


Preface 

This little book is especially concerned with thoee portions of 
"advanced calculus" in which the subtlety of the concept.a and 
methods makes rigor difficult to attain at an elementary level. 
The approach taken here uses elementary versions of modem 
methods found in sophisticated mathematics. The formal 
prerequisites include only a term of linear algebra, a nodding 
acquaintance with the notation of set theory, and a respectable 
first-year calculus course (one which at least mentions the 
least upper bound (sup) and greatest lower bound (inf) of a 
set of real numbers). Beyond this a certain (perhaps latent) 
rapport with abstract mathematics will be found almost 
essential. 

The first half of the book covers that simple part of ad-
vanced calculus which generalizes elementary calculus to 
higher dimensions. Chapter 1 contains preliminaries, and 
Chapters 2 and 3 treat differentiation and integration. 

The remainder of the book is devoted to the study of curves, 
surfaces, and higher-dimensional analogues. Here the modem 
and classical treatment.a pursue quite different routes; there are, 
of course, many point.a of contact, and a significant encounter 
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occurs in the la.st section. The very classical equation repro-
duced on the cover appears also a.s the la.st theorem of the 
book. Thia theorem (Stokes' Theorem) ha.s had a curious 
history and ha.s undergone a striking metamorphosis. 

The first statement of the Theorem appears a.s a postscript 
to a letter, dated July 2, 1850, from Sir William Thomson 
(Lord Kelvin) to Stokes. It appeared publicly a.s question 8 
on the Smith's Prize Examination for 1854. Thia competitive 
examination, which wa.s taken annually by the beat mathe-
matics students at Cambridge University, wa.s set from 1849 to 
1882 by ProfeBBOr Stokes; by the time of his death the result 
wa.s known universally a.s Stokes' Theorem. At lea.st three 
proofs were given by his contemporaries: Thomson published 

· one, another appeared in Thomson and Tait's Treatiae on 
Natural, Philosophy, and Maxwell provided another in Ekc-
tricity and M agmtiam (13). Since this time the name of 
Stokes has been applied to much more general results, which 
have figured so prominently in the developn1ent of certain 
parts of mathematics that Stokes' Theoren1 may be con-
sidered a case study in the value of generalization. 

In this book there are three forms of Stokes' Theoren1. 
The version known to Stokes appears in the la.st section, along 
with its inseparable companions, Green's Theorem and the 
Divergence Theorem. These three theorems, the cla.saical 
theorems of the subtitle, are derived quite ea.sily from a 
modern Stokes' Theoren1 which appears earlier in Chapter 5. 
What the classical theorems state for curves and surfaces, this 
theorem states for the higher-dimensional analogues (mani-
folds) which are studied thoroughly in the first part of Chapter 
5. Thia study of manifolds, which could be justified solely on 
the be.sis of their in1portance in n1odern niathematics, actually 
involves no more effort than a careful study of curves and sur-
faces alone would require. 

The reader probably suspects that the modern Stokes' 
Theoren1 is at lea.st a.s difficult a.s the classical theorems 
derived from it. On the contrary, it is a very simple con-
sequence of yet another version of Stokes' Theorem; this very 
abstract version is the final and main result of Chapter 4. 
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It is entirely reasonable to suppose that the difficulties so far 
avoided must be hidden here. Yet the proof of this theorem 
is, in the mathematician's sense, an utter triviality-a straight-
forward computation. On the other hand, even the statement 
of this triviality cannot be understood without a horde of 
difficult definitions from Chapter 4. There are good reasons 
why the theorems should all be easy and the definitions hard. 
As the evolution of Stokes' Theorem revealed, a single simple 
principle.can masquerade as several difficult results; the proofs 
of many theorems involve merely stripping.away the disguise. 
The definitions, on the other hand, serve a twofold purpose: 
they are rigorous replacements for vague notions, and 
machinery for elegant proofs. The first two sections of 
Chapter 4 define precisely, and prove the rules for n1anipulat-
ing, what are classically described as "expressions of the form" 
P dx + Q dy + R dz, or P dx dy + Q dy dz + R dz dx. Chains, 

' defined in the third section, and partitions of unity (already 
introduced in Chapter 3) free our proofs from the necessity of 
chopping manifolds up into small pieces; they reduce questions 
about 1nanifolds, where everything seems hard, to questions 
about Euclidean space, where everything is easy. 

Concentrating the depth of a subject in the definitions is 
undeniably economical, but it is bound to produce some 
difficulties for the student. I hope the reader will beencour-
aged to learn Chapter 4 thoroughly by the assurance that the 
results will justify the effort: the classical theorems of the last 
section represent only a few, and by no ineans the most im-
portant, applications of Chapter 4; n1any others appear as 
problems, and further developments will be found by exploring 
the bibliography. 

The problen1s and the bibliography both deserve a few 
words. Problen1S appear after every section and are nu1n-
bered (like the theoren1s) within chapters. I have starred 
those problems whose results are used in the text, but this 
precaution should be unnecessary-the problems are the most 
important part of the book, and the reader should at least 
attempt the111 all. It was necessary to 1nake the bibliography 
either very incomplete or unwieldy, since half the major 
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branchea of mathematics could legitimately be recommended 
as reasonable continuations of the material in the book. I 
have tried to make it incomplete but tempting. 

Many criticisms and suggestions were offered during the 
writing of this book. I am particularly grateful to Richard 
Pa.l&is, Hugo Rosai, Robert Seeley, and Charles Stenard for 
their many helpful comments. 

I have used this printing as an opportunity to correct many 
misprints and minor errors pointed out to me by indulgent 
readers. In addition, the material following Theorem 3-11 
has been completely revised and corrected. Other important 
changes, which could not be incorporated in the text without 
exoeaaive alteration, a.re listed in the Addenda at the end of the 
book. 

WaUhom, Ma11acl11,NUa 
March. 1968 
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Functions on Euclidean Space 

NORM AND INNER PRODUCT 

Euclidean n-space Rn is defined as the set of all n-tuples 
(x1, ... ,xn) of real nuinbers x; (a "1-tuple of numbers" is 
just a number and R 1 = R, the set of all real numbers). An 
element of Rn is often called a point in R", and R1, R2, R 3 are 
often called the line, the plane, and space, respectively. If x 
denotes an element of Rn, then xis an n-tuple of numbers, the 
ith one of which is denoted xi; thus we can write 

x = (x1, ... ,xn). 

A point in R" is frequently also called a vector in Rn, 
because Rn, with X + y = (x 1 + y1, , , . ,Xn + y") and 
ax = (ax1, ... ,ax"), as operations, is a vector space (over 
the real numbers, of dimension n). In this vector space there 
is the notion of the length of a vector x, usually called the 
norm !xi of x and defined by lxl = V(x 1) 2 + · , , + (xn)2. 
If n = 1, then lxl is the usual absolute value of x. The rela-
tion between the norn1 and the vector space structure of R" is 
very important. 
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1-1 Theorem, If x,y ER" and a ER, then 
(1) !xi > 0, and !xi = 0 if and only if x = 0. 
(2) lt;'..1x;y;I < Ix! · lyl; equality hold8 if and only if x and y 

are linearly dependent. 
(3) \x + y\ < \x\ + \y\. 
(4) lax! = !al · Ix!. 
Proof 

(1) is left to the reader. 
(2) If x and y are linearly dependent, equality clearly holds. 

If not, then Xy - x ~ 0 for all X E R, so 

n 

0 < !xy - xl 2 = l (Xy; - x) 2 

i•l 
n n n 

= -,..2 l (y)2 - 2-X l x;y; + l (x)2. 
;.1 i•l i•l 

Therefore the right side is a quadratic equation in X with no 
real solution, and its discriminant must be negative. Thus 

" " fl 

4 ( l xiyi)2 - 4 l (x;)2. l (y;)2 < 0. 
i•l ;-1 i=l 

The quantity ~~ 1x;y; which appears in (2) is called the 
inner product of x and y and denoted (x,y). The most 
important properties of the inner product are the following. 

1-2 Theorem. If x, z1, x2 and y, Yi, Y2 are vectors in R" 
and a E R, then 

(1) (x,y) = (y,x) (symmetry). 
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(2) (ax,y) = (x,ay) = a(x,y) ( bilinearity). 
(x1 + x2, y) = (x1,Y) + (x2,Y) 
(x, Y1 + Y2) = (x,y1) + (x,y2) 

(3) (x,x) > 0, and (x,x) = 0 if and 
only if x =0 

(positive definiteness). 

(4) lxl = V(x,x). 
(5) (x,y) = Ix+ yj2 4- Ix - Yi2 

Proof 

(1) (x,y) = l:~-1x;y; = ~~=1Y;X; = (y,x). 
(2) By (1) it suffices to prove 

(ax,y) = a(x,y), 
(x1 + x2, y) = (x1,Y) + (x2,y). 

These follow from the equations 
,. n 

(polarization identity). 

(ax,y) = l (ax;)y; = a l x;y; = a(x,y), 
i=l i•l 
" ,. " 

(x1 + x2, y) = l (x1; + X2;)y; = l X1;Y; + l X2;Y; 
i=l i=l ;-1 

= (x1,y) + (x2,y). 

(3) and (4) are left to the reader. 
(5) Ix + Yl 2 

- Ix - Yl 2 

4 

= t[(x + Y, x + y) - (x - Y, x - y)] by (4) 
= t((x,x) + 2(x,y) + (y,y) - ((x,x) - 2(x,y) + (y,y))J · 
= (x,y). I 

We conclude this section with some important remarks 
about notation. The vector (O, . . . ,0) will usually be 
denoted simply 0. The usual basis of R" is e1, . . . ,en, 
where e; = (0, ... ,1, ... ,0), with the 1 in the ith place. 
If T: R"-. R"' is a linear transformation, the matrix of T with 
respect to the usual bases of R" and R"' is the m X n matrix 
A = (a;;), where T(e;) = l;'}' 1a;;e; -the coefficients of T(e;) 
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appear in the ith column of the matrix. If S: Rm-+ RP has 
the p X m matrix B, then So T has the p X n matrix BA 
[here So T(x) = S(T(x)); most books on linear algebra denote 
So T simply ST]. To find T(x) one computes the m X 1 
matrix 

y' 

= 

y'" 

then T(x) = (y1, . ,ym). One notational convention 
greatly simplifies many formulae: if x E R" and y E Rm, then 
(x,y) denotes 

( I n I . , ,ym) E R"+'". X ' ••• ,x ,Y ' . 

Problems. 1-1. • Prove that \xi < :2:f=1 \xi\. 
1-2. When does equality hold in Theorem 1-1 (3)? Hint: Re-examine 

the proof; the answer is not "when x and y are linearly depend-
ent." 

l-3. Prove that Ix - YI < \xi + \y\. When does equality hold? 
1-4. Prove that I Ix! - \y\ I < Ix - Yl-
1-5. The quantity IY - x\ is called the distance between x and y. 

Prove and interpret geometrically the "triangle inequality": 
]z - xi ~ lz - Yi + \y - x\. 

1-6. Let/ and g be integrable on [a,bJ. 
(a) Prove that I J:t · gl < <J:/2)t · <f:r,2)t. Hint: Consider 

separately the cases O - J!<f - Xg) 2 for some X ER and O < 
f:<t - Xg) 2 for all X E R. 

(b) If equality holds, must/ - Xg for some X ER? What if 
/ and g are continuous? 

(c) Show that Theorem 1-1(2) is a special case of (a). 
1-7. A linear transformation T: R"- R" is norm preserving if 

\T(x)\ = Ix\, and inner product preserving if (Tx,Ty) - (x,y). 
(a) Prove that T is norm preserving if and only if T is inner-

product preserving. 
(b) Prove that such a linear transformation T is 1-1 and r-1 is 

of the same sort. 
1-8. If x,y E R" are non-zero, the angle between x and y, denoted 

L(x,y), is defined as arccos ((x,y)f\x\ · \y\), which makes sense by 
Theorem 1-1 (2). The linear transformation T is angle preserv-
ing if Tis 1-1, and for x,y ..,_ 0 we have L(Tx,Ty) == L(x,y). 
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(a) Prove that if T is norm preserving, then T is angle pre-
serving. 

(b) If there is a basis .z1, ... ,.zn of R" and numbers >.1, ... ,>.,. 
such that T.z; - >.;.z;, prove that T is angle preserving if and 
only if all I >.,I are equal. 

(c) What are all angle preserving T: Rn-+ R"? 
. ( cos ,, sin ') 1-9. If O < IJ < ,,., let T: R 2 -+ R2 have the matrix -sin ,, cos IJ • 

Show that T is angle preserving and if .z ?'! O, then L(x, Tx) = 8. 
1-10, • If T: R"'-+ R" is a linear transformation, show that there is a 

number M such that jT(h)j < Mjhj for h ER"'. Hint: Estimate 
jT(h)j in terms of !hi and the entries in the matrix of T. 

1-11. If .z,y E R" and z,w ER"', show that ((x,z),(11,w)) - (.z,11) + (z,w) 
and j(.r,z)j - v'l.zl 2 + JzJ 2. Note that (.z,z) and (y,w) denote 
points in ft"+"'. 

1-12, • Let (R") • denote the dual space of the vector space ft". If 
x E R", define rp,. E (R") • by rp,.(11) - {x,11). Define T: R"--+ 
(R")• by T(x) • 'Ps· Show that Tis a 1-1 linear transformation 
and conclude that every rp E (R")* is ,p,. for a unique .z ER". 

1-13. • If .z,11 ER", then .z and 11 are called perpendicular (or orthog-
onal) if (x,y) = 0. If .r and 11 are perpendicular, prove that 
l.z + 111 2 

- l.zl 2 + 1111 1
. 

SUBSETS OF EUCLIDEAN SPACE 

The closed interval [a,b] has a natural analogue in R2• This is 
the closed rectangle [a,b] X [c,d], defined as the collection of 
all pairs (x,y) with x E [a,b] and y E [c,d]. More generally, 
if A C R"' and B C R", then A X B C R"'+" is defined as 
the set of all (x,y) E R"'+" with x E A and y E B. In par-
ticular, R"'+" = R"' X R". If A C R"', B C R", and CC 
R,,, then (A X B) X C = A X (B X C), and both of these 
are denoted simply A X B X C; this convention is extended to 
the product of any number of sets. The set [a1,b1] X · · · X 
[a,.,b,.] C R" is called a closed rectangle in R", while the set 
(a1,b1) X · · · X (a,.,b,.) C R" is called an open rectangle. 
1\-Iore generally a set UC R" is called open (Figure 1-1) 
if for each x E U there is an open rectangle A such that 
XE AC u. 

A subset C of R" is closed if R" - C is open. For exam-
ple, if C contains only finitely many points, then C is closed. 
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I 

FIGURE 1-1 

The reader should supply the proof that a closed rectangle in 
Rn is indeed a closed set. · 

If A C Rn and x E Rn, then one of three possibilities must 
hold (Figure 1-2): 

1. There is an open rectangle B such that x E B C A. 
2. There is an open rectangle B such that x E B C R" - A. 
3. If B is any open rectangle with x E B, then B contains 

points of both A and R" - A. 

3 • 
2 • 

FIGURE 1-Z 
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Those points satisfying (1) constitute the interior of A, those 
satisfying (2) the exterior of A, and those satisfying (3) the 
boundary of A. Problems 1-16 to 1-18 show that these terms 
may sometimes have unexpected meanings. 

It is not hard to see that the interior of any set A is open, 
and the same is true for the exterior of A, which is, in fact, the 
interior of Rn - A. Thus (Problem 1-14) their union is open, 
and what remains, the boundary, must be closed. 

A collection O of open sets is an open cover of A (or, briefly, 
covers A) if every point x E A is in some open set in the 
collection O. For example, if O is the collection of all open 
intervals (a, a + 1) for a E R, then O is a cover of R. Clearly 
no finite number of the open sets in O will cover R or, for that 
matter, any unbounded subset of R. A similar situation can 
also occur for bounded sets. If O is the collection of all open 
intervals (1/n, 1 - 1/n) for all integers n > 1, then O is an 
open cover of (0,1), but again no finite collection of sets in 
0 will cover (0,1). Although this phenomenon may not appear 
particularly scandalous, sets for which this state of affairs 
cannot occur are of such importance that they have received a 

special designation: a set A is called compact if every open 
cover O contains a finite subcollection of open sets which 
also covers A. 

A set with only finitely many points is obviously compact 
and so is the infinite set A which contains O and the numbers 
1/n for all integers n (reason: if o is a cover, then OE U for 
some open set U in O; there are only finitely many other points 
of A not in U, each requiring at most one more open set). 

Recognizing compact sets is greatly simplified by the follow-
ing results, of which only the first has any depth (i.e., uses any 
facts about the real numbers). 

1-3 Theorem (Heine-Borel). The closed interval [a,b] is 

compact. 

Proof. If O is an open cover of [a,b], let 

A = Ix: a < x < band [a,x] is covered by some finite number 
of open sets in O I . 
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u 

a X a x' b 
FIGURE 1-3 

Note that a E A and that A is clearly bounded above (by b). 
We would like to show that b E A. This is done by proving 
two things about a = least upper bound of A; namely, (1) 
a E A and (2) b = a. 

Since f> is a cover, a E U for some U in f>. Then all 
points in some interval to the left of a are also in U (see Figure 
1-3). Since a is the least upper bound of A, there is an x in 
this interval such that x E A. Thus [a,x] is covered by some 
finite number of open sets of o, while [x,a) is covered by the 
single set U. Hence [a,a] is covered by a finite number of open 
sets off>, and a E A. This proves (1). 

To prove that (2) is true, suppose instead that a < b. 
Then there is a point x' between a and b such that [a,x'] C U. 
Since a E A, the interval [a,a] is covered by finitely many 
open sets of f>, while [a,x') is covered by U. Hence x' E A, 
contradicting the fact that a is an upper bound of A. I 

If B C Rm is compact and x E R", it is easy to see that 
Ix} X BC R"+m is compact. However, a much stronger 
assertion can be made. 

1-4 Theorem. If B is compact and f> is an open cover of 
Ix I X B, then there is an open set U C R" containing x such 
that U X B is covered by a finite number of sets in e. 

Proof. Since Ix I X B is compact, we can assume at the 
outset that f> is finite, and we need only find the open set U 
such that U X B is covered by e. 

For each y E B the point (x,y) is in some open set W in f>. 
Since W is open, we have (x,y) E U 11 X V 11 CW for some 
open rectangle U 11 X V 11. The sets V 11 cover the compact set 
B, so a finite number V 11 .. ••• , V 11• also cover B. Let 
U = U111 ('\ • • • ('\ u11•• Then if (x',y') E U X B, we have 
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B 

X 

FIGURE 1-4 

y' E V Yi for some i (Figure 1-4), and certainly x' E U Yi· 

Hence (x' ,y') E U Yi X VY" which is contained in some W 
in e. I 

1-5 Corollary. If A C Rn and B C R"' are compact, then 
A X BC Rn+m is compact. 

Proof. If 0 is an open cover of A X B, then e covers { x) X B 
for each x E A. By Theorem 1-4 there is an open set U z con-
taining x such that U z; X B is covered by finitely many sets 
in 0. Since A is compact, a finite number U zu • • • , U zn of 
the Uz: cover A. Since finitely many sets in e cover each 
U z, X B, finitely many cover all of A X B. I 

1-6 Corollary. A 1 X · · · X A" i8 compact if each Ai is. 
In particular, a closed rectangle in R" i8 compact. 
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1-7 Corollary. A closed bounded subset of R" is compact. 
(The converse is also true (Problem 1-20).) 

Proof. If A CR" is closed and bounded, then A CB for 
some closed rectangle B. If e is an open cover of A, then e 
together with R" - A is an open cover of B. Hence a finite 
number U 1, ••• ,Un of sets in e, together with R" - A per-
haps, cover B. Then U 1, ••• ,U,. cover A. I 

Problems. 1-14. • Prove that the union of any (even infinite) number 
of open sets is open. Prove that the intersection of two (and hence 
of finitely many) open sets is open. Give a counterexample for 
infinitely many open sets. 

1-15. Prove that fx ER": Ix - al < r) is open (see also Problem 1-27). 
1-16. Find the interior, exterior, and boundary of the sets 

Ix ER": lxl <11 
Ix E R": lxl = l I 
fx E R": each xi is rational J. 

1-17. Construct a set A C {0,1) X [O,l] such that A contains at most 
one point on each horizontal and each vertical line but boundary 
A = [O,l] X [0,1]. Hint: It suffices to ensure that A contains 
points in each quarter of the square [0,1] X [0,1] and also in each 
sixteenth, etc. 

1-18. If A C [O,l] is the union of open intervals (a;,b;) such that each 
rational number in (0,1) is contained in some (a;,b;), show that 
boundary A - [O,l) - A. 

1-19. • If A is a closed set that contains every rational number r E [0,1], 
show that [O,l] C A. 

1-20. Prove the converse of Corollary 1-7: A compact subset of R" is 
closed and bounded (see also Problem 1-28). 

1-21. • (a) If A is closed and x ~ A, prove that there is a number 
d > 0 such that IY - xi > d for all y E A. 

(b) If A is closed, B is compact, and A ("\ B = {Zf, prove that 
there is d > 0 such that IY - xi > d for all y E A and x E B. 
Hint: For each b E B find an open set U containing b such that 
this relation holds for x E U f"\ B. 

(c) Give a counterexample in R2 if A and B are closed but 
neither is compact. 

1-22. • If U is open and C C U is compact, show that there is a compact 
set D such that C C interior D and D C U. 
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FUNCTIONS AND CONTINUITY 

A function from Rn to Rm (sonietimes called a (vector-
valued) function of n variables) is a rule which associates to 
each point in Rn some point in Rm; the point a function f 
associates to xis denotedf(x). We write/: Rn--+ Rm (read "f 
takes Rn into Rm" or "f, taking Rn into Rm," depending on con-
text) to indicate that f(x) E Rm is defined for x E Rn. The 
notation f: A --+ Rm indicates that f(x) is defined only for x in 
the set A, which is called the domain of f. If B C A, we 
define f(B) as the set of all f(x) for x EB, and if CC Rm we 
define J- 1(C) = Ix E A: f(x) E Cl. The notation f: A--+ B 
indicates that f(A) C B. 

A convenient representation of a function f: R2 --+ R may 
be obtained by drawing a picture of its graph, the set of all 
3-tuples of the form (x,y,f(x,y)), which is actually a figure in 
3-space (sec, e.g., Figures 2-1 and 2-2 of Chapter 2). 

If f,g: R"--> R, the functions f + g, f - g, f · g, and f /g are 
defined precisely as in the one-variable case. If f: A --+ Rm 
and g: B--+ HP, where BC Rm, then the composition 
go f is defined by go f(x) = g(f(x)); the domain of go f is 
A nJ-1(B). If f: A--> Rm is 1-1, that is, if f(x) ~ f(y) 
when x ~ y, wc definef- 1 : /(A)--+ Rn by the requirement that 
f- 1(z) is the unique x E A with f(x) = z. 

A function f: A --+ Rm determines m component functions 
/1, ... ,/"': A--+ R by f(x) = (f1(x), ... ,f"'(x)). If con-
versely, m functions g1, • • • ,Ym: A --+ R are given, there 
is a unique function f: A --+ Rm such that f = g;, namely 
/(x) = (g1(x), ... ,Ym(x)). This function f will be denoted 
(g1, ... ,gm), so that we always have f = (/1, ... ,fm). 
If ,r: R"--+ Rn is the identity function, ir(x) = x, then .,,.;(x) = 
x'; the function.,,.; is called the ith projection function. 

The notation lim f(x) = b means, as in the one-variable case, 

that we can get f(x) as close to bas desired, by choosing x suf-
ficiently close to, but not equal to, a. In mathematical terms 
this means that for every number e > O there is a number 
8 > 0 such that IJ(x) - bl < e for all x in the domain off which 
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satisfy O < Ix - al < t,. A function f: A -+ R"' is called con-
tinuous at a E A if lim f(x) = f(a), and/ is simply called con-

tinuous if it is continuous at each a E A. One of the pleasant 
surprises about the concept of continuity is that it can be 
defined without using limits. It follows from the next theorem 
that/: R"-+ R"' is continuous if and only if 1-1(U) is open 
whenever U C R"' is open; if the domain of/ is not all of R", a 
slightly more complicated condition is needed. 

1-8 Theorem. If A CR", afunctionf: A-+ R"' is contin-
uous if and only if for every open set U C R"' there is some open 
set VCR" such thatr 1(U) = V n A. 

Proof. Suppose f is continuous. If a E f- 1(U), then 
f(a) E U. Since U is open, there is an open rectangle B with 
f(a} E B C U. Since f is continuous at a, we can ensure 
that f(x) E B, provided we choose x in some sufficiently 
small rectangle C containing a. Do this for each a E f- 1(U) 
and let V be the union of all such C. Clearly 1- 1(U) = 
V n A. The converse is similar and is left to the reader. I 

The following consequence of Theorem 1-8 is of great 
importance. 

1-9 Theorem. If J: A -+ R• is continuous, wh~e A C R", 
and A is compact, then f(A) CR"' is compact. 

Proof. Let O be an open cover of f(A). For each open set 
U in o there is an open set Vu such that T 1(U) = Vu 0. A. 
The collection of all Vu is an open cover of A. Since A is 
compact, a finite number V u11 • • • , Vu" cover A. Then 
U1, ... ,U,. cover f(A). I 

If f: A _. R is bounded, the extent to which / fails to be 
continuous at a E A can be measured in a precise way. For 
t, > 0 let 

M(aJ,t,) = sup(f(x): x EA and Ix - al < &}, 
m(aJ,t,) = inf(f(x):x EA and Ix - al< 6}. 
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The oscillation o(f,a) of f a.t a is defined by o(f,a) -
lim[M(a,f,8) - m(a,f,8)). This limit always exists, since 
MO 
M(a,f,8) - m(a,f,8) decreases as 8 decreases. There a.re two 
important facts a.bout o(f,a). 

1-10 Theorem. The bounded function f is continuous at a if 
and only if o(f,a) = 0. 

Proof. Let f be continuous at a. For every number e > 0 
we can choose a number Ii > 0 so that IJ(x) - f(a)I < e for 
all x E A with Ix - al < 8; thus M(aJ,li) - m(a,f,8) < 2e. 
Since this is true for every e, we have o(f,a) = 0. The con-
verse is similar and is left to the reader. I 
1-11 Theorem. Let A C Rn be closed. If f: A-+ R is any 
bounded function, and e > 0, then Ix EA: o(f,x) > e} is 
closed. 

Proof. Let B = Ix E A: o(/,x) > el. We wish to show 
that Rn - B is open. If x E Rn - B, then either x fl. A 
or else x E A a.nd o(f,x) < e. In the first case, since A is 
closed, there is an open rectangle C containing x such that 
CC Rn - A C Rn - B. In the second case there is a 
8 > 0 such that M(x,f,8) - m(x,f,8) < e. Let C be an open 
rectangle containing x such that Ix - YI < 8 for a.JI y E C. 
Then if y E C there is a. /i1 such that Ix - zl < 8 for all z 
satisfying lz - YI < 81, Thus M(y,f,li1) - m(y,/,81) < e, and 
consequently o(y,f) < e. Therefore CC Rn - B. I 

Probleme. 1-23. If/: A -+ R"' and a E A, show that lim J(z) "" I, 
if and only if lim /(z) ... t,i for i - l, ... ,m. x .... a 

x .... a 
1-24. Prove that/: A -+ Rm is continuous at a if and only if each pis. 
1-25. Prove that a linear transformation T: R"--> Rm is continuous. 

Hint: Use Problem 1-10. 
1-26. Let A - I (x,y) E R2 : z > 0 and O < y < x 2l. 

(a) Show that every straight line through (0,0) contains an 
interval around (0,0) which is in R2 - A. 

(b) Define /: R2 --> R by J(x) - 0 if x Et: A and f(x) • l if 
z EA. For h E R 1 define g,.: R-+ R by g,.(t) - /(tA). Show 
that each "" is continuous at 0, but f is not continuous at ( 0,0). 
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1-27, Prove that fz ER": lz - al < rl is open by considering the 
function/: R"-+ R with /(z) = jz - al. 

