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PREFACE.

IN writing the present treatise on the INTEGRAL CALCULUS,
the object has been to produce a work at once elementary and
complete—adapted for the use of beginners, and sufficient for
the wants of advanced students. In the selection of the pro-
positions, and in the mode of establishing them, I have en-
deavoured to exhibit fully and clearly the principles of the
subject, and to illustrate all their most important results.
The process of summation has been repeatedly brought for-
ward, with the view of securing the attention of the student to
the notions which form the true foundation of the Integral
Calculus itself, as well as of its most valuable applications.
Considerable space has been devoted to the investigations of
the lengths and areas of curves and of the volumes of solids,
and an attempt has been made to explain those difficulties
which usually perplex beginners—especially with reference to
the Zmits of integrations.

The transformation of multiple integrals is one of the most
interesting parts of the subject, and the experience of teachers
shews that the usual modes of treating it are not free from
obscurity. I have therefore adopted a method different from
those of previous elementary writers, and have endeavoured ‘o
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render it easily intelligible by full detail, and by the solution
of several problems.

In order that the student may find in the volume all that
he requires, a large collection of examples for exercise has
been appended to the different chapters. These examples have
been selected from the College and University Examination
Papers, and have been carefully verified, so that it is hoped
that few errors will be found among them. The short intro-
duction to the Integral Calculus which is given at the end of
my treatise on the Differential Calculus, has been incorporated
in the present work so as to render it complete in itself. The
student has been occasionally referred to the Differential Cal-
culus for such information as he would require before com-
mencing the study of the Integral Calculus.

1. TODHUNTER.

St JouN’s COLLEGE,
March 1857.



CONTENTS.

Meaning of Integration. Examples
Rational Fractions

Formulze of Reduction

Miscellaneous Remarks

Double Integration

Lengths of Curves .

Areas of Plane Curves and of Surfaces
Volumes of Solids .

Differentiation of an Integral with respect to any quantity

which it may involve . . .
Elliptic Integrals .
Change of the Variables in a Multiple Integral
Definite Integrals . . . . .

Expansion of Functions in Trigonometrical Series

Application of the Integral Calculus to Questions of Mean
Value and Probability .

PAGE

22
38
48
64
71

103

142

165
174

212

250

262






INTEGRAL CALCULUS.

CHAPTER 1.

MEANING OF INTEGRATION. EXAMPLES.

1. In the Differential Calculus we have a system of
rules by means of which we deduce from any given function
a second function called the differential coeflicient of the
former ; in the Integral Calculus we have to return from the
differential coefficient to the function from which it was
deduced. We do not say that this is the odject of the Inte-
gral Calculus, for the fundamental problem of the subject is
to effect the summation of a certain infinite series of inde-
finitely small terms; but for the solution of this problem we
must generally know the function of which a given function is
the differential coefficient. This we now proceed to shew.

2. Let ¢ () denote any function of z which remains finite
and continuous for all values of # comprised between two
fixed values @ and b. Let «,, «,,... z,_, be a series of values
lying between a and b, so that a, z,, @,, ..., ,, b are in order
of magnitude ascending or descending. 'We propose then to
find the limit of the series

(xl - a) ¢ (a’) + (mz - wl) ¢ (wl) + (ws - wﬁ) ¢ (wa) """
+ (b - mﬁ—l) ¢ (xn—1)1
when «,—a, z,—x,, ... b —x, , are all diminished without
limit, and consequently # increased without limit.
Pute,—a=h,x,—ax,=h, ... b—x, =h,; thus the series
may be written
k(@) + b @ (@) + by b (@g) +Ea b ()
T.LC. 1



2 MEANING OF INTEGRATION.

and may be denoted by k¢ (z), for it is the sum of a number
of terms of which A¢(x) may be taken as the type. Since
each of the terms of which % is the type may be considered
as the difference between two values successively ascribed to
the variable x, we may also use the symbol ¢ (x) Ax as the type
of the terms to be summed, and 3¢ (x) Az for the sum.

‘We may shew at once that Z¢ (x) Az can never exceed a
certain finite quantity. For let 4 denote the numerically
greatest value which ¢(x) can have when « lies between a
and b; then 3¢ (x) Az i1s numerically less than (&, + %, + ...
+h,) A, that is less than (b —a) 4.

We now proceed to determine the limit of 3¢ () Az. Let
Y (z) be such a function of = that ¢(x) is the differential
coeflicient of it with respect to . Then we know that the

limit of ¥ &+ ’2 e G

when £ is indefinitely diminished is
¢(x). Hence we may put

¥ (@) —¥(a) =h{p(a) +p}

¥ (@) — ¥ (@) =hip@) +pl

.....................

v (wﬂ—l) -4 (wn-x) = hn—l {¢ (wn—a) + Pﬁ—l}’
‘P\ (b) - "’ (wﬂ-l) =h, {¢ (w’l—l) + Pn}’

where p,, p,, ... p, ultimately vanish. From these equations
we have by addition

¥ (B) — ¥ (a) =26 (2) Az + Zhp.

Now Zhp is less than (b — a) p' where p' denotes the greatest
of the quantities p,, p,, ... p,; hence Zkp ultimately vanishes,
and we obtain this result—the limit of ¢ (x) Ax when each
of the quantities of which Ax is the type diminishes indefinitely
o ¥ ()@

3. The notation used to express the preceding result is

[$@ d=y ) -y (@;

the symbol [ is an abbreviation of the word « sum,” and dz
represents the Az of 3¢ (x) Aw.
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4. Suppose that &, &, ... k, are all equal; then each of

1? 27

them is equal to —:ng, and z, is equal to a+:—;(b—a).

b
Hence f ¢ (x) dx is equivalent to the following direction—

¢ divide b — a into equal parts, each part being &; in ¢(x)
substitute for « successively

a,a+h a+2h ...a+(n—1)k;

add these values together, multiply the sum by % and then
diminish % without limit.” If these operations are performed
we shall have as the result yr (b) - ¥ (a).

5. A single term such as ¢ (x) Az is frequently called an
element. It may be observed that the limit of 2¢ (x) Az will
not be altered in value if we omit a finite number of its
elements, or add a finite number of similar elements; for
in the limit each element is indefinitely small, and a finite
number of indefinitely small quantities ultimately vanishes.

6. The above process is called Integration; the quantity
b
f ¢ (x) dx is called a definite integral, and a and b are called
the Zimats of the integral. Since the value of this definite
integral is Y+ (b) — Yr(a) we must, when a function ¢ (z) is to
be integrated between assigned limits, first ascertain the

function ¥ (x) of which ¢ () 1s the differential coefficient. To
express the connexion between ¢ (x) and Y (x) we have

b =3,

and this is also denoted by the equation

[$(@) do=v@.

In such an equation as the last, where we have no limits
assigned, we merely assert that () is the function from
which ¢ (x) can be obtained by differentiation; () is here
called the vndefinite integral of ¢ ().

1—2



4 APPLICATION OF INTEGRATION.

7. 'The problem of finding the areas of curves was one
of those which gave rise to the Integral Calculus, and far-
nishes an illustration of the preceding articles.

x
re
‘/"41’
¢ A MW B =

Let DPE be a curve of which the equation is y= ¢ (x),
and suppose it re?uired to find the area included between this
curve, the axis of @, and the ordinates corresponding to the
abscissee ¢ and b. Let O4d=a, OB=5; divide the space
AB into n equal intervals and draw ordinates at the points
of division. Suppose OM=a+ (r—1)k, then the area of
the parallelogram PMNp is

ke {a+ (r—1)k}.

The sum found by assigning to » in this expression all values
from 1 to n differs from the required area of the curve b
the sum of all the portions similar to the triangle PQp, and
as this last sum is obviously less than the greatest of the
figures of which PMNQ is one, we can, by sufficiently
diminishing %, obtain a result differing as little as we please
from the required area. Therefore the area of the curve is
the limit of the series

hp(a) + P(a+k)+ Pp(a+2h)...... ¢la+ (n—1)2]},
and is equal to Y (b) — Y (a).

8. If ¥ (z) be the function from which ¢(x) springs by
differentiation, we denote this by the equation

[p@ de=v @),

and we now proceed to methods of finding 4 (x) when ¢ () is
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given. We have shewn, Dif. Cal. Art. 102, that if two functions
have the same differential coefficient with respect to a vari-
able they can only differ by some constant quantity; hence
if Yr(x) be a function having ¢ (x) for its differential coeffi-
cient, then () + C, where C is any quantity independent
of x, is the only form that can have the same differential
coefficient. Hence, hereafter, when we assert that any func-
tion is the integral of a proposed function, we may if we
please add to such integral any constant quantity.

Integration then will for some time appear to be merely
the snverse of differentiation, and we might have so defined
it; we have however preferred to introduce at the beginning
the notion of summation because it occurs in many of the
most important applications of the subject.

9. Immediate integration.

‘When a function is recognized to be the differential coeffi-
cient of another function we know of course the integral of the
first. The following list gives the integrals of the different
simple functions:

xm-l-l
Jordo= s
w1
f?= og:v,
az
fazdm—log,a’
fe”dx=e’,

fsina: dx = — cos z,

fcosa: dx = sinz,
dx

cos’z

de .
p 2m:—(:ota:,

=tanz,




6 INTEGRATION BY SUBSTITUTION.

o

fraza-
CEr

dx 1, L=z
fa’+az’—¢;tan a

10. Integration by substitution.

The process of integration is sometimes facilitated by sub-
stituting for the variable some function of a new variable.
Suppose ¢ () the function to be integrated, and a and b the
limits of the integral. It is evident that we may suppose
x to be a function of a new variable z, 1grovide that the
function chosen is capable of assuming all the values of x
required in the integration. Put then & =f(z), and let o’ and
¥ be the values of z, which make f(2) or « equal to @ and 5
respectively; thus a =f %a’) and b =f£(%'). Now suppose that
Y (x) is the function of which ¢ (z) is the differential co-

efficient, that is ¢ (w)=%; then

[¢@d=v@-v@

=¥+ /@ =+ {f@)}
But by the principles of the Differential Calculus,

HCL = g ir@1r s
therefore (700} ~+ /@) = [ $LF@LF )
= f: ¢ (=) gx; dz;
thus f () do = f:qb @ % .
This result we may write simply thus
[ do=[¢ @ % 2,

provided we remember that when the former integral is taken
W
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between certain limits ¢ and 5, the latter must be taken
between corresponding limits o’ and &'

ll.th As an example of the preceding article let
. a

f 7V @z =Y be required. Assume T=1, thus

¢ and f de = f ! 9z d.

a=2 Nz —a) |z yRax—d) dz ¥

=f dz _1 dz
aVR(=2 = (=99 &l V-7

dz_
g

1., 1. _ ,2—a
=-8ln 2= -8in ——.
a a

Here we have found the proposed integral by substituting
for z in the manner indica.t;edp in the preceding article. This
process will often simplify a proposed integral, but no rules
can be given to guide the student as to the best assumption
to make ; this point must be left to observation and practice.

12. Integration by parts.

From the equation

d(wv) dv du
o —uﬂ-l-”d_m

we deduce by integrating both members,

uv=[ug—:;dw+fv%dw,

therefore - fu%dx=uv—fvg—zdm.

The use of this formula is called “integration by parts.”
For example, consider f x cosaxdr. Since

. 1 d.sin ax
cos ax = —
a dx °’
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we may write the proposed expression in the form

x d.sin ax
[feg T
and this, by the formula, is equal to
2 8in ax sin ax dzx
a dz’ -dx
_z 31;1 ax [sinax &

x sinax = CoS ax

=T a a
Again, fw’cosaxdx=f£’d'3;axch:
x,smam-—f——smaxdw

=a?smax 2_:vd.oosaa:d”

dx
2 sinax 2x cos ax f2cosaa:
= sar dze
a a
_&d'sinar  2xcosar 2sinax
T a a @
Again |e®sin axde = jsmaz%"dw

8in ax ae” cos ax
: e"‘-—f——————c &

___sma:cea_facosam d,.i:“d""

c

. .
=smcaa:e¢_aoosaxe,_ asinaz o
By transposing,

1+c:)fe"smaa:dm (smaa:—-oosax)
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¢ (¢ 8in ax — a o8 ax)
a+c

therefore f € 8in axde =
Similarly we may shew that,

fe"cosa;z:dx=eﬂ(c cos ax + a sin ax)

a+c

13. The differential coefficient of any function can always
be found by the use of the rules given in the former part of
the book, but it is not so with the integral of any assigned
function. We know, for example, that if m be any num-

il

ber, positive or negative, except — 1, then m“da;=1:—+i. ,

but when m=—1 this is not true; in this case we have
f d;a: =log«. If however we had not previously defined the

term logarithm, and investigated the properties of a logarithm,
we should have been unable to state what function would

give i as its differential coefficient. Thus we may find our-

selves limited in our powers of integration from our not
having given a name to every particular function and investi-
gated its properties.

In order to effect any proposed integration, it will often
be necessary to use arti.ﬁ‘():es which can only be suggested
by practice.

14, We add a few miscellaneous examples. It should be
noticed, that ¢, (x) and ¢, (x) being any functions of z,

[16.0)+ (@) o= [,00) do+ [9,0) d,

or at least the two expressions which we assert to be equal
can only differ by a constant; for if we differentiate both
we arrive at the same result, namely ¢, (z) + ¢, ().

Ex. (1). f»\/(a’ — ) dx.
o
V@

[V =a) d=aw(@ -2 + [ 5, by Ast1s,
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and [V(a*~") o= fv —7) ‘f«/(a* A «/(fixz*)’

therefore, by addition,
2 [V(a' - o) do=2 /(@) +“'fr/@—fx:7)’

therefore f V(a'— ) de = M+ %’ sin™ ‘:—;. Art. 9.

2
dx
EX. (2). fm.
Assume V@ +d)=2—z,
therefore @' =2' — 2z,
dr z—2x
dz~ z °
dx 1 dzx dz
Hence fv(zﬂ+a*)‘fv(x*+a*) Iz‘l”‘f7‘1°gz

=log {z + v/ (2 + a*)}.

dx
- Ex. (3). f m .
As in Ex. (2), we may shew that the result is

log {z + ¥/ (2* — &*)}.
CEx (@) [V@+d)dn

[v@+a) o=z +a by A, 12

) .[Vx’+ &

‘ e + *dx . .
Also f«/(w*+a’)dw= vwﬁff) = | J@ra “f V(@ +a)’

therefore, by addition,
2 [V@ +a) d=z V(@ + ) +d

f«/(a? ¥a)’
therefore fV(m’+ @) de = Mx_;_-i_-_a) +3 log {x + +/ (*+ a”)}.
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) dx
Ex. (5) fm-

++a:’

dx
e e,

Putting = + 2%: z; our integral becomes, by (2) and (3),

fV(a+bw+cw") Vc,[«/a b

715 log {262+ +2vc¢(a+bm+cz*)}
where we omit the constant quantity —- 7o log 2¢.

dx
Ex. (6). fm .

fmg——cw’)=715f«/ g+dz_w_m,

VcJ {4ac+b’ 2%)'}

2
Put 2* for 4“1:; 2 and 2 for z — é;’ thus the integral be-
comes — f—-(—lz——- which gives - sin™ 2
VelNFE=2) gves e g oF
1 sin=t 2cx—b
Ve N (4ac+ 8%~

d:
EX. (7). f;‘\/(Tw__?')'.
de [ 1 dax,
Vo=a) Jey@=a & ¥

Put x=1, thenf
Y x
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[ 9 __1[_ d g PR
=T G =ay =" al /l_y,)— "
e
1. _,a
=——sin -.
a x

Since sin"g+oos"£=g, a constant, we may also write
our last result thus

]’ dx 1 e

N @—a) a® z*
dz

Ex. (8). fa:_—«/( ot

By putting z=—l-, as in Ex. (7), we deduce for the

required result

<

11 x
a Oga+4(a’iz')'

& &z
Ex. (9). ](z—_a)—, and [22_

r—a’

fd:c I 1
=" m—-1(z—a)*"’

f de =log (x — a).

r—a

These are obvious if we differentiate the right-hand
members.

Ex. (10). [-%_..

x—a*’

fa?dfa’=§la (a:—l—a_a:-];-a)dx

_1(de _1[ds

2ajx—a 2alx+a
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1 1
=5 log (a:—a)—% log (z+ a)

——1-10 iy
% %z ta’
. z—a _ .. o T—a .
This supposes = o bositive; if 77 be negative, we
must write
dx 1,27
F—a 2 Cataz
dx
Ex. (11). fm.
f da 1 de
atbztcd® ¢ b\*, dac—b""
(“'2_6) t 4
dac— b - . . .
If be negative, we obtain the integral by Ex. (10),

4c
namel
Y 1 o 2¢x + b — /(0* — 4ac)
V& —4ac) 2+ b+ V(P —4da0) °

If dac—¥ be positive, then by Art. 9, the integral is

Ac
2 tan™ 2ez +b
v (4ac—b°) N(dac—b*)"
Ax+ B
Ex. (12). ;r%-mdz.
Ab Ab
Az+ B _fA“%*B‘Tcdx
a+brtcr a + bx + cx*
_A [ 2x4+b Ab[ dx
T2 a+bm+cw”dx+(B——27) atbxtex”

The former integral is 2% log (@ + bz + c2®), and the latter
has been found in Ex. (11).
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dx
Ex. (13). fc—o;v.
f cos x dx dz if 2 —sina
cos x 2 - ?

