of the set { ‘fh (x)dz, £ =1, 2, .. } is called the

Q
Lebesgue integral of the function f (z):
(L) S fdz = sup S fx (2) dz=lim | fy (z)dz. (1)
) R ) R—>00 Q
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Let us show that if the function f(x) nonnegative a.e. in Q is
Lebesgue-integrable, then for any monotone nondecreasing sequence

of functions f;(z), k=1, 2, ..., in C(Q) that converges a.e.
to f the sequence of integrals S fi @)dz, k=1, 2, ..., is bounded
Q
above and sup g fu(z) dz = (L) ‘s f dz, that is, the Lebesgue integral
R
Q Q

is independent of the choice of the approximating sequence.
Before proving the above statement, we shall demonstrate that
if fy(x), k=1, 2, ..., is an arbitrary sequence of functions in

C(Q) such that f, 1 f aee. as k— oo (f(z) >0 a.e.), then
sup th(x) dz > 0, and hence for any a.e. nonnegative function
R v

Q
f(z) that is Lebesgue-integrable

(D) | fdz=0. 2)

Q
Let fu(z) 4 f(x) a.e. as k— oo. Take an arbitrary € > 0. The
set E consisting of points where the sequence f, £k =1, 2, .. .,
-does not converge to f or where f << 0 is a set of measure zero, hence
it can be covered by a countable set of open cubes {K;, i =1,2, ...}

with total volume less than &. Let K denote the union of all the

cubes of this cover. For any point 2° € Q\ K f,(z°) 4 f(z°) > 0 as
k — oo, therefore, there is an N = N (2°) such that fy (2°) > —e.

Since the function fx (z) € C ©) , the last inequality holds also in the

intersection U,, [ Q of the set Q with an open cube U,o centred at
the point 2°. Because the sequence is monotone, the inequalities

fa(z) > —e also hold in U N Q for all k> N. The aggregate
{Us, z€ Q\K}U {K;, i=1,2,...} of open sets covers the
set @, and, since Q is closed, from this cover we can select a finite

subcover Uy, ..., Uy, Ki, ...,K;. Put K'= {sj K. Since
=1 7

|K'|<<e¢ and there exists an N, such that for all z€Q\K'c
l —_

c(Uij)ﬂQ we have f,(z)> — ¢ for all k=N, it follows
=1

th]at for these k

[ n@de= | nh@dat [ n@de=>—c]0|+4e

Q Q\K’ K
=e(4, —|Q]),
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where | Q | is the volume of Q, 4; = min f; (z). Since ¢ > 0 is

€Q
arbitrary, the last inequality yields (2). )

Now suppose that f (z) is an arbitrary a.e. nonnegative Lebesgue-
integrable function, and let f (z), k =1,2, ..., fatf ae. as
k — oo, be a sequence of functions in C (Q) for which the sequence of
integrals is bounded. Taking an arbitrary sequence of functions

fo (@, k=1,2,..., in C(Q) such that f; (z)1f(z) ae. as
k — oo, we shall show that

lim X fidz = lim 5 fo dz.

h—>o0 R—>oo

Consider the sequence f,—fm, k=1, 2, ..., with arbitrary m.
Since, as k — oo, fr—fm{f—fm=0 a.e. in Q, it follows that

lim { (fs— f) dz = lim | fado— \ fmdz>>0. Hence the sequence
k—>o0 o R—00 B
Q

Q Q
[ fmdz, m=1, 2, ..., is bounded and lim Sf;,,dxglim gfh dz,
b m—>o00 ) h—>o0 'Q

and, because the reverse inequality obviously holds, the assertion
is established.

Let us consider a cube containing the region Q and sides parallel
to the coordinate planes, and decompose it by planes parallel to
the sides into a finite number of parallelepipeds. The nonempty
intersection of an open parallelepiped of the resulting decomposition
with the region Q will be called a cell (of decomposition of Q), and
the aggregate of all the cells the decomposition Il of Q. A measurable
function f () is called step-function in Q if it assumes only constant
values inside each cell of a decomposition II of Q.

By the integral of a step-function we shall obviously mean the
sum of volumes of all the cells multiplied by the value of the function
in the corresponding cell.

Lemma 2. For every monotone nondecreasing sequence of functions
frn@, k=1,2, ..., inC(Q) there exists an a.e. monotone nonde-
creasing sequence f; (z), k =1, 2, ..., of step-functions such that
r@<Hh@, k=1,2, ..., ae., and fp (x) — fr () >0 a.e.
as k— oo. _

Proof. Since the function f, (z) is uniformly continuous, we can
find a number 8, > 0 such that | f; (2') — fx (z") | << 27* for any
points z’, z" € Q satisfying |2’ — 2" | << &y, k=1, 2, .... We
denote by II, a decomposition of Q with maximum diameter of the
cell << 6,. The step-function f; (z), which is equal to min f, (2)

xEkR
in every cell K of the decomposition II;,, has the property that
0<f, (@) — f; (x) < 2~ for almost all z € Q. By taking finer decom-
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position of II, we can construct a new decomposition I, with maxi-
mum diameter of the cell <C §,. The step-function f; (z), which is
equal to min f, () in every cell K of II,, satisfies the inequalities
x€K

0< fo(x) — fa (z) << 272 for almost all xz € Q. Furthermore, f5 (z) >
> fi () a.e. in Q. Continuing this process, we obtain for any £ > 1
a decomposition II; of Q and together with it a step-function f; (z)
having the properties that 0 < f, (z) — f; () << 27%, f# (:c) < fia(2)
for almost all € Q. Hence ]‘k () < fr(x) a.e. in Q, and a.e. in Q
the sequence fy (x) — fr(z), k = 1, 2, ..., has a limit equal to
zero. |}

Lemma 2'. For any sequence of step-functions f, (), k =1, 2, .. .,
which is monotone nondecreasing a.e. in Q, there exists a monotone
nondecreasing sequence of functions fy(z), k=1, 2, ..., in C (Q)
such that fu(z) < fi(2) a.e. and fi(z) — fr () > 0, as k — oo,
a.e. in Q.

Proof. Evidently, it suffices to establish the lemma for f; (z) > 0
a.e.

Consider the function f; () (f; () > O a.e. implies that f,(x) > 0
a.e.), and let the corresponding decomposition II; of a cube contain-
ing Q (a, denotes the length of the side of the cube) consist of m, cells
(when the decomposition II; of Q corresponding to f; does not con-

{ 5 m} where
ay, is the length of the smallest of all sides of all the parallelepipeds,
the cells of decomposition II;, and let § (2), 0<C T8, (x) <1,
where ggk is the slicing function (see Introduction, Chap. I) for
the pth cell of decomposition IIj, (85 is chosen so that the total vol-
My

ume of the intersection of parallelepipeds, where 2 C () < 1,
with Q does not exceed 2-%).

tain more than my cells). Take 6, = min

Mp
Let y(z) denote the function fi(z). D) Cgh(x). It is easy to see
p=1

that x (2) € C(Q), Vr(2) < fi(2) ae., and fi(z) — Pa(z) > O,
as k — oo, a.e. Then the functions fi(z) = max vy, (x), which are
continuous in Q, satisfy a.e. the inequalitie\s fr(@) < fulz), k =
=1, 2, ..., and fi(z) — fr(x) > 0, as k — oo, a. e.

Lemmas 2 and 2’ immediately imply the following proposition.

Theorem 1. In order that a function f(x) nonnegative a.e. in Q may
be Lebesgue-integrable over Q, it is necessary and sufficient that there
exist an a.e. monotone nondecreasing sequence fy(z), k =1, 2, ...,
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which converges to f (x) a.e., of step-functions with bounded sequence of

integrals. Furthermore, (L) S f dx = sup S fr dx.
2 Bg

Lemma 3. 4 monotone nondecreasing sequence of functions in
C (Q) having bounded sequence of integrals converges a.e. in Q.

It follows from Lemma 2 that in order to prove Lemma 3 it suf-
fices to establish the following proposition: If the sequence of step-
functions fy, £k =1, 2, ..., is monotone nondecreasing a.e. and
the sequence of their integrals is bounded, then the sequence f,
k=1,2,..., converges a.e. in Q.

Let us cover the boundary aQ (3Q € C*, see Introduction, Chap. I)
by a finite number of closed cubes K;, ..., K; with sufficiently

l

small total volume so that the set Q' = Q\ U K; is a region. Evi-
i=1

dently, it is enough to show that an a.e. monotone nondecreasing
sequence of step-functions f,, k¥ = 1, 2, .. ., converges a.e. in the
polyhedron Q.

Consider an arbitrary function f, () from this sequence, and let IT,
be the corresponding decomposition of the polyhedron Q’.

Let S denote the union of sides of all such polyhedra which belong
to at least one of the decompositions IIx, k =1, 2, ..., and let &
denote the aggregate of all the points z of the set Q’\\ S at which
the number sequence f, (z), k = 1, 2, .. ., is unbounded. Because §
is a set of measure zero, it is enough to show that & is a set of mea-
sure zero.

Taking an arbitrary ¢ >0, we denote by &, . the set which
consists of (a finite number) of cells of the decomposition II, on

which f, (z)>1/e. Since c>5 fn (@) dz=— | A4]| Q| + — | &n.e |,
&
where A, is the least value that the function f, (x) assumes on the

cells of the decomposition II, (f, (x) =4, a.e. in Q’), it follows
that | &g, e[ <<e (C+]|A4,]]Q]|). Since

€ U Ene=8oU U (Bnts e\Enielr
h=1 h=1

the set € is covered by a countable system of polyhedra; further-
more, the total volume of these polyhedra does not exceed
E(C'H A{|]Q]), because, in view of the fact that the sequence
of step-functmns fr(x), k=1, 2, ..., is monotone a.e., for any

N>1 81 eU U (ghﬂ e\gh e) CgN e and hence

[€0 o]+ gixgkﬂ,e\gh.elgl&v,e|<s<C+|A1H0|)-
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But then the set € can be covered by a countable system of open
cubes with total volume less than 2¢ (C + |4, 110 1]).
4. Lebesgue-Integrable Functions. Any real-valued function f(x)
can be expressed as
@) =f"(2) — [ (), ©)

where the functions f*(z) = max (f(z), 0) and [~ (z) =
= max (—f(z), 0) are nonnegative.

The function f(z) is said to be Lebesgue-integrable over Q if the
functions f*(z) and f-(z) in (3) are Lebesgue-integrable over Q. The
integral of f(r) is defined by

@) | fde=L) | 1rdz— (L) { 1 da. (4)
Q Q Q

Let A(Q) denote the set of functions that are Lebesgue-integrable
over Q. From the definition of A(Q) it follows that the function
Cif1(2) + Cofy (z) € A(Q) if the functions f;(z) € A(Q) and C,
are any constants, i = 1, 2. Furthermore,

@) § (Cutit-Cat) de=Co (D) | frdz+Ca(D) | fade.
Q Q Q

Therefore, in particular, |f(z) | =/f*(z) + f () € A(Q) if
f(z) € A(Q), that is, a Lebesgue-integrable function is absolutely
integrable. Since |f|+f=2f*>0 and |f|—f=2f >0,
inequality (2) implies

‘(L)Sfdxlg(L)S]f[d:c ©)
Q Q

for f € A(Q).
For functions f,, f, in A (Q) satisfying the inequality f, << f, for
almost all z € Q, by the same inequality (2) we have the inequality

@) | 11dz<() | fada. (6)
Q Q

The functions max (f;(z), f,(z)) = —i— (i +fo+1fi— 71 1) and

min (fy(@), f3(2)) =5 (f, + f» — |, — 15 |) belong to A(Q) if so
do the functions f; and f,, and therefore also max (f,{z), . . ., fm(ag))E

€ /\1(0), min (f,(2), ..., fm (@) €AQ), if fi(2) €A@Q), i=
=1, . M.

Theorem 6. I'n order that an a.e. nonegative function f(x) which
is Lebesgue-integrable over Q1 may vanish a.e., it is necessary and
sufficient that (L) S fdx = 0.

Q
4—0594
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Proof. If f(2) =0 a.e. in Q, then the sequence f(z),
=1, 2, ..., of functions that are identically zero in Q has the

b

property that f, (x) 1 f (2), as k — oo, a.e. in Q. Therefore, by
definition, (L) g fdzx =0.
Q

Conversely, suppose that (L) S fdx = 0. Then there exists a se-
Q _
quence of functions fu(z), k. =1, 2, ..., in C(Q) such that
fu(x) t f(z), as k— oo, a.e. Now consider the sequence fj (),
k=1,2,.... Evidently, fi(z)€ C(Q), k=1,2, ..., and
ft ) 4 f(z), ask — oo, a.e., thereby implying that 0 < S fi (@) dz <
o]
< (L) ) fdx = 0, that is ff () = O for all £ > 1, which, in turn,

Q
yields that f = 0 a.e. |}
5. Comparison of Riemann and Lebesgue Integrals. If a function
f(z) is Riemann-integrable (it should be recalled that Riemann
integral is defined only for bounded functions), then, as is known,

there exist two sequences f, fr, £ = 1, 2, ..., of step-functions,
with fz, k=1, 2, ..., a.e. monotone nondecreasing and f;, & =
=1, 2, ..., a.e. monotone nonincreasing, that converge to f (x)

a.e. and are such that the sequences of their integrals have a common
limit equal to the Riemann integral of f(z). In the more “economical”
process of constructing a Lebesgue integral, it is enough to have
(in view of Theorem 1) only the first of these sequences (the bounded
function f(z) can, by adding an appropriate contant, be assumed
nonnegative).

Hence if a function f(z) is Riemann-integrable, then it is also Le-
besgue-integrable and the two integrals coincide. Henceforth the letter
L before the integral sign will be dropped, and an integral will always
mean a Lebesgue integral, while an integrable function will mean
a function belonging to A (Q).

The set of bounded functions belonging to A (Q) is larger than
the set of Riemann-integrable functions, because, for instance, the
Dirichlet function 7 (z) € A(Q) is bounded but not Riemann-inte-
grable.

Furthermore, in the construction of the Lebesgue integral of
f (z) it was not assumed that the function is bounded; for example,
the unbounded function | z |~* for 0 << @ << n belongs to A (] z | <<1).
In Courses of Analysis the idea of Riemann integral is extended to
unbounded functions (improper integrals). It can be easily shown
that an absolutely Riemann-integrable (in the improper sense) func-
tion f(x) belongs to A(Q) and that its Lebesgue integral coincides
with the improper Riemann integral.
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Let us note that in regions of dimension not less than 2 all the
improper Riemann-integrable functions are absolutely integrable
in the improper sense. Therefore only in the one-dimensional case the
existence of improper Riemann integral of a function may not
imply its integrability in the sense of Lebesgue. An example of

this is the function —i sin% defined on (0, 1).

6. Sufficient Conditions for Lebesgue-Integrability. Levy’s Theo-
rem. We shall now establish a relationship between mecasurability
and integrability of a function. By definition, an integrable function
is measurable; however, as illustrated by the function | z |%, a > n,
defined in the ball {| z | << 1}, not every measurable function is inte-
grable. Let us establish some sufficient conditions for integrability.
For this, we shall require theorems on the passage to limit under the
integral sign, which are also important in their own right.

First, we examine monotone sequences of functions and prove a theo-
rem which states that the set of integrable functions is “closed” with
respect to monotone limit processes.

Theorem 3 (B. Levi). An a.e. monotone sequence of functions

fr (@), k =1, 2, ..., integrable over Q with bounded sequence of inte-
grals converges a.e. in Q to an integrable function f (x), and
lim | fydz = g f da. (7
R—o00 .
Q Q

Proof. It is enough to prove the theorem for a monotone nondecreas-
ing sequence. By changing the sign of all the functions, the case of
a monotone nonincreasing sequence can be reduced to the previous case.

So, let f, (z), k =1, 2, ..., be an a.e. monotone nondecreasing
sequence of integrable functions. Without loss of generality, we may
assume that f, (z) > O a.e., k = 1, 2, ... (otherwise, instead of the
sequence f, (z), k=1, 2, ..., we would consider the sequence
Fp @ =fr(@) —f (2), k=1, 2, ..., consisting of a.e. nonnega-
tive functions).

For every £ > 1, we examine the sequence of functions f,, (),
m=1,2,... in C(Q), fam () }fr (x), as m — o0, a.e. in Q.
The functions ¢, (z) = max (fin (x)), m =1, 2, ..., belong to

i<m

C (Q) and have the followin\g properties:

(a) Pm (.Z‘) < Pm+1 (.’E),
(b) frm (@) < O () < frn (@) for £ << m (the second inequality

holds a.e.),

© § om(@dz<| fm@da<C,

Q
@ | fim (@ d2< | (@) de for k<m.

Q

Q— 0
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From (a), (c) and Lemma 3, we find that ¢,, 1 f, as m - oo, a.e.
in Q, where f is a measurable function. Passing to limit as m — oo
in the left inequality of (b) and using the right inequality of (b),
we obtain, for all k, ¢, (z) < fr () <<f(2) a.e. in Q. Then, as
k— oo, fp(2) > f(x) a.e. in Q and f(z) > 0 a.e. in Q. Hence

f(z) € A (Q) and S fdz = lim S @x (z) dz. Taking the limits,
) R—>o00

Q
as m — oo, in (c) and (d), we have S frdx << S fdzx < lim 5 fm dx
Q Q m-—>oo
for every k, that is, g fdz = lim S fm dz. |
Q m-—oo

By means of Levi's theorem the followmg sufficient condition for
integrability of a function is established.

Theorem 4 (Fatou's Lemma). If the sequence f(x), k = 1, 2,
of a.e. nonnegative integrable functions converges a.e. to a function

f(x) and S frdz << A, k=1, 2, ... then f(z)is indegrable and

S fdxgil

Q
Proof. Consider the integrable functions VP, (z) = mm (f: ()

with m < k. In view of the fact that as k¥ — oo Y3 :c) ¥ 1Pm (x) =
= inf (f, (x)) a.e. and 0 < Yy () < fm (z) a.e., the inequality
i>m

(6) and Levi's theorem imply that ¥, (z£) € A(Q) and 0 <

\ P (2) dz < S fm (z) dz << A. The assertion of the theorem

Q
now follows from Levi's theorem, since a.e. Pm (2) 4 f(x) as m — oo. [ |

Another sufficient condition for a function to belong to the set
A (Q) is contained in the following theorem.

Theorem 5. If a function f (z) is measurable and | f (z) | < g (x)
a.e., where g (x) is an integrable function, then f (z) is also integrable.

Thus a measurable function with integrable modulus is integrable,
and, in particular (the region Q is bounded!), every bounded (that is,
| f () | < const a.e. in Q) measurable function is integrable.

Proof of Theorem 5. Since the function f (z) is measurable, there
is a sequence of 1ntegrab1e (in fact, of even continuous in Q)
functions fj (2), £k =1, 2, ., which converges to f(x) a.e.
in Q. The sequence of integrable functions fr (2) =
= max (—g (z), min (fx (z), g (2))), k =1, 2, ..., also converges
to f (z) a.e. and has an additional property that | f, (z) | << g ()
a.e.,k =1, 2, .... Then the sequence f,(z) + g(z), k =1, 2, ...,
is composed of a.e. nonnegative functions, converges a.e. to f + g,
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and for all k S (o + g) dz < 2 S g dz. By Fatou’s lemma,  +
Q Q
+ g € A (Q), thereby implying / € A (). [l
From Levi’s theorem and Theorem 5 we obtain the following

result.
Corollary. If fr(x)€EA@Q), k=1, 2,..., and the series

2

=1

[e<]

| fn|dx << oo, then the series 2 fn(x) converges a.e. in Q
k=1

b
OO~

m
absolutely (that is, the sequence E |fr (@), m=1, 2, ..., con-
h=1

verges a.e. ) , and the function f(z)= Z fr () € A(Q).
k=1

7. Lebesgue’s Theorem on Passage to Limit under the Integral
Sign. One of the fundamental results of the theory of Lebesgue inte-
gration is the following theorem, due to Lebesgue, regarding the
passage to limit under the integral sign.

Theorem 6 (Lebesgue). Let the sequence of measurable functions
fr (@), k=1, 2, ..., converge a.e. in Q to a function f (z), and let
| fr (@) | < g (2) ae.,, k=1, 2, ..., where g (x) is integrable. Then
f (z) is also integrable and

lim S fo dz = S fdz. (7)
R—o00
Q Q
Proof. By Theorem 5, the functions fy (z), k=1, 2, ..., are
integrable.
Consider the measurable functions ¢ () = sup (f; (z)) and P, (z)=
R>s

=

=inf (f (z)), s=1, 2, .... Since a.e. | ¢, (z) |<g (z) and |}, (2) |<<
R>s

<g(z), s=1, 2, ..., the functions ¢, (x) and s (z), s=1,2, ...,
are also integrable. But, as s— oo, @, (z){ f(z) and s (z) 1 f (z)
a.e. which, according to Levi’s theorem, implies that f(z)€ A (Q)

and S fdz=1lim S ¢, dz=1im g P dz. Now (7) is a consequence
Q 8§00 [Q 8§00 Y -
of the obvious inequalities , (z) <f, (z) < @s (z) a.e.,s=1,2,.... [}
The relation (7) may not hold if the majorant of the sequence is
not an integrable function. For instance, the sequence f; (z) =
= kz'g—x'k A=z, k=1, 2, ..., whereo, is the surface area of
n
unit sphere in the n-dimensional space, defined in the ball Q =



54 PARTIAL DIFFERENTIAL EQUATIONS

= {|z | <<1} tends to zero everywhere in @ but th dr =
C

k2
T k) (kfat ) , _
Lebesgue’s theorem yields the following result.
Theorem 7. Suppose that for some s > 0 the furiction flz, y), x=
=@, .. T)EQS Ry, Y= (Y1, - - Ym) €EQR= Ry, belongs
to the space C*® (Q) for almost all x € Q, and for all y € Q and | o | <

<s|D%f(z, y) | < g (x) for almost all z € Q, where the function
g (x) is integrable over Q. Then S f (z, y) dz € C* (Q).

—1 as k£ — oo.

8. Change of Variables undeC:' the Integral Sign. As regards the
change of independent variables, the Lebesgue integral behaves
exactly like a Riemann integral.

Suppose that the transformation

y=y (.Z') (yl = Yi ('Zla LIRS xn)v i=1, ..., n) (8)

that is continuously differentiable in the region Q maps Q one-to-one
into the region Q’. First of all, we shall show that this transforma-
tion maps a set of measure zero into a set of measure zero.

Indeed, let E, E < Q, be a set of measure zero. Since the union of
a countable number of sets of measure zero is a set of measure zero,
it is enough to show that under transformation (8) the image of the
set Es = E ] Qs, with sufficiently small 6 > 0, is a set of measure
zero.

Let € > 0O be arbitrary. The set Es can be covered by a countable
set of cubes with total volume less than €. We may assume that all
the cubes of this cover have diameters less than 8/2, thereby implying
that all of them belong to Qs/,. Since every cube, with diameter d,
of this system is mapped by (8) into a region with diameter d' <
< d)V'n max |vVy; | = Cd, the image of the set Es can be covered

1<i<

xe&a;;
by a countable system of cubes whose total volume is less than
C™ (Y n)"e. This proves the assertion.

Theorem 8. Let the transformation (8), which is continuously differ-
entiable in Q and has a nonvanishing Jacobian J(x) in Q, map Q one-
to-one into Q'. In order that a function f (y) may belong to A (Q') it is
necessary and sufficient that the function f (y (z)) |J (z) | belong to
A (Q). Furthermore,

frway={ 1@ @]da. (9)

Q’ Q
Proof. The inverse transformation corresponding to (8) maps Q'
one-to-one into Q, is continuously differentiable in Q’, and has a



LEBESGUE INTEGRAL. QUESTIONS OF FUNCTIONAL ANALYSIS 55

nonvanishing Jacobian in Q’. Therefore it suffices to establish
Theorem 8 only in one direction, and we may confine to the case
where f (y) is a.e. nonnegative in Q’.

Let f (y) be an a.e. nonnegative function integrable over Q’, and
let f, (y), k=1, 2, ..., be a sequence of functions in C (Q’),
I (¥) 11 (y), as k— oo, a.e. in Q'. Consider the following sequence
of continuous functions in Q": fi (y) = fu (y) L (kp (¥)), k =1, 2, ...,
where the function { (¢) defined over [0, oco) equals zero for 0 <C
<t <<1/2, 2t —1 for 172 <<t <<1, 1 for t > 1, and p (y) is the
distance of y € Q' from the boundary 8Q’ (p (y) € C (Q')).

Obviously, for any & f, (y) << fr (¥) << (y) a.e. in Q' (this implies

that the sequence S frdy, k=1,2, ..., is bounded) and, as
¢
k— oo, fr, (y) 11 (y) a.e. in Q'. Hence

lim [ fi(y) dy = | 1 (v) d.
>0 o Q

Since the functions f; (y) are continuous in @', we have
j 7 dy = Sf,; (y @) |J (@) |dz, k=1,2, .... Hence the

v
function f (y (2)) | J (z) |, being the limit of a monotone nondecreas-
ing sequence of functions f, (y (z)) |/ ()|, k=1, 2, ..., in
C (Q) that converges a.e. in Q, is integrable over Q and relation (9)
holds. [}

Remark. Theorem 8 readily implies that if in Q the inequalities
C, < |J () | < Cy, where C, and C, are some positive constants,
hold, then a necessary and sufficient condition for the function f (y)
to be integrable over Q' is that the function f (y (z)) be integrable
over Q. Moreover, we have the inequalities

Co | 1fy@nlda< ()@ dy<C (17 w@)de. (10)
Q Q Q

9. Measurable Sets. Integrals over Measurable Sets. Consider
a subset £ of Q. The function yz (z) equal to 1 for x € E and zero
for x € O~ E is called the characteristic function of the set E.

A set E is called measurable if its characteristic function is mea-
surable. The measure of a measurable set E (mes E) is defined by the
relation

mes E = S Xe (z) dz. (11)
Q
(The integral on the right side exists in view of Theorem 5.)
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If Q' is a subregion of Q, then it is measurable, since yo- (z) =
= ‘lsi%l Cs (z), where {5 (z) is the slicing function for_Q’. Further,
mes ¢ = | Q' |.

The sets of measure zero defined in Subsec. 1 are measurable, and
they are the only sets with zero measure (according to the definition
just given). To prove this statement, it suffices to use Theorem 2 of
Subsec. 4.

If E is a measurable subset of Q and f (z) is integrable over Q, then
by definition we consider this function to be also integrable over E,
and the integral is defined by

Y fdz= g fyedz. (12)
E Q

(Again, in view of Theorem 5, the integral on the right-hand side
exists.)

If E is a subregion Q' of Q, then, as is easy to see, these new defini-
tions of integrability and of integral over Q’, of course, do not con-
tradict the respective definitions (Subsec. 4) given directly for Q’.

10. Absolute Continuity of an Integral. The following property
is known as absolute continuity of the Lebesgue integral.

Theorem 9. Let a function f (x) be integrable over Q. Then for any
€ > 0 there is a 8§ > 0 such that for an arbitrary measurable set E — Q,
mes E << 8, the inequality

’S fdx‘<s (13)
E

holds.
Proof. In view of the inequality (5), it is enough to prove the
theorem for | f (z) |, that is, we may assume that f () > 0 a.e. in Q.

Taking an arbitrary e >0, we choose a function f.(z)€C (Q)

such that f(z)>f. ()=0 a.e. in Q and 0< S fde—{ fedz<er2.
Q Q

Then | fdz= | fupde— { (1—f)usda+ | fors do <5+ Mames E,
E Q Q Q
where M= max fe (z). Hence (13) follows if we set §=2/(20). |}

x€

11. Relationsqhip between Multiple and Iterated Integrals. We
shall now discuss the question of reducing a Lebesgue multiple
integral to an iterated integral, and simultaneously the question
of interchanging the order of integration.

Let Q, be an n-dimensional bounded region in variables z =
= (%, ..., %) and Q,, an m-dimensional bounded region in va-
riables ¥y = (¥;, . . -» Ym). We consider a function f (z, y) in the
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bounded region Qmin = Qm X Qn of (m + n)-dimensional space
in variables (z, y).

Theorem 10 (Fubini). Let the function f (x, y) be integrable over
Qm+n- Then f (z, y) is integrable with respect to y € Qn, for almost all
Z € Qp, is integrable with respect to x € Qn for almost all y €,Qn, the

junctionsS f (z, y) dy and 5 f (z, y) dx are integrable with respect
o Q

tox € Q, and y € Q,,, respectively, and
5 fdxdy=5 dz S fay= | dy S fdz. (14)
m+n n m m Qn

It is, of course, enough to prove Fubini's theorem (see Subsec. 9)
for the case where Q, is the cube K, = {|z; | <<a,i =1, ..., n},

Q. is the cube K,, = {ly; |<a, i =1, ..., m}, and Qp4n is
the cube Kpipn ={lz;1<a, lyjl<<a, i=1,...,n, j=
=1, ..., m} for some a > 0. Before proving the above theorem,

we shall establish the following assertion.

Lemma 4. Let E be a set of (m -+ n)-dimensional measure zero
situated in K, 4n, and let E, (x) and E, (y) be its m- and n-dimension-
al sections by the planes x = x and y = y, respectively. Then for almost
all z € K, the set E, (x) has m-dimensional measure zero and for almost
all y € K,, the set E, (y) has n-dimensional measure zero.

By Lemma 1 (Subsec. 1), the set E can be covered by a countable
system of cubes with finite total volume in such a manner that every
point of the set belongs to infinitely-many cubes. We may assume
that the sides of these cubes are parallel to coordinate planes. The
series formed by integrals of characteristic functions ¥y (z, y) of

these cubes converges. Since S X (2, Y) dxdy = S d:cS Xk AY,

m+n Kn Km

according to Corollary to Theorems 3 and 5 (Subsec. 6) the series

composed of integrals S %k (z, y) dy converges for almost all z. This,
Km

in turn, means that for almost all z the set E, (z) is covered by a count-

able system of m-dimensional cubes with finite total volume in a

manner such that each of the points lies in infinitely-many such

cubes. |

Proceeding now to the proof of Fubini's theorem, we first note
that we can confine to the case f (z, y) > 0 a.e. in K, 4.

Take a sequence of functions fy (z, ¥), k =1, 2, .. .,in C (K +n)
such that f, (z, y) 4 f (z, y) a.e. in K, +,. Denote by E a set having
(m + n)-dimensional measure zero such that for all (z, y) € K4, \ E
the sequence f; (z, y) converges monotonically to f (z, y).
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By the definition of an integral,

Jaz { @ pay= | fu@ypdeay—~ | fazay

K n I(m Km+ n Km+n

as k — oo.

By Levi's theorem, monotone sequence Fj (z) = S fr (z, y) dy,

Km

k=1, 2, ..., of functions belonging to C (K,) converges a.e. in
K, to a function F (z) integrable over K,, and
[ Fde=1lim Ska dz = j fdz dy. (15)
- h—>o00

K, K Kmin

Let us take an arbitrary pointz € K, at which the number sequence
F,(x), k=1, 2, ..., converges to F (z) and the set E, (z) (the
intersection of E with the plane z = x) has m-dimensional measure
zero. According to Lemma 4, the set of points of K, not satisfying
these properties has n-dimensional measure zero. The sequence
fu(x, y),k =1, ..., converges monotonically for all y € K,,\ E,(x)
(consequently, a.e. in K,,) to f (r, y). Levy’s theorem asserts that
f(x, y) € A (K,,), and, as k — oo,

| @ wayt | i@ pay. (16)

Hence the functions S f (x, y) dy and F (z) coincide a.e. in K,,..

Km

In what follows, we shall often make use of the following propo-
sition which is a consequence of Fubini's theorem.

Corollary. If f (z, y) is measurable in Q.,4+n, is a.e. nonnegative,
and if one of the iterated integrals in (14) exists (that is, for instance,
for almost all x f (z, y) is integrable with respect to y and the function

‘) f dy is integrable with respect to x), then the function f (x, y) is
U
integrable over Q,+n, and hence the second iterated integral also exists
and (14) holds.

To establish this, it suffices to verify that f (z, y) € A (Qm+n)-
The sequence f; (x, y) = min (f (z, y), k), k =1, 2, ..., has the
property that f, (z, y) 4/ (z, y) a.e. in Qpitn,

| fe ypdzdy={az § 1@ pay<f de | 1ay

Qm+ n Qn Qm Qn Qm
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{the equality here has been written on the basis of Fubini's theorem
as applied to a measurable and bounded, and hence integrable over
Qm+n, function f (z, y)). The fact that f(z, y) € A (Qm+n) now
follows from Levi's theorem.

12. Integrals of the Potential Type. Let a function p (z) be meas-
urable and bounded a.e. in Q, | p (z) | << M a.e. Then for every
z € R, the function u (z) = g—lp W) dlya, a << n, is defined and is

J|lz—y
known as integral of the potential type.

Let us show that u (z) € C (R,). For @ << 0 it is obvious, so let
a > 0. We first note that for any points z° and z and any 6§ > 0
we have the inequality

lu(:v")—u(ﬂc)lgcg2 W |x°-iy|°‘ a I’_iy'a dy
1 1
<M ) =)
Ixo_j;lq( [20—y|* F lz—vy] ) ’
1 1
+u ’ [29—y[*  Ja—y[* w0

QN {lxb-y]>8}
Fix 2° and take an arbitrary €>0. Since for « >0 and & z2°
1 1 1

inf —_—=—= sup P
vEllx-yl<OINUx0-y1>6) [z—y|* 8% T ye(x-y=orn(lxo-yl<e) lz—y[*’

and  mes{(|z —y|<<O N (|2°—y|>8)}=mes{(|z—y|>8)N
N(|z°—y|<<8)}, it follows that

T2 0__ . |& °
H fo-yi<o 177V Ix0-y|-<b |z =y
ence
1 _
41 )dy <2 %Y _ const 8™ .
[0—y|*  Jz—y|* [ 20—y [*
§x0-yl<d |x0-y|<bd

Accordingly, we can find (and fix) a § > 0 so that the first term on
the right-hand side of (17) is less than &/2.
1

[9—y[*  [z—y[*
the closed set Q={|x~x°|<%, yeo N (ly — 2| = 6)} and
F (z, y) |x=x0 =0. Therefore an n, 0<<n<<¥8/2, can be found such
that F (x, y)<WS]5T whenever |z — 2°|<<n for all y€Q

N(ly—a°|>8). Accordingly, if |z—z°|<<m, the second term
in (17) also does not exceed e/2. Then, for |z—z°|<<n,
{u(2®) —u(r)|<<e, that is, u(z) is continuous.

is continuous on

The function F (z, y)=
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Now assume n — o > 1. We shall demonstrate that in this case
u (x) is continuously differentiable in R, and that

= 9 1 _ Yi—zi
ux.i(x)‘—S P (Y) 5 (’I‘rylg) dy—aS P(y)lT_y_,aJr—gdy-
Q Q
Since |xﬁ;|:‘i+2 x_; 1 i=1, ..., n, arguing in the same

way as above for u(z), we conclude that the functions

(@ =afo@)—L=2rdy,  i=1,...n
z—y|
Q
are continuous in R,. Further, by Fubini's theorem, for any i,
i=1, ... n,

R

U u (D dr—a | dzs _vi—m g
xj@u,(x) m=a | dz o)ttt dy

Q

K
Soe—s

2
~

X

—alp@dy | Y8 dr,={p@)dy | 22 (——) da,
2 o

[z—y[*+2 [z—y[*
2 2 :
=U(Z)=U(Lyy ooy Timgy XTIy Tigty ooy Ty)-
Therefore
u; (r) = uy, (2), i=1,...,n,

establishing the assertion.

In exactly the same way, it can be shown that if n — a > s, s is
an integer, then u (x) has continuous derivatives up to order s,
and that

1
— dy
—y Ia'

| z

D*u(z)= | o (y) Df
Q

for all & = (oty, . . ., @), | |<s.
We remark that the function

ui(x)=59(y)1nlx—yldy,
Q

called logarithmic potential, is (n — 1) times continuously differen-
tiable in R, and for all o, | | < n — 1,

D*uy (2)= | p (y) DI In |2 —y| dy.
Q
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13. Lebesgue Integral of Complex-Valued Functions. Suppose that
the function f (z) defined in the region Q is complex-valued:

f(@) =Ref(z) +ilmf(z).

The function f (z) is called measurable in Q if so are the functions
Ref and Im f, while f(z) is integrable in Q if both Re f and
Im f are integrable in Q. In this case the integral of f (z) is defined
by the relation

gfdx=J(Refdx+i§Imfdx.
Q Q Q

Since - (|Ref |+ |Imf|)< |/ |<|Ref |+ |Imf ], in order

that the measurable function f (z) be integrable it is necessary and
sufficient that the function | f () | be integrable.

14. Lebesgue Integral on an (7, — 1)-Dimensional Surface. Let
S be an (» — 1)-dimensional surface (of class C'), and let S,,, m =

N
=1,2,..., N, be a cover of § by simple pieces, S = | S,

m=1
(see Chap. I, Introduction). Every simple piece S, is described by
the equation

Zp=Pm (l‘“ ey Tp—1y Tptly ooy zn)1
(xi, ..-,xp-i, Tp+1s + o9 xn)EDm’ (Pmeci (DM) (18)

(D, the projection of S,, onto the coordinate plane z, = 0, 1 <
< p =p(m)<<n, is an (n — 1)-dimensional region having boun-
dary of class C%).

Formula (18) provides a one-to-one correspondence between

the points (z;, .. ., Tp_yy Tpt1s « - zp) of the set D,, and the

points (z;, ..., Tp_y, Tp, . .., &) of Sp,: with every point
@y, oy Tpogy Pm (T« o0 Tpogs Tptis « - s Tn)s Tptpy -« o zn) €
€S, is associated a point (x;, Z,, . . .y Tp_yy Tptyy « « -y Tn) € Dy

(its projection onto the plane z, = 0). _
Suppose that the set E is contained in S,, for some m, m =1, . ..

..., N. Let & denote its original in D, under the above mapping.
‘We shall say that E is a set of surface measure zero if & is a set of
(n — 1)-dimensional measure zero.

A set E belonging to S is called a set of surfaces of measure zero
if each of the sets £ N S,,, m =1, ..., N, is a set of surface mea-
sure zero.

It can be easily shown that the property of the set £ — S being
a set of surface measure zero is independent of the choice of the
cover Sy, ..., Sy of the surface S.
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The notion of a set of measure zero permits us to introduce, in
complete analogy with the case of n-dimensional region (see Sub-
secs. 1-4), the concept of a.e. convergence on S and the related con-
cepts of measurable and Lebesgue-integrable functions on S.

A function defined on S is called measurable (on S) if it is the
limit of a sequence of functions in C (S) that converges a.e. on S.