1-28. If A C R" is not closed, show that there is a continuous function 
f: A -+ R which is unbounded. Hint: If z E R" - A but 
z (;2: interior (R" - A), let/(y) = 1/IY - zl. 

1-29. If A is compact, prove that every continuous function /: A -+ R 
takes on a maximum and a minimum value. 

1-30. Let /: [a,b]--+ R be an increasing function. If z1, ... ,z,. E 
[a,b] are distinct, show that ~f=1o(/,z;) < /(b) - /(a). 



2 

Differentiation 

BASIC DEFINITIONS 

Recall that a function f: R-+ R is differentiable at a E R if 
there is a number f'(a) such that 

(1) lim f(a + h) - f(a) = !'(a). 
A-,o h 

This equation certainly makes no sense in the general case of a 
function/: Rn-+ Rm, but can be reformulated in a way that 
does. If >.: R -+ R is the linear transformation defined by 
>.(h) = f'(a) · h, then equation (I) is equivalent to 

(2) Jim /(a + h) - f(a) - >.(h) = O. 
i, .... o h 

Equation (2) is often interpreted as saying that >. + /(a) is a 
good approximation to fat a (see Problem 2-9). Henceforth 
we focus our attention on the linear transformation >.. and 
reformulate the definition of differentiability as follows. 

15 
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A function f: R-+ R is differentiable at a E R if there is a 
linear transformation >.: R -+ R such that 

lim f(a + h) - f(a) - >.(h) = O. 
l ..... o h 

In this form the definition has a simple generalization to 
higher dimensions : 

A function f: R"-+ R"' is dift'erentiable at a E R" if there 
is a linear transformation >.: R"-+ R"' such that 

li if(a + h) - f(a) - >.(h)i _ 
0 ,.!, Jhl - . 

Note that h is a point of R" and f(a + h) - f(a) - >.(h) a 
point of R"', so the norm signs a.re essential. The linear trans-
formation >. is denoted Df(a) and called the derivative off at 
a. The justification for the phrase "the linear transformation 
>." is 

2-1 Theorem. If f: R"-+ R"' i8 dijferentwble at a E R" 
there is a unique linear transformation >.: R"-+ R"' such that 

I. IJ(a + h) - f(a) - >.(h) J 
,.1!, Jhl = o. 

Proof, Suppose µ.: R" -+ R"' satisfies 

I. 
if(a + h) - /(a) - µ(h) J 0 h1!;;, ihl = . 

If d(h) = f(a + h) - f(a), then 

r l>-(h) - µ(h) I r l>-(h) - d(h) + d(h) - µ(h) I 
,.1!, ihl = ,.1!, ihl 

I. 1>-<h> - d(h) I 1. id<h> - µ(h> I 
< 1m + 1m I 
- h ..... O Jhl 11--,0 hi 

= o. 
If x ER", then tx-+ 0 as t-+ 0. Hence for x ~ 0 we have 

0 l. l>.(tx) - µ(tx) J l>.(x) - µ{x) I 
= ~ ltxJ = Jxl · 

Therefore >.(x) = µ(x). I 
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We shall later discover a simple way of finding Df(a). For 
the moment let us consider the function f: R 2 -+ R defined by 
f(x,y) = sin x. Then Df(a,b) = X satisfies X(x,y) = (cos a) · x. 
To prove this, note that 

. if(a + h, b + k) - f(a,b) - X(h,k)I 
hm I I (h,k)-+0 (h,k) 

. lsin(a + h) - sin a - (cos a) · hi 
- hm · 

(A,A:)-+0 i(h,k)i 

Since sin'(a) = cos a, we have 

. lsin(a + h) - sin a - (cos a) · hi _ 0 hm lhl - · 
1,-,0 

Since i(h,k)I > ihl, it is also true that 

. lsin(a + h) - sin a - (cos a) · hi 
0 hm = . 

A-+O l(h,k)i 

It is often convenient to consider the matrix of Df(a): 
Rn-+ Rm with respect to the usual bases of Rn and Rm. 
This m X n matrix is called the Jacobian matrix off at a, 
anddenotedf'(a). Iff(x,y) = sinx,thenf'(a,b) = (cosa,O). 
If f: R-+ R, then f'(a) is a 1 X 1 matrix whose single entry 
is the number which is denoted f'(a) in elementary calculus. 

The definition of Df(a) could be made if f were defined only 
in some open set containing a. Considering only functions 
defined on Rn streamlines the statement of theorems and 
produces no real loss of generality. It is convenient to define 
a function f: R"-+ Rm to be differentiable on A if f is differ-
entiable at a for each a EA. If/: A-+ R"', then/ is called 
differentiable if J can be extended to a differentiable function 
on some open set containing A. 

Problems. 2-1. • Prove that if /: R"-+ R"' is differentiable at 
a E R", then it is continuous at a. Hint: Use Problem 1-10. 

2-2. A function /: R1 -+ R is independent of the 8econd variable if 
for each :z: E R we have /(z,y1) - /(z,y2) for all y1,Y2 E R. Show 
that J is independent of the second variable if and only if there is a 
function g: R-+ R such that f(:z:,y} - g(:z:). What is J'(a,b) in 
terms of g'? 
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2-3. Define when a function/: R2 --+ R is independent of the first varia-
ble and find f'(a,b) for such/. Which functions are independent of 
the first variable and also of the second variable? 

2-4. Let g be a continuous real-valued function on the unit circle 
lz E R1 : lzl - l) such that g(O,l) - g( 1,0) = 0 and g( -z) -
-g(z). Define/: R2 --+ R by 

2-5. 

z ;&! o, 
z = 0. 

(a) If z E R2 and h: R-+ R is defined by h(t) • /(tz), show that 
h is differentiable. 

(b) Show that / is not differentiable at (0,0) unless g = 0. 
Hint: First show that D/(0,0) would have to be O by considering 
(h,k) with k - 0 and then with h - 0. 
Let/: R 2 --+ R be defined by 

f xly\ 
f(x,y) - l f x2 + y2 

(x,y) ~ 0, 

(z,y) = 0. 

Show that / is a function of the kind considered in Problem 2-4, 
so that/ is not differentiable at (O,O). 

2-6. Let/: R2 --+ R be defined by f(x,y) = v'lxyl. Show that/ is not 
differentiable at (O,O). 

2-7. Let/: R"-+ R be a function such that l/(x)I < lxl 2• Show that 
/ is differentiable at 0. 

2-8. Let/: R-+ R 2. Prove that/ is differentiable at a E R if and only 
if / 1 and /2 are, and that in this case 

/'(a) = (</1)'(a))· 
(f)'(a) 

2-9. Two functions /,g: R-+ R are equal up to nth order at a if 

I. /(a + h) - g(a + h) _ 
1m h - O. 

h .... o " 

(a) Show that / is differentiable at a if and only if there is a 
function g of the form g(x) s ao + a1(x - a) such that/ and g are 
equal up to first order at a. 

(b) If /'(a), . ,/<">(a) exist, show that/ and the function g 
defined by 

f 1rn (a) . 
g(x) = "-' -i1- (z - a)' 

i=O 
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are equal up to nth order at a. Hint: The limit 
n-1 

l JW(a) . 
f(x) - -.,- (x - a)' 

i. 
lim ---1=-'0'------

(x - a)" 

may be evaluated by L'Hospital's rule. 

BA.SIC THEOREMS 

2-2 Theorem (Chain Rule). If J: R"-+ R'" is differenti-
able at a, and g: Rm-+ RP is differentiable at J(a), then the 
composition go J: R"-+ RP is differentiable at a, and 

D(g o J)(a) = Dg(J(a)) o DJ(a). 

Remark. This equation can be written 

(go J)'(a) = g'(J(a)) · J'(a). 

If m = n = p = 1, we obtain the old chain rule. 

Proof. Let b = f(a), let A = DJ(a), and let µ. = Dg(J(a) ). 
If we define 

then 

(l) <p(x) = f(x) - J(a) - A(x - a), 
(2) y,(y) = g(y) - g(b) - µ.(y - b), 
(3) p(x) = g of(x) - g of(a) - µ. o A(X - a), 

(4) lim l'P(x) I = O, 
~a Ix - al 

cs> 1im If <y) I = o, 
v-,b IY - bl 

and we must show that 

Now 

lim lp(x) I = O. 
z-+a Ix - al 

p(x) = g(J(x)) - g(b) - µ.(A(x - a)) 
= g(J(x)) - g(b) - µ.(J(x) - J(a) - <p(x)) by (l) 
= fg(f(x)) - g(b) - µ(f(x) - f(a))J + µ(<p(x)) 
= y,(f(x)) + µ.(<p(x)) by (2). 
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Thus we must prove 

(6) lim 11/,(f(x)) I = 0, 
z--+11 Ix - al 

(7) lim lµ{'l'(x)) I = 0. 
z-11 Ix - al 

Equation (7) follows easily from (4) and Problem 1-10. If 
e > 0 it follows from (5) that for some 8 > 0 we have 

11/,(f(x)) I < eif{x) - bl if lf<x> - bl < 8, 

which is true if Ix - al < 81, for a suitable 81• Then 

11/,(f{x)) I < elf(x) - bl 
= el'l'(x) + >.(x - a) I 
< el'l'(x)I + eMlx - al 

for some M, by Problem 1-10. Equation (6) now follows 
easily. I 

2-3 Theorem 
(1) If f: R"-+ R"' is a constant function (that is, if jor some 

y E R"' we have f(x) = y for all x E R"), then 

Df(a) = 0. 

(2) If f: R" -+ R"' is a linear transformation, then 

Df(a) = f. 
(3) If f: R"-+ R"', then f is differentiable at a E R" if and 

only if each f' is, and 

Df(a) = (Df1(a), ... ,Df"'(a)). 

Thus f'(a) is them X n matrix whose ith row is (f)'(a). 
(4) Ifs: R2 -+ R is defined by s(x,y) = x + y, then 

Ds(a,b) = s. 

(5) If p: R 2 -+ R is defined by p(x,y) = x · y, then 

Dp(a,b)(x,y) = bx + ay. 

Thus p'(a,b) = (b,a). 
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Proof 

(1) lim lf(a + h) - f(a) - Oi = lim IY - y - OI = 0. 
h-+0 lhl 1'-+0 ihl 

(2) lim lf(a + h) - f(a) - f(h) I 
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A-+0 lhl 
l
. IJ(a) + f(h) - f(a) - f(h)I 0 

= r,~ lhl = . 

(3) If each f' is differentiable at a and 

X = (Df1(a), ... ,Df"'(a)), 
then 

f(a + h) - f(a) - X{h) 
= (f1(a + h) - f 1{a) - Df1{a)(h), , .. , 

f"'(a + h) + f"'(a) - Df"'(a)(h)). 
Therefore 

l
. lf(a + h) - f(a) - X(h) I 
1m 

l-+0 !hi 
"' 

< I. ~ l!'(a + h) - f(a) - Df(a)(h)I _ 0 - ,.~ ~ !hi - . 
t-1 

If, on the other hand, f is differentiable at a, then r = 
,ri of is differentiable at a by (2) and Theoren1 2-2. 

(4) follows from (2). 
(5) Let X(x,y) = bx + ay. Then 

I
. lv(a + h, b + k) - p(a,b) - X(h,k)I 
1m 

(l.k)-+0 I Ch,k > I 

Now 

= Jim lhkl . 
(k,k)-+O l(h,k) I 

lhkl < { 1h12 - ikl 2 
if !kl < !hi, 
if !hi < !kl. 

Hence lhkl < 1h1 2 + lkl 2
• Therefore 

lhkl h2 + k2 
l<h,k>I < vh2 + k2 = vh, + k2, 
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so 

Iim \hk\ = o. I 
(A,k)-+O I (h,k) I 

2-4 Corollary. If f,g: R"-+ R are differentiable at a, then 

D(f + g)(a) = Df(a) + Dg(a), 
D(f · g)(a) = g(a)Df(a) + f(a)Dg(a). 

If, moreover, g(a) 'i'6- 0, then 

D(f/g)(a) = g(a)DJ(a) - f(a)Dg(a). 
[g(a)]2 

Proof. We will prove the first equation and leave the others 
to the reader. Since f + g = so (f,g), we have 

D(f + g)(a) = Ds(f(a),g(a)) o D(f,g)(a) 
= so (Df(a),Dg(a)) 
= Df(a) + Dg(a). I 

We are now assured of the differentiability of those functions 
/: R"-+ R'", whose component functions are obtained by 
addition, multiplication, division, and composition, from the 
functions 1ri (which are linear transformations) and the func-
tions which we can already differentiate by elementary 
calculus. Finding Df(x) or f'(x), however, may be a fairly 
formidable task. For example, let /: R2 -+ R be defined by 
f(x,y) = sin(xy2). Since f = sin o (1r 1 • [1r 2]2), we have 

f'(a,b) = sin'(ab2) · [b2(1r 1)'(a,b) + a([11'2]2)'(a,b)] 
= sin'(ab2) · [b 2(1r 1)'(a,b) + 2ab('11'2)'(a,b)] 
= (cos(ab2)) · [b2(1,0) + 2ab(0,1)) 
= (b2 cos(ab2), 2ab cos(ab2)). 

Fortunately, we will soon discover a much simpler method of 
computing/'. 

Problems. 2-10, Use the theorems of this section to find f' for the 
following: 
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(a) f(x,y,z) - xv. 
(b) f(x,y,z) - (xY,z). 
(c) f(x,y) - sin (x sin y). 
(d) f(x,y,z) = sin(x sin(y sin z)). 
(e) f(x,y,z) = xY'. 
(f) f(x,y,z) = xv+•. 
(g) f(x,y,z) - (x + y)'. 
(h) f(x,y) - sin(xy). 
(i) f(x,y) - [sin(xy))00

" 
3• 

(j) f(x,y) = (sin(xy), sin(x sin y), xY). 
2-11. Find f' for the following (where g: R--+ R is continuous): 

f z+y 
(a) f(x,y) = a g. 

(b) f(x,y) = s:·•g. 
( ) !( ) _ fsin(z sin(y sin•)) 
c x,y,z ,. g. 

ZJ 

2-12. A function f: R" X R"'-+ RP is bilinear if for x,x1,x1 E R", 
Y,Y1,Y2 E R"', and a E R we have 

f(ax,y) - af(x,y) = f(x,ay), 
f(x1 + x2,Y) = f(x1,y) + f(x2,y), 
f(x,y1 + Y2) = f(x,y1) + f(x,y2). 

(a) Prove that if f is bilinear, then 

r IJ<h,kl I o 
(h.~~o \(h,k)\ = · 

(b) Prove that Df(a,b)(x,y) - f(a,y) + f(x,b). 
(c) Show that the formula for Dp(a,b) in Theorem 2-3 is a 

special case of (b). 
2-13. Define IP: R" X R"-+ R by IP(x,y) = (x,y). 

(a) Find D(IP)(a,b) and (IP)'(a,b). 
(b) If f,g: R--+ R" are differentiable and h: R-+ R is defined by 

h(t) = (f(t),g(t)), show that 

h'(a) = (f'(ajT,g(a)) + (f(a),g'(a)T). 

(Note thatf'(a) is an n X 1 matrix; its transposef'(a)T is a 1 X n 
matrix, which we consider as a member of R".) 

(c) If/: R-+ R" is differentiable and if(t}\ - 1 for all t, show 
that (f'(t)T,f(t)) = 0. 

(d) Exhibit a differentiable function f: R --+ R such that the 
function Ill defined by lfl (t) = \J(t) I is not differentiable. 

2-14. Let E;, i = 1, ... ,k be Euclidean spaces of various dimensions. 
A function /: E1 X · · · X Ek-+ RP is called multilinear if 
l'br each choice of x; E E;, j ;,! i the function g: E;--+ RP defined by 
g(x) = f(x1, ... ,x;-1,x,x;+1, •.. ,Xk) is a linear transformation. 
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(a) If/ is multilinear and i ;,d j, show that for h = (h,, . . . ,h1J, 
with h1 E E1, we have 

. j/(a1, ... ,h;, ... ,h;, ... ,at)! _ O. 
hm jh 
l-+O 

Hint: If g(x,y) = /(a1, ... ,x, ... ,Y, ... ,at), then g is 
bilinear. 

(b) Prove that 
.. 

Df(a1, ... ,at)(z1, ... ,zt) - l /(a1, ... ,a;-1,z;,a;+1, ... ,at). 
i=I 

2-15. Regard an n X fl matrix as a point in the n-fold product R" X 
· · X R" by considering each row as a member of R". 
(a) Prove that det: R" X · · · X R"--+ R is differentiable and 

n 

D(det)(a1, ... ,a,.)(z1, ... ,z,.) ""Z det z; 

i-1 

a,. 

(b) If a;;: R--+ Rare differentiable and/(t) - det(a;;(t)), show 
that 

au(t), 

.. 
/'(t) - r det a;1'(t), 

;-1 

a,.1(t), 

,a;,.'(t) 

,a,.,. (t) 
(c) If det(a;;(t)) ;,d O for all t and b1, ... ,b,.: R--+ R are dif-

ferentiable, let &1, ... ,s,.: R--+ R be the functions such that 
s1(t), ... ,s,.(t) are the solutions of the equations 

" l a;;(t)s;(t) ~ b;(t) 
;- 1 

i - 1, ... •"· 

Show thats; is differentiable and find s;'(t). 



x' 

Differentiation ZS 

2-16. Suppose f: R"---+ R" is differentiable and has a differentiable 
inverse 7 1: R"---+ R". Show that (r 1)'(a) = [f'(J- 1(a))J- 1• 

Hint: f • J- 1(x) - x. 

PARTIAL DERIVATIVES 

We begin the attack on the problem of finding derivatives 
"one variable at a time." If J: R"-+ Rand a E R", the limit 

if it exists, is denoted DJ(a), and called the ith partial deriva-
tive off at a. It is important to note that DJ(a) is the ordi-
nary derivative of a certain function; in fact, if g(x) = 
f(a1, ... ,x, ... ,a"), then DJ(a) = g'(ai). This means 
that DJ(a) is the slope of the tangent line at (aJ(a)) to the 
curve obtained by intersecting the graph of J with the plane 
xi = ai, j ¢ i (Figure 2-1). It also means that computation of 
DJ(a) is a problem we can already solve. If f(x1, ... ,x") is 

FIGURE 2-1 
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given by some formula involving x', ... ,x", then we find 

Dd(x t, ... ,x") by differentiating the function whose value 

at xi is given by the formula when all xi, for J ~ i, are 

thought of as constants. For example, if f(x,y) = sin(xy2), 

then Dd(x,y) = y2 cos(xy2) and DJ(x,y) = 2xy cos(xy2). If, 

instead, f(x,y) = xY, then Dd(x,y) = yxy-l and DJ(x,y) = 
xY log x. 

With a little practice (e.g., the problems at the end of this 

section) you should acquire as great a facility for computing 

D;f as you already have for computing ordinary derivatives. 

If D;f(x) exists for all x ER", we obtain a function DJ: 

R"-+ R. TheJth partial derivative of this function at x, that 

is, D;(D;f)(x), is often denoted D;,;/(x). Note that this nota-

tion reverses the order of i and J. As a matter of fact, the 

order is usually irrelevant, since most functions (an exception is 

given in the problems) satisfy D.-.,J = D,-,;f. There are various 

delicate theorems ensuring this equality; the following theorem 

is quite adequate. We state it here but postpone the proof 

until later (Problem 3-28). 

2-5 Theorem. If D · ·! and D · J are continuous in an ,,, ,. 
open set containing a, then 

D;,;/(a) = D;,J(a). 

The function D;,;J is called a second-order (mixed) 

partial derivative of f. Higher-order (mixed) partial 

derivatives are defined in the obvious way. Clearly Theorem 

2-5 can be used to prove the equality of higher-order mixed 

partial derivatives under appropriate conditions. The order 

of i 1, ••• ,i,. is completely immaterial in D;1, ••• ,;,./ 

if f has continuous partial derivatives of all orders. A function 

with this property is called a C"" function. In later chapters 

it will frequently be convenient to restrict our attention to C"' 

functions. 
Partial derivatives will be used in the next section to find 

derivatives. They also have another important use-finding 

maxima and minima of functions. 
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2-6 Theorem. Let A C Rn. If the maximum (or mini-
mum) off: A-+ R occurs at a point a in the interior of A and 
Dd(a) exists, then DJ(a) = 0. 

Proof. Let gi(x) = j(a1, ... ,x, ... ,a"). Clearly gi 
has a maximum (or minimum) at ai, and Ui is defined in an 
open interval containing ai. Hence O = g/(ai) = DJ(a) . I 

The reader is reminded that the converse of Theorem 2-6 
is false even if n = 1 (if f: R-+ R is defined by f(x) = x3, 
then f' (0) = 0, but O is not even a local maximum or mini-
mum). If n > l, the converse of Theorem 2-6 may fail 
to be true in a rather spectacular way. Suppose, for exam-
ple, that f: R 2 -+ R is defined by f(x,y) = x 2 - y 2 (Figure 
2-2). Then Dd(O,O) = ~ because g1 has a minimum at 0, 
while D2/(0,0) = 0 because g2 has a maximum at 0. Clearly 
(O,O) is neither a relative maximum nor a relative minimum. 

z 

y 

FIGURE 2-2 
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If Theorem 2-6 is used to find the maximum or minimum of 
f on A, the values off at boundary points must be examined 
separately-a formidable task, since the boundary of A may 
be all of A! Problem 2-27 indicates one way of doing this, 
and Problem 5-16 states a superior method which can often 
be used. 

Problems. 2-17, Find the partial derivatives of the following 
functions: 

(a) /(z,y,z) - xY. 
(b) /(x,y,z) = z. 
(c) f(x,y) = sin(x sin y). 
(d) /(z,y,z) = sin(x sin(y sin z)). 
(e) /(x,y,z) - xY'. 
(£) /(z,y,z) = zY+•. 
(g) /(z,y,z) = (x + y)'. 
(h) /(z,y) = sin(zy). 
(i) /(x,y) - [sin(zy)J•os a. 

2-18. Find the partial derivatives of the following functions (where 
g: R -+ R is continuous): 

( ) ( f z+11 a / z,y) = a g. 

(b) /(x,y) = f:g. 
(c) /(z,y) = J:v g. 

(f!,) 
(d) f(:,;,y) - fa g. 

2-19. If /(:,;,y) = :,;'""' + (log :,;)(arctan(arctan(arctan(sin(cos :,;y) -
log(:,;+ y))))) find D2/(1,y). Hint: There is an easy way to 
do this. 

2-20. Find the partial derivatives off in terms of the derivatives of g and 
h if 

(a) /(x,y) = g(:,;)h(y). 
(b) f(x,y) = g(z)~m. 
(c) /(x,y) = g(x). 
(d) /(:,;,y) - g(y). 
(e) /(x,y) • g(:r + y). 

2-21. • Let g1,g2: R2 -+ R be continuous. Define/: R 2
-+ R by 

z II 

f(x,y) = f g1(t,O)dt + [ g2(x,t)dl. 

(a) Show that D2/(x,y) = g2(x,y). 
(b) How should/ be defined so that D1/(:,;,y) = g1(x,y)? 
(c) Find a function /: R 2 -+ R such that D1/(z,y) = :,; and 

D2/(x,y) = y. Find one such that Dif(x,y) - y and DJ(x,y) == :,;, 
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2-22. • If J: B 2 -+ R and D'lf - O, show that f is independent of the 
second variable. If Dtf - D2f - O, show that f is constant. 

2-23. • Let A ... ((x,y) E B 1 : x < O, or x > 0 and y ;a! O}. 
(a) If f: A -, H and Dt! - D-4 = 0, show that f is constant. 

Hint: Note that any two points in A can be connected by a 
sequence of lines each parallel t.o one of the axes. 

(b) Find a function f: A-> H such that D2J - 0 but f is not 
independent of the second variable. 

2-24. Define f: R 2 -> R by 

{ 
z' - y2 

f(x,y) - : z 2 + y2 (z,y) ;a! 0, 

(x,y) = 0. 

(a) Show that D2f(x,O) = x for all x and Dif(O,y) = -y for 
all y. 

(b) Show that D1.J(O,O) ?! D1,1f(O,O). 
2-25. • Define f: R -+ R by 

f(x) - { ~-a-. X ;a! 0, 
:,; = 0. 

Show that f is a C"' function, and JH>(o) - 0 for all i. Hint: 
e_,,_, I/la 

The limit f'(O) - Jim -.- - lim ,-, can be evaluated by 
1a-o n h---,.o tr 

L'Hospital's rule. It is easy enough to find f'(x) for x ;a! O, and 
f"(O) - lim f'(la)/la can then be found by L'Hospital's rule. 

1,-0 

2-26.· Let { 
e-(:o-1)-•.e-<z+l)-2 

f(x) -
0 

x E (-1,1), 
:r (l (-1,1). 

(a) Show that f: R -> R is a C"' function which is positive on 
( -1,1) and O elsewhere. 

(b) Show that there is a C"' function g: R-> (0,1] such that 
g(x) =- 0 for x < 0 and g(x) - 1 for :,; > e. Hint: If f is a C"' 
function which is positive on (O,e) and O elsewhere, let g(:r) = 
f~JI f~J. 

(c) If a E an, define g: an-, a by 

g(x) • f([x1 - a1)/e) · ... · f([x" - a"J/e). 
Show that g is a C"' function which is positive on 

(a1 
- e, a 1 + e) X · · · X (an - e, a" + e) 

and zero elsewhere. 
(d) If A C an is open and C CA is compact, show that there is 

a non-negative C"' functionf: A-> H such thatf(x) > 0 for x E C 
and f - 0 outside of some closed set contained in A. 

(e) Show that we can choose such an f so that f: A -, (0,1) and 
f(x) - 1 for x E C. Hint: If the function f of (d) satisfies 
f(x) > e for x E C, consider g • f, where g is the function of (b). 
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2-27, Define g, h: 1.z E R2 : lzl < 11--+ R 3 by 

g(x,v> = <z,v, vi - z2 - v2>, 
h(x,y) = (.z,y, - Vl - z 2 

- y2
). 

Show that the maximum off on l.z E R3
: lzl = l] is either the 

maximum off o g or the maximum off oh on lz E R2
: lzl < l ]. 

DERIVATIVES 

The reader who has compared Problems 2-10 and 2-17 has 
probably already guessed the following. 

2-7 Theorem. If f: R"-+ Rm is differentiable at a, then 
D;f(a) exists for 1 < i < m, 1 < j < n andf'(a) is them X n 
matrix (D;f'(a)). 

Proof. Suppose first that m = 1, so that f: R" -+ R. Define 
h: R-+ R" by h(x) = (a1, ... ,x, ... ,a"), with x in the 
jth place. Then D;J(a) = (f o h)'(ai). Hence, by Theorem 
2-2, 

(f o h)'(ai) = f'(a) · h'(ai) 
0 

= f'(a) · 1 - jth place. 

0 

Since (! o h)'(a;) has the single entry D;J(a), this shows that 
D;/(a) exists and is the jth entry of the 1 X n matrix f'(a). 

The theorem now follows for arbitrary m since, by Theorem 
2-3, each f is differentiable and the ith row of J'(a) is 
<f>'(a). I 

There are several examples in the problems to show that the 
converse of Theorem 2-7 is false. It is true, however, if one 
hypothesis is added. 
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2-8 Theorem. If f: Rn-+ Rm, then Df(a) exists if all 
Dif(x) exist in an open set containing a and if each function 
Dif is continuous at a. 
(Such a function f is called continuously differentiable at a.) 

Proof. As in the proof of Theorem 2-7, it suffices to consider 
the case m = 1, so that f: Rn -+ R. Then 

f(a + h) - f(a) = f(a 1 + h1, a 2, ••• ,an) - f(a1, ... ,an) 
+ f(al + h1, a2 + h2, a3, ... ,an) 

- f(a 1 + h1, a2, ... ,an) 
+ ... 
+ f(a 1 + h1, .. ,an+ hn) 

- f(al + h1, ... ,an-I·+ hn-1, an). 