=) oz J1—2

—§log 177, by Ex. (10),

=}log 1+sma: logcot(z-‘;).
Similarly ngaf log tan 2.

&
Bx. () [ies

fa+ff:osw=j ( = ,g)

a(sin®= +cos —)+b<cos 2" sin’ 5

x
sec’= dx

_] 2
a+b+(a-—b)tan”%c

dz . x
=2fa+b+(a—b)z“ if z=tang

Hence, if a be greater than 3, the integral is
x
2 ta—xz‘\/(a"' ) 2 tan—xtan§.4(a_b).
V(a* b)) Va+8) " V@E=B) Via+o)
and if @ be less than b,

1 log 2N (b—a)+ (b +a)
VF=a) 8y —a) v+ a)’

v(b—a)mn§+v(b+a)

1
T log .
V(- a) v(b—a)tan;f—v(b+a)

or
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In any of these examples, since we have found the dn-
definite 1ntegral, we can immediately ascertain the definite
integral between any assigned limits. For example, since

fr(x-%sf log {z + v/(2" + )},
therefore
2+ /5
=log e

»
15. The integral [x™(a + bx")'dx can be found imme-
diately in two cases. For assume

a+bx="¢;
1
therefore @ = (tq ; a)",
e _ge (£~ a)"”
dt nb \ b ’

L L
Hence f ! (a + bx")idx = f & (a + I,xn)q_d_t dt

- nlb f et (tq; “)T'dt.

If %b be a positive integer we can expand (#—a)® in

a finite series of tp}ggwers of ¢, and each term of the product
of this series by #** will be immediately integrable.

. 4 Z—”ha—l p
Again, fx"‘"‘ (@ +82")de=[2 ™ (az™ + b)ida;
and by the former case, if we put az™+b=1¢, this is im-
mediately integrable if

-p_ﬁ.!.m
4

-n
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be a positive integer; that is, if ’; +%z be a negative integer.

In the first case, if % were a negative integer the integral
might still be found, as we shall see in the next chapter, and
similarly, in the second case, if 2 +2 were a posttive integer :

n
but as in these cases some further redquctions are necessary, we
do not say that the expressions are ¢mmediately integrable.

Ex. (1). fm’(a+m)5da:.
He % =3: assume a + x=1{; the integral becomes

2f(t’—a)’t’dt or 2[@6— 2af + a'f) i,

which gives
f 2t oif
2{?"T+?}’
thus [t (o +opdo=2(e+ ) {EFL 20 r 0 .
Ex. (2). __i-’v_é,
o (1+a°)
1
Here m=-1, n=2, %’%_E;
therefore %+§= -1
Assume 4+ 1=
1
therefore @ = =1
de ¢
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AISO f &
(1 +x’)4 a:”(a: +1)
Substitute for  and % their values, and this becomes — f dt,
which =—¢ o M .
X
Ex. (3). o i
(@*+2)
Here m=1 n=2, £=—-§,.
q 2
therefore 2L,
n q
Assume az?+1="2,
a
2 _ —
therefore =g
dr a
di & — 1)* ’
dw
f - dt o_Llfa _1
@+ J2@are)t T dVE T dl
- T
TaV@+ )’
EXAMPLES.
LT —

L [Vew—o) do=25 2 (0a~2) +5 s

2. floga:da:=a: (logz —1).

T. L. C.
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.+

{lo x— 1 }
g n+1

fesinede=-ecoso+sino.

€

Fre
f\/(m:a’)dx=4/(mm+z“) +mlog{vz + v/ (m + z)}.

dx

=tan™(¢).

This may be found by putting z = 2".

7.

®

©

10.

11,

12.

13.

14.

15.

16.

fxtan"xd.v—HTa’ﬁtm—xx *x
f(l——cosx)*dx=3_°”_2sinw+sln42w.

1
f(l—w)*’ 1- m+2(l z)P"
ddr 1 o a4+
- 6 CF_z

23+ 2z

——
Vi-3z—2) " Ty’

xdx

Ve —2)

=—«/(2a$—a:')+avers“§.

fm log{z — 8 + v/(«’ — 6 + 13)}.

1+ cosx

x4 sin x

+sinxd

fm
—— ax
14 cosx

dx

dx=

log (z + sin ).

x
—mtan§.

1

f

log2)"

T n—1) (logz)"""
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17. f log (log ) dx =log x . log (log z) — log .

18 [ ~Z_2V@=1) s log fa+ Wi~ 1)),
x da: - (—1) +3z—1)"
19. [ s =2 1){ +iz-1) +x}.
20. fe”’sinmcosmdam%asm (m+n22x-’_— (&niz))::os (min)
¢ asin (m — n):c—(m n) cos (m — n)z
2 a'+ (m—n)*

21. fe"cos’a:dx= }fe“(cos3a:+3cosa:)¢ix

a7

e . 3e™ .
=5 (3 sin 3z — cos 3x) + 5 (sin 2 — cos ).
2. fad(a’—m’) azx=”T“’.
-
2. [ Vew-o)de=T2
o
2a
2 [ v &y =ma.
. o a
Proceed thus—Ilet v "2 =0, therefore z=aqa (1 — cos 6),

and the integral becomes f " af sin 0 db.
0

z 2 5-rra,’
"
117a®
6"

25. f :z:vers"1

26. fo m’vers"z dr=

v
27. ] sin’0 cos* 6 d = 5.
° 2—2
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28.

29.

30.

31.

32.

33.

o

34.

)‘k

35.

(33

36.

37.

[o <]

88.

EXAMPLES OF INTEGRATION.

dx 1 T K w
sinz + cos 4/2 72 0§ tan (2 *3 8)
f dx
zv(a+bx+cx’)”

Put 2 =; and this becomes a known form.
Nil—-2a%) . _, ___sm“x(l z’)’ 1 loga
f_z‘ sin'zdr = —sF —6—13,-—*; .

This may be obtained by putting sin™z = 6.
f SN ® ge—0tand+ log cos 6, where sin 0 = z.
(1-a)t

dx 1
@-af @

fsmmdx _(a+b>§ aNatanz
a+bcos’z  \ ab’ Va+bd) 5°

( t9+coe) where « = a cos 6.

Jetos yaem (532 ) v

d___(@2-1)y(1+2)
fx‘«/(1+w“)_ 3 ’

™ af'—l m’._’ (] n
ftan 0= " — ot s — (1)t (- 1)

x being = tan 6.
Shew that f sin mz sin nx dr and f €08 mx cos nx dzr
[']

are zero if m and n are unequal integers, and _g if

m and n are equal integers.

| {log (g)}dx -z {log (g)}— 8z {log §}+ bz log — 6



39.

40.

(=]
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cotz &

Z(1+ ") 2

dx=— — 6 tan 6 — log cos 6, where cot 0 =z.

[ats o/ (5a) d=vie—an - 2ems),

cosle, ifcis <1.

1
. Assume z=w+a—v.

L
41. f R L@\
m"w-*("*‘“ 2"
5 dr 1
42. fol+ccosa:=4/(1-c”)
LI T
43. fe cos’0dl =5(e"+e?).
(*—1) dx
4. f:z::;/(1+3a:’+a:‘
(@ + b de
5. [EERE

Assume a + bx* = 2",
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CHAPTER II.

RATIONAL FRACTIONS.

16. 'WE proceed to the integration of such expressions as
A'+Bz+ C2... + M'a™
A+ Bx+ C*...+ Nz"

where 4, B,... A', B',... are constants, so that both numerator
and denominator are finite rational functions of z. If m be
equal to n, or greater than n, we may by division reduce the
£receding to the form of an integral function of x, and a

action In which the numerator is of lower dimensions in
than the denominator. As the integral function of @ can be
integrated immediately, we may confine ourselves to the case
of a fraction having its numerator at least one dimension
lower than its denominator. In order to effect the integration
we resolve the fraction into a series of more simple fractions
called partial fractions, the possibility of which we proceed to
demonstrate.

Let %rbe a rational fraction which is to be resolved into a

series of partial fractions; suppose ¥ a function of & of the
n® degree, and U a function ofp z of the (n—1)® degree at
most; we may without loss of generality suppose the coeffi-
cient of " in ¥ to be unity. Suppose

V= (x—a)(@—0) (@ —2ax + o’ + ) (&®— 2yx +4* + &),
so that the equation V'=0 has
(1) one real root = a,
(2) 7 equal real roots, each =,
(8) a pair of imaginary roots a + 8 4/(— 1),
(4) s pairs of imaginary roots, each being o + 8 4/(— 1).
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ny the theory of equations ¥ must Be the product of factors
of the form we have supposed, the factors being more or fewer
in number. Sinee V is of the »'* degree we have

14+47r4+242s=n.

Assume
U 4 B, B, B, B,
T’zzz:—-a-*'(.'z:—b)"-'-(szt—-b)"‘-*.(:c—b)’“2 """ t =%
+ Cx+D
. & —2az+d + 5
4 Brt+F Eg+ F, Ex+ F,

@ 2@ty 18] | @tym iyt 5 T T tgm

where 4, B, B,... C, D, E,,... are constants which, in order
to justify our assumption, we must shew can be so determined
as to make the second member of the above equation wdentr-
cally equal to the first. If we bring all the partial fractions
to a common denominator and add them together, we have V'
for that common denominator, and for the numerator a func-
tion of z of the (n — 1) degree. If we equate the coefficients
of the different powers of « in this numerator with the cor-
responding coefficients in U, we shall have n equations of the
Jorst degree to determine the n quantities A, B, B,,... and with
these valnes of 4, B, B,,... the second member of the above

equation becomes identically equal to the first, and thus .

is decomposed into a series of partial fractions.
If ¥V involves other single factors like « —a, each such

factor will give rise to a fraction like prap
factor like (x— )" will give rise to a series of partial fractions

and any repeated

of the form :c-lb)" (w—z — , &c. In like manner other

factors of the form o —2ax+ o'+ B° or (2* — 2yx+ o 4 &)
will give rise to a fraction or a series of fractions respectively
of the forms indicated above.

17. The demonstration given in Art. 16 is not very satis-
factory, since we have not proved that the n equations of the
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first degree which we use to determine 4, B, B,,... are inde-
pendent and consistent.

A method of greater rigour has been given in a treatise on
the Integral Calculus by Mr Homersham Cox, which we will
here briefly indicate. ~Suppose F'(x) to contain the factor
z—a repeated n times; we have, 1if

F(z) = (z—a)" ¥ (),
pob@, ) b0
b@_ @ 29 y@¥® @
F@) (@—a'¥@) (@—a*¥vk)  (@—a)f
Now ¢ (x) — ¢ (:; 4 (z) vanishes when z = a, and is there-

fore divisible by #—a; suppose the quotient denoted by x (),

then
¢ __ x( +4’(&) LI
F) (x—a)'¥ (@) ¥(a) (x—a)*
X ()
(@ —a)" ¥ ()

thus by successive operations the decomposition of -ﬁ—.(—:)-
completely effected. In this proof a may be either a real
root or an imaginary root o,f? the equation F(x)=0; if
a=a+B4+(—1), then a— B+/(—1) will also be a root of
F(x)=0; let b denote this root, then if we add the two
partial fractions

$@ 1 () 1
v@ e=ar ¥ e m-o
we shall obtain a result free from /(— 1).

The process may now be repeated on , and

18. With respect to the integration of these partial
fractions we refer to Examples (9—12) of Art. 14 for all

Lz+ M . .
T2t and this will be given

the forms except

hereafter.

Having proved that a rational fraction can be decomposed
in the manner assumed in Art. 16, we may make use of
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different algebraical artifices in order to diminish the labour
of determining A4, B,, B,, &c. The most useful consideration
is, that since the numerator of the proposed fraction is ident:-
cally equal to the numerator formed by adding together the

ial fractions, if we assign any value to the variable  the
equality still subsists.

19. To determine the partial fraction corresponding to a
single factor of the first degree.

Suppose % represents a fraction to be decomposed, and

let F (z) contain the factor # — a once; assume

¢ _ 4  x(@
o R S ),

X (@)
¥ (2)
the partial fractions exclusive of 2, and F(z) = (—a) ¥(a).

From (1)

where A is a constant, and represents the sum of all

(@) =AY (x) + (x—a) X (@) erereernenes (2).
In (2), which holds for any value of &, make x=a, then
¢ (a) = Ay (a),
therefore A= i EZ; .
Since F'(x) =Y (z) + (x — a) ¥ (), we have
P+,
therefore 4= % .

20. 7o determine the partial fractions corresponding to a
Jactor of the first degree which s repeated.

Suppose F'(x) contains a factor # —a repeated n times,
and let F(z) = (x—a)" Y (xr). Assume



26 DECOMPOSITION OF RATIONAL FRACTIONS.

¢ (Z) A A, As A. X (m)
I"(z) (z a,)' + (z a)n—l @— a),_,, ...... + 7—a + W’

where X(—.c) denotes the sum of the partial fractions arising
from the other factors of F(x). Mllltlply both sides of the

equation by (z —a)" and put f (z) for 2,2 2) (®—a)"; thus
S(x) =4+ A, (x—a)+4,(x—a)...+ 4, (x— a)""+3’fg ; (x—a)™

Differentiate successively both members of this identity and
put & =a after differentiation; then

f(a')=Av
Sf(a)=

S(a )—12A
S (a) = (34,

-----------------

S a)=|n—14,.

Thus 4,, A,,... A, are determined.

21. To determine the partial fractions corresponding to 6
pair of imaginary roots w{ h do not recur.

Let ¢ 2:; denote the fraction to be decomposed; and

a+ B+/(—1) a pair of imaginary roots; then if we denote
these roots by a and b and proceed as in Art. 19, we have
for the partial fractions

¢ 1 and ¢ 1
F'(a) x~ F@®)z-5b"

Suppose (ﬁ—(——l—A By/(—1); then since ;,,((I;)) may be

obtained from 4’,% )) by changing the sign of #/(—1), we

must have ?'((b; = A+ By[(—1). Hence the fractions are



DECOMPOSITION OF RATIONAL FRACTIONS. 27
A—By(—-1) and AT BV(=1) |
z—a—B4(—1) z—a+B4(—1)’
and their sum is

24 (x—a) +2B8
@—a)'+p
22. Or we may proceed thus. Suppose z*— ﬁ;x +g¢ to
f

denote the quadratic factor which gives rise to the pair o
lmaginary roots a + 84/(—1); then assume

@) _ Lot M  x(@
Fl@) &—-pz+q ¥ (@)’
so that F(z) = (& — pz + ¢) ¥ (). Multiply by F(z); thus
¢ (@) = (La+ M) () + (& — px + g) X (T)e0rernnee (1).

Now ascribe to = either of the values which makes
2* — px + ¢ vanish; then (1) reduces to

¢ (@) =L+ M) Y (@).ereeriienrnnnnns (2).

Now by the repeated substitution of px — ¢ for &* in both
members of (2), we shall at last have « occurring in the first
power only, so that the equation takes the form

Pr+ @Q=Pzx+ Q'
Now put for x its value a+B4/(—1) and equate the co-
efficients of the impossible parts; thus
P=P' and therefore also Q= Q.

Here P and @ are known quantities, and P’ and ¢’ involve
the unknown quantities L and M to the first power only, so
that we have two equations of the first degree for finding L
and M.

238. To determine the partial fractions corresponding to a
pair of tmaginary roots which is repeated.

We may proceed as in Art. 20. Or we may adopt the
following method. Suppose &’ —px+¢ to be the quadratic
factor which occurs + times; assume
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¢ Lz+M | Lx+M, y Lot M, + X @
Fx) @—pztq)  (@—pr+qg)™ " &—prtq  Y(z)

so that F'(z) = (' —pz + ¢)" ¥ (x). Multiply by F(x); thus

¢ (@) = (Lz+ M) ¥ (@) + (L_z+ M) (@ —px +g) ¥ ()
+ e + @ —pr+q) x(®@) cverrannnnns ().

Now ascribe to « either of the values which makes
o' — px + ¢ vanish; thus the equation reduces to

¢ (@) =(Lx + M,) ¥ (2).
Proceed as in Art. 22, and thus find Z, and M,. Then from
(1) by transposition we have
¢ (@) — (Lz+ M) ¥ ()= (L, @ + M,_)(@" — pz + g) ¥ (@) +...

The right hand member has a® — px+¢ for a factor of every
term ; hence as the two members are ¢dentical we can divide |
by this factor. Let ¢,(x) indicate the quotient obtained on
the left; then

¢1(a") = Lr_xx + M;‘-l) 1”‘((3) + (Lr—ex + M‘—z) (9}’ —px+ Q) 1’0‘(¢)

From (2) we find L, | and M, , as before; then by transpo-
sition and division

$, (@) =L@+ M) ¥ (@) + (L g2+ M, ) (& —pz+9) ¥ (2) + .-
and so on until all the quantities are determined.

2 —38x—2

24, Take for example @ etV @rl)”

Assume it

equal to
Lz+M, Lz+M x(@) .

(@+x+ 1)"+m‘+x+1 (®+1)*’
then 2! —38z—2= (Lz+ M,) (x+1)*
+ L+ M) (& +x+1) (+ 1)+ @+ 2+1)° x () eeeenn (1)
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Suppose @* +z + 1=0; thus the equation reduces to
-3z —-2=(Lax+ M) (x+1)

= (Lx + M,) («* + 22+ 1).
Put —z—1 for &*; thus

—4x-3=(Lax+M)x=Lz'+ Mz

—— L (e+1) + Mg;
therefore —4=—L+M, and —-3=—L;
thus L,=3, and M,=—1.