The nonnegative function f (x) defined on S is said to be (Le-
besgue) integrable on S if it is the limit of a monotone nondecreasing-
sequence, converging a.e. on S, of functions f, (z), £ =1, 2, .

continuous on S for which the sequence of surface (Rlemann) mte‘
grals is bounded above: \ fo(@dS<C,k=1, 2, .... The (Le-

besgue) surface integral of f (z) is defined by
[ 7ds = sup S fa (2) dS = lim S fr (2) dS.
s s e g

A real-valued function f (z) defined on S is said to be Lebesgue-
integrable over S if the nonnegative functions f* () = max (f (z), 0)
and f- () = max (—f (x), 0) are Lebesgue-integrable; in this case

l fdS — i frds — i ds.

Let the function f be defined on a surface S, and let S,, ..., S«
be a cover of S by simple pieces. Suppose that f™ (z;, . . ., Tpm) -1»
Zpomy+1s - - -2 Zn) defined on D, denotes the function f (z,, ...

. xpsm)—l’ Pm (T1s + - s Tpmy-1s Tpamrt1s -+ o1 En)y Tpamrts - -
C e Zp).

We shall show that the function f is measurable if and only if all
the functions f™, m = 1, . .., N, are measurable; f is integrable over S
if and only if each of the functions f™ is integrable over D,,, m =
=1, ..., N; furthermore

\ fdS= S‘ s‘ me1 + | Vom |2 dzy ... dZpmr-1 Az pimy+1 AT, (19)

mlD

m—-1 _
where D, =D,, and D,, m>1, is the projection of Sp~\ U S;:
i=1

onto the plane xpm, =0.

If f is measurable (integrable), then, clearly, so is each of the
functions f™, m = 1,

Let us show that if all the functions f™, m =1, , N, are
integrable, then so is f (assertion regardmg measurablllty 1s estab-
lished similarly); this we shall do assuming (this is no loss of
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generality) that f,.and hence, all /", m =1, ..., N, are nonneg-
ative a.e. (on S and correspondingly on D,,).
For each m, m =1, ..., N, take a monotone nondecreasing

sequence fr, k=1, 2, ..., of nonnegative functions in C (D)
converging a.e. (in D,,) to the function f™. We examine the sequence
I,, k=1, 2, ..., of decompositions of an (n — 1)-dimensional
cube K containing D,,: I1, is decomposition of K into 2"-! equal sub-
cubes with sides equal to half that of K, the decomposition II, is
obtained by taking finer divisions of II; in which every cell (cube)
of decomposition II; is divided into 2"-! equal subcubes, and so on.
Forallm =1, ..., N, k=1, 2, ..., wedenote by D}, » a closed
set composed of (a finite number of) closures of all the cells of decom-
position Il contained in Dy, and by fi* a function continuous in D,
which vanishes in D,,\ Dz, » and in D, » equals the function
fe-C(k-rm 1), where T (1) =0 for O<<t<<1/2, C(t) =2t —1
for1/2 < t<<1,¢ (t) = 1fort > 1, and ryy, p is the distance between

the point (zy, . . ., Tpmm-1> Tpam+1s - - +» Zn) € D7y, » and the boun-
ilary of D, . Clearly, for all m, m =1, ..., N, the sequence
fm, k=1, 2, ..., is monotone nondecreasing a.e. in D;, and con-
verges to f™. _
We define a function m m=1, ...,N, k=1,2,..., con-

tinuous on S as follows:

for z€Sn ??:T;zn (4 « -y Tpmi-1r Lpmi+is -+« Z,),

for z€ S\ Spm frn=0;

N
and put f,= > fr, k=1, 2, ... . Clearly, each of the functions
m=1
fny k=1, 2, ..., is continuous on S and
N N _
thdS= S Sf;:‘dsz S 5 ™4
S m=1 8 m=1 Sm
N
= 2 5 f;n V1+IV(Pm lzda" e d-’l:p(m)_i d.’l'p(m).{-i e dxn
m=1 Dm
N
= [ TRVIFIVonPday ... dzpmes dzpomrs - -+ A2 (20)
m=1 D;’n

Furthermore, as k— oo, f,4f a.e. on §. Since the function

V14 Von [2, m=1, ..., N, is integrable on Dy, (20) implies

that the sequence S frdS,k=1,2, ..., is bounded. Consequently,
5
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f is integrable over §. Passing to the limit, as k — oo, in (20),
we obtain (19).

From what has been just proved, it readily follows that all the
properties that were established earlier for an n-dimensional region
also hold for functions measurable and continuous over S.

§ 2. NORMED LINEAR SPACES. HILBERT SPACE

1. Linear Spaces. A set # is called a linear space if on its ele-
ments the operations of addition and multiplication by real (complex)
numbers are defined and the resulting elements also belong to # and
have the following propertieS'

(@) f, +fo=Ff2 + f1s

(®) (fy +fo) + s =1F1 + (fa 1+ fa)s

(c) there is an element o in # such that 0.f = o for any f € &,

(d) (¢; + ¢2) f = erf + cof,

(e) ¢ (fy + f2) = cfy + cfss

09) (CICZ)f = ¢, (cof),

@ 1/=7f

for any f, f;, ... € # and any real (complex) numbers ¢, ¢, ...

Depending on ‘whether the numbers by which the elements of ?
are multiplied are real or complex, the space # is designated as
a real or a complex linear space. For definiteness, in this chapter we
shall consider only complex linear spaces. All the definitions and
results are easily carried over to the case of a real linear space.

A subset of the linear space # which itself constitutes a linear
space is called a linear manifold in #.

Let f,, m =1, 2, ..., be a countable (or finite) system of ele-
ments of the linear space #. A set composed of elements of the form
¢fy + . . .+ cufy for all possible £ and arbltrary complex ¢;, ...

R ck is a linear manifold in # and is called linear manifold

spanned by the elements fy, k = 1, 2, .. The elements f;, . . ., fm
of # are linearly independent if clf1 .+ .+ ¢pfm = o holds only
for ¢ =...=c¢p = 0; otherwise f;, ..., fn are linearly depen-

deni. When the set of elements of # is infinite, it is linearly inde-
pendent if every finite subset of it is linearly independent.

A linear manifold is finite-dimensional (n-dimensional) if it has n
linearly independent elements and the aggregate of any of its (n + 1)
elements is linearly dependent.

The linear manifold spanned by linearly independent elements
fr, k=1, ..., n, of # is n-dimensional.

A linear manifold is called infinite-dimensional if one can find in
it a linearly independent subset composed of infinite number of
elements.
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2. Normed Linear Spaces. The space ¥ is a normed linear space
if to each element f of this space we can assign the quantity || f || =
= || f llg (rorm of f) having the following properties:

(@ llef Il = 1c |l fI|lfor any complex ¢ and any f € %,

®) Iy +RI<Ifill+ If ]l for any f; € #, i =1, 2 (the
triangle inequality),

() I 11 >0, where || f || = O if and only if f = o.

In a normed linear space one can introduce the notion of distance
|| f; — f5 || between two elements f, and f, as well as that of con-
vergence.

The sequence f,, m =1, 2, ..., of elements of # is called
fundamental if || fr — fm || > 0 as k, m — oo.

The sequence f,, m =1, 2, ..., of elements of # is said to
convergetof € F (fm > fasm—> oo, orlim f, = if || frn — f ||

m—»oo
—0 as m — oo.

A sequence cannot converge to two different elements, for if
lfm —FflIl—0 and || f, — g ||—>0 as m — oo, then |f —g|l =
=lf—fut+ifm—ell<fm—fll+ Il fm—gll—>0 as m— oo,
that is, ||f — g || = 0, implying f = g.

If f,, = f, then || f, Il = || f || (continuity of the norm). Indeed, by
the triangle inequality, ||/m | << fm —F I+ If ]l and |[fII<<
< || fm —Ffll+ lIfm ll.  Consequently, [T =1
< || fm —fll—>0 as m — oo.

If the sequence converges (f,, = f), then it is fundamental, since

Me—=Tmll=lfhh—Ff+f—Tull<If—FIl+
+ If—fm >0 as k, m - oo.

The converse, generally speaking, does not hold.

A normed linear space is called complete if corresponding to every
fundamental sequence of its elements there is an element of this
space to which this sequence converges.

A complete normed linear space B is known as Banach space.

A linear manifold in a Banach space B that is complete in the
norm of B (and hence is itself a Banach space with the same norm)
is called a subspace of B. The linear manifold spanned by a finite
number of elements of B is a subspace of B.

If o# is a linear manifold in B, then the set o# obtained by adding
to off all those elements which are limits of all the fundamental
sequences of elements of o (in B every fundamental sequence has
a limit) is known as the closure (in B) of manifold o/#.

The closure o# of a linear manifold o# is clearly a linear mani-
fold. Let us show that it is closed. To this end, let fz, £ =1, 2, .. .,
be a fundamental sequence of elements of o#/, and put f = lim f4.

h—o00

5—-0594
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We show that f € o#. By the definition of o#, for any k =1, 2,
there is an element f; € o such that || fr — fr || << 1/k, therefore

Wf—fmll=lf—ft+h—FHI<I/f—Ffl+1k—>0
as k — oo, that is f = lim f;, implying f € o£.

h—o00

Thus the closure of a linear manifold in B is a subspace.

The closure of a linear manifold spanned by the elements f,,
k=1,2, ..., is called a subspace spanned by these elements.

A set oft’ — B is bounded if there is a constant C such that ||f|| << C
for all f € o/’.

The set o/’ = B is said to be everywhere dense in B if for any f € B
there is a sequence f;, k = 1, 2, ..., of elements of o#’ that con-
verges to f.

A Banach space B is separable if it contains an everywhere
dense countable set.

3. The Scalar Product. Hilbert Space. We say that a scalar product
is introduced in a linear space H if with every pair of elements %,
hy € E there is associated a complex quantity (2., 2,) (the scalar
product of these elements) with the following properties:

(a) (hq, hy) = (hz, h,) (in partlcular (r, h) is a real number),

(b) (hy + hy, k) = (hy, h) + (R,

(c) for any complex ¢ (chy, hz) =c (hl, h,),

(d) (h, &) > 0, where (k, k) = 0 if and only if ~ = o.

Let us establish the important inequality, known as Bunyakov-
skii's inequality,

| Oty Ba) P < (hyy o) (ks o), (1)
which holds for arbitrary k,, 2, in H. When h, = o, the inequali-
ty (1) is obvious, so let 2, 5= 0. For any complex ¢ 0 << (h, + th,,

hy + thy) = (hy, By) + t (hyy Bo) + T (hyy ho) + | 8 1 (ho, o). 1f we

put { = — (Z” };Lz)) , this inequality becomes (&,, %,) — ﬁ’;—' >
2y 102
> 0, equivalent to (1).
The scalar product generates a norm ||k || = V (&, k) in H.

Properties (a) and (c) of a norm are apparently satisfied. To show that
(b) (the triangle inequality) is also satisfied, we make use of the

Bunyakovskii's inequality
I hl + hz ||2 = || hl ”2 + (h1$ hz) + (hzv h1) + | hz ”2
KU B+ 201y F A T+ 1A 1P = (L Ry || + 11 2o ()2

A linear space with a scalar product that is complete in the norm
generated by this scalar product (that is, is a Banach space in this
norm) is called a Hilbert space.

Apart from the convergence (in norm), it proves convenient to
introduce one more type of convergence in a Hilbert space. A se-
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quence hp,, m = 1, 2, ..., in H is said to converge weakly to an ele-
ment & € H if lim (hp, f) = (h, f) for any f € H.

M—y00
Let us show that a sequence cannot converge weakly to different
elements of H. Assume that there are two elements 2, A’ € H such

that lim (,, ) = (, f) and lim (p, f) = *', ) for any

f € H. Then for all f €{H (h — ', f) = 0 and, in particular, with
f=h —h' we have (h — h', h — k') = 0, implying h = h'.

If a sequence h,, € H, m =1, 2, ..., converges to » € H, then
it converges to it weakly as well. Indeed,

l(hm1 f)—(h’ f)]= I(hm—hif)l
< hm—n{lIfll—0 as m— co.

4. Hermitian Bilinear Forms and Equivalent Scalar Products.
A Hermitian bilinear form W is said to be defined on a Hilbert space H
if with every pair of elements i, k, € H there is associated a complex
number W (k,, h,) with the following properties:

(@) W (hy + hyy k) = W (hy, h) + W (hy, h),

(b) W (chy, hy) = cW (hy, hy),

(€) W (hy, hy) = W (hy, hy)
for arbitrary &, h,, hy € H and arbitrary complex c.

The function W (h, k) defined on H is called quadratic form cor-
responding to the Hermitian bilinear form W (k,, h,). By Property
(c), the quadratic form corresponding to a Hermitian bilinear form
is real-valued.

An example of Hermitian bilinear form defined on H is the scalar
product and the correspondingiquadratic form is the square of the
norm generated by the scalar product.

Iffa quadratic form corresponding to a Hermltlan bilinear form
has the property that W (h, h) > 0 for allk € Il and W (h, h) = 0
for = = o only, then the bilinear form W (hy, h,) can be taken as
the (new) scalar product in H: W (hy, h,) = (hy, h,)’, and the result-
ing (new) norm is defined by ||’ || = VW (&, h).

The norm || ||’ is said to be equivalent to the norm || || if there
exist constants C; > 0, C, > O such that ||z ||| << Ci R, 1|2 1| <<
< C, ||k || for any element h € H. Two scalar products (,)and (, )
are said to be equivalent if so are the norms generated by them

If the norm || ||’ is equivalent to the norm || ||, then the set H’
is a Hilbert (that is, a complete) space also with respect to the:
scalar product ( , ).

In fact, let the sequence hp, k = 1, 2, .. ., of elements of H be
fundamental in the norm || ||': |k — ks |I' >0 as k, s— oo;
this sequence is also fundamental in the norm || ||, since || 2y — k4| <<
< Cy || by — kg |I'. Because H is complete in the norm || ||, there
exists an element A € H to which the sequence in question con-

5%
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verges: ||k, —h ||—> 0 as k — oo. But the sequence converges to %
in the norm || ||’ also, since ||k — 2 || << Cy || Ay — R ||, and the
conclusion follows.

5. Orthogonality. Orthonormal Systems. Two elements k,, h, € H
are orthogonal (hy | h,) if (k,, k,) = 0. An element % is said to be
-orthogonal to a set H' — H if (h, h') = 0 for all o' € H'. Two sets H’
znd H" in H are orthogonal (H' | H") if (b', ") = O for allh’ € H’,

" E H”.

If » € II is orthogonal to a set H' that is everywhere dense in H,
then 2 = o. Indeed, let A, k =1, 2, ..., be a sequence of ele-
ments of H' and h;, — h as k — oo. Since (hy, k) = 0 for all k > 1

and by weak convergence (k;, k) — || & |]?, it follows that ||~ || = O,
implying 2 = o.
An element » € H is normalized if ||h || = 1, and a set H' <= H

is called orthonormal (orthonormal system) if its elements are norma-
lized and are mutually orthogonal. An orthonormal set is, obvious-
ly, linearly independent.

A countably infinite (or finite) linearly 1ndependent set of ele-
ments hy, k=1, 2, ..., can be transformed into a countably
infinite (or finite) "orthonormal set in the following manner (Gramm-
Schmidt’s method):

e, = hy oo — hg—(hg, €1) €

= s 9 = cee
T [ hg—(hg, ey) x|l '’ ’

e — hn—(hn, €1)ey— ...—(hp, €n_y) en—y

" |[hn—(hn, €1) e3— ... —(hp, €n—y) en-1 || ! !

(according to the supposition that the set hy, k=1, 2, ..., is
linearly independent, &, — (hn, €;)e; —. .. — (Bn, €nq) €155~ 0
for any n > 2).

6. Fourier Series with Respect to an Arbitrary Orthonormal
System. Suppose that f is an arbitrary element of H and ¢, . . .,
€, . .. a countable orthonormal system in H (if H is finite-dimension-
al, one must take an orthonormal system consisting of a finite
number of elements). Denoting by H,, for some p > 1, the subspace
spanned by the elements e;, . . ., ep, we try to ﬁnd in H, an ele-
ment which is closest (in the norm of H) to the element f. Since any

P
element of Hp, is of the form 2 cre; with certain constantsc,, . . ., ¢p,
r=1
the problem reduces to determining constants ¢y, ..., ¢p such

P
that the quantity Gf{p(f; Cir oo €p) = || f — D) crer I[P attains
r=1

its minimum.
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The quantities fr = (f, ex), k =1, 2, ..., are called Fourier
coefficients of f with respect to the system e;, e,, . . .. Since

P P
8%, (f; 1y v -y Cp) (J‘—TZJ1 crer, f—rgi crer)
P _ P P
= “ f “2—1.51 crfr"rén1 crfr‘f‘rgi 'cr |2

(A

P
= 2 ler—tr P = B P+

r=

the quantity &8%,(f; ¢1, ..., ¢p) attains its minimum only when
¢:=fr, r=1, ..., p, and this minimum, denoted by &%,(f), is

equal to ,’fnz_,i | 1+ |

b
8k, (N =I11P— X |- @)

Thus, for a given f, we have the inequality

P P
7= 35 cver | = 17— 3 fre

for all ¢;, ..., ¢p, describing the minimal property of Fourier coef-
ficients; the equality is attained only for ¢, =f,, r=1, ..., p.
Denoting by /* the unique element closest to f in the subspace H,:

P

i =,z frer,
r=1
we have

| f— 12| = 8k, (f)- (3)

The element fP is called the projection of f onto the subspace H,.
Equality (2) implies that for any f€HA and any p>1,
p oo

2 |f-P<||f|?. Accordingly, the number sequence >, |f,|* con-
r=1 r=1
verges and Bessel's inequality

ATAITE

holds.
Lemma 1. Let fy, k=1, 2, ..., be a sequence of complex num-
bers and ey, k=1, 2, ..., an orthonormal system in H. In order

that the series | fnen may converge in the norm of H it is neces-
h=1

sary and sufficient that the number series ) | fr|? converge.
r={
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) oo
Proof. Let S,=2] fre, be the partial sum of the series | fe,.
r=1

r=1
P P
For p>gq we have the equality || S,—S|2=|| % frer [P = };lfr |2
q q

which implies that convergence of ) |f.|? is necessary as well
as sufficient for the sequence of its partial sums to be fundamen-
tal, and hence for convergence of series in question, since H
is complete. [

Let f be any element of H and f,, k = 1, 2, .. ., its Fourier coef-
ficients with respect to the orthonormal system ey, k =1, 2, .. ..
The series

2 fren

h=1
is called Fourier series of f with respect to the system e, & =
=1,2,....

Lemma 1 and Bessel's inequality yield the following result.

Lemma 2. The Fourier series of any element f € H with respect to
an arbitrary orthonormal system converges in the norm of H.

Lemma 2 establishes the existence of an element f € H to which
the Fourier series of f converges. A natural question can be asked:
Is f=f for all f € H?

In the general case, unless additional conditions are imposed on the
system e, €5, . .. besides its orthonormality, the answer to above
question is in negative.

7. Orthonormal Basis. It follows from (2) that for any f € H the
quantity Gﬁp(f) decreases when p increases. Therefore a priori there
are two cases to be examined:

(a) forall fEH 6?;p(f)—>0 as p — oo,

(b) there is an element f € H for which 6} (f) > ¢ >0 asp — oo.

When (a) holds, for any f € H we have, I};y (3),

P
f=1lim > fue,
p->o0 k=1
or, which is the same
f= Z Trer, (4)
k=1

that is, in case (a) the Fourier series of an element f converges (in
the metric of H) to f. Furthermore, for any f € H we have

NFlE= 2 | fx 2 6)
k=1
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known as the Parseval-Steklov equality, and its generalization

(7, g)= 2 fhElu (5’)
k=1

true for all f, g€ H.

Equality (5) is a consequence of (2). To establish (5') we first
note that the series on the right side converges absolutely, because
its general term has a majorant which is the general term of a con-

vergent series: | fy s | < (Ifx [* + | g [*). Further, by (4)
P
(f, ) =lim (f?, g) =1im ( X fren, g)
p—>00 p—>oo k=1

P p — x
= lim 2 fr (er, g)=lim 2 frgr= 2 Tr&ns
p->00 k=1 p->oo k=1 h=1
as desired.
In case (b), there is an element f € H whose Iiourier series con-
verges (by Lemma 2 of the preceding Subsection) to f 5= f, that is, the
element 4 = f — 7 5= 0. Hence

f=h+ 2} fren
k=1

where i 5= 0 and & is orthogonal to the subspace spanned by the
system e, €y, . . ..

We again return to case (a) in which we are basically interested.

A countable orthonormal system e, e,, ... is called complete
or an orthonormal basis for the space H if any element f € H can be
expanded in a Fourier series (4) with respect to this system.

The aforementioned discussion leads to the following assertion.

Lemma 3. For an orthonormal system ey, ey, . . . to be an orthonor-
mal basis for H it is necessary and sufficient that the Parseval-Steklov
equality (5) hold for any element f € H or (3") hold for any two elements
fand g of H.

Lemma 4. For an orthonormal system ey, e,, . . . to be an orthonor-
mal basis for H it is necessary and sufficient that the linear manifold
spanned by this system constitute an everywhere dense set in H.

If the system e, e,, . . . is an orthonormal basis for H, then every
element f € H is approximated in the norm of H as closely as one
pleases by the partial sums of its Fourier series which are linear
combinations of this system. This shows that the condition is neces-
sary.

To show that the condition is sufficient, take an arbitrary element

f€ H. For an ¢ > 0 we can find a number p = p(¢) and numbers
¢(€), ..., cp(e) such that || f— Zp cr(e) ex || < e. Since the
1
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Fourier coefficients have the property of being minimal, it follows
that

P P
1= 2 freall <l = 25 en (o) en <,

which shows that f has a Fourier expansion (4). [ |

Theorem 1. In a separable Hilbert space there is an orthonormal
basis.

Proof. Lethi, h;, . .. be aset everywhere dense in H. By k, denote
the first nonvanishing element A (h; = ... = hp,_; = 0), by h,
the first nonvanishing element of the set Ap,4,, Ap+s, . . . that
forms with k, a pair of linearly independent elements, and so on.
The countable (or finite) system h,, k,, ... is linearly independent
and the linear combinations of the elements of this system are every-
where dense in H.We can transform the system &, k,, . .. (Sub-
sec. D) into a countable orthonormal system of elements e;, e,, . . .
whose linear combinations are also dense in H. By Lemma 4, this
system is an orthonormal basis for H. l

§ 3. LINEAR OPERATORS. COMPACT SETS.
COMPLETELY CONTINUOUS OPERATORS

1. Operators and Functionals. Let B; and B, be Banach spaces and
B, a set lying in B,. An operator A (operator A from B, into B,) is
said to be defined on Bj if to every element f € B; there corresponds
an element g € B, : g = Af. The set B] is called the domain of defini-
tion of A and is denoted by D 4, D 4 = Bj, while the set of elements
of the form Af, f € D 4, is known as its range R , — B,.

The operator 4 is a functional if the space B, is a set of complex
pumbers (the modulus of a complex number is taken as a norm of this
set). The functionals will commonly be denoted by .

Simplest examples of operators are the operator O, the null ope-
rator, and (for B, = B,) the identity operator I defined as follows:
0f = o for all f € Do, If = f for all f € D;.

An operator A is said to be continuous on an element f ¢ D , if it
maps a sequence fp, k =1, 2, ..., of elements of D 4 converging
to f in the norm B, into a sequence Afy, k =1, 2, . . ., that converges
to Af in the norm B,. Operator A is continuous on the set EC D 4
(in particular, on D ,) if it is continuous on every element f‘ € E. An
operator A that is continuous on D 4 will be referred to as continuous.

The operator A is linear if D, is a linear manifold and
Alefy + cofs) = ¢Afy + c,Af, for any elements f; € D, and

pumbers ¢;, i =1,
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The null element of B, is mapped by the linear operator A into
the null element of B,, because

Ao = A0-f)y =0.-Af =0

(f is any element of D ,).

For a linear operator Ato be continuous it is necessary and sufficient
that it be continuous on the null element (or, generally, on some element
Of DA).

The necessity of this condition is apparent. To show that it is
sufficient as well, let fp, k = 1, 2, ..., be a sequence of elements
of D 4 that converges to f € D 4. Since g, = fr, — f, k = 1, 2,
is a sequence of elements of D 4, converging to zero, it follows that
Agy — 0 as k — oo, thereby implying Af, — Af as k — oo.l

Let A;,i = 1, 2, be linear operators from B, into B,, D4, = D 4,,
and let ¢;, i = 1, 2, be certain numbers. We define a new operator
A =c A, + c,A, as follows: for any f €D 4 = Dy, = Dy, Af =
= c;A,f + c,4,f. Operator A4 is also linear.

Thus the operations of addition and multiplication by complex
numbers are defined on the set of linear operators with common do-
mains of definition. It is easily seen that this set is a linear space.

A linear operator A is said to be bounded if there is a constant
C > 0 such that || Af ||, << C ||f |lg, for all f € D, or, what is
the same, || Af ||, << C for all f € D 4, satisfying || f ||s, = 1.

The exact upper bound of the values of C is known as the norm of A
and is denoted by || 4 |I.

We can show that

Il 4f 11,

”A”— S P ”—f—”—‘ = sup || 4f|lB. (1)
By €D,
HFllBy=1
Put a = fsel;p Il Af llB/ Il  llBy- For all f€ D4, || Af |/ IfllB<<
A

< a, therefore || A || << a. To establish the reverse inequality, we
note that, by the definition of exact upper bound, for every ¢ > 0
there is an element f, € D 4 such that || Afe |Iz/|| fe llsy > @ — €.
This implies that || 4 || > o — € for any ¢ > 0, thatis, || 4 || > «.
Hence || 4 || = a.

In particular, when A is a bounded linear functional, 4 = [,
its norm is given by

211 sup gt HL_ sup i)
T7ls; ~ Jen,
1 Flipg=1

Note that the set of bounded linear operators with common domains
of definition is a linear manifold in the space of all the linear opera-
tors with the same domains of definition. The norm defined above
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for a bounded linear operator satisfies all the axioms of being a
norm. It can be easily shown that this normed space is complete
{that is, it is a Banach space).

The following proposition establishes a connection between the
notions of boundedness and continuity for linear operators.

For a linear operator A to be continuous it is necessary and sufficient
that it be bounded.

Sufficiency. Let the sequence fp, k=1,2, ...,in D, converge
{in By) to feDy. Since ||Afx— Afll,=I14 (fr—1)IlB.<|A]lX
X || fa—7fllBi—0 as k— oo, it follows that Af, — Af, as k— oo,
in B,.

Necessity. Assume the contrary, that is, 4 is unbounded. Then
there is a sequence fr, £k = 1, 2, ..., of elements of D 4, such that
|| Afy Iz =k || f» |lsy, but this contradicts the continuity of A,
because the sequence fr, = fr/(k || f: lls), &£ =1, 2, . .., belonging
to D 4, converges in B, to zero, while the sequence Afy, k =1, 2, .. .,
cannot converge to Ao = o since || Af; ||p, > 1..

A bounded linear operator A whose domain of definition D 4 is
everywhere dense in B, can always be assumed to be defined on the
whole of B, by redefining it on B\ D 4 as follows. Let f be an ele-
ment of ByN\D, and fp, £k =1, 2, ..., a sequence of elements of
D , that converges to f in the norm of B, (D 4 is everywhere dense
in B;). Since A is bounded, the sequence Afp, £k =1, 2, ..., of
elements of B, is fundamental in B,, and because B, is complete,
the sequence Afy, £k = 1, 2, .. ., has a limit in B,. We show that
this limit is independent of the choice of the sequence fy, k =
=1,2, ... In fact, let fi, k =1, 2, ..., be another sequence
of D 4 converging to f. Then || Afy — Afu |lp, = | 4 (fp — fi) llp. =
= |4 |||l fo — fu lly = 0 as k — oo; accordingly, the limit depends
only on the element, f. We take this as the value Af of A on f. The
extension of A obtained in this manner, and referred to as the exten-
sion with respect to continuity, is a bounded linear operator defined
on the whole of B,.

If A,, A, are linear operators for which R4, — D,,, then the
linear operator 4,4, on D4, with range in R4, is defined as follows:
A A f = A, (Ayf). If A, and A, are bounded, then so is 4,4, and
14,4, | < 1Ay 1] 11 Aq |l

Suppose that the equation Af = g has a unique solution f € D 4
for every g € R 4. This means that on R, an operator, denoted by
A-1, is defined which with every g € R 4 associates the unique f € D 4
such that Af = g. The operator A-! is called inverse of A. Clearly,
Dy1w=Rs, Rpv=D,, A'A =1, AA* = I; and 4! is linear
provided so is A4.

2. Riesz’s Theorem. An example of a bounded linear functional
defined on a Hilbert space H is provided by the scalar product: if we
fix an arbitrary element k € H, then (f, ) is (with respect to f)
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a bounded linear functional (boundedness is a consequence of Bunya-
kovskii’s inequality). The most striking feature is that any bounded
linear functional defined on H (or, by the results of Subsec. 1, on
a set everywhere dense in H) may be expressed as a scalar product
by a proper choice of 2 € H. Namely, the following important asser-
tion holds.

Theorem 1 (F. Riesz). For every lounded linear functional defined
on a Hilbert space H there is a unique element h € H such that for
all fe H

L = h). @

We shall prove this theorem only for a separable Hilbert space H
(only for such, spaces will this theorem be used in this book).
Proof. Let ey, €5, ..., €pn, ... be an orthonormal basis for H (such

a basis exists, by Theorem 1, Sec. 2), and let D' f,e, be the
k=1

p
Fourier expansion of some f€ H. Since, as p— oo, 2 frer —f,
k=1

by the continuity of

P p o
L(f)=lim! (kgi fkeh) = ;l,iglo hgi frl(er) = héi Trbr, (3)

pP—>o00

where hy=1[0(e;), k=1,2, ....
P
Consider the element AP = D) hye,. Since |I(RP)|<|IL]| |I27]|
h=1

P P
(I is bounded) and I (hP)= D) hyl(er)= ) | b [2=||~?||?, we have
k=1 E=1
Y4 o0
for all p=>1 D) |hy 2<||!|? which implies that the series > |hy|?
k=1 k=1
converges and ) |k, 2<||Z|?. By Lemma 1 (Sec. 2.6), the
k=1

©o

series ) hue, converges in the norm of H to an element h ¢ H
E=1
(hy are Fourier coefficients of h).
Substituting fr =(f, e;) into (3) and again making use of the
>

continuity of I, we obtain (2): I(f)= D) (f, hnex) = (f, D) hnex) =
=1

k=1
= (fv h)'

Apart from representation (2) if there is another representation
for I: 1 (f) = (f, h'), then for all f€ H (f, h — k') = 0, implying
=011
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Let us note that, when proving Theorem 1, we have established
that ||2 || << || ! |]. The reverse inequality ||l ||<C|l2 || follows
from (2) and the Bunyakovskii’s inequality. Thus || || = || 2 |-

3. Adjoint Operator. Suppose that H is a Hilbert space and A
a linear operator from H into H which is defined on a set D 4 every-
where dense in H (operator 4 is, generally speaking, not bounded).

Let D 4« denote a set of elements of H satisfying the following
condition: for any g € D 4« there is an element 2 € H such that
for all f€ED 4

(41, & = (f, h).

The set D 4« is nonempty, because the null element of H belongs
to it: when g = 0, h = o.

We show that to every element g € D 4« there corresponds only one
h € H. Assume the contrary, that is, to a g € D 4« let there corres-
pond two elementsk, h’ of H. Then for all f€e D, (f, h —h") =0,
implying 2 = k' (recall that D , is everywhere dense in H).

Thus an operator, denoted by A*, is defined on D 4»: to every ele-
ment g € D 4+ there corresponds a unique element h = A*g € H
such that

(Af, 8) = (f, 4*g) (4)

for any f € D 4. Operator A* is called adjoint of A. Its domain of defi-
nition is the set D 4+ consisting of those elements of H for which (4)
holds for all f € D 4.

If g,, g, are arbitrary elements of D 4+ and ¢, ¢, arbitrary complex
numbers, then for any f € D, (4) yields

(f, 1A% gy + c,A%*g,) = z1 (f, A*gy) + Zz (fy A*gy)
= 0_1 (Af, &) + ‘Tz (Af, g2) = (Af, c1g + c28,),

which implies that ¢;g; + ¢85 € D 4+ (that is, D 4« is a linear mani-
fold) and A% (c,8, + co85) = c;A*g; + csA*g,. Thus the operator
A* is linear.

Now suppose that 4 is bounded. By Subsec. 1, it can be assumed
to be defined on all of H. Take an arbitrary element g € H. The linear
functional [ (f) = (Af, g) is bounded, because | (f) | << ||4f || X
gl Alllg)IIfll. By Riesz’s theorem (Subsec. 2),
there is a (unlque) element 2 € H such that I (f) = (4f, g) = (f, k) =

= (f, A*g). Hence (4) holds for all g € H, that is, D 4« = H.

Let us show that A* is bounded and that || A* =14 Set-
ting in (4) f = A*g for any g € H, we obtain

| A*g [P = (Ad*g, o) << || A (A*g) |l Il g |l
<A gyl A*g .
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Therefore || A*g || << ||4 |||l gll, that is, A* is bounded and
| A* || << || A ||. Setting in (4) g = Af for any f € H, we similarly
obtain || A* || > || A ||. Hence || A* || = || 4 |I.

Summarizing, the adjoint operator A* of a bounded linear opera-
tor A is defined on the whole space, is linear, is bounded and its
norm equals that of A.

It can be easily shown that (4*)* = 4, (cA)* = c4A* (c is a com-
plex number), (A + B)* = A* 4 B*, (AB)* = B*A*,

4. Matrix Representation of a Bounded Linear Operator. While
proving Riesz’s theorem, it was established that a bounded linear
functional defined on a separable Hilbert space is completely deter-
mined by its values on an orthonormal basis for this space. Same is
the case with bounded linear operators.

Let A be a bounded linear operator acting from a separable Hilbert
space H into H. Let D4, = H and ¢, ..., €,, ... an orthonormal
basis for H.

The infinite matrix a;; = (de;, €;) = (e;, A¥ey), i >1, j>1
will be called matriz representation of A in the basise;, .. ., e,, ...
Since (A*ej, ¢;) = a;;, i =1, 2, ..., are the Fourier coefficients
of A*e;, by the Parseval-Steklov equality (equality (5), Sec. 2.7)

the series D) |a;; |* converges and for all j = 1, 2, ... we have the
i=

inequality

I8

2 layl=|| 4% [P<|| 4* =] 4] )

Take an arbitrary element f€H, and let f= D) fye, be its
k=1

Fourier series expansion. Since Af¢ H, its Fourier coefficients
(Af); = (47, e)) = (4 2 fiei, e)) = 2 fi (Aews )= 3 fiais,  (6)
1= 1= Q=

j=1,2,.... The series on the right side of (6) converges abso-
lutely, because its general term f;a;; does not exceed the general term

—;— (1f; P + | a;;*) of a convergent series. Substituting the values
of the Fourier coefficients in the Fourier series Af = 2 (4f),e;,
=1

we obtain
00
>

j=1

Af = (21 aisfi) ej. )
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Thus, for any f € H, the element Af € H can be determined cor-
responding to f by means of only the matrix (a;;). This means that
the matrix (a;;) completely defines the operator A.

If (a;;) is the matrix representation of 4 in the basis ¢, e,, . . .,
and (af;) is the corresponding representation of the adjoint opera-
tor A*, then

a¥j= (A%, e;) = (e;, de;)=ay; for all i>1, j>1.

Operator A is designated as finite-dimensional (n-dimensional)
if it maps a Hilbert space H into an n-dimensional subspace of it.

Suppose that H, is a subspace of H spanned by the elementse,, . . .
« .« én. For the bounded linear operator A to map H into H, it is
necessary and sufficient that a;; = 0 for j > n, i > 1. This state-
ment is an immediate consequence of (6) and (7).

5. Selfadjoint Operators. Operators of Orthogonal Projection.
A bounded linear operator from a Hilbert space H into A which is
defined on H is termed selfadjoint if 4 = A*.

With a selfadjoint operator A we can associate a Hermitian bili-
near form W (f, g) = (Af, g) and the corresponding quadratic form
(Af, f). These forms are called, respectively, bilinear and quadratic
forms of operator A. The quadratic form of a selfadjoint operator is
real-valued. A selfadjoint operator 4 is said to be nonnegative if
(Af, /) > 0 for all f € H. A nonnegative operator A is positive if
(4f, ) = 0 only for f = o.

The matrix representation (a;;) of a selfadjoint operator satisfies
(when H is separable) the property: a;; = a;;,i,j =1, 2, .. ..

Suppose that e,, e,, . . . is an orthonormal basis for a separable
Hilbert space H and e;,, . . ., €, - - . is a countable (or finite) sub-
set of it, while ¢;,, . . ., €jpre - r @ subset of the basis, is complement
of the chosen subset. Let RN’, N" denote, respectively, the sub-
spaces spanned by the elements €, k=1,2,... and €jy>
k=1, 2, .... Subspace N’ (N") is the aggregate of elements of H
that are orthogonal to all the elements € k= 1, 2, ... (ei,»
k=1, 2,...). Equivalently, the subspace R’ (N") is the set
of all the elements of A having the property that in their Fourier
expansions with respect to the basis ep, k = 1, 2, . . ., the Fourier
coefficients of the elements €5 k=12, ... (eik, Ek=1,2,...)
vanish (that is, the corresponding terms do not appear in the expan-
sions). The subspaces |’ and N” are orthogonal, N'_L N".

With an arbitrary f € H, whose Fourier expansion is of the form
theh, we associate the elements

ff=Pf= kgi fisery, f"=Pf= élfihefh’ (8)
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Since, by Bessel’s inequality and Lemma 1 (Sec. 2.6), the series in
(8) converge in the norm of H, they define on H two operators P’
and P”. These are linear with range Rp = N', Rpr = N".
Operators P’ and P” are known as operators of orthogonal projec-
tiorn of H onto the subspaces R’ and M”, respectively (for the sake
of brevity, these operators will be referred to as projection operators).
A projection operator is bounded and its norm is unity. In fact,

since for all f€H || P'f|t=| /' |F= le‘lkl2 Zlfh =|[fl? we

have || P'||<1. But P'ei;=e;, whlch 1mp11es I P’ ]—1
A pro]ectlon operator is selfad]omt because (P'f, k) =

=(h§1fiheihv h) = 2 fiy (eiy,s h) = 2 fi,h 1k—(f, P’h) for any f and

hecH.
From equality (8) it follows that for any f € H

f=If=Pf+Pf, I=P 4P, 9)
where P'fecR’, P’fcN". Furthermore,
NFIE=11P'f+PFIE=||P'f 12+ PF P+ (P'f, Pf)
+(P'f, P'f) =\ P'FIE+IPFIP,  (10)

because N’ I N".