Recall that Dif is the derivative of the function g defined by 
g(x) = f(x,a 2, • ,an). Applying the mean-value theorem 
to g we obtain 

f(a 1 + h1, a 2, ••• ,an) - J(a1, ... ,an) 
= h 1 · Dif(b1, a2, ... ,a") 

for some b1 between a 1 and a 1 + h 1• Similarly the ith term 
in the sum equals 

hi· D;f(a 1 + h 1, • • ,ai-l + hi-l, b;, ... ,an) = hiD;j(c;), 
for some c;. Then 

n 

jf(a + h) - f(a) - 2 D;j(a) · hil 

!j lhl i=l 

n 

j 2 [D;f(c;) - D;f(a)] · hi j 

= ~j i=I lhl 

< Jim i ID;J(c;) - D;J(a)I · J!i:1 
A-+Oi=l !hi 

n 

< lim 2 jD;J(c;) - D;j(a)I 
A-+0 i = I 

=0 , 
since D;J is continuous at a. I 
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Although the chain rule was used in the proof of Theorem 

2-7, it could easily have been eliminated. With Theorem 2-8 to 

provide differentiable functions, and Theorem 2-7 to provide 

their derivatives, the chain rule may therefore seem almost 

superfluous. However, it has an extremely important corol-

lary concerning partial derivatives. 

2-9 Theorem. Let gi, . . . ,gm: R" - R be continuously 

differentiable at a, and let f: Rm - R be differentiable at 
(g1(a}, ... ,g,,.(a)). Define the functiun F: R" - R by 

F(x) = f(g1(x), ... ,g,,.(x)). Then 

m 

D;F(a) = l D;f(g1(a), ... ,gm(a)) · D;g;(a). 
j=l 

Proof. The function F is just the composition fog, where 

g = (gi, ... ,Um), Since g; is continuously differentiable at 

a, it follows from Theorem 2-8 that g is differentiable at a. 

Hence by Theorem 2-2, 

F'(a) = f'(g(a)) · g'(a) = 
D1g1(a), 

(Dd(g(a)), ... ,Dmf(g(a))) · 

Dium(a), ,Dng,,.(a) 

But D;F(a) is the ith entry of the left side of this equation, 

while '1:.j_1D;/(g1(a), ... ,Um(a)) · D;g;(a) is the ith entry 

of the right side. I 

Theorem 2-9 is often called the chain rule, but is weaker 

than Theorem 2-2 since g could be differentiable without g; 

being continuously differentiable (see Problem 2-32). Most 

computations requiring Theorem 2-9 are fairly straightforward. 

A slight subtlety is required for the function F: R 2 --+ R 

defined by 

F(x,y) = f(g(x,y),h(x),k(y)) 
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where h,k: R -+ R. In order to apply Theorem 2-9 define 
h,k: R 2 -+ R by 

Then 
h(x,y) = h(x) k(x,y) = k(y). 

D 1h(x,y) = h'(x) 
D 1k(x,y) = 0 

Dii(x,y) = 0, 
D2k(x,y) = k'(y), 

and we can write 

F(x,y) = f(g(x,y),h(x,y),k(x,y)). 

Letting a = (g(x,y),h(x),k(y)), we obtain 

D1F(x,y) = D 1J(a) · D1g(x,y) + DJ(a) · h'(x), 
D2F(x,y) = Dif(a) · D2g(x,y) + Daf(a) · k'(y). 

It should, of course, be unnecessary for you to actually write 
down the functions h and k. 

Problems. 2-28. Find expressions for the partial derivatives of the 
following functions: 

(a) F(x,y) = J(g(x)k(y), g(x) + h(y)). 
(b) F(x,y,z) = f(g(x + y), h(y + z)). 
(c) F(x,y,z) = f(x•,y•,z•). 
(d) F(x,y) = f(x,g(x),h(x,y)). 

2-29. Let/: R"---> R. For x E R", the limit 

. f(a + tx) - f(a) hm , 
1--+0 t 

if it exists, is denoted D,J(a), and called the dirootional deriva-
tive off at a, in the direction x. 

(a) Show that D,,J(a) = D;f(a). 
(b) Show that D,zf(a) = tD,J(a). 
(c) If f is differentiable at a, show that D,f(a) - Df(a)(x) and 

therefore D,+uf(a) = Dzf(a) + D,f(a). 
2-30, Let f be defined as in Problem 2-4. Show that D.J(O,O) exists for 

all x, but if g ~ 0, then Dz+uf(O,O) = Dz/(0,0) + D,/(0,0) is not 
true for all x and y. 

2-31. Let/: R2 ---> R be defined as in Problem 1-26. Show that Dz/(0,0) 
exists for all x, although f is not even continuous at (0,0). 

2-32. (a) Let f: R -+ R be defined by 

{ ' . I 
f(x) -1: Sill; X ~ 0, 

X - 0. 
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Show that f is differentiable at O but/' is not continuous at O. 
(b) Let/: R2 --+ R be defined by 

{ 
(.x1 + y1) sin 

1 
f(x,y) = 

0 
y z2 + 112 

(.x,y) ?! 0, 

(::t,y) = 0. 

Show that / is differentiable at (0,0) but D;f is not continuous 
at (0,0). 

2-33. Show that the continuity of D1/" at a may be eliminated from the 
hypothesis of Theorem 2-8. 

2-34. A function f: Rn--+ R is homogeneous of degree m if f(tx) = 
t"'f(x) for all .x. If f is also differentiable, show that 

" l xiDJ(x) = mf(x). 
i=l 

Hint: If g(t) .. f(tx), find g'(l). 
2-35. If/: R •--+ R is differentiable and /(0) = 0, prove that there exist 

g;: Rn --+ R such that 

" 
f(x) = l x'g;(x). 

i= l 

Hint: If hz(t) = f(tx), then f(.x) = f~ hz'(t)dt. 

INVERSE FUNCTIONS 

Suppose that I: R--+ R is continuously differentiable 1n an 
open set containing a and l'(a) ~ 0. If l'(a) > 0, there is an 
open interval V containing a such that f'(x) > 0 for x E V, 
and a similar statement holds if f'(a) < 0. Thus I is increas-
ing (or decreasing) on V, and is therefore 1-1 with an inverse 
function 1-1 defined on some open interval W containingl(a). 
Moreover it is not hard to show that 1-1 is differentiable, and 
for y E W that 

An analogous discussion in higher dimensions is much more 
involved, but the result (Theorem 2-11) is very important. 
We begin with a simple lemma. 
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2-10 Lemma. Let A C Rn be a rectangle and let/: A-+ Rn 
be continuously differentiable. If there is a number M such that 
ID;f(x)I < M for all x in the interior of A, then 

IJ(x) - f(y)I < n 2Mlx - YI 
for all x,y E A. 

Proof. We have 
n 

f(y) - f(x) = L ff(y1, , , ,yi,xi+t, , , , ,xn) 
; :er: l 

. 1 j-1 j - f'(y ' ... ,Y ,x ' ... ,xn)J. 
Applying the mean-value theorem we obtain 

f(y1, ... ,yi, xi+I, ... ,xn) _ f(y1, ... ,yi-1 1 xi, .. , ,x") 
= (yi - x') · D ;f(zi;) 

for some zi;· The expression on the right has absolute value 
less than or equal to M · lyi - xii, Thus 

" 
lf(y) - f(x)I < L IY; - xii· M < nMly - xi 

i=l 

since each IY; - xii < IY - xi. Finally 
n 

lf(y) - f(x)I < L lf(y) - f(x)I < n 2M · ly - xi. I 
i- I 

2-11 Theorem (Inverse Function Theorem). Suppose that 
f: Rn-+ Rn is continuously differentiable in an open set contain-
ing a, and detf'(a) ~ 0. Then there is an open set V containing 
a and an open set W containing f(a) such that f: V-+ W has a 
continuous inverse 1-1: W-+ V which is differentiable and for 
all y E W satisfies 

Proof. Let >,. be the linear transformation Df(a). Then 
>,. is non-singular, since detf'(a) ~ 0. Now D(x-1 of)(a) = 
D(X-1)(/(a)) o Df(a) = x-1 o Df(a) is the identity linear 
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transformation. If the theorem is true for X -l of, it is clearly 
true for f. Therefore we may assume at the outset that Xis the 
identity. Thus whenever J(a + h) = f(a), we have 

But 

IJ(a + h) - J(a) - X(h)I !hi 1 lhl = w = . 

1
. lf(a + h) - f(a) - X(h)I _ 0 ,.~ lhl - . 

This means that we cannot have f(x) = f(a) for x arbitrarily 
close to, but unequal to, a. Therefore there is a closed rec-
tangle U containing a in its interior such that 

1. f(x) ¢. f(a) if x E U and x ¢. a. 

Since f is continuously differentiable in an open set containing 
a, we can also assume that 

2. detf'(x) ¢. 0 for x E U. 
3. ID;f(x) - D;f(a)I < 1/2n2 for all i, j, and x E U. 

Note that (3) and Lemma 2-10 applied to g(x) = J(x) - x 
imply for x1,x2 E U that 

lf(x1) - x1 - (f(x2) - x2)I < ilx1 - x2I, 
Since 

lx1 - x2I - IJ(x1) - f(x2)I < IJ(x1) - X1 - (f(x2) - x2)I 
< 1lx1 - x2I, 

we obtain 

4. lx1 - x2I < 2JJ(x1) - J(x2)I for x1,x2 E U. 

Now /(boundary U) is a compact set which, by (1), does not 
contain /(a) (Figure 2-3). Therefore there is a number d > 0 
such that lf(a) - f(x)I > d for x E boundary U. Let 
W = {y: Jy -J(a)I < d/21. If y E Wandx E boundary U, 
then 

5. Jy - f(a)I < IY - f(x)I. 

We will show that for any y E W there is a unique x in 
interior U such that f(x) = y. To prove this consider the 
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function g: U -+ R defined by 

" 
g(x) = Jy - f(x)l 2 = ;f, (yi - f(x)) 2

• 

This function is continuous and therefore has a. minimum on 
U. If x E boundary U, then, by (5), we have g(a) < g(x). 
Therefore the minimum of g does not occur on the boundary 
of U. By Theorem 2-6 there is a point x E interior U such 
that D;g(x) = 0 for all j, that is 

.. l 2(yi - f(x)) · D;f(x) = 0 
i=I 

for all j. 

By (2) the matrix (D;f(x)) has non-zero determinant. There-
fore we must have y; - f(x) = 0 for all i, that is y = f(x). 
This proves the existence of x. Uniqueness follows immedi-
ately from (4). 

If V = (interior U) n 1-1(W), we have shown that the 
function /: V-+ W has an inverse 1-1 : W-+ V. We can 
rewrite (4) as 

for Y1,Y2 E W. 

This shows that r' is continuous. 
Only the proof that r' is differentiable remains. Let 

"' = Df(x). We will show thatr1 is differentiable at y = f(x) 
with derivative µ-1• As in the proof of Theorem 2-2, for 
x1 E V, we have 

where 

Therefore 

f(x1) = f(x) + µ(x, - x) + ,p(x1 - x), 

lim Jr,o(x, - x)I = 0 . 
.,,_., Ix, - xi 

Since every y1 E W is of the form f(x 1) for some x 1 E V, this 
can be written 
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and it therefore suffices to show that 

Jim 1µ-1<"'cr1cy1) - ricy)))I = o. 
111-11 IY1 - YI 

Therefore (Problem 1-10) it suffices to show that 

lim 1"'c1-1CY1) - 1-icy))I = o. 
11,-11 IY1 - YI 

Now 

l"'cr1CY1> - r 1CY>>I 
IY1 - YI 

_ 1"'c1-1cy1) - r 1(y)) I . lr1CY1> - r 1CY> 1. 
- \f-1(y1) - 1-1(y)I IY1 - YI 

Since r 1 is continuous, 1-1(y1) - 1-1(y) as YI - y. There-
fore the first factor approaches 0. Since, by (6), the second 
factor is less than 2, the product also approaches 0. I 

It should be noted that an inverse function r 1 may exist 
even if detf'(a) = 0. For example, if/: R _. R is defined by 
f(x) = x3

, then f'(O) = 0 but f has the inverse function 
1-1(x) = -¢';, One thing is certain however: if detf'(a) = 0, 
then r 1 cannot be differentiable at /(a). To prove this note 
that f o f- 1(x) = x. If 1-1 were differentiable at J(a), the 
chain rule would givef'(a) · (/-1)'(/(a)) = I, and consequently 
detf'(a) · det(r1

)
1(/(a)) = 1, contradicting det/'(a) = 0. 

Problems. 2-36. • Let A C R" be an open set and /: A-> R" 
a continuously differentiable 1-1 function such that det f(x) ¢. 0 
for all x. Show that/(A) is an open set and11:J(A)-+ A is differ-
entiable. Show also that f(B) is open for any open set B C A. 

2-37. (a) Let /: R2 -+ R be a continuously differentiable function. 
Show that J is not 1-1. Hint: If, for example, Dif(x,y) ;,! 0 for all 
(x,y) in some open set A, consider g: A-+ R2 defined by g(x,y) = 
(f(x,y),y). 

(b) Generalize this result to the case of a continuously differen-
tiable function/: R"-+ R"' with m < n. 

2-38. (a) If /: R-+ R satisfies /'(a) ;,! 0 for all a E R, show that / is 
1-1 (on all of R). 



• 

Calculus on Manifolds 

(b) Define J: R2 -+ R2 by J(z,y) - (r cos 1/, r sin y). Show 
that detJ'(z,y) ~ 0 for all (z,y) but J is not 1-1. 

2-39. Use the function J: R -+ R defined by 

J z 2 • 1 
J(z) = \ ! + z sm ; 

z ~ 0, 

z = o, 
to show that continuity of the derivative cannot be eliminated from 
the hypothesis of Theorem 2-11. 

IMPLICIT FUNCTIONS 

Consider the function /: R2 -+ R defined by J(x,y) = x2 + 
y2 - 1. If we choose (a,b) with J(a,b) = 0 and a~ 1, -1, 
there are (Figure 2-4) open intervals A containing a and B 
containing b with the following property: if x E A, there is 
a unique y E B with J(x,y) = 0. We can therefore define 

II 

B b 

A 
CJ 

FIGURE Z-4 
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a function g: A ---> R by the condition g(x) EB and f(x,g(x)) 
= 0 (if b > 0, as indicated in Figure 2-4, then g(x) = 

VI - x2). For the function f we are considering there is 
another number b1 such that f(a,b 1) = 0. There will also be 
an interval B 1 containing b1 such that, when x E A, we 
have f(x,g 1(x)) = 0 for a unique g1(x) E B 1 (here g1(x) = 

- Vl - x2
). Both g and g1 are differentiable. These 

functions are said to be defined implicitly by the equation 
f(x,y) = 0. 

If we choose a = 1 or -1 it is impossible to find any such 
function g defined in an open interval containing a. We 
would like a simple criterion for deciding when, in general, 
such a function can be found. More generally we may ask 
the following: If f: R" X R---> R and f(a 1, ••• ,a\b) = Q, 
when can we find, for each (x1, ... ,x") near (a 1, •.. ,a"), 
a unique y near b such that f(x 1, ••• ,x\y) = O? Even 
more generally, we can ask about the possibility of solving 
m equations, depending upon parameters x1, ... ,x", in m 
unknowns: If 

i=l, ... ,m 
and 

fi{a 1, ... ,an, b1, ... ,b"') = 0 i = 1, . ,m, 
when can we find, for each (x1, .. 
unique (y1, ... ,ym) near (b1, 
f ·( I n I m) _ 0? • X ' • • • ,x ' y ' . . • ,Y - . 

. ,x") near (a1, . ,a") a 

. . . ,bm) which satisfies 
The answer is provided by 

2-12 Theorem (Implicit Function Theorem). Suppose 
f: R" X Rm ---> Rm is continuously differentiable in an open set 
containing (a,b) and f(a,b) = 0. Let M be them X m matrix 

(D,.+;f(a,b)) 1 < i,j < m. 

If det M ¢ 0, there is an open set A C R" containing a and an 
open set B C R"' containing b, with the following property: for 
each x E A there is a unique g(x) E B such that f(x,g(x)) = 0. 
The function g is differentiable. 
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Proof, Define F: Rn X Rm--+ Rn X Rm by F(x,y) = 
(xJ(x,y)). Then detF'(a,b) = det M ;;.6 0. By Theorem 2-11 
there is an open set WC Rn X Rm containing F(a,b) = (a,O) 
and an open set in R" X Rm containing (a,b), which we may 
take to be of the form A X B, such that F: A X B--+ W 
has a differentiable inverse h: W--+ A X B. Clearly h is of 
the form h(x,y) = (x,k(x,y)) for some differentiable function 
k (since Fis of this form). Let 1r: R" X R"'--+ R"' be defined 
by 1r(x,y) = y; then 1r.o F = f. Therefore 

f(x,k(x,y)) = f o h(x,y) = ('ll' o F) o h(x,y) 
= 1r o (F o h)(x,y) = 1r(x,y) = y. 

Thus f(x,k(x,O)) = O; in other words we can define g(x) = 
k(x,O). I 

Since the function g is known to be differentiable, it is easy 
to find its derivative. In fact, sincef(x,g(x)) = 0, taking Di 
of both sides gives 

'" 
0 = D;J'(x,g(x)) + l Dn+«f(x,g(x)) · D;g"(x) 

0<=1 
i,j = 1, ... ,m. 

Since det M ;;.6 0, these equations can be solved for D;g"'(x). 
The answer will depend on the various D;f(x,g(x)), and there-
fore on g(x). This is unavoidable, since the function g is not 
unique. Reconsidering the function /: R 2 --+ R defined by 
f(x,y) = x2 + y2 - 1, we note that two possible functions 
satisfying f(x,g(x)) = 0 are g(x) = Vl - x2 and g(x) = 
- Vl - x2• Differentiating f(x,g(x)) = 0 gives 

Dif(x,g(x)) + DJ(x,g(x)) · g'(x) = 0, 
or 

2x + 2g(x) · g'(x) = 0, 
g'(x) = -x/g(x), 

which is indeed the case for either g(x) = Vl - x2 or g(x) = 

-~. 
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A generalization of the argument for Theorem 2-12 can be 
given, which will be important in Chapter 5. 

2-13 Theorem. Let f: Rn--+ RP be continuously differ-
entiable in an open set containing a, where p < n. If f(a) = 0 
and the p X n matrix (D;f(a)) has rank p, then there is an 
open set A C Rn containing a and a differentiable function h: 
A --+ Rn with differentiable inverse such that 

/ o h(x1, ... ,x") = (xn-p+i, ... ,xn). 

Proof. We can consider/ as a function/: Rn-p X RP-+ RP. 
If det M r6- 0, then M is the p X p matrix (Dn-p+;f(a)), 
1 < i, j < p, then we are precisely in the situation considered 
in the proof of Theorem 2-12, and as we showed in that proof, 
there is h such that f o h(x1, ... ,xn) = (xn-p+l, , .. ,xn). 

In general, since (D;f(a)) has rank p, there will be j 1 < 
· · · < jp such that the matrix (D;f(a)) 1 < i < p, j = 
i1, ... ,jp has non-zero determinant. If g: Rn--+ Rn per-
mutes the xi so that g(x1, ... ,xn) = (. , . ,xi•, ... ,x;,), 
then / o g is a function of the type already considered, so 
((/ o g) o k)(x 1, • ,xn) = (xn-p+l, ... ,xn) for some k. 
Leth = go k. I 

Problems. 2-40. Use the implicit function theorem to re-do Prob-
lem 2-15(c). 

2-41. Let /: R X R-+ R be differentiable. For each x E R define g,.: 
R-+ R by g,.(y) = f(x,y). Suppose that for each x there is a 
unique y with g/(y) = O; let c(x) be this y. 

(a) If D2, 2/(x,y) ,,.,,_ 0 for all (x,y), show that c is differentiable 
and 

c'(x) = _ D2,i/(x,c(x))_ 
D2,2'(x,c(x)) 

Hint: g.'(y) = 0 can be written D'l/(x,y) .. O. 
(b) Show that if c'(x) = O, then for some y we have 

D2,i/(x,y) - O, 
D,f(x,y) - 0. 

(c) Let f(x,y) - x(y logy - y) - y log x. Find 

max ( min f(z,y)). 
!.:5z.$2 {,Sy:Sl 
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NOTATION 

This section is a brief and not entirely unprejudiced discussion 
of classical notation connected with partial derivatives. 

The partial derivative Dif(x,y,z) is denoted, among devotees 
of classical notation, by 

of(x,y,z) of of ( ) a or - or - x y z or -f(x,y,z) 
ox ax ax ' ' ax 

or any other convenient similar symbol. This notation forces 
one to write 

of 
- (u,v,w) 
OU 

for Dif(u,v,w), although the symbol 

of(x,y,z) 
ox (z,11,a) - (u,,,w) 

r of(x,y,z) ( ) 
0 u,v,w 

ax 

or something similar may be used (and must be used for an 
expression like D 1/(7,3,2)). Similar notation is used for D 2/ 

and D1/. Higher-order derivatives are denoted by symbols 
like 

D D-'( ) a2/(x,y,z) 
2 lJ x,y,z = ay ax • 

When/: R-+ R, the symbol a automatically reverts to d; thus 

d sin x a sin x 
--, not dx ax 

The mere statement of Theorem 2-2 in classical notation 
requires the introduction of irrelevant letters. The usual 
evaluation for D 1{/ o (g,h)) runs as follows: 

If f(u,v) is a function and u = g(x,y) and v = h(x,y), 
then 

a...c...lj(.::...g (..:.._x.:..::..,Y ):...:_, _h (.:_x.:..::..,Y )'-'-) = af ( u,v) a_u + af ( u, v) _av. 
ax au ax av ax 

[The symbol au/ax means a/ax g(x,y) and a/auf(u,v) means 
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Dif(u,v) = Dif(g(x,y), h(x,y)).] This equation is often written 
simply 

aJ aJ au aJ av -=--+--· 
ax au ax av ax 

Note that f means something different on the two sides of the 
equation! 

The notation df /dx, always a little too tempting, has inspired 
many (usually meaningless) definitions of dx and df separately, 
the sole purpose of which is to make the equation 

df = df · dx 
dx 

work out. If f: R 2 - R then df is defined, classically, as 

aJ af 
df = -dx + -dy 

ax ay 

(whatever dx and dy mean). 
Chapter 4 contains rigorous definitions which enable us to 

prove the above equations as theorems. It is a touchy 
question whether or not these modern definitions represent a 
real improvement over classical formalism; this the reader 
must decide for himself. 
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Integration 

BASIC DEFINITIONS 

The definition of the integral of a function f: A - R, where 
A C Rn is a closed rectangle, is so similar to that of the ordi-
nary integral that a rapid treatment will be given. 

Recall that a partition P of a closed interval [a,bl is a 
sequence t0, ... ,tk, where a = to < ti < · · · < tk = b. 
The partition P divides the interval [a,bJ into k subintervals 
[t;_1,t;]. A partition of a rectangle [a1,bil X · · · X [an,bnJ 
is a collection P = (P 1, ••• ,Pn), where each P; is a par-
tition of the interval [a;,b;J. Suppose, for example, that 
P 1 = to, . . . ,tk is a partition of [a1,b 1) and P 2 = so, . . . ,s1 
is a partition of [a2,b 2]. Then the partition P = (P1,P2) of 
[a1,bi] X [a2,b2] divides the closed rectangle [a1,bil X [a2,b 2) 

into k · l subrectangles, a typical one being [t;_1,t;) X [s;-1,s;]. 
In general, if P; divides [a;,b;] into N; subintervals, then P = 
(Pi, ... ,Pn) divides [a1,bd X · · · X [an,bnl into N = 
N 1 • • . • • N n subrectangles. These subrectangles will be 
called subrectangles of the partition P. 

Suppose now that A is a rectangle, f: A --+ R is a bounded 
46 
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function, and P is a partition of A. For each subrectangle S 
of the partition let 

ms(!) = inf{J(x): x E SI, 
Ms(!) = sup{/(x): x ES}, 

and let v(S) be the volume of S [the volume of a rectangle 
[a1,biJ X · · · X [an,bnJ, and also of (a1,b1) X · · · X (an,bn), 
is defined as (b 1 - a 1) · ... · (bn - an)J. The lower and 
upper sums off for P are defined by 

L(f,P) = l ms(!) · v(S) and 
s 

U(J,P) = l Ms(!)· v(S). 
s 

Clearly L(f,P) < U(f,P), and an even stronger assertion (3-2) 
is true. 

3-1 Lemma. Suppose the partition P' refines P (that is, 
each subrectangle of P' is contained in a subrectangle of P). 
Then 

L(f,P) < L(f,P') and U(f,P') < U(f,P). 

Proof. Each subrectangle S of P is divided into several sub-
rectangles 81, ... ,Sa of P', so v(S) = v(S1) + · · · + 
v(Sa), Now ms(!) < ms.Cf), since the values f(x) for x ES 
include all values f(x) for x E S; (and possibly smaller ones). 
Thus 

ms(!) · v(S) = ms(!) · v(S1) + · · · + ms(!) · v(S.,) 
< ms,(/) · v(S1) + · · · +ms.,(!)· v(S.,). 

The sum, for all S, of the terms on the left side is L(J,P), 
while the sum of all the terms on the right side is L(f,P'). 
Hence L(f,P) < L(f,P'). The proof for upper sums is 
similar. I 

3-2 Corollary. If P and P' are any two partitions, then 
L(f,P') < U(J,P). 

Proof. Let P" be a partition which refines both P and P'. 
(For example, let P" = (P~', ... ,P~), where P;' is a par-
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tition of [a;,bi] which refines both P; and P~.) Then 

L(f,P') < L(/,P") < U(/,P") < U(/,P). I 

It follows from Corollary 3-2 that the least upper bound of 

all lower sums for f is less than or equal to the greatest lower 

bound of all upper sums for f. A function f: A -+ R is called 

integrable on the rectangle A if/ is bounded and sup {L(/,P) \ 

= inf I U(/,P) \. This common number is then denoted f A/, 
and called the integral of / over A. Often, the notation 

f Af(x1, ... ,xn)dx1 • • · dxn is used. If/: [a,b] -+ R, where 

a < b, then f !f = f [a,bJf. A simple but useful criterion for 

integrability is provided by 

3-3 Theorem. A bounded function f: A -+ R is integrable 

if and only if for every e > 0 there is a partition P of A such 

that U(f,P) - L(f,P) < e. 

Proof. If this condition holds, it is clear that sup IL(f,P) \ -

inf! U(f,P) I and f is integrable. On the other hand, if / is 

integrable, so that sup{L(f,P) I = inf! U(f,P) I, then for 

any e > 0 there are partitions P and P' with U(f,P) - L(f,P') 

< e. If P" refines both P and P', it follows from Lemma 3-1 

that U(f,P") - L(f,P") < U(J,P) - L(f,P') < e. I 

In the following sections we will characterize the integrable 

functions and discover a method of computing integrals. For 

the present we consider two functions, one integrable and one 

not. 
1. Let f: A -+ R be a constant function, f(x) = c. Then 

for any partition P and subrectangle S we have ms(!) = 

Ms(/) = c, so that L(f,P) = U(f,P) = isc · v(S) = c · v(A). 

Hence J A!= c · v(A). 
2. Let/: (0,1] X [O,l]-+ R be defined by 

f(x,y) = { o
1 

if x is rational, 
if x is irrational. 

If P is a partition, then every subrectangle S will contain 

points (x,y) with x rational, and also points (x,y) with x 
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irrational. Hence ms(!) = 0 and Jf s(f) = I, so 

L(f,P) = .l O · v(S) = 0 
s 

and 

U(J,P) = ,L l · v(S) = v([O,l] X [O,lj) - 1. 
s 

Therefore f is not integrable. 

Problems. 3-1. Letf: {0,1] X {0,1]--> R be defined by 

f(x,y) = { ~ if O S X < !, 
if i < X S J. 

Show that f is integrable and J 10.1x10.1J f = !. 
3-2. Let f: A --> R be integrable and let g = f except at finitely many 

points. Show that g is integrable and f Af = f A9· 
3-3. Let f,g: A --> R be integrable. 

(a) For any partition P of A and subrectangle S, show that 

ms(J) + ms(g) S ms(J + g) and Ms(J+g) 
S Ms(J) + Ms(g) 

and therefore 

L(f,P) + L(g,P) < L(f + g, P) and U(f + g, P) 
< U(f,P) + U(g,P). 