From (1) by transposition
£L—-3x—2—-(3z—1)(x+1)°
= Lo+ M) (@ +2+1) (@+1)" + (@ +2+ 1) x (2).

The left hand member is — 32® — 42 —4x—1; divide by °
2+ x+1; thus

—(Bz+1)=(Lix+ M) (x+1)*+ (@ +2+1) x(2)...... (2).
Again, suppose @+ +1=0; thus
—3z—1=Lx+M) (@ +22+1) = (Lax+ M)z

=_L1(x+1)+}[1w;
therefore ~8=—L +M, and—1=—L;
thus L =1 and M =-2.

Thus the partial fractions corresponding to the quadratic
factor are found. The partial fractions corresponding to the
factor (z + 1)* may then be found by Art.20. Or we may
from (2) by transposition and division by z*+ « + 1 obtain

Thas = (@ —-1)=x(=)

x(a;)__a:-—l_m+1+2__l+2'
C+1)' (@+1)) (@+1) " (@+1) @+l @+1)"
therefore

#?-30-2 _ 8-1 _ z-2 . 2 _ 1
@zt 1) (@+1) @+a+l)  @+a+l (@+1)} z+1°
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52° 41

25. Examples. Required the integral of e et

By division we have

50° +1 352 — 29
p gy B LR e - ey L

352-29 _ 4 B
Z—3z+2 x—1 x—-2’

therefore 352z —29=A (x—2) + B(x—1).
Make « successively equal to 1 and 2; then
35—29=—4,0or 4=-6,
0—-29= B, or B= 41;

52° +1 a1
Foszge ot li—2 —1+ac 3’

a:’+1d 5%
2—3x+2

Assume

therefore

therefore -t 15z — 6 log (z—1)+41 log (z—2).

92" + 9x — 128
& —50'+3x+9°
Since o°— 52" + 3z + 9= (z —3)* (x + 1), we assume

9'+9—128 _ 4 . B B, .
o — 527+ 8x+9 a:+1

Required the integral of

(x— 3)’ taos
therefore 92°+9x—128=A4 (z—38)*+ B, (z+1)+ B, (z+1) (z—3).

Make =3 and —1 successively, and we find
B=-5 A=-8.
Also by equating the coefficients of 2, we have

9=A4+3B,
therefore B,=117;
therefore
92* + 9 — 128

dz = — 8 log (2 +1) + — +17 log (z—3).

-5+ 3x+9 3
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. . o 2'+1
Reqmred the mtegral Of m‘.
A @ +1
HCEDRCED)
A, 4, A4 A, . B | Cz+D

"0t t ey tei Tzt 7=s41’

therefore *+1={4,+4,(z—1)+4,(x—1)*+ 4, (x—1)%} (£*+1)
+{B@—z+1)+ (Cx+D)(x+1)} (z—1)"... (1).
Put z=1, then 2=24, cceeiitrrnrrrrinnnnnns (2);
therefore 4,=1.
From (1) and (2) we have by subtraction,
F-1=4,("-1)+{4,+4,(x—1)+ A, (x—-1)} (z—1)(2*+1)
+{B(@-z+1)+ (Cx+D) (+1)} (z—1)*
Divide by « —1, then
z+1=A,(+z+1)+ {4,+4,(x-1) + 4, (x—1)*} (" +1)
' +{B(@—z+1) + (Cz+D) (x+1)} (x —1).. (3).
Put x=1,then 2=384,+24,.ccc0cccivvervrirrrianen. 4);
therefore A,=—1%.
From (3) and (4), by subtraction,
e—1=A4, (@+x—2)+4,(2*—1)+{4,+ 4, (x—1)} (xz—1) (2’ +1)
+{B(@—x+1) + (Cx +D) (x+1)}{z —1)"
Divide by = —1, then

1=4,(z+2)+ 4,(@ +x+ 1)+ {4, + 4, (x—1)} (x“+1)
+{B(@—z+1)+ (Cz+D)(@+1)} (@ —1)%.. (5).
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Put =1, then 1=34,+34,+24,cccecceereerrrunnne (6);
therefore A,=-1.
From (5) and (6), by subtraction,
0=A4 (x—1)+ 4, +x—2)+4,(="—1) + 4,(x—1) (z*+])
+{B(@—z+1)+ (Cx+ D) (z+1)} (x—1)~
Divide by « —1, then
0=4,+4,(x+2)+4,(@+x+1)+4,("+1)

+{B@—ax+1)+ (Cx+ D) (x+1)} (x—1)...... (7).
Put z=1, then 0=4,+34,+34,+ 24, ............. (8).
therefore 4,=%

From (7) and (8), by subtraction,
0=A4,(z-1)+4,@+x—2)+4,(2*—1)
+{B@*—x+1) + (Cx+D) (x+1)} (x—1).
Divide by «—1, then
0=A4,+A,(z+2) +4,(+x+1)

+B@—2+1)+(Cx+D) (x+1) ......... (9).
Put x=—1, then
0=A,+A4,+A4,+3B...cccuurunn..... (10);
therefore B=4.

From (9) and (10), by subtraction,
0=Ad,(z+1)+4,(@+x)+B@@-2x—2) + (Cx+ D) (x +1).
Divide by « +1, then '
0=A,+A4A,x+Bx—2)+Czx+D......... (11).
Put =0, then

A, —2B+D=0..cccicrererennnsen (12);
therefore D=%.
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From (11) and (12), by subtraction

A+B+C=0;
therefore C=-%;
therefore m’j—l SR 1T : 8 : :
@) @+) @-1) 2@-1 4E-D
5 1 _ 2z —1 Y
YSE-n T HE ) 3@—2+1)’
@+Dde 1 L 1
therefore [( 1)4(x3+1) ——'3 (w_1)3+4 (w—1)3+ 4 (z—-l)

1 1
+§log(m—1)+ -ﬂlog (z+1) —-§10g (@®—x+1).

26 ‘We will give as additional examples the integration of

711’ supposing m and n positive integers, and m —1 less
than n, .

Required the integral of ile , n being supposed even.

By the theory of equations the real roots of 2" —1=0 are
1 and — 1, and the imaginary roots are found from the expres-

sion cos70 + 4/(— 1) sinrf, where 6 = 7—,’ , and r takes in suc-
cession the values 2, 4,...up to n—2. Now by Art. 19 if
$(@) be the fraction to be decomposed, the partial fraction

F (=)
corresponding to the root a is ;,,((a; ! Inthe present case
m—1 m m
f},(g)=%.—l=%=a , since a*=1

Hence corresponding to the root 1 we have the partial

fraction ;z_(z_vl_—_ﬁ , and corresponding to the root — 1 we have
="

the partial fraction 2@+’
of roots-

And corresponding to the pair

cos 70 + 4/(—1) sinrd
T.L C. 3
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we have :
{cos 78 + 4/(—1) sin r6}" {cos 76— 4/(—1)sin r6}™
n{x —cosrf — /(—1)sinrf} " n{x—cos 76 +4/(—1) sin 76}’

that is

cos mrf + +/(— 1) sin mrf + cos mr — /(— 1) sin mrf
‘n{x—cosrf —/(—1)sinrb} " n{x—cosrf ++/(—1)snr}’

2 cos mrf (x—cos r8) —2 sin mrl sin r0
n (2*— 2z cosrf + 1)
™t -1 (-
=1 n@—1) n(.'z:+1)
2 2 cos mr(zx — cos rf) —sin mrl sin rf
(@ — cos r6)* + sin* 70

that is

Thus

where 3, indicates a sum to be formed by giving to = all the

even integral values from 2 to » — 2 inclusive. Hence

[ g o -1+ E 10g (w4 1)

a—cosrf
sinrf ~

+%Ecosmr0 log (a® —2cosr6+1) —%2 sinmrftan™

-1

27. Required the integral of —— wm e D being supposed

odd.

The real root of a*—~1=0 is 1, and the imaginary roots
are found from the expression cosrf + 4/(—1) sinr6, where

6=—, and r takes in succession the values 2, 4, «..up to

T
n
—1. Hence as before we shall find

fi—,f—f:%log (z—=1)+ 1—132 cos mr6 log («* — 2 cos r6 +1)

25 tin mef a2 2= 20818
. sin 76
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mlw-l

28. Required the integral of 75 " being supposed
even.

The equation " + 1=0 has now no real root ; the imagina.\g
roots are found from the expression cos 6 + 4/(—1) sin 76,

where 6= %, and r takes in succession the values 1, 3, ... up
ton—1. Andif a be a root of z* 41 =0, we have

thus the sum of the two fractions corresponding to a pair of
imaginary roots is
_ 2 cos mrf (x — cos 76) — sin mrf sin r6

n (¢ — cos r6)® + sin’r6 :
Hence
" dx 1
[ﬁl— =— ;Zcosmr0log(a:’—2a:cosr0+1)
+g 3, sin mrf tan.,__x-—:cosrﬂ’
n sin 6

where 3 indicates a sum to be formed by giving to » all the
odd integral values from 1 to » — 1 inclusive.

m—1
29. Required the integral of —:gﬁ’ n being supposed
odd.

The real root of 2" +1=0 is in this case — 1, and the imagi-
nary roots are found from the expression cos 78 + /(—1)sin 76,

where @ =1’: and ~ takes in succession the values 1, 3, ... up

ton—2. Hence we shall obtain

wm—ld,v—(_l)m-l
fm"+1_ U™ 1og (a+1)

b1 24 . & —cosrl
;2008mr910g(m’—2xcosr€+l)+7—&Esmmr0tan ——g

3—2
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EXAMPLES.

2 f:’—;—:—idz=m+log(:%z)*.
3. —m,—_f,%ﬁ=a2—’,—7m+64log(w+4)—27log(a:+
6. f(w*+1)(if+w+l)=%l°g%Wlﬁmﬂ%
v fﬁ%:%bg +1+~/2 an"%‘

B sl
9. (—:E%%dx=w+log‘£:—f.
10. %=%logm+glog(w—2)—§log(a:+1).
. [ e (e yEre -
12. fa—:—(ﬁd_f—-—-x,_i_w,)=logw—%log(l+w)—-ilog(1+zf

- % tan™



13.

14.

15.

16.

17.

18.

EXAMPLES.

1

37

dz
f(w—l)’(z“+1)’="4(x 1)"}l°g(””'1)

+3}tan 4(mg_'_l)+ilog(:v"+l)
xd 2 1
(1+m>(1+2x)*(1+m')=31+2m-§1°g(1+x>

1 16 1, .
— 755 108 (1 +) + 52 log (1 + 22) + ;5 tan™ 2.

Pde 1, a2+l

lo,

1 Ay2 gm‘+m42+1

+3 42 {tan™ (z4/2 + 1) + tan™ (z 4/2 — 1)}.

de 1

1
ms—+1=1—1°g(w‘—a:’+1) —glog (@ +1)

+3 ~/3 {tan™ (22 — ¥/3) — tan™ (22 + ¥3)}.

[:/—(;l%y—,) . Assume 1—3*=y"%"

das
J@+a) 1 +3z+30)"

Assume y = T

14z
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CHAPTER III.

FORMULZ OF REDUCTION.

30. LET a+b2" be denoted by X; by integration by
parts we have

) _ X?™ _ ]’ ™ dX
a2 e
X _Vnp (s Ko )
m

The equation (1) is called a formula of reduction; by
means of it we make the integral of 2™ X* depend on that
of ™' X**. In the same way the latter integral can be
made to depend on that of ™ X**; and thus, if » be an
integer we may proceed until we arrive at ™" ‘X‘?", that
is ™™™, which is immediately integrable.

From (1), by transposition,
1 Y1 _meP
[ Xrda= T
Change m into m—n and p into p +1; thus
m—»XpH. m—n
" XPdr = o - Xrd. ...(2).
Jx et mEinlT X 4@

This formula may be used when we wish to make the
integral of 2™ X? depend upon another in which the exponent
of z is diminished and that of X increased. For example,
if m=38, n=2, and p=— 2, we have

d?de x +l f dax
@+t bW(@a+82) " blN(a+ba)’

_m fw"‘“‘X”clx.
bnp
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The latter integral has already been determined, and thus
the proposed integration is accomplished.

Since [oXrdn= [ X7 (a+ be?) do

= afz“"Xr’d’D+b/w”“-erldw,
we have by (1)
X I [y = [ X da 4 8 [

m

am

therefore f X g = T b (”‘aj; np) f X

Cha.nge p into p +1, and we have
[ xras =% X7 _bmd nptn) [ X o).

Change m into m —n and transpose, then

. _amXxX™M (m—n)a [ ..,
fm"‘X”dfz—b Tt~ b fa: XPdzennn.nn(d).

In (2), change m into m + n and p into p — 1, then

-1 o1 _:cX m 2™
fw”““ xrde=T g [ X,

Also f " X?dr=a f ' X' de + b f ™ X g,

therefore [2™ ' X?dx = f X o e — — f m1 Yo, (i’t

?
therefore |2 X?dec = X, awp f X ... (5).
m+np  m+np
Change p into p+1 and transpose; thus .

-t L " XrH MA1P 4+ [ g von
Jori X =- T el [ X ... 6)
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31. If an example is proposed to which one of the pre-
ceding formule is apphcs,blp we may either quote that
particular formula or may obtain the requlred result inde-

pendently. Thus, suppose we require f 7 a:’) ; we have

de  [dN( =) na
v(a—f)‘”f L e

= V(E =) (m—9) [ -2 o

(@ —o) 2™ d
vid-a)

= — V(@ =) & + (m—2)

By transposition,

il TN e

(14m— 2)f«/(c, o5 = V(@ =)a™ e (n—2) ¢ [
therefore

ade & (¢ - o) (m—2)c’ ™ dx )
Ve~ m-1_ T m-1 V=) ‘

This result agrees with the equation (4) of the preceding

article if we make a=¢, b=—1, n=2, p=—4%.

Another example is furnished by f «/(—;—dx—m,) , Which may

a™Vdz
VEa—a)’
article we make b=—1, n=1, p=—1}, and change ¢ and m
into 2¢ and m + % respectlvely, we have
@ _ @ (2aa:—-x’) a (2m — 1)[
f«/(m = m «/(m—z')

be written if in equation (4) of the preceding

which of course may be found independently.
32. In equation (6) of Art.30 put a=¢', m=1, n=2,
b=1, and p=—r; thus

x 2r—-3

@FE+oy 2 -1 @+o) +2('r—1) c"f(z’+c’)""
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This formula will serve to reduce the form
(Az + B) da
(@ —20x+ o'+ B’

which occurs in Art. 18; for this last expression may be
written thus
A (x—a)dx f dx
Tomair gyt (da+B) |[r—<—Far
e O i

that is
A 1 dx
~sen AT et B [

By putting z —a=2a', we have

J -Ie%
{(w__ a)2+ﬂ2}f {w'¥ + ﬁ}r 2
and thus the above formula becomes applicable.

83. These formule of reduction are most useful when the
integral has to be taken between certain limits. Suppose
¢ (x), x (x), ¥ (x), functions of x, such that

[t@ d=x@) + [¢ @ d=,
ten  [$@)o=x0)-x(0)+ [ ¥@ d,

as is obvious from Art. 3.
For example, it may be shewn that

f(c’—w’)%du“(f;f) nHJ'(c* P e

suppose g a positive quantity, then z (¢ — m’)? vanishes both

when =0 and when z=c. Hence

[e-afa=2 [ -
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The following is a similar example. By integration by
parts )

[ —aytdp == gy 71 [ -ayas.

1 1M
Hence fx'-l(l-z)-*dm’nlf & (1 — ) da.
0 [

Thus if » be an integer we may reduce the integral to
] (1 —z)"™*dx, that is n—l—- ; hence
[}

+r—-1’
- - (r—1)(r—2)......3.2.1
La:"(l—a:) dw__-n(n+1)(n+2) ...... (n+r-1)°

34, The integration of trigonometrical functions is faci-
litated by formule of reduction. Let ¢ (sinx, cosx) depote
any function of sin  and cos z; then if we put sin x =z, we
have

qu (sinz, cosx) dx:qu {2, V(1 — 2%} %ﬁz’dz

d
- fqb (e, V(1= ) g D):
For example, let ¢ (sin z, cos z) =sin® z cos?x; then
Jein? & cost o = [ (1 — PO @).

If in the six formule of Art. 30 we put a=1, b=-1,
n=2, p=4%(g—1), we have

fz”‘" (1 =zengy

=zm(1_z,)"“’+q—1/z"'“(l-z*)m's’dz
m m
m3 (1 _ (gt —_
= A=A Mo L i g

q+1 q+1
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_zm(l_zg)“ﬁl) ’m+9+1 m+1 i)
R fz (1 — Apen gy
¢ e L TR

m8(] )
m+g—1 m+q—1[z (1-2) dz

o™ — e —
= *® (1=2% g—1 zm—l(l_zz);(q-s)dz
m+qg—1 m+qg—1
_ 212 mpg41
q+1 q+1

2" (1=2%) ey,

If we put m=p +1, and z=sinz, the first of the above’
equations becomes N

sin”'zcos™ x  g—1
p+1 p+1

fsin”a: cos?xdr = sin”? z cos™x dx,
and similarly the other five equations may be expressed.

35. The following is a very important case:

fsin"xdx:—fdg;sm.sin“"w.dm

=—cosz.sin" '+ (n— 1) [cos’ z sin" "z dax

=—cosz.s8in"z+ (n—1) f (1— sin’z) sin" "z d.
Transposing, we have
nfsin"a:da:= —coszsin* " & + (n—1) [sin"*zdz;

. coszsin™'z n—1{ . .,
therefore |sin®axdx =— " + - sin™* zdx.