6. Compact Sets. Let H be a Hilbert space. A set o — H is called
compact in H if any (infinite) sequence of its elements contains
a subsequence that is fundamental in H.

Lemma 1. A compact set is bounded.

Proof. Suppose of is unbounded. We claim that it cannot be
compact. Taking any one of its elements f!, we denote by S a ball
of radius 1 with centre at f!, that is, the set of those f € H for which
Il f —f |l < 1. Because off is unbounded, the set off; = o \_ Sp
is nonempty. We take any f2 € oy (|| 2 — f1|| > 1). Since o/, =
= ofl \sz is also nonempty, there is an element 3 € o such that
Ne—=~N>1, f3 — ]| > 1. Continuing in this manner, we
obtain a sequence k= 1 2, ..., of elements of o/ satisfying
the inequality || f* — f’ > 1 for all i, j, i = j. This sequence does
not contain any fundamental subsequence Hence o# cannot be
compact.

Lemma 2. For a set of of a finite-dimensional (n-dimensional)
Hilbert space H to be compact it is necessary and sufficient that it be
bounded.

That the condition of boundedness is necessary follows from
Lemma 1. We shall show that it is sufficient also.

Since o/ is bounded, ||f||<C for all on/Il Consequently, the
Fourier coefficients f,_(f, e;), i=1, ..., n, in the expansion
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f=fe -+ ...+ fne, of an element fCoA* satisfy the inequalities
| fil=|(f, e,)|< [flllle:l =|l/| <C. Hence for any sequence

f*, k=1, 2, ..., of elements of of the sequence (fi, ..., %),

k=1,2, ..., of n-dimensional vectors, where f’; = (f*, e;), is bound-
ed. From it, by the Bolzano-Weirstrass theorem, one can choose

a fundamental subsequence (ffs, ceey fff), s=1, 2,
[FE— PP oo L] faf—FaP >0 as s, p— oco.

k k k
The corresponding sequence f °*=fies+ ...+ fr'en, s=1, 2,
is fundamental in A, because

R 3 3
(15— f =11 =P Pt oo+ | Jf—Fa2 P >0 s 5, p>oco. [

7. A Theorem on Compactness of Sets in a Separable Hilbert
Space. Suppose that H is an infinite-dimensional separable Hilbert
space and e, . . ., é,, . .. an orthonormal basis for it.

First of all we note that not every bounded set in H is compact.
For instance, any bounded set containing the orthonormal basis is
noncompact because no fundamental subsequence can be selected
from the sequence e,, k=1, 2, ..., since |e; —e;|| = Ve,
i 5= j. In particular, the set {||f |l << 1} (the closed unit ball) is
noncompact in the infinite-dimensional space.

Let P, denote the projection operator which maps H onto the
n-dimensional subspace H, spanned by the elements e, .. ., e,
and put P; = I — P;. For any f € H and arbitrary » >> 1 we have

(see (9))
f=Puf+Prf, (11)
where P;f= >: frnen, Pof = }] fren. Then (11) yields
R=1 - k=n
1=l Pnf P+ 11 Pof 17, (12)

where || Prf|*= 2, [fe 2 || PR f||2— Z | 7x |2, which implies that
=n-+1

for any f€H the number sequence | Pnfl|2, m=:1,2, ..., being
monotone nonincreasing, tends to zero as n— oo.

Theorem 2. For the set # — H (H is a separable Hilbert space) to
be compact it is necessary and sufficient that it be bounded and for any
&€ > (O there be an n = n (&) such that || P, f || << eforallf € ok.

In other words, for the compactness of o# it is necessary and
sufficient that it be bounded and “almost finite-dimensional”.

Sufﬁczency Let || || << C for all f € of/. We consider an arbitrary
sequence f*, k =1, 2, ..., of elements of o#. Setting ¢ = 1, we

* With respect to some orthonormal basis ¢, .. ., e,.
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have || P f* ||<<1 for all k, where n, = n (1). Since || P, F* || <
< || 1< C for all k (P, is defined in (11)), the set P;, f*, k =
=1, 2, ..., is bounded in the n,-dimensional space H,,. From
this space, according to Lemma 2 (Subsec. 6), one can choose a fun-
damental subsequence and from the latter a subsequence P, f!:s,
s =1, 2, ..., having the property that || P, fl-s — P, fl.P | <1
for all s and p > 1. Then, taking into account (12), for the subse-
quence fi-1, ..., fl»s, ... we have the inequalities

T R L e A S e N

<+ (IPnf |+ 1 P P 1D <5,
true for all p and s.

Take a number n,=n (1/2) corresponding to e=1/2. The se-
quence P, f*', ..., P, f**, ... belongs to H,, and is bounded;
hence from it a subsequence P;zfz' f, s=1,2,...,can be selected
for which || P;,f% *— P, f*?||<1/2 for all p and s.

In view of (12), we have ||f**—f*P|2=| P, > *—P; P |2+
+”P’,’,,f2"-—P;,fz'p[|z<%+z-=% for all s, p; and so on. For
e=1/i we can find »;=n(1/i) and from the subsequence P;,ifi"i"
s=1,2, ..., we can choose a subsequence P;ifi", s=1,2, ...,
such that ||P,’,ifi"—P;ifi’p|]<1/i for all s, p. Noting (12), for
the subsequence fi", s=1,2, ..., we have | fi"—-fi’p||2<
L 1/it+4/i2=5/i? for all s, p.

The diagonal sequence f* 8, s =1, 2, ..., is a subsequence of
the initial sequence and is such that || fp» P — fs. s || <C 5/i? for all
p, s > i, that is, it is fundamental.

Necessity. The necessity of boundedness of the set o# was proved
in Lemma 1 (Subsec. 6). We shall establish the necessity of the
second condition in the hypothesis.

Suppose that off is compact but nevertheless there is an ¢, > 0
such that for any » || P5f" || > &, for some f* € o.

Taking arbitrary n,, we find a corresponding f* € o# such that
[l P7f™ |l > &,. On the basis of f* we choose a number n, > n,
such that || P f™ || << &,/2 (this is possible, since for any fixed
feH, || Pif||> 0 as k— o). Corresponding to n, we choose
fr2 € ol such that || Py f*2 || > €,, and on the basis of f"2 we choose
an ng such that || Py /"2 || << £¢/2, and so on. Thus, we obtain a se-

quence fre, £k =1, 2, ..., of elements of o# for which the inequa-
lities

1]

| P ™ =0, || Pay, £ 1 <e0/2

R+1

hold.
6—0594
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We show that this sequence cannot contain a fundamental sub-
sequence. Indeed, in view of (12) and the fact that || P;f || is mono-
tone with respect to n, we have for any £ > s

” f"k Iz__ ” P f”s) “2+ ”P;k (fnk—fns) ”2
> 2, (™ ~f"") =l Pyt ™ =1 Pyt 11
= (| P f ™ | — | P, " 1)2 > (80 —£0/2)2 = e2/4.

Corollary. Let o# be a set in the separable Hilbert space H.
Consider a family of sets e#/; = H, € > 0, having the following
property: for any f € o# an element f* = f'(¢) can be found in each
oM, € > 0, such that || /' — f || < e. If for some sequence &, — 0 as
k— oo, g, >0, all the sets oMy, are compact, then off is compact.

Consider an arbitrary e, of this sequence. Since aﬂek is compact,
we can find an n = n (g;) such that || Ppf || < &, for all f € e/lgh.
But then for any f€of, || Pifll=IPy(f—F)+ Py II<
SNP( =N+ NP I<Nf—F Il + en <28, if f 15 an
element of o/, such that ||/ — f || < €. Since &, — 0, by Theo-
rem 2 the set o/ is compact.

8. Weak Compactness. A set o/ in the Hilbert space H is called
weakly compact if from any (infinite) sequence of its elements one
can construct a subsequence that converges weakly to an element
of H (not necessarily belonging to o#).

Theorem 3. Any bounded subset of a Hilbert space is weakly com-
pact.

In fact, boundedness is not only sufficient but also necessary
for the set to be weakly compact; however, we shall not prove the
necessity and confine only to the proof of sufficiency in the case of
a separable Hilbert space.

Proof. Let ey, k =1, 2, , be an orthonormal basis for H and
o/ a bounded set in H: || f || C for all f € o#. Consider an arbitrary
sequence Ffok=1,2, .. of elements of o/. Since for all & [|f*|| <<

< C, the number sequence *, e), k=1, 2, ., s bounded
| (]“l e) </ lllleg Il <C; hence from the sequence k=
=1,2, ..., one can select a subsequence fl:k, k=1, 2,
such that the number sequence (f!'*, e) converges to some 01
(ft>*, €)—> o0, as k— oo. The number sequence (ft:*, e,) is also
bounded; this means that from the sequence f!:*, k =
a suhsequence f2r k=1, 2, ..., may be chosen such that (f2 " eg)
converges to a ¢, as k — oo, and SO on.

We shall show that the diagonal sequence f**, k =1, 2, .
is weakly convergent. First, let us note that for any s > 1 (f*'*, e,)—>
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— 0, as k — oo. Hence for any m > 1

m m

(", }_cre) o(fkhe)»Z]clzask—>oo

Since | (f* Z.oe)l 7] Z|01|2<C2 ZIG,]Z we have

m
D) |o: ]2 C? for any m>1. Consequently, Z |o; [2<C?. By Lem-
=1 =

ma 1, (Sec. 2.6) the series Z o;e; converges to an element

f € H and ”f”2=2|0i [2. It will be shown that the sequence
i=1

fh'h, k=1,2, ..., converges weakly to f.
Let g be any element of H. Taking an £€>0, we choose s=s(g)

such that 2, |gi[?<e?. By the generalized Parseval-Steklov
equality (equahty (9’) in Sec. 2.7), we obtain

Hf“—ﬁgH=L§«F”wa—ﬂﬂik§Zlﬁhﬁw%—mbwﬂ
—%Zl@ﬂmﬂk¢+2|mH&.(m

1=S
Furthermore,
00 0o

(3 Joilled®< X joil 3 lab<] e,

(2 1" e g l)2<, 2 [(7" " e |2 Z |g: < C2e2
i=s+1 i=s+1 i=s+1

By the definition of numbers o;, the first term in the right side of
(13) can also be made << & if k> k, (¢) for some k, (¢). Thus
L (r —f @) e+ e(C 4 NfID)for k> ko (e). I

9. Completely Contmuous Operators. Let H bea Hilbert space.
A linear operator A acting from H into H and defined on H is said
to be completely continuous if it maps a bounded set into a compact
set.

If A; and A, are completely continuous operators, then so is the
operator ¢;4; + c,4, with arbitrary constants c,, c,. If the operator
A is completely continuous and the operator B defined on H is bound-
ed, then the operators AB and BA are also completely continuous.

From Lemma 1 (Subsec. 6) it follows that a completely continuous
operator is bounded. However, not every bounded operator is com-
pletely continuous. For instance, the identity operator I acting

o*
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in an infinite-dimensional Hilbert space cannot be completely
continuous, for it maps a noncompact set—the orthonormal basis—
into itself.

A finite-dimensional bounded operator is completely continuous;
this fact is a consequence of Lemma 2 (Subsec. 6). The following
result is a direct generalization of this assertion.

Theorem 4. For a bounded linear operator A defined on a separable
Hilbert space H and acting from H into H to be completely continuous,
it is necessary and sufficient that for any ¢ > 0 it is possible to find an
integer n = n(g) and linear operators A, and A,, where A, is n-dimen-
sional and || A, || < €, such that

A = Al "‘l" Az. (14)

Thus completely continuous operators are those operators which
are “almost_finite-dimensional”.

Necessity.” In view of (11) (see Subsec. 7), for any f € H and any
n > 0 we have the representation

Af=P,Aj+PAf  (A=P,A+P;A). (15)

Since A is completely continuous, given an ¢ > 0 an n = n(¢) can
be found such that || P3A || < &. Indeed, by Theorem 2, || P,Af || =
=IFINNPAFNfIDI<<ellfll, because the boundedness of
{f/I| f1I} implies the compactness of {A (f/IIfl)}. Since P,A is
n-dimensional, the necessity is established.

Sufﬁctency Let , k =1, 2, , be an arbitrary bounded se-
quencein H, || f*| < C, k = 1 2 .. We shall demonstrate
that fundamental subsequence can be extracted from the sequence
Aff, k=1, 2, .... Choosing an ¢ >0 from the set {1, 1/2,

1/i, ...}, for ¢ = 1/i we can find n; = n (1/i) and operators

A’ and A} such that A = A} 4 A}, where A' is n;-dimensional and
|IA2 | </i. Then | Aj II— IIA — A} |I< AN+ 11431 <
< ||4 ]|+ 1. The set A}fk =1, 2, ..., is bounded in the

nl-d1men51onal space, therefore (Lemma 2, Subsec. 6) from it a
fundamental subsequence Aift:k k=1, 2, ..., can be chosen. The
sequence fL.k k=1,2, ..., has the property: [| A3tk || <
< 1Ayl R <1 C. The sequence ALk k=1, 2, ..., is
a bounded sequence of the n,-dimensional space therefore there is
a corresponding fundamental subsequence A%f2.* k =1, 2,

This subsequence satisfies the inequality || 42f2:* || << < | A2 || f2 B ||<

< % -C, and so on.
The diagonal sequence jf41, f%2, ... has the following obvious

properties: the sequence A'f" k. k=1,2, ... is fundamental
for any i, because for & > i ]’h k are elements of the sequence fi-*,
k=1, 2, .. Further, [|A1f‘l k|| << Cli for all i. Let us show

that the sequence Afrok k=1, 2, ..., is fundamental. Take an
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e > 0 and fix i > 1/e. Since 4if**, k=1, 2, ..., is a fundamen-
tal sequence, for sufficiently large %k, s we have ’

47" — Af <AL ("= 1) ) Az (=1
<e+ || 4 f" Bl 41 A5 || e +2C/i << (14 2C) e.
as required. [

Theorem 4 yields, in particular, the following result.

Suppose that the linear operator A acting from a separable Hilbert
space H into H and defined on the whole H is completely continuous.
Then its adjoint A* is also completely continuous.

Indeed, the representation (14) generates the representation 4* =
= A% + A%, where || AF || = || 4, || < &. Accordingly, the above
assertion will have been established if it is shown that 4% is a finite-
dimensional operator.

Let R4, be an n-dimensional subspace of H and ey, ..., e, an
n

orthonormal basis for it. Then for any f€ H A,f =D (4f, e;) e;=
=1

IIM:

(f Afe;) e;. Consequently, for any f, g€II we have

(Aif, g)= 21 (f, Ate:)) gi=(f, Z1 g:iAte;),
1= 1=
that is,

(f, 41e) = (Adf, &) (, 2. gidtes).

77.

Hence for all g€ H Afg= > /_, gi;Afe;. This means that RA? is a
=1

subspace spanned by the elements Afey, ..., Afe,, that is, A} is
finite-dimensional.

§ 4. LINEAR EQUATIONS IN A HILBERT SPACE

The results of this section are true for any Banach space; nonethe-
less, we shall confine our discussion only to a separable Hilbert
space H.

1. Contracting Linear Operator. A linear operator 4 acting from H
into H and defined on H is called a contraction if || A || << 1.

Lemma 1. If A is a contraction from H into H, then there is an
operator (I — A)~?! from H into H which is defined on H, and

— A)? -
I — <
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To prove this, we consider the equation
I —A)f=¢ (€))
and show that for any g € H it has a unique solution given by the

series f = D) A*g (A° = I) which converges in H.
r=0

The last series converges, because H is complete and the partial
m

sums g, =k2-0A"g constitute a fundamental sequence: for, p > m

lgr—gnll =l A%+ ... + 4™ || < 4%+ . .. +]| 4™"g]|

<llgll QA+ .. =l gl 4= >0 as m, p—>oo.

The element f€ H is a solution of (1), since (I — A)f =

=@ +Ag+..)—(Ag+ A%+ ..)=¢g

This solution is unique. In fact, assume that there are two solu-
tions f, and f, of Eq. (1). Then the element f = f;, — f, is the solu-
tion of the homogeneous equation f = Af; accordingly, it satisfies
W/ =1AfI< A Ilf]. Hence f = o, that is f; = f,. ‘

Thus the operator (I — A)™! exists, is defined on the whole H,
is bounded, because for all g€ H |[(I A g\l =g+ Ag+ .

AT <l A A ”’;’—l'g,,andnu A<

1
<t=ay- H

Remark. Under the hypothesis of Lemma 1 the bounded opera-
tor (I — A*)"! also exists, since | A4*| = |4 ]| <1, and
(I — A*)t = [(I — A)1}*.

To prove this relation, we take arbitrary f', g’ € H and construct
(Lemma 1) correspondmg f, g€ H such that (I — A)f=7f,
I —A*)g=

Since f = (I — A)'f and g= (I — A*)"1g’, the relation
(I —A)f, g = (f, (I — A*) g) can be written as (f ,(/—A*)-1g")=
= (I — A)7Yf', g’), whence the desired relation follows.

2. Equation with a Completely Continuous Operator. We consider
Eq. (1) without the assumption that the norm of 4 is small. Instead
we assume that A is completely continuous.

By Theorem 4, Sec. 3.9, (1) can be written as (I — A4,) f — A,f =
= g, where 4, is an n-dimensional operator and || 4, || < e < 1.
Put » = (I — 4,) f. By Lemma 1, the operator I/ —{A4, has a bound-
ed inverse (I — A,)"! defined on H;

(I—Ay)f=h, f=U—A4y)"h 2)
Eq. (1) for 2 can be expressed in the form
h— Ay (I — Ay =g (3)
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Let A* be adjoint of A. The equation
(I — A%) f* = g* (1%)
is referred to as adjoint of Eq. (1). The relation A = 4, 4+ 4,
implies A* = Af 4 A}. In view of the Remark to Lemma 1, the
operator (I — A}) has a bounded inverse (I — A3)™? = [(I—A4,)']*
defined on H,
(I — A3)7'g* = z*, g¥ = (I — Aj) z*. (2%)
Eq. (1*) can be written in the form
(I — A3) f* — Alf* = g*.

Applying to it the operator (I — A3)™!, we obtain the equivalent
equation

f* = — Ay)7'* AYf* = 2%, (3%)

where the operator [(/ — A4,)"'1*A} is adjoint of the operator
A(I — Ay)™ (in Eq. (3)).

The operator A,(I — A,)~' 1is clearly n-dimensional, therefore,
its matrix representation (a;;) in the corresponding orthonormal
basis ey, k =1, 2, ... (the subspace spanned by the elements
€, €3, ..., e, coincides with R 4 r_4,-1, satisfies the property that
a;; =0 for i>1, j>n-+ 1 (see Sec. 3.4), and formula (5) of
Sec. 3.4 yields, for any j,

;1 [aii P<|| A1 (I —Ag)™ |2

By formula (7), Sec. 3.4, Eq. (3) can be expressed in the form
Dhie;— N hia;jej = X g;e; which, in view of the linear inde-
j i J
pendence of the system ¢, e,, . . ., is equivalent to a system of algeb-
raic equations for the Fourier coefficients h,, . . ., Ay, ... of the
desired element A:

hi_izi aijhizgjy i<n; hj=gj, j>n.

Since the coefficients %; are known when j > n:
hy = g, i>n, (4)
the last system reduces to the system of algebraic equations

n

hl—z aiihi=g1+_z+iaiigi’ j=11 e Iy (5)

i=1 i=n

for hj, j<n.
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Similarly, Eq. (3*) can be replaced by an equivalent algebraic
system of equations for determining Fourier coefficients f5, j =
=1, 2, ..., of the element f* in terms of the Fourier coefficients
z5, j=1, 2, ..., of the element z* = (I — 4})~! g*. For f},
j << n, we obtain the linear algebraic system

n

f1— 21 ajiff =z}, i=1,...,n, (5*)

i=
while f3, j > n, are determined uniquely in terms of ff, j < n, by
the formulas

=g+t i>n (4)

3. Fredholm’s First Theorem. The matrices of systems (5) and
(5*) are Hermitian conjugate, therefore moduli of their determi-
nants are equal. Hence if one of these systems is solvable with any
free term, that is, the corresponding determinant does not vanish,
then the same property is possessed by the second of these systems,
and the solutions of these systems are determined uniquely. In
particular, the corresponding homogeneous systems have only
trivial solutions. Or if one of the homogeneous systems (5) or (5%)
has only a trivial solution (accordingly, the corresponding determi-
nant does not vanish), then so has the other, and the systems (5)
and (5*) are solvable (uniquely) with any free term.

Egs. (1) and (1*) also have the same property.

In fact, assume that Eq. (1) (or Eq. (1*)) is solvable with any g
(or g*) of H; or, in view of (2) (or (2*)) what amounts to the same
thing, Eq. (3) (or (3*)) is solvable with any g (or z*) of H. In particu-
lar, it has a solution for any g (or z*) of the subspace spanned by the
elements e;, . . ., e,. Consequently, the system of Egs. (5) (or (5*))
is solvable with any right-hand side. That is, the determinant of the
system does not vanish, and the homogeneous systems (5) and (5%)
have only trivial solutions. Then, in view of (4) and (4*), the homo-
geneous equations (1) and (1*) have only trivial solutions.

Conversely, suppose that one of the homogeneous equations (1)
or (1*) has only a trivial solution. Then the corresponding homoge-
neous system (9) or (5*) has only a trivial solution. Consequently,
the determinants of both the systems do not vanish. That is, the
nonhomogeneous systems (5) and (5*) have (unique) solutions for
any free term. Then, in view of (4) and (4*), Eqs. (1) and (1*) are
(uniquely) solvable with any free term belonging to H. This implies
that the inverse operators (I — A)~! and (/ — A*)~! exist and are
defined on H.

Let us show that these operators are bounded.
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Suppose that the system (5) is uniquely solvable (the determinant
of matrix in (5) is nonvanishing) and that (%, . . ., k) is its solu-
tion. From Cramer's rule it follows that there exists a constant
C > 0, independent of the free term in (5), such that

2 |y [2LC? }_1 I€j+‘ 2 aigi lz- (6)
=1 =1 i=n+1

Since

n oo . n 00 o
2le+ 2 anelP<2 X (g P+ 2 a2 |&l?)
=1 i=n+1 =1 i=n+1 i=n+1

<lglP@+2n|l Ay (I — A ) =CP g |1

we have

[h; P<(CCH2 g |IP

n
i=1
and

oo

Iale= 3 ImE+ 2 < +0Ch lgl=Cilgl

Consequently, in view of (2)
MFN<Csllgll (7)

where the constant C3 > 0 does not depend on g. This in turn means
that the operator (/ — A4)-! and, hence also, the operator (I — A*)-!
are bounded: || (/ — A) ' = ||(I — A% || < C,.

Thus we have established the following assertion.

Theorem 1 (Fredholm’s First Theorem). Let A be a completely
continuous linear operator from H into H which is defined on H. If one
of the Egs. (1) or (1*) has a solution for any free term, then the other
also has a solution for any free term, and these solutions are unique,
that is, the homogeneous equations (1) (g = o) and (1*) (g* = o) have
only trivial solutions.

If one of the homogeneous equations (1) (g = o) or (1*) (g* = o)
has only a trivial solution, then so has the other equation. Egs. (1) and
(1*) are uniquely solvable with any free terms, that is, the operators
(I — A) 1t and (I — A*)™' exist and are defined on H, and these
operators are bounded.

4. Fredholm’s Second Theorem. Note that the ranks of matrices
B = |l b |, where b;; =08;;—ay, i,j=1,..,n 8;;=0
when i == j, §;; = 1), and B* = || b;; || in the systems (5) and (5%)
are the same. Therefore the homogeneous systems (5) and (5*) have
always the same number £ < n of linearly independent solutions.
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Then, by (2), (4) and (4*), the sets of all solutions of homogeneous
equations (1) and (1*) also contain exactly % linearly independent
elements.

Thus we have the following result.

Theorem 2 (Fredholm’s Second Theorem). If the homogeneous
equation (1) (A is a completely continuous operator from H into H and
defined on H) has nontrivial solutions, then only a finite number of
them are linearly independent. The homogeneous equation (1%*) has also
the same number of linearly independent solutions.

5. Fredholm’s Third Theorem. We now examine the question of
solvability of Eq. (1) when the homogeneous equation (1) may have
nontrivial solutions. By Fredholm’s Second Theorem, the homoge-
neous equation (1) has only a finite number of linearly independent

solutions: 7%, ..., f*. The same number of linearly independent
solutions has also the homogeneous equation (1%): ft*, ..., f&*.
"The system f!, .. .,f* (as also the system f!*, ..., f**) can be

assumed to be orthonormal.

Theorem 3 (Fredholm’s Third Theorem.) For Eg. (1) with a com-
pletely continuous operator A from H into H and defined on H to have
a solution, it is necessary and sufficient that the element g be orthogonal
to all the solutions of the homogeneous equation (1*).

Among all the solutions of Eq. (1) there is a unique solution f that
is orthogonal to all the solutions of the homogeneous equation (1).
Any other solution of Eq. (1) is expressed as a sum of this solution and
some solution of the homogeneous equation (1). Solution f satisfies the
inequality (7) in which the constant does not depend on g.

Proof. Suppose that the] solution of Eq. (1) exists, then, by (2),
Eq. (3) as well as the system (5) also}have solutions.

Let the rank of the matrix B = || b;; ||, where b;; = 6;; — a;j,
i,7 =1, ..., n,ben — k. Then the subspace R, _; of the n-dimen-
sional vector space spanned by the vectors B; = (b1, . . -, bin),
i=1, ..., n, forming columns of B, is of dimension » — k. Since

n
the homogeneous system (5*): 2 Ejif;’k =0,j=1, ..., n, can be
i=1

written in the form (f;, B)=0,i=1, ..., n, it follows that
the solutions of the homogeneous system (5*) constitute a k-dimen-
sional subspace, denoted by R;_., orthogonal to the subspace
R, ;.
By the Kronecker-Kapelli theorem, for the system (5) to have
a solution it is necessary and sufficient that the ranks of B and the
augmented matrix obtained by adjoining to B the column consisting
of free terms of (5) coincide, that is, the vector constituted by free
terms should belong to the space R, _; or, what is the same, should

be orthogonal to Ri_.
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Noting that any solution f* of the homogeneous equation (1*)
is of the form

f.=.ﬁei+ +fnen+f:+ien+1+-- ’
where the vector f* = (ff, . . ., fz) is the solution of the homoge-

neous system (5*) and ff = ) a;ff when j > n, and expressing
i=1

the condition of orthogonality of vectors f* and the right side of

(5) as follows

0=]§ (gf+i=;' a;;8:) 1} —12 g+ Z glfi = (g, *),

i=n+4

we find that if the solution of the nonhomogeneous equation (1)
exists, then the element g must be orthogonal to all the solutions of
the homogeneous equation (1%*).

Conversely, if the element g is orthogonal to all the solutions f*
of the homogeneous equation (1*), then the vector with components
g+ > aug,, j=1, ..., n, is orthogonal to all the solutions

i=n+1
f* of the homogeneous system (5*). Consequently, system (5) and
together with it Eq. (1) have solutions.

Let f, be a solution of the nonhomogeneous equation (1) and
1, , f*be an orthonormal system of solutions of the homogeneous
equatlon (1). Then the element f = fo — (o, Mt — —
— (fo, ) f* is also a solution of Eq. (1), and it is orthogonal to all
the solutions of the homogeneous equation (1). Such a solution is
unique: for if there were one more such solution f, then their differ-
ence] f — 7, being a solution of the homogeneous equation (1),
would be orthogonal to all the solutions of the homogeneous equa-
tion (1) including itself, that is, f — f = o.

If f is any solution of the nonhomogeneous equation (1), then
f' — f = f" is a solution of the homogeneous equation (1), that is,
f’ p— f + f”'

We shall now establish inequality (7). Suppose that & is an ele-
ment of H corresponding, according to (2), to the element f. This
means that & is a solution of Eq. (3) which satisfies k equations:

0=(f, fy = (I — A7, ) = (h, I — AD7'f),
i=1, ..., k (8)
Since the augmented matrix of system (5) has the same rank n — k

as the matrix B, some of k equations in the system (5) are linear
combinations of the remaining n — k equations. Therefore if we de-
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lete these k& equations, the resulting system will be equivalent to the
system (9).

Thus n-dimensional vector (hy, ..., h,) is a solution of the
linear system of n equations (r — k& equations of (5) and k equa-
tions of (8)) whose coefficients do not depend on the right-hand side
of (5). Moreover, since the element f is unique, it follows that
(Ry, - - ., hy) is a unique solution of this system, that is, the deter-
minant of the resulting system is not zero. Then the vector
(”y, . . -, hy) can be obtained by Cramer’s rule. Therefore inequal-

ity (6) holds for it, which readily yields the desired inequality (7). [}
6. Eigenvalues and Eigenelements of a Completely Continuous
Operator. A quantity A is called an eigenvalue of a linear operator A
acting from H into H if there is an element f € H such that f =% o
and Af = MAf; the element f is termed eigenelement of the operator A.
The quantity p = 1/A, A== 0, is called the characteristic value.
Since together with f the element c¢f for any constant ¢ == 0 is also
an eigenelement corresponding to the eigenvalue A, the eigenelements
can be assumed normalized by, for instance, the condition, || f || = 1.
The maximum number of linearly independent eigenelements
corresponding to the given characteristic value (eigenvalue) is
called the multiplicity of this characteristic value of the eigenvalue.
If there is an infinite number of linearly independent eigenelements
corresponding to a characteristic value (eigenvalue), the multiplic-
ity of the characteristic value (of the eigenvalue) is infinite.
Suppose that the operator 4 defined on the whole H is completely
continuous. Then the operator pA4, where p is a complex number,
is also completely continuous. The following assertions are a con-
sequence of Theorems 1, 2 and 3.
For the equation

f—pAf =g (1

to have a solution for all g € H, it is necessary and sufficient that p
should not be a characteristic value of A (that is, 1/u should not be an
eigenvalue). If p is a characteristic value, then it is of finite multiplicity
and w is characteristic value of the operator A* with the same multiplic-
ity. In order that Eq. (1') may be solvable in this case, it is necessary
and sufficient that the element g be orthogonal to all the eigenelements

of A* that correspond to the eigenvalue 1/p. In this case the solution
of Eq. (1") is unique, and this solution is orthogonal to all the eigen-
elements of A corresponding to the eigenvalue 1/p.

These are precisely the assertions that are usually referred to as
Fredholm’s Theorems. ,

7. Fredholm’s Fourth Theorem. We shall establish some prop-
erties of characteristic values of a completely continuous operator.



LEBESGUE INTEGRAL. QUESTIONS OF FUNCTIONAL ANALYSIS 93

Theorem 4 (Fredholm's Fourth Theorem). For any M > 0 the
disc {| p | << M} of the complex plane can contain only a finite number
of characteristic values of a completely continuous operator acting
from H into H with domain of definition H or, equivalently, only a
finite number of eigenvalues can lie outside the disc {| A | << 1/M}.

Proof. Assume the contrary, that is, let the disc {|p | << M}

contain an infinite number of characteristic values p;, . . ., Ppy - v oy
W; 5= U;, i = j. Let e; be some eigenelement corresponding to the
characteristic value p;, i =1, 2, .

We shall demonstrate that for any n>=1 the system ey, ..., e,
is linearly independent. When n=1, this assertion is trivial.
Let it be also true for n—1 elements. Assume that ey, ..., e,
are linearly dependent. Then e,=cie;+ ... +cp-€,-y for some

constants ¢y, ..., Cp—y, not all zero. But Aen:ﬁlzc,i‘——}— ce
n
_ Mn _ bn
; accordingly, ¢, ( 1 s ) e+ ... +epy (1 p——n_l) X
X en_,—o, whlch is impossible, since 1—Hn ;EO k=1, ..., n—1.

Let M, be the subspace spanned by the elements e, ..., €,.
From what has been shown above, it follows that R, < N, = ..
..CcRy=...and R, £~ Sﬁ‘n_l for any n. Therefore, for any n
an element f, € N, can be found such that f, | N, 4, || fn ]l = 1.
Since the set f;, fa, - .., fn, - .. is bounded and the operator A
is completely continuous, a fundamental subsequence can be chosen
from the set Afy, ..., Af,, .. ..

We shall demonstrate that this, in fact, cannot be done, which
will be the contradiction required for the proof of the theorem.

For arbitrary integers m, n, m<n, Af, — Afm =%fn_|_
n

o (MnA.fn fa) — Afm=— .fn +0,, where 0,€MN,, Dbecause
Afm E Rm =R, and pnAf,, —fa=Wnd (cies+ ... Fcpen)—(crey +

- Fcnen) =c4 (—1—1)€1+ « T Cnt ( bn 1) n-1 € Nyy. There-
1
fore ” Afp— Afm ” :”F;fn‘f"on /W” fn ” =m>1—”‘ , that
is, the sequence Af,, Afs, ..., Af,, ... cannot contain a funda-
mental subsequence.

Theorem 4 implies that the set of characteristic values of a completely
continuous operator is at most countable (it may even be empty!). The
characteristic values, if they exist, can be arranged in the order of non-
decreasing moduli

p’l’ p‘?’ AR ] (9)

P < | Mg )y i =1, 2, ...; moreover, every characteristic value
in the sequence (9) is counted as many times as its multiplicity. The
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set (9) may contain a finite number of elements (in particular, it
may be empty) or infinitely-many elements. In the latter case

| pp | > 00 as k — oo. (10)

With the sequence (9) is associated the sequence of corresponding eigen-
elements

€1, €50 -« s (11)

which is linearly independent.

It will be proved in the following section that for a selfadjoint
completely continuous operator A 5= O the sets (9) and (11) are
nonempty.

§ 5. SELFADJOINT COMPLETELY CONTINUOUS
OPERATORS

1. Eigenvalues and Eigenelements of a Selfadjoint Completely
Continuous Operator. Let A be a bounded selfadjoint linear opera-
tor from H into H. Since for all f, ||f|l=1, |Af, ) |14,
it follows that on the unit sphere || f || = 1 there exist exact upper
and lower bounds of the quadratic form (4f, f) associated with the
operator A: m = inf (Af, ), M = sup (4f, f); furthermore,

=1 II—
Im | <A, M<|Al, m (Af,f)
If f is an arbitrary nonzero element of H then the element
(41. 1)

Izr

/|l f]| belongs to the unit sphere; consequently, m = inf 7T
feH

M= su g(ﬁi;”?’ and hence the inequalities m||f|2<{(4f, /)<
€
<M | f|]?* hold for all f¢ H.

Since the quadratic form of operator A is real-valued, all its
eigenvalues (characteristic values) are real: if A is an eigenvalue and f
the corresponding eigenelement, that is, Af = Af, then A =
= (Af, N/|| f |I2. Therefore, m < A < M.

The eigenelements f; and f, of operator A corresponding to different
eigenvalues A, and A, are orthogonal. In fact, scalar multiplication
of the relations Af, = A f, and Af, = A.f, by f, and f,, respectively,
and subsequent subtraction yield (Afy, fo) — (f1, 4f,) =
= (A — Ay) (fy, f2)- This implies (fy, f,) = 0, since (4fy, f,) =
= (f1, Af,) and Ay 5= A,y

Lemma 1. For the number M = sup (4f, f) to be an eigenva-
Wili=1
lue and f, the corresponding eigenelement (it is assumed that || f, || = 1)

of a selfadjoint bounded operator A from H into H, it is necessary and
sufficient that (Afy, fo)) = M
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Similarly, for the number m = inf (Af, f) to be an eigenvalue
nin=1
and f, the corresponding eigenelement (it is assumed that || f, || = 1)

of the operator A, it is necessary and sufficient that (Af,, fo) = m.

Proof. If M is an eigenvalue and f, any corresponding eigenele-
ment of the operator A, then Af, = Mf,. Therefore (Af,, f,) =
= M (fo, fo) = M, which proves the necessity part of the lemma.

To prove the sufficiency, let (4f,, f,) = M for some f,, || fo |l = 1,
or, equivalently, (Mf, — Af,, fo) = 0. Since for all f in H 0 <
< MIIfIR— (Af, H = (Mf — Af, f), it follows that for an arbit-
rary ¢ in H and any complex ¢t (M (f, + t¢) — A (fo + t@), fo +
+t9) >0, that is, t(Mfo — Afy, @) + t(Mfy — Afo, @) +
+ |t 2P (Me — Ag, ¢) > 0. Putting in this inequality ¢ = —agei®,
where o = arg (Mf, — Afo, ¢) and o is real, we obtain the 1nequa11—
ty —20 | (Mfy, — Afy, @) | + 02 (Mo — Ag, ¢) > 0, true for all
real o. This inequality implies (Mf, — Af,, @) = 0, and, since ¢ is
arbitrary, Mf, — Af, = 0.

The second part of the lemma follows from the first part if instead

of A one considers the operator —4. [
Lemma 2. If the operator A acting from H into H is selfadjoint and
completely continuous, then the quantity M = sup (Af, f) (similarly,
17n=1
the quantity m = inf (Af, f)), if different from zero, is an eigenvalue
Ifi=1

of this operator.

Proof. Suppose M 5= 0. We consider the Hermitian bilinear from
(Mf — Af, g), f, g € H, and the corresponding quadratic form (Mf —
— Af, f). For all fin H (Mf — Af, fs) > 0.

We shall demonstrate that there is a nonzero element f, such that
(Mfy — Afo, fo) = 0. Then Lemma 2 will follow from Lemma 1.

Assume that no such f, exists. Then (Mf — Af, f), f € H, can van-
ish only when f = 0. Therefore the bilinear form (Mf — Af, g)
can be taken as a new scalar product in H. This means that for any
/., £ in H Bunyakovskii's inequality

(Mf — Af, g) P < (Mf — Af, ) (Mg — Ag, 8) 1
holds.

From the definition of M as the exact upper bound of the quadra-
tic form (4f, f) on the unit sphere || f || = 1 it follows that there is a
sequence f;, fo, ..., |fill=1, i=1, 2,... for which
(Afny fr) > M or

(]Vlfn - Afny fn) - 01 n —- oo.