(h) Show that f + g is integrable and f Af + g = f A f + f AY· 
(c) For any constant c, show that f Acf = cf Af. 

3-4. Letf: A--> Rand let P he a partition of A. Show thatfis integra-
ble if and only if for each suhrectangle S the function !IS, which 
consists of f restricted to S, is integrable, and that in this case 
f Af = ~sfsJIS. 

3-5. Let f,g: A --> R be integrable and suppose f s g. Show that 
fAfSfAY· 

3-6. If f: ,4 --> R is integrable, show that l!I is integrable and I J A!I < 
f Alfi. 

3-7. Let f: 10,1) X {0,1)-> R be defined by 

f(x,y) = { ~ 
1 / 'l 

x irrational, 
x rational, y irrational, 
x rational, y = p/q in lowest terms. 

Show that f is integrable and J ro, 1Jx[o,1J f = 0. 
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MEASURE ZERO AND CONTENT ZERO 

A subset A of R" has (n-dimensional) measure O if for every 

e > 0 there is a cover I U 1, U 2, U 3, • • • J of A by closed rec-

tangles such that ~:., 1v(U;) < e. It is obvious (but never-

theless useful to remember) that if A has measure O and 

BC A, then B has measure 0. The reader may verify that 

open rectangles may be used instead of closed rectangles in 

the definition of measure 0. 
A set with only finitely many points clearly has measure 0. 

If A has infinitely many points which can be arranged in a 

sequence a 1, a2, a 3, .•• , then A also has measure 0, for if 

e > 0, we can choose U; to be a closed rectangle containing 

a; with v(U;) < e/2i. Then~; 1v(Ui) < ~;:,1e/2; = e. 

The set of all rational numbers between O and 1 is an impor-

tant and rather surprising example of an infinite set whose 

members can be arranged in such a sequence. To see that 

this is so, list the fractions in the following array in the order 

indicated by the arrows (deleting repetitions and numbers 

greater than 1): 

/' /' /' /' 
0/1 1/1 2/1 3/1 4/1 

/ / / / 
0/2 1/2 2/2 3/2 4/2 

/ / / 
0/3 1/3 2/3 3/3 4/3 

/ / 
0/4 

/ 

An important generalization of this idea can be given. 

3-4 Theorem. If A = Ai V A2 V A3 V · · · and each 

A; has measure 0, then A has measure 0. 

Proof, Let e > 0. Since A; has measure 0, there is a cover 

I Ui,i,U;, 2,U;, 3, ••• \ of A; by closed rectangles such that 

~i 1v(U;,;) < e/2i. Then the collection of all U;,; is a cover 
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of A. By considering the array 

/' /' /' 
U1,1 U1,2 U1,a 

/ / / 
U2,1 U2,2 U2,a 

/ / 
Ua,1 Ua,2 Ua,a 

/ 
we see that this collection can be arranged in a sequence 
V1, V2, Va, .... Clearly2;7 1v(V;) < 2;7 1e/2i = e. I 

A subset A of Rn has (n-dimensional) content O if for every 
e > 0 there is a finite cover { U1, ••. ,Uni of A by closed 
rectangles such that l;Z: 1v( U;) < e. If A has content 0, 
then A clearly has measure 0. Again, open rectangles could 
be used instead of closed rectangles in the definition. 

3-5 Theorem. If a < b, then [a,bj C R does not have con-
tent 0. In fact, if l U1, ... ,Uni is a finite cover of fa,b] by 
closed intervals, then 2;f= 1v(U;) > b - a. 

Proof. Clearly we can assume that each U; C [a,b]. Let 
a = t 0 < t 1 < ... < t1o = b be all endpoints of all U;. Then 
each v(U;) is the sum of certain t; - t;_1• Moreover, each 
[tj_1,tiJ lies in at least one U; (namely, any one which contains 
an interior point of [t;-1,t;]), so 2:f-1v(U;) > 2:,_1(t; - t;-1) 
= b - a. I 

If a < b, it is also true that [a,b] does not have measure 0. 
This follows from 

3-6 Theorem. If A is compact and has measure 0, then A 
has content 0, 

Proof. Let e > 0. Since A has measure 0, there is a cover 
I U 1, U 2, .•• } of A by open rectangles such that :2::_1v( U ;) 
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< e. Since A is compact, a finite number U1, ... ,Un of 
the U; also cover A and surely i:-. 1v(U;) < e. I 

The conclusion of Theorem 3-6 is false if A is not compact. 
For example, let A be the set of rational numbers between 0 
and 1; then A has measure 0. Suppose, however, that 
I [a1,b1), ... ,[an,bnll covers A. Then A is contained in 
the closed set [a1,b1) U · · · U f an,bnl. and therefore [0,1) C 
[a1,bd U · · · U fan,bn), It follows from Theorem 3-5 that 
~f= 1 (b; - a;) > 1 for any such cover, and consequently A 
does not have content 0. 

Problems. 3-8. Prove that [a1,btl X · · · X [a.,b.J does not have 
content O if a; < b; for each i. 

3-9. (a) Show that an unbounded set cannot have content 0. 
(b) Give an example of a closed set of measure O which does not 

have content 0. 
3-10. (a) If C is a set of content 0, show that the boundary of C has 

content 0. 
(b) Give an example of a bounded set C of measure Osuch that 

the boundary of C does not have measure 0. 
3-11. Let A be the set of Problem 1-18. If i:1(b; - a;) < 1, show 

that the boundary of A does not have measure 0. 
3-12. Let f: [a,bJ-+ R be an increasing function. Show that Ix: f is 

discontinuous at xi has measure 0. Hint: Use Problem 1-30 to 
show that {x: o(f,x) > 1 /n I is finite, for each integer n. 

3-13. • (a) Show that the collection of all rectangles [a1,b1) X · · · X 
[a.,b.J with all a; and b; rational can be arranged in a sequence. 

(b) If A C R" is any set and O is an open cover of A, show that 
there is a sequence U 1, U 2, U 3, •.. of members of o which also 
cover A. Hint: For each x E A there is a rectangle B = [a1,b1) X 
, · · X [a.,b.J with all a; and b; rational such that x E B C U 
for some U E o. 

INTEGRABLE FUNCTIONS 

Recall that o(f,x) denotes the oscillation off at x. 

3-7 Lemma. Let A be a closed rectangle and let f: A -+ R be 
a bounded function such that o(f,x) < e for all x E A. Then 
there is a partition P of A with U(f,P) - L(f,P) < e · v(A). 
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Proof. For each x E A there is a closed rectangle U z, 
containing x in its interior, such that Mu./!) - mu.rCf) < c. 
Since A is compact, a finite number U x 11 • • • , U z7l of the 
sets U x cover A. Let P be a partition for A such that each 
subrectangle S of Pis contained in some U xi· Then M s (f) -
ms(!) < E for each subrectangle S of P, so that U(f,P) -
L(f,P) = ~s[Ms(f) - ms(!)]· v(S) < e · v(A). I 

3-8 Theorem. Let A be a closed rectangle arul, f: A~ R a 
bounded function. Let B = {x: f is not continuous at x l, 
Then f is int.egrable if and only if B is a set of measure 0. 

Proof. Suppose first that B has measure 0. Let e > 0 and 
let Be = {x: o(f,x) > E}. Then B£ C B, so that Be has 
measure 0. Since (Theorem 1-11) Be is compact, Be has con-
tent 0. Thus there is a finite collection U 1, ••. , Un of 
closed rectangles, whose interiors cover BE., such that ~f 1 v( U i) 
< c. Let P be a partition of A such that every subrectangle 
S of P is in one of two groups (see Figure 3-1): 

" )' 

U1 
/ 

/ $, 

.t' / 
"' * V 
,% s;;/ t 

% 
N lJ7. 

"" 

FIGURE 3-1. The shaded rectangles are in S1. 
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(1) Si, which consists of subrectangles S, such that S C U; 
for some i. 

(2) S2, which consists of subrectangles S with S /\ B6 

= ¢. 

Let IJ(x)I < M for x EA. Then Ms(!) - ms(!) < 2M 
for every S. Therefore 

" l [Ms(!) - ms(!)] · v(S) < 2M l v(U;) < 2Me. 
ses, ;-1 

Now, if SE S2, then o(f,x) < e for x ES. Lemma 3-7 
implies that there is a refinement P' of P such that 

L [Ms,(!) - ms,{/)]· v(S') < e · v(S) 
S' (S 

for S E Si- Then 

U(f,P') - L(f,P') = l [Ms,(!) - ms,(!)] · v(S') 
S' CSE S, 

+ l [Ms,(!) - ms,(!)]· v(S') 
S' Cs E $, 

< 2Me + l e · v(S) 
ses, 

< 2Me + e · v(A). 

Since M and v(A) are fixed, this shows that we can find a 
partition P' with U(J,P') - L(f,P') as small as desired. Thus 
f is integrable. 

Suppose, conversely, that f is integrable. Since B = 
B1 U B, U B, U · · · , it suffices (Theorem 3-4) to prove 
that each B 11 ,. has measure 0. In fact we will show that 
each B11,. has content O (since B 11 n is compact, this is actually 
equivalent). 

If E > 0, let P be a partition of A such that U(f,P) -
L(f,P) < e/n. Let S be the collection of subrectangles S 
of P which intersect B 11,.. Then Sis a cover of B 11,.. Now if 



Integration 

SES, then Ms(!) - ms(!) > 1/n. Thus 

~ · L v(S) < L [M s(f) - ms(f)I · v(S) 
SE$ SE$ 

< L [Ms(!)- ms(!)]· v(S) 
s 

! < -, 
n 

and consequently :2:sEgv(S) < !. I 
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We have thus far dealt only with the integrals of functions 
over rectangles. Integrals over other sets are easily reduced 
to this type. If C C Rn, the characteristic function xc 
of C is defined by 

xc(x) = { ~ X ti:. C, 
XE C. 

If C C A for some closed rectangle A and f: A -> R is 
bounded, then f cf is defined as f Af · xc, provided f · xc is 
integrable. This certainly occurs (Problem 3-14) if f and 
xc are integrable. 

3-9 Theorem. The function xc: A-> R i8 integrable if and 
only if the boundary of C has measure O (and hence content 0). 

Proof. If x is in the interior of C, then there is an open 
rectangle U with x E U C C. Thus xc = 1 on U and xc is 
clearly continuous at x. Similarly, if xis in the exterior of C, 
there is an open rectangle U with x E U C R" - C. Hence 
xc = 0 on U and xc is continuous at x. Finally, if x is in 
the boundary of C, then for every open rectangle U containing 
x, there is y 1 E U ('\ C, so that xc(Y1) = 1 and there is 
Y2 E U ('\ (Rn - C), so that xc(Y2) = 0. Hence xc is not 
continuous at x. Thus {x: xc is not continuous at xi -
boundary C, and the result follows from Theorem 3-8. I 



56 Calculm on Manifolds 

A bounded set C whose boundary has measure O is called 
Jordan-measurable. The integral f cl is called the 
(n-dimensional) content of C, or the (n-dimensional) volume 
of C. Naturally one-dimensional volume is often called 
length, and two-dimensional volume, area. 

Problem 3-11 shows that even an open set C may not be 
Jordan-measurable, so that f cf is not necessarily defined even 
if C is open and f is continuous. This unhappy state of affairs 
will be rectified soon. 

Problems. 3-14. Show that if f.g: A-+ R are integrable, so is 
f. g. 

3-15. Show that if Chas content O, then C C A for some closed rectangle 
A and C is Jordan-measurable and f A xc = 0. 

3-16. Give an example of a bounded set C of measure Osuch that f A xc 
does not exist. 

3-17, If C is a bounded set of measure O and f A xc exists, show that 
f A xc = 0. Hint: Show that L(f,P) - O for all partitions P. 
Use Problem 3-8. 

3-18. If/: A-+ R is non-negative and f A/ = 0, show that Ix: f(x) ;of O I 
has measure 0. Hint: Prove that lz: f(x) > l/nl has content 0. 

3-19. Let Ube the open set of Problem 3-11. Show that if f = xu 
except on a set of measure 0, then f is not integrable on [0,1]. 

3-20. Show that an increasing function /: [a,b]-+ R is integrable on 
[a,b]. 

3-21. If A is a closed rectangle, show that C C A is Jordan-measurable 
if and only if for every e > 0 there is a partition P of A such that 
IsEs,v(S) - IsEs,v(S) < e, where S1 consists of all subrectan-
gles intersecting C and S2 all subrectangles contained in C. 

3-22. • If A is a Jordan-measurable set and e > 0, show that there is a 
compact Jordan-measurable set C C A such that f A-C I < E. 

FUBINI'S THEOREM 

The problem of calculating integrals is solved, in some sense, 
by Theorem 3-10, which reduces the computation of integrals 
over a closed rectangle in Rn, n > 1, to the computation of 
integrals over closed intervals in R. Of sufficient importance 
to deserve a special designation, this theorem is usually 
referred to as Fubini's theorem, although it is more or less a 
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special case of a theorem proved by Fubini long after Theorem 
3-10 was known. 

The idea behind t he theorem is best illustrated (Figure 3-2) 
for a positive continuous function f: [a,b] X [c,d] -+ R. Let 
t0, • •• ,tn be a part ition of [a,b] and divide [a,bJ X [c,d] 
into n strips by means of the line segments {ti} X [c,dJ. 
If Ux is defined by gx(Y) = f(x,y), then the area of the region 
under the graph off and above (x} X [c,d] is 

d d f (Jx = f J(x,y)dy. 
C C 

The volume of the region under the graph of f and 
above [ti-1,ti] X [c,d] is therefore approximately equal to 
(ti - ti_i) · J:J(x,y)dy, for any x E [ti-1,ti]. Thus 

n 

! 1=1 I 1 
(a,bl X (c,dl i = 1 [t, -1,'1:) X lc,dJ 

1s approximately ~f-1 (ti - ti- 1) · f ~J(xi,y)dy, with Xi m 

graph or .f 

/ 

/ 
(' / / 

/ / / / 
/ / / / 

/ / / / 
Cl f, I X ,, b 

FIGURE 3-2 
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[t;_1,t;]. On the other hand, sums similar to these appear in 
the definition of f!<f~J(x,y)dy)dx. Thus, if h is defined by 
h(x) = f~g., = f~J(x,y)dy, it is reasonable to hope that h is 
integrable on [a,b] and that 

b b d J f = f h = f (f f(x,y)dy) dx. 
(a,b] X (c,d) c, a c 

This will indeed turn out to be true when f is continuous, but 
in the general case difficulties arise. Suppose, for example, 
that the set of discontinuities of f is I xo I X [c,d] for some 
Xo E [a,b]. Then f is integrable on [a,b] X [c,d] but h(xo) = 
f~J(x 0,y)dy may not even be defined. The statement of 
Fubini's theorem therefore looks a little strange, and will be 
followed by remarks about various special cases where simpler 
statements are possible. 

We will need one bit of terminology. If /: A -+ R is a 
bounded function on a closed rectangle, then, whether or not 
f is integrable, the least upper bound of all lower sums, and 
the greatest lower bound of all upper sums, both exist. They 
are called the lower and upper integrals of f on A, and 
denoted 

and VJ f, 
A 

respectively. 

3-10 Theorem (Fubini's Theorem), Let A C Rn and 
B C Rm be closed rectangles, and letf: A X B-+ R be integrable. 
For x E A let g.,: B-+ R be defined by g.,(y) = f(x,y) and let 

.C(x) = L j g., = L j f(x,y)dy, 

'U(x) = U j g., = U j f(x,y)dy. 

Then .C and 'U are integrable on A and 

J f = f .C = f ( L / f(x,y)dy) dx, 
AXB A A B 

J f = f 'U = f (vjf<x,y)dy)dx. 
AXB A A 



I nlegration 59 

(The integrals on the right side are called iterated integrals 

for f.) 

Proof. Let PA be a partition of A and PB a partition of B. 
Together they give a partition P of A X B for which any 
subrectangle S is of the form SA X SB, where SA is a sub-
rectangle of the partition PA, and SB is a subrectangle of the 
partition PB· Thus 

L(J,P) = l ms(!) · v(S) = l ms,i.xs8 (f) · v(SA X SB) 
s s .... s. 

= l (L ms,i.xss(f) · v(SB)) · v(SA). 
s ... s. 

Now, if x E SA, then clearly msAxs 8 (J) < ms8 (g,,). Conse-
quently, for x E SA we have 

l msAxsaCf) · v(SB) < l msa(ux) · v(SB) < L / Ux = .C(x). 
Ss Ss B 

Therefore 

l (L msAxsa(f) · v(SB)) · v(SA) < L(.C,P A). 
SA BB 

We thus obtain 

L(f,P) < L(.C,P A) < U(.C,P A) < U('U,P A) < U(f,P), 

where the proof of the last inequality is entirely analogous 
to the proof of the first. Since f is integrable, sup{L(J,P) I -
inf! U(/,P) l = f AxBf. Hence 

sup{L(.C,P,A)l = inf{U(.C,PA)l = fAxBf. 

In other words, .C is integrable on A and f AxBf = f A.C, The 
assertioR for 'U follows similarly fron1 the inequalities 

L(f,P) < L(.C,P A) < L('U,P A) < U('U,P A) < U(f,P). I 

Remarks. 1. A similar proof shows that 

J f = j ( L f f(x,y)dx) dy = j ( uj f(x,y)dx) dy. 
AXB A 
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These integrals are called iterated integrals for J in the reverse 
order from those of the theorem. As several problems show, 
the possibility of interchanging the orders of iterated integrals 
has many consequences. 

2. In practice it is often the case that each g,, is integrable, 
so that f AxBf = f A (f Bf(x,y)dy)dx. This certainly occurs 
if f is continuous. 

3. The worst irregularity commonly encountered is that g,, 
is not integrable for a finite number of x E A. In this case 
.C(x) = f Bf(x,y)dy for all but these finitely many x. Since 
f A.C remains unchanged if .C is redefined at a finite number of 
points, we can still write f AxB! = f A(f Bf(x,y)dy)dx, pro-
vided that f Bf(x,y)dy is defined arbitrarily, say as 0, when it 
does not exist. 

4. There are cases when this will not work and Theorem 3-10 
must be used as stated. Let/: [0,1] X (0,1] - R be defined 
by 

f(x,y) = 
1 
1 
1 - 1/q 

if x is irrational, 
if x is rational and y is irrational, 
if x = p/q in lowest terms and y is 
rational. 

Then/is integrable and f 10.11x10.11 f = 1. Now ftJ(x,y)dy = 1 
if x is irrational, and does not exist if x is rational. There-
fore h is not integrable if h(x) = f tJ(x,y)dy is set equal to 0 
when the integral does not exist. 

5. If A = [a1,b1] X · · · X [an,bn] and /: A - R is suf-
ficiently nice, we can apply Fubini's theorem repeatedly to 
obtain 

6. If CC A X B, Fubini's theorem can be used to evaluate 
f cf, since this is by definition J AXB xcf, Suppose, for exam-
ple, that 

C = [-1,1] X [-1,1] - l(x,y): l(x,y)I < 1}. 
Then 
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Now 

xc(x,y) 

Therefore 

- { 0

1 if y > -v 1 - x2 or y < - v1=-;2, 
otherwise. 
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JI 1-~ fl 
_ 1 f(x,y) · xc(x,y)dy = _ 1 f(x,y)dy + v'l -x' f(x,y)dy. 

In general, 
express10ns 
for x EA. 

if C C A X B, the main difficulty in deriving 
for J cf will be determining C n (Ix I X B) 
If C n (A X !YI) for y EB is easier to deter-

mine, one should use the iterated integral 

Problems. 3-23. Let C C A X B be a set of content 0. Let 
A' CA be the set of all x EA such that !YE B: (x,y) EC} is 
not of content 0. Show that A' is a set of measure 0. Hint: xc is 
integrable and f AXB XC = f A'll = f A.C, so f A'U. - .C - 0. 

3-24, Let CC [0,1] X [0,1] be the union of all [p/ql X [O, I/qi, where 
p/q is a rational number in [0,1] written in lowest terms. Use C 
to show that the word "measure" in Problem 3-23 cannot be 
replaced by "content." 

3-25. Use induction on n to show that [a1,bil X · · · X [an,bnl is not a 
set of measure O (or content 0) if Oi < bi for each i. 

3-26. Let f: [a,b] -+ R be integrable and non-negative and let At = 
I (x,y): a < x < b and O ~ y < f(x) j. Show that At is Jordan-
measurable and has area _f~. 

3-27. If f: [a,b] X [a,b]-+ R is continuous, show that 

Hint: Compute f cf in two different ways for a suitable set 
(' C [a,b] X [a,b]. 

3-28. • Use Fuhini's theorem to givP. an easy proof that D1,d = D2.tf 
if these are continuous. Hint: If D1.d(a) - D2.tf(a) > O, 
there is a rectangle A containing a such that D1.d - D2.tf > 
0 on A. 

3-29. Use Fubini's theorem to derive an expression for the volume of 
a set of R3 obtained by revolving a Jordan-measurable set in the 
yz-plane about the z-axis. 
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3-30. Let C be the set in Problem 1-17. Show that 

ho.11 (/io.11 xc(x,y)dx) dy = ho.11 (/io.11 xc(y,x)dy) dx - 0 

but that f co.1ix10.1J xc does not exist. 
3-31, If A = (a1,b1) X · · X [an,bnl and /: A -> R is continuous, 

define F: A-> R by 

F(x) = ( f. 
Jia,,:z:1] X · · · X [a,,:z:•J 

What is D;F(x), for x in the interior of A? 
3-32, • Let/: [a,b) X (c,d)-> R be continuous and suppose D2f is con-

tinuous. Define F(y) "' f~f(x,y)dx. Prove Leibnilz's rule: F'(y) 
= f~D2f(x,y)dx. Hint: F(y) = f~f(x,y)dx = f~<f~D2f(x,y)dy + 

f(x,c))dx. (The proof will show that continuity of D2f may be 
replaced by considerably weaker hypotheses.) 

3-33. If/: [a,b) X [c,d]-+ R is continuous and D2f is continuous, define 
F(x,y) = f!f(t,y)dt. 

(a) Find D1F and D~. 
(b) If G(x) = f :<z> f(t,x)dt, find G'(x). 

3.34, • Let g1,g2: R2 -+ R be continuously differentiable and suppose 
D1g2 = Dig1. As in Problem 2-21, let 

f(x,y) - j/ g1(t,O)dt + j/ g2(x,t)dt. 

Show that Dif(x,y) = g1(x,y). 
3-35. • (a) Let g: Rn-+ R" be a linear transformation of one of the fol-

3-36. 

lowing types: 

{ 
g(e;) = ei 
g(e;) = ae; 

{ 
g(e;) = e; i ~ j 
g(e;) = e; + et 

{ 

g(ek) = ek 
g(e,) = e; 
g(e;) = e;. 

k ~ i, j 

If U is a rectangle, show that the volume of g(U) is ldet gl · v(U). 
(b) Prove that ldet gl · v(U) is the volume of g(U) for any linear 

transformation g: R"-+ Rn. Hint: If det g ~ 0, then g is the 
composition of linear transformations of the type considered in (a). 
(Cavalieri's principle). Let ,1 and B be Jordan-measurable sub-
sets of 83. Let Ac= l(x,y): (x,y,c) E Al and define Be similarly. 
Suppose each Ac and Be are Jordan-measurable and have the same 
area. Show that A and B have the same volume. 
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PARTITIONS OF UNITY 

In this section we introduce a tool of extreme irnportance in 
the theory of integration. 

3-11 Theorem. Let A C Rn and let O be an open cover of A. 
Then there is a collection 4> of C"' functions ,p defined in an open 
set containing A, with the following properties: 

(1) For each x E A we have O < rp(x) < 1. 
(2) For each x E A there is an open set V containing x such that 

all but finitely many ,p E <I> are O on V. 
(3) For each x E A we have 2:9'E<1>'P(x) = 1 (by (2) for each x 

this sum is finite in some open set containing x). 
( 4) For each ,p E <I> there is an open set U in O such that ,p = 0 

outside of some closed set contained in U. 

(A collection <I> satisfying (1) to (3) is called a C"' partition of 
unity for A. If <I> also satisfies (4), it is said to be sub-
ordinate to the cover 0. In this chapter we will only use 
continuity of the functions rp.) 

Proof. Case 1. A is compact. 
Then a finite number U 1, ... , Un of open sets in 0 cover A. 

It clearly suffices to construct a partition of unity subordinate 
to the cover I U 1, • • • , Un}. We will first find compact 
sets Di C U; whose interiors cover A. The sets D; are con-
structed inductively as follows. Suppose that D 1, ••• ,D,. 
have been chosen so that !interior D 1, ••• , interior D,., 
Uk+I, ... ,u.1 covers A. Let 

Ck+1 = A - (int D, U · · · U int Dk U Uk+2 U · · · U U.). 

Then Ck+1 C Uk+1 is compact. Hence (Problem 1-22) we can 
find a compact set Dk+t such that 

Ck+1 C interior Dk+1 and Dk+t C Uk+I· 

Having constructed the sets D 1, ••• ,Dn, let ,t,; be a non-
negative C"' function which is positive on Di and O outside of 
some closed set contained in U; (Problem 2-26). Since 
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I D1, ,Dn l covers A, we have f1(x) + · · · + lfn(x) > 0 
for all x in some open set U containing A. On U we can define 

,p·(x) = ,Yi(X) 
' 'fl (x) + · · · + 'fn(x) 

If f: U-+ [0,1) is a (; function which is 1 on A and O outside 
of some closed set in U, then <I> = { f · <P1, ••• ,f · <Pn I is the 
desired partition of unity. 

Case 2. A = A I U A 2 U A a U · · · , where each A; is 
compact and Ai C interior Ai+I· 

For each i let 0; consist of all U I'\ (interior A;+ 1 - A;_2) 

for U in 0. Then 0i is an open cover of the compact set 
B; = A, - interior Ai-I· By case 1 there is a partition of unity 
<I>, for Bi, subordinate to 0i. For each x E A the sum 

u(x) = l ,p(x) 
,pE$i, all i 

is a finite sum in some open set containing x, since if x E A; we 
have ,p(x) = 0 for <P E <I>; with j > i + 2. For each <P in 
each <l>i, define ,p'(x) = <P(x)/u(x). The collection of all <P' is 
the desired partition of unity. 

Case 3. A is open. 
Let A,= 

{x EA: lxl < i and distance from x to boundary A > 1/il, 

and apply case 2. 
Case 4. A is arbitrary. 
Let B be the union of all U in 0. By case 3 there is a par-

tition of unity for B; this is also a partition of unity for A. I 

An important consequence of condition (2) of the theorem 
should be noted. Let C C A be compact. For each x E C 
there is an open set Vx containing x such that only finitely 
many <P E <I> are not O on V x· Since C is compact, finitely 
many such Vx cover C. Thus only finitely many <P E <I> are 
not O on C. 

One important application of partitions of unity will illus-
trate their main role-piecing together results obtained locally. 
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An open cover e of an open set A C R" is admissible if 
each U E e is contained in A. If ~ is subordinate to e, 
f: A-+ R is bounded in some open set around each point of A, 
and (x: f is discontinuous at xi has measure 0, then each 
J A ,p · I fl exists. We define/ to be integrable (in the extended 
sense) if l;.,e<1>J A ,p · Iii converges (the proof of Theorem 3-11 
shows that the ,p's may be arranged in a sequence). This 
implies convergence of l;.,e"'IJ A ,p · fl, and hence absolute con-
vergence of 'l;.,e"'f A ,p · f, which we define to be f .4/. These 
definitions do not depend on e or~ (but see Problem 3-38). 

3-12 Theorem. 

(1) If '1r is another partition of unity, subordinate to an admis-
sible cover e' of A, then i;.,. E i' f A i/t · I JI al8o converges, and 

(2) If A and f are bounded, then f is integrable in the extended 
sense. 

(3) If A is Jordan-measurable and f is bounded, then this defini-
tion off A! agrees with the old one. 