From the last equation we deduce

. n—1 .
’sm"xdx=— sin" *xdz.
. n
(1]

[}
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i n—3 .
Similarly ] sin*? ode = — f sin** z dz.
° n—2/,
Proceeding thus we shall arrive, if » be an even integer,
i
atf dx or }w; if n be an odd integer we shall arrive at
o

i
f sin zdw, which is unity. Hence, if » be an integer,

]

| L B T
[ - D02

These two results hold if we change sin « into cos z, as will
be found on investigation.

36. From the preceding results we may deduce an im-
portant theorem, called Wallis’s Formula.

Suppose » even; then

. n—1 n—3 n-35 3 1=
* = . ¢ T " sesses — e T ¢ TTesseses 1
‘o sin*zde = == g e gy (W
i
A n—2 n—4 n—=6 2
" = . e eeeees Seceerenes v (2).
fo sin™ 2dz n—1 n—3 n-5 3 )

-
Now it is obvious that j sin"? zdxz 18 less than
[\]

i i
] sin"® zde and greater than f sin" wde; because each
[ [}

element of the first integral is less than the corresponding
element of the second integral and greater than the corre-
sponding element of the third integral.
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Thus L i1rsin" xdzx

fh sin** zdx
0

Hence the ratio of the right hand member of (1) to the right
hand member of (2) is less than unity and greater than

is less than 1 and greater than "=,

——; thus
1_r>2.2.4 4.6.6......(n —2)(n—2)
271.3.3.5.5.T.(n=3)(n—1)’
2.2.4.4.6.6......(n—2)(n—2) =n
d
e <1 3.3.5.5.T(n-3)(n—1) n—1"

EXAMPLES.

L [@+a)ide= “(::f’) +n+1 (@t -da:.

2. fmw(m—m*)du—f_—__—'(:ﬁ;‘”’)*
+“Si”jr+21)fz*‘«/(2aw o) de.

3. fw:\/(?am—a?)dx=—%(2ax—w“)*+afd(2ax—m’)dx.

4 wa(2ax ) dz=T2 .

o>

[V @) da= 5 (2az— )+ 22 [/ (2a0—a?) .

Sa'm

| " (2w - ) =27,

&
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.

®

©

10.

11.

-

12.

13.

14.

15.

ot

16.

17.

18.

FORMULXE OF REDUCTION.

f 2y (2az — m’)dx—m’s

il -
fw"(logw)"dx= n(l-(l)-giw) —n?- lfa:' (log )™ da.

]u )’dx— =" (1 2 2 1 2
@ (1ng —n—+l ng) -n_-l-l ogm+m

®

ftsec 0do=%.

[(tenn -1

V@+a)

fs' °6 cos®d df = — } cos*d + } cos®d

8
S0 ooz = 3 (tan 6 — cot6) + § (tan’6 — cot’6).
sin’ddf  sinf —sin@

cos’d  2cos'd +1lo 1 +siné’

f_: (cos 20)¥ cos 0 d = §11‘@ .
T

Assume 4/(2) sin @ =sin
fonv(a*—x’)cos"zdz=(1+14’)§.
f"(vers )dx (7* - 4) a.

¥ gin'ede -1 2—~¢
JItccosz ¢ log (1+¢) + 2c¢
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19. If ¢(n) =f(l+ccosw)""dx, shew that
(n—1)(1-¢) ¢p(n) =—csinz (1 +c cosz)™"
+(2n—38)p(n—1)—(n—2)p(n—2).

20, ] V(2az — o) vers"malz=£;

21. f:m/(2aa: x’)vers‘ 7r:=a.

22. f (tan z)'dec = 5 — } log 2.

N A o

¢ being <1.



CHAPTER 1V.

MISCELLANEOUS REMARKS.

37. 'WE have at the beginning of this book defined the
antegral of ¢ (x) between assigned limits @ and b as the limit
of a certain sum 3 ¢ () Az, and have denoted this limit by

b

¢(x) de. We have shewn that this limit is known as soon

as we know the function yr(z) of which ¢ (z) is the differen-
tial coefficient. In the pages immediately following we gave
methods for finding yr(x) in different cases. We shall now
add some miscellaneous remarks and theorems, some of which
will recall the attention of the student to the process of sum-
mation which we placed at the foundation of the subject.

38. Suppose we wish to find the integral of sin = between
limits @ and b smmediately from the definition. By Art. 4 we
have to find the limit when = is infinite of

k[sina +sin (a + &) +sin (a + 24)...... +8in {a + (» — 1) A}]

where k= (b—a).

It is known from Trigonometryrthat this series

_hain (a+“——;1k) sin%_ksin (a+l_>;_a_%) in =2

sm§ 8111*2‘
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The limit of -iz is 2; hence the required integral is
sin
2

b+a . b—a
sln —— = cos @ — o8 b.

2 81n - 3 3

39. Required the limit when » is made infinite of the
series
n n
+1+ ,+ ,+ +n,....-+m.

This series may be written
1fr, 1 1 ! s p——| ;
S TN )

putting % for alz’ we obtain

1 1 1 1
I‘{i+1+hg+1+(2k)g ooooooo +1+(n—1)’-k_’}.
. Comparing this with Art. 4 we see that the required limit is
| v de de .
what we denote by Lm. Now f l—m-—tan «; hence

T is the required limit,

0. Wo define | "6(2) dz as the limit when n is infi
nite of ’
By (@) +hy @ () eenet B b (@ )-

Now let A and B be the greatest and least values which
ﬁg} ﬂfiakes between the limits ¢ and &; then the series is
an A

(N TR 2 N
T.1.C. A
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and is greater than
(By+ 2+ ...... +h,) B;
that is, the series lies between
(b—a)4 and (b—a)B.

The limit must therefore be equal to (b—a) C where C is
some quantity lying between 4 and B; but since ¢ (x) is
supposed continuous, it must, while x ranges from a to

ass through every value between 4 and B, and must there-

. fore be equal to C when « has some value between a and .
Th(ils C=¢{a+0(b—a)} where 6 is some proper fraction,
an .

[$@) de=-a) $la+06-a).

41. The truth of the equation

f:‘P (@) do = f $ (z) de + fb¢ (@) deecrreenenee (1)

will appear immediately ; for suppose ¥+ (x) to be the inte,
of ¢ (x), then we have on the left-hand side g

¥ (@) —¥(a),
and on the right hand
V() =¥ (@) +¥ @) =¥ ().

In like manner

f:¢ (@) dw=— [:¢(w) Dreerereeereesnn )
is obviously true. We may shew also that
f:q, (@) do= f:qb(a—x) B v )

For putting ¢ —x=2z we have

[$(a-2) d2=- [ 25
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a 0
therefore f ¢ (a—2z)de=~— f P(2) dz
(] a

- f:gj;(z) dz, by (2).

Of course f ¢ (2) dz = f ¢ (x) dz, since it is indifferent whe-

[} [}
ther we use the symbol & or z in obtaining a result which
does not involve z or 2.

‘We have from (1)
f:"q,(x) dz= f:¢(x)dx+ f”¢ (@) da.

The second integral, by changing x into 2a— ', will be
found equal to

]:¢ (2a — ') dx’ or f:(]) (2¢ — x) d.
Hence

f:a‘f’(“) df°=f:{¢(w) + ¢ (20~ 2)} da.

Hence, if ¢ (x) =¢(2a — ) for all values of & comprised
between 0 and a, we have

f:} (@) do=2 ]¢ (8) Dereneereeersenn @),
and if ¢(2a —z) =—¢ (), we have
f:°¢ (@) = 0ereerereereneeeseensens 5).
For example,
x i
[sint0dp=2 [ "sin® 8 db......by (),
and f:cos’ 0df =0......by (5).

A9
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42. Such equations as those just given should receive
careful attention from the student. and he should not leave
them until he recognizes their obvious and self-evident truth.

f' c0s* 8 df is by definition the limit when » is infinite of the
[ ]

series

h {cos*h + cos® 24 + cos® 3k...... +cos®(n—1) A}
where nk=7. Now
cos’h=—cos*(n—1) k, cos’2hk=—cos’(n—2) 4, ...... ;

thus the positive terms of the series just balance the negative
terms and leave zero as the result.

In the same way the truth of f sin*0dl = 2 f' sin® 6 &
follows immediately from the definition of integration, and the

fact that the sine of an angle is equal to the sine of the sup-
plemental angle.

43. Suppose b greater than a and ¢ () always positive
between the limits a and & of «; then every term in the

series 3¢ (x) Az is positive, and hence the limit f ¢ (z) dz
must be a positive quantity. ‘

44. The statement of the last article supposes that ¢ (z)
is always finite between the limits a antf b; it must be
remembered that this condition was expressly introduced in
the fundamental proposition, Art. 2. ﬁ therefore the func-
tion to be integrated becomes infinite between the limits of
integration, the rules of integration cannot be applied; st
least the case must be specially examined.

45. Consider | GV(%E; the value of this integral i
0

2—-24/(1—a) Here the function to be integrated becomes 3
infinite when x=1; but the expression 2—24(1—a) B
finite when a=1. Hence in this case we may wnfe

f Code 2, provided that we regard this as an abbrevis-
SN =2)
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tion of the following statement: f ﬁ is always finite
[1]

if @ be any quantity less than unity, and by taking a suffici-
ently near to unity, we can make the value of the integral
differ as little as we please from 2.”

46. Next take f %; the value of this integral is
—log (1 —a) which *increases indefinitely as a approaches to

1

unity. Hence in this case we may write 1—7= @ Pro-
vided that we regard this as an abbreviation gf the following
statement: « f 1—2

to unity, and lgy taking @ sufficiently near to unity we can
make the integral greater than any assigned quantity.”

increases indefinitely as @ approaches

. dx . .1
47. Next consider fm,, the integral here is 1

—x

If without remarking that the function to be integrated be-

comes infinite when z =1, we propose to find the value of the

integral between the limits 0 and 2, we obtain — 1 — 1, that is

—2. But this is obviously false, for in this case every term

of the series indicated by 2 ¢ (z) Az is positive, and therefore
1

2
the limit cannot be negative. In fact A=aF and f ,(I%waj;

are both infinite. This example shews that the ordinary
rules for integrating between assigned limits cannot be used
when the function to be integrated becomes infinite between
those limits.

48. In the fundamental investigation in Art. 2, of the

b
value of f ¢ (x) dz, the limits ¢ and & are supposed to be

finite as well as the function t(x) But we shall often find it
convenient to suppose one or both of the limits ¢nfinite, as we
vill now indicate by examples.
. do . . a J “ dx
Consider f T the integral is tan™ 2. Hence Tt
=tan™ @; the larger a becomes, the nearer tan™ a approaches
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to 'L;’ and by taking o sufficiently large, we can make tan™a

differ as little as we please from %;
®de w - .

f I+@-3 as an abbreviation of this statement.

hence we may write

Similarly | " —log (1+4); nd by taking o lagy
[1]

enough we can make log (1 + @) greater than any assigned
quantity. Hence for abbreviation we may write

® dx
=0,
o L+

49. Suppose the function ¢(x) to become infinite once
between the limits @ and b, namely, when =¢. We cannot

b
then apply the ordinary rules of integration to f b(z) d;
but we may apply those rules to ‘

[[s@ e+ s@)a

for any assigned value of x however small. The limit of the
last expression when u is diminished indeﬁnitely is called by

Cauchy the principal value of the integral f ¢ () d.

For example, let  ¢(x) = cix;
(3 —_—
thenf -ﬁ=l°gc a’
« C—Z ¢
3 4 -
a.nd dm —_— dm = e logb c’
uC— el —C

b—c

hence the principal value is log "—;“- —log 2=2, that 8

cC—a

lOg z—_'—c‘.
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50. The value of fwtfmj,)— is sin“g; hence

f::/(fo:mT) —sin™ (1) —sin™ (= 1).

Students are sometimes doubtful respecting the value which

is to be assigned to sin™ (1) and sin™ (— 1) in such a result as
the above. Suppose we assume z = ¢ s8in 8 ; thus the integral

becomes fdﬂ or . Now z increases from —a to a, hence

the limits assigned to 6 must be such as correspond to this
range of values of z. When z=—a then § may have any

value contained in the formula (4n— 1) %, where = is any

integer. Suppose we take the value (4n—1) %, where n is
some definite integer, then corresponding to the value z=a
we must take 0= (4n —1) g+'rr; this will be obvious on

examination, because z is to change from —a to +a, so that
it continually increases and only once passes through the value
zero.

*  dz
Hence f . W_—xz) =TT,
51. Required F log sin z dzz.
[

By equation (3) of Art. 41,

. b - i
f logsmwdac=f log sin (—2- —a:) da:=f log cos  d.

o [] [
Hence, putting y for the required integral,

b
2y =f (log sin « + log cos z) dx
[}

= f hlog (sinz cos z) dz
0
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- .
=f logsm2m¢l'v
()

2
ir
= f {log sin 22— log 2} d=
o
LI 1
=f log sin 2z dx —§7rlog2.
0
But putting 2z = 2, we have
i *
f log sin 2z doc = 1}[ log sin ' da’
] o
i
= f log sin z dz, by equation (4) of Art. 41;
. ]
therefore 2y =y-— 7—; log 2,

therefore y=log % .

bl 3

Agsin, f ¢ log smede=f'(,r-o)* log sin 0d6, by equs-
tion (8) of Art. 41 ; therefore °

0 =f (n* — 26) log sin 8 d6,
L)

therefore [ 0log sin 00 =7 f' log sin 6 df
] [\]

o

1
=3 log 5

1
Required [ %8 (f;f) do. Putz=tany, and the integral
0

becomes f zlog (14 tany) dy; but by equation (3) of Art. 41
L]

f:Ilog (1+tany) dy= fa 4:log {1 + tan (% - y)} dy,



=
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l—tany 2

d (E_)= - :
and 4t g =) =t T @y

therefore 2 f *log (1+tany) dy = 7—; log 2.
. o
See Cambridge Mathematical Journal, Vol. 111. p. 168.

52. The remainder after n 4+ 1 terms of the expansion
of ¢(a+4) in powers of %, may be expressed by a definite
integral. For let

Differentiate with respect to z, then
' 2",
F'(z) =—E¢ (@ —2).

Integrate both members of this equation between the limits
0and 4; thus

F(h)—F(0) =— é f'z (5 — 2) da,
that is

=— lll" f:z"¢”ﬂ (- 2) dz.

Put a+ % for # and transpose, then

+]—11—&j:.z"¢“ﬂ (a+h—2)da.
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53. Bernoulli's Serics. By integration by parts we have
L s a=cs@ - [es@d,
[rt@ =5 ¢ @[5 4 @,
[#4' @ =% ¢'0) - [ $"(0) da.

---------------------------------------------

Thus, [$ (=) do=2 ¢ (2) - Z @)+ l%(ﬁ"(w) ......
(=1)""a" . D[ an
e # (x) + [ fw $" () dz.
Therefore,
f:¢(x) do=a () {5 ¢ () + ¢ (@

(_l)u—lan¢ﬂ(a) (_ l)i a "
+-— B + [ oa:"t[)(a:)dx

This series on the right hand is called Bernoulli’s series. In
some cases this process might be of use in obtaining ] ¢ () da;

for example, if ¢(x) be any rational algebraical function of
the (n —1)® degree, ¢™x is zero; or it might happen that

fm"t[)"" (@) dx could be found more easily than f ¢ (x)dz. Or
again, we may require only an approwimate value of
f a¢(a:) dz and the integral f ) 2"¢p™ (x) dx might be small
e;ough to be neglected. °

54. By adopting different methods of integrating a func-
tion, we may apparently sometimes arrive at different results.
But we know (Dif. Cale. Art. 102) that two functions which
have the same differential coefficient can only differ by &
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constant, so that any two results which we obtain must either
be identical or differ by a constant. Take for example

f(ax+b) (@ + ) do;
integrate by parts, thus we obtain

(aa;: b)? (a,w + br) _ f _g;_ ( ax + b)s dz,

(az+8)' (@2 +8) _a'(az+b)

that 1is, % o

If we integrate by parts in another way, we can obtain
(Fz+8) (ax+b) a(az+b)

2a’ 6a”
Hence
(az+b)* {3a (a'c+¥) —a (ax +B)}
6a’
and (q'a: + )" {3a' (a:z -i; b) —a (a'x+ b')} ’
a

can only differ by a constant. Hence multiplying by 6a'a*
we have

a® (ax + 0)* {3a (a'z + b') — &' (ax + b)}
—a’ (@' +b) {3a' (ax +b) —a(az+ )} =C

where C is some constant. This might of course be verified
by common reduction. We may easily determine the value
of C; for since it is independent of # we may suppose

ar+b=0, that is, w=—%; then the left hand member
becomes (ad’ — a'b)®, which is consequently the value of C.

Similarly from
[lao+8) @+ [(wo+8) do=[((a +0) 2+ b+ ¥} do
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we infer
(ax+8)"  (d'z+8) {(a+a)x+b+0)
2a T @ 2(a+a) + constant.