Putting in (1) f = fn, § = Mf, — Af,, we obtain || Mf, — Af, |I* <
< (an - Afnv fn) (M2fn - 2MAfn + Azfna an - Afn) <
< (Mfp, — Afn, f) (| M | 4 || A |])® Therefore, in view of (2), it
follows that the sequence Mf, — Af, > 0 as n — oo. Since the ope-
rator 4 is completely continuous and the sequence f;, f,, . .
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(Il f; I = 1) is bounded, the sequence Af,, 4f,, ... is compact.
This means that a convergent subsequence can be chosen from it;
we assume that it coincides with Af;, Af,, . . .. Then the sequence
Mf,, Mf,, ..., and together with it (M 5= 0) also the sequence
fis fay - - -, converges. If the limit of the sequence f,, f,, ... is
denoted by f, then, evidently, || f, |l =1, and by (2) (Mf, —
—Afofo) = 0.1

Theorem 1. For every nonzero selfadjoint completely continuous oper-
ator A from H into H (H is a Hilbert space) one of the quantities
+1/||A || = £1/ sup | (A4f, /)| is the first (smallest in absolute

1=t

value) characteristic value p,, and p, = 1/M if M > | m |, where

M = sup Aaf, H, m= inf Af, )y, pu=1m if M<|m|.
= =1

If M = | m |, then both the quantities 1/m and 1/M are characteristic

values, smallest in absolute values, of the operator A.

All the elements f, for which (Afo, f)ll fo P = M when M >
> |m | or (Afo, fo)/ll fo IP = m when M <<|m |, and only they,
are eigenelements corresponding) to p,. If M= | m |, then eigenele-
ments corresponding to the characteristic value 1/M are only those f,
for which (Afy, fo)/ll fo IIP = M, while eigenelements corresponding to
the characteristic value 1/m are only those f, for which (Af,, fo)/ || fo P =
= m.

In particular, if the operator A is nonnegative, then

By= ! ! = inf = inf [Pl
YA i A D T =t (Af, N~ jem (4f D

and the; eigenelements correspondmg to Wy, normalized by the condition
| f Il = 1, are only those elements f,, || fo || = 1, where the quadratic
form (Af, f) attains its upper bound on the unit sphere

Proof. To establish Theorem 1, it suffices, in view of Lemmas 1
and 2, to demonstrate that || 4| = N, where N = sup ] 4af, N1 =

=max (| m |, M). As shown above, N < || A4]], so that it remains
only to establish the reverse inequality I| A< N.

Since for any g € H |(4g, g) | < N |l g II* and since (4 (f, = ),
fr = f2) = (4f1, fi) + (Afs, f2) & 2Re (4f,, f,), we have for any

1 sz

| Re (Af1, f2) | = | (A (Fy+F)s Ts+To)— (A (Fi— o), fi—1)|

ST (AHF) b+ I+ AE—T2), fi—1))
<X v+ Fa P41 = FalP) =l<u FulE+ 1 £ 1)

Putting in this inequality f1=VNf, fa=

Af, where f is an

l/_
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arbitrary element of H, we have || Af [P<3- (N[ f[2+ ]| 47 [2),

whence it follows that || Af||<N||f|- Accordingly, |A||<N. B
Thus the sets

Mlv M21 LS | (3)
€1, €gy - . - (4)

of characteristic values and corresponding eigenelements of a self-
adjoint completely continuous operator 4 = O are not empty. In
this case all the characteristic values are real and the system of eigen-
elements can be assumed to be orthonormal, since eigenelements
corresponding to different characteristic values are orthogonal and
the finite number of linearly independent eigenelements corresponding
to a given characteristic value can be orthonormalized.

Let A be a completely continuous selfadjoint operator acting from
H into H. By H,, we denote the subspace of H consisting of elements
[ that are orthogonal to the first n eigenelements of the operator A4:
(f, &) =0,i=1, n.

For any f 1n H,,, ‘the element Af is also in H,, since (4f, ¢;) =

= (f, Ae)——(f, e;) =0 for all i =1, ..., n. This means that

the operator A can be regarded as an operator acting from the Hil-
bert space H, into H,. And it is, of course, selfadjoint and completely
continuous. Its characteristic values and the corresponding eigen-
elements coincide with the characteristic values pn+, pntg, - - . and
the corresponding eigenelements e,iq, €p+s, . . . of the operator A
acting from H into H. Therefore Theorem 1, applied to the operator
A from H, into H,, yields

1 1

[Wnts|= A A *
"s,!hlpil( LNl (}I?l‘llzto | (4f, N

If the operator A is nonnegative, then

_ 1 - I7ye
Bt = sip—aF, D~ DLy AL ®)
=1 it L

¢, ei)“ sesey

i=1l,..0, 7

2. Fourier Expansion with Respect to Eigenelements of a Self-
adjoint Completely Continuous Operator. Consider the orthonormal
system (4) which consists of the eigenelements of a selfadjoint com-
pletely continuous operator A from H into H, 4 s O. Let P, be
the operator of orthogonal projection onto the subspace spanned by
the elements e;, ..., e,, and let the operator 4, = A — AP, =
=AU — P,).

7-—-0594
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The operator A4, is linear and bounded: || 4, || << || 4 |l
The operator P, commutes with the operator 4, because for any

feEH
Apnf_A(fiei+ +fnen)=ftAei+---+anen

et +—en (1) est ot (£ 32 Jen
=(f, Aei)e1+--.+(f,Aen)en (Af,es) es+ ... +(4f, e,) en=PrAf.

Since the operators A and P, commute and are selfadjoint, the oper-
ator AP, is selfadjoint: (AP,)* = PrA* = P,A = AP,. Accord-
ingly, the operator 4, is also selfadjoint.
Furthermore, the operator 4, as the sum of two completely con-
tinuous operators, the operator 4 and the finite-dimensional operator
. = PhA, is completely continuous.
For any f€e H

A,f=Af— 2 U eh (6)

The quantities p,4q, . .. and the elements e,y,, . .. are char-
acteristic values and corresponding eigenelements of the operator
A,. Indeed, since (ep, eh) =0, k£ 5= p, using (6) we have 4,e, =

n
=Aep—2,(ﬂ’lfﬂeh =2 for p>n + 1.
=1 br
The operator 4, has no other characteristic values. Assume, on

the contrary, that p and e are the characteristic value and eigenele-
ment, pdpe = e, p 5= pPp, p > n + 1. Scalar multiplication of the
last equality by ey, £ << n, yields (e, ex) = pu(dne, ex) = p (e,
A,e;) =0, since Ape, = o when k <C n. Therefore, noting (6),
Ape = Ae, that is, pAe = e. Thus p is the characteristic value and e
is the eigenelement of the operator A. But all the characteristic
values of 4 are contained in sequence (3) and since elep, k =
=1, ..., nit follows that p coincides with one of py, £k > n + 1.
Since pnp+; is characteristic value, smallest in absolute value, of
the operator 4,, Theorem 1 yields
1
lp’n+i l - II An " . (7)
If the sequences (3) and (4) are finite and contain m elements, then,
according to Theorem 1, 4,, = O, since it has no characteristic val-
ues. In this case A = AP,, is a finite-dimensional operator, that is,

for any f € H
Af = 2 i € = Z (A)k €n- (8)

k=1
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When the sequences (3) and (4) are infinite, (7) and relation (10)
of the preceding section imply that || 4, || > 0 as n — oo. This
means that forany f € H |[A.fII<<||4. I If]l—>0 as n — oo, that
is, for any f€H

Af=lim AP,f= 3, Moo= 3} (4pses. )
nbeo R=1 h=1
We have thus established the following important theorem.
Theorem 2 (Hilbert-Schmidt). If A is the selfadjoint completely
continuous operator from H into H and f is an arbitrary element of H,
then the element Af has Fourier expansion (9) (or (8)) with respect to
the system (4).
In our later discussions we shall require some corollaries of the
Hilbert-Schmidt theorem.

oo

According to Lemma 2, Sec. 2.6, the Fourier series | fyey of
E=1
any element f€H with respect to the orthonormal system (4)

converges in H; consequently, 4 Z fuen = Z fade,. But fyde, =
=fy W = (f, dey) ey = (Af, ey) ex, = (Af)p €x- Therefore by (9) we have

A(f— 2 faen) =o0. (10)
If the operator A has an inverse 4 -1, then (10) yields
= 2 fren
k=11

for any element f € H. This means that in this case the system (4) is
an orthonormal basis for the space H. Thus we have proved the
following result.

Corollary 1. If the selfadjoint completely continuous operator A
from H into H has an inverse, then the system (4) is an orthonormal
basis for the space H.

In the general case, from (10) we can only conclude that for any
element f € H there exists an element e, € H, Ae, = 0, such that

f=e°+k§1 Trex- (11)

The set M| containing the elements g € H for which Ag =0 is a
subspace of H; any nonzero element of R is an eigenelement of the
operator A corresponding to the zero eigenvalue. If the space H is
assumed separable, a countable orthonormal basis e, e;, ... (con-

7*
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sisting of eigenelements of the operator 4 corresponding to the zero
eigenvalue) can be constructed in R. Then, by (11), for any f € H
we have the expansion

f= 2 fieh—+ D fuens
where f; = (f, ex).

Thus we have proved

Corollary 2. For any selfadjoint completely continuous operator A
from the separable (Hilbert) space H into H there exists an orthonormal
basis for H whose elements are the eigenelements of the operator A.



CHAPTER III

FUNCTION SPACES

In the preceding chapter we introduced the notions of Banach and
Hilbert spaces. These notions were based only on the relationships
between elements: it was enough to introduce the operations of
addition of elements and multiplication by numbers, norm or cor-
responding scalar product that satisfy some definite axioms. The
nature of elements of these spaces was not at all important, and the
general results obtained in the last chapter are applicable to all the
spaces irrespective of the elements they are composed of. However,
for the theory of differential equations these general properties are
far from sufficient. In the investigation of partial differential equa-
tions it is natural to consider function spaces, that is, spaces whose
elements are, for our purposes, functions of »n real variables. In the
present chapter we shall introduce some function spaces and obtain
assertions regarding mutual Yelationships between them that enable
us to conclude from some properties of their elements various other
properties.

§ 1. SPACES OF CONTINUOUS AND CONTINUOUSLY
DIFFERENTIABLE FUNCTIONS

1. Normed Spaces C(Q) and C*(Q). We consider the set C (Q)

of all the functions that are continuous in Q (Q is a bounded region
in the space R,). Let us first note that this set is a linear space. It
can be directly verified that the functional max | f () | defined on
*€Q
C(Q) satisfies all the axioms for being a norm (see Sec. 2.2.,
Chap. II): max | ¢f | =|c|max |f | |fi(2) + /(@) |I<|fH @)+
=€Q 2€Q
+ | fo(x) | for all z€Q, therefore max| f; (z) + fa (2) | <

x€Q



102 PARTIAL DIFFERENTIAL EQUATIONS

< max | f; (2) | + max | f, (z); max |f(2) | > 0 and max | f(2)| =
=€Q x€Q x€Q *€Q
=0 only when f(z) = 0. Thus in C(Q) we may introduce the norm

1 Flloy = T:? [f ()] 1)

The convergence in norm (1) coincides with uniform convergence in Q.
The space C(Q) with norm (1) is Banach space, because, by the

Cauchy criterion, any sequence of functions in C (Q) that is funda-
mental in norm (1) converges uniformly to a function belonging

to C(Q). _
Since, by Weirstrass’s theorem, every function continuous in Q
is the limit of a sequence of polynomials that converges uniformly

in Q (that is, in the norm (1)), the set of all the polynomials is every-

where dense in C(Q). But, in turn, an arbitrary polynomial can be
expressed as the limit of the sequence of polynomials with rational

coefficients that converges uniformly in Q. Therefore the countable
set of all polynomials with rational coefficients is also everywhere

dense in C(Q). This means that the space C(Q) is separable.
We consider in C(Q) the set C(Q) contamlng all the functions that

vanish on the boundary 4Q of Q. Clearly, C(Q) is a linear manifold
in C (Q). This manifold is closed (in the norm (1)), because the limit

of a sequence of functions in f’(Q_) converging uniformly in Q is a

function belonging to C(Q) accordingly, C(Q) is a subspace of the

space C(Q).

Next, in C(Q) consider the subsets’ C*(Q), k =1, 2, .. ., con-
sisting of the functions whose all the derivatives up to order k are
continuous in Q. The set C*(Q) is a linear space. What is more, in
C*(Q) one may introduce the norm

17l = 2, max| D1 (@) )

Convergence in this norm means the uniform convergence in Q of
the #functions and all their derivatives up to order k. Evidently,

C*Q) is a Banach space (with norm (2)).
Let o, (| « — y |) be some averaging kernel (see Chap. I, Intro-

duction) and f € C(Q). With 2 > 0, consider the function

fw@={1@on(z—yhdy,  z€Rn 3)
Q
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Functions f, (), » > 0, are called the average functions for the
function f(x) (the averaging functions for f(x)). From the Property (a)
of an averaging kernel and Theorem 7, Sec. 1.7, Chap. II, it follows
that f,l(x) € C°°( a) for any A > 0. Further, f,(x) =0 outside
Q" (Q" is the union of balls {| z — z° | << h} taken over all z° € Q).

Let us show that if f € C (Q), then f, (z) converges to f (z), as
h — 0, uniformly on any strictly interior subregion Q' of Q, Q' € Q.

In fact, for sufficiently small /4 (less than the distance between 9Q’
and Q) by Properties (b), (c) and (a) of the averaging kernel we
have, for z € Q’,

Ih@—t@l=| | f@ele—yhdy—f@ [ onla—yhay

lx—yl<h [x-yl<h

< max [{G)—/@| | or(z—y)dy= max |/G)—/ (@]

—y<
lx~yl<h |x-yl<h

Therefore, by uniform convergence of f(z) in Q, we obtain
" fh_f”C(Q—’)_).O as h—>0.

Since for f€C*Q), with z€ Q' and sufficiently small 4,

D%fn(e)= | 1) Dion(lz—yl) dy
Q

= (—1)lod S f () Dyor (|z—y|) dy
Q

= [ Dit @ ona—ybay,  lal<k
Q

the above assertion implies that

if { € C*(Q), then for any Q' € Q
Il.fh"‘.f“ck@‘)—*o as h—0.

2. Formulas of Integration by Parts. Suppose that in the reglon Q
(the boundary dQ € C?) there is defined a a_vector A(z) = (44(2),

.+, An(x)); whose components A;(z) € C(Q) [ C* (0), i =1,
..., n. From the Course of Analysns it is known that if the func-
tion div A(z) = 6A, +. Z‘:" is continuous in Q, or even
integrable over Q, then the followmg formula, known as Ostrograd-
skii’s formula, holds:

} div A (z) dz — S A () n (z) dS, (4)
Q 0Q
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where n is the unit vector normal to the boundary dQ and directed
outwards with respect to Q. _

Let u(z) € C3(Q) ) CHQ), v € C}Q), and let the function Au =
= div (Vu) be integrable over Q. Since v Au = v-div (Vu) =

= div (vVu) — Vuvv (Vuvv = Uz Vs, e uxnvxn), by Ostro-
gradskii’s formula (4) we have
SvAudx=S v—%%—dS—SVqudx, %)
Q 0Q Q

because Vu-n|spq= g—z e

If both the functions u and v belong to C%*Q) () C*Q) and the
functions Au and Av are integrable over Q, then, apart from for-
mula (5), we also have

5 ulv dz = S u %—dS — S VuVudz. (5"
Q 0Q Q
Subtraction of (5’) termwise from (5) yields
S (vAu—uAu)dx=S (v-g—:—u —g%) as. (6)
Q oQ

Formulas (5) and (6) are known as Green's formulas.

§ 2. SPACES OF INTEGRABLE FUNCTIONS

As shown above, the set of continuous functions in Q is a Banach
space with the norm max |f (z)]. Nevertheless, it often proves

) x€Q
convenient to consider on this set integral norms, for example,

S | f (2) | dz or (S | f (@) |? dx)¥72 (it is easy to see that they satisfy
Q

all the axioms of a norm). We examine the space with norm

Sl f (z) | dz whose -elements are continuous functions in Q. This

Q
normed space is incomplete. In fact, from the definition of Lebesgue

integral it follows that for any function f(z) integrable over Q there
is a sequence f,,(z) of functions continuous in Q which converges te

f(x) in this norm: S | fm (@) — f(2) |dr— 0 as m — oo. This

Q
means that if we wish to obtain a complete normed (Banach) space

with the norm 5 | f (z) | dx which would contain all the functions
Q
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continuous (or even infinitely differentiable) in Q, we must include
all those functions which are integrable over Q. But then the func-

tional Sl f(z) | dz ceases to be a norm—it does not satisfy the last
Q

axiom (see Sec. 2.2, Chap. II) of a norm, since S | f(z) | de = 0 for

Q
all f(z) = 0 a.e. in Q. However, according to Theorem 2, Sec. 1.4,

Chap. II, S | f(z) | dr = 0 only for functions f(x) that vanish a.e.

Q

in Q. Therefore, for the last axiom of the norm to be satisfied, we
must identify all the functions that vanish a.e. in Q. For this we
may consider as the elements of the space either classes of functions
each of which contains all the functions that are equal a.e. or else,
equivalently, may introduce a new definition of equality of functions:
functions are equal if their values coincide almost everywhere. Since
it is more convenient to operate with functions than with classes of
functions, in the sequel we shall regard functions equal if their
values coincide for almost all (not necessarily for all) z in Q. Since
in such a definition of equality of functions the functions remain un-
changed when their values change arbitrarily on any fixed set of
measure zero, in this case it is natural to assume that the functions
are defined almost everywhere. If a function f vanishes almost every-
where, we take it as the zero function. Similarly, if a function
coincides almost everywhere with an everywhere defined continuous
function, we regard it as a continuous function, while f is contin-
uously differentiable up to order k if it coincides almost everywhere
with a function that is everywhere defined and is continuously differ-
entiable up to order k. In accordance with the abovementioned no-
tion of equality, we shall assume that the space C*(Q), k& > 0, con-
tains also the functions defined almost everywhere in Q and con-
tinuously differentiable up to order k. That is, a function f(z) be-
longs to C*®Q) if it coincides almost everywhere with a function
which is defined at all points of ¢ and is continuous in Q together
with all its derivatives up to order k. Further, by the value of an
element of the space C(Q) (and, more so, of functions in C*(Q)) at
some point we shall mean the value at this point of the continuous
function defined everywhere that coincides with this element almost
everywhere in Q.

1. Spaces L,(Q) and L,(Q). Consider the set of complex-valued
functions that are integrable over Q. Obviously, it is a linear space
(also in the new sense of equality of functions), and the functional

S | f(z) | d= satisfies all the axioms of a norm. This linear space
Q
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will be denoted by L,(Q):
I le@=§ 17 (@) da. (1)

Q
The set of complex-valued measurable functions (recall that func-
tions coinciding a. e. are identified) the squares of whose moduli are
integrable over Q will be denoted by L,(Q). Let us demonstrate
that L,(Q) is a linear space. Let ¢;, ¢, be arbitrary numbers, and
f1(z), fo(x) arbitrary functions in Ly(Q). Since the measurable
function ¢;f,(x) + cofs(z) satisfies the inequality | ¢ f,(z) +
+eofa@) P<2 ] [ 1) P+ 2 ¢y P |74(e) P, by Theorem 5,
Sec. 1.6, Chap. II, the function lclfl(x) + cof2(2) |* is integrable,

which 1mp11es that c1f1(x) + cofo(2) €
The function f,(x) f,(z), where f,(x), fz(x) € L,(Q), 1s integrable,

because it is measurable and |fi(z) fo(2) | < 5 2 (| ful=) 12 +

-+ | fo(x) |?). Therefore with the pair of functions f, and f, one can
associate the quantity

(f1y fa)rie = | fu(@) Fa(@) da. ()
Q

It is easily checked that formula (2) defines a scalar product in
L, (Q). The norm generated by this scalar product is of the form

17Nz = ( | 17(2) )™ (3)
Q
Since |f | =[f1-1 <4 (If [+ 1), we find that when the region

Q is bounded the function f(z) belonging to L,(Q) also belongs to
L, (Q). This means that L,(Q) = L,(Q) for a bounded region. In
this case it is also evident that C(Q) = L,(Q) = L(Q).

Theorem 1. L, (Q) is a Banach space with norm (1). L, (Q) is a
Hilbert space with scalar product (2).

To prove this theorem, it suffices to establish that the spaces L, (Q)
and L,(Q) are complete in the respective norms.

1. Let the sequence fy, k=1, 2, ..., of functions in L,(Q) be
fundamental in L,(Q), that is, for any & > 0 there is a number

N(e) such that || fr — fm ||L1(Q) < & forall k, m > N(e). Choose
e = 2-* for some integer k, and let N, denote the number N(@2*
quch that Ny << Np4q. Then for m > N, we have

| v, — Fm llLa@ < 27%, (4)
and, in particular, | fn,—fw,,, llie <<2*. Hence the series

}]1 | fv, —n,,, lLi@ converges. This, in view of Corollary to
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Sec. 1.6, Chap. II, means that the series , (fn,,,—7In,) converges
K=1

a. e. in Q to a function belonging to L,(Q), which, in turn,
means that the sequence ka, k=1, 2, ..., converges, as k— oo,

a.e. in Q to a function f¢ L(Q):
v, (x) = f(z), k— oo.

We shall show that ||/, —f || Li@ — 0 as m — oco. Indeed, for
m > N,, k > r the inequality (4) implies

[ Fm—1Iw ke < || fm— v llzwe + I fx, — I, li@ < 2-27 =2t

Letting £ — oo in this inequality, we obtain, by Fatou's lemma
(Theorem 4, Sec. 1.6, Chap. II), the inequality || f,, — f | Ly@ <<
< 2'-" which is true for all m > N,. For sufficiently large m the
number r can be chosen large enough, therefore || f,, — f || Ly@) = O
as m — oo. Thus the space L,(Q) is complete.

2. Suppose that the members of the sequence fr(z), k =1, 2, .. .,
belong to L, (Q) and that the sequence is fundamental in the norm
L, (Q). As in the proof of the first part of this theorem, a number
sequence N, <{ N, <C ... << Np<C ... can be found such that

| v, —fm ey <27* (4')

for all m > N,, and, in particular, ”ho+1‘—'ho”L2(Q)<2—h.
An application of Bunyakovskii’'s inequality gives || INp—
— e < VIOl fn,,, — o lea@ < V[Q]2™", therefore there
is a function f(z)€Ly(Q) such that fy (z)—f(z), as k—oo,
a.e. in Q. This means that |[fy, [2—|f|?, as k—oco, a.e. in Q.
Furthermore,

Il £, lwe < 1l Fovy — Fov, Nzacer I P flac@ < 5 11 7, lacod-

Hence, by Fatou's lemma, f(z) € L,(Q).
Let us show that || f,, — fll L,y > 0 as m — oo. For m > N; and
k>r inequality (4') implies

| fm— vy s < N fm— Iy Nles@ + 1l Fv, — Ty @ << 2477

Letting & — oo in this inequality and again using Fatou’s lemma, we
conclude that || fr, — f (2,09 << 2'" for all m > N,. And since
with sufficiently large m, r can be chosen sufficiently large, we obtain
| fm — f Nl —0 as m— co. i

Remark. We remark that in proving Theorem 1 we have at the
same time established the following assertion.
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From every sequence of functions converging to a function f in L,(Q)
or in L.(Q) a subsequence can be chosen that converges to f a.e.

2. Denseness of the Set C(Q) in L,(Q) and L,(Q). Separability
of L,(Q) and L,(Q). Continuity in the Mean of Elements of L,(Q)
and L,(Q).

Theorem 2. The set of functions continuous in Q is everywhere dense
in L,(Q) and Ly(Q).

1. Let f(x) € L,(Q). With no loss of generality this function can
be assumed real-valued and nonnegative. Then by the definition of
integrability of f(z), there exists a sequence f,(z), k=1, 2, ...,
of functions continuous in Q having the property that f,(z) ¢ f(x)

a.e. in Q and S]‘kdx—> Sfdz as k— oo. Since Slf—f,, | dz =
Q Q Q

= f (f — f») dz, it follows that || f — fx llz gy — O as k — oo, as

Q
required.

2. Let f(z) € Ly(Q) which is again assumed real-valued and
nonnegative. Since f(z) € L,(Q), we can find a monotone nondecreas-
ing sequence fy, k = 1, 2, ..., of functions belonging to C(Q) that
converges to f a.e. in Q. The functions fx(z) can be additionally
assumed to be nonnegative, for, if necessary, this sequence can be
replaced by the sequence fi(z), k=1, 2, .... But then fi(z)}
4 fA(z), as k— oo, a.e. in Q. By the definition of the integral of

@ [fda— | £ da, that is, Il fa ltie — IIf @ Since fuf <

Q Q
< f?, by Lebesgue’s theorem (Theorem 6, Sec. 1.7, Chap. II)
lim (fp, fzg@) = Il f llLyq)» which implies that || fx — f |t =

R-»00

= || fr lEs@ — 2 (fro Dy + 11 f liyey > 0 as k& — oo. [ |

Note that if a sequence of functions in C(Q) converges to a fun-
ction in the norm of C (Q), it also converges to it in the norms of
L,(Q) and L,(Q). Consequently, any function continuous in Q can
be approximated by a sequence of polynomials with rational coeffic-
ients in the norms of L,(Q) and L,(Q). Then Theorem 2 implies
that the countable set of polynomials with rational coefficients is
everywhere dense in L,(Q) and L,(Q). We have the following result.

Theorem 3. L,(Q) and L,(Q) are separable spaces.

A function f(z) belonging to L,(Q) (and extended outside Q by
assigning to it the value zero) is called continuous in the mean (square)
or in the norm of L,(Q) if for a given € = 0 a § > 0 can be found such
that || f(z + 2) — f(z) llLq@ << eforallz, |z ]| <é.

A function f(z) belonging to L,(Q) (and extended as being equal to
zero outside Q) is called continuous in the mean or in the norm of
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L,(Q) if for a given >0 a § >0 can be found such that
1z + 2) — f(2) llugy << & for all z, |z | <.

Theorem 2 implies the following result.

Theorem 4. Any function belonging to L,(Q) is continuous in the
mean (square). Any function belonging to L(Q) is continuous in the
mean.

Proof. Let f € L,(Q) (the proof is exactly the same when f ¢
€ L,(Q)). Consider a large number a > 0 so that Q € S,, where S,
is the ball {|z | <<a}. Since f(z) € Ly(Q), the function F(z),
which is equal to f(z) when z € Q and vanishes when z € S,,\ 0,
belongs to L,(S,,). Take an arbitrary e > 0. By Theorem 2, there is

a function F(z) which is continuous in S,, and satisfies the inequali-
ty || F(x) — F(z) llLacsgy < ¢/3. By multiplying F(z) by a prop-
erly chosen slicing function for the region S,, it can be assumed
thaﬁf(x) =0 for € S,,\ S, Tllgrefore for|z|<<a,| F(z + 2) —
— F(z + 2) |lLysse) = |l F(z) — F(z) lleusy < e/3. Since the
function F(z) is uniformly continuous in S,,, there is a 8 >0
(<< a) such that || Flxz+ 2) — F~(x) llLy(s,,) <X €/3 whenever
| 2 | << 6. This means that for |z | << §

1/ (@+2)—f @) lleq@ = F (x+2) = F () ||Lys,p
<F(z+2)—F(z+2) llL.(sza)+||7'(z+z)~F($) llz.cs,p)
+|F ()= F (@) s,y < 5+35+5=¢ 1§

3. Averaging of Functions Belonging to L,(Q) and L,(Q). As in

the case of functions belonging to C(Q), averaging functions can
also be defined for functions belonging to L,(Q) and L,(Q).
Let op(]x — y |) be some averaging kernel (Chap. I, Introduc-

tion), and let f(z) € Ly(Q). The function

m@={1wenlz—yhdy,  r>0, (5)
Q
is called the average function for the function f (averaging function

for f).
By the Property (a) of an averaging kernel and Theorem 7, Sec. 1.7,

Chap. II, fu(z) € C*(R,) for h > 0. Further, f,(z) =0 beyond Q"
Theorem 5. If () E LI(O) (Ly(Q)), then || fr — f llLy@ =0

(fn— f llLy@ —>0) as h—0

Proof. Both the assertions are proved exactly in the same way,
therefore we examine, for example, the case when f € L,(Q). The
function f is assumed extended outside Q by assigning to it the value
zero. Successive applications of Properties (b) and (c) of an averag-
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ing kernel, Bunyakovskii's inequality and Property (d) of the
averaging kernel yield

|fa(2)—1 (@) I
= | twoz—yhay—1@ [ orgz—yhay

lx-yl<h lx=yI<h
< [ oile—ypay [ 110—1@Pay
lx—y|<h je—yl<h

t
<5 |fe+2)— () pda.
lzI<h
By the Corollary of Fubini’s theorem (Sec. 1.11, Chap. II)

a1 lte < S5 [ dz | 1f@+2)—f@ Pdz

Q lzl<h
=03;St ﬁ dZSIf(x+z)—f(x)|2dx. (6)
lzl<h Q

Take any ¢ > 0. By the theorem on continuity in the mean (Theo-
rem 4), a § > 0 can be found such that || f(z 4+ 2) — () |l <
<< & whenever | z | << h << 8. Therefore for such % the inequality (6)
implies ||¥r — f llLyq) << const-e.

Remark. It should be noted that the proof of Theorem 5 nowhere
uses the fact that the averaging kernel is nonnegative. Consequently,

if the averaging function f(x) for f(z) is defined by the formula (5),

where on(lz—y ) = hin ml(_lz%yl) and (), — o0 < t < o0,

is an infinitely differentiable even function that vanishes for | ¢ | > 1
and is such that S o]z |)dz =1 (compare with the definition of
R

n
the averaging kernel given in Introduction, Chap. I), then Theorem 5
remains valid in this case also.

Theorem 6. The set C.'w(a) is everywhere dense in L, (Q) and in
L, (Q).

2Proof. Let f(z) € L,(Q) (the case f € L;(Q) is disposed of similar-
ly), and fix any & > 0. By the theorem on absolute continuity of a
Lebesgue integral (Theorem 9, Sec. 1.10, Chap. II), there isa § > 0

such that S | f | dz << €?/4. This means that the function F(z)

PNCH
with compact support in Q which belongs to L,(Q) and equals f(x)
when z € Q and vanishes when z € Q\ Qs, satisfies the inequality
| F — f o) < €/2. By Theorem 5, a 2, > 0 can be found such
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that || Fr, — F |lLyqo << €/2 for all 0 <<h <h, The averaging
function F, for the function ¥ with compact support belongs to

C.'“(a) for sufficiently small ~ and
&

1f—Fulleue < N f—F g+ F—Fr o <5 +35=¢. B

Since for any & = 0 (C=(0) = C¥Q) = Ly(Q), it] follows that
for all k>0 C*(Q) are everywhere dense in L,(Q).]

4. Linear Spaces L joc, Lj, 10cc The set of functions that are
integrable over any strictly interior subregion Q' of Q, Q' € Q, are
denoted by Ly, 10¢(Q)-

The set of functions that are measurable in Q and the squares of
whose moduli are integrable over any strictly interior subregion Q’
Of. Qr Ql @ 01 iS denoted by LZ. 100(0)‘

It is clear that L;, 10c(Q) and L, 1o¢(Q) are linear spaces. Further,
Ly(Q) = Ly, 10e(Q) and Ly(Q) < Ly, 10c(Q)- The function A=z
for example, belongs to L j0c(l 2 | << 1) and L, 10c(] 2 | < 1)
for any m, and at the same time it belongs to L,(| z | << 1) only
when m << 1 and to Ly(| £ | << 1) only when m << 1/2.

§ 3. GENERALIZED DERIVATIVES

1. Simplest Properties of Generalized Derivatives. Suppose that a
continuous function f(z) in Q has continuous derivative f, () in Q.

Then for any function g(z) € él(O—)

{ tewdz=— | 1.8 dz.
Q Q

It turns out that the derivative fxi of f is completely determined

by the last equality: it can be easily shown that if for a continuous
function f(z) there exists a continuous function %;(x) such that

| fouyde=—| higda (1)
Q Q

for any g(z) € C*(Q), then the function f(z) has in Q the derivative
fx, and foy = h; for all x € Q. Thus by means of identity (1) a defini-
tion of the derivative of f(z) can be given that is equivalent (in the
class of continuous functions) to the usual definition. If in (1) the
continuity condition of f(z) and A;(x) is dropped and instead it is
required that they be integrable or their squares be integrable (the
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latter is more convenient for us) and the integrals in (1) are under-
stood in Lebesgue sense, then we enlarge the class of functions for
which the notion of derivative can be introduced; the function %; is
called the generalized derivative of f with respect to z; in Q.

Let @ = (2, ..., @,) be a vector with nonnegative integral
components. A function f*(z) € L,, 10c(Q) is called oth general-
ized derivative (g.d.) in Q of a function f(x) € L,, 10c(Q) if

| 1@) Dog @) dz = — () | fo(2) g (@) dz @)
Q Q

for any g(z) € CI(Q).

We shall first show that a function f(z) can have only one g.d.
§%(z) (recall that functions are considered equal if they coincide a.e.).

In fact, let f*(z) and f¥(xr) be two g.d. of f(z). For an arbitrarily
fixed subregion Q’, Q° € Q, and an arbitrary function g(z) €
€ Cl(Q’) the identity (2) yields S (fo — f&)z dz = 0. But

Q’

& — 2 € Ly(Q'), therefore, by Theorem 6, Subsec. 3 of the previous
section, f& — f& = 0 a.e. in Q’, which means that this holds a.e.
also in Q.

Let f(x) € C'2/(Q). By Ostrogradskii's formula we have

| 1@ Dg@ dz =(— 1) | Def(a) g @) de ®)
Q Q

for any g(z) € C1*(Q). That is, the function f(z) has g.d. f*(x)
equal to D%f(z). In particular, the function f(x) which is equal to a
constant (a.e.) in'Q has each g.d. f*(z) = 0, |« | > 0.

In the sequel g.d. f* of a function f will be denoted by D%f. The
generalized derivatives, primarily the first-and second-order deri-

. . of _f
vatives, will also be denoted by fu fayxy, - - - and 5~ 27 T
I%lg
Since for smooth functions g(z) the derivative 'a_“?—a does not
zpn

depend on the order of differentiation, it follows from the uniqueness
of a generalized derivative and formula (2) that a generalized deriv-
ative also does not depend on the order of differentiation.

The definition of g.d. also implies that if the functions f;(z), i =
= 1, 2, have g.d. D%f;, then the function ¢,f, + ¢,f,, with any con-
stants ¢;, has g.d. D% (¢,f; + ¢ofy) = ¢,D%, + ¢, D%,.

Example 1. The function f(z) = |z, | has in the ball Q =
= {| z | < 1} first generalized derivatives fx = sign z,, f"i =0,

i=2,... n
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In fact, for any g(z) € 1 (Q)

Q
) | 1] gx, dz == S Zigy, dz— S z.gy, dz,
Qt Q-
where Q* = Q@ (2, >0), @~ = QN (2, <O0). Applying Ostrograd-
skii's formula, we have (z;2 = 0 on dQ and also for z; = 0)

g | 2|8 dz = — S gdz+ S gdr=— 5 sign z, - g dz.
Q Qr ¢ Q

Therefore g.d. with respect to z; of the function | z, | exists and is
equal to the function sign z;. Since for i > 2

{12lgxdz={ (2112)s dz=0=—[ 0.7 dz,
Q Q Q

the function | z; | has generalized derivatives with respect to z;, i =
=2, ..., n, equal to zero.

Note that the function | z; | has no classical derivative with re-
spect to z; in Q (the derivative does not exist for z; = 0).

Example 2. The function f(x) = sign 2; has in the ball Q =

= {|z | << 1} first generalized derivatives fx; = 0,i=2,...,n,
but has no generalized derivative f,. The existence of g.d. fx,, i =
=2, ..., n, is established in the same manner as in Example 1.

Let us show that f has no g.d. with respect to z;. Suppose, on the
contrary, that there is a function ® € Ly, 10c(Q) which is a general-

ized derivative of f with respect to z,. Then for any g(z) € é'l(a)

S wg dr = —S (sign x,)gxl dz= — S Exldx—{-s g, dz
Q Q Q+ o
=2 | Zdzy...de.. (4
QN {x=0}
This equality, first of all, implies that ® = 0 (a.e.) in Q. In fact,
substituting in (4) an arbitrary g(z) € C}(Q) vanishing in Q-, we
have S og dz = 0, which implies that ® = 0 (a.e.) in Q*. Analog-

+

ously, it can be shown that v =0 (a.e.) in Q. Accordingly, for any

¢@) € C1Q), | g dz =0, that is, S 2@ dz, ... dz, =0, but
Q =0}
this cannot hold for an arbitrary functlon g(x) € Cl(())
In contrast to the corresponding classical derivative, the general-
ized derivative D%f is defined by (2) globally, at once in all of Q.

8—0594
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However, in every subregion Q' — Q also the function D%*f will be

g.d. of the function f, since the function g(z), belonging to Cl(Q")
and extended outside Q' by assigning to it the value zero, belongs to
Cl@l(Q) (this property was, in fact, used while proving the unique-
ness of a g.d.). Therefore if f (x) has in Q g.d. D%f and f(z) = ¢ (a.e.)
in Q' — Q, then D% = 0 (a.e.) in Q'. In particular, g.d. (if it exists)
of a function f(z) having compact support in Q (that is, for some
Q", Q"€ 0, f(x) =0 a.e. in Q\ Q") has compact support in Q,
and therefore belongs to L,(Q).

Suppose that the function f(x) belonging to Ly, 1,.(Q) has g.d.
Def = F and the function F(zx) has g.d. DBF = G. Then there
exists g.d. D*+8f and Do+Bf = G.

Indeed, suppose g(z) € Cl*+BI(Q). Since DBg € Cld((), we
have
{ 1D58g dz = (— 1)y | DofDPg da
Q Q
— (— 1)l { FDFg dz = (— )=+l | DPFg dz—(—1)=+# | Cg da,
Q Q Q

as required.

In contrast to the classical derivative, the generalized derivative
D<f is defined at once for order | o | without assuming the existence
of corresponding derivatives of lower orders. Let us show that the
derivatives of lower orders may not, in fact, exist.

Example 3. In the ball Q = {| z | << 1} consider the function
f(@) = o(z,) + @(x,;), where ¢(z;) = signz,. The results of
Example 2 show that f(z) has no generalized derivatives f,, and fx,.