Proof 

(1) Since ,p · f = 0 except on some compact set C, and there 
are only finitely many i/t which are non-zero on C, we can 
write 

This result, applied to Ill, shows the convergence of };.,e"' 
X.,.e.f A i/t · "'· Iii, and hence of X .. e~1 e-.lJ A i/t · ,p • fl. 
This absolute convergence justifies interchanging the order 
of summation in the above equation; the resulting double 
sum clearly equals i;,e•f A ,fl· f. Finally, this result 
applied to Ill proves convergence of X,e-.f A ,fl· lfl. 
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(2) If A is contained in the closed rectangle Band lf(x)I < M 
for x E A, and F C 4> is finite, then 

since l:f'eF <P < 1 on A. 
(3) If e > 0 there is (Problem 3-22) a compact Jordan-meas-

urable C C A such that f A-c 1 < e. There are only 
finitely many <PE 4> which are non-zero on C. If F C 4> 
is any finite collection which includes these, and f A/ has 
its old meaning, then 

Problems. 3-37. (a) Suppose that/: (0,1)-+ R is a non-negative 
continuous function. Show that f (0,1)/ exists if and only if 
lirn f ~-'! exists. 
e-o 

(b) Let A" - [l - l/2)t, 1-1/2"+11. Supposethat/:(0,1)-+R 
satisfies f A./ = ( -1)" /n and /(z) = 0 for z e any A,.. Show that 
f (O,li/ does not exist, but lim f (e,l-e) / = log 2. 

e-o 
3-38. Let A,. be a closed set contained in (n, n + 1). Suppose that 

/: R-+ R satisfies f A./ = ( - lr /n and f - 0 for z e any A,,. 
Find two partitions of unity 4> and 'Ir such that l:f' e <1>/ R ,p ·/and 
l:11, e •fa ,/, · / converge absolutely to different values. 

CHANGE OF VARIABLE 

If g: [a,b]-+ R is continuously differentiable and f: R-+ R 
is continuous, then, as is well known, 

g(b) b 

J f = J (! 0 g) 'g'. 
g(a) a 
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The proof is very simple: if F' = f, then (F O g)' = (f O g) · g'; 
thus the left side is F(g(b)) - F(g(a)), while the right side is 
F o g(b) - F o g(a) = F(g(b)) - F(g(a)). 

We leave it to the reader to show that if g is 1-1, then the 
above formula can be written 

J f = f f O g · lu'I. 
g((a,b)) (a,b) 

(Consider separately the cases where g is increasing and where 
g is decreasing.) The generalization of this formula to higher 
dimensions is by no means so trivial. 

3-13 Theorem. Let A CR" be an open set and g: A-+ R" 
a 1-1, continuously differentiable function such that det g'(x) 
~ 0 for all x E A. If f: g(A) -+ R is integrable, then 

J f = J (f O g)ldet u'I. 
g(A) A 

Proof. We begin with some important reductions. 

1. Suppose there is an admissible cover O for A such that 
for each U E O and any integrable f we have 

J f = [ (f o g)jdet g'j. 
g( U) 

Then the theorem is true for all of A. (Since g is auto-
matically 1-1 in an open set around each point, it is not sur-
prising that this is the only part of the proof using the fact 
that g is 1-1 on all of A.) 

Proof of (1 ). The collection of all g( U) is an open cover of 
g(A). Let If> be a partition of unity subordinate to this cover. 
If ,p = 0 outside of g( U), then, since g is 1-1, we have (,p · f) o g 
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=- O outside of U. Therefore the equation 

f "'· 1 - / r<"' · n ° ulldet u'I. ,(ui 
can be written 

f "'· f = j [('P · f) 0 ulldet g'I. 
g(A) 

Hence 

f 1 = l f "'· 1 = l j r<"' ·no ulldet g'I 
g(A) <PE <1> g(Al <PE <t> 

= l f (,po g) (! o g)jdet u'I 
<i>E<t> A 

= f (! 0 u)ldet g'j. 
A 

Remark. The theorem also follows from the assumption 
that 

If• ,-!vi (/ 0 u)ldetg'I 

for Vin some admissible cover of g(A). This follows from (1) 
applied to g-1. 

2. It suffices to prove the theorem for the function f = 1. 
Proof of (2). If the theorem holds for f = 1, it holds for 

constant functions. Let V be a rectangle in g(A) and P a par-
tition of V. For each subrectangle S of P let/ s be the con-
stant function ms(/). Then 

L(f,P} = l ms(/) · v(S) • l f Is 
s s Int s 

= l J (Is O u)ldet g' < l f (! 0 u)ldet u'I 
S ,-•(int S) S ,-•(int S) 

< f (/og)ldetg'j. 
,-•(V) 

Since f vi is the least upper bound of all L(f,P), this proves 
that f vi < f 11-•< v, (! 0 g) I det u'I. A similar argument, letting 
f s = Ms(/), shows that f vi> f ,-•<vi(! o g)jdet u'I. The 
result now follows from the above Remark. 
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3. If the theorem is true for g: A-+ Rn and for h: B-+ Rn, 
where g(A) CB, then it is true for h O g: A-+ Rn. 

Proof of (3). 

f f · f <f O h)ldet h'I J f = 
li•g(A) h(g(A)) g(A) 

= j [(f oh) o gJ · [!det h'I o gJ · ldet g'j 

= j f o <ho g)ldet <ho g)'I. 

4. The theorem is true if g is a linear transformation. 
Proof of (4). By (1) and (2) it suffices to show for any open 

rectangle U that 

J 1 = / !det g'j. 
g(U) 

This is Problem 3-35. 

Observations (3) and (4) together show that we may assume 
for any particular a E A that g'(a) is the identity matrix: in 
fact, if Tis the linear transformation Dg(a), then (r-1 o g)'(a) 
= I; since the theorem is true for T, if it is true for r- 1 o g it 
will be true for g. 

We are now prepared to give the proof, which preceeds by 
induction on n. The remarks before the statement of the 
theorem, together with (1) and (2), prove the case n = 1. 
Assuming the theorem in dimension n - 1, we prove it in 
dimension n. For each a E A we need only find an open set 
U with a E U C A for which the theorem is true. Moreover 
we may assume that g'(a) = I. 

Define h: A-+ Rn by h(x) = (g1(x), ... ,gn-1(x),xn). 
Then h'(a) = I. Hence in some open U' with a E U' CA, 
the function h is 1-1 and det h'(x) #- 0. We can thus 
define k: h(U')-+ Rn by k(x) = (x1, ... ,xn-1,gn(h-l(x))) 
and g = k oh. We have thus expressed gas the composition 
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of two maps, each of which changes fewer than n coordinates 
(Figure 3-3). 

We must attend to a few details to ensure that k is a function 
of the proper sort. Since 

(gn o h- 1)'(h(a)} = (gn)'(a) · [h'(a))- 1 = (g")'(a), 

we have Dn(g" o h- 1)(h(a)) = Dngn(a) = 1, so that k'(h(a)) 
= I. Thus in some open set V with h(a) E V C h(U'), the 
function k is 1-1 and det k'(x) ¢ 0. Letting U = k- 1(V) 
we now have g=koh, where h: U-tRn and k: V-tR" 
and h(U) C V. By (3) it suffices to prove the theorem for h 
and k. We give the proof for h; the proof for k is similar 
and easier. 

Let W C U be a rectangle of the form D X [a,.,b,.J, where 
D is a rectangle in nn-t. By Fubini's theorem 

Let hz;•: D-t R"- 1 be defined by hz•(x 1
, ••• ,x"- 1

) = 
(g 1(x1, ... ,x"), . ,gn-1(x1, ... ,xn)). Then each hz;• 
is clearly 1-1 and 

det (hz·)'(x', .. ,xn-l) = det h'(x 1, ••• ,x") ¢ 0. 

Moreover 

/ l dx 1 • • • dx"- 1 = f 1 d;c 1 
• • • dx"- 1

• 

A(D X (z• I) A,•(l>) 

Applying the theorem in the case n - 1 therefore gives 

/ 1 = / ( / ldx 1 
• • • dx"- 1)dx" 

A( W) [a.,b,] h,•(D) - f (J ldet(hzft)'(x 1, ••• ,x"-1)!dx 1• • • dxn- 1
) dx" 

[a,,b,J D - f (J ldet h'(x1, ... ,x")ldx 1 
• • • dx"- 1

) dx" 
[o,,b,) D 

= f ldet h'l. I 
w 

The condition det g'(x) ¢ 0 may be eliminated from the 
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hypotheses of Theorem 3-13 by using the following theorem, 
which often plays an unexpected role. 

3-14. Theorem (Sard's Theorem). Let g: A - R" be con-
tinuously differentiahle, where A C R" is open, and let B ... 
{z EA: det g'(x) = O}. Then g(B) has measure 0. 

Proof. Let U C A be a closed rectangle such that all sides 
of U have length l, say. Let e > 0. If N is sufficiently large 
and U is divided into N" rectangles, with sides of length l/N, 
then for each of these rectangles S, if x E S we have 

IDg(x)(y - x) - g(y) - g(x)I < elz - YI < e Vn (l/N) 

for all y E S. If S intersects B we can choose z E S r'I B; 
since det g'(x) = 0, the set {Dg(x)(y - z): y E SI lies in an 
(n - 1)-dimensional subspace V of R". Therefore the set 
{g(y) - g(x): y E SI lies within e Vn (l/N) of V, so that 
{g(y): y E SI lies within e Vn (l/N) of the (n - 1)-plane 
V + g(x). On the other hand, by Lemma 2-10 there is a 
number M such that 

lu(x) - g(y)I < Mix - YI < M Vn (l/N). 

Thus, if S intersects B, the set {g(y): y ES} is contained in 
a cylinder whose height is < 2e Vn (l/N) and whose base is an 
(n - 1)-dimensional sphere of radius <M Vn (l/N). This 
cylinder has volume <C(l/N)"e for some constant C. There 
are at most N" such rectangles S, so g( U r'I B) lies in a set of 
volume < C(l/N)" · e · N" = Cl" · e. Since this is true for 
all e > 0, the set g ( U r'I B) has measure 0. Since (Problem 
3-13) we can cover all of A with a sequence of such rectangles 
U, the desired result follows from Theorem 3-4. I 

Theorem 3-14 is actually only the easy part of Bard's 
Theorem. The statement and proof of the deeper result will 
be found in [17], page 47. 

Problems. 3-39. Use Theorem 3-14 to prove Theorem 3-13 without 
the assumption det g'(z) ,' 0. 
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3-40. If g: an-+ an and det g'(x) ~ 0, prove that in some open set 
containing x we can write g = T • gn • · · • • g1, where g; is of 
the form g;(x) = (x 1, ••• ,f;(x), .•. ,x"), and T is a linear 
transformation. Show that we can write g - g,. • · • · 0 g1 if 
and only if g'(x) is a diagonal matrix. 

3-41. Define f: Ir: r > OI X (0,2,r)-+ a2 by f(r,8) = (r cos 9, r sin 8). 
(a) Show that f is 1-1, compute f'(r,8), and show that 

detf'(r,8) ~ 0 for all (r,8). Show that/( Ir: r > O} X (0,2.-)) is 
the set A of Problem 2-23. 

(b) If P = 1- 1, show that P(x,y) = (r(x,y),B(x,y)), where 

r(x,y) = V x2 + Y2, 
arctan y/x 
,,. + arctan y/x 

B(x,y) = 2,.. + arctan y/x 
,r/2 
3,r/2 

X > 0, y > 0, 
X < 0, 
X > 0, y < 0, 
X = 0, y > 0, 
X = 0, y < 0. 

( Here arctan denotes the inverse of the function tan: { - ,.. /2,,r /2) 
-+ a.) Find P'(x,y). The function P is called the polar coor-
dinate system on A. 

( c) Let C C A be the region between the circles of radii r1 and 
r2 and the half-lines through O which make angles of 81 and 82 with 
the x-axis. If h: C-+ R is integrable and h(x,y) = g(r(x,y),B(x,y)), 
show that 

r2 f2 J h = J J rg(r,8)d8 dr. 
C r1 f1 

If B, = l(x,y): x2 + y2 < r 2 1, show that 
r 2,. J h = J J rg(r,8)d8 dr. 

B, 0 0 

(d) If C, - [ -r,r] X [ -r,r], show that 

and 

J e-<z'+y') dx dy = ,r( 1 - e-•') 
B, 

{e) Prove that 

lim 
[ 

e-<z'+y') dx dy = lim J e-<z'+y') dx dy , ..... , C, 
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and conclude that 

"A mathematician is one to whom that is as obvious as that twice 
two makes four is to you. Liouville was a mathematician." 

-LORD KELVIN 
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I nlegralion on Chains 

ALGEBRAIC PRELIMINARIES 

If V is a vector space (over R), we will denote the k-fold 
product V X · · · X V by Vk. A function T: yk---> R is 
called multilinear if for each i with 1 < i < k we have 

T(v1, ... ,v; + v;', ,vk) = T(v1, . . . ,v;, . . . ,vk) 
+ T(v1, ... ,v;', ... ,vk), 

T(v1, ... ,av;, ,vk) = aT(v1, ... ,v;, ... ,vk). 

A multilinear function T: Vk---> R is called a k-tensor on V 
and the set of all k-tensors, denoted ::ik(V), becomes a vector 
space (over R) if for S,T E Jk(V) and a E R we define 

(S + T)(v1, ... ,vk) = S(v1, ... ,vk) + T(v1, ... ,vk), 
(aS)(v1, ... ,vk) = a · S(v1, ... ,vk), 

There is also an operation connecting the various spaces Jk(V). 
If SE Jk(V) and TE J1(V), we define the tensor product 
S ® TE ;ik+1(V) by 

S ® T(v1, ... ,vk,vk+1, ... ,vk+1) 
= S(v1, . ,vk) · T(vk+1, ... ,vk+1). 

75 



76 Calculua on Mani/olds 

Note that the order of the factors Sand Tis crucial here since 
S ® T and T ® S are far from equal. The following prop-
erties of ® are left as easy exercises for the reader. 

(S1 + S2) ® T = S1 ® T + S2 ® T, 
S ® (T1 + T2) = S ® T1 + S ® T2, 

(aS) ® T = S ® (aT) = a(S ® T), 
(8 ® T) ® U = S ® (T ® U). 

Both (S ® T) ® U and S ® ( T ® U) are usually denoted 
simply S ® T ® U; higher-order products T1 ® · · · ® Tr 
are defined similarly. 

The reader has probably already noticed that :J1{V) is just 
the dual space v•. The operation ® allows us to express the 
other vector spaces ::sk(V) in terms of ::S1(V). 

4-1 Theorem, Let t11, ••• ,v,. be a basis for V, and let 
r,o 1, •.• ,r,o,. be the dual basis, r,o;(v;) = 8;;, Then the set of all 
k-fold tensor products 

<Pi, ® . . . ® <Pik 

is a basis for ::i"(V), which therefore has dimension n". 

Proof. Note that 

<Pi, ® · · · ® <Pik(v;., . ,v;.) 
= 8i,,;, . 

= { ~ 
. . . . 8i •. ;. 
if i1 = i1, , , , ,jA: = i,., 
otherwise. 

If w1, ... ,wk are k vectors with w; = ~7_1a;;t1; and Tis in 
::i"( V), then 

" 
T( W1, , , ~ a1 · · '-' ,11 

ji, • .. ,jk = 1 
· ai.,;.T(v;., 

n 

= l T(v;., • • • ,v;.) · <Pi, ® · · · ® <Pik( w1, . . . ,w1,). 
i1, •.. ,ik-1 

Thus T = ~i .... ,i•-1 T(v,., •.. ,vi.) · <Pi, ® · · · ® <Pi•· 

Consequently the <Pi, ® · · · ® ,p;. span ::i"(V). 
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Suppose now that there are numbers a;,, ... ,;, such that 

" l a;,, ... ,i, • <Pi, ® · · · ® <Pi, = 0. 
i11 ••• ,ik =-1 

Applying both sides of this equation to (v;., . 
a;,. .... ;, = 0. Thus the <Pi, ® · · · ® <Pi, 
independent. I 

. . ,v ;,) yields 
are linearly 

One important construction, familiar for the case of dual 
spaces, can also be made for tensors. If f: V _. W is a linear 
transformation, a linear transformation f*: 3k(W)-. :J"'(V) 
is defined by 

rr(v1, ... ,VA:) = T(f(v1), • , . J(v.1,)) 

for T E :J"'(W) and v1, ... ,v.1, E V. It is easy to verify 
that f*(S ® T) = rs ® rr. 

The reader is already familiar with certain tensors, aside 
from members of v•. The first example is the inner product 
(,) E 32(R"). On the grounds that any good mathematical 
commodity is worth generalizing, we define an inner product 
on V to be a 2-tensor T such that T is symmetric, that is 
T(v,w) = T(w,v) for v,w E V and such that T is positive-
definite, that is, T(v,v) > 0 if v ~ 0. We distinguish (,) as 
the usual inner product on R". The following theorem 
shows that our generalization is not too general. 

4-2 Theorem. If T is an inner product on V, there is a 
basis vi, ... ,v,. for V such that T(v;,v;) = a;;. (Such a 
basis is called orthonormal with respect to T.) Consequently 
there is an isomorphism f: R"-. V such that· T(f(x)J(y)) -
(x,y) for x,y E R". In other words rr = (,). 

Proof. Let w1, . . ,w,. be any basis for V. Define 

etc. 



7B Calculus on Manifolds 

It is easy to check that T(w/,w;') = 0 if i "F j and w/ "F O so 
that T(w/,w/) > 0. Now define Vi = w/ /VT(w/,w/). The 
isomorphism f may be defined by f(ei) = Vi, I 

Despite its importance, the inner product plays a far lesser 
role than another familiar, seemingly ubiquitous function, 
the tensor det E :J"(R"). In attempting to generalize this 
function, we recall that interchanging two rows of a matrix 
changes the sign of its determinant. This suggests the fol-
lowing definition. A k-tensor w E :il:(V) is called alternating 
if 

= -w(v1, . ,v;, ... ,vi, ... ,v1:) 
for all vi, ... ,v1: E V. 

(In this equation Vi and v; are interchanged and all other v's 
are left fixed.) The set of all alternating k-tensors is clearly 
a subspace Ak(V) of ::!1:(V). Since it requires considerable 
work to produce the determinant, it is not surprising that 
alternating k-tensors are difficult to write down. There is, 
however, a uniform way of expressing all of them. Recall 
that the sign of a permutation 11, denoted sgn 11, is + 1 if " is 
even and -1 if" is odd. If T E ::ik(V), we define Alt(T) by 

Alt(T)(v 1, ..• ,v1:) = J1 L sgn IT· T(v,, 0 i, ... ,v,c1:i), 
,, E Sk 

where S1: is the set of all permutations of the numbers 1 to k. 

4-3 Theorem 

(1) If TE ::11:(V), then Alt(T) E A1:(V). 
(2) If w E A1:(V), then Alt(w) = w. 
(3) If TE ::ik(V), then Alt(Alt(T)) = Alt(T). 

Proof 

(1) Let (i,j) be the permutation that interchanges i and j and 
leaves all other numbers fixed. If IT E S1:, let IT

1 = 
11 • (i,j). Then 
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Alt(T)(v1, ... ,v;, ... ,v;, ... ,vk) 

= ..!_ ~ sgn u · T(v,c 1>, •.. ,v,c;J, ... ,V,(i), . , , ,V,(k>) 
k! 1-' 

,ESk 

= ..!_ ~ sgn u · T(v,, 0 >, ... ,v,'(i), ... ,V,•c;>, ... ,v,'(k)) 
k! 1-' 

•Es, 

= ]_ ~ -sgn u' · T(v,'(1), ... ,v•'(k>) 
k! 1-' 

•'ES• 
= -Alt(T)(v1, ... ,vk), 

(2) If w E Ak(V), and u = (i,j), then w(v,o>, .. : ,V,(kl) = 
sgn u · w(v,, ... ,vk), Since every u is a product of per-
mutations of the form (i,j), this equation holds of all u. 
Therefore 

Alt(w)(v1, ... ,vk) = :, L sgn u · w(v,ol, ... ,v,(k)) 
•ES, 

= ]_ ~ sgn u · sgn u · w(v1, ... ,vk) 
k ! 1-' 

"E S1r 

= w(v1, ... ,vk), 

(3) follows immediately from (I) and (2). I 

To determine the dimensions of Ak(V), we would like a 
theorem analogous to Theorem 4-1. Of course, if w E Ak(V) 
and T/ E A1(V), then w ® 1/ is usually not in Ak+'(V). We 
will therefore define a new product, the wedge product 
w I\ 11 E Ak+ 1(V) by 

(k + l) ! 
w I\ 11 = k! l! Alt(w ® 71). 

(The reason for the strange coefficient will appear later.) The 
following properties of I\ are left as an exercise for the reader: 

(w1 + w2) I\ 1/ = w1 I\ 1/ + w2 I\ 1/, 

W I\ (111 + 112) = W I\ 1/1 + w I\ 1/2, 
aw I\ 1/ = w I\ a71 = a(w I\ 71), 
w I\ 1/ = ( -1 / 111 I\ w, 

f*(w I\ 11) = f*(w) I\ f*(71). 
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The equation (w /\ 11) /\ 8 = w I\ (11 /\ 8) is true but 
requires more work. 

4-4 Theorem 

(1) If S E 31:(V) and TE :J1(V) and Alt(S) = O, then 

Alt(S ® T) = Alt(T ® S) = 0. 

(2) Alt(Alt(w ® 11) ® 8) = Alt(w ® 11 ® 8) 
= Alt(w ® Alt(11 ® 8)). 

(3) If w E A1:(V), 11 E A1(V), and 8 E A"'(V), then 

( w I\ 11) I\ 8 = w I\ ( II /\ 8) 
(k+l+m)I 

= kl ll ml Alt(w ® 11 ® 9), 

Proof 

(1) 

(k + l) ! Alt(S ® T)(v1, • • • ,V1:+1> 

= l sgn u · S(v.0 i, ... ,v.<1:i) · T(v.c1:+ll• ... ,v.c1:+n>· 
•EB>+• 

If G C S1:+1 consists of all u which leave k + 1, 
k + l fixed, then 

. . . ' 

l sgn u · S(v,c1i, ... ,v.c1:i) · T(v.c1:+ll• ... ,v,c1:+o) 
•EG 
= [ l sgn u' · S(v.•c1i, ... ,v•'(k))] · T(v.1:+1, ... ,v.1:+1) 

, ES• 

= 0. 

Suppose now that u0 fl. G. Let G · uo = lu · uo: u E G} 
and let V,o(l) 1 ••• ,Voo(k+ll = W1, , , , ,Wk+l· Then 

) sgn O'' S(Vo(l), , •. ,Vo(k)) • T(Vo(k+ll• , , , 1Vo(k+I)) 

• E'a·"• 
= [ sgn uo · l sgn u' · S(w.•oi, .. ,w,c1,i) J 

, EG 

= 0. 
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Notice that G n G · uo = f2J. In fact, if u E G n G · uo, 
then u = u' · u0 for some u' E G and uo = u · (u')- 1 E G, 
a contradiction. We can then continue in this way, 
breaking Sk+l up into disjoint subsets; the sum over each 
subset is 0, so that the sum over Sk+l is 0. The relation 
Alt(T ® S) = 0 is proved similarly. 

(2) We have 

Alt(Alt(11 ® 8) - 11 ® 8) = Alt(11 ® 8) - Alt( 11 ® 8) = 0. 

Hence by (1) we have 

0 = Alt(w ® [Alt(11 ® 8) - 11 ® 81) 
= Alt(w ® Alt(11 ® 8)) - Alt(w ® 11 ® 8). 

The other equality is proved similarly. 

(k+l+m)! 
(3) (w /\ 11) /\ 8 = (k + l) ! m ! Alt((w /\ 77) ® 8) 

(k + l + m) ! (k + l) ! 
= (k + l)! m! k! l! Alt(w ® 77 ® 8). 

The other equality is proved similarly. I 

Naturally w /\ (11 /\ 8) and (w /\ 11) /\ 8 are both denoted 
simply w /\ 11 /\ 8, and higher-order products w1 /\ · · • /\ w, 
are defined similarly. If vi, ... ,vn is a basis for V and 
'Pt, ... ,'f'n is the dual basis, a basis for Ak(V) can now be 
constructed quite easily. 

4-5 Theorem. The set of all 

'Pi, /\ . . . /\ 'Pit 1 < i1 < i2 < · · · < ik < n 

is a basis for A k( V), which there! ore has dimension 

(n) n! 
k = k!(n - k)!. 

Proof. If w E A k ( V) C ;ik ( V), then we can write 

"' = a . . ,,, . '°' . . . '°' "' . it, ... ,u ru 'CJ/ 'OI u• 
i1, .. , ,ik 
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Thus 

w = Alt(w} = l a;,, ... ,;.Alt(,p;, ® · · · ® ,p;.). 
i11 • • • ,ik 

Since each Alt(<Pi, ® · · · ® ,p;.) is a constant times one of the 
,p;, /\ · • • /\ ,p;., these elements span Ak(V). Linear inde-
pendence is proved as in Theorem 4-1 (cf. Problem 4-1). I 

If V has dimension n, it follows from Theorem 4-5 that 
A"(V) has dimension 1. Thus all alternating n-tensors on V 
are multiples of any non-zero one. Since the determinant is 
an example of such a member of A "(R"), it is not surprising 
to find it in the following theorem. 

4-6 Theorem. Let vi, ... ,v,. be a basis for V, and let 
w E A"(V). If w; = "l;j= 1a;;V; are n vectors in V, then 

Proof. Define 17 E ::S"( R") by 

17((011, ... ,a1,.), ... ,(a,.1, . . ,a,.,.)) 
= w(°l;a1;v;, ... ,"l;a,.;v;). 

Clearly 17 E A "(R") so 17 = X · det for some X E R and X = 
17(e1, ... ,e,.) = w(vi, ... ,v,.). I 

Theorem 4-6 shows that a non-zero w E A"( V) splits the 
bases of V into two disjoint groups, those with w(v1, ... ,v,.) 
> 0 and those for which w(v1, ... ,v,.) < O; if V1, ••• ,v,. 
and w1, ••. ,w,. are two bases and A = (a;;) is defined by 
w; = °l;a;;v;, then v1, ..• ,v,. and w 1, ••• ,w,. are in the 
same group if and only if det A > 0. This criterion is inde-
pendent of wand can always be used to divide the bases of V 
into two disjoint groups. Either of these two groups is 
called an orientation for V. The orientation to which a 
basis v1, ••• ,v,. belongs is denoted [v 1, ••• ,v,.] and the 
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other orientation is denoted -fv1, ... ,vnJ, 
the usual orientation as [e1, ... ,en], 

B3 

In Rn we define 

The fact that dim A n(Rn) = l is probably not new to you, 
since det is often defined as the unique element w E A n(Rn) 
such that w(e 1, ••• ,en) = l. For a general vector space V 
there is no extra criterion of this sort to distinguish a particular 
w E A n(V). Suppose, however, that an inner product T for 
V is given. If v1, ••• ,vn and w 1, ... ,wn are two bases 
which are orthonormal with respect to T, and the matrix 
A = (a;;) is defined by Wi = 'l:.'J = tai;VJ, then 

n 

r,ii - T(w;,w;) = l a;ka;1T(vk,v1) 
k,I = 1 

n 

= l a;1ea;1e, 
.1:-1 

In other words, if AT denotes the transpose of the matrix A, 
then we have A · AT = I, so det A = + l. It follows from 
Theorem 4-6 that if w E A n(V) satisfies w(Vt, ... ,vn) = + l, 
then w(Wt, ... ,wn) = + l. If an orientation µ. for V has 
also been given, it follows that there is a unique w E An(V) 
such that w(vi, ... ,vn) = 1 whenever Vt, •.• ,vn is an 
orthonormal basis such that [v 1, ... ,vn] = µ.. This unique 
w is called the volume element of V, determined by the 
inner product T and orientation µ.. Note that det is the 
volume element of Rn determined by the usual inner product 
and usual orientation, and that ldet(v1, •.. ,vn) I is the vol-
ume of the parallelipiped spanned by the line segments from 
0 to each of Vt, ••• ,vn, 

We conclude this section with a construction which we will 
restrict to Rn. If Vi, . , , ,Vn-t E an and rp is defined by 

rp(w) = det 

Vn-l 
w 
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then ,p E A 1(Rn); therefore there is a unique z E Rn such that 

(w,z) = ,p(w) = det 

Vn-1 
w 

This z is denoted v 1 X · · · X Vn-l and called the cross 
product of v1, ••• ,v,._1• The following properties are 
immediate from the definition: 

V,cu X " " " X v,cn-1) = sgn <T "V1 X " " " X Vn-1, 

V1 X X av; X " " " X Vn-1 = a " (v1 X " X Vn-1), 

V1 X X (v; + v/) X · · · X v,._, 
Xv, X 
X vl X 

X Vn-1 

X Vn-1• 

It is uncommon in mathematics to have a "product" that 
depends on more than two factors. In the case of two vectors 
v,w E Ra, we obtain a more conventional looking product, 
v X w E Ra. For this reason it is sometimes maintained 
that the cross product can be defined only in R3

• 

Problems. ,.1. • Let e1, •.. ,e,. be the usual basis of R" and let 
'1'1, • • • ,,p,. be the dual basis. 