Multiply by 2aa’ (@ + a’) and then determine the constant by
supposing &= 0; thus we obtain the identity

a (a+a) (ax +0)*+a(a +a) (dz+b)*
=ad {(a+a) z+b+ b} + (ba' —b'a)*

55. By f¢ («) e we indicate the function of which ¢ (2)

is the differential coefficient; suppose this to be yr (x). Then
we may require the function of which 4 () is the differential

coefficient, which we denote by f V¥ () dz, or by f [ ¢ (z) de dz,

and so on. For example, the integral of €= is ]%e"“+ C
where C, is a constant; the integral of this is

,%, e+ Ca+ Cy;
the integral of this is

1 o
Z,e*”+ 01'§+ 0,'1?+ 03,

where % being still a constant may be denoted for simplicity

by B if we please. Proceeding thus we should find as the
result of integrating ¢ successively for n times

‘;ci: + A2+ A +eeent 4, 2+ A,

where 4, 4,,...... A, are constants.
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MISCELLANEOUS EXAMPLES.

a & s
4/(:2_-0-11;) = iﬂﬁ . (Assume =g sin*#§).
[ wde
N@az—a)

f’” dz _ T
o (@+2) (B +") 2ab(a+d)’
If ¢ (x) =¢ (a + =), shew that
f:a¢ () dz:nf:gb(w) da.

Shew that j:¢(x) e = ”;ff}(l’;“ﬁ’;c"m) da.

a:sinxcl’c_r’

m —Z‘. (See Art. 41.)

Shew that f'
[

2
Shew that FV(2ax — ) vers™ gdx =”—1‘-z— .
o
(Change @ into 2¢—a'; see Art. 41.)

Find the limit when = is infinite of

1 1 1 1
ATV —0 T Vm—2)
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10.

11.

12.

13.

14.

MISCELLANEOUS EXAMPLES.

Find the limit when # is infinite of

(%)P+ (%)P+ (%)P ...... +1 .

(%+%)p+(%+%)f....+1. oo 1—(1)' o

1
Find the limit when # is infinite of {Lﬁ}

Result. %. (Take the logarithm of the expression.)

Shew that fﬁ log tan & do = 0.
[

Prove that
ate +e
[(4@x@ d=pa+0) [ x@
where 6 is a proper fraction, provided that ¢ (x) and
(%) are finite and continuons from z=a to x=a+c,
and that x (z) is of invariable sign between these
limits.
If f(x) be positive and finite from z=a to z=a+¢,

shew how to find the limit of

f@s(at Doi(or 222

when n is infinite; and prove that the limit in ques-

tion is less than j f () dz, assuming that the geo-

metric mean of a finite number of }ilsxtlve quantities
which are not all equal is less than the arithmetic.

Hence prove that ef o is less than f e*da, unless »
be constant from =0 to z=1. °
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15. The value of the definite integral f : log (1 + ncos® ) do

o, o - .
may be found whatever positive value is given to n
from the formula

f “log (1-+n cos) 4= T log {(1+a)(1+n (L +n)rrr)
where 7, 1, nyeee... are quantities connected by the
equation

n!

el = 4 (nr"" 1) *
(Put 0=%—6’; see Art. 41.)

n

16. Shew that
fe’ cos ax dx = M

(@ + o)
where tan¢=%. Hence shew that if e* cos axz be

integrated » times successively the result is

L8 (@) | Ot Ot Chonennt Crya™

@+

+ a’ constant,



CHAPTER V.

DOUBLE INTEGRATION.

56. LET ¢ (x) denote any function of x; then we have '
seen that the +ntegral of ¢ (z) is a quantity u such that
%= ¢ (). The integral may also be regarded as the limit

of a certain sum (see Arts. 2—6), and hence is derived the
symbol f¢ (x) dz by which the integral is denoted. We

now proceed to extend these conceptions of an integral to
cases where we have more than one independent variable.

57. Suppose wegha.ve to find the value of » which satis-
fies the equation %—: ¢ (z, y), where ¢(z, y) is a function

of the independent variables « and y. The equation may be
written

d (du
7 (@)= 9@,
P
or 7 =¢@ 9,
if v= j—:. Thus » must be a function such that if we difer- |

entiate it with respect to y, considering z as constant, the
result will be ¢ (x, y). We may therefore put

”=f¢(x:3/)d."/1 ]
that s, &t @
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Hence v must be such a function that if we differentiate it
with respect to @, considering y constant, the result will be

the function denoted by f ¢ (z, y) dy. Hence

u=[{[s .0t} =

The method of obtaining » may be described by saying
that we first integrate ¢ (x, y) with respect to y, and then
integrate the result with respect to .

The above expression for » may be more concisely written
thus '

jﬁ@w@h,mfﬂamh@

On this point of notation writers are not quite uniform; we
shall in the present work adopt the latter form, that is, of the
two symbols dz and dy we shall put dy to the right, when we
consider the integration with respect to y performed before the
integration with respect to «, and vice versa.

58. We might find » by integrating first with respect to
2 and then with respect to 7 ; this process would be indicated
by the equation

u=[f¢(:t, y) dy dex.

59, Si'gf we have thus two methods of finding u from the
equation Ty ¢ (z, y), it will be desirable to investigate if

more than one result can be obtained. Suppose then that %,
and w, are two functions either of which when put for u satis-
fies the given equation, so that

d’u, d'u,

Zdy=t@9) md 2 =),

We have, by subtraction,

Ju, _ Ty, _
dedy dazdy” "
. d (dv
| that is, o (@) =0 where v =u, —u,

T, I C 5
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Now from an ‘equati.on %=0 we infer that w must be a

constant, that is, must be a constant so far as relates to =; in
other words, w cannot be a function of z, but may be a func-
tion of any other variable which occurs in the question we are
considering.

. d (dv . dv
Thus from the equation o (@) =0 we infer that &

cannot be a function of z, but may be any arbitrary function
of y. Thus we may put

dv
% =f()-

By integration we deduce

v= f J(y) dy + constant.

Here the constant, as we call it, must not contain y, but
may contain ; we may denote it by x (). And f f(y)dy
we will denote by ¥ (y); thus finally

v="4(y) +x @)

Therefore two values of » which satisfy the equation

d% =¢ (x, y) can only differ by the sum of two arbitrary

functions, one of & only and the other of y only.

60. We shall now shew the connexion between double
integration and summation. Let ¢ (x, y) be a function of
and y, which remains finite and continuous so long as « lies
between the fixed values @ and 4, and y between the fixed
values a and B. Let a, z,, @,...... Z,_,,b be a series of
quantities in order of magnitude; also let &, 7, ¥geeeeeeYmysB
be another series of quantities in order of magnitude.

Let a,—a=h, g,—x,=h,......... b—x,  =h,;

also let :’/1—“=kp y’—yl=kg, ......... /3—.%.._1=kw
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‘We propose now to find the limit of the sum of a certain
series which consists of every term of the form

}"]C' ¢ (xf—lﬁ y l—]) b

where r takes all integral values between 1 and =, and s
takes all integral values between 1 and m; also @, and y,
are to be considered equivalent to ¢ and a respectively. Thus
we may take k¢ (z, y) as the type of the terms we wish to

sum, or we may take Az Ay ¢ (x, ) as a still more expressive
symbol. The series then is

hl {kx ¢ (a" a) + ka ¢ (a9 yl) + ks¢ (a7 ys) """ +kfn¢ (a7 ya'—x)}
+ hz {kl ¢ (xl’ a)' + kﬁ ¢ (“'v yt) + kn¢ (wvyx) """ +km¢ (xp .%..1)}
+ hﬂ {kl ¢ (mn-v a) + ks ¢ (xn—v Ayx) + ka ¢ (“’a-v yz) """"

+ kﬂ ¢ ('T‘n-v ym—l)}‘

Consider one of the horizontal rows of terms which we
may write

k'ﬂ {kl ¢ (w" a) + kB ¢ (x" yl) + kﬂ ¢ (w"’ yﬁ) """ + km ¢ (m" y’ﬂ—l)}'

The limit of the series within the brackets when %, ,,...
k, are indefinitely diminished is, by Art. 8,

['6 @091y

Since this is the limit of the series, we may suppose the
series itself equal to

8
fa¢ (x" y) dy + Prﬂ’
where p,,, ultimately vanishes.

et [°$ (@, 3) dy be denoted by ¥ (z); then add all the

horizontal rows and we obtain a result which we may de-
wote by

Sk (@) + Zhp.
5—2
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Now diminish indefinitely each term of which % is the type,
then 3%p vanishes, and we have finally

[+ @
thatis f" { f’qb (=, 3) dy} d.

This is more concisely written
b (8
[[é@aa,

dy being placed to the right of dx because the integration is
performed first with respect to y.

61. We may again remind the student that writers are not

all agreed as to the notation for double integrals. Thus we
b B

use f f ¢ (z, y) dw dy to imply the following order of oper-

ations—integrate ¢ (x, y) with respect to ¥ between the limits
o and B; then integrate the result with respect to = between
the limits ¢ and 4. Some writers would denote the same

b
order of operations by f f p¢ (®, y) dy dw.

62. We might have found the limit of the sum in Art. 60
by first taking all the terms in one vertical column, and then
taking all the columns. In this way we should obtain as the

- ﬁ b
sum ] ) f . ¢ (x, y) dy dz; and consequently

fﬁqub (2, 9) dy dz =fbf’¢ (2, 3) dw dy.

63. Hitherto we have integrated both with respect to
and y between constant limits ; the limits however in the first
integration may be functions of the other variable. Thus, for

b ] .

example, the symbol [ | *“ (@, ) dz dy will denote the fol-
a x)

lowing operations—first ’i<x(1tegrate with respect to y so thatz
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is constant; suppose F'(z, y) to be the integral; then by
taking the integral between the assigned limits we have the

result
Flz, ¥ (@)} - Fz, x ()}
‘We have finally to obtain the integral indicated by

[ Fle 4 @} - P, x(@)) de.

The only difference which is required in the summatory
process of Art. 60 is, that the quantities a, y,, ¥,...Ym, Will
not have the same meaning in each horizontal line. 1n the
(r+ 1)® line, for example, that is in

s (b @or @) + By & (@ 9) + By G (@0 9)evert Fond (@10 Y}

we must consider a as standing for x (x,), and y,, ,)...... as a
series of quantities, such that x (2,), ¥, ¥pere e -Ymop ¥ (&),
are in order of magnitude, and that the difference between any
consecutive two ultimately vanishes. Hence, proceeding as

)
before, we get f ¢ (z,, y) dy for the limit of the sum of the
()
terms in the (r-l’f 1)® line.

64. It is not necessary to suppose the same number of
terms in all the horizontal rows; for m is ultimately made
indefinitely great, so that we obtain the same expression for
the limit of the (r + 1)* line whatever may be the number of
terms with which we start.

65. When the limits in the first integration are functions
of the other variable we cannot perform the integrations in a
different order, as in Art. 62, without special investigation to
determine what the limits will then be. This question will
be considered in a subsequent chapter.

66. From the definition of double integration, it follows
that when the limits of both integrations are constant,

[[6@+ @) &ay=[¢ @ & x [v (5) a,
supposing that the limits in f v (y) dy are the same as in the
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integration with respect to y in the left hand member, and the
limits in f ¢ (2) d the same as in the integration with respect

to « in the left hand member. For the left hand member is
the limit of the sum of a series of terms, such as

bes ooy & (@) ¥ (32);
and the right hand member is the limit of the product of
}‘1¢ (xo) + k2¢ (xl) + hs¢(m2) """ + A, ¢ (wn—n)’
and (50 + Iyt () Ho (9 eeee ot o V(Y-

67. The reader will now be able to extend the processes
given in this chapter to triple integrals and to muliple
integrals generally. The symbol

& (6
&j:'o %@ 3, 9) dody de

will indicate that the following series of operations must be

erformed—integrate ¢ (z, y, 2) with respect to z between the
imits & and ; next integrate the result with respect to
between the limits #, and #, ; lastly integrate this result wi
respect to  between the limits £ and . Here { and ¢ may
be functions of both = and y; and #, and #, may be functions
of . This triple integral is the limit of a certain series
which may be denoted by 2¢ (z, y, 2) Az Ay Az.
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CHAPTER VI
LENGTHS OF CURVES.

Plane Curves. Rectangular co-ordinates.

68. Let P be any point on the curve APQ, and let z,
y be its co-ordinates; let s denote the length of the arc
AP measured from a fixed point 4 up to P;

then, (Dif. Cal. At 307)
)
Hence, o= f\/ {1 + (j—i)} dz.

From the equation to the curve we may express o in
terms of @, and thus by integration s becomes known.

69. The process of finding the length of a curve is called
the rectification of the curve, because we may suppose the
question to be this: Find a right line equal in lengtE to any
assigned portion of the curve.
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In the preceding article we have shewn that the length of
an arc of a curve will be known if a certain integral can be
obtained. It may happen in many cases that this integral
cannot be obtained. lvﬂJ’henever the length of an arc of a
curve can be expressed in terms of one or both of the co-
ordinates of the variable extremity of the arc, the curve is
said to be rectifiable.

70. Application to the Parabola.
The equation to the parabola is y = s/(4ax); hence

&y _ «/9_ ds _ J("L"‘.ﬂ’)
dx z’  dr z /)’
thus s =f\/(:c-;—a) dx (See Ex. 6, p. 18.)

=+(ax + %) + alog Wz + +/(a + z)} + C.

Here C denotes some constant quantity, that is, some quan-
tity which does not depend upon ; its value will depend
upon the position of the fixed point from which the arc s is
measured. If we measure from the vertex then s vanishes
with z; hence to determine’ C we have

) alogva+ C=0;
and thus s=+/(az + 2*) + alog ¥z + ¥/ (a + x)} — a log ya

=\/(ax+x’)+alogw.

If then we require the length of the curve measured from
the vertex to the point which has any assigned abscissa, we
have only to put that assigned abscissa for z in the last
expression. Thus, for example, for an extremity of the
latus rectum «=a; hence the length of the arc between
the vertex and one extremity of the latus rectum is

a2+ alog (1+4/2).
71. In the %'eceding article we have found the value of

the constant C, but in applying the formula to ascertain the
lengths of assigned portions of curves this is not necessary.,

L 8



LENGTHS OF CURVES, 73

For suppose it required to find the length of the arc of a
curve measured from the point whose abscissa is «, up to the
point whose abscissa is «,. Let +r(x) denote the integral of

H
\/ { 1+ (%) } , and let s, and s, be the lengths of arcs of the

* curve measured from any fixed point up to the points whose
absciss® are @z, and x, respectively, so that s,—s, is the

required length; then

s=f«/{1+ (%)’}dx=1p(x)+ C;

hence s=Y¥(@)+0C; s=%(@)+C;
therefore 8, — 8, =V () — Y ().

Hence to find the required length we have to put z, and =z,
successively for x in +r(x) and subtract the first result from
the second. Thus we need not take any notice of the constant
C; in fact our result may be written

wmnm [ ()]

12. Application to the Cycloid.

In the cycloid, if the origin be at the vertex and the axis of
ythe tangent at that point, we have (Dif. Cal. Art. 358)

ds 2a
dz ™ \/ (_:5) ’
therefore, 8 =4/(8ax) + C.

The constant will be zero if we measure the arc s from the
vertex,

73.  Application to the Catenary.
The equation to the catenary is y =% (e°+€ ) ; hence

Loy(-ch, S=bE+a;

thus  e=}[(F+eF) do=F—a )+ C.
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The constant will be zero if we measure the arc s from the
point for which z=0.

74. Application to the Curve given by the equation

A gtod
dy y ds _ at4gh\d ot
Here IE—_;, E—( m§ =;I’

dr  3atxt
thus s=a§fx—i= a2.z: +C.

The constant will be zero if we measure the arc from the
point for which #=0. The curve is an hypoeycloid in which
the radius of the revolving circle is one-fourth of the radius of

the fixed circle. (See Dif. Cal. Art. 360, and put b=7)-

Wi @i @5
=] \/ {1 + (ﬁ—;)’} dy,
we have o= «/ {1 + (Z_;)'} &

From the equation to the curve we may express :1i_:c in
Y

terms of y, and thus by integration s becomes known. In

some cases this formula may be more convenient than that in

Art. 68,

76. Application to the Logarithmic Curve.
The equation to this curve is y=ba”, or y=be§ if we
1
suppose a=e°; thus xz=c log% )
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oretors B¢ de_VE+g)
dy y’ dy y
VE@+ ) cdy yd
d = dy= L
wd  o=f y Y fy«/(ﬂy’)* VE+9)
The latter integral is 4/(c* + 5*) ; the former is

¢ log

— 4
PEwy Il (Art. 14).

Hence s=clogc—+7(:/:,_'_—y,)+a/(c’+y’)+0.

77. If x and y are each functions of a third variable ¢,
we have (Dif. Cal. Art. 307),

-3 )
N R

78. The equation to the ellipse is §,+g—: =1. We may

therefore assume z =a sin¢, y = b cos ¢, so that ¢ is the
omplement of the excentric angle, (Plane Co-ordinate Geo-
metry, Art. 168). Therefore, by the preceding article,

T =@ o ¥ s’ ),
and s =[4/(a’ cos® ¢ + 5*sin’ ) d4>=af4/(1 — & sin’ ¢). dp.

The exact integral cannot be obtained; we may however
expand 4/(1—¢* sin* @) in a series, so that

8=af{1—-%e’sin’¢—-;—:ie‘sin‘¢-—%——i—§e°sin°¢ ...... 1 dé

and each term can be integrated separately. To obtain the
length of the elliptic quadrant we must integrate between the

limitsOandg.
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Plane Curves. Polar Co-ordinates.