Nevertheless, we shall now show that the generalized derivative

fxux, exists. Taking an arbitrary g(z) € C? (Q), we have
S gxtng dz = S ¢ (‘Zi) Exlxz dl‘—f— S P (xZ) gxlx! d.l‘.
Q Q Q

Since

S ¢ (x4) mez dz=— S Exxxz dz+ S Exlxz dz=0
Q QN {x1<0} QN{x,>0}

and, similarly, S (p(xz)Ex‘x, dx =0, it follows that
Q

S fexx, dx=0= S 0-g dz.
Q Q

Thus the generalized derivative fi,, exists and is equal to zero.
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2. Generalized Derivatives and Averaging Functions. A Criterion
for the Existence of Generalized Derivatives. Let f(z) € L,(Q),
and o, be some averaging kernel, and let

@ = olz—yD ) dy, k>0,
Q
be the averaging function for the function f(z), fn(z) € C=(R,).
Lemma 1. If the function f(x) € L,(Q) has a generalized deriva-
tive Def € L,(Q), then for any point y € Q

(D*f)n (y) = D*f1 (y) (©)
with sufficiently small h > 0, and for any subregion Q' & Q
| D*fn — D*f ||y = 0 (6)

as h — 0.
If in addition to the above, the function f(x) has compact support in
Q (and is extended outside Q by assigning to it the value zero), then

formula (5) holds for all y € Q for sufficiently small h > 0, and
|| D%f,, — D%f ||L,@ — O as h— 0. 7)

Proof. Taking in (2) for g(z) the averaging kernel w,(|z — vy |),
y € Q, with sufficiently small 2 > 0 (k is less than the distance be-
tween y and the boundary dQ) and applying Theorem 7, Sec. 1.7,
Chap. II, we obtain formula (5)

(D) () = (— 1) | f(@)DZen (|2 —y]) dz

Q
= | #@) Dgon (| 2—y}) do = D§1a(w).
Q

If Q" € Q, there exists a 2y, > 0 such that when 2 < ., formula (5)
holds for all y € Q’. If f(z) has compact support (in this case D*f
also has compact support and belongs to L,(Q)), again there is a
ho > 0 such that when 2 <k, formula (5) holds for all y € Q. There-
fore relations (6) and (7) follow from Theorem 5, Sec. 2.3.

Corollary. If all the first-order g.d. of a function f are zero, then
f = const.

In fact, in a subregion Q' € Q (fxi)h =0,i=1, ..., n, for
sufficiently small k. By (5), (fu)x; =0, i =1, ..., n, that is,
fn =const =c (k) in Q' for such h. Since || fr, — f llLyey =
= || e(h) — f llLygry > 0 as . — 0 (Theorem 5, Sec. 2.3), it follows that
lle (k) — ¢ (Bo) llLaery = l € () — ¢ (Be) | VIQ | >0 ashy, hy—
— 0. Consequently, c¢(k) = f, converges uniformly in Q’ (and more
so in L, (Q')) to some constant, that is, f = const, in Q’, and there-
fore also in Q.

8*
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By means of Lemma 1 the following criterion for the existence of
generalized derivative of f € L,(Q) is established.

Theorem 1. For the existence of g.d. D*f of a function f € L,(Q) it
is necessary and sufficient that for any subregion Q' & Q there exist
constants C(Q') and hy(Q') such that || D%y |y << C (Q') for
all h < hy (Q").

Proof. The necessity has been proved in Lemma 1.

Sufficiency. Consider a system of regions Q; €0, € ... €
€ 0, € ... € Q such that any point z € Q belongs to some Q;
(and therefore to all Q;, j > i). Since for & << ko (Q,) || D% 1 |lLa@n <
< C(Q,), the set {D%f,} is weakly compact for such % (Theo-
rem 3, Sec. 3.8, Chap. II). Therefore a sequence of values of %,
hy, 1y -« Py, b, $ 0 @as k— oo, can be found such that the
sequence of functions D%, ., k=1,2, ..., converges weakly in
L,(Q,). Similarly, from the sequence /, », £k = 1, 2, . . ., one may
choose a subsequence %,, 5, k = 1, 2, . .. such that the sequence of
functions D%, ,, k =1, 2, ..., converges weakly in L,(Q,);
and the weak limit of this sequence in Q; coincides, of course, with
the weak limit of the sequence D%f,; », k = 1,2, .. ., and so forth.
The diagonal sequence D“fhh' B k=1,2, ..., converges weakly to
some function (x) € Ly, 10c(Q) in the space L,(Q;) for any i =
= 1,2, .... Then for any Q' € Q D*fy, , converges weakly to ®

in L,(Q"). . _

Consider an arbitrary function g € C % (Q), and let Q' be the
region beyond which g(z) =0, Q" € Q. Forallk =1,2, ..., we
have

| Dofu, g do= (=) | fy, , Do da,
Q Q

where the integration is, in fact, not over entire Q but over Q’. Since
the sequence D%}, .,k = 1,2, ..., converges weakly in L, (Q') to
the function @ and the sequence f,, ,, kK =1, 2, ..., converges

strongly (and therefore also weakly) to the function f, we may pass
to the limit as k — oo in the last identity:

| oz do— (=1 | D7 da.

Q Q
This means that f has generalized derivative D%f equal to the func-
tion . l

3. Existence of Generalized Derivative in the Union of Reglons

As noted in Subsec. 1, if D%f isg.d. of a function fin Q, then it is
g.d. of this function in any subregion Q' — Q also. In the present
subsection we shall prove the following assertion.
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Theorem 2. If a function f has g.d. D% in regions Q, and Q, and
if Q1 U Q2 = Q is also a region (that is, a connected set), then g.d.
Def exists in Q.

Proof. Take an arbitrary point z € Q. Let Sy(z) be the ball of
radius p > 0 with centre at z, and let p, = min |z —y |, p, =

€0Q,
= min |z —y|. If z€Q,\0Q,, then Spl/];(x) € @y, while if

YEOQ,
Z € Q,\Q;, then Sp,/(r) € Qy; however, if z€Q,N Q, and
o = min (p;, Py), then Sy/,(x) € Q, and Sy/,(2) € Q.

Let all the points of Q be divided into two classes: the first class
contains all the points of Q;\ Q. and those points of Q, N Q. for
which p; << p,, p = p;, and the second class contains the remaining
points, that is, all the points of Q,\Q, as well as those points of
01N Q; for Wthh P2 < P1y 0 = Qo

In this way, Q is covered by the balls S,,,(z): if x belongs to the
first class, then p = p;, and if = belongs to the second class, then
P = Po.

Let Q' be any strictly interior subregion of Q, Q' € Q. From the
cover of Q' by the balls S,/,(z) one can choose a finite subcover.
A part of the balls of this subcover having centres at the points of
the first class constitutes an open set Q; € Q,, while the remaining
ones constitute an open set Q, € Q,. Thus for Q' there are two open
sets Q; and Q; having the following prdperties: (a) Qf, i = 1, 2, is
the sum of a finite number of balls, (b) Q' belongs to the region
Q:U Q; and Q; € Q;, Q; € Q,. Since g.d. Dxf exists in Q; and Q,,
by Theorem 1 there are constants C(Q;), C(Q3), ko(Q;) and ky(Q3)
such that for A <<hy = min (£4(Q)), %,03)), || Defy z,ep <
< C(Q), || D%y ”L,(Qé) < C(Q;), where f, is the averaging func-

tion for f in Q. Hence

| D*falliue@r < I D% lliuep + 1 D* Iy < €1 (Q))
+C3(Q2)=C2(Q)

for all 2~ << h,. Therefore, by Theorem 1, the function f has g.d.
Def of ath order in Q that coincides, of course, with D%f in @, and
Q,.

4. !& Connection Between Generalized Derivatives and Finite-
Difference Ratios. Let f(x) have compact support in Q and belong
to Lo(Q). We extend this function outside Q by assigning to it the
value zero and consider for 2 = 0 the difference ratio

6ﬁf(x)= f(Zyy «vy Thogs xh+h}; Thayy --+9 Tn)—f (T) , (8)

k=1, ..., n.Clearly, for all » =% 0, Gﬁf(x) € L,(Q). If the func-
tion g(z) € Lo(Q) (and is extended as being equal to zero outside
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Q), then for sufficiently small |~ | (less than the distance between
the boundaries of Q and Q', outside which f = 0) the formula of
“integration by parts” holds:

6rfs &)@
= 71;-5 @1y -+vr Thoty Tat By Tpagy « o ey 2,) —f(2)) g(z) da
Q

=+ [ 1@ @@ s anen o=y sy oy ) — (@) de
Q

=—(f, w0 9)

Theorem 3. Let the function f(x) with compact support in Q belong
to L,(Q).
(a) If g.d. fx, exists for some k = 1, ..., n, then for all sufficient-

ly small |k |, b 5= 0, || 8% llz, @ <Xl fx, Iz, @) and
| 6hf — fx, llLi@—0 as h—0. (10)

(b) If there is a constant C = 0 such that for all sufficiently small
[h |, h==0, | 8:f L, @ << C, then the function f has g.d. ., in Q,

and the inequality || fx, \lLy @) << C as well as relation (10) hold.
Proof of (a). Suppose first f€ 'C‘((j). With no loss of generality
x,+h

1 "5 o’ &n)
1 Z 5y Sn

one can take k=n. Then §;f = h 5

dt,, where, as usual,
*n

&' = (Zgy «++y Tn-y). Therefore (suppose ~ >0, for definiteness)

xp+h xp+h

|0hfe) P (] | 2Llbe) fap )Tk |

xn xn

d&n,

whence it follows that

e +o0 x,+h Joo
S [ 8hf(x) |2 dz, < S Sd S ‘0f;§n3n) de, — S l('lf(z;.nzn) 2dxn

Integration with respect to z' € R, yields

[ 627 Ly <l fx, llL.@- (11)



Further,

xn-}-h
1 a I’ P
M@ — fr(0) =g | b g, IO
" xp+h
1 9f(z’, En) af(z', zyn)
~h S ( agnn - axnn )dgn'
Hence "
o0
| @@ — fr, (@) dz,
- o0 xp+h
10, "g o ) 1 aw) 2 4
<7S In v 08n o 0z gn
— 00 xn
1 ? d +°°( of(@’', zn4-m) af (&', zq) 2d
'—‘;7'0 Ui S 9z p T oz, ) Lo
Integrating with respect to z' € R,_,, we have
h
1 " oz, of(z’, Tn) \2
|| 8hf — fap s < % S dn 3 ( fe a::+") — f(gxnx ) ) dz. (12)
0 Q

Inequalities (11) and (12) established for the time being only for

functions f € bl(a) are also true for functions in L,(Q) having com-
pact support and g.d. f,, in Q. To show this, it suffices to approxi-

mate f(x) by its averaging function with a sufficiently small aver-
aging radius p, use for this last function inequalities (11) and (12)
(the averaging function has compact support in Q) and then take
the limit as p — 0.

Thus the first inequality in (a), coinciding with (11), is proved.

To prove relation (10), we apply the theorem on continuity in the
mean (square) of functions belonging to L,(Q) (Theorem 4, Sec. 2.2),
which implies that for a givene > 0 a § = 8§(¢) can be found such
that

g ( af(z’, 2n+4m) _ of(x’, xn) )zdx<82

0xp 0zp,

whenever |n | << | & | << 8. Therefore (12) yields the inequality
||6% — fxn||i,(Q)< ¢> whenever |k | <<98. This proves Propo-
sition (a).

Proof of (b). By Theorem 3, Sec. 3.8, Chap. 1I, the set {Gﬁf} with
small | A | is weakly compact in L,(Q). Accordingly, a sequence
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ok f, p=1,2, , hp > 0 as p — oo, can be chosen that con-
verges weakly to some functlon o € L2(()) moreover, o |l < C.
Further, in view of (9), (thf, L@ = — (f, & hpg)Lz(Q) for any

g(z) € CY(Q). When p — oo, the left side of this identity tends to
(w, g) and the right side, by Lebesgue theorem, to —(f, 8x,)- There-
fore g.d. ka exists and ka = .

In the sequel the following proposition will also be used.

Let Q be a simply connected region in R, which contains the ori-
gin and is symmetrical with respect to the plane z, = 0 (that is,
if z = (2’, z,) belongs to Q, then (2, —xz,) also belongs to Q), and
let 6 > 0 be a small number so that Qg is a region. We denote

Q*=0nN {xn>0}v Q- =(70 {xn<0}’
(Qo)* = Qs N {z, > 0}

Theorem 4. Let f(x) € LZ(Q“) and f(z) = 0 in Q*\(Qs)*.

(a) If for some k <n g.d th exists in Q*, then for all sufficiently
small |h |, h=£=0,

1| 857 llzaen < Il Tz, llLacen)
and
| 8 f — fx, llLion—0 as R—0. (10")

(b) If there is a constant C > O such that for all sufficiently small
[h 1, hs=0, || 8if llLon<C, k<n, then g.d. f. exists in Q*,
and || th llL,o4 <X C and relation (10") holds.

In Q we define a function F(z) as follows: F(z) = f(x) in Q* and
F(z) = f (', —z,) in Q-. Clearly, F € L,(Q) and F(x) = O outside
Qs. Moreover, || ShF|B. ) = 2 Il 6if IR, 4. k<<n, 0 < |h | <.

Proof of (a). Suppose that the function f has g.d. fx, in Q*. We
shall first show that the function 7 has g.d. Fy, in Q. In fact, con-

sider an arbitrary function g(z) € C*(Q) and with any 6 > 0 the
even function Ca(z,) € CY(— oo, + ), Ls(—zn) = Cs(zn), sat-
isfying the inequality | {s(z,)| << 1 for all z,, and equal to 1
when x, > 6 and to zero when 0 < z, << 6/2.

The equality

| F(@) g2 (@) tolan) de
Q
= | 1(2) gx,@ Lo(@n) do + | 1", —22) g2, (2) Lo(@n) da
Q+ Q-
[ 1) 2 Colin) g &, )+ (0", —20)) d
Q#
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and definition of g.d. of f in Q* (the function Gs(z,) (g(x’, ) +
+ g(z', —z,)) € CYQ*)) imply

| @) gs, @)2 (2n) da

Q
— [ 1@ Eo(en) (60, 2) + £ (@7, —w) da
Q+
= — | 1,0, 2 tolan) g@) do — | fu @'y —2a) Co(an) £(@) da.
Q+ Q-

Letting here 6 > 0, by Lebesgue theorem we find that the func-
tion which is equal to fy(z) in Q" and to f, (z', —z,) in Q~
is gd ka in Q of F, and ” Fxh ”2[_2(Q)=2“ka ”iz(Q*‘)‘
By Theorem 3, [|8iF [, < | i, |l therefore || 84f [[1,on=
1 1 . k
=5 | 4F @< || Fx, i@ =1l Fxy Iy Since || 8hF — Fu, |l =
1
=?” GZf—th ”%2(@) and “ GZF__Fxh”L,(Q)'—*O as h— 0, we find
that || 6Zf—th”L,(Q+)—>O as h—0. This proves Proposition (a).

Proof of (b). Suppose that || 6hf||L,(Q+)\C k < n, for all suf-
ficiently small |k |, h 5= 0. Then for all such % || 8iF .0 <
< 2.C%. By Theorem 3, g.d. Fy, exists in Q and || Fy, .0 <
< 2-C?, which means that g.d. fx exists in Q* and || th E0n <<
< C? and (10’) holds. [ |

§ 4. SPACES H*(Q)

1. Linear Space H}.(@). Hilbert Space H*(Q). The set of func-
tions belonging to Lz, 10c(Q) and having all generalized derivatives
up to order k, k > 1, (belonging to L;, 10¢(Q)) will be denoted by
H}.o(Q). By H™Q) we shall denote a subset of H:(Q) whose ele-
ments belong to L,(Q) together with all the generalized derivatives
up to order k. When k = 0, H2o(Q) and H*(Q) will mean Lg, 10:(Q)
and Ly(Q), respectively: Hoe(Q) = La,100(Q), HQ) = Lo(Q).

Tt is clear that His.(Q) and H"*(Q) are linear spaces. Let us show
that H*(Q) is a Hilbert space with the scalar product

(f, g)Hh(Q)= Z S DafDade. (1)
<k Q
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To demonstrate this, it is enough to prove that H*(Q) is complete
in the norm

I larg="1/ 3 | 10°2dz, (@)

lal<k Q

generated by scalar product (1).
Let f,, m = 1, 2, .. ., be a sequence of elements of H*(Q) that
is fundamental in the norm (2):

| fs—Fmllfrg = D Y | D%fs— D*frm |2dz —0 as m, s— oo,

lal<k Q

Then for any a, |a | <<k, when m, s— oo

5 | D%, — D%y |2 dz— 0, 3)
Q
and, in particular (when a = 0),
S | fs— fm [2dz—O. (4)
Q
Since L,(Q) is complete, (4) implies the existence of a function
f € Ly(Q) to which the sequence f,,, m = 1, 2, .. ., converges (in
L,(Q)), and (3) implies the existence, for any a, |a | <k, of a
function f* € L,(Q) to which the sequence D%, m =1, 2, .. .,

converges (in L,(Q)).
Since each of the functions f,,(z) has all generalized derivatives
up to order k belonging to L,(Q), it follows that for any a, | @ | < &,

(Fm> D)o@y = (— 1) (D*fm, €)rLs0)

for any g € (:’h(a). Letting m — oo in this identity (strong conver-
gence implies weak convergence), we find that the function f* is
ath g.d. of f. So f€ H*Q) and || fm — f llakqy — 0 as m — oo,

which proves the statement.
Remark. Sometimes it becomes convenient to consider the set of

all real-valued functions belonging to Hh(Q), k=0, 1, ...
(H°(Q) = L,(Q)). This set is, of course, a (real) Hilbert space with

the scalar product (1). It will be referred to as the real H*(Q)
space and the same notation will be used for it.

Let us note some of the properties of spaces H*(Q).

1. If the region Q' — Q and f € H*Q), then f € H*Q’).

2. If f€ H*Q) and a(z) € C*Q), then af € H* (Q). In this case
any generalized derivative D*(af), | @ | < k, is computed accord-
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ing to the usual rule of differentiating the product of functions.
In particular, (af)xi = axif —+ afxi, i=1,..., n.

3. If f€ H*Q) and fu(z) is the averaging function for f, then
for any subregion Q', Q" € Q, |l fn — f Il kgry = 0 as h— 0. If, in
addition, the function f has compact support in (@, then
Win—f ”Hk(Q) —0 as h > 0.

4. If f € H*Q) and has compact support in Q, then a function
equal to f in Q and to zero outside Q belongs to H*(Q’) for any
Q,0 0.

Properties 1-4 are a direct consequence of the definition of spaces
H*(Q) and the properties of generalized derivatives.

5. Let the transformation y = y(z) (y; = yi(zy, . . ., Zn), i =
=1, ..., n) map one-to-one the region Q onto the region Q, and
let z = 2(y) (z; = z:(Yy, - - -» Yn), i =1, ..., n) be the corres-
ponding inverse transformation. Suppose that for some k> 1
y:i(z) € C*Q), x; (y) €ECHKQ), i =1, ..., n. Then in order that
the function F(z) = f(y(z)), where f(y) is a function defined in
Q, may belong to the space H*(Q) it is necessary and sufficient that
f(y) should belong to H®(Q). Derivatives of F(z) are calculated
according to the usual rule of differentiating a composite function.
For example, the first derivatives are given by the formulas

Fo(@ =3 fuly @) 222

i=1

i=1, ..., n. (5)

Moreover, there are constants C; and C, depending on functions
yi(z), i=1,..., n, such that (a) || F kg < C1 Il f ligregy»
The inverse transformation x = z(y) satisfies the same conditions
as the transformation y = y(z), therefore we confine our proof to
the sufficiency part and the inequality (a).
Let k=1, and f(y) € H}(?). By Remark to Theorem 8, Sec. 1.8,
n

Chap. II, the function F(z) and the functions Fy(z) = > f,,(y(2)) x

i=1
oy ;
X Tij. , i=1, ..., n, belong to L,(Q). If f,(y) is the averaging
2

function for f(y), then the function F(k, z)=fn(y(x)) belongs

to C 1((-)—), and O, 2)

oy j .
0x; =thyj(y(x))a—xjs L:‘iy ceey I,

i=1
Let the subregion Q' € Q and Q' be its image, then Q' € Q.
Since, as B — 0, |[fn — f llLy@ — 0 and || Try, — fy; Ly — 0,
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i=1, ..., n by Remark to Theorem 8, Sec. 1.8, Chap. II,
WF(R, z) — F() Lo —>0 and || Fei(h, 2) — Fi(@) |l —
—-0,i=1, ..., n ash—0, for any Q' € Q. This means that
in the equalities (F(k, z), gx,(2))r(@ = — (Fx,(h, 2), 8(2))Ly0)»

i =1, ..., n, where g is any function in C¥Q) (Q' is chosen so
that g =0 in Q\Q’) one can pass to the limit as ~— O:
(F, g<;)rq@ = — (Fi, 8Ly Therefore F has all the first gener-
alized derivatives belonging to L,(Q), that is, F belongs to H*(Q);
the relations (5) hold, and therefore inequality (a) also holds when
kE=1.

Suppose now k& = 2. We have already proved that F(z) € HY(Q)
and formulas (5) hold. By Property 2, the right-hand sides of (5),
being the function of y, belong to H'(Q). Then the functions Fy, (z)
also belong to HY(Q). Consequently, F € H*(Q) and inequality (a)
holds for £ = 2. Regarding third derivatives as the derivatives of
second derivatives and so forth, we see that the assertion is true for
any k.

The following property will be used in Subsec. 2.

6. If the region Q is a rectangular parallelepiped, then C%(Q)
(and hence C*(Q)) is an everywhere dense set in H*(Q).

It suffices to establish this assertion for the parallelepiped II, =
—{|x,- |<<a;, i =1, ..., n}, where a = (ay, ..., a,), a; >0,
i=1, n.

Take any function f € H*(Il,) and any & > 0. Whatever be a,
0 < | a | <k, the function D%f € L,(Il ), therefore, by Theorem 2,
Sec. 2.2, there is a function (z) € C(Il;) such that || D% —
— Qo |l < &

In the parallelepiped Il,; = {| z; | < a;0,i =1, ..., n} where
o>1,1, € Haa, ‘consider the function Fc(x) = f(ac/c) By Prop-
erty 4 F, € H¥Il,), and hence F, € H*Il,). Since

| D*Fof2) — 9a(a) | aaa,

<|| D*Fo(2) — 9a(@/0) || a1,y T || P (2) — @a (2/0) |,y
and by Theorem 8, Sec. 1.8, Chap. II,
| D*Fo(z) — a(2/0) ||L,m,,)

=” L —— D*%f (2/6) — @y, (x/0)

el

[L’(nac)< ” (1 olod ) D%f (zlo) ”L,m

+ || D*f (2/6) — @a (2/0) ||L,(11,,) < 0™/2 (1 — ——) | D%f ||z, + o™/,

glel

00)
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it follows that
iD%Fo(2) — @a() [|Lycrry)
<Lon2 (1_W) | D%F ||Lymy + 072 + || @al®) — ¥a(2/0) ||Lyar,y-

Therefore for any a, 0|a|<k
{l D*f(z) — D“Fo(x) ”L.(n < IDaf—fPa ||L,(n )+”DaFa—(Pa”L,(Ha)
<e(1+4-0m/2) fogn/2 (1—7.?) 1 D%F |y 2 Tl Pal@)—Pa(/0) [|L a1,

The function @q(z) € C(I,),which means that | 9a(x)—Po(2/0) || L,(m Ring
—0 as 0—1. Therefore a 6=0y>1 can be found such that for
all @, 0<|a|<k, ||D*f(z) —D%Fqy(z) ||L,a1,)<<3e. Consequently,

11— Foy g, < Ce.

Take now the averaging function (F;),(x) for the function

Fo(2) € H*(Iy5,). By Property 3, 1 (Foo)n— Fo, “H"(na)éo as h—0,

thereby implying that a number hA=h, can be found such that
| (Foo)ne=—Fo, “Hh(n <8 The function (Fg,)n, (z) €C™ (I1,) and
a

| (Fodno—f “H"(Ha><” (Foo)ng— Fo, ”H“(na)
+ ” Foy—f “Hhma)< (C+1)e. .

2. On Extension of Functions. Suppose that a function f(z) is
defined in a region Q and the region Q' contains Q. A function F(x)
defined in Q' and coinciding with f(z) in Q is called extension of
f(x) into Q'. Note first that every function f(z) has an extension.
For example, F(z) can be taken as zero in Q' \_ Q. When f(x) €
€ L.(Q), we already used such an extension above. However, if
f(z) is a smooth function in Q, for example, f € H*Q) (or f€
€ C*Q)) for some k> 1, then it is natural to seek its extension
F(x) in the class of functions that are as much smooth in Q’: be-
longing to H*(Q’) (or to C*(Q’)). We shall demonstrate that under
definite conditions on the boundary of Q such extensions are possible.

Suppose first that Q' is the cube K, with side 22 >0, K, =
={lyil<<a, i=1, ..., n} (independent variables here will be
denoted by y,, ..., y,) and Qis the parallelepiped K = K,
{1 {y» > 0}. The extension Z(y) of a function z(y) € C*(K}) into
K, = K, {yn << 0} is defined as follows:

h+1
Zly) = 2 Ainy’s —ynli), (6)
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where y' = (y;, . . ., Yn-y) and A4, . .., Ay, is the solution of the
linear algebraic system of equations
h+1
DV (—1/i)¥4;=1, s=0,...,k (7)
i=1

Note that when y € K3, the points (y', — y,/i) in (6) lie in K¢ for
all i =1, ..., K+ 1. The determinant (Vandermonde’s determin-
ant) of the system (7) does not vanish, therefore the system (7)
has a unique solutlon A, ...

For any y° = (y*, 0) € Kaﬂ {yn = 0}, the function Z(y) is
taken equal to llm z(y). Thus the function Z(y) is defined on

y-y°
veK

entire K,. Since z(y) € C*(K%), by (6) Z(y) € C*(Kz). We shall
first show that Z(y) € C(K,).

Passing to the limit in (6) as y — y°, y € K5, and taking into
account (7), we have

R+1 B+l
lim 2()= 3 4 lims() = 3 4:Z () = 26°),
Y-y
YeK, ycxa
which means that Z(y) € C(K,).
For any vector a = (a4, . .., &), | @ | < k, with integer com-
ponents, by (6) we have, for y € K3,
ht1
D*Z(y)= )_? Ai(—1/0)* D%(y’, —yali). (8)

Letting y - y°, y € K3, in (8), we obtain
“lim D*Z(y) = lim D*Z(y)

y-y0 y-y0

veEKg 1394
for all possible o such that | & | = 1. Then at the points in the plane
K, N {y» = 0} all the first derivatives of Z(y) exist, and they coin-
cide with corresponding limiting values. Therefore Z(y) € C}(K,).
Repeating these arguments and using (7), we find that Z (y) €
€CYK,) for all I <k.

For any a, | a | << k, the relation (8) yields, for all y € K3,

h+1 h+1
| D%Z(y) |> < Z A} 2a - |1 D%(y’, —yali) |2
i=1

h+1
=Cy D) | D*2(y’, —ynli) 2.

i=1



Integration with respect to y¢€ K; gives
k+1

j1°zRay<c, ) § 1D, —yali R ay
Kz =1 K
R+1
6 Xi | Dwkdy<c [ D)y
=1 K7 N{y, <a/i} I.(Z

Since Z(y) = z(y) when y € K¢, it follows that
102 Py = | 1D°z@w) P ay + § 10°20) [y

K, K} K
<c | 1Dy pay.
Kg

Summing these inequalities over all @, |a | << k, we obtain the
inequality

“ Z ”Hh(Ka)<01 ” z ”Hh(K;)’ (9)'

where the constant C; > 0 does not depend on the function 2z(y)-
Thus an extension Z(y) € C*(K,) has been obtained for the func-
tion z(y) € C*(K}) and for this extension inequality (9) holds.
Suppose now that the function z(y) € H*(K}). By Property 6 of
the previous subsection, there is a sequence z; (y), s =1, 2, .. ., of
functions in C*K}) converging to z(y) in the norm HR(KY):
| 2, — 2 g gy = 0 as s— oco. Denote by Z; (y) the extension of

z4(y) into K, obtained in abovementioned manner, Z (y) € C*(K,).
From (9) follows the inequality || Z;— Z, Ith(Ka) <C,llzs—2p ”H"(KZ)
which shows that the sequence of functions Z,, s =1,2, ..., is
fundamental in the norm H*(K,). This means that there is a func-
tion Z(y) € H*(K,) to which this sequence converges in the norm
H*(K,). Since Z(y) = z(y) for y € K%, the function Z(y) is an
extension into K, of the function z(y). The function Z(y) clearly
satisfies inequality (9).

Thus the following result has been established.

Lemma 1. For any function z(y) € H*(Ki) (C*(K%)) there is an
extension Z(y) € H¥K,) (C*K,)), and inequality (9) holds.

Note that since equalities (6) hold for Z(y), s=1, 2, ..., and
2, — z in HYK}) and Z, - Z in H*(K3), it follows that this equal-
ity also holds for Z(y).

Lemma 2. Suppose that the function f(z) € H*Q) (or C*Q))
and for any point § € @ Q there is a function Fy(z) defined in the ball
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S:(8) ={lz—E|<<r} of radius r = r(g) > 0 such that Fe(r) =
= f(z) for z€QN S:E) and Fy(z) € HS:(E) (CH(S.(¥) (the
function Fg(x) will be referred to as the extension of f(x) into the ball
S:(E)). Suppose further that inequality

[ Fellgres e < Ca |l f It (10)

where the constant C, does not depend on f(z), holds.

Then for any p > O there is an extension F(z) into the region Q°*
of the function f(z) having the properties: F(x) € H*Q®) (C*(Q®)),
F(z) = 0 outside Q°*, there is a constant C4 > 0 depending only on
Q and the number p such that

| F | e oy <Csll f lzr oy (11)

Proof. According to the hypothesis, for any point & € 6 there
exists a ball S,(§), r = r(E), in which either the function f (z) €

€ H*(S,(E)) (C*(S, () itself is defined if & € Q or else its exten-
sion of the same class. Assume that r(§) <<p. The aggregate of

balls S,/3(8) for all possible & € Q covers the set Q; accordingly
(recall that the region Q is bounded), from this cover a finite sub-
cover Sr3(z"), . . ., Sry/3(zN), where r; =r(z%), can be chosen.

Let the function 8;(z) € C*(R,), 0;(x) =1 in S,i/3(xi) and
9;(x) = 0 outside the ball S,ilz(xi), i=1, ..., N. We denote by
o;(z) the function 1 — 6;(z), i =1, ..., N, and construct the
functions
Y1(z) = 04(x), Va(z) = 04(2) O5(2), ...,

vi(z) =04(z) ... 0;4(2) 0i(2), ILN.
It is clear that vy;(z) € C™(R,),
vi(@)=0in U S, () (12)
<t
and .
vi(z) =0 outside S z(z"). (13)
Further,
Yi(x)+ ..o v (@) = (1 —0y(2)) + 04 (2) (1 —02(2))
F o401 (@) e 01 (@) (=03 (@) =1— 0y (2) ... 0; (),

therefore
' V(@) 4 Hvi@)=1 (14)
for z€ U S,J_,s ('), and, in particular, for 2€S, 3 ().
1<i

* QP is the union over all z° € Q of the balls {| z — 2°| < p}.
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We define functions f; (z), i =1, ..., N, for all z € R, in the
following manner: in Sy, (z) the function f; (z) coincides with either

f (z) or its extension Fxt (z) into S, (zY), outside S,, (:c‘) the func-
tion f; () =f(z) if € Q or f; (x) =0 if z ¢ Q.

By (13) and Properties 2 and 4 of the preceding subsection, the
function y; (z) f; (z) € H* (Q°) (C* (Q")). Therefore the function

N
Fm=;nMwm (15)

belongs to H* (Q°) (C* (Q")).
Let z be a point of Q and S /3 (z") the first ball of the chosen finite

subcover containing this point. As fi () = f (2) for all i=1, o N
and by (12) y; () f () = 0 when i > [, so F (z) = Z Vi (x) f (x)

= f (z) in view of (14). This means that the functlon F (z) given
by (15) is an extension of f (z). The relation F (z) = 0 outside Q"2
is a consequence of (13) and (15), because r; << p, i =1, .. .,
Inequality (11) readily follows from (10) and (15). [}

Theorem 1 (on extension). Let Q and Q' be bounded regions, Q €
€ Q’, and 3Q € C*. Then any function f (z) € H* (Q) (C* (Q)) has an

extension F (z) €H* (Q') (C* (0")) into Q' with compact support.
Moreover,

”F”Hh(Q) C“f”Hk(Q) (16)

where the constant C > 0 depends only on Q and Q’.

Proof. Take an arbitrary point § € Q. In some neighbourhood U
of this point the equation of dQ can be expressed (if necessary, by
redesignating the variables) in the form z, = ¢ (3, ..., Tpn)
with ¢ (z;, ..., z,_,) € C* (D), where (n — 1)-dimensional region
D is the projection of dQ [} Uy onto the plane x, = 0. It is assumed
that z, > ¢ in Q 1 U:. The change of variables

=z;—&, i=1,...,n—1, yn=$n‘—q3(xh_-~.-s Tn-1) (17)

maps U one-to-one onto some neighbourhood Q of the origin which is
expressed in terms of the variables y;, . . ., yn. Let K, be the cube
{lyil<<a,i=1, ..., n}lying in Q and U its original under the
transformation (17). The image of Q (| Ut is then the parallelepiped
Ky = Ko) {yn >0} and the function f (z) defined in Q | Ug be-
comes the function z(y) =f(y + &, .., Yna+ &y Un +
+ @@+ &, ... Yo-r + Eny) belonging to H (KE) (C* (KD)),
by Property 5 of the preceding subsection.

9—-0594
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By Lemma 1, there is an extension Z (y) of z (y) into the cube K,.
By the inverse transformation of (17)

zi=y;+8, i=1,...,n—1, zr=y,+0{yi+&, -'-1yn—1+§n-t)

this extension generates extension Fy (z) of f (z) from Q (| U; into
Ug, and, more so, into the ball S, (§), contained in Ug, of radius r =
= r (§) > 0 with centre at the point &. Moreover (see Property 5,
Subsec. 1),

| Fr ”Hh(sr(g))< | Fe ”Hh(Ué)<C3 Il Z ”Hk(Ka)’
|2 ”Hk(K;)<C4 I f”Hh(Ué {’]Q)<C’l ”f"Hh(Q)’

where the constants C4 and C, depend only on the function ¢ (zy, . . .
.+ Zn-q) from (17) and its derivatives up to order k. These ine-
qualities and (9) imply (10). The conclusion of the theorem now fol-
lows from Lemma 2 if p is taken less than the distance between the
boundaries dQ and 4Q’ of Q and Q'. |}

Remark. The extension F (z) into Q" of the function f (x) belong-
ing to H*(Q), obtained in the above proof, satisfies not only the
inequality (16) but also the inequalities

I F”H‘(Q')<C I f”Hs(Q)
for all s<Ck.

So far the functions were extended from a given region into some
wider region. In the sequel we shall have to use the smooth extension
of a function from the boundary.

Suppose that a continuous function f (z) is defined on the bound-
ary 0Q of the region Q. A function F (x) continuous in Q is called
extension into Q of the function f (2) if for all x € 9Q F(z) = f ().
The following result holds.

Theorem 2. If the boundary 8Q € C* for some k > 1, then any
function f (z) € C* (0Q) has an extension F (z) into Q which belongs

to C*(Q). Moreover,
” F ”ck(a)<c ” f ”c"(aQ)'

where the constant C = 0 does not depend on f.

Proof. Since dQ € C*, for any point & € dQ there is a number p =
= p () > 0 such that a portion of the boundary dQ N S, (§)
(Sp () denotes the ball with radius p and centre at the point &) is
uniquely projected into a region D¢ in some coordinate plane, the
plane z, = 0, say, (it can be always achieved by redesignating the
variables) and let the equation of the surface dQ N S, (§) have the
form z, = ¢ (z'), 2’ € Dy, where ¢ (z') € C* (Dy).

Choose a sufficiently small number r=r(g)>0 so that the
(n—1)-dimensional ball {|z'—&|<<r} €D;. Then the function
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Fe (z)=1(z', 9(2’)) (independent of z,) of n variables is defined
on the closed ball S, (), belongs to C* (S, (E)) and coincides with f
on 9QN S, (). Moreover || Fgllohsm;<C ()l fllorag Where the
constant C (§) does not depend on f.

The set of balls S,/3 (E) covers the boundary dQ for all & € 9Q.
From this set we choose a finite cover of the boundary S, 3 (z), ...
oo« Sryss (zN), where ry =71 (z). .

For any i =1, ..., N, we define the function f; (z) as follows:
in the ball S;, (z*) take it equal to F i (z), outside Sy (z¥) take it
equal to zero if x ¢ dQ and equal to f (z) if x € Q. Then for all i =
=1, ..., N the functions f; (z) y; (z), where y; (z) is the function
constructed in the proof of Lemma 2, belong to C* (R,), and hence
to C*(Q). Hence the function

N
F (iE)=§1 Vi () fi (2)
also belongs to C*(Q).

Take an arbitrary = € Q and assume that Sr3 (%) is the first

ball of the selected finite cover of the boundary containing this
point. Since for all i =1, ..., N f; () = f (z), relations (12) and
l

(14) imply that F () = D) v; (z) f (x) = f (z). Thus the function
i=1

1
F (z) belonging to C* (Q) is an extension of f (). The desired esti-
mate is a consequence of corresponding inequalities for the functions

F i (2). [ |
3. Denseness of C™ (Q) in H"* (Q). Spaces H*(Q). Let the boundary
8Q of Q belong to the class C*.

Theorem 3. The set of functions C*(Q) (and hence C*(Q)) is every-
where dense in the space H* (Q).

Proof. Consider any region Q' for which Q is strictly interior,
Q €Q'. Let f(x) be any function belonging to H* (Q). By Theorem 1
of the preceding subsection, there is an extension F (z) belonging to
H* (Q') of f (z) from Q into Q’. By Property 3 (Subsec. 1), ~

ith‘"‘f“Hh(Q)z“Fh—F”Hh(Q)—"O as h—0,
where F, (z) is the averaging function for F (z). Since F (z) €

€ C* (Q), the conclusion of the theorem follows.

The set C* (Q) is a linear manifold in H* (Q). From Theorem 3 it
follows that if the boundary 9Q € C*, then the closure of the set

C* (Q) in the norm H* (Q) coincides with H* (Q). _
Let S be an (n — 1)-dimensional surface lying in Q. The subset
C%(Q) of functions belonging to C*(Q) that vanish on the intersec-
g*
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tion of Q with some neighbourhood of S (every function has its own
neighbourhood) is also a linear manifold in H* (Q). The closure of

C%(Q) in the norm of H* (Q) is a subspace of H*(Q); this will be de-
noted by H%(Q).

When S = 4Q, the subspace Hig (Q) will be denoted by H* (Q)
(the norm in H* (Q) is the norm of H* (Q)). Theorem 6, Sec. 2.3,

implies that for £ = O the subspace H* Q) = H° (Q) coincides with
the space H® (Q) = L, (Q). In Subsec. 1 of the next section it will

be shown that H* (Q) does not coincide with H*(Q) when k > 1.
If the region Q is contained in Q', Q — Q’, then any function

f (z) in ct (Q) extended as being equal to zero in Q' \_Q belongs to
C" (Q'). Therefore from the definition of H* it follows that the func-
tion f (z) belonging to it (Q) and extended as being equal to zero

into Q' \\ Q belongs to H* (g’).
4. Separability of Space H*(Q). It is assumed that the boundary
dQ of Q belongs to the class C*.
Theorem 4. The space H* (Q) is separable.