(a) Show that 'l'i, A · · · A ,pi• (e;., . . . ,e;.) - 1. What 
would the right side be if the factor (k + l)l/klll did not appear in 
the definition of /1.? 

(b) Show that ,p;, /1. • • • /1. ,p;. (v1, . • . ,vt) is the determinant 

of the k X k minor of obtained by selecting columns 

i1, ,it, 
4-2. If /: V--+ V is a linear transformation and dim V • n, then 

J•: A "(V)-+ A "(V) must be multiplication by some constant c. 
Show that c - det f. 
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4-3. If w E A"(V) is the volume element determined by T and,,., and 
w1, ... ,w,. E V, show that 

lw(w1, ... ,w,.)I - v' det (g;;), 

where g;; = T(w;,w;). Hint: If v1, ••• ,v,. is an orthonormal 
basis and w; "' ~j'..1 a;;v;, show that g;; • ~;_1 a;kaki· 

4-4. If w is the volume element of V determined by T and ,,., and 
/: RR--+ V is an isomorphism such that f*T = (,) and such that 
[/(e1), ... ,/(eR)J = ,,., show that f*w = det. 

4-5. If c: [0,1)--+ (RR)" is continuous and each (c 1(t), ... ,c"(I)) is 
a basis for R", show that [c1(0), ... ,c"(O)J - [c1(1), ... ,c"(l)J. 
Hint: Consider det • c. 

4-6. (a) If v E R2, what is v X? 
(b) If vi, ... ,v,._1 E R" are linearly independent; show 

that [v1, ... ,v,._1, v1 X · · · X Vn-11 is the usual orientation of 
R". 

4-7. Show that every non-zero w E A "(V) is the volume element 
determined by some inner product T and orientation ,,. for V. 

4-8. If w E A "(V) is a volume element, define a "cross product" 
v1 X · · · X Vn-1 in terms of w. 

4-9. • Deduce the following properties of the cross product in R 3: 

(a) e1 X e1 = 0 e, X e1 = -ea ea X e1 - e2 
e1 X et = e3 e2 X e2 - 0 ea X e2 - -e1 
e1 X ea - -e2 e2 X ea - e1 ea X ea - 0. 

(b) 11 X w = (v2w1 - 113w2)e1 
+ (v 3w 1 - 111w3)e2 

+ (111w2 - v2w1)ea. 
(c) Iv X wl = lvl · lwl · lsin 111, where 9 = L(v,w). 

(11 X w, v) = (11 X w, w) - 0. 
(d) (11, w X z) • (w, z X v) - (z, 11 X w) 

v X (w X z) - (v,z)w - (11,w)z 
(v X w) X z - (11,z)w - (w,z)v. 

(e) Iv X wl = v' (11,v) · (w,w) - (v,w)2. 
4-10. If w1, ... ,Wn-1 E R", show that 

lw1 X · · · X 1Dn-tl = v' det (g;;), 

where g;; "" (w;,w;). Hint: Apply Problem 4-3 to a certain 
(n - 1)-dimensional subspace of R". 

4-11. If T is an inner product on V, a linear transformation /: V--+ V 
is called self-adjoint (with respect to T) if T(x,f(y)) = T(f(x),y) 
for x,y E V. If vi, ... ,v,. is an orthonormal basis and A = (a;;) 
is the matrix of J with respect to this basis, show that a;; - a;;. 

4-12. If ft, ... .f,.-1: R"'--+ R", define ft X · · · X /,.-1: R"'--+ R" 
by ft X · · · X fn-1(p) - ft( p) X · · · X /,.-1(p). Use Prob-
lem 2-14 to derive a formula for D(ft X · · · X /,.-1) when ft, 
... ,/,.-1 are differentiable. 
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FIELDS A.ND FORMS 

If p ER", the set of all pairs (p,v), for v E R", is denoted 
R" P• and called the tangent space of R" at p. This set is 
made into a vector space in the most -obvious way, by defining 

(p,v) + (p,w) = (p, v + w), 
a· (p-,v) = (p,av). 

A vector v E R" is often pictured as an arrow from O to v; the 
vector (p,v) E R" P may be pictured (Figure 4-1) as an arrow 
with the same direction and length, but with initial point p. 
This arrow goes from p to the point p + v, and we therefore 

p + t 

p 

FIGURE 4-1 



lnlegralion on Chains 87 

define p + v to be the end point of (p,v). We will usually 
write (p,v) as Vp (read: the vector vat p). 

The vector space Rnp is so closely allied to Rn that many 
of the structures on Rn have analogues on an p· In particular 
the usual inner product (,) 11 for an P is defined by (vp,wp) 11 = 
(v,w), and the usual orientation for an11 is [(e1)p, ... ,(en) 11 ]. 

Any operation which is possible in a vector space may be 
performed in each an 11 , and most of this section is merely an 
elaboration of this theme. About the simplest operation in a 
vector space is the selection of a vector from it. If such a 
selection is made in each Rn"' we obtain a vector field (Figure 
4-2). To be precise, a vector field is a function F such that 
F(p) E an" for each p E Rn. For each p there are numbers 
F 1(p), ... ,Fn(p) such that 

We thus obtain n component functions Fi: an~ a. The 
vector field F is called continuous, differentiable, etc., if the 
functions F' are. Similar definitions can be made for a vector 
field defined only on an open subset of an. Operations on 
vectors yield operations on vector fields when applied at each 
point separately. For example, if F and G are vector fields 

FIGURE 4-Z 

王
亦
鸣
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and f is a function, we define 

(F + G)(p) = F(p) + G(p), 
(F,G)(p) = (F(p),G(p)), 

(/ · F)(p) = f(p)F(p). 

If F 1, . . . ,F n-1 are vector fields on Rn, then we can simi-
larly define 

(F1 X ' • . X Fn-1HP) = F1(p) X • • • X Fn-1(p). 

Certain other definitions are standard and useful. We define 
the divergence, div F of F, as !.':,_ 1D,F'. If we introduce 
the formal symbolism 

.. 
V = l D, · e;, 

i=l 

we can write, symbolically, div F = (V,F). If n = 3 we 
write, in conformity with this symbolism, 

{V X F)(p) = (D2F3 - D 3F 2)(e1) 11 
+ (DaF 1 - D1F3)(e2) 11 

+ (D1F2 - D2F1)(ea)11 • 

The vector field V X F is called curl F. The names "diverg-
ence" and "curl" are derived from physical considerations 
which a.re explained at the end of this book. 

Many similar considerations may be applied to a function 
w with w(p) E A A:(Rn 11); such a. function is called a. k-form on 
Rn, or simply a differential form. If ,p1(p), ... ,,p,.(p) 
is the dual basis to {e1) 11 , ••• ,(en)p, then 

w(p) = l w;,, ... ,it(P) · [,p;,(p) /1. • • • /1. ,p;,{p)] 
i1< • • • <iJ. 

for certain functions w;,, ... ,iti the form w is called continuous, 
differentiable, etc., if these functions a.re. We shall usually 
assume tacitly that forms and vector fields are differentiable, 
and "differentiable" will henceforth mean "(;"; this is a 
simplifying assumption that eliminates the need for counting 
how many times a function is differentiated in a proof. The 
sum w + 'I, product f · w, and wedge product w /1. 'I are defined 
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Recall this means that if V1, ,vk E R" p, then we have 
f*w(p)(v1, ... ,vk) = w(f(p))(f.(vi), ... ,f.(v1r.)). As an 
antidote to the abstractness of these definitions we present 
a theorem, summarizing the important properties off*, which 
allows explicit calculations of f""w. 

4-8 Theorem. If/: R"--+ R"' is differentiable, then 

(1) f*(dx;) = ~'J 1D;f · dxi = ~'J- 1 :; dxi. 

(2) f*(w1 + w2} = /*(w1} + f*(w2}, 
(3) f*(g · w} = (g O J) · f*w. 
(4) f*(w /\ 11) = f*w /\ !*11, 

Proof 

(1) f*(dx;}(p)(v,,) = dx;(f(p})(f.vp) 
= dx\f(p))(~'J_ 1vi · D;J1(p), . . , ~j'...1vi · D;f"'(p})i<P> 
= ~'J=1v; · D;f(p) 
= ~'J-1D;f(p) · dxi(p)(v,,). 

The proofs of (2), (3), and (4) are left to the reader. I 

By repeatedly applying Theorem 4-8 we have, for example, 

f*(P dx 1 /\ dx 2 + Q dx 2 /\ dx3) = (Po f)[f*(dx 1) /\ f""(dx 2)J 
+ (Q O f)[f""(dx 2

) /\ f*(dx 3 )). 

The expression obtained by expanding out each r(dxi) is quite 
complicated. (It is helpful to remember, however, that we 
have dxi /\ dxi = (- l)dxi /\ dxi = 0.) In one special case it 
will be worth our while to make an explicit evaluation. 

4-9 Theorem. If/: R"--+ R" is differentiable, then 

f""(hdx 1 /\ · · /\ dx") = (hof)(detf') dx 1 /\ · · · /\ dx". 

Proof, Since 

J""(h dx 1 /\ · · · /\ dx") = (h of)f*(dx1 /\ · · · /\ dx"), 
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it suffices to show that 

f*(dx 1 /\ • • • /\ dxn) = (detf') dx 1 
/\ • • • /\ dxn. 

Let p E Rn and let A = (a;;) be the matrix of f'(p). Here, 
and whenever convenient and not confusing, we shall omit 
"p" in dx 1 /\ • • • /\ dx•(p), etc. Then 

f*(dx 1 /\ • • • /\ dxn)(ei, ... ,en) 
= dx 1 /\ /\ dxn(f•ei, ... ,I.en) 

= dx 1 
/\ /\ 

= det(a;;) · dx 1 /\ • • /\ dxn(e,, ... ,en), 

by Theorem 4-6. I 

An important construction associated with forms is a gen-
eralization of the operator d which changes 0-forms into 
1-forms. If 

w= l w· · dxi, /\ l 1, ... 'ii /\ dx\ 
i1< "• • <i1e 

we define a (k + 1 )-form dw, the differential of w, by 

dw = l . dw;, .... ,ii /\ dx'• /\ · · 
i1<.'' <i, 

n I I Da(w;, .... ,ii) 
i,< · · · <i, a=l 

4-10 Theorem 

(1) d(w + 77) = dw + d71. 
(2) If w is a k-form and 71 is an l-f orm, then 

d(w /\ 77) = dw /\ 71 + (-1) kw /\ d71. 

(3) d(dw) = 0. Briefly, d 2 = 0. 
(4). If w is a k-form on Rm and f: Rn-+ Rm is differentiable, 

then f*(dw) = d(f*w). 
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Proof 

(1) Left to the reader. 

CalculUII on M anijolds 

(2) The formula is true if w = dx'• I\ I\ dx'• and 
f/ = <hi• I\ · · · I\ dxii, since all terms vanish. The 
formula is easily checked when w is a 0-form. The gen-
eral formula may be derived from (1) and these two 
observations. 

(3) Since 
n 

dw = l l Da(w;,, ... ,,,)dx" I\ dx'• I\ 
i1<···<i,ca=l . 

I\ dx\ 

we have 
n n 

d(dw} = l l l Da,/J(w;1,, •• ,;1)d:iJ /\ dxa 
i1< · · · <i1r a-1 ~-1 

In this sum the terms 

Da,/J(w;1, ••• ,,,)dx8 I\ dx" I\ dx'• I\ · · · I\ dx'• 

and 

D8 ,a(w,, .... ,,,)dxa I\ d:iJ I\ dx'• I\ 

cancel in pairs. 
(4) This is clear if w is a 0-form. Suppose, inductively, that 

(4) is true when w is a k-form. It suffices to prove (4) for 
a (k + 1)-form of the type w I\ dx'. We have 

r(d(w I\ dx')) = r(dw I\ dx' + (- l)tw /\ d(dx')) 
= f*(dw I\ dx') = f*(dw} I\ f*(dx') 
= d(f*w I\ f""(dx')) by (2) and (3) 
= d(f*(w " cix') ). I 

A form w is called closed if dw = 0 and exact if w = d'I, for 
some f/, Theorem 4-10 shows that every exact form is closed, 
and it is natural to ask whether, conversely, every closed form 
is exact. If w is the 1-form P dx + Q dy on R2, then 

dw = (D1P dx + D 2P dy) I\ dx + (D1Q dx + D2Q dy) I\ dy 
= (D 1Q - D 2P)dx I\ dy. 
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Thus, if dw = O, then D1Q = D2P. Problems 2-21 and 3-34 
show that there is a 0-form f such that w = df = D if dx + 
DJ dy. If w is defined only on a subset of R2

, however, such 
a function may not exist. The classical example is the form 

W = -y dx + X dy 
x2 + y2 x2 + y2 

defined on R2 - 0. This form is usually denoted dB (where 
8 is defined in Problem 3-41), since (Problem 4-21) it equals d8 
on the set {(x,y): x < 0, or x > 0 and y ~ 01, where 8 is 
defined. Note, however, that 8 cannot be defined continuously 
on all of R2 - 0. If w = df for some function/: R2 - 0-+ R, 
then Di!= D 18 and DJ = D28, so f = 8 + constant, show-
ing that such an f cannot exist. 

Suppose that w = ~f-1w, dx' is a 1-formon Rn and w happens 
to equal df = ~'/..1DJ · dx'. We can clearly assume that 
f(O) = 0. As in Problem 2-35, we have 

l d 
1<x) = J -a 1<tx> at 

0 t 
l n 

= J l D;f(tx) · x• dt 
0 i=-1 

l ft 

= J l w,(tx) · x• dt. 
0 i-1 

This suggests that in order to find f, given w, we consider the 
function lw, defined by 

1 n 

lw(x) = J l w;(tx) · x• dt. 
0 i= 1 

Note that the definition of lw makes sense if w is defined only 
on an open set A C Rn with the property that whenever 
x E A, the line segment from O to x is contained in A; such 
an open set is called star-shaped with respect to O (Figure 
4-3). A somewhat involved calculation shows that (on a 
star-shaped open setj we have w = d(lw) provided that w satis-
fies the necessary condition dw = 0. The calculation, as well 
as the definition of I w, may be generalized considerably: 
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I 

' ' 
/ 

..... --

\ 
I 

FIGURE 4-3 

4-11 Theorem (Poincare Lemma). If A C Rn is an open 
set star-shaped with respect to 0, then every closed form on A 
is exact. 

Proof. We will define a function / from l-forms to (l - 1)-
forms (for each l), such that /(0) = 0 and w = I(dw) + d(/w) 
for any form w. It follows that w = d(/w) if dw = 0. Let 

w= l 
i1< · · · <ir 

Since A is star-shaped we can define 
I 1 

Iw(x) = l l (-l)a-l (/ t1- 1w; •. ,,. ,i1(tx)dt) xia 
i1< · · · <ir a•l 0 

/-..... 

dx'• /\ · · · /\ dx•a /\ · · · /\ dx•1• 

(The symbol .,..__ over dxia indicates that it is omitted.) The 
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proof that w = l(dw) + d(lw) is an elaborate computation: 
We have, using Problem 3-32, 

I 

d(/w) = / · l (! tl-lWii .... ,;1(tx)dt) 
i1< ... <i, 0 

I n I 

+ l l l ( -1 t-l ( f t1 Dj(w;,, .. .,;,)(tx)dt) xia 
i1<···<i1a=li=l 0 _.,,..__ 

dxi /\ dxi• /\ · · · /\ dxio. /\ · · · /\ dxi1. 

(Explain why we have the factor ti, instead of t1- 1.) We also 
have 

n 

dw = l l D;(w;,, ... ,;,) · dxi /\ dxi, /\ · · · /\ dxi'. 
i1<···<i1j=l 

Applying / to the (l + 1 )-form dw, we obtain 
n 1 

l(dw) - l l (f t1D;(w;,, ... ,;,)(tx)dt) xi 
i1<···<i1j=l 0 

n I 1 l l l ( -1 )a-l (/ t1 D;(wi, ... .,i1)(tx)dt) xia 
i1<···<i1j=la=l 0 _.,,...._ 

dxi /\ dxi, /\ · · · /\ dxio. /\ · · · /\ dxi1. 

Adding, the triple sums cancel, and we obtain 
1 

d(lw) + l(dw) = l l · (f t1- 1w;,, ... ,;,(tx)dt) 
i1<···<i1 0 

n 1 

+ l l (f l1xiD;(w;,, ... ,i1)(tx)dt) 
i1<···<i1j==l 0 

dxi, /\ · /\ dxi1 

l 
i1< ''' <ii 

w · · dx;, /\ · · · /\ dxi1 JI, ••• , II 

= w. I 
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Problema. 4-13. (a) If /: R"--+ R"' and fl! R"'--+ RP, show that 
(g •f>• • fl• •f• and (g of)•= j• • fl•, 

(b) If f,fl: R"--+ R, show that d(/ · fl) = / · dg + fl · df. 
4-14. Let c be a differentiable curve in R", that is, a differentiable func-

tion c: (0,1)--+ R". Define the tangent vector II of c at t as 
c. ((e1)1) = ((c1)'(t), ... ,(c")'(O)c(tl· If/: R"--+ R"', show that 
the tangent vector to f • c at tis f• (11). 

4-15. Let /: R--+ R and define c: R --+ R1 by c(t) • (t,f(t)). Show 
that the end point of the tangent vector of c at t lies on the 
tangent line to the graph off at (t,/(1)). 

4-16. Let c: [O, 1) --+ R" be a curve such that le< t) I• 1 for all t. Show that 
c(Oc(tl and the tangent vector to c at tare perpendicular. 

4-17. If/: R"--+ R", define a vector field f by f(p) "'/(p),. E R",.. 
(a) Show that every vector field Fon R" is of the form f for 

some-J. 
(b) Show that div f = trace f'. 

4-18. If/: R"--+ R, define a vector field grad f by 

(grad/)(p) = D1/(p) · (e1),. + · · · + D,.f(p) • (e,.),.. 

For obvious reasons we also write grad/-= V/. If V/(p) = w,., 
prove that D,/(p) • (11110) and conclude that V/(p) is the direction 
in which f is changing fastest at p. 

4-19, If Fis a vector field on R1, define the forms 

... ~ - F 1 dz + F1 dy + F1 dz, 
4=F1 4A•+~6Adz+~dzA. 

(a) Prove that 

df - ... ~.d ,, 

d(w~) = "'!url 1'1 

d(wi) - (div F) dz A dy A 6. 

(b) Use (a) to prove that 

curl grad / = 0, 
div curl F = 0. 

(c) If F is a vector field on a star-shaped open set A and 
curl F = O, show that F = grad/ for some function /: A --+ R. 
Similarly, if div F = O, show that F = curl G for some vector 
field G on A. 

4-20. Let /: U--+ R" be a differentiable function with a differentiable 
inverse 1-1: f(U)--+ R". If every closed form on U is exact, show 
that the same is true for f(U). Hint: If dw = 0 and rw = d,,, 
consider u-1) .,, , 

I 



I 
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4.21. • Prove that on the set where 8 is defined we have 

-11 % 
dB • t + 2 dz + t + t d11. z 11 .z 'II 

GEOMETRIC PRELIMINARIES 

A singular n-cube in A C R"' is a continuous function c: 
[O,l]" ~ A (here {0,1}" denotes then-fold product (0,1) X · · · 
X [0,11). We let R 0 and [0,1)0 both denote {O}. A singular 
0-cube in A is then a function f: { 0 l -+ A or, what amounts to 
the same thing, a point in A. A singular I-cube is often 
called a curve. A particularly simple, but particularly 
important example of a eingular n-cube in R" is the standard 
n-cube /": [0,1)"-+ R" defined by l"(x) = x for x E (0,1]". 

We shall need to consider formal sums of singular n-cubes in 
A multiplied by integers, that is, expressions like 

2c1 + 3c2 - 4ca, 

where c1, c2, c3 are singular n-cubes in A. Such a finite sum 
of singular n-cubes with integer coefficients is called an 
n-chain in A. In particular a singular n-cube c is also con-
sidered as an n-chain 1 · c. It is clear how n-chains can be 
added, and multiplied by integers. For example 

2(c1 + 3c4) + (-2}(c1 + ca + c2) = -2c2 - 2ca + 6c4. 

(A rigorous exposition of this formalism is presented in Prob-
lem 4-22.) 

For each singular n-chain c in A we shall define an (n - 1)-
chain in A called the boundary of c and denoted de. The 
boundary of J'l, for example, might be defined as the sum of 
four singular I-cubes arranged counterclockwise around the 
boundary of [0,1} 2

, as indicated in Figure 4-4(a) . It is 
actually much more convenient to define a/2 as the sum, with 
the indicated coefficients, of the four singular I-cubes ~hown 
in Figure 4-4(b) . The precise definition of al" requires some 
preliminary notions. For each i with 1 < i < n we define 
two singular (n - 1)-cubes l'li,o> and l'li.1) as follows. If 
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-1 

• 

-1 

+l 
(a) (b) 

FIGURE 4-4 

X E [o,1in-1, then 

Ic;,o>(x) = In(x1, ... ,xi-1,0,x', ... ,xn-t) 
_ ( I i-1 0 i n-1) - X , • • • ,x , ,x , . . . ,X , 

In ( ) _ In( I i-1 I i n-1) (i, l) X - X , • • • ,X , ,x , . . . ,x 
_ ( I i-1 I i n-1) - X , • • • ,X , ,X , • • • ,X • 

+1 

We call lc;,o> the (i,0)-face of In and Ic;.o the (i,1)-face 
(Figure 4-5). We then define 

.. 
iJI" = l l (-l)i+aI(i,a)· 

i==la•0,1 

For a general singular n-cube c: [0,1]"---+ A we first define the 
(i,a)-face, 

and then define 
.. 

iJC = .l .l (-l)i+aC(i,a)• 
i-1 a=0,1 

Finally we define the boundary of an n-chain ~a;ci by 

iJ(~a,-ci) = ~a;o(c;). 

Although these few definitions suffice for all applications in 
this book, we include here the one standard property of a. 
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11,.n 

/11.0) 

11, .• , 11, .• , 

(a) (b) 

FIGURE 4-5 

4-12 Theorem. If c is an n-chain in A, then o(oc) = 0. 
Briefly, o2 = 0. 

Pro~f. Let i < j and consider (If;,a>)U.fl>· If x E [0,1in-2, 

then, remembering the definition of the (j,fJ)-face of a singular 
n-cube, we have 

( If;,a)) (j ,/1) (x) = If;,a) ( Ifi-:fl\ (x)) 
_ In ( I j-1 R j n-2) - (i,a) X , . , • ,x ,,.,,x 1 • • • ,X 

- I" ( l i-1 i j-1 R j - x , ... ,x ,a,x , ... ,x ,,.,,x , ... , n-2) X . 

Similarly 

(If;+1.fl>)<i,a> = If;+1.fl>(If;-;-.;>(x)) 
- In ( I i-1 i n-2) - (i+l.fll x , ... ,x ,a,x , ... ,x 

_ In( I i-1 i j-1 R j n-2) - x , ,x ,a,x , . . . ,x ,,.,,x , . . . ,x . 

Thus (If;,a))(j,/1) = (I<i+l.ll>)(i,a) for i < j. (It may help to 
verify this in Figure 4-5.) It follows easily for any singular 
n-cube C that (C(i,a))(j,11) = Ccu+1.11))(i,a) when i < j. Now 

n 

a(ac) = a (I L (-l)i+aC(i,a)) 
1.·=1 a=0,1 

n n-1 

- I I I I 
i=I a=0,1 j=l /J=0,1 

-+ ++ ( -1)' a 1 /l(C(i,a))(j,/1)· 
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In this sum (C(i,cr))c;.6) and (cc;+t.6))(i,crl occur with opposite 
signs. Therefore all terms cancel out in pairs and cJ(cJc) = 0. 
Since the theorem is true for any singular n-cube, it is also 
true for singular n-chains. I 

It is natural to ask whether Theorem 4-12 has a converse: If 
ac = 0, is there a chain din A such that c = ad? The answer 
depends on A and is generally "no." For example, define 
c: (0,1)-+ R 2 - 0 by c(t) = (sin 21rnt, cos 2,rnt), where n is 
a non-zero integer. Then c(l) = c(O), so ac = 0. But 
(Problem 4-26) there is no 2-cha.in c' in R2 - 0, with ac' = c. 

Problems. 4-22. Let £ be the set of all singular n-cubes, and Z the 
integers. An n-chain is a function /: £-> Z such that /(c) = 0 
for all but finitely many c. Define/ + g and nf by (/ + g)(c) -
/(c) + g(c) and nf(c) = n · /(c). Show that / + g and n/ are 
n-chains if f and g are. If c E $, let c also denote the function / 
such that /(c) • 1 and /(c') • 0 for c' I"' c. Show that every 
n-chain / can be written a1c1 + · · · + atct for some integers 
a1, . . . ,at and singular n-cubes c1, . . . ,ct. 

4-23. For R > 0 and nan integer, define the singular 1-cube ca,,.: [0,1]-> 
R1 - 0 by ca,,.(t) = (R cos 2,rnt, R sin 2,rnt). Show that there 
is a singular 2-cube c: [0,1)2 _, R2 - 0 such that ca, ... - ca,,,. = iJc. 

4-24. If c is a singular 1-cube in R1 - 0 with c(O) = c(l), show that there 
is an integer n such that c - c1,,, - iJc1 for some 2-cha.in c:i. 
Hint: First partition (0,1] so that each c([t.-1,t;]) is contained on 
one side of some line through 0. 

THE FUNDAMENTAL THEOREM OF CALCULUS 

The fact that d2 = 0 and cJ 2 = 0, not to mention the typo-
graphical similarity of d and a, suggests some connection 
between chains and forms. This connection is established by 
integrating forms over chains. Henceforth only differentiable 
singular n-cubes will be considered. 

If w is a k-form on [O,l]k, then w = f dx 1 I\ · · · I\ dxk for 
a unique function J. We define 

Jw= f J. 
[O,t)• [0,1)• 



Integration on Chaim 101 

We could also write this as 

f f dx 1 I\ · · · I\ dx" = f f(x1, ... ,x")dx 1 

~ij· ~11• 

one of the reasons for introducing the functions xi. 
If w is a. k-form on A and c is a. singular k-cube in A, we define 

f w = f c•w. 
C [0,1)1 

Note, in particular, that 

ff dx 1 I\ 
Jk 

I\ dx" = J ([,,,)*(! dx1 /\ • • /\ dxlt) 
(O,l)k - J f(x1, ... ,x,,,)dx1 · • dx1e. 
[O,lJ• 

A special definition must be ma.de for k = 0. A 0-form w is 
a. function; if c: IO I -+ A is a. singular 0-cube in A we defme 

J w = w(c(O)). 
C 

The integral of w over a k-chain c = :2:aiCi is defined by 

The integral of a 1-form over a 1-chain is often called a line 
integral. If P dx + Q dy is a 1-form on R 2 and c: [0,1]-+ R 2 

is a singular 1-cube (a curve), then one can (but we will not) 
prove that 

" f P dx + Q dy = lim L [c1(t;) - c1(t;_1)] · P(c(ti)) 
t: i-1 

+ [c2(t;) - c2(t;_1)] · Q(c(ti)) 

where to, ... ,t,. is a partition of [0,1], the choice of ti in 
[t;-1,t;] is arbitrary, and the limit is taken over all partitions 
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as the maximum of It; - t;_1 I goes to 0. The right side is 
often taken as a definition off .P dx + Q dy. This is a natural 
definition to make, since these sums are very much like the 
sums appearing in the definition of ordinary integrals. How-
ever such an expression is almost impossible to work with and 
is quickly equated with an integral equivalent to f 10,11c*(P dx 

+ Q dy). Analogous definitions for surface integrals, that 
is, integrals of 2-forms over singular 2-cubes, are even more 
complicated and difficult to use. This is one reason why we 
have avoided such an approach. The other reason is that the 
definition given here is the one that makes sense in the more 
general situations considered in Chapter 5. 