79. Let r, 6 be the polar co-ordinates of any point of
a curve, and s the length of the arc measured from any fixed
point up to this point; then (Dif. Cal. Art. 311)

PRy AT
hence o= / {r" + (g—’(;)'} dé.

80. _Application to the Spiral of Archimedes.

. dr
In this curve r =af, thus =%

hence s=fr\/(r’+a’) do=afv(1 +67) do

=L 1+ )+ 2log {0441+ )} + C.

The constant will be zero if we measure the arc s from the
pole, that is from the point where 6= 0.

81. Application to the Cardioide.

The equation to this curve is r =a (1 +cos 6) ; thus

s=fd{a’ (1 + cos 0)* + a*sin* 6} dO:a[d@ +2 cos §) df
=2afcosgd0=4asing+ C.

The constant will be zero if we measure the arc s from the
point for which =0, that is, from the point where the curve
crosses the initial line.

The length of that part of the curve which is comprised
between the initial line and a line through the pole at right

X, The length of half the

angles to the initial line is 4« sin 1

perimeter of the curve is 4a sin%, that is, 4a.
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82. Suppose we require the length of the complete peri-
meter of the cardioide; we might at first suppose that it
. 2
would be equal to 2a f cos g df ; but this would give zero as
0
the result, which is obviousllyl' inadmissible. The reason of
this may be easily seen; we have in fact shewn that

%=a4/(2+2 cos 6),

and this ought not to be put equal to 2a cosg but to +2a cos g,

and the proper sign should be determined in any application
of the formula. Now by s we understand a positive quantity,
and we may measure s 8o that it increases with 6, and thus

B is positive. Hence when cosg is positive, we take the

upper sign and ‘put' gg: 2a cosg; when cos g is negative, we
take the lower sign and put (%: —2a cosg. Hence the

2
length of the complete perimeter is not 2a fo cosg df, but

% f "cos -g— db —2a f heos g df, that is, 8a. This result might
0 -

have been anticipated, for it will be obvious from the sym-
etry of the figure that the length of the complete perimeter
i8 double the length of the part which is situated on one side
of the initial line, and this was shewn to be 4a in the preced-
g article.

83. Tt may sometimes be more convenient to find the
length of a curve from the formula

a=f¢{f(%-ﬁ)’+ l}dr,

which follows immediately from that in Art. 79.
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84. Application to the Logarithmic Spiral.
[
The equation to this curve is »=ba®, or r =be* if we sup-
1

pose a = ¢°; thus 0=clog%; therefore Z—f=c; and

s='f4/(l+c’) dr=NQ1+c)r+C.

Thus the length of the portion of the curve which hasr,
and r, for the radii vectores of its extreme points is

[ +e)dr, that is, V(1 +)r—r.

The angle between the radius vector and the corresponding
tangent at any point of this curve is constant, (Dif. Cal. Art.
354); and if that angle be denoted by a we have c=tana;

thus /(1 + ¢’) = sec a, 7 = sec and s=rseca+C
Hence (r,— ) sec @ is the length of the portion mentioned
above.

Formule involving the radius wector and perpendicular.

85. Let ¢ be the angle between the radius vector r of
any point of a curve and the tangent at that point; then

cos ¢ = dr (Dif. Cal. Art. 310). Let p be the perpendicular

ds ’

from the pole on the same tangent; then

. sin ¢ =€ , therefore cos ¢ = L"’;ﬂ ;
dr NG —p),

thus Zvrop),
ds 7

therefore == T

and  rdr

EIVE=5
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86. Application to the Epicycloid.

‘With the notation and figure in Dif. Cal. Art. 360, it may

be shewn that the equation to the tangent to the epicycloid
st Pis

a+b

cost‘)—cosTG
sin @ — sin —b——t‘)

vhere o and y are the co-ordinates of P, and «’ and y’ the
variable co-ordinates. Hence it will be found that the ger—
pendicular p from the origin on the tangent at P is given by

_p=(a+2b)sin§;
also P=a"+4b(a+D) sin’g—z;
—n2
thus p’=% where ¢=a + 2.

Hence, by Art. 85,

_AN(E@=a) rdr N —ad')
=" fd(c“—r’)__ - V- + C.

At acusp r=a, and at a vertex r=c; thus the length of

the portion of the curve between a cusp and the adjacent
vertex is

‘\/(c’—a’)fe rdr . &—a* . 4b (a+b)
= A=) that 8 ——, that is —
Hence the length of the portion between two consecutive cusps

isSb(a+b).

a

87. A remark may be made here similar to that in
Art.82. If we apply the formula

o= -9 e _ry s
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to find the length between two consecutive cusps, we arrive
at the result zero, since »=a at both limits, The reason is
that we have used the formula

ds _N(—a’) r
dr a V(e =1
while the true formula is
ds_ NE@-d) r
dr = a W=7
Since s may be taken to increase continually, it follows that

o is positive when » is increasing, and negative when 7 is

diminishing. Now in passing along the curve from a cusp to

the adjacent vertex r increases, thus o is positive, and we

should take the upper sign in the formula for %; then in
passing from the vertex to the next cusp » diminishes, thus

o is negative and the lower sign must be taken. Hence the

length from one cusp to the next cusp is

_NEE=d) [ rdr  N(—d) [*_ rdr
- a f,d(c*—r’) a fc\/(c*—r’)
_2\/(c’—a’)f" rdr _ 8b(a+D)
- a NE-P) T a

88. From what is stated in the preceding article, it ap-
pears that if the arc s begin at a vertex the proper formula is

ds__W@E—a) ¢

g/ a  Ne—r)’

therefore s=— ;\/(c’a— <) f 7 (c:({,-' = ,\/(c*(;_ ) V(e —7).

No constant is required since we begin to measure at the
point for which »=c; the formula holds for values of s less

than u’—((;ﬂ .
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It may be observed that thus

-7

89. Similarly for the hypocycloid we may shew that
p=d@=r

p where ¢=a— 2b.

Suppose ¢* less than o?; then we may shew that
b _ N@E-F)
&r - a V@ =¢)’

and thus s may be found. The length of the curve between
85 (a— b)
a

two adjacent cusps is

Next suppose ¢ greater than a*; then we should write
the value of ds thus ‘

dr
ds _ N (F—d) r
&r ~ a V(@ —
in this case b is greater than a, and we shall find the length

of the curve between two adjacent cusps to be ———— 80 (b a)
When a =26 we have ¢c=0 and p=0; in thxs case the

bypocycloid becomes a straight line comc1dmg with a dia-
meter of the fixed circle.

Ifa=5we have ¢®=a’; In this case the denominator in
the value of p’ vanishes; it will be found that the hypocy-
cloid is then reduced to a point, and r=a.

It may be shewn as in Art. 88, that if s be measured from
a vertex to a point not beyond the adjacent cusp, we have

3 =1 ’\/(r2 _Pz),

' the upper or lower sign bemg taken according as ¢ is greater
or less than a.

T. I C. 6
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Formule involving the Perpendicular and its Inclination.

90. Another method of expressing the length of a curve is
worthy of notice.

Y

) x

Let Pbe a point in a curve; x, y its co-ordinates. Lets
be the length of the arc measured from a fixed point 4 up
to P. Draw OY a perpendicular from the origin O on the
tangent at P; suppose 0Y =p, PY =u, YOx=0; then

p==cos 0 +ysinb,

u=xzsinf—y cosb,

Z_i=_°°t9: =, =—cosec;
therefore |
g%:—xSinB"l‘y0080+.coseg__z+sino%=_u’
%=_%_—xcoso_?/ Sine“Sinoj—é;-'-c()sog%

dx ds
=_P_°°se°‘9@="1’_+3_9’

therefore, by integration,

g—}é=-—fpd€+s,
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_% .
therefore . g fpde,
this may also be written

s+u=fpd0.

Suppose s, and v, the values of s and » when 6 has the

v}a:lue » and s, and u, their values when 6 has the value 6,
then

-

o
sn—sl+u,—ul=:[opd9.

‘We have measured » in the direction of revolution from P
and have taken it as positive in this case; when u is negative
it will indicate that Y is on the other side of P.

91. The preceding article may be -used for different pur-
poses, among which two may be noticed.

(1) To determine the length of any portion of a curve
when the equation to the curve is given; for from that equa-

tion together with % = —cot § we can find 2 and y in terms

of §, and therefore p which is equal to.« cos @ +y sin §; then
s may be found from the equation

d
8= d—’é + f | pdd.
(2) To find a curve such that by means of its arc a pro-
posed integral may be represented ; for if the proposed inte-

gral be f | pdf where p is a function of 6, the required curve is
found by eliminating 6 between the equations

z=p cos 0—-% sinf, y=p sin 0+g—§ cos 6,

and then the integral may be represented by s — 4

de’
Arts. 90 and 91 have been derived from Hymers's Integral
Calculus, Art. 136.

n LY
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92. Application to the Ellipse.

1B

R

(o4 A

Let APB be a quadrant of an ellipse, CY the perpendicu-
lar on the tangent at P; let ACY =0. Then (Plane Co
ordinate Geometry, Art. 196), CY =a4/(1 ~¢'sin*6);
therefore =~ AP+PY=a f N (1 — ¢ sin® 6) d6,

the constant to be added to the integral is supposed to be 0
taken that the integral may vanish with 6. %xf)'R be a point

‘such that its excentric angle is %- — 6, we have by Art. 78,

BR=a/M(1—e’sin*0) a9;
thus AP+ PY=BRewreeerrsrerrrron. .

And PY=-1L=

Let « be the abscissa of P; then by Art. 90,

z=p cos 6 — P sing

do
_ s . g ac'sin"fcosd  acosf
=as/(1—¢*sin’6) cose+;\/(1—e’sin’0)—V(l—e“sin’ﬁ)
Thus PY=¢exsinf; and if &' be the abscissa of B we

have @' =a cos (3’2- -o) o that PY =22, Thus (1) my
be written
BR-AP=% oo, @);

this result is called Fagnani’s Theorem.
.
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From the ascertained values of « and &' we have
P ad—asin®l o —2*

S1—csm 0 , ez’
1-— p
therefore er'e” — & (' + %) + a* = 0.

Thus the equation which connects  and / involves these
quantities symmetrically ; hence from (2) we can infer that

BP—AR= gmw’.
This is also obvious from the figure.

93. Application to the Hyperbola.

i

Let C be the centre and A the vertex of an hyperbola,
CY the perpendicular on the tangent at P. Let ACY =4
and CY=p; then it may be proved that

PY—~AP=g fJ(l—ésin’G) o

this may be proved in the same manner as the corresponding
result of the preceding article; we may either make the
requisite changes of sign in the formule of Art. 90, which
are produced by difference of figure; or may begin from the
beginning again in the manner of that article. The constant
to ﬁ ad(ﬁad to the integral is supposed to be so taken that the
integral may vanish with 6.



86 LENGTHS OF CURVES.

Suppose a the greatest value which 6 can have, then
(Plane Co-ordinate Geometry, Art. 257) cot & = 4/(¢® — 1).
‘When P moves off to an infinite distance PY — AP becomes
the difference between the length of the asymptote from C
and the infinite hyperbolic arc from 4. Thus this differ-

ence 18

a f * /(1= sin? 6) 6.

Inverse questions on the lengths of Curves.

94. In the preceding articles we have shewn how the
length of an arc of a known curve is to be found in terms of
the abscissa of its variable extremity; we will now briefly
notice the inverse problem—to find a curve such that the are
shall be a given function of the abscissa of its variable ex-
tremity.

Suppose ¢ (x) the given function; then s= ¢ () ;

therefore & (x)= % = \/ {1 + (%)2} ;
thus D¢ @ -1,
and y = [l @p - 11 da.

95. As an example of the preceding method, suppose
& (@) =/(4cz); thus ¢'(2) = 5 ; therefore

- [ls- 225
c

(¢ -=)do

= y(cx — ) +%vers"2?m+ C.

We may write 3 for y — C and thus we find that the
curve is a cycloid. (Dif. Cal. Art. 358.) :
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96. For another example suppose ¢ (z)=a logz; thus

¢ (@) =3.

Here y=§\/(;—:;;;l)dm=fg§+g
_ a x

P Rl v
=alogm%_—_?)+4/(a’—x’)+ C.

Involutes and Evolutes.

97. 'We may express the length of an arc of a curve with-
out integration when we know the equation to the involute of
the curve. Suppose & to represent the length of an arc of a
curve, p the radius of curvature at that point of the involute
which corresponds to the variable extremity of &', then (Dif.
Cal. Art. 331) & + p=1, where ! is a constant. If the equa-
tion to the involute is known, p can be found in terms of the
co-ordinates of the point in the involute; then these co-ordi-
nates can be expressed in terms of the co-ordinates of the
corresponding point of the evolute, and thus &' is known.
By this method we have to perform the processes of differen-
tiation and algebraical reduction instead of integration.

98. Application to the Evolute of the Parabola.

Take for the involute the parabola which has for its equa-
tion y*=4ax; let 2/, ¥’ be the co-ordinates of the point of
the evolute which corresponds to the point (x, y) on the para-
bola. Then by the orgi.na.ry methods (Dif. Cal. Art. 330)

we have '
o =2a + 3z, y’=—%},
i
and p=2a (a-—: w) .

Thus we shall obtain for the equation to the evolute
2Tay”® =4 (@ — 2a)°;

o + a\b
and p=2a( 30 )
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therefore g +2a (m’:; a)!___ l

Suppose we measure & from the point for which &' =2a,
that is from the point which corresponds to the vertex of the
parabola; then we see that s’ increases with a/, so that we
must take the lower sign in the last equation; also by sup-
posing &’ =2a and & =0 we find /=—2a; thus

&=2a (“/ + “)’— 2.

3a
This value of & ma[{ also be obtained by the application of
the ordinary method of integration.

99. When the length of the arc of a curve is known in
terms of the co-ordinates of its variable extremity, the equa-

tion to the involute can be found by ordinary processes of
elimination.

For we have (Dif. Cal. Art. 331),

da’
Z _1af
¥—x pdx

where the accented letters refer to a point in a curve, and the
unaccented letters to the corresponding point in the invo-
lute. Thus

w=x’—p% .......................... (1)
Similarly Y=Y =% e @).

If then ¢ is known in terms of @, or of ¥/, or of both, by
means of this relation and the known equation to the curve
we may find @ and %

Yy ¢ gy ¢ gy’
&+ p=1I It only remains then to eliminate 2/ and 3’ from
(1) and (2) and the known equation to the curve; we obtain
thus an equation between z and y, which is the required
equation to the involute.

and p is known from the equation
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100. Application to the Catenary.
The equation to the Catenary is

c %z =

y’=§(e‘+e ‘),

c t =

nd ML)

supposing &' measured from the point for which /=0 and
y'=c; we shall now find the equation to that involute to
the catenary which begins at the point of the curve just
specified.

‘We have then
y_¢ & _y.
de ¢’ do ¢’
dy & d ¢
thus @_.’?’ @—;ﬂ

and p = &/, no constant being required, because by supposition
p vanishes with ¢

Hence equations (1) and (2) of the preceding article become

w=x’-—§;

ey Y=

7/—.'/' y/ y/ ; yl'
R e VAR B TICE
therefore ; = :\/(c"c— ¥) ;

thus ao=a'—+(—y"); therefore @=4(¢—3")+=.

‘We have then to substitute these values of 2’ and ’ in the
equation to the catenary, and thus obtain the required rela-
tion between « and y. The substitution may be conveniently
performed thus



90 LENGTHS OF CURVES.

c, 2 Z
y=zl+e’);

z 2
therefore N =.20_ (€ —e*);
therefore YNy =)= o;?”
therefore z' =c log y—'ﬂ%’:ﬁ) .

Thus finally, @+ V(@ — ) = ¢ 1ogﬁ-*%’;ﬂ.

- This curve is called the tractory ; on account of the radi-
cal, there are two values of x for every value of y less than ¢,
these two values being numerically equal, but of opposite
signs. There is a cusp at the point for which =0 and
y=c; and the axis of « is an asymptote.

101. The polar formule may also be used in like manner
to determine the involute when the length of an arc of the
evolute can be expressed in terms of the polar co-ordinates of
its variable extremity. We have (Dif. Cal. Art. 332), '

rr=p 1 — 2pPe e, 1),

pri=r—p ... cerreersereresasenes (2).

Here, as before, the accented letters belong to the known
curve, that is, to the evolute, and the unaccented letters to the
required involute; thus since the evolute is known, there is a
known relation between p’ and . And & + p=1, so that if
& can be expressed in terms of »’ and ~ we may eliminate
2’ and 7 by means of (1), (2), anf the known equation to the
evolute. us we obtain an equation connecting p and r,
which serves to determine the involute.

102. Application to the Equiangular Spiral.

In this curve p’ =1 sin a, where a is the constant angle of
the spiral. If we suppose the involute to begin from the
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ﬁole of the spir#l, and & to be measured from that point, we
ave p=g=1"seca, (Art. 84). Thus (1) of the preceding
article becomes
" =r"gec’ a+1"— 2p seca
=7"gec’ a + 7 sin’ a + p* — 2rp sec a, by (2).
From this quadratic for » we obtain A

p—1r seca=+7 cosa

If we take the upper sign we find p:ﬂ%"(ﬁﬂ , and
then from (2) we find »*= ! +cisg? 7?.  But this solution

must be rejected, because from it we should find p or

. dr _ 1+4+3cos’a
dp  cosa (1+cos’a)

equation p =1’ sec a.