Proof. Consider first the cube K = {|z; |<m, i =1, ..., n}.
The countable system of functions (2m)™2%i(m *) where m =
=(my, ..., my),m; =0, 1, +£2, ..., i=1,... n, (m2)=
= mx; + ... + myz,, is orthonormal in L, (K). Any function

f (z) € L, (K) has a Fourier series expansion
1 i x) — 1 < i(m
Tl Z fmei™ ¥ = 2m)2 Z E fmeitm 2, (18)
m s=0 s<|ml<<s+1

(f (@), ™ x))Lz(K)
where f,= TR

|mPE=m24-... 4 m2.
Let f(z)€C™ (K). First note that for all m
| fm | < @021 llec@ = Co- (19)

Put m'=(m,, ce ey mn...i). x'=(x‘, ceey :I:,,_i), K'={|x,~[<n,
i=1,...,n—1}cR,_;. If mp5=0, then

are Fourier coefficients of f(r) and

1 1 i(m, x)
fm =2 Q{f(x)e dz

1 S eim’, x*) dy’ ( f (', x,) e*n™n d:l:n)

= Tomn/2
en? )

|
.'_‘Q_’—;::}

__ 1 (_ 1 )PS orf (z) ¢itm, ) dz

(2m)™/2 imp ozf
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. @02 | flicp, .
for any natural p, whence it follows that lfml\————I m” IPICP(K) ;
n

accordingly, by (19),

| | I fllepy 2P @m™>
miIss {A+|mp|)P T (4 |mp )P

for any natural p.
Apart from this inequality, the inequalities

’

Ifml —m—[—— -i=1,..., n—1,

also hold, and therefore also the inequalities
1 C;,
{(1+lmil)3’}= (1+max|m;[)p * (20)

| fm | < C; min

Since max |m; |>—171: | m|, from (20) there follow the inequalities
i n
C
P p
[fml< T3 " STFmE
(1+—=1Imi
Vn
true for all m and any natural p. Take p = n + 2. The number of

terms in the summation Z‘, fméi™ %) which is equal to the
s m |<s+1

number of points m with integer coordinates in the annular region

s<<|m|<<s+ 1, does not exceed the number of such points in

the cube with side 2 (s + 1), that is, does not exceed (2s + 1))".

Therefore

(21)

Crig2? (145" Cpyq2n
S femo|< N |l Sl I Gl

s<ml<s+1 s<|ml<<s+1
which means that the series (18) converges uniformly in K.
Taking p = rn + 3, we find that for any r, 1 << r < n,

, . Cnyg2t (14s)0¥1  Cpog2n
z; i(m, x) n+gs \ n+s
"mrfme (1 [ S)"+3 - (,1 [ 3)2 .
s<ml<<s+1

<

Therefore the series obtained from (18) by termwise differentiation
with respect to z,, r = 1, . . ., n, converges uniformly in K. It can
be similarly shown that the series obtained from (18) by termwise
differentiation ! times, ! = 2, 3, ..., converge uniformly in K.

Denote the sum of (18) by g (x):

g(z)= Z fmeHm ),

(2n)"/ (2mnZ
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We have shown that g (z) € C” (I?_). This means that also the
function @ (z) = g (z) — f (z) € C* (K). Let us show that ¢ (z) =
=0 in K.

Since (g (z),

ei(m, x)

(ZT)MT)Lz(K)—__:fm, for all m

S 9 (z) (™ 9 dzx=0.
K

Having fixed an arbitrary m’ = (m,, ..., m,_), we write this
equality in the form

19

g eimn¥n [S (2", z,) eitm’- =) dz’ ]dx,, =0.

-

Since the function ¢, (z,) = S o (z', z,) etm" =) dz’ which is

&
infinitely differentiable with respect to z,, | z, | << m, is orthogonal
in the space with the scalar product, L, (—=n, n), to the functions

eimpxn for all m, = 0, =1, +2, ..., it follows that for any m’
P (2) =0 for all z,, |z, | < n. Let m" = (my, ..., m,_,),
' = (2, ..., ZTn_y), K" =K' {xn-, = 0}. For any fixed m”,
any z,, |z, | << x, and all m, , = 0, 1, ..., we have

0= S ?(z', zn) 1™ *) da’
F3

é'_’—;:

e®n_4™n_y1 dxy_q S Q(z", Tn_y, x,) €I M) dz",
which- implies
S @ (2", Tn—y, Tp) ™ N dz"=0
K’I
for any xp—, Zn, | Zny | < 7, | 2, | < m and all m". Continuing in
this manner, we find that ¢ (:c) = 0in K.
Thus it has been established that any function f () € C* (K)

has series expansion (18) that converges uniformly together with

derlvatxves of any order in K. Evidently, this holds for any cube
K, ={lz; 1<a, i=1, , n}.

We now turn to the proof of the theorem. Take a number a > 0 so
large that Q € K,. By Theorem 1, Subsec. 2, any function f (z) €
€ H* (Q) has extension F (z) € i (K,) with compact support in
K,. Any such function F (zr) can be approx1mated according to
Property 3, Subsec. 1, in the norm of H*(K,) by averaging functions
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F, (z), which are infinitely differentiable and for sufficiently small 2
have compact supports in K,.
As shown above, every function E n (2) (for sufficiently small %)

can be approximated uniformly in K, together with all the deriva-
tives (and therefore also in the norm of H* (K,)) by partial sums of
its Fourier series. Consequently, any function /) (z) can be approx-
imated in the norm of H* (Q) by a linear combination of the system
. T
Pa ™% Gith coefficients whose real and imaginary parts are ratio-
nal numbers. Thus we have constructed a countable set which is

everywhere dense in H* (Q). |}

§ 5. PROPERTIES OF FUNCTIONS BELONGING
TO H! (Q) AND H! (Q)

1. Trace of Functions. Let Q be a region in R, and S a smooth
(n — 1)-dimensional surface lying in Q. If in Q there is given a func-
tion f(z) defined at every point (that is, if the equality of functions
is understood as the equality of their values at every point), then
we can consider the value of this function on S. That is, we can con-
sider the function f |,es defined at every point of S whose values for
all x € S coincide with the value of f (). If we consider a function
defined a.e. in Q (that is, functions are considered equal if they coin-
cide a.e.), then the value of f on a fixed surface S is determined not
uniquely: since mes § = 0, the function can assume any value.
Nevertheless, one can speak, in a definite sense, of values on
(n — 1)-dimensional surfaces of an almost everywhere defined func-
tion as well.

For the sake of simplicity, assume that the surface S = S (z,) is
the intersection of a region @ with the plane x, = const. Then,
according to Fubini's theorem*, for almost all z,.the function f
has the value f lxes(x,,) on S (z,) which is defined -almost every-
where on S (naturally, the equality of functions of (n — 1) variables
is understood as equality of their values a.e. in the sense of (n — 1)-
dimensional measure). Moreover, it is apparent that for almost all
x, the value on S (z,) of a function continuous in Q is a continuous
function on S (z,), whereas for almost all z, the value on S (z,) of
a function belonging to L, (Q) belongs to L, (S (z,)).

In the investigation of solutions of differential equations, condi-
tions are often prescribed which must be satisfied by the solution on
some fixed (n — 1)-dimensional surface, for instance, on dQ (the
boundary conditions). Therefore we must generalize the meaning

* More precisely, according to Le‘fnma 4, Sec. 1.11, Chap. II.
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of the value on an (n — 1)-dimensional surface S of an a.e. defined
function—the idea of the trace of a function on S. For an a.e. defined
function satisfying some smoothness conditions this idea can be
introduced uniquely. In particular, this is easily presented for a
continuous function in Q.

By the trace f |s of a function f € C (Q) or an (n — 1)-dimensional
surface S we mean the value on this surface of a function defined at
every point and continuous in Q that coincides with f almost every-
where (that is, by the trace on S of a continuous function is meant
its value extended uniquely with respect to continuity on S). As
usual, here the equality of functions defined on S is understood as
a.e. equality in the sense of (n — 1)-dimensional measure.

The notion of the trace of a function on S can also be introduced
for functions belonging to certain spaces with integral norms; in
particular, for functions in spaces H* (Q) with k> 1. Since for
k>1all "o (Q) are contained in H! (Q), it is enough to introduce
this notion for functions belonging to H* (Q).

Let S be a surface of class C! (see Chap. I, Introduction) lying in
Q, and let S, be its simple piece that is projected uniquely onto a
region D in the plane {z, = 0} and having the equation

z, = ¢ (z'), where 2’ = (2, . . ., Zo_)), ¢ (z') € C* (D).
The region Q is bounded, therefore it can be assumed enclosed in
acube {0 <z;<<a,i=1, ..., n}for some a > 0. Suppose first

that f (z) belongs to c (0), and equate it to zero outside Q. Accord-
ing to Newton-Leibnitz formula

@(x")
’ , )
i oty U,
0
which, on applying Bunyakovskii's inequality, yields

a

d§ <aS | 0f(z7sn) dE,,.

| fls P <o (=) j ] e
0

o

Multiplying this inequality by /1 + o% + ... + (p;in_1 and
integrating over D, we obtain

17 1uso= [ 17lsi2dS (< C2 £ [ltncan (1)
81
where the constant C > 0 does not depend on the function f.

Since the surface S can be covered by a finite number of simple
pieces, pieces of type .S, (that possibly project onto other coordinate
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planes), we find, suinming the respective inequalities (1), that
I F e <Cl fllae, (2)

where the constant C > 0 does not depend on the function i

The inequality (2) also holds for any function f (z) € C* (Q). To
show this, it suffices to use Theorem 1, Sec. 4.2, on extension (assum-
ing, of course, dQ € C') and inequality (2) for a function belong-
ing to C!' and having compact support.

Suppose now that f € H'(Q). From Theorem 3, Sec. 4.3, it
follows_that there is a sequence of functions f, (z), p=1,2, ...,
in C! (Q) which converges to f in the norm of H! (Q). For the
function f, — f; inequality (2) assumes the form

| fp—falleas)<C|l fp—fqllmre)- 3y

Since || fp — fq llmy@ =0 as p, g— oo, it follows that also
Il fo — fq llLysy = O as p, ¢ = oo. This means that the sequence of
traces f, |g of functions f, on S is fundamental in L, (S). Since
L, (S) is complete, there is a function fg (z) € L, (S) to which the
sequence of traces f, |s converges as p — oo. Passing to the limit,
as p— oo, in (3), we obtain

| fo—Fslleas <C || fo—f @ (4)

Let us show that the function f5 (z) does not depend on the choice
of the sequence f, (z), ¥ =1, 2, ..., which approximates f () in
the norm of H! (Q). Indeed, le_t fr (), £ =1, 2, ..., be another
sequence of functions in C! (Q) for which || f — fu |lurq — 0 as
k — oo, and let fg (x) be the limit in the norm of L, (S) of the se-
quence fp |s , k=1, 2, .... Then

| fs—Ts lLasy<Il fs — fa lleacs) + 1| fo — Fa lleacs) + | FTa— T llzacs)y
<C ( ” f— fq ”Hl(Q) + ” fq _741 “Hl(Q) + ” ?q— fs ”HI(Q))r

by the inequalities (3) and (4). Since, when ¢ — oo, the right-hand
side of the last inequality tends to zero, we have fg = Js.

The function fg (z) (as an element of L, (S)) will be called the
trace of the function f (x) € H* (Q) on the surface S and will be denoted
by fls (Il f ls llysy will be denoted by || f llL,s))-

Thus the trace of a function is defined for any element f € H® (Q).

We now show that the notion of the trace is, in fact, a generaliza-
tion of the notion of the value of a function on an (» — 1)-dimension-
al surface. Assume for the sake of simplicity that S = S (z,) is
the intersection of the region Q with the plane z, = const, and that
the function f € H* (Q). Consider a sequence of functions f,, (z), m =
=1, 2, ..., in C* (Q) which converges to f in the norm of H* (Q).
By definition, the trace f Is(xp) for each z, is the limit in L, (S (x,))
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of the sequence of functions f,| S(x,)- Since the sequence fm, m =
= 1,2, ..., convergesin L, (Q) to f, a subsequence fr,,, k = 1, . . .,
can be chosen, in view of Remark to Theorem 1, Sec. 2.1, that con-
verges to f a.e. in Q. This means that for almost all z,, the sequence
fmh lsex Y k=1, 2, ..., converges to the value of f on S (z,)
almost everywhere in the sense of (n — 1)-dimensional measure.

Consequently, the trace and value of f on S (z,) coincide for almost
all z,.

Thus we have the notions of the trace on S of a function continuous

in Q and that of a function belonging to H! (Q). It is claimed that if
a function f belongs to C (()_) and to H! (Q), then its trace as the trace
of a function in C (Q) (denoted by f |5) and that of a function in
H! (Q) (denoted by f |5) coincide. In fact, the function f can be extend-
ed, by Theorem 1, Sec. 4.2, into Q’, Q € Q’, in such a way that
its extension F will belong to C (Q°) and to H' (Q’). Consider the
averaging functions Fj (z) for the function F. Since Fy, — F as h —
— 0 in both the norms of C (Q) (see Sec. 1.1) and H* (Q) (see Sec. 4.1,
Property 3), we find that, ash — 0, Fy(z) |s— f |5 in the norm of

C (S) and F () s> f|s in the norm of L, (S); accordingly,
fls=1ls

The trace f |s of a function f (z) € H‘s (Q) (the definition of this
space is given in Sec. 4.3) is zero, since the function f |s is the limit
in the norm of L, (S) of functions vanishing on S (of traces on S of

functions in Cé (Q)). In particular, the trace f |sg of a function
f(x) € H1 (Q) is zero. By the way, this establishes the assertion of

Subsec. 3 of the preceding section which states that H" Q) == H* (Q)
for k£ > 1: the function equal to 1 belonging to any H* (Q), k > 1, is

continuous in Q, therefore its trace on dQ is 1; hence this function

does not belong to H* (Q) for any k > 1.

The trace f |s of a function f € H* (Q) satisfies the inequality (2).
To establish this, it is enough to pass to the limit, as p — oo, in the
inequality (2) written for the functions f, (z) (f, (z) € C* (Q), || fp —
— fllai@— 0 as p— o0).

- It was assumed so far that the boundary dQ € C*. However, when
S € Q, for the definition of the trace on S of a function and the
proof of inequality (2) this restriction can be done away with. In-
deed, in this case there is a region Q' € Q such that Q" € C' and
SeQ.

Thus we have proved the following theorem.

Theorem 1. Suppose that an (n — 1)-dimensional surface S of class

1 either belongsto Q', Q' € Q, or instead S Q and, in addition,
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9Q € C*. Then any function f (z) € H! (Q).has on this surface the trace
f |s belonging to L, (S), and the inequality (2) holds.

Let f(z) € H* (@), k>1. Since any generalized derivative D%f
of order | o | <<k belongs to H' (Q), this derivative has, by Theo-
rem 1, the trace D%f |s belonging to L, (S) on any (r — ’1) - dimen-
sional surface S of class Cl. Moreover, the inequalities

| D*f ||Laes) < C |l fllmto+1 @ < C | f ||t (5)

hold with constant C > 0 independent of the function f.
2. The Formula of Integration by Parts. Let the functions f (z)

and g (z) belong to H* (Q) and dQ € C*. Then foranyi=1, ..., n
the formula of integration by parts holds:
[ fxgde= | 1gnias— | re.,dz. (6)
Q oQ Q

where n; = cos (n, ;) is cosine of the angle between outward normal
n to the surface dQ and the z;-axis, and the functions f and g pres-
ent under the integral sign over dQ are traces of functions f and g
on Q. Thus, so far as the applicability of formula (6) is concerned,
functions belonging to H! (Q) behave just like functions in C! (Q).

To prove (6), consider- (Theorem 3, Sec. 4.3) the sequences f, ()
and gp (2), p =1, 2, ..., of functions in C! (Q) which converge,
respectively, to the functions f(z) and g (z) in the norm of H! (Q).
Formula (6) holds for functions f, and gp:

S fox,8q dz = S fpgqnidS — S Fo8as, d.
Q Q" Q

Letting here p — oo and ¢ — oo (and noting that || f, — f [l L,ceq) =
— 0, |l gg — & Il L,c6g) = 0), the relation (6) follows.

It readlly follows from (6) that if g € H* (Q) and the components
fi(@),i=1,..., n,of avector f(z), f(2) = (f, (), . .., fa (2)),
belong to H (Q), then the relation ;

§gdivfdz=j g(f-n)dS—Sf-ngx 3 7)
Q oQ Q
holds.

3. Properties of Traces of Functions Belonging to H! (Q). A Crite-

rion for Membershlp of the Subspace H! (Q). Let Ty he a sufficiently
small (that is, contained in a ball of sufficiently small radius To)
simple piece of a surface of class C* lying in @, and let T’y be unlquely
projected into a region D in the coordinate plane {z, = 0}, z, =
= ¢ (z'), 2 €D, ¢ (z') € C* (D), is the equation of T',.

Let Ts denote the surface {z' € D, z, = ¢ (') + 6} and Qo the
region {z' € D, (p(x)<xn<q)(x) + 6} when 6§ > 0 or the re-
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gion {z' €D, ¢ (2') + 8 < z, < ¢ (z')} when 8§ << 0. Note that for
sufficiently small | 8 | (and sufficiently small r,) at least one of the
regions Q, 5| or Q_ s is contained in Q. B

Let z € Q3 — Q. Then for any function f € C*(Q) we have

o(x’)+06

’ ’ ’ ’ af ,7 n
fe 0@+ —1@ o) = | Ltlan,
@(x")
whence it follows that
(x")+6 of @ 2m) |2
’ ’ ' ’ Z,Tp
o(x")
Multiplication of this inequality by V' 1+ cp,czl + ... + ¢x,_, and
integration over D yield
17 @) =1 @) o <C VIS | fl|my, (8)

where 2°=(2’, @ (z')) €Ty, 20=28(2%=(2’, @ (2')+8)€Ts, and
Ci=max V1+¢i+ ...+,

x'€D
1t is obvious that, apart from inequality (8), there also holds the
inequality

17 (2% —f (@) .y <CV T8T || f llzscay- 9)

Approximating the function f € H! (Q) by functions of class
C! (Q) and using the definition of the trace of a function belonging to
H! (Q), we find that inequalities (8) and (9) hold for all the functions
belonging to H* (Q).

These inequalities- express a definite continuity of traces on sur-
faces I's of functions belonging to H! (Q) depending on the dis-
placements of these surfaces.

If the trace on I'y of a function f is zero, f |, = 0, then (9) im-
plies the inequality

I ey < C28 || £ llirrayy < C20 | f llEncay

for any p and §, 0 << 6 << p << po, Where p, is such that Q, = Q
(for the sake of definiteness, we take p, > 0). Integrating the last
inequality with respect to 6 € (0, p) and using the absolute contin-
uity of the integral, we find that

| fllz.@y =0 (p) as p—0. (10)
Thus we have proved that if f € H* (Q), f Ir, =0 and Q, = @

(in particular, Iy may be a piece of the boundary 4Q), then (10)
holds.
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Lemma 1. If f € H' (Q) and its trace on the boundary f |aq= 0

then
1/ llz.e g =0(6) as 8—0. (11)

Proof. Since the boundary dQ € C*, for every point y € dQ there
is a ball S,, (y) of radius 2r, r = r (y) > 0, with centre at this point
such that a piece of the boundary dQ | S,, (y) is projected uniquely
onto an (n — 1)-dimensional region D,, (y) lying in one of the coor-
dinate planes, say the plane {z, = 0}. The equation of the piece
9Q N Sor (y) is of the form z, = ¢ (z'), 2" €Dy (¥), ¢ (') €
€ C* (Dyr (y))- Denote by I'y = T'y (y) the surface dQ N S; (y), and
by I's = I's (y) and Qs = Qs (y) the “parallel” surface and the cor-
responding region constructed with respect to I'y in the manner
described above. Choose 8§, = §, (y) so small in absolute value that
the region Qs = Qs () = QN Sar (y)- _

Since the distance between dQ \ S, (y) and s, (y) is positive
and the distance between dQ (1 S, (y) and I's (y), where & € (0, §,)
if 6, > 0 and & € (8,, 0) if 8, << 0, is obviously greater than y | § |
with some constant y =y (), 0 <<y << 1, a vy, =7 (1), 0 < vo <
<< 1, can be found such that for all such 6

inf |2—E| > 0] 8- (12)

x€0Q

§€r6
From the cover of dQ by the balls S, (y), y€dQ, we choose
a finite subcover S, (@, ..., Sy, (zN). Then. there exists a num-

ber §;>0, 6; << min |§,(z™)|, such that
t<m<N

0\ 061 @ G QG xm (-Tm). (13)
meyq 00(xT)

Furthermore, by (12), for all §, 0 <8< §;,, and m =1, ..., N
(Q \ Q'\ha) n an(x‘m) (xm) < Qb-sign 8o (x™) (xm), (14)
where y;, = min 7y, (™).

1<m<N
The inclusions (13) and (14) imply that for any f € H' (Q) the
inequalities

If ”L,(Q\Qv,o)\ 2. ” f ” z,z((Q\QV‘,S)(‘1960 (xm)(xm))

N
<3l

hold for 0 << § << §,. Since f lag = 0, (11) now follows from the last
inequality and the relation (10). [}

m
8- sign Bo(a™* )
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Theorem 2. In order that a function belonging to H* (Q) may belong

to the subspace H* (Q) it is necessary and sufficient that its irace on the
boundary of the region be zero.

Proof. That the condition is necessary is obvious, so we confine
ourselves to the proof of sufficiency. Let f € H* (Q) and f |oq = O.
Take an arbitrary e > 0. Lemma 1 and Theorem 9, Sec. 1.10,
Chap. II, on the absolute continuity of an integral imply the exist-
ence of a small § = § (¢) such that

I f llz.onay <€6, |/ llzrengy <e-
Since for a function f € H* (Q) there is (Theorem 3, Sec. 4.3; note
that 0Q € C') a sequence of functions f, (z), p =1, 2, ..., in

C*(Q) converging to f in the norm of H!(Q) (and more so in the norm
of H' (Q\Qs)), a number N = N (8) = N (6 (¢)) can be found such
that

| f—inllme<e,
| 7 llzaeney < 289, (15)
| 7 llarrenag < 2e.
Consider the function
L@= | ous(lz—y)dy,
Qp/2

where w, (| z — y |) is an averaging kernel. The properties of the
averaging kernel imply that (s () € C™ (R,), Ls (x) =1 for z €
€ Qses6, and more so for = € Qs, s (r) = O outside Qgs, that is,

Cs () € c* (0). What is more, for all z€ R, 0<< §y (2) <1,
| Vs | << C/6 where the constant C > 0 does not depend on 6.
By (15) we have

| fr—FnBellane =l fv — Fn8e llH10N0p
KU (1—=2o) [Baaap ™+ Il Vin | (0 =Eo) + | F || VEs | uienap)

L Fx laenap 211 Vin |fEaanap + 21 Fx | VEs | [Eaaneg)'’

2C? 1/2
< (8o 4+ Nl fnlltioney) <& (8+8CY)*=Cpe.

The functions fyey (2) Lo () belong to Ct (Q) and

“ frwen () Soer () — F (2) |y <l f — Fvsen [lz1(@)
+ ” fN(é(e)) - fo&(e))Cé(e) “HI(Q) < (1 + Cl) e.

Accordingly, f (z) € H* (). |
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4. On Compactness of Sets in L, (Q).
Theorem 3. A set bounded in H* (Q) is compact in L, (Q).
Proof. Let a set o# be bounded in H! (Q), that is, for all 7 € o

M @ <C. (16)

Suppose first that of — H (Q). We extend all the functions be-
longing to o/ outside Q by putting them equal to zero. In the case
under consideration the extended functions belong to H?! (Q’) for

any region Q' O Q.
If f, (x) is an averaging function for f () € o#, then inequality (6),
Sec. 2.3, holds:

if—flto<ge | & fe+n—f@pdz. (D)
lzl<h Q

The function f(:c)ec;1 (Q), also extended outside Q by assigning
to it the value zero, satisﬁes for any vector z the identity f(z+2)—

1
— f(x)=§ At dt_S (Vf (z4tz)-z) dt, thereby yielding
0 0

1

| @+2—f @P<|sP | |Vf (e+12) Pat
and hence ’

[ 11+t @ P dz<|2P fllinco- (18y
Q
The inequality (18) also holds for any f € o#; this can be proved

by the usual limiting process.
It follows from (17) and (18) that

h2
=t <Coll o3 | de<ciiz,

lz|<h

where the constant C, is independent, in view of (16), of both &
and f.

If it is now shown that for any fixed 2 > O the set o/, consisting
of averaging functions f, (x) for all f (z) € o# is compact in C (Q)
(and therefore in L, (Q)), the assertion of the theorem will follow
from Corollary of Theorem 2, Sec. 3.7, Chap. II.

According to Property (d) of the averaging kernel (see Chap. I,
Introduction), we have

| F (@) | <23 5 17 @) d2 < il f l122c0r < Co | f lmneer < comst
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and
ofn
or;

< | |1 (x)|dz< const, i=1,...,n,

S h'n+1
Q

where, by (16), the constant does not depend on f. Now an applica-
tion of Arzela’s theorem shows that the set {f, ()} = o#;* is com-
pact in C (Q).

Suppose now that o# < H! (Q). Denote by o#’ the set of functions
F (z) belonging to H' (Q') obtained by extension, according to
Theorem 1, Sec. 4.2, of functions f () belonging to o# into some
region Q’, Q € Q’. Since || F |lgyq) < const llf gy Wwith con-
stant independent of f, the set o/’ is bounded in H! (Q’). By what has
been proved just now, it is compact in L, (Q'). Hence the set of is
compact in L, (Q). l

5. On Compactness of the Set of Traces of Functions Belonging to
H! (Q).
Theorem 4. If a set of functions is bounded in H' (Q), then the set
of their traces on the (n — 1)-dimensional surface I' < Q of class C!
is compact in L, (T).

Proof. Let the set o/ be bounded in H' (Q) and let o/ be the set of
traces on I' of functions belonging to o#/. We denote by o#’ the set
bounded in H! (Q') that consists of extensions into Q' © Q of func-
tions belonging to o# (Theorem 1, Sec. 4.2, 9Q € CY).

Let I'y be the part of the surface I' which is uniquely projected
into a region D in the plane {z, = 0}, and let z, = ¢ (2'), ' € D,
be the equation of I'y, @ (z') € C* (D). There exists a § > 0 such
that the region Q. = {2’ € D, ¢ (z') <z, << ¢ (z') + 26} lies
in Q'.

* Suppose that the set M of continuous functions in @ is uniformly bounded
.and equicontinuous: || g ”C — < const for all g € M and for any € > 0 there
is a 8 = 8 () > 0 such that for all g € M| g (') — g (z") | < e for arbitrary
z', z" in Q satisfying | ' — 2" | < 8 (in our case M = offy, and equicontinuity
-of of), follows from uniform boundedness of derivatives). Let us show that the

set M is compact in C (Q).
Let {g} be an arbitrary infinite sequence of functions belonging to M. For

-every natural m take a finite set of points {z;"}, g=1,..., p(m), in 6

50 that for every z € Q there is a point in this set that is at a distance less than
 (2-m) from z. From the sequence {g,} we choose a subsequence {g,,,} converg-

ing at every point of the set {x}l}; then || g, — gli”c@) < 3.271 for ky, |, >
= N;. From the sequence {g,,} choose a subsequence {g,,} converging at every
point of the set {22}, and so forth. Thus for every m there is a sequence {gkm}

with the property that | Br,, — &1 “C(Q) < 3.2-m for k., ly = Np,. Evident-
m —
ly, the diagonal sequence {gmm} is fundamental in C (Q).
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For any function f (z) € C* (Q') and any points z = (z', z,) € T
and (2', y,) € Qys we have
yﬂ.
’ a I' n
0= 2,
which yields
xp+28

of (&', En) |2
@<,y b0 | | L)
xn on
We integrate this inequality with respect to y, € (8, 26) to obtain
xn+26

28
81 @) P<2 ([ 1f (', y) Payn 402 | |LEEal[F
8

*n

dEn.

d§n?

and then integrate the resulting inequality over I', with respect to z

(that is, multiply it by V1 + @i + ... + ¢z _ and integrate
over D) to have

GS | #12dS < const (2 S | £[2 da -+ 462 5 | vilzdz).
To Q’ Q
Since the surface I' can be divided into a finite number of pieces

of 'y type and for each of such pieces the inequality just established
holds, summing these inequalities we obtain

2. < 1 | F |2y +CB I f l|Encerys

where the constants C; and C; are independent of both f and §. By
the usual techniq_ue, it is found that this inequality is true not only
for any f € C* (Q’) but also for any function belonging to H* (Q’).

By Remark to the theorem on extension (see Sec. 4.2), the last
inequality yields the inequality

2. < 1 =1 F112a@ + Ce8 [Iif ity (19)

true for any f € H* (Q).

By Theorem 3 (of the preceding subsection), the set o# is compact
in L, (Q). Therefore from any infinite sequence of elements of the
set off a subsequence fp, p=1, 2, ..., can be chosen which is
fundamental in L, (Q): given ¢ > 0 an N can be found such that for
all p> N and ¢ > N || fp — fq llLy@ << & But then the sequence
of traces fpls, p =1, 2, ..., will be fundamental in L, (S),
because the inequality (19) applied to f, — fq and the inequality (16)

10—-0594
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imply, for all p, g > N,
C 2
” fp_fq ”i.(Q)< gz +Cza”fp_fq||%1(0)<e(ci+4czcz)=0337

provided we take &6 = e. [

6. Equivalent Norms in Spaces H'(Q) and H*(Q). Suppose that in
a region Q, 9Q € C*, there is defined a real symmetric matrix
P(z) = (p;j(x)), i, j =1, ..., n, continuous in Q. This means
that the real-valued functions p;;(z) € C (Q) and p;; = pji, 0,
j =1, ..., n. Suppose further that a real-valued function ¢ (z) €
€ C (Q) is defined in @, while the real-valued function r (z) €
€ C (0Q) is defined on 0Q.

On H! (Q) we define the Hermitian bilinear form (see Sec. 2.4,
Chap. II)

Wi o= 3 puls gx,dx+§qudx+ Jrizas o)
Q i, j=1 2Q

(in the rightmost integral, of course, f = flag, & = &log)-
Theorem 5. If the matriz P (x) is positive-definite, that is, for any

complex vector &€ = (1, « . ., &) and for all z € Q
2 Pu@EE>Y 2 &P (21)

with constant y > 0, the functions q () >0 on Q, r (z) > 0 on 4Q
and either g (x) 5= 0 or r (2) == 0, then the bilinear form (20) defines on
HYQ) a scalar product equivalent to the scalar product

(, O = | (VVe+f7) da. (22)
Q
Proof. According to the definition (see Sec. 2.4, Chap. II), for the
proof of this theorem it is enough to establish the existence of two
constants C; > 0 and C, > 0 such that the inequalities

W(f, N f it I f Il <EW({,7) (23)

hold for all f € H* (Q).

First note that by the hypothesis all the three terms in the expres-
sion for W(f, f) (in (20) g = f) are nonnegative.

Since

n n
| 3 putsfeyda<a (| 3 11111,z
Q i, j=1 Qi.7=1
<4an [ |vipde<an| flln
Q
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where A= max “p,,HC(Q),

1<i, j<

[ alfPde<ai) fIb@<4ilf o,

Q
where 4; = 1/ ¢ ligg) and according to inequality (2) of Subsec. 1,
§ r17PdS <4l f oo <C24: | f o
aQ
where A, = || 7 |lcag), the first of inequalities (23) holds with the

constant C} = An + A4, + A,C%.

We shall establish the second inequality in (23). Supposing, on
the contrary, that there is no such eonstant C3, a function f,(z) €
€ H'(Q) can be found for any integer m > 1 such that || f,, [0y >
> mW (fm, fm) OF, equivalently, a function g, (z) € H* (Q) (gm =
= fu/ll fm llmr(@)) can be found sueh that

| gm [y =1 (24)
and
W(gm, gm)
= 3 pisgmsgne,dz+ | algnldz+ | rlgnl?ds <t/m.
Q i, j=1 Q aQ

This inequality implies that each of the three terms in W(g,., gn)
is less than 1/m, therefore (using the inequality (21)) the following
inequalities hold:

[I1venpdo<—, [algnPds<—, [rignPds<--. (25)
Q Q 0Q
By virtue of (24), the sequence g,,, m = 1, 2, .. ., is bounded in
HY(Q); accordingly (Theorem 3, Subsec. 4), from it a subsequence
can be chosen which is fundamental in L, (Q). With no loss of gen-
erahty, it can be assumed that the sequence gp, m = =1, 2,
itself is fundamental in L, (Q), that is, || gn—gp ]|L'(Q)—> O as
m, p — oo. Since, by the first inequality in (25),

| gm—gp ey =l gm—&p L@+ 11V (gm—gp) | lIL.0)
<lgm—gplti@+2]l| Ven!litia+21I1 Ver i@

\ 2 | 2
<llgm—gplto+—g + 57

it follows that || g,, — gp llms@) — 0 as m, p — oo, that is, the
sequence g,, m =1, 2, ..., is fundamental in H!(Q) as well.
Thus this sequence converges in the norm of H! (Q) to an element

10+
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g € H'(Q). Letting m — oo in (24) and (25), we obtain the fol-
lowing relations:

@) |l gllaey =1,
(b) S |Vg|tdz =0,
Q

c) )aqlgldz=0.

(d)

The relations (b) and (a) imply that g = const = 1/l/m in Q
and glog= 1/V | Q| on 8Q, which contradicts (c) if g (z) = 0 or
() if r (2) == 0. |

Let P (x) = p (z) E, where F is the identity matrix. Theorem 5
has the following corollary.

Corollary. The bilinear form

Wi, 9= | (0VIVE+afg)dz+ | r(2) fzds,
Q aQ

where p (z) € C(Q), ¢(z) € C(Q), r(z) € C(3Q), p(z) > const > 0,
q(x) >0inQ, r(z) > 0 on 0Q and either q () == CinQor r(z) = 0
on 0Q, defines in H' (Q) a scalar product equivalent to the scalar pro-
duct (22).

Theorem 6. If the matriz P (xz) is positive-definite and the function
g () > 0 in Q, then the Hermitian bilinear form

r|gl?dS=0.

ge_fq Dy

n
Wil = 3 pifegsda+t | afgda
Q i, =1 Q
defines a scalar product in H! (Q) which is equivalent to the scalar pro-
duct (22).

Proof. Since H! (Q) < H* (Q), it follows from Theorem 5 that a
scalar product equivalent to the scalar product (22) can be defined in

Ht (Q) by means of the bilinear form (20) with r (z) =1 on 6Q and
g () > 0 in Q. But for the functions f (x) and g () belonging to
H! (Q) the values of bilinear forms W and W; coincide.

Let P (z) = p (z) E. Theorem 6 implies the following result.
Corollary. The bilinear form

W (7, 8)= | (pVVE+afg) da,
Q
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where p (z) € C (Q), g (z) € C (Q), p (z) > const >0, ¢ (z) > 0inQ,

defines a scalar product in H (Q) equivalent to the scalar product (22).
In particular, the scalar product

(Lm;@=QVN§m

is equivalent to the scalar product (22).
The last assertion readily yields Steklov's inequality

£l < const | [ v/ Pz,
Q

which is true for any f € I:ell(Q).

§ 6. PROPERTIES OF FUNCTIONS BELONGING
TO H*Q)

In this section we shall examine mutual relationship between the
spaces H* (Q) and C'(Q). It will be demonstrated that if a function
belongs to H k (Q) for sufficiently large &, then it will also belong to
C' (Q) (that is, the function can be so modified on a set of measure
zero that it becomes continuous in Q together with all the deriva-
tives up to order I).

To obtain this result, it is necessary to represent a sufficiently
smooth function in Q in terms of the integral over Q of a combination
of its derivatives.

1. Representation of Functions by Means of Integrals.

Theorem 1. Let the function f(x) € C*(Q) and let the space have
dimension n > 2. Then for any point z € Q the following identity
holds:

U (z—E)  8f(§)
f(x)=§U(x—§)Af(§)d§+§Q (10552 -8 U@ —y) as,
(1)

where

1, 1 (2)

1
TG g Ve n>2
Ux)=
when n=2,

—on |z |
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and o, = 2n%2/1" (n/2) is the surface area of the (n — 1)-dimensional
unit sphere*

Proof. The function U (z — &) (called the fundamental solution
for the Laplace operator) as a function of & satisfies for £~z the

relation AU(§ — 2) = (angﬂ'l' ... +-:—§;—) U —z)=0, as can
1
be checked by direct differentiation.
Fix a point z € Q and take ¢ > 0 so small that the ball {| § — z |<<
< e} Q. In the region Q¢ = Q\{|z — & | << &} Green’s for-
mula (see Sec. 1.2)

far@UE—ya={ (VE—0 LD —1@ EE=2)as,

Qe 0Q o
+ | (ve—oLE 1= ds @
1§—x|=¢e

lolds for the function U (§ — z) (regarded as a function of &) and
any function f (E) € C? (Q).
[

As Tog = _Tﬁa—x—l on the sphere |E—xz|=¢, the second term
on the right side of (3) has the form (when n>2)
1 £ 9
— g | o dSit oo | f®S:
-x|=e [E-x]=e
1
=@+ | (®—f@)dS
lE—xi=e
1
—peET | SdSi={@+0@, ®
1E-x|=¢

since the surface area of the sphere |E—z|=¢ is 0,e™!, and for
a
[E—z|=¢ f(E)—F(x) =0 () and |—{3iﬁ|<const.
The function U (§ — z) is integrable over Q, therefore the limit,
as ¢ — 0, of the left-hand side of (3) is equal to the integral over Q

of the function U (§ — z) Af (E). Letting ¢ - 0 in (3) and using
(4), we obtain (1) when n> 2. When n = 2, the above proof re-

* The representati%n (1) holds in one-dimensional case also (Q=(a, b)).
The identity 1(0) 5 | le—E17" @ &5+ ( @+ O)—5 (@— 1 @ +

a
+(b—=z) f' (b)), which is easily verified, can be put in form (1) if we intro-
duce the function U (z—§)=7|z—§|. However, we won’t have occasions
to use the identity (1) when n=1.
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mains valid, the only difference being that the second term on the
right side of (3), in contrast to (4), is now f (z) + O (eln¢€). |}
2. Continuity and Continuous Differentiability of Functions Be-

longing to H® (Q). In Theorem 1, any function f¢ C? (Q) was
expressed in terms of integral over Q of its second derivatives. If the

function is still more smooth, f € C* (Q), & > 2, then, along with
representation (1), there are representations in terms of derivatives
of order k. To obtain such representations, we require the following
simple result.