The relationship between forms, chains, d, and iJ is summed 
up in the neatest possible way by Stokes' theorem, sometimes 
ca.Bed the fundamental theorem of calculus in higher dimen-
sions (if k = 1 and c = 1 1, it really is the fundamental theorem 
of calculus). 

4-13 Theorem (Stokes' Theorem). If "' is a (k - 1)-

/orm on an open set A C Rn and cu a k-chain in A, then 

f dw = f w. 
C ac 

Proof. Suppose first that c = Jk and w is a (k - 1)-form on 
[O,l)k. Then w is the sum of (k - 1)-forms of the type 

-"-

! dx 1 I\ · · · I\ dx' I\ · · · I\ dxk, 

and it suffices to prove the theorem for each of these. This 
simply involves a computation: 

Note that 

f It;,a) *(f dx 1 /\ /\ ;j;, I\ · · · I\ dxk) 
10.lik-, 

= { O / J(x1, ... ,a, ... ,x")dx 1 • • • dx" 
[O,!Jk 

if j ~ i, 
if j = i. 
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Therefore 

J f dx 1 I\ 
a[k 

k 

= l l (-l)i+a f It;,a/(fdx 1 
I\ 

i-1 a=O,I (O,JJk-1 

= (-1);+1 J f(x1, ... ,1, . 
(O,l)k 

JOJ 

........ 
I\ dx' 

A. .. 

+(-1)' jf(x', 
(O,l)k 

,0, ... ,xk)dx 1 • • • dxk. 

On the other hand, 

f d(f dx' I\ 
/k 

-----. I\ dxi I\ · · · I\ dxk) 

- J D;f dxi I\ dx 1 I\ 
(0,[)k 

-----I\ dxi A. · • · A. dxk 

- (-l)i-t f D;J. 
(O,J)k 

By Fubini's theorem and the fundamental theorem of calculus 
(in one dimension) we have 

/. d(f dx 1 I\ · · · A. dx' A. · · /\ dxk) 

I 

_ (-l)i-1 J 
0 

I (! D;f(x1, 
0 

I I 

_ (- l)i-1 J 
0 

J [f(x1, ... ,1, ... ,xk) 
0 

------ f(x 1, ,0, ,xk)]dx 1 • dx• 

- ( - } ) i-1 / j (XI' . '1, ,xk)dx 1 · dxk 
(O,t]k 

+ (-1)' f f(x 1, 
(O,!Jk 

,0, . ,xk)dx 1 • 

Thus 

J dw = f w. 
Jk i)[k 

.. · dxk 

· dxk. 
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If c is an arbitrary singular k-cube, working through the 
definitions will show that 

Therefore 

Finally, if c is a k-chain 2:a,-ci, we have 

J dw = la, J dw = l ai J w = J w. I 
C c, &:, le 

Stokes' theorem shares three important attributes with 
many fully evolved major theorems: 

1. It is trivial. 
2. It is trivial because the terms appearing in it have been 

properly defined. 
3. It has significant consequences. 

Since this entire chapter was little more than a series of 
definitions which made the statement and proof of Stokes' 
theorem possible, the reader should be willing to grant the 
first two of these attributes to Stokes' theorem. The rest of 
the book is devoted to justifying the third. 

Problems. 4-25. (Independence of parameterization). Let c be a 
singular k-cube and p: [O,l]k _. [O,l]k a 1-1 function such that 
p([0,1]•) = (O,l]k and det p'(x) > 0 for x E (0,1]•. If "' is a 
k-form, show that 

4-26. Show that f <a .• d8 = 2..n, and use Stokes' theorem to conclude 
that CR,n ~ ilc for any 2-chain c in R2 - 0 (recall the definition of 
CR,n in Problem 4-23). 

4-27. Show that the integer n of Problem 4-24 is u"nique. This integer 
is called the winding number of c around 0. 

4-28. Recall that the set of complex numbers C is simply R1 with 
(a,b) = a + bi. If ai, ... ,a,. E C let f: C-+ C be f(z) "' 
z" + a 1zn-l + .. , + a,.. Define the singular I-cube CR,/: 
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(0,1]-+ C - O by CR.f = f • CR, 1, and the singular 2-cube c by 
c(s,t) = t · CR,,.(s) + (1 - t)CR,1(8). 

(a) Show that ac = CR,/ - CR,n, and that c([O,l] X (0,1)) C 
C - 0 if R is large enough. 

(b) Using Problem 4-26, prove the Fundamental Theorem of 
Algebro.: Every polynomial z" + a1z"-1 + · · · + a,. with a; E C 
has a root in C. 

4-29. If w is a I-form f dx on [0,1) with f(O) = f(l), show that there is 
a unique number >. such that w - >. dx = dg for some function g 
with g(O) = g(l). Hint: Integrate w - >. dx - dg on [0,1) to 
find >.. 

4-30. If w is a 1-form on R 2 - 0 such that dw = 0, prove that 

w = >. d9 + dg 

for some >. E R and g: R 2 - 0-+ R. Hint: If 

CR,1 *(w) = >.a dz + d(ga), 

show that all numbers >.R have the same value >.. 
4-31. If w ,,e 0, show that there is a chain c such that f cw 'F 0. Use this 

fact, Stokes' theorem and a2 = 0 to prove d2 = 0. 
4-32. (a) Let c1, c2 be singular I-cubes in R 2 with c1(0) = c2(0} and c1(1) 

= c2(l). Show that there is a singular 2-cube c such that iJc -
c1 - c, + ca - Ct, where ca and C4 are degenerate, that is, ca([0,11) 
and c4([0,l)) are points. Conclude that f ••"' = f.,.., if w is exact. 
Give a counterexample on R1 - 0 if.., is merely closed. 

(b} If "' is a 1-form on a subset of R 1 and f c,w -= f ••"' for all c1, 
c2 with ci(O) = c2(0) and ci(l) - c2(1), show that ., is exact. 
Hint: Consider Problems 2-21 and 3-34. 

4-33. (A first course in complex variables.) If f: C-+ C, define f to be 
differentiable at zo E C if the limit 

! '( ) 1. f(z) - f(zo) zo = 1m 
........ z - zo 

exists. (This quotient involves two complex numbers and this 
definition is completely different from the one in Chapter 2.) 
If f is differentiable at every point z in an open set A and f' is 
continuous on A, then f is called analytic on A. 

(a) Show that f(z) = z is analytic and f(z) = z is not (where 
x + iy = x - iy). Show that the sum, product, and quotient 
of analytic functions are analytic. 

(b) If f = u + iv is analytic on A, show that u and v satisfy 
the Cauchy-Riemann equations: 

au av 
and au -av -=- -=--· 

ilx ily ily ilx 
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Hint: Use the fact that Jim [f(z) - /(zo)]/(z - zo) must be the .-.. 
same for z = zo + (z + i · O) and z = zo + (0 + i · y) with 
z,y-+ 0. (The converse is also true, if u and v are continuously 
differentiable; this is more difficult to prove.) 

(c) Let T: C-+ C be a linear transformation (where C is con-
sidered as a vector space over R). If the matrix of T with respect 

to the basis (l,i) is (::!) show that Tis multiplication by a corn-

lex number if and only if a - d and b - -c. Part (b) shows that 
an analytic function/: C-+ C, considered as a function/: R2 -+ 

R1, has a derivative Df(zo) which is multiplication by a complex 
number. What complex number is this? 

(d) Define 

d(w + i.,) - dw + id.,, 

J ... + i,, .. J ... + i J ,,, 
C C C 

(w + i,,) A (II + i>.) = "' A 11 - ,, A >. + i(,, A 8 + "' I\ >.), 

and 
dz - d:r; + i dy. 

Show that d(J · dz) = 0 if and only if J satisfies the Cauchy-
Riemann equations. 

(e) Prove the Cauchy Integral Theorem: If f is analytic on A, 
then J .f dz • 0 for every closed curve c (singular 1-cube with 
c(O) - c(l)) such that c = ac' for some 2-chain c' in A. 

(f) Show that if g(z) = 1/z, then g · dz [or (1/z)dz in classical 
notation] equals i dll + dh for some function h: C - 0-+ R. 
Conclude that J ••.• (1/z)dz = 2..-in. 

(g) If f is analytic on lz: lzl < 11, use the fact that g(z) = 
f(z)/z is analytic in lz: 0 < lzl < 11 to show that 

J !~) dz = f !~) dz 
C& 1," CR1,n 

if O < R1, R2 < 1. Use (f) to evaluate Jim J c8 ,.f(z)/z dz and 
R-o 

conclude: 
Cauchy Integral Formula: If f is analytic on lz: lzl < 11 and 

c is a closed curve in lz: 0 < lzl < 11 with winding number n 
around O, then 

1 / /(z) n ·J(O) = -. -dz. 
2..-i z 

C 
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y 

la) 

y 

FIGURE 4-6 
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4-34. If F: (0, 1}2 -+ R3 ands E (0,1) define F,: (0,1}-+ R3 by F,(t) = 
F(s,t). If eachF,is a closedcurve,F is called a homotopy between 
the closed curve Fo and the closed curve F1. Suppose F and Gare 
homotopies of closed curves; if for each s the closed curves F, and 
G, do not intersect, the pair (F,G) is called a homotopy between the 
nonintersecting closed curves Fo, Go and Fi, G1. It is intuitively 
obvious that there is no such homotopy with Fo, Go the pair of 
curves shown in Figure 4-6 (a), and F1, G1 the pair of (b) or (c). 
The present problem, and Problem 5-33 prove this for (b) but the 
proof for (c) requires different techniques. 

(a) If f, g: [0,11-+ R3 are nonintersecting closed curves define 
c,.,: (0,1}2 -+ R3 - 0 by 

c1,,(u,v) = f(u) - g(11). 

If (F,G) is a homotopy of nonintersecting closed curves define 
Cp,a: (0,1} 3 -+ R3 - Oby 

Cp,a(s,u,11) = CF,.a,(u,11) = F(s,u) - G(s,v). 

Show that 
8CF,G = CF0 ,00 - CF,,01• 

(b) If"' is a closed 2-form on R3 - O show that 
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Integration on Manifolds 

MANIFOLDS 

If U and V are open sets in Rn, a differentiable function 
h: U ___... V with a differentiable inverse h-1 : v- U will be 
called a difl'eornorphisrn. ("Differentiable" henceforth 
means "C"'".) 

A subset M of Rn is called a k-dimensional manifold (in 
Rn) if for every point x E M the following condition is 
satisfied: 

(M) There is an open set U containing x, an open set V C Rn, 
and a diffeomorphism h: U ___... V such that 

h(U n M) = V n (R" X IOI) 
= I y E V: yk+i = · · · = y" = o I. 

In other words, U n M is, "up to diffeomorphism," simply 
R" X IO } ( see Figure 5-1). The two extreme cases of our 
definition should be noted: a point in R" is a 0-dimensional 
manifold,. and an open subset of R" is an n-dimensional 
manifold. 

One common example of an n-dimensional manifold is the 
109 
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V 

h(x) 

(a) 

u 

FIGURE 5-1. A one-dimensional manifold in R2 and a two-dimen-
sional man if old in R 3• 
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n-sphere sn, defined as Ix E an+l: !xi= l}. We leave it 
as an exercise for the reader to prove that condition (M) is 
satisfied. If you are unwilling to trouble yourself with the 
details, you may instead use the following theoren1, which 
provides many examples of manifolds (note that S" = g-1(0), 
where g: an+i-+ R is defined by g(x) = jxj 2 

- 1). 

5-1 Theorem. Let A C R" be open and let g: A -+ RP 
be a differentiable function such that g'(x) has rank p whenever 
g(x) = O. Then g- 1(0) is an (n - p)-dimensional manifold in 
an. 

Proof. This follows immediately from Theoren1 2-13. I 

There is an alternative characterization of manifolds which 
is very important. 

5-2 Theorem. A subset M of R" is a k-dimensional mani-
fold if and only if for each point x E M the following "coordinate 
condition" is satisfied: 

(C) There is an open set U containing x, an open set TV C R"', 
and a 1-1 differentiable function f: lV-+ R" such that 

(1) f(W) = Mn U, 
(2) f'(y) has rank k for each y E W, 
(3) 1-1: J(W) -+ W is continuous. 

[Such a function f is called a coordinate system around x 
(see Figure 5-2).] 

Proof. If /If is a k-din1ensional manifold in R", choose 
h: U-+ V satisfying (M). Let W = la E Rk: (a,0) E h(M)} 
and define J: W-. Rn by /(a) = h- 1(a,O). Clearly f(W) = 
Mn U and 1-1 is continuous. If H: U-+ RA: is H(z) = 
(h 1(z), ... , h1:(z)), then H(f(y)) = y for ally E W; there-
fore H'(f(y)) · f'(y) = I andf'(y) must have rank k. 

Suppose, conversely, that/: W-+ R" satisfies condition (C). 
Let x = f(y). Assume that the matrix (D;f(y)), 1 < i, j < k 
has a non-zero determinant. Define g: W X an-.t-+ Rn by 
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FIGURE 5.J 

g(a,b) = /(a) + (O,b). Then det g'(a,b) = det (D;f(a)), so 
det g'(y,O) ~ 0. By Theorem 2-11 there is an open set V 1' 

containing (y,O) and an open set V 2' containing g(y,O) = x such 
that g: V 1'-+ V 1' has a differentiable inverse h: V 2'-+ V 1'. 

Since 1-1 is continuous, {/(a): (a,O) E V1'} = U llf(W) for 
some open set U. Let V 2 = V 2' fl U and V 1 -= g- 1(V 2). 

Then V 2 fl Mis exactly {/(a): (a,O) E V1 } = {g(a,O): (a,O) 
E Vi}, so 

h(V I fl M) = g-1(V I fl M) - g-1( {g(a,O): (a,O) E V 1}) 

= V 1 " (RA: X { 0}). I 

One consequence of the proof of Theorem 5-2 should be 
noted. If / 1 : W 1 -+ R" and / 2 : W 2 -+ R" are two coordinate 
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systems, then 

!21 0 !1: Ji"1(!2(W 2))-+ R1: 

113 

is differentiable with non-singular Jacobian. If fact, /;1(y) 
consists of the first k components of h(y). 

The half-space Hk C Rk is defined as {x E Rk: xk > OJ. 
A subset M of R" is a k-dimensional manifold-with-
boundary (Figure 5-3) if for every point x E M either condi-
tion (M) or the following condition is satisfied: 

(M') There is an open set U containing x, an open set 
VCR", and a diffeomorphism h: U-+ V such that 

h(U n M) = V n (Hk X {01) 
= I y E V: yk > o and y1:+ 1 = · · · = y" = o I 

and h(x) has kth component = 0. 
It is important to note that conditions (M) and (M') 

cannot both hold for the same x. In fact, if h1 : U 1 -+ V 1 and 
h2: U2-+ V2 satisfied (M) and (M'), respectively, then 
h2 o h1- 1 would be a differentiable map that takes an open set 
in R\ containing h(x), into a subset of Hk which is not open in 
Rk. Since det (h 2 a h1- 1)' F- 0, this contradicts Problem 
2-36. The set of all points x E M for which condition M' is 
satisfied is called the boundary of M and denoted iJM. This 

r 

(a) (b) 
FIGURE 5-3. A one-dimensional and a two-dimensional manifold-

with-boundary in R 3• 
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must not be confused with the boundary of a set, as defined in 
Chapter 1 (see Problems 5-3 and 5-8). 

Problems. 5-1. If M is a k-dimensional manifold-with-boundary, 
prove that iJM is a (k - 1 )-dimensional manifold and M - iJM is 
a k-dimensional manifold. 

5-2. Find a counterexample to Theorem 5-2 if condition (3) is omitted. 
Hint: Wrap an open interval into a figure six. 

5-3. (a) Let A C R" be an open set such that boundary A is an (n - !)-
dimensional manifold. Show that N = A V boundary A is an 
n-dimensional manifold-with-boundary. (It is well to bear in mind 
the following example: if A - Ix ER": \x\ < 1 or l < \x\ < 2} 
then N = A V boundary A is a manifold-with-boundary, but 
iJN ~ boundary A.) 

(b) Prove a similar assertion for an open subset of an n-dimen-
sional manifold. 

5-4. Prove a partial converse of Theorem 5-1: If M C R" is a k-dimen-
sional manifold and x E M, then there is an open set A C R" con-
taining x and a differentiable function g: A -+ R"-k such that A r'\ M 
= g-1(0) and g'(y) has rank n - k when g(y) = 0. 

5-5. Prove that a k-dimensional (vector) subspace of R" is a k-dimen-
sional manifold. 

/ 

FIGURE 5.4 
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5-6, If /: Rn-, Rm, the graph of / is I (x,y): y = J(x) j. Show that 
the graph of f is an n-dimensional manifold if and only if f is 
differentiable. 

5-7. Let Kn= Ix E Rn: x 1 = 0 and x2, .. , ,xn-I > Oj. If MC K" 
is a k-dimensional manifold and N is obtained by revolving M 
around the axis x1 = · · · = z"-1 = O, show that N is a (k + 1)-
dimensional manifold. Example: the torus (Figure 5-4). 

5-8. (a) If M is a k-dimensional manifold in Rn and k < n, show that 
M has measure 0. 

(b) If M is a closed n-dimensional manifold-with-boundary in 
R", show that the boundary of Ill is iJM. Give a counterexample if 
M is not closed. 

(c) If M is a compact n-dimensional manifold-with-boundary 
in R", show that M is Jordan-measurable. 

FIELDS AND FOR/US ON MANIFOLDS 

Let M be a k-dimensional manifold in Rn and let f: W-> Rn 
be a coordinate system around x = f(a). Sincef'(a) has rank 
k, the linear transformation f *: R\,-> Rn,, is 1-1, and f* (R\,) 
is a k-din1ensional subspace of Rn z· If g: V-> R" is another 
coordinate system, with x = g(b), then 

g.(R\) = f .,(r1 a g).(R\) = f .(Rk,.). 

Thus the k-dimensional subspace J.(Rka) does not depend on 
the coordinate system f. This subspace is denoted M "" and 
is called the tangent space of M at x (see Figure 5-5). In 
lat\r sections we will use the fact that there is a natural inner 
product Tz on Mx, induced by that on R"z: if v,w E Mz define 
Tz(v,w) = (v,w)z. 

Suppose that A is an open set containing M, and Fis a differ-
entiable vector field on A such that F(x) E M z for each 
x E M. If f: W-> R" is a coordinate system, there is a 
unique (differentiable) vector field G on W such thatf .(G(a)) = 
F(f(a)) for each a E W. We can also consider a function F 
which merely assigns a vector F(x) E Mx for each x EM; 
such a function is called a vector field on M. There is still 
a unique vector field G on W such thatj.,(G(a)) = F(f(a)) for 
a E W; \\'.e define F to be differentiable if G is differentiable. 
Note that our definition does not depend on the coordinate 
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FIGURE 5-5 

system chosen: if g: V--+ R~ and g.(H(b)) = F(g(b)) for all 
b E V, then the component functions of H (b) must equal the 
component functions of G(r1(g(b))), so H is differentiable 
if G is. 

Precisely the same considerations hold for forms. A func-
tion w which assigns w(x) E AP(Af %) for each x E M is called 
a p-form on M. If f: W--+ Rn is a coordinate system, then rw is a p-form on W; we define w to be differentiable if rw is. 
A p-f orm w on M can be writ ten as 

w= l it< ... <;., 

Here the functions w;1 , ••• ,;., are defined only on M. The 
definition of dw given previously would make no sense here, 
since D;(wia, ... ,;.,) has no meaning. Nevertheless, there is a 
reasonable way of defining dw. 
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5-3 Theorem. There is a unique (p + 1)-form dw on M 
such that for every coordinate system f: W - Rn we have 

r<<1w) = d(f*"'). 

Proof. If f: W - R" is a coordinate system with x = f(a) 
and v1, ... ,vp+I E M "'' there are unique w1, ... ,Wp+I in 
R\ such that /.(w;) = v;. Define dw(x)(v1, ... ,v11+1) = 
d(f*"')(a)(w1, ... ,w11+1). One can check that this definition 
of dw(x) does not depend on the coordinate system f, so that 
d"' is well-defined. Moreover, it is clear that dw has to be 
defined this way, so d"' is unique. I 

It is often necessary to choose an orientation µ"' for each 
tangent space Mx of a manifold M. Such choices are called 
consistent (Figure 5-6) provided that for every coordinate 

FIGURE 5-6. 
tations. 

(a) 

(b) 

(a) Consistent and (b) inconsistent choices of orien-
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system f: W ~ Rn and a,b E W the relation 

holds if and only if 

Suppose orientations µ:,; have been chosen consistently. If 
f: W ~ an is a coordinate system such that 

for one, and hence for every a E W, then / is called orien-
tation-preserving. If f is not orientation-preserving and 
T: Rk ~ RA: is a linear transformation with det T = -1, then 
f o T is orientation-preserving. Therefore there is an orienta-
tion-preserving coordinate system around each point. If f and 
g are orientation-preserving and x = f(a) = g(b), then the 
relation 

FIGURE 5-7. The Mobius strip, a non-orientable manifold. A 
basis begins at P, moves to the right and around, and comes back to P with 
the wrong orientation. 
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implies that 

[(g-1 o f).((e1) 4 ), ••• ,(g-1 o f).((ek)a)] = [(e1)b, · · · ,(ek)b], 

so that det (g- 1 o /)' > 0, an important fact to remember. 
A manifold for which orientations µx can be chosen con-

sistently is called orientable, and a particular choice of the 
µ:,; is called an orientation µ of M. A manifold together with 
an orientation µ is called an oriented n1anifold. The classical 
example of a non-orientable manifold is the Mobius strip. 
A model can be made by gluing together the ends of a strip of 
paper which has been given a half twist (Figure 5-7). 

Our definitions of vector fields, forms, and orientations can 
be made for manifolds-with-boundary also. If Mis a k-dimen-
sional manifold-with-boundary and x E aM, then (aM),, is 
a (k - 1 )-dimensional subspace of the k-dimensional vector 
space M x· Thus there are exactly two unit vectors in M,, 
which are perpendicular to (aM)x; they can be distinguished 
as follows (Figure 5-8). If f: W-+ Rn is a coordinate system 
with WC .Hk andf(O) = x, then only one of these unit vectors 
is f• (v0) for some v0 with vk < 0. This unit vector is called the 
outward unit normal n(x); it is not hard to cheek that this 
definition does not depend on the coordinate system f. 

Suppose thatµ is an orientation of a k-dimensional manifold-
with-boundary M. If x E aM, choose v1, ... ,vk-1 E (rJM)z 
so that [n(x), v 1, •.. ,vk_ 1] = µ,,. If it is also true that 
[n(x), W1, ... ,wk-1] = µ,,, then both [v 1, •.• ,vk-d and 
[w1, ... ,wk-i] are the same orientation for (aM),,. This 
orientation is denoted (aµ)z. It is easy to see that the orienta-
tions (iJµ)z, for x E aM, are consistent on aM. Thus if M is 
orientable, aM is also orientable, and an orientation µ for M 
determines an orientation aµ for aM, called the induced 
orientation. If we apply these definitions to Uk with the 
usual orientation, we find that the induced orientation on 
Rk-l = Ix E Hk: xk = 0 I is ( -1 jk times the usual orienta-
tion. The reason for such a choice will become clear in the 
next section. 

If M is an oriented (n - })-dimensional manifold in Rn, a 
substitute for outward unit normal vectors can be defined, 
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(b) 

(c) 

FIGURE S-8. Some outward unit normal vectors of manifolds-with-
boundary in R 3• 

even though M is not necessarily the boundary of an n-dimen-
sional manifold. If fv1, . . . ,vn- d = P.z, we choose n(x) in 
R" z so that n(x) is a unit vector perpendicular to M z and 
[n(x), v1, • • • ,vn_1] is the usual orientation of R"z· We still 
call n(x) the outward unit normal to M (determined by µ.) . 
The vectors n(x) vary continuously on M, in an obvious sense. 
Conversely, if a continuous family of unit normal vectors n(x) 
is defined on all of M, then we can determine an orientation of 
M. This shows that such a continuous choice of normal 
vectors is impossible on the Mobius strip. In the paper model 
of the Mobius strip the two sides of the paper (which has 
thickness) may be thought of as the end points of the unit 
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normal vectors in both directions. The impossibility of 
choosing normal vectors continuously is reflected by the 
famous property of the paper model. The paper model is 
one-sided (if you start to paint it on one side you end up 
painting it all over); in other words, choosing n(x) arbitrarily 
at one point, and then by the continuity requirement at other 
points, eventually forces the opposite choice for n(x) at the 
initial point. 

Problems. 5-9. Show that M z consists of the tangent vectors at t 
of curves c in M with c(t) = x. 

5-10. Suppose e is a collection of coordinate systems for M such that 
(l) For each x E M there is f E e which is a coordinate system 
around z; (2) if J,g E e, then det (r1 • g)' > O. Show that there 
is a unique orientation of M such that f is orientation-preserving 
if J E e. 

5-U. If M is an n-dimensional manifold-with-boundary in Rn, define 
µz as the usual orientation of M z = Rn z (the orientation µ so 
defined is the usual orientation of M). If x E i!M, show that 
the two definitions of n(x) given above agree. 

5-12. (a) If F is a differentiable vector field on M C Rn, show that 
there is an open set A ::) M and a differentiable vector field P 
on A with P(x) = F(x) for x E M. Hint: Do this locally and 
use partitions of unity. 

(b) If II{ is closed, show that we can choose A = Rn. 
5-13. Let g: A -+ RP be as in Theorem 5-1. 

(a) If x E M = g- 1(0), let h: U-+ R• be the essentially unique 
diffeomorphism such that g • h(y) = (11"-•+1, ••• ,11") and 
h(O) = x. Define f: Rn-p-+ Rn by f(a) = h(O,a). Show that f• 
is 1-1 so that the n - p vectors f• ((e 1) 0), ••• ,f. ((en-p)o) are 
linearly independent. 

(b) Show that orientations l'z can be defined consistently, so 
that M is orientable. 

(c) If p = I, show that the components of the outward normal 
at x are some multiple of D1g(x), ... , D.g(x). • 

5-14. If M C R" is an orientable (n - 1)-dimensional manifold, show 
that there is an open set A C R" and a differentiable g: A -+ R 1 so 
that M = g-1(0) and g'(z) has rank 1 for x EM. Hint: Prob-
lem 5-4 does this locally. Use the orientation to choose consistent 
local solutions and use partitions of unity. 

5-15. Let M be an (n - !)-dimensional manifold in R". Let M(e) be 
the set of end points of normal vectors (in both directions) of 
length e and suppose e is small enough so that M(e) is also an 
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(n - 1)-dimensional manifold. Show that M(a) is orientable 
(even if Mis not). What is M(e) if Mis the Mobius strip? 

5-16. Let g: A-+ RP be as in Theorem 5-1. If f: R"-+ R is differentiable 
and the maximum (or minimum) off on g-1(0) occurs at a, show 
that there are >.1, ... ,>.p E R, such that 

n 

(1) D;J(a) - L >.;D;r/(a) j = 1, ... ,n. 
i•l 

Hint: This equation can be written df(a) = ~;'..1>.;dgi(a) and is 
obvious if g(x) - (x"-p+1, ... ,x"). 

The maximum off on g-1(0) is sometimes called the maximum 
of f subject to the constraints gi = 0. One can attempt to 
find a by solving the system of equations (1}. In particular, if 
g: A-+ R, we must solve n + 1 equations 

D;/(a) = >.D;g(a), 
g(a) = 0, 

in n + 1 unknowns a1, ... ,a",>., which is often very simple 
if we leave the equation g(a) = 0 for last. This is Lagrange's 
method, and the useful but irrelevant >. is called a Lagrangian 
multiplier. The following problem gives a nice theoretical use 
for Lagrangian multipliers. 