7, which is inconsistent with the

y *. 9
If we take the lower sign we find p=1_'é(s)1s_nag’ and then

O
from (2) we find r,=r”sin a
cos’ @

mvolute is an equiangular spiral with the same constant
angle as the evolute has.

; thus p=rsina. Hence the

Intrinsic Equation to a Curve.

103. Let s denote the length of an arc of a curve measured
from some fixed point, ¢ the inclination of the tangent at the
variable extremity to the tangent at some fixed point of the
curve; then the equation which determines the relation
between s and ¢ is gled the ¢ntrinsic equation to the curve.
In some investigations, especially those relating to involutes
and evolutes, this method of determining a curve is simpler
than the ordinary method of referring the curve to rectangular
axes which are extrinsic lines.
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104. 'We will first shew how the intrinsic equation may
be obtained from the ordinary equation.

Suppose y = f () the equation to a curve, the origin
being a point on the curve, and the axis of y a tangent at that
point; tgom the given equation we have

d , 1 :
3% =f'(z) = m by hypothesis;

thus z is known in ferms of tan ¢, say @ = F(tan ¢); then

dx
7= F’(tan ¢) sec’ ¢ ;
also % = cosec ¢ ;
ds 1
therefore T F’ (tan¢) sec’d cosec ¢;

from this equation s may be found in terms of ?1 by integra-
tion. A similar result will be obtained if at the origin the

axis of & be the axis which we suppose to coincide with a
tangent.

105. Application to the Cycloid.
By Dif. Cal. Art. 358, we have

fiﬂ_ (2a—w) 1

dr z ) tang i

2¢ 1 _ O
therefore > =50 g’ = 2a sin® ¢,

dw .

—¢=4a sin ¢ cos ¢,

ds dx

7 = cosec ¢ —- =4a cos ¢p;

P73 ¢ % ¢
therefore s=4asing+ C.

The constant will be zero if we suppose s measured from
the fixed point where the first tangent 1s drawn, that is, from
the vertex of the curve.
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106. Having given the intrinsic equation to deduce the

ordinary equation.

We have % =ging;
therefore z= f ds sin ¢.
Similarly y = [ cos .

Now s is by supposition known in terms of ¢; thus by
integration we may find « and y in terms of ¢, and then by

eliminating ¢ we obtain the ordinary equation to the curve in
terms of  and y.

107. Application to the Cycloid.
Here s=4asin ¢;
thus ~m=fdssin¢=4afsin¢cos¢d¢=O'-—acos2¢,
y=fdscos¢=4afcos’¢d¢=0"+2a¢+asin2¢.

Hence by eliminating ¢ we can obtain the ordinary equa-
tion; if the origin of the rectangular axes is the vertex of
the curve, we shall have C=a and C'=0.

. 108. 'We shall now give some miscellaneous examples of
Intringic equations.
The intrinsic equation to the circle is obviously s = ag¢.
109. The equation to the catenary is
y+e= % (e+e ),
the origin being on the curve. Hence

i z  _z R
2=k, s=gl=e);
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thus if ¢ be the angle which the tangent at any point make
with the tangent at the origin

s=c tan ¢.
110. 'We have seen in Art. 86, that for the epicycloid

dy cosO—cos———ﬁ

b
d= pyrys - = tan ¢ suppose,
_b—' —sm0
a+2b
thus ¢= 25 6.

Again, from the same article,

==Y yo_mic
_4b (a +8) o
a 2b + ¢
_4b(a+D) af
= ———--—-—-a (1 — CO8 -2—b'>
if we suppose s measured from the point for which 8 =0.
_4b(a+d) ap
Thus s-———;————(?—cosa_'_%).
We may simplify this result by putting
__'n-(a+25) ., _4b(a+?) .
¢—-——-——2a +¢, and s—T+s’,

this amounts to measuring the arc from a vertex instead «
from a cusp. Thus

4b (a+b) sin ad’

¢= a a+2b

where the accent may now be dropped.
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111. Similarly the intrinsic equation to the hypocycloid
may be written

_4b(a—b) . a¢d
=T e we

112. Tt appears from the last two articles that s= sin n¢
represents an epicycloid or hypocycloid, according as = is less
or greater than unity. For example, if

a=.lsin§, s=lsingi, s=lsin$, s=lsin£,...
. eq .. 1 8
we have eplcyclon’ismwhlchE:E, 1, —2-,2,...

If s=1sin2¢, s=I[sin 3¢, s=1sin 4¢, s=1sin 5¢,...

R .. b6 1 1 3 2
we have hypocycloids in whic =13 8 5

113. If p be the radius of curvature of the curve at the
point determined by s and ¢, we have (Dif. Cal. Art. 324),

=%
P"'d¢‘

In the logarithmic S}iliral we know that p varies as s if the
arc be measured from the pole; thus

ds
therefore 8 =ack
where a is a constant. If we put s=¢+a we have

& =a(-1),

and now &’ is measured from the point for which ¢ =0.
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114. If the intrinsic e((]iuation to a curve be known, that
to the evolute can be found.

Let AP be a curve, BQ the evolute; let s be the length of
an arc of 4P measured from some fixed point up to P; & the
length of an arc of BQ measured from some fixed point up
to @. Itis evident that ¢ is the same both for s and ¢, if in
B@Q we measure ¢ from BA, which is perpendicular to the
line from which ¢ is measured in 4P.

In the left-hand figure &'=p— C=gﬁ -,

Tn the right-hand igure ¢ = C—p = C— 0% i

Thus if s be known in terms of ¢, we can find ¢ in terms
of ¢. The constant C is e?ual to the value of p at the
point corresponding to that for which &' =0.

115. For example, in the cycloid s=4a sin¢; thus
¢ = C—4a cos ¢.
Put ¢=1}r+g and ¢ =0+ C; thus
o = 4a sin .

This shews that the evolute is an equal cycloid.
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116. Similarly if the intrinsic equation to a curve be
known, that to the involute may be found. For by Art. 114

ds
'd_¢=0is,7

therefore 8= f (C+9)dp.

Thus if s’ be known in terms of ¢, we can find s in terms

of ¢.

117. For example, in the circle ' =a¢. Thus
s=f(01-a¢) dp=p+ % 1 0.

If we suppose s to begin where ¢ =0 we have C'=0, and
further, if s begins where the involute meets the circle C=0;

tus o=, (Sec Dif. Cal. Art. 333)

118. It is obvious that by the methods of Arts. 114 and
116 we may find the evolute of the evolute of a curve, or the
involute of the involute of a curve, and so on.

119. The student may exercise himself in tracing curves
from their intrinsic equations ; he will find it useful to take
such a curve as the cycloid, the form of which is well known
and ascertain that the intrinsic equation does lead to that
form; he may then take some of the epicycloids or hypocy-
coids given in Art. 112. For further information on this
subject, and for illustrative figures, the student is referred to
two memoirs by Dr Whewell, published in the Cambridge
Philosophical Tramsactions, Vol. VIII. page 659, and Vol. 1x.
page 150,

Curves of double Curvature.

120. Let @, y, z be the co-ordinates of a point on a curve
in space; x+ Az, y+ Ay, z+ Az the co-ordinates of an
adjacent point on the curve. Then it is known by the prin-
ciples of solid geometry, that the length of the chord joining

7

T. I. C.
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these two points is +/{(Az)*+ (Ay)* + (A2)"}. Let s be the
length of the arc of the curve measured from some fixed point
up to (z,y,2); and let s+ Asbe the length of the arc measured
from the same fixed point up to (z+ Aw, y+ Ay, z+ Az).
‘We shall assume that As bears to the chord {oining the adja-
cent points a ratio which is ultimately equal to unity when
the second point moves along the curve up to the first point.
Thus the limit of
As

As Az

7 3 zg,thatisof . —r,
T e )

e/ (2}
dee oo/ [+ (2 (2

From the equations to the curve % and ‘% may be ex-

pressed in terms of @, and then by integration s is known in
terms of @.

121. With respect to the assumption in the preceding
article, the student may refer to Dif. Cal. Arts. 307, 308; he
may also hereafter consult De Morgan’s Differential and
Integral Calculus, page 444, and Homersham Cox’s Tutegral
Calculus, page 95.

122. Suppose, for example, that the curve is determined
by the equations

so that the curve is formed by the intersection of two cylin-
ders, namely a cylinder which has its generating lines parallel
to the axis of 2, and which stands upon the parabola in the
plane of (z, ) given by (1), and a cylinder which has its
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generating lines parallel to the axis of y, and which stands on
the cycloid in the plane of (z, 2) given by (2). Then

£yl S0
/(e )/ ()

therefore s=V(2c+a)f%=2V(2c+a) V.

No constant is required if we measure the arc from the origin
of co~ordinates.

123. The formula given in Art. 120 may be changed into
I ()
and o= f «/ {1 + (g—”:)l (%Y} &,

and in some cases these forms may be more convenient than
that in Art. 120.

124, Sometimes a curve in space is determined by three
equations, which express z, 9, 2z respectively in terms of an
auxiliary variable; then by eliminating this variable we may,
if necessary, obtain two equations connecting x, y, and z, and
thus determine the curve in the ordinary way. guppose then
z,y, z each a known function of ¢; then

dy ds
dt dt
i e ]
()}

—2
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125. Application to the Helix.

This curve may be determined by the equations

x=gqacost, y=asint, z=ct;

thus s= V(@ +¢) fdt —ty(@+) + C.

126. 'When polar co-ordinates are used to determine
position of a point in space, we have the following equat
connecting the rectangular and polar co-ordinates of
point,

z=rsinfcos¢p, y=rsinfsing, z=rcosh.

And as a curve in space is determined by two equat
between x, y, and 2, it may also be determined by two e
tions between », 8, and ¢. Thus we may conceive »

to be known functions of 6, and therefore z, y, an
ecome known functions of 6.

Hence
Z—%:sm0m3¢gg—r sinﬁsin¢%+rcos€cos¢,

%:sinOsin¢%+rsin0 cos¢%+rcos€sin¢,

& 030 % —r sin.
Therefore (%)’ + (% ) . (%)’z \%)’+ it 0 (Z_o ),H

and o= f J {r' + (%)1 P sin® 0 (%)} 6.

This may be transformed into

- f \/ {r’ ({f—f)l 1+ sin? 0 (2—‘1’)'} dr
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or into s——f\/{ +r==31 e}dqb.

127. If p be the perpendlcular from the origin on the
tangent to a curve in space, then the equation
ds _ r
V@' =p)’
which was proved for a plane curve in Art. 85 will still

hold. For each member of the equation expresses the secant

of the angle which the tangent makes with the radius vector
st the point of contact.

EXAMPLES.

. For what values of m and n are the curves a™y"=a™"
rectifiable 2 (See Art. 14.)

o

n n 1. .
Result. If 3, OF 5, +5 1s an integer,

2. Shew that the length of the arc of a Tractory measured
from the cusp is determined by s=¢ log:'gl .

3. Shew that the Cissoid is rectifiable.
4 Shew that the whole length of the curve whose equation
is 4 (&* + y°) — a* = 3aly? is equal to 6a.
ds\" at
.| It may be proved that (—) = ——] .
[temay v v e () - i
5.

The length of the arc of the curve

@+yd—(@—yt=d
between the limits (z,, y,) and (z, g) is

272{(90+y)5+(w~y)*}‘——— (@ +3)8 + (2, -y
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10.

11.

EXAMPLES.

Ifs= ac'i, find the relation between « and y.

Shew that the intrinsic equation to the parabola is

ds 2a or 8=gloul+sm¢ a 8in ¢

d$~ cos’ b 2 °1—sin¢+1—sin"¢'
The intrinsic equation to the curve 3* =aa® is

s=g—‘; (sec’ ¢ —1).

Draw the curve determined by the intrinsic equation

¢=nsins.

The evolute of an eplcyclmd is an epicycloid, the rad
of the fixed circle bemg and the radius of -

generating circle E%b—' (Arts. 110 and 114.)

Determine the length of a spiral drawn on the surf
of a cone, such that any generating line of the «
cuts it at points equidistant from one another.
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CHAPTER VIL

AREAS OF PLANE CURVES AND OF SURFACES.

Plane Areas. Rectangular Formule. Single Integration.

4

128, Let DPE be a curve, of which the equation is

y=¢ (), and suppose z, y to be the co-ordinates of a point
P Tet A denote the area included between the curve, the
wig of x, the ordinate PM, and some fixed ordinate 4D, then
(Dif. Cal. Art. 43)

dA
o =% @);
hence A=f¢ (@) da.

Let 4 (x) + C be the integral of ¢ (z); thus
A=+ (x)+ C.

Let A, denote the area when the variable ordinate is ata
distance z, from the axis of y, and let 4, denote the area when
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tth variable ordinate is at a distance «, from the axis of 3
en

Ad=¥@)+C  Ad,=v(=)+C;
therefore A, — A, = (z) — ¥ () = [ "¢ (@) da.

129. Application to the Circle.

The equation to the circle referred to its centre as origin :
y'=d'—a*; here ¢ (z) =+(a’—2%); thus

2 2 2

A:fqb(x) dx:f«/(a“—w’)dx:az—%%—z'))+%sin“g+ ¢
The constant C vanishes if we suppose the fized ordinate -
coincide with the axis of y. It wﬂf be seen by drawing
ﬁtgure, that the area comprised between the axis of i, the ax
of y, the circle, and the ordinate at the distance z from ti
axis of y, may be divided into a triangle and a sector, ti
values of which are given by the first and second terms in tt
above expression for 4. This remark may serve to assist tl

student in remembering the important integral

2
s

Q

1

0|
818

130. Application to the Ellipse.
Suppose it required to find the whole area of the ellips
2
The equation to the ellipse may be written y’:%(a’-—z"

Hence the area of one quadrant of the ellipse

=[:gv(a’—mﬂ)dm=§f:v(a*—ﬁ) an=2 W_f’_’;'Tab.

a b

hence the area of the ellipse is ab.

131. Application to the Parabola.
The equation to the parabola is ¢* = 4ax; here then

$ (@) = v (4az),
N
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and f4(4aw)dx=4—$zi+ C;
thus with the notation of Art. 128
4~ 4= [y (ta2) do =232 (5} - ).
If @, =0 we have for the area 4—;/—‘—" x}, that is, two thirds
of the product of the abscissa z, and the ordinate 4/(4az,).

132. Application to the Cycloid.
The integration required by the formula f ydx becomes

sometimes more easy if we express  and y in terms of a new

variable. Thus, for example, in the cycloid we can put,

(Dif. Cal. Art. 358)
z=a (1—cosd), y=a(0+sinb);

therefore f ydz = a’ f (0 + sin 6) sin 6 46

2
=a*fo smede+%f(1—coszo) a8

this gives ~ &* (— 6 cos 8 + sin 6) + % (0 - Si’:fg) .

If we take this between the limits 0 and 7 for 6, we obtain
the area of half a cyecloid; the result is ?%r. Hence the
area of the whole cycloid is equal to three times that of the
generating circle.

133. The equations to the companion to the cycloid are

z=a(l—cosb), y=ab;

hence it may be shewn that the area of the whole curve is
twice that of the generating circle.

134. If a curve be determined by the equation z=¢ (),
then the area contained between the curve, the axis of y, and
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lines drawn parallel to the axis of x at distances respectively
equal to y, and g, is f "(y) dy. This is obvious after the
y

proof of the similar proi)osition in Art. 128.

135. The formule in Arts. 128 and 134 furnish one of the
most simple and important examples of the application of the
Integral Calculus. As we have already remarked, the pro-
blem of determining the areas of curves was one of those
which gave rise to the Integral Calculus, and the symbols
used are very expressive of the process necessary for solving
the problem. In the figure to Art. 128, the student will see
that the rectangle PpMN may be appropriately denoted by
yAz, and the process of finding the area of ADEB amounts
to this: we first effect the addition denoted by ZyAxz, and then
diminish Az indefinitely.

136. Suppose we require the area contained between the
curve y=c sing , the axis of z, and ordinates at the distances
x, and x, respectively from the axis of y. 'We have

cf *sin fda::ca(cos % cos 5) .
- a a a

Suppose then #, =0 and ,=am; the area is 2ca. Next
suppose z,= 0 and z,=2am; the result

x x
ca (cos - —cos —’)
a a

becomes zero in this case, which is obviously inadmissible,
since the area must be some positive quantity. In fact sin g
i8 megative from & = am to « =2am, but in the proof that the

area is equal to fyda:, it is supposed that y is positive. If

y be really negative the area will be [ (~y) de.
Thus in the present example the area will not be
2ar | o ar L
f sin=dz but cf sin —dw+cf (—sm—)clzv,
a 0 a a,

0 aw

.,
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ar
that is, cf sin L dz—o [ sin 2 do;
a ar a

this will give 2ca + 2ca, that is 4ca.

Plane Areas. Rectangular Formule. Double Integration.

137. In Art. 128 we have obtained a formula for finding
the area of a curve; that formula supposes the area to be the
limit of a number of elemental areas, each element being a
quantity of which yAx is the type. 'We shall now proceed to
explain another mode of decomposing the required area into
elemental areas.

Suppose we require the area included between the curves
BPQF and Bpge, and the straight lines Bb and Fe. Leta
series of lines be drawn parallel to the axis of y, and another
series parallel to the axis of #. Let st represent one of the
rectangles thus formed, and suppose « and y to be the co-ordi-
tates of s, and =+ Az and y + Ay the co-ordinates of ¢; then
the area of the rectangle st is Az Ay. Hence the required
area may be found by summing up all the values of Az Ay,
and then proceeding to the limit obtained by supposing Az
and Ay to diminish indefinitely.