Lemma 1. Let n > 3. Then for any (real)’n the function

|z b+?
TrowFm  Yhen pFE—L pFEon,
uy,(r) =1{ (In|z|)/(n—2) when p=—2,
In|z| h
— ez When p=—n

satisfies the equation Auy, = |z |* for all z € R,, z = 0.
That the lemma is true can be seen by direct calculation.

Let the function f € c? (0). By formula (1), we have for all z € Q
1@ = U@—8ar@
Q

In particular, when n=2

f(x)——jAf(g) In|z—§|dE, (5)
when n=3
f@=— S Ten - dt, ®)
when n>3
— 1 Af )
f(&)= —(—_27—§ g e & 0

Suppose that n = 4, and the function f(z) € foid (Q). Integration of
(7) by parts yields, on using the relation To—tF z-i—g E =% Agln |z — ]|
(Lemma 1)

f@ =5 [ 8B In|za—8|de= 7 | vV (4f®) Vi ln|z—EIdE. ©®)
Q Q
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When n = 5, the relation (7) and the identity |z — & |2%=

= —-;— Vglz—_i_gl (Lemma 1) yield the representation

@) =555 | AT ®) Az
Q

= 2.;@i Y V(81 (¥)) V‘Tzi_ang 9)
Q

for the function f (z) € C*(Q), and so on. Suppose that f (z) €
€ C* (Q), p > 2. Then for n > 4p — 3 the identities

1 e p-1 1 1
Te—gp — Co2fe o o

. -1
=Cip-1AF

1

which follow from Lemma 1, and (7) yield
" A
f(z):C,,p_ZS -——j—)—dg when n=4p—2 (104p-2)
Q

gfzp-2
and

|z—E[?P~t

f(@)=Clip_y S —i-dg when n=4p—1, (10,p-4)
Q

where C; and C; are absolute constants. Since

1 P 1 1 e » 1
I_z:W_C‘pAE( [z—ET ), =gy — CirtiA ('l—,:w:)
for n >4p — 1, p > 2, we have, by (7),

f (@) =Cip | V(87 ®) Vi (17gpe ) & when n=4p, (10,)

Q

and
£(@) = Cipss § V(8% ©) Ve (Ty—p s ) & when n=4p+1 (104pss)
Q

for f € crH (Q_), p > 2, where Ci, C; are absolute constants.
Since lVg |$—1 —|= z__sg[m , s=1, the relations (6), (8), (9),
(104p-2)-(104p+1) yield the inequalities
AP
11 @) |<Cupa | LEBL e for n=4p—2, p>1, (11ip-2)
Q

|z

p
|7 (2)|<Cups Sif(—g”—dg for n=4p—1, p=1, (14p_y)
Q

[z—E %~
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for all f € c*® (0) and the inequalities
VAP :
|f(x) | <Cip S -—'—f-@l—dg for n=4p, p>1, (11,5)

) Te—gpP~
. p

1@< Copss § L5y d& for n=dp+1, p>1, (11500
Q

for all f € 2P+ (Q), where C; are absolute constants.
From (5), by means of Bunyakovskii’s inequality, we obtain

17 @) <5 ([ 187Pd2)" (] 11n] 2o —glpde) " <Cll sy, m=2,
from (11,,p_2)Q :
dg )1/2

1/2
|f(36)l<Cap—z(§2 | AP [2 dt) (Q Te—E @+
LCNF llgtogy m=4p—2>2,

and similarly from (11,5 _;)-(114,+,)
[ @I<CN Fllgngy ~ n=4p—1>3,
1@ I<Cllfllgoonggy ~ n=4p=>4,
17 @) |<CNFllgoonigy  m=4p+1>5,
where the constant C depends on n and the region Q.

Thus the inequality

I Flleg<C Il [2]+ (12)

H 21 (@
J51+ —

holds for all f € C[ z]* (Q), n > 1, where the constant does not de-

pend on f. For n = 1, this inequality readily follows from the repre-
sentation

b
f@)=7 | sien@—-r ®a

for any function f (z) € C1 (la, bl).

=]
If the function f € C e ](Q) for some ! > 0, then, apart from
(12), it also satisfies the inequality
Il <Cull £ : (13)
Q)

where the constant C; > 0 does not depend on f.

n
Hz+1+[7]
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Indeed, for any vector & = (@, ..., &,) With nonzero integer
components, | a | << I, by (12) we have
| D*f lle@<Cl| D*f || <LC| 1l n
! 3 SN gz,
<CJfll
= l 1+l+[2](0)

Summing these inequalities over all @, |a | << I, we obtain the
inequality (13).

L+ 7]

Suppose now fEH (Q) and fp(x), m=1, 2, ..., is

3]

o1+ —
a sequence of functions in C (Q) that converges to f in the

12 ). By (13

”fm—fs"cl(a)<cllfm—fs“ l+1+[—g—] -0
H Q)
as m, s — oo, that is, f,, m = 1, 2, .. ., is a fundamental sequence
in the norm of C'(Q). This means that the limit function f belongs

to C'(Q). Passing to the limit, as m — oo, in the inequality
Wm llgtg < C Il fm |l n. , We see that the inequality (13)
+1+[7](Q)

+1+[ ](Q)-

Let f € Hm [-2—](0). Take any subregion Q' € Q and construct
the function £(z) € C*(Q) which is equal to 1 in Q’. The function
ol+1+4+ z [
f-CeH [2](0), so it belongs to C'(Q), which means that f be-

longs to C! (Q’). Since Q' is arbitrary, f belongs to C'(Q). Thus we
have proved the following assertion.

norm of H

holds for any feH

I+ 1+[ 5
Theorem 2. A function belonging to the space Hjyqc [z] (Q) belongs

*121 ) = cvo).

Suppose now that f € H 03] (Q) and let 9Q € C [T] Then
by the theorem on extension for (any) region Q', Q' D Q, there exists

to the space CYQ), that is Hloc

a function F belongmg to H t+[z] (Q') that coincides in Q with f;

moreover, || F || - <C'Ifl - , where the constant
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C' does not depend on f. The function F € CY(Q’) and satisfies the

inequality || F ”c’(Q) LC"||F || [ 2] (inequality (13) for the
2

function F in Q’). Accordingly, f€C'(Q) and the inequality

flletgy<C'C"l| f n
“ "C(Q)\ | ”HH1+171(0)

holds. Thus we have shown the following theorem.

] (3] 5
Theorem 3. If 4Q¢cC , then H (Q) < C(Q).
Moreover, the inequality (13), where C >0 does not depend on f,

1+[%](0)

I+
holds for any function f€ H

§ 7. SPACES C™° AND cC*»*. SPACES H™° AND H?°®

We have so far examined function spaces (C*, H*, k = 0,1, ...)
composed of functions whose differentiability properties were the
same w1th respect to all the independent variables: for example, the
space H® consists of all the functions belonging to L, whose all the
generalized derivatives up to order & belong to L,. In the theory of
differential equations one has to use also sets composed of functions
whose differentiability properties differ with respect to different
variables. In particular, the spaces of functions introduced below
will be used in Chap. VI on paraholic equations.

Let D be a bounded region in the space R, (z = (z, . . ., Z,) is a
point in R;) and Qr = {z E D, 0<it< T} a cylinder of height
T > 0 in the space Rn+1 = Rp X {— 00 <t << oo}

1. Banach Spaces C™ ° (Qr) and C** *(Qr). We denote by C™ °(Qy),
where the integer r > 1, the set of all functions f (z, t) that are

. .= . C R |

continuous in Qr together with the derivatives ———— for all
ozt ... ozm

(nonnegative integers) a;, ..., Qp, o + ... +ap 1.

We let C*'°(Q;), where the integer s> 1, denote the set of
functions f (z, t) that are continuous in Qr together with the deriva-

. 9%t .an+8f . .
tives 52T . 925 P for all (nonnegative integers) a,,. . ., %, B,
o+ ... +a, +2p << 2s

When r = 0 and s = 0, the spaces C"  (0r) and C**(Qp) will
mean the space C% ° (Qr) = C (Qp).
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It is clear that the set C™°(Qr), r>> 0, is a Banach space with
the norm

o+t
Z a1 n

7 e, %Qp max 1.4 arfl )
oc1+. . .+an=r QT 011 cee Urn

while the set C*° (Q7), s> 0, is a Banach space with the norm
aal+...+an+ﬂf

” f ”0231 Qp = Z max
@ t+..Fa,+2B<2s Or

2. Hilbert Spaces H™ °(Q ) and H*' *(Q,). We denote by H™ °(Q;),
where the integer r > 1, the set of all functions f(z, ) that together

61:(:1 . 6:1::"' atP

. . o oM+ - +ang o
with the generalized derivatives for all (nonnegative inte-
ozt ... 9z

gers) Oy, . . ., Opn, O + ... + ap < r,‘ belong to L,(Qr). Simi-
larly, H?%%Qy), where the integer s > 1, denotes the set of all
functions f (z, t) that together with the generalized derivatives

am‘+. . .+an+|3f

Bz(:' cee 0:0:'71 o
o F oo, + 2B < 2s, belong to L, (Qr).

The space H™°(Qr) with r = 0 and the space H?*.* (Q7) with s =
= 0 will mean the space H*°(Q;) = L, (Q7)-

The following properties of the sets H™° (Qr) and H**°® (Qr) are
an immediate consequence of their definitions.

1. The set H™°(Qz), r > 0, is a Hilbert space with the scalar
product

for all (nonnegative integers) oy, . . -, Gn, B, %+ . -

o .ot % +...+%
. o1 nf o1 n
(f g)Hr,O(Q y— S Z 3 & ag dz dt,
T Qp oyt . e, <r 0111 co. 0z 6111 . . 0z,®
1S

while the set H*:° (Qr), s> 0, is a Hilbert space with the scalar
product

(f, g)H“: Q)

=f 3

Qp 2B+a,+. ..+, <2s 0%

2. Foranyrand s, 0<r<2s, H* *(Qp) = H* *(Qr) = H™ ° (Qy).
(o

3.1 f(a, )€H"*(Qr), then L gm0, for

6111 ... 0z

a1+ . '+°‘n+ﬂf al+. . .+an+ﬂ
9 9 dz dt.

1o amr ol ezt ... azpm alP

n

o+ ...ta,=r"<r.
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aoc1+. . .+an+ﬂf

01 . oz ot
for ay+ ...+ o, +2p<2s", where s’ <s.

We shall now show that if the boundary 4D of the region D is
sufficiently smooth, then the functions belonging to H™° (Qr) and
H?%* (Qr) can be extended into a wider (than Q) region while
preserving the smoothness. Namely, we shall prove the following.

5. Suppose that D’ is an arbitrary region in R, such that D € D’,
and #°, ! are any numbers satisfying the inequalities 10 << 0, t* > T.
Let Qf, n denote the cylinder {z € D', ®* <<t <<#'}. If dD € C",
r > 1, then for any function f € H™° (Q7) there is an extension
F € H° (Q, /) whose support is compact in Qj°, . Moreover, the
inequality

4. I f(z,t)€ H**(Qy), then € H*=7 2% (0,)

“ F ”Hr’ O(Qio, t1)<c “ f “Hr’ o(QT)’ (1)

where the positive constant C does not depend on f, holds. If 4D €
€ C*, s > 1, then for any function f € H?**(Q7) there is an exten-
sion F € H?* *(Qt, n) with compact support in Qi n; moreover the
inequality

I F laros, siqge o <C Il f lles, 5,y (2)

where the constant C > 0 does not depend on f, holds.

The desired extension ¥ of a function f belonging to H™: ° (Qr) or
to H?)°® (Qr) is obtained in two stages: first, f is extended to F,
through the curved surface of the cylinder Qr into a wider cylinder
Qr = {r€D', 0<<t<<T} of the same height 7, and then the
function F, is extended through the top {# € D', t = T} and base
{x € D', t = 0} of the cylinder Q7.

To construct the function F,, we employ the same technique as
the one used in extending into D’ a function belonging to H* (D)
(see Sec. 4.2). We use the extension constructed there of functions
belonging to a rectangular parallelepiped.

Let II,, 7, a > 0, denote the rectangular parallelepiped {| z; | <<
<a,i=1,...,n 0<t<<T} and I3 r, II, 7 the rectangular
parallelepipeds {|z; |<<a, i=1, ..., n—1, 0<z, <2, 0<
<t<T} and {|z; |<a, i=1, .., n—1 —a<z,<0,
0 <t << T}, respectively. Suppose that the function z(z, )€
€Ch (Il ) for some k> 1. The extension Z (z, t) of the function
z (z, t) into the parallelepiped II,, ; is defined in the parallelepiped
I1Z, 7 in the following manner:

ht1
Z(z, )= D Az (2, =2 t), 3)

i 9
i=1
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where 2’ = (2, ..., ;) and 4,, ..., Apy, is the solution of
the linear algebraic system
ht1

_ 1 8
ZAi(—T)=1, S=0, 1,..., k.
i=1
While proving Lemma 1 in Sec. 4.2, it was established that
Z (.’E, t) E Ch (Ha.T)’ and fOI' any o4, ..., &g, B7 a‘1> 01
B>0,0,+ ... Fa, +p<k

Gt e. oty +B, gt 48, |

9z ... 9tP

7}
6.:‘11' 6:::" atP

<c :
Ly(Il,, p) Ly(Ilg, 1)

where the constant C > 0 does not depend on z. Therefore for any
r<k

” Z “Hr, O(Hm T)<C ” 2 "H Ty O(II;' T)’ (4)
and for any s, 2s<k,
| Z 1|2, s, T)<C Il 2 llgz2e, (I, 7’ )

where the constant C = 0 does not depend on z.

Since the set C™ (I3, r) and hence also the set C* (I3 r) is
everywhere dense in the space H"» °(Ilj, T) and in H?%* (Il 1) for
any k >=r or k> 2s, respectively (thls is proved in exactly the
same way as analogous assertions regarding the space H* (D), see
Property 6, Sec. 4.1), and since these spaces are complete, it follows
from what has been said above that any function z belonging to
H™°(IIz 1) or to H*°(IIf r) has an extension Z into Il 7 that
belongs to H' °(H,, r) or to H?%°(Il,, ), respectively; moreover,
the function Z is defined in I1z, v by (3), and the inequality (4) or
inequality (5) respectively holds. Arguing exactly in the same way
as in the proof of Theorem 1 (Sec. 4.2), we obtain the function
F, (z, t) which is the extension of f (x, t) into the cylinder Qr; fur-
thermore, if f € H»°(Q;), then F, € H"°(Q7) and the inequality

| 74 ”H"- 0(Q&.)<Ci Il f”H', %@
holds; if f € H?% *(Qr), then F, € H?* (Q7) and the inequality
“ Fy [, ’(Q})<Cz I f”ﬂ’-’, Q)
holds (the constants C,, C, > 0 do not depend on f). What is more,
F, =0 in QT\QT, where Q7 = { € D", 0<t<<T} and D" is a
region in R, such that D € D" € D'.

We shall now construct the required extension F of f into the
cylinder Qfo' 1.
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When f € H™ ° (Qr), for F we take the function equal to F, in
Q7 and to zero in Qj, 1\ Q7. Evidently, ¥ belongs to H™» ° (Q}, n),
its support is compact in Qj, 4, and it satisfies the inequality (1).

When f€ H?*»°(Qr), then we define its extension F into the

cylinder Qi,;n by putting F=ZC(t) Fy(z, t), where {(£)€C™ X
X (—o0, +00), L(t)=1 for t€(0, T), §(1)=0 forts>ITE

and for t<< t—20, while the funetion F,(z, t) is equal to F,(z, t)
s+1 r
in Q7, to D) AiFy(=, 4z ) in (€D, ©<t<O0}Tand to

i=1
s+1

- —-T T . ’
S, 4iFy (<, T—t—i——-—tT__T) in {z€D’, T<t<t}, where
i=1
Af, ..., A, is the solution of the linear algebraic system of

s+1
o)’ =1, p=0, ..., s while A, ..., 47, is the

equations > Aj ( )
i=1
1 s+1

solution of the system > A’{( — z(tl—T—T) )P= 1, p=0, ..., s.
i=1

Evidently, the function F ¢ H?®%*(Qf, 1), has compact support in
Qpw, 11, and satisfies the inequality (2).

Property 5 coupled with Lemma 1, Sec. 3.2, readily implies the
followmg assertion (the correspondmg assertion regarding the space
H* was obtained in Sec. 4.3).

6. If the boundary 4D € C”, r > 1, then the set €~ (Q_T) is every-

where dense in H™° (Qg). If 8D € C*, s > 1, then the set C* (Qy) is
everywhere dense in H?** (Qy).

7. Let f(x, t) € H"° (Qr) and S be an (n — 1)-dimensional sur-
face of class C? lying in D; in particular, S may coincide withthe
boundary 9D of D.

By T's,r we denote the Cyhndrlcal surface {r € S, 0 <t < T};
the curved surface T'sp,7 = {x €D, 0 <t << T} of the cylinder
Qr will be denoted by I'y.

By Property 6 (0D € C!), there is a sequence of functions f;, & =

. . 1 A . — .
=1,2, ..., in C* (Qr) such that gir: lfe — f ||H1,O(QT) = 0. Since

the functions f, (z, 1), k =1, 2, ..., regarded as functions of z,
belong to C! (D) for any ¢ € [0, T}, the inequalities

”.fh—fs “i,(S)<02” fk—fs”%I‘(D), ka 3=1, 2’ e ey (6)
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hold for any ¢ € [0, 7] in which the positive constant C depends only
on the region D and the surface S (see inequality (3), Sec. 5.1). In-
tegration of (6) with respect to ¢ € (0, T) yields the inequalities

“fh fs”L,(I‘S R LC||fa— f’”PI17°(QT)’ k, s=1,2,....

Since fy, k =1, 2, ..., is a fundamental sequence in H'°(Qy),
the last inequalities imply that the sequence of values fy |, DETg, 1,
k=1,2, ..., of these functions on Ig , is fundamental in
L, (Ts, 7). Accordingly, there exists a function frgqp € Ls (Ts, 1) to
which the sequence fj |, 1€l 1o k=1, ..., converges in
L, (I's,7), and by repeating the arguments of Sec. 5.1, it can be
easily shown that the function frg T does not depend on the choice
of the sequence f, k = 1,2, .. Whlch approximates the function f.

It is natural to call the functlon frs' r the trace of function f (be-
longing to H°(Qr)) on the cylindrical surface I's, ; and denote it

by Tg, r
As in Sec 5.1, it is easily shown that

I Fllzurs, p<Cll fllg2, 00,

(here || f llLyrg, p = I f llrg, 7 llLarg, 2)»  Where  the  constant
C > 0 does not depend on f.

Note that if o# is a bounded set of functions in H'°(Qy), then,
by the last inequality, the set o/’ of traces of these functions on
I's, 7 is bounded in L, (I's,7) but, in contrast to the case of the
space H'(Qr), is not compact.

The above notion of trace enables us to extend the formula of
integration by parts to functions belonging to H°(Q;). Namely,
for any two functions f and g in H"° (Qr) there holds the formula
of integration by parts (Ostrogradskii’s formula)

3' fx,g da dt = S fen, dS dt — 5 fg=, dz dt,
T T Qr

where n; is the ith component of the n-dimensional (unit) vector
which is outward normal to the surface éD, i =1, 2, ..., n, and
the functions f and g present under the integral sign over the curved
surface I'y of the cylinder Qr are traces of functions f and g on I'r.
This formula can be easily proved (compare Sec. 5.2) by approximat-
ing in H»°(Q;) the functions f and g by functions belonging to
C' Q).

If f € H»® (Q7), r > 1, then any derivative of this function with
respect to z;, . .., Z, of order less than r has the trace on the
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curved surface I'y of the cyhnder Qr.1f f € H**(Qy), s > 1, then any

d aa:+ .+on+p f
erivative P TSk a+ ... + o+ 28 <<2s, has the

trace on the curved surface I'y of the cylinder Q.

§ 8. EXAMPLES OF OPERATORS IN FUNCTION
SPACES

1. Integral Operators. Fredholm Integral Equation. Let Q be a
bounded region in the n-dimensional space R,. On Q X Q we consi-
der the measurable function K (z, y). Assume that the function f (y)
is such that K (z, y) f (y) € L, (Q) for almost all z € Q (for instance,

= (). With every such function f (y) we associate a function

g@)={ K, i) dy. (1)

Q
This mapping can be regarded as an operator (linear, obv_igusly)
from L, (Q) into L, (Q), from L, (Q) into L, (Q), from C (Q) into

C (Q) and so on. The function K (x, y) is referred to as kernel of
this operator. Of course, this operator may not be defined on the

whole space, for example, for the operator from C (Q) into C (6_) the
domain of definition is the set of all those functions in C (Q) for

which g(z) € C(Q). However, if the kernel K (z, y) € C (Q X Q),
then, as can be easily seen, this operator is defined everywhere (in

L, (), L, (Q), C (Q)) and is bounded.
e shall examine the operator defined by formula (1) with the ker-

nel K(z, y) = K, (z, y) |z —y |7%, where K, (z, y) € C (Q_X Q)
and 0 << o << n, regarded as an operator from C (Q) into C (Q) and
as an operator from L, (Q) into L, (Q); in both cases it will be de-
noted by K:

g = Kf. 2

The operator K is called the Fredholm integral operator. According
to the results of Sec. 1.12, Chap. II, for any function f € C (Q) the
function g€ C (Q) This means that the operator K from C (Q)
into C (Q) is defined on the whole of C (Q).

Since the functions V | K (z, y) |dy and S | K (z, y) |dz are

_ Q Q
continuous in Q, they are bounded, that is,

A= max{maxglK(x, y) |dz, max SlK(x, y)|dy}<oo (3)
veEQ ¢ x€Q Q

11—0594
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Because for any point z€Q
8@ |<llflloq | 1K@ D<Al
Q
so [|1glleg<All f”c@v which implies that the operator K from
C(Q) into C(Q) is bounded and || X |<A4.

Let f(x)€Ly(Q). The functions |f(y)[? S | K (z, y)|dx and
Q

S | K (z, y)|dz belong to L(Q) (the latter even to C(Q)), therefore,

Q

by Corollary to Fubini’s theorem, the functions K (z, y)|f(y)[?
and K (z, y) belong to L, (Q X Q). This means that the function
K (x, y)f(y) also belongs to L, (QXQ), since |K (z,y)f ()<

< |K(§, nl 1K@, y;llf(y) . Then by Fubini’s theorem the

functions g (z)= 51( (z, v) f(y) dy, SIK(:II, y)|dy and S|K (z, y)|x
Q

Q Q
X|f(y) > dy belong to L,(Q). For almost all z€Q we have the
inequality

le@P< (1K@ vldy-[[K @ ]1f )P
Q Q

<AS|K(x, 11 @) Pdy,
Q

implying that g (x) € L, (Q). Integrate this inequality over Q and
apply Fubini's theorem to obtain

leltio<4 | dz [I1& (@ »)I1f @) Py
Q Q
=af 11 @E (1K @ »]de ) dy<a2||] o
Q Q
Thus the operator K from L, (Q) into L, (Q) is defined on the

whole of L, (Q), is bounded and || K || << A.
Lemma 1. The operator K acting from L, (Q) into L, (Q) is com-

pletely continuous. The operator K acting from C (Q) into C (Q) is
completely continuous.
Proof. 1. We first consider the operator K acting from L, (Q) into
L, (Q). The function K y (z, y) defined for any N > 0 as follows
K (z, y) when |z—y|=N"!

Ky (z, y)= K, (x, y)N“ when ]-23—!!|<N-i
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belongs to C (Q X Q). Since for any point z € Q we have the in-
equality

f18@, 9—Ex@ vy
Q

- 1
= | 1K 0l(o=m=N)a
- |z—y]|

QN{lx-yI<N=}
<B S |zjy | =5 IZEI“

lx-yi<n-1 17 Y JE1<N-1

') d B
— P — On
Ban (5 pa+1_n (n_a) Nn-a
where B = || K, || cigxo® and 0, is the surface area of the (rn— 1)-

dimensional unit sphere, given an ¢ > 0 we can find an NV such that
max (| K(z, y)—Enlz, v)ldy<s.
x€Q
Because [Ky(z, y) €C(Q X Q), there is a polynomial P(z, y) such
that |P(z, y)—Kn(z, y)| <7180—| for all (z, y)€QxQ. This
implies that

max |K(z, y)—Plz, y)|dy<max ||K(, y)—Ky(z, y)dy
*€Q ¢ x€Q @

tmax (| Ky(z, y)—P(z, y) |dy <5 +5=e. (4
*€Q §

Similarly, it can be shown that

max S | K(z, y)—P(z, y)|dz<<e. 4
veQ Q
The polynomial P(z, y) and the function G(z, y) = K(z, y) —
o
— P(z, y) = Koz, y) —P(z, yi"_y = can be regarded as kernels of
X —
integral operators of the type (2); we denote them by P and G, res-
pectively. Moreover, we have the relation

K =P+G,
and, by (4) and (4'), the estimate
G Il <e.

11*
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Thus the operator K has been expressed as the sum of an operator
G with arbitrarily small norm and the finite-dimensional operator P
(this operator transforms L,(Q) into the set of polynomials whose
degrees do not exceed that of P(z, y)). Therefore, by Theorem 4,
Sec. 3.9, Chap. II, the operator K is completely continuous.

2. We now examine the operator K acting from C(Q) into C(Q).
Because K is bounded, it maps a bounded set o in C(Q) into a
bounded set o#’. According to the results of Sec. 1.12, Chap. II,
given an &e>0 a §>0 can be found such that

g |K(z', y)— K(z", y) | dy << ¢ whenever |z’ — z" | << 8. There-
Q
fore for | 2’ — 2" | < §

lg@)—g @) < [IK @, )—K @ 0|11 1dy <el|fllog:
Q

Thus the set o#’ of functions continuous in Q is uniformly bound-
ed and equi-continuous. Hence, by Arzela’'s theorem, this set is
compact. .

The equation ¢ = pK¢ 4 f, where p is a complex parameter and
K the Fredholm integral operator, that is, the equation

o) = | K(z, y) ov) dy + f(@), (5)
Q
is known as the Fredholm integral equation (of the second kind).

We shall examine Eq. (5) in L,(Q) (f € Ly(Q) and the desired
solution @ will be sought in L,(Q)).

In view of Lemma 1, Fredholm’s theorems (Secs. 4.3-4.7, Chap. II)
are applicable to Eq. (5). In particular, if p is not a characteristic
value of the operator K (such numbers are at most countable), there
exists a bounded operator (I — pK)-!, that is Eq. (5) has a unique
solution @ € L,(Q) with any free term f € L,(Q).

If the kernel K (z, y) is such that K (z, y) = K (y, z), the operator
K from L,(Q) into L,(Q) is selfadjoint.

In fact, by Fubini's theorem,

(KD, Ve = | | K@ ¥) o) dy $(@) da
Qe

S o) (| Kz, 1) P@da)dy

Q
={ow j K (y, 2)¥ (@) dz) dy= (@1 K¥)r,
Q

for any @, ¥ € Lx(Q).
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Therefore all the results obtained in Sec. 5 of Chap. II for a gen-
eral completely continuous selfadjoint operator are also true for the
operator K. In particular, all the eigenvalues and characteristic
values of K are real and there exists an orthonormal basis composed
of eigenfunctions of this operator for the space L,(Q) (Corollary 2 to
Theorem 2, Sec. 5.2, Chap. II).

2. Differential Operators. Suppose that in an n-dimensional region
Q there is defined a bounded measurable function a,(z) for every
vector & = (a4, . .., Oy), with the integers @; > 0, i = 1, n,
|a |'<C k, where k£ > 1. A linear operator acting from LZ(Q) mto

L,(Q) that associates w1th the function f the function

(£0) (&)= 3 ae(z) D*/(a) ©)

is called the linear differential operator (from L,(Q) into L,(Q)).
It will be assumed that the operator £ is of order %, that is, at least
one of the coefficients a,(z) is different from zero for | & | = k (the
set where aq(x) 5= 0 is not a set of measure zero).

The operator £ is, of course, not defined on the whole of L,(Q).
Nevertheless, the set of functions f for which expression (6) makes

sense (D *f is the generalized derivative) contains H*(Q). Accord-
ingly, H* (Q) can be taken as the domain of definition of £.

If all the functions aq(z), | @ | <k, are continuous in Q, for-
mula (6) also defines a linear operator from C(Q) into C(Q) (the
linear differential operator from C(Q) into C(Q)). In this case as
the domain of definition of £ one can take C*(Q).

A particular case of £ acting from L,(Q) into L,(Q) (from C(Q)
into C(Q)) is the operator D%, | & | = k, that associates with f in
H*Q) (C* (Q)) its generalized (classical) derivative. The operator

D% from L,(Q) into L,(Q) is unbounded, because the sequence
fm(z) = emEte.txn) m =1, 2, ..., of functions in H* (Q)

which is bounded in Lo(Q) (|| fm gy = V1Q1 | m=1,2,...)is
mapped into the sequence gm(z) = (im)'* lgim(xy+. . +x") m =
=1, 2, ..., unbounded in L,(Q) (|l gm e = m*! V'] ()1 — oo

as m — ).
It can be similarly shown that the operator &, k£ > 1, from L,(Q)

into L,(Q) is also unbounded, and so are the operators D% and £

from C(Q) into C(Q).
If & is regarded as an operator from H*(Q) into L,(Q) or from

C"(Q_Z into C(Q), then it is bounded, because for any f € H*Q)
(C*Q))
” Zf "L:(Q)<COBSt ”f”H"(Q) (Il £f Ilc(6)<c°n5t ”f”ch(a))‘
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PROBLEMS ON CHAPTER III

1. A ball S = {|| z || << 1} in a Banach space is said to be strictly conver
if for any points z and y, z 5~ y, on the unit sphere ||z || = || ¥ || = 1 and any
@ € (0, 1) the point az+ (1 —a)y €S, that is, [laz+ (1 —a)yll <1.

Is the unit ball strictly convex in spaces C(Q), Ly(Q), L2(Q)?

2. Let z be a point on the unit sphere in C(Q) (Zy(Q)). Find the set of all
points y on the unit sphere such that all the points of the segment az + (1 — @)y,
0 <a <1, lie on this sphere.

3. The set Ck (Q) is a linear manifold in Ck(Q). Denote by Ck(Q) the clo-

sure of this set in the norm max »| |D%f(2)[: Ck (Q)=C*k (Q). What func-
x€Q | |<h

tions is C* (Q) composed of?

4. Show that if 8Q € C*, then {C®(Q) is everywhere dense in C(Q).

Let B be a Banach space, and e#, " its subspaces. We say that B is the
direct sum of o/ and *: B=o#@D " if any element f of B isuniquely expressed
as the sum f,--f,, where f; % o/ and f; € g. If the Hilbert space H = AD N
and o/ | ", then ot (") is called orthogonal complement of " (o#) in H.

5. Express Ck([a, b]) as a direct sum of the subspace éh([a, b]) and a sub-
space .. Find the dimension of _y".

6. The set of functions belonging to L,(Q) that vanish (a.e.) in Q’, Q' < 0,
is a subspace of L,(Q). Find its orthogonal complement.

7. Consider the function f (z) = r*@ in the plane z = (z;, z3) = (r cos @,
rsin @), 0 < ¢ << 2n. For what a does the function f belong to H'(Q), where Q
is (a) the disc {r <1}, (b) {r <1, ¢ £0}? _

8. Suppose that the sequence of functions f,,(z), m =1, 2, ..., in Ck (Q)
converges weakly in L, (Q) to a function f and the sequence D%, m =1, 2, .. .,
for some @ = (a3, . .., &), | @ | =k, is bounded in L,(Q). Show that f has
generalized derivative D%f, B

9. Suppose that the sequence of functions f,(z), m =1,2, ..., in CYQ)
converges weakly in L, (Q), and the sequences %' i=1, ..., n,m=01, 2, ...,

. i

are bounded in L,(Q). Show that the sequence f,,m =1, 2, ..., converges
strongly in L,(Q). Give an example of a sequence that satisfies the formulated
conditions but is not compact in H(Q).

10. Show that if the sequence of functions f,(z), m =1, 2, ..., in Ch (Q),
k > 1, converges weakly in L,(Q) to a function f and for all @ = (&, . . ., @),

| =k, || D%, llL g < const, m =1, 2, ..., then (a) f€ f!h(Q), (b) the
sequence f,, m =1, 2, ..., converges to f strongly in Hk-1 (Q).

11. Prove that for any function f(z) € H* (K) (f(z) € C* (K)), where K is an
n-dimensional cube, there is an extension F(z), with compact support, into
a wider region Q, Q D K, that belongs to HR(Q) (Ck(Q)), and satisfies the
inequality || F”Hh(Q) LC|f “H"(K)’ where the constant € >0 does not
depend on f.

12. Let 2° be a point in a region Q of the n-dimensional space R,, n > 1.
Show that the closure of the linear manifold of functions that are continuously

differentiable in Q and vanish in some neighbourhood (different for different
functions) of z° coincides with H(Q).
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13. Show that the set H(a, b) of all functions f € H(a, b) for which f(a) =
= f (b) is a subspace of the space H(a, b). Show that I;Vl(a, b) = Hi(a, b) =
— H(a, b). Find the orthogonal complement of H(a, b) in H'(a, b) and that

of fHl(a, b) in H'(a, b), and construct orthonormal bases for the spaces I-}l(a, b),
H(a, b)) and H(g, b).

Let a function f € Ly(K), where K is the cube {| z; | <a, i=1, ..., n}.
According to Fubini’s theorem, for almost all z, = § € (—a, a) the function
f(z’ ,E) 1is defined and belongs to L;(K’), where K’ is the (»n — 1)-dimensional
cube §| z;| <a,i=1, ..., n— 1} This function will be referred to as the
value of f on the section K (| {z, = §). Similarly, for almost all z* = &' € K"
a function f(&', z,) is defined and belongs to Ljy(—a, a). This function will be
referred to as the value of f on the section K | {z' = &'}.

For a function f € H'(K) there exists the trace f|
€ [—a, a], belonging to L, (K’).

14. Prove that if 7 € H(K), then for almost all &' € K’ its value f(&’, zp)
on the section K | {z' = &’} belongs to the space H'(—a, a), for almost all
E € (—a, a) its trace f|, =t and its value f(z’, £) on the section K N {z, = &}

n
belong to HY(K').

15. Prove that the set of traces of all functions in H(Q) on an (rn — 1)-di-
mensional surface S — Q does not coincide with L,(S).

16. Prove the following assertions:

(a) If f€ HY(Q), then | f| also belongs to H*(Q),

(b) If the functions fy, ..., fnv belong to H!(Q), then the functions
max (f;, ..., fv) and min (f;, ..., fn) also belong to H(Q).

17. We shall say that a function f(z) belongs to the class C*(Q) for some a,
0 < a < 1, if for any strictly interior subregion Q’, Q'€ Q, there is a constant
C = C(Q’) such that for all points z’, z” in Q’ the inequality | f(z') — f(z") | <
<Clz' =2z |% holds. If this inequality holds with some constant C for all
z', 2" in Q, then we say that the function f (z) belongs to the class C%(Q).

for all z, = E¢€

xn=§’

n
Show that if f¢ Hllozcl +1(Q) (Q is an n-dimensional region), then f € C* (Q)
for any a<[n2l+1—n2, and it re A2 Q) or renH ! () and
n

[E +1 -
aQ¢ecC , then f¢ C* (Q) for any o <<[n/2]41—n/2.

w3
18. Prove that any bounded set in H

Q) (Q is an n-dimensional re-
k414 [g])

gion, 6Q € C is compact in CR(Q). _
19. Suppose that the functious %(z), a(z), p(z) belong to C(Q), o(z) € C(3Q),

k(z) >0,a(x)>0,p(x) >0in Q, ¢ (z) >0 on Q. Show that the bilinear
orm

Wil o= | 9vg+aid s+ (| oraz) ( | o az)
with ¢ + p =0 and tth bilinear form : ¢

Wt )= | (orvgtatpas+( { of as) ( { oz as)
Q aQ Q
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when either @ &= 0 or ¢ %= O defined on H(Q) determine scalar products in
H(Q) which are equivalent to the scalar product

(fr g)Hl(Q)= S (Vng-—}-fE) dz.
Q

20. Suppose that the function k(z) € C2%([0, 1]) and X(z) > 0 for =z > 0.
By Hy(0, 1) denote the completion of the set of functions in C*([0, 1]) vanishing
1

for z = 1 in the norm generated by the scalar product"}g k(z) f'(2) g'(z) dz.

0
Prove that H(0,1) = Ly(0, 1) if and only if lim k(z).-z=2 > 0.
x—>+0
21. Show that the scalar products (f, g)'=S Z D*{D%% dx and (f, g)"=
Q lal<k
=S 2 D%{D%g dz are equivalent in the space HE(Q).

Q lal=k
22. Let f€ Ly(0, 1). The linear functional If(u)=(f, UL is bounded in
ﬁh(O, 1) for any k> 0. By Riesz’s theorem, there exists (a unique) element
Fe H®0, 1) such that I(u)=(F, u) op o, for all € H®(0, 1). Find F and
0, 1)

ShOV;' that F¢HR(O, 1) (N H2*(0,1). (For scalar product take (a) (f, g)=
1
— _ - k
- S [®g®dz, (b) (f, g)= Y (g™ 4 fg) dz, where ®=-21_ )
o dz
0 0
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CHAPTER IV

ELLIPTIC EQUATIONS

§ 1. GENERALIZED SOLUTIONS OF BOUNDARY-VALUE
PROBLEMS. EIGENVALUE PROBLEMS

1. Classical and Generalized Solutions of Boundary- Value Problems.
Suppose that in an rn-dimensional region Q there is given the elliptic
equation

Zu = div (k(z) Vu) — a(z) u = f(z), (1)
whose coefficients are real-valued and satisfy the conditions
a(z) € C(Q), k(=) € CXQ), k() > ko> 0 for all z € Q.

The function u(x) and the free term f(r) of the equation may be,
in general, complex-valued.

A function u(z) belonging to C%*(Q) | C(Q) is called a (classicaly
solution of the first boundary-value problem or the Dirichlet problem:
for Eq. (1) if it satisfies Eq. (1) in Q and the condition

ulog = P(2), 2>
where ¢(z) is a given function, on the boundary 4Q.
The function u(z) € C*Q) N CXQ) is called a (classical) solution

of the third boundary-value problem for Eq. (1) if it satisfies Eq. (1)
in Q and on the boundary 0Q the condition

(S +0@ u) |,,= 9@ 3)

where o(z) € C(0Q) and @(x) are given functions. It will be as-
sumed that o(z) > O.