5-17. (a) Let T: R"-+ R" be self-adjoint with matrix A = (a,;), so 
that a;; = a;;. If f(x) = (Tx,x} = ~a;;x'x;, show that Dk/(x) -
2~7_,ak;x;. By considering the maximum of (Tx,x} on sn-l 

show that there is x E sn-l and >. E R with Tx = >.x. 
(b) If V = IYER": (x,y) = OI, show that T(V} CV and 

T: V-+ Vis self-adjoint. 
(c} Show that T has a basis of eigenvectors. 

STOKES' THEOREM ON MANIFOLDS 

If w is a p-form on a k-dimensional manifold-with-boundary 
M and c is a singular p-cube in M, we define 

J w = f c*w 
C (Q,J]P 

precisely as before; integrals over p-chains are also defined as 
before. In the case p = k it may happen that there is an 
open set W :> [O, 1 ]k and a coordinate system f: W __. R" such 
that c(x) = f(x) for x E [0,l]k; a k-cube in M will always be 

' 
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understood to be of this type. If M is oriented, the singular 
k-cube c is called orientation-preserving if f is. 

k . . 5-4 Theorem. If c1,c2 : [O, I] - M are two or1entat10n-
preserving singular k-cubes in the oriented k-dimensional mani-
fold M and w is a k-form on kf such that w = 0 outside of 
CJ ([O, 1 ]k) n C2([0, l ]k)' then 

I w = I w. 
Ct Ci 

Proof. We have 

f w = f CJ*(w) = f (c2J o c1)*c2*(w). 
ci [O,l]' [0,1)• 

(Here c2 1 o CJ is defined only on a subset of [0,l]k and the 
second equality depends on the fact that w = 0 outside of 
c1 ([0,l]k) n c2([0,l]k).) It therefore suffices to show that 

f (c21 0 c1)*c2*(w) = / c2*(w) = / w. 
[O,IJ• [O,l]' c, 

If c2*(w) = f dx 1 I\ · · · I\ dxk and c2- 1 o c1 is denoted by g, 
then by Theorem 4-9 we have 

(c2- 1 oc1)•c2*(w) = g*(fdx 1 /\···I\ dxk) 
- (f O g) · det g' · dx 1 /\ · /\ dxk 
= (fog) · \det g'\ · dx 1 I\ · · I\ dxk, 

smce det g' = det(c2-
1 o CJ)' > 0. The result now follows 

from Theorem 3-13. I 

The last equation in this proof should help explain why we 
have had to be so careful about orientations. 

Let w be a k-form on an oriented k-dimensional manifold M. 
If there is an orientation-preserving singular k-cube c in M such 
that w = 0 outside of c([O, J]k), we define 

f w = I w. 
M C 

Theorem 5-4 shows f M w does not depend on the choice of c. 
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Suppose now that"' is an arbitrary k-form on M. There is an 
open cover e of M such that for each U E e there is an orienta-
tion-preserving singular k-cube c with U C c([O,l]k). Let~ be 
a partition of unity for M subordinate to this cover. We 
define 

l w= l i,p·w 
.,E4> 

provided the sum converges as described in the discussion pre 
ceding Theorem 3-12 (this is certainly true if M is compact). 
An argument similar to that in Theorem 3-12 shows that J M w 

does not depend on the cover e or on~. 
All our definitions could have been given for a k-dimensional 

manifold-with-boundary M with orientation µ.. Let iJM have 
the induced orientation iJµ.. Let c be an orientation-preserv-
ing k-cube in M such that cck.o) lies in iJM and is the only face 
which has any interior points in iJM. As the remarks after 
the definition of oµ. show, cck.O) is orientation-preserving if k is 
even, but not if k is odd. Thus, if w is a (k - 1)-form on M 
which is O outside of c([O,IJt), we have 

I "' = < -1>k a r "'· 
C(k,O) i, 

On the other hand, C(k,Ol appears with coefficient ( - ll in iJc. 
Therefore 

I "' = I "' = < - 1l I "' = I "'· 
ac (-l)kc,,,., C(k,O) aM 

Our choice of iJµ. was made to eliminate any minus signs in this 
equation, and in the following theorem. 

5-5 Theorem (Stokes' Theorem). If M is a compact 
oriented k-dimensional manifold-with-boundary and w is a 
(k - 1)-form on M, then 

I dw = f "'· 
M aM 

(Here iJM is given the induced orientation.) 

Proof. Suppose first that there is an orientation-preserving 
singular k-cube in M - aM such that "' = 0 outside of 
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c([O,l]k). By Theorem 4-13 and the definition of dw we have 

J dw = J c*(dw) - J d(c*w) = J c*w = f w. 
C [0, lJ• (0, lj> ilf• /le 

Then 

J dw = J dw = J w = 0, 
M c i1c 

since w = 0 on oc. On the other hand, f aM w = 0 since w = 0 
on oM. 

Suppose next that there is an orientation-preserving singular 
k-cube in M such that C(k.O) is the only face in oM, and w = 0 
outside of c([O,I J)k. Then 

J dw = J dw = J w = J w. 
M C ac aM 

Now consider the general case. There is an open cover e 
of M and a partition of unity <I> for M subordinate to e such 
that for each ,p E <I> the form ,p · w is of one of the two sorts 
already considered. We have 

so that 

) d,p I\ w = o . . :~. 
Since Mis compact, this is a finite sum and we have 

Therefore 

Problems. 5-18, If M is an n-dimensional manifold (or manifold-
with-boundary) in Rn, with the usual orientation, show that 
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f. Mf dx 1 I\ · · · I\ dxn, as defined in this section, is the same as 

J Mf, as defined in Chapter 3. 
5-19, (a) Show that Theorem 5-5 is false if Mis not compact. Hint: If 

M is a manifold-with-boundary for which 5-5 holds, then M - aM 
is also a manifold-with-boundary (with empty boundary). 

(b) Show that Theorem 5-5 holds for noncompact M provided 

that w vanishes outside of a compact subset of M. 

5-20, If w is a (k - 1)-form on a compact k-dimensional manifold M, 

prove that f M dw = 0. Give a counterexample if M is not 

compact. 
5-21. An absolute k-tensor on Vis a function ,i: Vk-+ R of the form 

lwl for w E Ak(V). An absolute k-form on Mis a function '1 

such that 11 (x) is an absolute k-tensor on M z, Show that f M '1 

can be defined, even if M is not orientable. 
5-22. If M 1 C Rn is an n-dimensional manifold-with-boundary and 

M 2 C M 1 - aM 1 is an n-dimensional manifold-with-boundary, 

and M 1,M 2 are compact, prove that 

where w is an (n - 1 )-form on M 1, and iJM 1 and iJM 2 have the ori-

entations induced by the usual orientations of M 1 and M 2• Hint: 
Find a manifold-with-boundary M such that aM = aM 1 U aM 2 and 

such that the induced orientation on aM agrees with that for 

aM 1 on aM 1 and is the negative of that for aM 2 on aM 2, 

THE VOLUME ELEMENT 

Let M be a k-dimensional manifold (or manifold-with-bound-

ary) in Rn, with an orientationµ. If x E M, thenµ,, and the 

inner product T,, we defined previously determine a volume 
element w(x) E A\M,,). We therefore obtain a nowhere-zero 
k-form w on M, which is called the volume element on M 

(determined byµ) and denoted dV, even though it is not gen-

erally the differential of a (k - 1)-form. The volume of M 

is defined as f M dV, provided this integral exists, which is 
certainly the case if M is compact. "Volume" is usually 
called length or surface area for one- and two-dimensional 
manifolds, and dV is denoted ds (the "element of length") or 

dA [or dS] (the "element of (surface] area"). 
A concrete case of interest to us is the volume element of an 
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oriented surface (two-dimensional manifold) M in R3
. Let 

n(x) be the unit outward normal at x E Af. If w E A 2(M,,) 
is defined by 

w(v,w) = det (: ), 
n(x) 

then w(v,w) = 1 if v and ware an orthonormal basis of M,, with 
[v,w) = µ,,. Thus dA = w. On the other hand, w(v,w) = 
(v X w, n(x)) by definition of v X w. Thus we have 

dA(v,w) = (v X w, n(x)). 

Since v X w is a multiple of n(x) for v,w E M,,, we conclude 
that 

dA(v,w) = Iv X wJ 
if [v,w) = µz. If we wish to compute the area of M, we must 
evaluate f ro. 11 • c* (dA) for orientation-preserving singular 
2-cubes c. Define 

E(a) = [D,c 1(a)J2 + [D 1c2(a)) 2 + [D 1c3(a)] 2 , 

F(a) = D 1c1(a) · D 2c1(a) 
+ D1c2(a) · D2c2(a) 

+ D1c3(a) · D2c3<a), 

G(a) = [D2c 1(a)J 2 + [D 2c2(a)} 2 + [D2c3(a)] 2. 

Then 

c* (dA)((e,) 0 ,(e2)0 ) = dA (c*((e,) 0 ),c*((e2) 0 )) 

= J(D,c 1(a),D,c2(a),D,c3 (a)) X (D2c1(a),D 2c2{a),D 2c3 (a))J 
= VE(a)G(a) - F(a) 2 

by Problem 4-9. Thus 

f c* (dA) = J VEG - F 2
• 

[O, I]' [O, I]• 

Calculating surface area is clearly a foolhardy enterprise; 
fortunately one seldom needs to know the area of a surface. 
Moreover, there is a simple expression for dA which suffices for 
theoretical considerations. 
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5-6 Theorem. Let M be an oriented two-dimensional man-
ifold (or manifold-with-boundary) in R 3 and let n be the unit 
outward normal. Then 

(1) dA = n 1 dy I\ dz+ n 2 dz I\ dx + n 3 dx I\ dy. 

M ore011er, on M we have 

(2) 
(3) 
(4) 

Proof. 

n 1 dA = dy I\ dz. 
n 2 dA = dz I\ dx. 
n 3 dA = dx I\ dy. 

Equation (1) is equivalent to the equation 

dA(v,w) = det(: )· 
n(x) 

This is seen by expanding the determinant by minors along 
the bottom row. To prove the other equations, let z E R 3.,. 

Since v X w = an(x) for some a E R, we have 

(z,n(x)) · (v X w, n(x)) = (z,n(x))a = (z,an(x)) = (z,v X w). 

Choosing z = e1, e2, and e3 we obtain (2), (3), and (4). I 

A word of caution: if w E A2(R3
11) is defined by 

w = n 1(a) · dy(a) I\ dz(a) 
+ n 2(a) · dz(a) I\ dx(a) 

+ n 3 (a) · dx(a) I\ dy(a), 

it is not true, for example, that 

n 1(a) · w = dy(a) I\ dz(a). 

The two sides give the same result only when applied to 
v,w E M 0 • 

A few remarks should be made to justify the definition of 
length and surface area we have given. If c: [0,1]-+ R" is 
differentiable and c([0,1]) is a one-dimensional manifold-with-
boundary, it can be shown, but the proof is messy, that the 
length of c([0,1]) is indeed the least upper bound of the lengths 

t 

1 
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FIGURE 5-9. A surface containing 20 triangles inscribed in a por-
tion of a cylinder. If the number of triangles iB increased suff1eiently, by 
making the bases of triangles 3, 4, 7, 8, etc., suff1eiently small, the total area 
of the inscribed surface can be made as large as desired. 
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of inscribed broken lines. If c: (0,1) 2 -+ R", one naturally 

hopes that the area of c([0,1) 2) will be the least upper bound of 

the areas of surfaces made up of triangles whose vertices lie in 

c([0,1] 2). Amazingly enough, such a least upper bound is 

usually nonexistent-one can find inscribed polygonal surfaces 

arbitrarily close to c([0,1]2) with arbitrarily large area! This 

is indicated for a cylinder in Figure 5-9. Many definitions 

of surface area have been proposed, disagreeing with each 

other, but all agreeing with our definition for differentiable 

surfaces. For a discussion of these difficult questions the 

reader is referred to References (3) or [15). 

Problems. 5-23. If M is an oriented one-dimensional manifold in 

R" and c: (0,1]-+ Mis orientation-preserving, show that 

J c•(ds) - j ,V[(cl)']2 + ... + ((c")']2. 
[O,lj (O,lj 

5-24. If M is an n-dimensional manifold in R", with the usual orienta-

tion, show that dV = dx 1 I\ · · · I\ dx", so that the volume of 

M, as defined in this section, is the volume as defined in Chapter 3. 

(Note that this depends on the numerical factor in the definition of 

w I\ 71.) 
5-25. Generalize Theorem 5-6 to the case of an oriented (n - 1)-dimen-

sional manifold in R ". 
5-26. (a) If /: (a,b]-+ R is non-negative and the graph of f in the 

xy-plane is revolved around the x-axis in R3 to yield a surface M, 

show that the area of M is 

b f 21r1 v 1 + (f')2. 
a 

(b) Compute the area of S 2• 

5-27. If T: R"-+ R" is a norm preserving linear transformation and M 
is a k-dimensional manifold in R", show that M has the same 

volume as T(M). 
5-28. (a) If M is a k-dimensional manifold, show that an absolute 

k-tensor ldVI can be defined, even if M is not orientable, so that 

the volume of M can be defined as f MldVI. 
(b) If c: (0,2r] X ( -1,1)-+ R3 is defined by c(u,v) = 

(2 cos u + v sin(u/2)cos u, 2 sin u + v sin(u/2) sin u, v cos u/2), 

show that c([0,2r] X (-1,1)) is a Mobius strip and find its area. 
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5-29. If there is a nowhere-zero k-form on a k-dimensional manifold M, 
show that M is orientable. 

5-30. (a) If f: [0,1]-+ R is differentiable and c: [0,1]-+ R 2 is defined by 
c(x) = (x,f(x)), show that c([O,l]) has length f~ VI + (!') 2

• 

(b) Show that this length is the least upper bound of lengths of 
inscribed broken lines. Hint: If O = to < ti < · · · < t~ = l, 
then 

lc(t;) - c(t;_1)I = v' (t; - t;-1) 2 + (J(t;) - f(t;-1)) 2 

= v' (t; - t;_1) 2 + f'(s;) 2(t; - l;-1)2 

for some s; E [t;-1,t;]. 
5-31. Consider the 2-form "' defined on R 3 - 0 by 

x dy A dz + y dz A dx + z dx A dy 
"' = (x2 + y2 + z2)f · 

(a) Show that "' is closed. 
(b) Show that 

(v X w, p) 
"'(p)(v,,,w,,) = lvla 

For r > 0 let S 2(r) = Ix E R3 : jxj = rl. Show that"' restricted 
to the tangent space of S 2(r) is 1 /r2 times the volume element, 
and that f s'crJ "' = 4.-. Conclude that"' is not exact. Neverthe-
less we denote "' hy de since, as we shall see, de is the analogue of 
the I-form dB on R2 - 0. 

(c) If "" is a tangent vector such that v = Xp for some X E R 
show that de(p)(v,,,w,,) = 0 for all w,,. If a two-dimensional 
manifold M in R 3 is part of a generalized cone, that is, M 
is the union of segments of rays through the origin, show that 
f M de= 0. 

(d) Let MC R 3 - 0 be a compact two-dimensional manifold-
with-boundary such that every ray through O intersects Mat most 
once (Figure 5-10). The union of those rays through O which 
intersect M, is a solid cone C(M). The solid angle subtended by M 
is defined as the area of C(M) r'\ S 2, or equivalently as l /r2 times 
the area of C(M) r'\ S 2(r) for r > 0. Prove that the solid angle 
subtended by M is If M dej. Hint: Choose r small enough so 
that there is a three-dimensional manifold-with-boundary N (as in 
Figure 5-10) such that aN is the union of M and C(M) ('\ S 2(r), 
and a part of a generalized cone. (Actually, N will be a manifold-
with-corners; see the remarks at the end of the next section.) 
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C(M) 

/ 

FIGURE 5-10 

5-32. Let /, g: (0,1)-+ R 1 be nonintersecting closed curves. Define 
the linking number l(f,g) off and g by (cf. Problem 4-34) 

-1 f lU,g) ... - de. 4r 
C/,g 

(a) Show that if (F,G) is a homotopy of nonintersecting closed 
curves, then l(Fo,Go) == l(F1,G1). 
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(b) If r(u,v) = lf(u) - g(v)l show that 

I I 

-1 I I 1 l(f,g) = - 3 • A (u,v) du dv 
4,r [r(u,v)] 

0 0 
where 

( 

(/l)'(u) 
A(u,v) = det (g1)'(v) 

/1(u) - g1(v) 

(/2)' (u) 
(g2)' (v) 

/2(u) - g 2(v) 

(/3)' (u) ) 
(g3)'(v) . 

/ 3(u) - g3(v) 

(c) Show that l(f,g) = 0 if f and g both lie in the xy-plane. 
The curves of Figure 4-5 (b) are given by f(u) - (cos u, sin u, 0) 
and g(v) = (1 + cos v, 0, sin v). You may easily convince 
yourself that calculating l(f,g) by the above integral is hopeless in 
this case. The following problem shows how to find l(f,g) without 
explicit calculations. 

5-33, (a) If (a,b,c) E R 3 define 

(:z: - a)dy /\ dz + (y - b)dz /\ dx + (z - c)dx /\ dy 
dec •. b.c) = [(:z: _ a)2 + (y _ b)2 + (z _ c)'Jl ' 

If M is a compact two-dimensional manifold-with-boundary in 
R 3 and (a,b,c) El M define 

O(a,b,c) = I de(a,b,c)• 

M 

Let (a,b,c) be a point on the same side of Mas the outward normal 
and (a',b',c') a point on the opposite side. Show that by choosing 
(a,b,c) sufficiently close to (a',b',c') we can make O(a,b,c) -
O(a',b',c') as close to -4,.. as desired. Hint: First show that if 
M = iJN then O(a,b,c) = -4,r for (a,b,c) E N - Mand O(a,b,c) -
0 for (a,b,c) El N. 

(b) Suppose /([0,1]) = aM for some compact oriented two-
dimensional manifold-with-boundary M. (If/ does not intersect 
itself such an M always exists, even if /is knotted, see [6], page 138.) 
Suppose that whenever g intersects M at :z: the tangent vector v of 
g is not in Mr· Let n+ be the number of intersections where v 
points in the same direction as the outward normal and n- the 
number of other intersections. If n = n+ - n- show that 

-1 I n = - do. 4,.. 
g 
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(c) Prove that 

DaO(a,b,c) = 

where r(x,y,z) = l(x,y,z)I. 
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f (y - b)dz - (z - c)dy 
ra 

I 

f (z - c)dx - (x - a)dz 

r' 
I 

f (x - a)dy - (y - b)dx 
3 , 

r 
I 

(d) Show that the integer n of (b) equals the integral of Prob-
lem 5-32(b), and use this result to show that l(f,g) = 1 if/ and g 
are the curves of Figure 4-6 (b), while l(f,g) - 0 if/ and g are the 
curves of Figure 4-6 (c). (These results were known to Gauss 
[7]. The proofs outlined here are from [4] pp. 409-411; see also 
[13], Volume 2, pp. 41-43.) 

THE CLASSICAL THEOREMS 

We have now prepared all the machinery necessary to state and 
prove the classical "Stokes' type" of theorems. We will 
indulge in a little bit of self-explanatory classical notation. 

5-7 Theorem (Green's Theorem). Let M C R 2 be a com-
pact two-dimensional manifold-with-boundary. Suppose that 
a,fJ: M - R are differentiable. Then 

l a dx + fJ dy = f (D1fJ - D2a)dx I\ dy 
a M 

(Here M is given the usual orientation, and aM the induced 
orientation, also known as the counterclockwise orientation.) 

Proof. This is a very special case of Theorem 5-5, since 
d(a dx + fJ dy) = (D1fJ - D2a)dx I\ dy. I 
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5-8 Theorem (Divergence Theorem). Let M C R 3 be a 
compact three-dimensional man if old-with-boundary and n the 
unit outward normal on aM. Let F be a differentiable vector field 
on M. Then 

f divF dV = f (F,n) dA. 
M aM 

This equation is also written in terms of three differentiable func-
tions a,fJ,-y: Jl,f ------> R: 

ff f (!: + :: + ::) dV = ff (n
1
a + n 2

fJ + n 3
-y) dS. 

M oM 

Proof. Define w on M by w = F 1 dy /\ dz+ F 2 dz /\ dx + 
F 3 dx /\ dy. Then dw = div F dV. According to Theorem 
5-6, on aM we have 

n 1 dA = dy /\ dz, 
n 2 dA = dz /\ dx, 
n 3 dA = dx /\ dy. 

Therefore on aM we have 

(F,n) dA = F 1n 1 dA + F 2n 2 dA + F 3n 3 dA 
= F 1 dy /\ dz + F 2 dz /\ dx + F 3 dx /\ dy 
= w. 

Thus, by Theorem 5-5 we have 

f div F dV = f dw = f w = 
M M oM 

f (F,n)dA. 
oM 

I 

5-9 Theoreni (Stokes' Theorem). Let M C R3 be a com-
pact oriented two-dimensional man if old-with-boundary and n the 
unit outward normal on M determined by the orientation of M. 
Let aM have the induced orientation. Let T be the vector field on 
i:JM with ds( T) = 1 and let F be a differentiable vector field in 
an open set containing M. Then 

f ((v' X F), n) dA = [ (F,T) ds. 
M a 



136 Calcu.lu.s on Manifolds 

This equation is sometimes written 

J a dx + fJ dy + 'Y dz = 
aM 

n 1 - - - + n 2 - - - + n 3 - - - dS. ff [ (a.., ofJ) (aa a..,) (ofJ aa)] 
ay oz oz ax ax oy 

M 

Proof. Define w on M by w = F 1 dx + F 2 dy + F3 dz. 
Since V X F has components D 2F 3 - D 3F 2, D 3F 1 - D 1F 3

, 

D 1F 2 - D 2F1, it follows, as in the proof of Theorem 5-8, that 
on M we have 

((V X F), n) dA = (D 2F 3 - D 3F 2)dy I\ dz 
+ (D 3F 1 - D1F3)dz /\ dx 

+ (D1F 2 - D~1)dx I\ dy 
= dw. 

On the other hand, since ds(T) = 1, on aM we have 

T1 ds = dx, 
T2 ds = dy, 
T3 ds = dz. 

(These equations may be checked by applying both sides to 
Tz, for X E aM, since Tz is a basis for (iJM)z.) 

Therefore on aM we have 

(F,T) ds = F 1T 1 ds + F 2T2 ds + F 3T3 ds 
= F 1 dx + F 2 dy + F 3 dz 
= w. 

Thus, by Theorem 5-5, we have 

1 ((V X F),n) dA = f dw = f w = f (F,T) ds. I 
M aM aM 

Theorems 5-8 and 5-9 are the basis for the names div F and 
curl F. If F(x) is the velocity vector of a fiuid at x (at some 
time) then f aM (F,n) dA is the amount of fluid "diverging" 
from M. Consequently the condition div F = 0 expresses 
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the fact that the fiuid is incompressible. If M is a disc, then 
f aM (F, T) ds measures the amount that the fiuid curls around 
the center of the disc. If this is zero for all discs, then V X F 
= 0, and the fiuid is called irrotational. 

These interpretations of div F and curl Fare due to Maxwell 
[13). Maxwell actually worked with the negative of div F, 
which he accordingly called the convergence. For V X F 
Maxwell proposed "with great diffidence" the terminology 
rotation of F; this unfortunate term suggested the abbreviation 
rot F which one occasionally still sees. 

The classical theorems of this section are usually stated in 
somewhat greater generality than they are here. For exam-
ple, Green's Theorem is true for a square, and the Divergence 
Theorem is true for a cube. These two particular facts can 
be proved by approximating the square or cube by manifolds-
with-boundary. A thorough generalization of the theorems of 
this section requires the concept of manifolds-with-corners; 
these are subsets of Rn which are, up to diffeomorphism, 
locally a portion of Rk which is bounded by pieces of (k - 1)-
planes. The ambitious reader will find it a challenging exer-
cise to define manifolds-with-corners rigorously and to 
investigate how the results of this entire chapter may be 
generalized. 

Problems. 5-34. Generalize the divergence theorem to the case of 
an n-manifold with boundary in R ". 

5-35. Applying the generalized divergence theorem to the set M = 
Ix E R•: !xi < a I and F(x) = x%, find the volume of s•- 1 = 
Ix E R•: !xi - 11 in terms of the n-dimensional volume of B,. = 
Ix ER": lxl < 11. (This volume is ,.-"12/(n/2)! if n is even and 
2<n+ 1>t 2,..<n-l) 12 /1 · 3 · 5 · ... · n if n is odd.) 

5-36. Define F on R 3 by F(x) = (O,O,cx 3)% and let M be a compact 
three-dimensional manifold-with-boundary with M C Ix; x3 < 
0 I - The vector field F may be thought of as the downward pres-
sure of a fiuid of density c in Ix: x3 < OI. Since a fiuid exerts 
equal pressures in all directions, we define the buoyant force on M, 
due to the fiuid, as -f oM (F,n) dA. Prove the following theorem. 
Theorem (Archimedes). The buoyant force on M is equal to the 
weight of the fiuid displaced by M. 
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Addenda 

1. It should be remarked after Theorem 2-11 (the Inverse 
Function Theorem) that the formula for 1-1 allows us to con-
clude that 1-1 is actually continuously differentiable (and that 
it is C"" if f is). Indeed, it suffices to note that the entries of 
the inverse of a matrix A are C"" functions of the entries 
of A. This follows from "Cramer's Rule": (A-1);; = 
(det A •i)/(det A), where A,; is the matrix obtained from A 
by deleting row i and column j. 

2. The proof of the first part of Theorem 3-8 can be siinpli-
fied considerably, rendering Lemma 3-7 unnecessary. It 
suffices to cover B by the interiors of closed rectangles U, with 
~;'_ 1v(U,) < e, and to choose for each x E A - B a closed 
rectangle V "" containing x in its interior, with M v.(f) -
mv.(f) < e. If every subrectangle of a partition P is con-
tained in one of some finite collection of U /s and V .,'s which 
cover A, and if(x)I < M for all x in A, then U(f, P) - L(f, P) 
< ev(A) + 2Me. 

The proof of the converse part contains an error, since 
M.(f) - m.(f) > 1/n is guaranteed only if the interior of S 
intersects B1 1,.. To compensate for this it suffices to cover the 
boundaries of all subrectangles of P with a finite collection of 
rectangles with total volume < e. These, together with S, 
cover B 11 ,., and have total volume < 2e. 

145 
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3. The argument in the first part of Theorem 3-14 (Sard's 
Theorem) requires a little amplification. If U C A is a closed 
rectangle with sides of length l, then, because U is compact, 
there is an integer N with the following property: if U is 
divided into N" rectangles, with sides of length l/N, then 
ID;gi(w) - D;l(z)I < e/n 2 whenever wand z are both in one 
such rectangle S. Given x ES, let /(z) = Dg(x)(z) - g(z). 
Then, if z E S, 

ID;f(z)I = ID;gi(x) - D;gi(z)I < e/n2• 

So by Lemma 2-10, if x,y E S, then 

jDg(x)(y - x) - g(y) + g(x)I = IJ(y) - f(x)I < elx - YI 
< e Vn (l/N). 

4. Finally, the notation Ak(V) appearing in this book is 
incorrect, since it conflicts with the standard definition of 
A\V) (as a certain quotient of the tensor algebra of V). For 
the vector space in question (which is naturally isomorphic to 
Ak(V*) for finite dimensional vector spaces V) the notation 
1i(V) is probably on the way to becoming standard. This 
substitution should be made on pages 78-85, 88-89, 116, and 
126-128. 



147 Addenda 
2-13 Theorem (corrected) . Let f : R n -+ RP be contirmoiisly difJerent-iable 
in an open set contain'ing a, where p '.S n . If f (a) = 0 and the p x n matrix 
(Djfi(a)) has rank P: then there is an open set A C R n containing a and a 
continuottsly differentiable fimction h : A -+ R n with continuously different-iable 
inverse such that h(a) = 0 and 