If the function ¢ (z) in (3) isidentically zero, then the third bound-
ary-value problem is termed the second boundary-value problem or
the Neumann problem.

When n = 1, Eq. (1) becomes an ordinary differential equation

Lu= (k@) u) — alz) u = (). (1)



170 PARTIAL DIFFERENTIAL EQUATIONS

‘The region Q in this case is an interval (a, f), while the boundary
conditions of the first and third boundary-value problems are, res-
pectively, of the form

Ulema =@y Ul|x=p=4 (29)
and

(—u' +00U) lx=a= P9, (W +0u)|x=p=P1, (34)

where @,, @;, 0o > 0, 0, > 0 are some given constants.
Suppose that the function u(z) is a classical solution in Q of the
first boundary-value problem (1), (2). We multiply (1) by an arbit-

rary function u(z) Eé"(Q) and integrate the resulting identity
over Q. By means of Ostrogradskii’s formula, we obtain

5 (kVu Vo4 aup) dz = — S fodz (4)
Q Q

(the integral over the boundary dQ vanishes, because v has compact
support).

If we additionally assume that the partial derivatives of the solu-
tion ux, € Ly(Q), i =1, ..., n, that is, that u(z)€ HYQ) and
f(z) € Ly(Q), then the integral identity (4) holds not only for all
v(z) € CYQ) but also for all v € H 1(Q). To see this, we consider
any function v € I?l(Q) and a sequence of functions wvy(z), k =

=1, 2, ..., in CYQ) that converges to v in the norm of H'(Q). The
identity (4) holds for each of v, (z). Letting in this &£ — oo, we find
that the identity (4) holds for v also.

Thus, if f € L,(Q), the classical solution u of the problem (1), (2)
belonging to the space HY(Q) satisfies the integral identity (4) for

all v € HY(Q).

We introduce the following definition.

A function u € HYQ) is called the generalized solution of the prob-
lem (1), (2) with f € L,(Q) if it satisfies the identity (4) for all v €

€ H*(Q) and the boundary condition (2). In the boundary condi-
tion (2), the equality is understood as the equality of elements of
L,(0Q), and u|sg is the trace of u.

Note that the above definition of a zeneralized solution is not a
complete generalization of the corresponding classical notion,
because in order that a classical solution u(x) be a generalized solu-
tion it should be subject to additional conditions of “integral char-
acter”, namely, it must be such that u € HYQ) and Lu € L,(Q),
‘where & is the operator in (1).

In an analogous manner one can introduce the notion of general-
ized solution of third (second) boundary-value problem for Eq. (1).
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Suppose that the function wu(z) is a classical solution of the third
boundary-value problem (1), (3). Assume that the right-hand side
f(z) of Eq. (1) belongs to L,(Q) and the function ¢(z) present in the
boundary condition (3) belongs to L,(dQ). We multiply (1) by an
arbitrary function v (z) € H*(Q) and integrate the resulting identity
over Q. Then Ostrogradskii’s formula yields the integral identity

S (kVu Vo + aup) dz -+ Skau,? S =—(fodz+ S kewdS, (5)
Q aQ Q 2Q

which is satisfied by the classical solution u(z) for all v(z) € HY(Q).

We now introduce the following definition.

The function u € HYQ) is termed a generalized solution of the
third (second, if o (z) = 0) boundary-value problem for Eq. (1) with
f € Ly(Q), 9 € Ly(9Q), if it satisfies (5) for all v € HY(Q).

In defining the generalized solutions the functions v in identities
{4) and (5) were assumed to be complex-valued, but they may as
well be assumed real-valued. Indeed, if the function u € H*(Q)
satisfies, for example, the identity (4) for all complex-valued func-

tions v € ;11(0), then it obviously satisfies the same identity for
all real-valued v € H*Q). Conversely, if the function u € HYQ)

satisfies (4) for all real-valued v € HY(Q), then the same identity
holds also for any complex-valued v = Re v + i Im v belonging to

HYQ), because it holds for functions Re v and Im v belonging to
HYQ).

Note that we have, in fact, already encountered (Sec. 3.1, Chap. I)
generalized solutions of boundary-value problems for Eq. (1) (in
the two-dimensional case) in deriving the equilibrium conditions of
a membrane: the integral identities (4) and (5) appearing in the
definition of generalized solutions coincide with the identities (4)
and (1) of Sec. 3.1, Chap. I.

The definitions of generalized solutions of boundary-value problems
for Eq. (1) apply equally well to one-dimensional case. A function
u € HY(a, B) satisfying the boundary conditions (2,) (from Theo-
rem 3, Sec. 6.2, Chap. III, it follows that u € C([a, B])) is a general-
ized solution of the first boundary-value problem for Eq. (1,) if for

any v € ﬁl(a, B)

B B
S (ku's’ + auv) dz = — | fvda. (41)

(¢



172 PARTIAL DIFFERENTIAL EQUATIONS

A function u € HY(a, B) is a generalized solution of the third (sec-
ond) boundary-value problem for Eq. (1,) if for any v € H(a, B)

B
§ (¥’ + auv) dz -+ (B) oy B) v (B) + k (@) 00w (@) ()
* B
=— [ fodz+E@® ev @ +k@ b (@. 6

o

The present section is devoted to the study of generalized solu-
tions of boundary-value problems. Since the generalized solutions
are elements of the Hilbert space H(Q), the general results of
Chap. IT will be widely used.

The investigation of classical solutions of the boundary-value
problems is a considerably more difficult problem and it is natural to
divide this into two simpler problems: first, the generalized solution
is constructed, and then by establishing (under appropriate condi-
tions) its smoothness it is shown to be a classical solution. The smooth-
ness of generalized solutions will be proved in the next section.

2. Existence and Uniqueness of Generalized Solution in the Sim-
plest Case. To examine the questions of existence and uniqueness of
generalized solutions of boundary-value problems, it is convenient to
start with the case when the boundary conditions are homogeneous
(that is, 9 =0). By definition, a generalized solution of the bound-

ary-value problem (1), (2) with ¢ = 0 is the function u € I;TI(Q)
satisfying for all v € H }(Q) the integral identity (4):

S (kY Vo + aup) dz = — S fodz.
4] Q
The generalized solution of the third (second) boundary-value prob-
lem (1), (3) with ¢ = O is the function u € H(Q) satisfying for all
v € HY(Q) the integral identity
g (kVu Vo + auv) dz + Skouz s = — S fodz. (6)
Q aQ Q
Suppose that a(x) > 0 in Q. Then, by Theorem 6, Sec- 5.6,
Chap. III, a scalar product

(u7 U) o

1@ =<§ (kVu Vv auv) dz, @

equivalent to the usual scalar product ((u, V)= S (Vu Vv + uv) dx)
Q

can be introduced in the space H }(Q). Using this, the identity (4)
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may be put in the form

© Vg, o= " V@- ®)

For a fixed f€ Ly(Q) (f, V)L, is a linear functional on H YQ),
v € HY(Q). Since

[ (s V)@ < @ [V L@ <Cll fllzi@ 215, 4,

in which the positive constant C does not depend on f and v, this
functional is bounded and its norm does not exceed C || f |l q)-
By Riesz’s theorem (Theorem 1, Sec. 3.2, Chap. II), there is a

function F, in HYQ) such that (f, v)r, = (F1, D) g gy 107 2l v E

€ ﬁl(Q). Such a function is unique and satisfies the inequality

I| Fy |I§1(Q) < C || f lly@). Accordingly, in H Q) there is a unique

function u = F, satisfying the identity (8).

Thus we have proved the following theorem.

Theorem 1. If a(x) > 0 in Q, then for any f € Ly(Q) there exists
a unique generalized solution u of the problem (1), (2) (with ¢ = 0).
Moreover,

llwll

ﬁ:(Q)<C “ f “Lz(Q)' (9)

where the positive constant C does not depend on f.

If a () > 0 and at least one of the functions a(z) or o(x) does
not vanish identically, then, by Corollary to Theorem 5, Sec. 5.6,
Chap. III, the scalar product

(, Vave = | (kVuVo+ o) dz+ [kouvds,  (10)
< aQ

equivalent to the usual scalar product, can be introduced in H* (Q).
Therefore identity (6) can be rewritten as

(@, V)avg= —(f, v)L(- (11)

Since for a fixed f € L, (Q) the functional (f, v)r,q), Which is li-
near in v € HY(Q), is bounded: | (f, V)L, | < I f Ly Il ¥ Ly <
< C || f llLyq v llH1@), Wwhere the constant C > 0 does not depend
on f or v, by Riesz’s theorem there is a unique function F, in HY(Q)
such that (f, v)r, = —(F,, V)m) for any v € HYQ), and
I| Fy ) << C || f llLxg)- Therefore in H'(Q) there exists a unique
function u = F, satisfying (11).

Thus we have proved the following theorem.

Theorem 2. If a(z) >- 0 in Q and at least one of the functions a(x)
or o(x) does not vanish identically, then for any f € L,(Q) there
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exists a unique generalized solution u of the problem (1), (3) (with
¢ = 0). Moreover,

| ullz@y<C |l fllz.@» (12)

where the positive constant C does not depend on f.

Remark. If f is a real-valued function, then the solutions of the
boundary-value problems obtained in Theorems 1 and 2 are also
real-valued. Indeed, let w = Reu -+ i Im u be the generalized
solution of one of these boundary-value problems. Since the coef-
ficients of the equation and the function f are real-valued, from (4)
(or (6)) it follows that the function Re u is also a generalized solu-
tion of the same problem (the function v in (4) and (€) may Le con-
sidered real-valued). The uniqueness of the solution implies that
u = Re u.

3. Eigenfunctions and Eigenvalues. A nonzero function u(z) is
called an eigenfunction of the first boundary-value problem for the
operator £ = div (k(z) V) — a(z) if there exists a number A such
that the function u () is a classical solution of the following problem:

Lu = hu, z €Q, (13)
ulsgg = 0. (14)

The number A is called the eigenvalue (corresponding to the eigen-
function u(z)).

It is obvious that to every eigenfunction there corresponds only
one eigenvalue but not vice-versa. In particular, if u(zx) is an eigen-
function, then so is the function cu(x) for any constant ¢ = 0 cor-
responding to the same eigenvalue. Accordingly, we may consider
eigenfunctions normalized, for instance, by the condition || u llLq)=

Let A be an eigenvalue and u(z) an eigenfunction of the first
boundary-value problem, and let u(z) € H(Q). Multiplying (13)

by an arbitrary v € B }(Q) and integrating the resulting equation
over @, we obtain the integral identity

| (kvuvs + aup) dz = —AS up dz (15)
Q Q

which is satisfied by u for all v € Ijl(Q).

A nonzero function u € H 1(Q) is called the generalized eigen-
function of the first boundary-value problem for the operator £ if there
is a number A such that the function u satisfies the integral identity

(15) for all v € H? (Q); the number A is called the eigenvalue (corres-
ponding to the generalized eigenfunction u).
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It will be assumed that || u ||,y = 1.

A nonzero function u(z) is called the eigenfunction of the third
(second) boundary-value problem for the operator £ = div (k(z) V) —
— a(x) if there is a number A (the eigenvalue corresponding to u(z))
such that u(z) is a classical solution of the following problem

Lu=>M, z€0Q,
(%Z—-}-o(x) u) ’6Q=O.

As is easy to see, the eigenfunction of the third (second) boundary~
value problem satisfies for all v € H*(Q) the integral identity

S(kVqu + auv) dz+ | koup dS = — A {ub dz. (16)
Q aQ Q

A nonzero function u € HY(Q) is called the generalized eigenfunc-
tion of the third (second) boundary-value problem for the operator &
if there is a number A (the eigenvalue corresponding to u) such that.
the function u satisfies the identity (16) for all v € HX(Q).

It will be assumed that || u |l = 1.

The further consideration in this section will be confined to gen--
eralized eigenfunctions and their corresponding eigenvalues. It will
be convenient to regard the identities (15) and (16) defining the gen-
eralized eigenfunctions as identities in the scalar products in

spaces L,(Q) and fll(()) or H! (Q), respectively.
Put m = min a(z) (here it is not assumed that a(z) > 0). Then:

the function e

“a(z) = a(@ —m+1>1 in Q.
Therefore a scalar product (equivalent to the usual scalar product)
in H! (Q) can be defined by the formula

(s V) g 0= S(kvuv5+ au) dz, A7)
)
while in HY(Q) by
(U, V)HiQ) = S(kvuv5 + quv) dz -+ Skau;ds. (18)
é o
Then (15) and (16) can be rewritten as
© V)g, = (—A=m+1) 1 o) (19)
and
@, V)m@=(—rA—m-+1)(u, v),@- (20)

We shall first prove the following assertions.
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Lemma 1. There is a bounded linear operator A acting from L,(Q)
into HYQ) with the domain of definition L(Q) such that for all v €
€ HY(Q) the following relation holds:

(¥, V)L, =(4u, v), (21)

BQ’
The operator A has an inverse A~t. If A is regarded as an operator
from I;TI(Q) into 1;1(0), it is selfadjoint, positive and completely
COntinuous.

Lemma 1’. There is a bounded linear operator A’ acting from

L,(Q) into HYQ) with the domain of definition L,(Q) such that for
all v € HYQ) the following relation holds:

(u, V)L @ = (4'u, V)8 Q) (21"

The operator A" has an inverse A’ 1. If A’ is regarded as an operator
from HYQ) into HYQ), it is selfadjoint, positive, and completely
continuous™®.

We shall prove Lemma 1; Lemma 1’ is proved in the same way.

Proof of Lemma 1. For any (fixed) function u € Ly(Q) the function-

al I(v) = (, V)L q, Which is linear in v, v € HYQ), is bounded,
because

L) =] Inel<ltluallvlue<Clulua v,
‘Therefore, by Riesz’s theorem, there exists a unique function U €
€HYQ), 11U llg,q = I1I<Cllulig such that Iv) =

= (U, v)&.(Q) for all v € HYQ). This means that on L,(Q) an oper-

ator A is defined (which is obviously linear): Au = U, for which

{21) holds. Since || Au ||HI(Q) < C || u |lL, @), the operator 4 from

Ly(Q) into HI(Q) is bounded. If for some u € L,(Q) Au = 0, then,

by (21), (u, v)L,q = O for all v € H* (Q), that is, v = 0. This im-
plies that the operator 4 -1 exists.

The operator 4 from I;VI(Q) into HY(Q) is selfadjoint, as can be

seen from  (20):  (Au, W) = (U Ve = O D =
= (4v, u) u)H ‘@ = (u, Av);}.(q); (21) also implies that the operator 4

is positive.

* The form of operators 4 and 4’ depends, of course, on the scalar product

defined in A 1(Q) and H'(Q), respectively. Here scalar products (17) and (18)
are used.



ELLIPTIC EQUATIONS 177

Let us show that A4 as an operator from HQ) into H(Q) is
completely continuous. Consider an arbitrary set of functions bound-

ed in I:;I(()). By Theorem 3, Sec. 5.4, Chap. III, this set is com-
pact in L,(Q). This means that from any of its infinite subsets we
can choose a sequence u,, s = 1, 2, . . ., which is fundamental in

L,(Q). Since the operator A from L,(Q) into Iil(()) is bounded,
and hence continuous, the sequence Aug,, s =1, 2, .. ., is funda-
mental in H! (Q).

By Lemma 1, the identity (19) can be written in the form of an

operator equation in the space HY(Q):
— (A +m—1) Au = u, u € HYQ). (22)

Similarly, (20) can be written, using Lemma 1’, as an operator
equation in the space H(Q):

— A+ m—1)Au=u, ucHQ). (22"

Thus the number A is an eigenvalue of the first (third) boundary-
value problem for the operator £ and u is the corresponding genera-
lized eigenfunction if and only if — (A 4+ m — 1) is the character-
istic value of the completely continuous selfadjoint operator A

from HYQ) into HYQ) (A4’ from H(Q) into H(Q)) and u is the
corresponding eigenelement.

Therefore from the results of Sec. 5, Chap. I it follows that there is
at most a countable set of eigenvalues of the first (third) boundary-
value problem; this set does not have finite limit points; all the
eigenvalues are real; to every eigenvalue there corresponds a finite
number (the multiplicity of the eigenvalue) of mutually orthogonal

eigenfunctions in HY(Q) (in H(Q)); the eigenfunctions correspond-

ing to different eigenvalues are orthogonal in H(Q) (in H(Q)).
Note that corresponding to each eigenvalue A of the first (third)
boundary-value problem one can choose exactly k, k& being the mul-

tiplicity of A, mutually orthogonal real eigenfunctions in H?(Q)
(in HYQ)). Let uw -= Reu -+ i Im u be the eigenfunction corres-
ponding to the eigenvalue A. Since A and the coefficients k(x) and
a(x) are real, the functions Re u and lm u, as follows from (15) or
(16), are also eigenfunctions corresponding to the same A (the func-
tion v in (15) or (16) may be considered real-valued). It is not dif-
ficult to check that the maximum number of mutually orthogonal
real eigenfunctions is k. '
Let

hyy Agy vy Ry oo (23)
12--0594
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be the sequence of all the eigenvalues of the first (third) boundary-
value problem for the operator £ in which each eigenvalue is re-
peated according to its multiplicity. Let

Ugy Ugy o o oy Ugy o oo (24)
be a system of mutually orthogonal generalized eigenfunctions

(Il us llLyg = 1) in I}I(Q) (HY(Q)); each u, corresponds to the
eigenvalue A,

— A+ m — 1) Au, = u,, s=1, ... (25)
for the first boundary-value problem and
— A t+m—1NAuy=u,, s=1,... (25)
for the third boundary-value problem.

Scalar! multiplication in I:;I(Q) (HYQ)) of (25) ((25")) by u,
gives, in view of (21) ((21)),

” Usg ”:},(g) =—(As+m—1) “ Us “i.(Q) = —(A,+m—1), (26)

s i@y = — Qe +m—1) [t L0 = — Ra+m—1), (26

which may be written (the scalar products in H Q) and HYQ) are
defined by formulas (17) and (18)) in the form

[ K1V, pda+ | (@+2)|u, pdz=0 @7)
Q Q

for the first boundary-value problem and
d{k|\7u,|2dz+ S(a—l-}»,)lu, dz+ Skc[u,]zdS;—O @7
Q Q

for the third boundary-value problem.
It follows from equality (27) that for all s =1, 2, ...

A, <—m= —min a(z). (28)
x€Q
Similarly, from (27’) it follows that for all s =1, 2, ...
A< —m = —min a(z), (28")
*€Q

and for all s = 1, ... strict inequality holds if either a(z) %= const
or o(x) ==0. If, however, o(z) =0 (the second boundary-value
problem) and a(z) = const, a(z) = m, then among the eigenvalues
of the second boundary-value problem there is one that equals —m

and the corresponding eigenfunction is equal to const = 1/}/]Q |.
This eigenvalue has multiplicity 1, because, by (27'), all the eigen-
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functions corresponding to it satisfy the relation S k|lvu Pdz =
Q

= 0, that is, are constants.
It follows from (26) ((26")) that the system

Uy Ug

Viem—p,' ~ """ Vi—m—2 (22)

is orthonormal in I;I(Q) (in HY(Q)). By Corollary 1 to Theorem 2,
Sec. 5.2, Chap. II, this system is an orthonormal basis for I;TI(Q) (for

HY(Q)). And since the space }jl(Q) (H*(Q)) is infinite-dimensional,
it follows that the set (24), and therefore also (23), is infinite. Hence
Ag—> — o0 as §— oo.

Scalar multiplication in Iil(Q) (HYQ)) of (25) ((25")) by uy,
j = s, and the use of (21) ((21')), gives the identity —(As+m —1) X
X (us, uj)L,@ = 0, that is, the system (24) is orthonormal in
Ly(Q). As the linear manifold spanned by the system (22) (and
therefore by the system (24)) is everywhere dense in H Q) (H 1)),
it is also everywhere dense in L, (Q). Accordingly, the system (24)
is an orthonormal basis for L,(Q), that is, any element f € L,(Q)
can be expanded in a convergent Fourier series in L,(Q):

oo

= 2 faltss fs=(f, ua)L.(Q) (29)

=1

and the Parseval-Steklov equality holds:
It = 2 1£s 2
=1

Suppose that the function f € I:°[1(Q) (HYQ)). It can be expanded
in a Fourier series with respect to the orthonormal basis (¢4) that

converges in I;”(Q) (HYQ)):

"2 Vi) i Vi #)

=

for the first boundary-value problem (f € H°1(Q)) and

M s

= (30)

f= (f’ Vr—l%l‘;;)ﬂi<o) Vi—m—=a,

12¢
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for the third boundary-value problem (f € H(Q)). Moreover, the
following Parseval-Steklov equalities hold:

(1 ), =11

Vi—m— As Q) H1(Q)

and

2 |(f’ —lfi—ltsﬁ)szcz)‘zzlmﬁ"@'

The series (30) ((30")), of course, converges to f in the norm of
Ly(Q) also. A comparison of this series with the series (29) shows

— — _.._._—__ —-1 —
that fs - (fv us)L,(Q) - (fa Vl—m 7‘ )&I(Q) Vm (fs
‘ Ug 1
=(1 Vicm—t, )i Vicmeh )- Therefore
NI f, —“8_— =S (1—m—2A)|fs?
" IIHI(Q) sgil( 1/1_m_;~3 HI(Q)‘ sé:l I I
=(1—-m)||f||i,<o)—z As|fsl?
s=1
(N7 By =A—m) | f k) — 7~ | £s ),

whence it follows, in view of (28), that

S inlne< = S A2 Im] 3 1P
<l

HY(Q)

+@|m|+Im—1D)lf It

and similarly (in view of (28’)) that
sZ:il7~s||fs|2<||fHZH'<Q>-E-(2|mH—lm-"1|)||f”i,(o)-

Thus we obtain the inequa]i"cy

Sinline<Cir; a1

H1(OY'
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where A;, s = 1, 2, . . ., are eigenvalues of the first boundary-value
problem with f € ¢! (Q), and the inequality

D1l PN o, (32

where A, s =1, 2, ..., are eigenvalues of the third boundary-
value problem with f € H(Q). The constant C in (31) and (32) does
not depend on f. Thus we have proved the following theorem.
Theorem 3. The eigenvalues A, Ay, . . . of the first or third (second)
boundary-value problem for the operator £ = div (k(z) V) — a(z)
are real and Ay — — oo as s — oo. When a(z) s= const, the eigenval-
ues of the first and third, with o s= 0, boundary-value problems as well
as those of the second boundary-value problem (o = 0) satisfy the ine-
quality Ay << — min a(z) for all s=1, 2, ..., When a(z) is a
x€
constant, a (z) = ng,, the eigenvalues of the second boundary-value

problem satisfy the inequality A < — m, s =1, 2, . . ., and there is
an eigenvalue that is equal to —m whose multiplicity is 1 and fo which
there corresponds the generalized eigenfunction 1/V [ Q|. The gener-
alized eigenfunctions uy(x), uy(x), ... of the boundary-value prob-
lems under consideration constitute an orthonormal basis for L, (Q),
that is, any function f € Ly(Q) can be expanded in a Fourier series

(29) which converges in Ly(Q). When f € HYQ), the series (29) in
terms of the generalized eigenfunctions of the first boundary-value

problem converges in HY(Q) and the inequality (31) holds. When f €
€ HYQ), the series (29) in terms of the generalized eigenfunctions of
the third (second) boundary-value problem converges in HY Q) and
the inequality (32) holds.

4. Variational Properties of Eigenvalues and Eigenfunctions. The

operator A defined by the relation (21) and acting from f11(0) into

fo]l(()) is selfadjoint, completely continuous and positive (Lemma 1),
therefore, by Theorem 1, Sec. 5.1, Chap II, its first characteristic
value, obviously positive, is

2 2

. M7 . 1 lgs
b= Inf gpmpe = inf
i) - THNQ fefing) Q@

(the norm of f in 1;71(0) is defined corresponding to the scalar pro-
duct (17)). The functional || f H;;,(Q)/Hf llf.@ assumes the value pu,

when f = u,, where u, is the first eigenelement of the operator 4.
Therefore the first eigenvalue of the first boundary-value problem
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for the operator £ is given by

7115 § (k| Vi2+a|f[?ds
b=t it et & o
fef @ "f“L,(Q) feBQ) é | f12 dz

and the exact lower bound of the functional

[ ®1vip+alipyaz/{11paz
Q Q

on the space H! (Q) is attained through the first eigenfunction u,.
The results of Sec. 5.1, Chap. II, imply that (k+1)th chalz'acter-

. . . Flg
istic value pp4y of the operator A is equal to inf "—"E,";Q).
5 I "L,(Q)
f€ Q)
. u; ﬁl(Q)

Since, according to (21), (f, Ui)g
i=1, 2, ..., it follows that

)__ i (f, Aui)gn(Q) p'i (.f’ Ui)Ly(@)s

H@Q@

21
. IHF g
Wp+1 = inf "f”#.
fEH1(Q) L@
V@70

Thus the (£ 4+ 1)th eigenvalue of the first boundary-value problem
for the operator £ is given by

2

. Mg

’\h-{-i:‘—m—*—i— inf "f“%
TeHY(Q) L@
()L @=0
i=1, ..., R
§ (k|Vi2+a|f]?)de
. Q
= — inf - (34)
1ef (@ JI11ds
L@ e

The functional

[ ®IviP+alfpdzf || 1P
Q Q

attains its exact lower bound through the eigenfunction w4+, on the

subspace of the space H (Q) that is composed of all the functions
orthogonaljin the space with the scalar product, L,(Q), to the eigen-
functions u,, ..., uy of this boundary-value problem.



ELLIPTIC EQUATIONS 183

In exactly the same manner, for the third (second) boundary-
value problem for the operator &£

. (BAL
AM=—m+41— inf ——Q
rerv@ 11 lLyQ

§ (k| Vf+alf[®) dz+ | ko|f[2as
Q 9

= — inf : . (33
fEHY(Q) §1f|2de )
2
Kk+‘=—m+1—' inf M
remv@ 11z
( u)LyQ)=
i=1, ...,k
§ kIVi2+a|f|?) dz+ § ko|f[2dS
=— inf & L . (34)

fEHY Q) §1f12dz
s 4)LyQ=0 Q

1=1, .

The exact lower bound of the functional
§ (kIViP+alf®)dz+ § ko|fI2dS
Q 0Q

§17[*dz
Q

on HYQ) is attained through the first eigenfunction u,. The exact
lower bound of this functional is attained through the (¥ 4+ 1)th
eigenfunction u4, on the subspace of H(Q) consisting of all the
elements orthogonal to the space with the scalar product, L,(Q), to
the eigenfunctions wu,, ..., up of the respective boundary-value
problem.

Formulas (33) and (33') can be combined into one:

§ (k|Vi2+a|f|?)dz+ § ko|f[2dS
0Q

7\.1=—inf0 : )
feG \1f12dz
Q

(33")

moreover, A, is the first eigenvalue of the third (second, if 0 = 0)
boundary-value problem for the operator £ if G = HY(Q), and A,
is the first eigenvalue of the first boundary-value problem if G =

= fQ) (when f € A%Q), the integral S ko |f P dS =0).

8Q
Similarly, formulas (34) and (34") can be combined into one:

§ | V2 +a|f|®) de+ § ko|f|2dS
A - inf 9 L . (34"
wH 66 {1f12ds (347
¢ “i)La(Q):“ Q
i=1,. .
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Sometimes the application of formulas (34), (34"), (34") in finding
the (& -+ 1)th eigenvalue A,4,; becomes difficult as they depend on
the knowledge of the preceding eigenfunctions u,, . . ., u,. A form-
ula for calculating A4+, will be obtained below which is free from
this defect.

We take arbitrary k functions ¢,, ..., ¢p belonging to L,(Q)

and denote by R (¢, - .., ¢p) the subspace of H (Q) which con-
sists of functions f that are orthogonal to the functions @, . .., ¢,
in the space with the scalar product, L,(Q): (f, 9s)r, = 0, s =
=1, ..., k. Let '

2
L I gy
d(@y, ooy o) = —m+1— inf ’
((Pi (Ph) FER@,, ..., §p) LK) "it(Q)

and let dj4, be the exact lower bound of the number set {d (¢,, .
. ., @)} taken over all the possible systems of functions @,, . .
. ., ¢ belonging to L,(Q):
dh+1 = inf d ((Pi, oo oy (pk).
(‘171, ey ‘pk)

9,£L5(Q)
s=1, ...,k

We shall show that d,4+; = Ap4;, where Ayyy is the (b + 1)th
eigenvalue of the first boundary-value problem for the operator Z.
Since d (uy, ..., up) = Ay, (formula (34)), it follows that
dp+1 < Mp+;. We shall now establish the reverse inequality. To do
this, it is enough to construct for an arbitrary fixed choice of the
system ¢, ..., ¢, a function f in R (@, ..., @p) such that

Il f ||L,(Q) =1 and
1 gy < — Mt —m -1

The function f will be sdught in the form
ht1

f: ;Z;Ii fsusv fs = (.fa us)L,(Q).

Then the conditions f € R(®,, . . ., ¢x) and || f |l = 1 become
hj—ﬂi
(s op)ry@ = /;vl Fs(us, 9p)La =0, p=1, ..., k,  (39)

h+1
1 1ltie = 23 [fs2=1. (36)

Since the linear system (35) regarding the vector (fy, . . ., fa+y) 15 2
homogeneous system of k equations in & -+ 1 unkpowns, it has alyve.lys
a nontrivial solution. It is always possible to satisfy the normalizing
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condition (36). Since, in view of (26) and (36),
h+1 k41

”.f”Hn(Q) = |fs|2”us”H:(Q)_ ~11|fs|2(—7"s_m+1)

k+1
< g.;l [fs P(—Aprg—m 1) =— gy —m+1

(recall that A, = Ay > ... > Ayyy), it follows that f is the desired
function.

Thus the (k£ 4 1)th eigenvalue of the first boundary-value problem
for the operator Z is given by the formula

2
MH:(wl,inf ‘ph)(—m‘f‘1_ inf lll]lelIé:((—S))—)
T
2
=—m+i —((DI,S}%I-)' @) fe:(fQ) llll{}%%
s:pfer'az.(f?') (f w )L (Q)_

’

,\(kIVf|2+aIf|z)dz

= — sup inf Q — , (37)
@ e @) o) § | f12dz
‘PSEL:(Q) 7, ) L,(@)=0 Q
s=1. oo ey 1_1 .

vey

vxpressing the so-called minimax property of the eigenvalues.

Exactly in the same manner the formula for (k- 1)th eigenvalue
of the third (and second) boundary-value problem for the operator
& is established:

(B4
AMti=—m—+1—  sup inf QD
@ - fem@ Il
OEL(Q 7, 9)L,@=0
s—i ey i=1, R
§ (k|Vi[2+a|f|) dzt § ko|f|2dS
=— sup inf @ . % - @37
@ys -+, @) TEHI(Q) AR
o em(Q) <1 “’1>L.<Q>—° Q

j= 1 = ceey

Formulas (37) and (37') can be combined into one:
§ k| VF2talf|?) de+ § ko|f|2dS

Apeg= —  sup inf ¢ . (37"
@0 ---1 @) fEG §1f12dz
9ieL(@ U PDLyQT0 Q

i=1, ...,k
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in which A4, is the (K + 1)th eigenvalue of the first boundary-value

problem for the operator div (k(z) V) — a(z) if G = HYQ), and
Art+, is the (k + 1)th eigenvalue of the third (second, if o = 0)
boundary-value problem if G = H(Q).

The minimax property of eigenvalues furnishes a possible way of
comparing the eigenvalues of various boundary-value problems.

Theorem 4. 1. Let A, MY, A be the kth eigenvalues of the first,
second, and third (for some o > 0) boundary-value problems for the
operator £ = div (k(z) V) — a(z). Then M < M <<AY for all
k=1,

2. Let 7»,, be 'the kih eigenvalue of the first, second or third (for some
o =0 >0) boundary—value problems for the operator L' =
= div (k () V) — a'(z), and let }»" be the kth eigenvalue of the
first, second or third (for some ¢ = ¢” > 0) boundary-value problems
for the operator £" = div (k"(z) V) — a”(x) If K<k, a <a
in Q and in the case of the third boundary-value problem o' < 0'” on
90, then My > Ay forall k =1, 2, .. ..

3. Let Q' be a subregion of the region Q, Q" = Q, and Ay(Q), M(Q’)
be the kth eigenvalues of the first boundary-value problem for the opera-
tor £ =div(k(z) V) —a(x) in Q and Q', respectively. Then
M(Q) > 1(Q") for all k =1,

Proof Let k£ > 1. Since the value of the functional present in
(37") after the sign inf in the case of the third boundary-value prob-
lem (0 > 0) is not less than its value for the second boundary-
value problem (0 = 0) and the set G in both cases is the same, G =
= HY(Q), it follows that A;"" <C AiL. The inequality Aj << km also
follows from (37”), because the set G over which inf is taken in the
case of the third boundary-value problem is wider than the set G

for the first boundary-value problem: HY(Q) o H 1Q).-

Assertion 1 for &k = 1 follows from (34)".

2. Assertion 2 follows from (37") (for &> 1) and from (34")
{when k£ = 1), because the value of the functional appearing after
the inf sign for the operator £” is not less than the corresponding
value for the operator Z'.

3. Since the set H(Q) contains the set H(Q) of functions belong-
ing to H*(Q) and vanishing on Q\.Q’, we have for k > 1

Q)= — . suP.p ) inf I(f)
1 ¢ * Yhay fEH‘(Q
WEL@ " ¢, q,s)L,(Q))—O
s=1, .y 3—1 veeer k1
> — © Supw ) lnf T(f)
lbseL;(Q')‘ 1 jeH‘(Q)

s=1, /s %>L (Q)
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B —w supw ) inf T(f) = M(Q"),
Loy TeduQ)
ELKQ) (5, ) _
s=3 cees h)—-i (sf=Tf).L.'(,?h)_f
‘where
§<k|Vf|’+a|f|2)dc
T = .
" §172dz
fa]
If k=1, then
MQ)=— inf T(f)=— inf T(f)=AQ"). B
feiti@) 1e@

5. Asymptotic Behaviour of Eigenvalues of the First Boundary-
Value Problem. We first consider the eigenvalues of the first bound-
ary-value problem for the Laplace operator A (of the operator £ =
= div (kV) — a with k =1,a=0)inthecube K; = {0 < 7; < I,
i=1, ..., n} with side 1> 0. The generalized eigenfunction
u(x), corresponding to the eigenvalue A, of the first boundary-value
problem for the operator A in K, is defined to be a function belong-

ing to ﬁl(K ;) which satisfies the identity

[ vuvvdz=—2 S uv dz
K, K,
for all UEI;“(K,).
It can be easily verified that the function um, ... m, (z) =

n
2 . ) .
=(%)n/ 11 sin—-nml‘z' with integers m,>0, ..., m,>0 is an

i=1
eigenfunction of the boundary-value problem under discussion; the
2

corresponding eigenvalue is —%(mf—}— ... -+m}). The system
of functions um‘,_,mn(x) for all integers m; >0,i=1, ..., n,
is orthonormal in L,(K;). Since any function belonging to L,(K;)
and orthogonal to all Um,...m is zero (this is proved just as the
corresponding assertion in Sec. 4.4, Chap. III, for the system of
functions um,..m, = exp {i (myz, + ... + m,z,)} in the cube
{lz; |<m, i=1, ..., n}), this system constitutes an orthonor-
mal basis for L,(K,), and accordingly contains all the eigenfunctions
of the first boundary-value problem for the operator A in K;.

Thus there is a one-to-one correspondence between the set of all
the eigenfunctions of the problem in question and the set of all the
points (m,, ..., m,) with positive integer coordinates, and there-
fore also the set of all the cubes Kmy..m, = {m; —1<<z; <my,
i=1, ..., n}. And the eigenvalue corresponding to the function
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u,mw_,,,n(x) is equal to the square of the distance from the point

(mq, ..., my) to the origin multiplied by —mn?/i%. Thus the multi-
plicity of the eigenvalue A equals the number of points with integer

coordinates lying on a sphere of radius )/ —A I/m. In particular, the

number — 57 is the first eigenvalue; its multiplicity is 1. The cor-

l2
. . . /2 .
responding eigenfunction is u;...4(z) = (T)n sin nfl ...sin ;”

The next eigenvalue is ——?—:(n + 3); its multiplicity is n. The

. . . 2\ n/2
corresponding eigenfuctions are u; ., .1,2,1... 1(x) = (T) X
N
o i-1
nr; T T . Nz .
i-1 iy Zn Ji= 1

x sin ¥4 sin sin =7 gjp ~Titt sin =%
e 7 7 . ;

Let N(p) denote the number of eigenvalues (havmg regard to

the multiplicity) which do not exceed some p>>0 in absolute
value. N(p) is equal to the number of points (m, ..., m,) with

2
positive integer coordinates for which mf+...+m?l<—:t2—p or,
what is the same, is equal to the volume of a solid MVEI/n com-

2

posed of all the cubes Kp, ... m, for which mi4- .. .+m,’5<%p.
. l - .
Since MVEl/uCSVBI/n_ {[z[<—1/p, z; =0, i=1, ..., n}

N(p)< lSV_l/n 2(;’; rin p™2. On the other hand, for p>n

Mhﬂ/n ) SV_l/n Vn» therefore for p >l—2 , N(p)> gng X
Let the elgenvalues be numbered, as usual, in increasing order:
0>M=A, > ... (every eigenvalue in this sequence occurs

according to its multiplicity). Consider any eigenvalue A; of multi-

plicity ps, ps > 1, and assume that Xs_p;, ey Ay oy 7»5“,; for

some p; > 0, ps >0, p;+ p: +1 = p, are all the eigenvalues
equal to A,

The number p; is equal to the volume of the solid composed
of the cubes K., ... m, whose vertices (my, ..., m,) lie on a sphere

of radius —Ji-l?»s |'/* with the origin as the centre. This solid is

. . On n/2
contained in SIA I;/;l/n\SMsll/zl/n—Vﬁ’ so ps<w[( | As l)
n
— (= 1%l=V7)""].
In partlcular noting that Ay——oco as s-—oco, we find that
lim —=—= =0.

svoo | As T2 l"/2



ELLIPTIC EOUATIONS 189

From the definition of the function N (p) it follows that

400 = N(| A ). Accordingly, -2 (H2el_y7)" <5y i<

nan )
<% (H:‘”—s')n/z. And since 0.< ps<p,, the ratio s/|A;|"?* has a

limit that equals 0" I"*x /%, Therefore (recalling that ... A,<C
<Ay <<0) there are constants Co and C,, 0<CyLCy, such that

— G em g —So g (38)

for all s =1, 2,

Since the elgenvalues do not depend on the c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>