. We effect the required summation of such terms as Az Ay
in the following way: we first collect all the rectangles
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similar to st which are contained in the strip PQgp, and
we thus obtain the area of this strip; then we sum up all
the strips similar to this strip which lie between Bb and
Ee. The error we may make by neglecting the element of
area which lies at the top and bottom of each strip, and
which is not a complete rectangle, will disappear in the limit
when Az and Ay are indefinitely diminisheg.

Let y=¢(x) be the equation to the upper curve, and
y=1 (x) the equation to the lower curve; let OC=¢ and
OH=h, then if 4 denote the required area, we have

4 fhfmdxd
=) )y ™Y

for the symbolical expression here given denotes the process
which we have just stated in words.

¢ @) :
Now fdy: ¥y, therefore f dy = ¢ (x) — Y (x); thus we
¥ @)
have

4= &)~ ¥ @) =

In this form we can at once see the truth of the expression,
for ¢ (@) —Y () = PL—pL=DPp; thus {¢(2) — Y (x)} Az
may be taken for the area of the strip PQgp, and the formula
asserts that 4 is equal to the limit of the sum of such strips.

The lines in the figure are not necessarily equidistant:
that is the elements of which Az Ay is the type are not
necessarily all of the same area.

138. The result of the preceding article is, that the area
A4 is found from the equation

4=["$@-y@) .

This result may be obtained in a very simple manner as
shewn in the latter part of the preceding article, so that it was
not absolutely necessary to introduce the formula of double
integration. =We have however drawn attention to the

formula
A= f"f‘“”’dxd
L)y ™

S
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because of the illustration which is here given of the process
of double integration; the student may thus find it easier to
apply the processes of double integration to those cases where

it 18 absolutely necessary, of which examples will occur here-
T.

139. If the area which is to be evaluated is bounded
by the curves =+ (y), and z= ¢ (y), and straight lines
parallel to the axis of « at distances respectively equal to ¢
and %, we have in a similar manner

a=[["ayao=["16)-¥ W) .

Some examples of the formulee of Arts. 137 and 139 will
now be considered ; we shall see that either of these formulse
may be used in an example, though generally one will be
more simple than the other.

140. Required the area included between the parabola
¥=ax and the circle = 2ax —2".

The curves pass through the origin and meet at the point
for which  =a; thus if we take only that area which lies
on the positive side of the axis of z, we have

4= (=) - Vi) do=Tf - .

2

The whole area will therefore be 2 (-%a_ - 2?“ .

Suppose that we wish in this example to integrate with
respect to  first. From the equation 3*=2ax — 2 we deduce
z=a+ 4/(a®—y%), and it will appear at once from a figure
that we must take the lower sign in the present question.

Thus let «, stand for a—4/(a’—3’), and «, for %’, then

e[ e e e

a@ , ma wad' 24
== 2 fore.
3~ a4 1 3 2 88 before
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The reader should draw the figure and pay close attentlon
to the Zimits of the integrations.

141. In the accompanying figure § is the centre of a
circle BLD, 8 is also the focus of a parabola ALC'; we shall

Y| [44

D

indicate the integrations that should be performed in order to
obtain the areas ALB and LDC. This example is introduced
for the purpose of illustrating the processes OF double integrs-
tion, and not for any interest in the results: the areas can be
eagily ascertained by means of formul® already given; thus
ALB is the difference of the parabolic area ALS and the
quadrant SLB; and similarly LZDC is known.

In finding the area ALB it will be convenient to suppose
the positive direction of the axis of = to be that towards the
left hand; thus if 4a be the latus rectum of the parabola, and
therefore 24 the radius of the circle, the equatlon to the para-
bola is y* = 4a (a — z), and that to the circle y* = 4a* — a*.

Suppose we integrate with respect to @ first, then
area ALB= f" f dy dz,
[ R}
where w1=a—£, z, =/ (4a* - 3°).

For here (2, —2,) Ay represents a strip included between
the two curves and two lines parallel to the axis of «; and
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strips are situated at distances from the axis of « ranging
between 0 and 2a, so that the integration with respect to y is
taken between the limits 0 and 2a.

Suppose we integrate with respect to y first; we shall then
bave to divide the area into two parts by the line AF. Lét

y1=V(4a’—4ax), ."/a='~/(4“2—“7') ’

then areaALF——-f:f:’dxdy=f¢(%—%)dm;
1 0

’lly, 20
areaAFB=ff dxdy=f 4. d2;
alo a

the sum of these two parts expresses the area ALB.

_Next take the area LDC'; suppose now the positive direc-
tion of the axis of « to be that towards the right hand, then
the equation to the parabola is y* = 4a (a + z), and that to the
drcle y* = 4a* — o,

Suppose we integrate with respect to y first ; let
y, =V (4’ - &%) and gy, =+/(4a" + dax);
2 Y2
then area DLC'= f Y dy.
0N

Suppose we integrate with respect to « first; we shall then
have to divide the area into two parts by the line LK. Let
2
z=v{ta-3), z=9-—a;
then we shall find that DC'=2a 4/3 = b suppose ; ‘thus

2z (2
area DLK = f f dy d=,
0/

area CLK = f dy de ;
Y F2

the sum of these two parts expresses the area LDC.
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142. One case in which the formule of Art. 137 are
useful is that in which the bounding curves are different
branches of the same curve. Suppose the equation to a
curve to be (y — mx —c¢)*=a’ — 2*; thus

y=mz+ct V(' -).
Here we may put

V¥ (x) = ma + ¢ — N/ (a® — o),

¢ (x) =mzx + c+ v/ (a* = %) ;

thus ¢ (z) — ¥ (x) =2 +/(a’ —2”), and the complete area of the
curve is

f ’ 2 y/(a® — 2*) dx, that is ma’.

143. We have hitherto supposed the axes rectangular,
but if they are oblique and inclined at an angle w, the for-
mula in Art. 128 becomes

A=sinwf¢ (2) dz,

and a similar change is made in all the other formule. It is
obvious that such elements of area as are denoted by yAx
and AyAxz when the axes are rectangular will be denoted by
sinw yAz and sin @ Ay Az when the axes are inclined at an

angle w.

For example, the equation to the parabola is y* = da’z when
the axes are the oblique system formed by a diameter and
the tangent at its extremity; hence the area included be-
tween the curve, the axis of «, and an ordinate at the point
for which z=¢, is

(] 4 3 ’ i
sinmf Visaa) do= 2 SROVTE,
[}

that is two-thirds of the parallelogram which has the abscissa
¢ and the ordinate at its extremity for adjacent sides.
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Plane Areas. Polar Formule. Single Integration.

R A
& X

144. Let APQ be a curve, of which the polar equation is
r=¢(6), and suppose r, 6 to be the co-ordinates of a point P.
Let 4 denote the area included between the curve, the radius
vector S4 drawn to a fixed point 4, and the radius vector
SP, then (Dif. Cal. Art. 313)

a4 _{OF
do 2
Hence 4=} f 16 () do.

Let 4 (6) be the integral of £ then

A=+(0) + C.
Let A4, denote the area when the variable radius vector is
at an angular distance 6, from the initial line, and let 4,

denote the area when the variable radius vector is at an an-
gular distance 6, from the initial line; then

Al = 1"(01) + 0, -Ag = “I’ (02) + C’
therefore 4, ~ 4,=-(6) —¥ (6) =4 [ (6 @) e.

145. Application to the Equiangular Spiral.
0
In this curve »= be?; thus
2 bc 20
4 =1}fb’ecd0=zec +C

T. I C. S
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bs 0 2 b'c , ¥ 20, e
and A,—Al=%[o biee d0=.z(ec —e,T)‘:Z(":—T,’),

where », and », are the extreme radii vectores of the area
considered.

146. Application to the Parabola.
Let the focus be the pole, then

a a' [df
=—-a; thus 4 ==
" cos’ — ® 2[(;08‘9
2 2
_(142 2V ag _ 2 g a’ 30
_—2-f(l + tan g)sec 2d8—a tan2+§tan 3+ C.
s [/ 6\ o 6, 0,
Hence A4,—4,=a (tan E’—ta_n —21)+§(tan“§—tan’-2-).
Suppose that 6, =0 and 0,=%-r, then we obtain for the

2
area ax_}_%, that is 4?“; this agrees with Art. 131.

For another example we will suppose the Parabola referred
to the intersection of the directrix and the axis as pole, the
axis being the initial line. Here

4 &% 0 — A/ (cos 20)

r=2 sin®* @

2

. o _
thus 4 =24 cos’ 6 + cos 205 in‘20(508 0 y/(cos 26) 2

2 .
=2a,f? cos .0‘—sm 0d0—4a’ cpseygcos 20) 2.
sin‘ @ sin* @
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2 cos® 0 — sin* 0

Yow e do=f(2cot*o—1)cosec'ode
=—%cot’ @+ cot 6.

And fcosﬂ«/(oos20)d0 N(1— 2sm’0)dsm0
sin* @ sin‘ 6

assume sin 6= % , then the integral becomes

_fv(f-2) tdi, that is, —} (A —2)},
Hence, adding the constant, we have
2
A =% (cosec*d — 2)¥ — 4icot"0+ 2a’cot@+ C

4a® (cos 20)% — cos* 0
sin* @

=2q* cot0+ + C.

linThe constant will be zero if A commences from the initial
e.

147.  Application to the curve r=a (6 +sin6). Here

=%f(o+sine)*de=‘§f(eﬂ +20 sin 6 + sin® 6) df;

fosinodo=-acoso+sino

sin 260

fsin’0d0=1}[(l-—cos29)d0=g—_4_,

thug A=‘§{-§—290030+2 sina+g-*’m2”}+ c.

pose we Tequire the area of the smallest portion which
is bounded by the curve and by a radius vectosr_ which is
2
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inclined to the initial line at a right angle; then we have 0
and 47 as the limits of the integration. Thus the required

area 1s
o (m® o
5{2_4+z+2}-

Plane Curves. Polar Formule. Double Integration.

148. 1In Art. 144 we have obtained a formula for finding
the area of a curve; that formula supposes the area to be the
limit of a number of elemental areas, each element being a
quantity of which §+* Af is the type. We shall now proceed
to explain another mode of decomposing the required area
into elemental areas.

Suppose we require the area included between the curves
BPQFE and bpge, and the straight lines Bb and Fe. Leta
series of radil vectores be drawn from O, and a series of circles
with O as centre; thus the plane area is divided into a series
of curvilinear quadrilaterals. Iet st represent one of these

elements, and suppose » and 6 to be the polar co-ordinates of -

8, and r + Ar and 6 + A6 the polar co-ordinates of ¢; then the
area of the element st will be ultimately »A@ Ar. Hence the
required area is to be found by summing up all the values of
rA0 Ar, and then proceeding to the limit obtained by sup-
posing A6 and Ar to diminish indefinitely.
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We effect the required summation of such terms as »Af0 Ar
in the following way : we first collect all the elements similar
to st which are contained in the strip PQgp, and thus obtain
the area of the strip; then we sum up all t£e strips similar to
this strip which lie between Bb and Ee.

Let »=¢(6) be the equation to the curve BPQE and
r =+ (0) the equation to et%e curve bpge, let a and 8 be the
angles which OB and OF make respectively with Oz; and
let A denote the required area, then

) B (@
A=ff rd@dr;
ol ¥

for the symbolical expression here given denotes the process
which we have just stated in words,

Now |rdr = e

50 therefore

0 .
f ,,.(,,"d" =3[ O - ¥ O)F]

thus we have
8
4=1["1i¢ @OF - ¥ O] db.

In this form we can see at once the truth of the expres-
sion, for OP=¢ (6) and Op =+ (), and thus

O Ad—-3{y (O) A0

may be taken for the area of the strip PQqgp, and the formula

asserts that the area A is equal to the limit of the sum of
such strips.

149. The remark made in Art. 138 may be repeated here;
we have introduced the process in the former part of the pre-
ceding article, not because double integration is absolutely
necessary for finding the area of a curve, but because the

process of finding the area of a curve illustrates double inte-
gration,

150. If the area which is to be evaluated is bounded by
the curves whose equations -are 0=¢ (r), 6=+ (r) respectively,
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and by the circles whose equations are r=¢a and r=25 re-
%pectively; it will be convenient to integrate with respect to

first. In this case, instead of first summing up all the
elements like st, which form the strip PQqgp, we first sum up
all the elements similar to s¢ which are included between the
two circles which bound st and the curves determined by [
0=¢(r) and §=+(r). Thus we have

b
A=f fﬂﬂrdrde.
ad Y

Some examples of the formul® in Arts. 148 and 150 will
now be considered; we shall see that either of these formule :
may be used in an example, although one may be more con- -
venient than the other.

151. We will apply the formule to find the area between
the two semicircles OPB and Opb and the straight line 4B

¥

C ) F] X
Let Ob=c¢, OB=#, then the equation to OPB is r=~% cos 6,
and the equation to Opb is r=c cosf. Thus the area
. ; hcos@
=[*[ a0 r.
oJccosd
Acoso
Now f rdr=1% (B —c") cos’§;
ccoso

thus the m=,}(k*-a)f’cos-odo=’§’(h*-a).

Suppose we wish to integrate with respect to ffirst; we shall
then have to divide the area into- two parts by describing an
arc of a circle from O as centre, with radius Ob. Then
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the area bounded by this arc, the straight line Bb, and the
larger semicircle is

[ : j :“-1 §rdr db.

The area bounded by the aforesaid arc, the semicircle Opb,
and the larger semicircle is

1 r

o [cosl
f [ Zraras.

[} oorl{

The sum of these two parts expresses the required area.

- 152. Let us apply polar formule to the example in
Art. 141. 'With § as pole, the polar equation to the parabola is

r(l+cosf)=2a or r cos’§ =a where 6 is measured from

8B; and the polar equation to the circle is r =2a. Hence,
if we integrate with respect to  first,

areaALB=Ff“ o rd8 dr.
o

asec 3

If we integrate with respect to @ first, we shall have if

2a —7r
6,=cos™? ——
r

area ALB:j:aj:lrdrdﬂ.

Next consider the area DLC. The equation to DC is
rcos @ =—2a; the length of SO is 4a, and the angle BSC
is 231' Let 6, =cos™ 2a;r, 6, = cos™ (——7_23) . Then if
we integrate with respect to 4 first,

'4a (0g
area DL C"::f f rdr db.
2aJ 6,

If we integrate with respect to: » first, we shall have to
divide the area into two parts, by the line joining S with C.
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The area of the portion which has L C for one of its bounda-

ries i8
g asec"3
f : f 2'rd0 dr.
2

2

The area of the remaining portion is

L 2a sec @
f rdf dr.
2r/ 2a
3
The sum of these two parts expresses the required area.

158. A good example is supplied by the problem of find-
ing the area included between two radii vectores and two
different branches of the same polar curve.

Suppose BPpb, CQgc to be two different arcs of a spiral,
and that the area is to be evaluated which is bounded by
these arcs and the straight lines BC and bc; then the area 1s

 fer-a,
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where r, denotes any radius vector of the exterior arc, as SQ,
and 7, the corresponding radius vector SP of the interior arc.
The limits of 6 will be given by the angles which SB and
8b respectively make with the initial line.

Take for example the spiral of Archimedes; let 6 be the
whole angle which the radius vector has revolved through
from the imitial line until it takes the position SP; so that 6
may be an angle of any magnitude. From the nature of the
carve we have SP or r= a0, where a is some constant. If
then CQ is the next branch to BP we shall have

8Q=a (0 +27).

Suppose 6, and 6, the values of 8 for SB and Sb respectively ;
thus the area BbcC -

=“_2'f:’{(0+2w)’—0'} a0
= 621,{271' (0: - 01’) + 47"’ (03— 01)}‘

154. The student will remark a certain difference between
the formule f [ de dy and f f r d@ dr, which express the area

of a plane figure. The former supposes the area decomposed
into a number of rectangles and Az Ay represents the true
area of one rectangle. Hence in taking the aggregate of
these rectangles to represent the required area the only error
that can arise is owing to the neglect of the irregular elements
which occur at the top and bottom of each strip; as we have
already remarked in Art. 137. But in the second case » Af Ar
i8 not the accurate value of the area of one of the elements,
80 that an error is made in the case of every element. It is
therefore important to shew formally that the error disappears
in the limit, which may be done as follows. The element st
in the figure of Art. 148 is the difference of two circular sectors,
and its exact area is ’

}(r+Ar) A0 — 17 A6,
that is, rAr Af +§ (Ar)* Ab.
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In taking the former term to represent the area we neglect
% (Ar)’A6. Hence the ratio of the term neglected to the
term retained

_3(Ar?A8  Ar

T rArAG T 2r°

By taking Ar small enough this ratio may be made as small
as we please. Hence we may infer that the sum of the
neglected terms will ultimately vanish in comparison with
tlﬁe f:;xln of the terms retained, that is all error disappears in
the limit, .

Other Polar Formule.

155. Let s be the length of the arc of a curve measured
from some fixed point up to the point whose co-ordinates are
7 and 0; let Ee the perpendicular from the origin on the
tangent at the latter point ; then the sine of the angle between

this tangent and the corresponding radius vector is » % , (Defe

Cal. Art. 810); a.lsog is another expression for this sine;

%g =£ . Let A denote the area between the curve

and certain limiting radii vectores ; then
do
A=}fﬁd0=}f7’£ds=1}fr§ds=1}fpda;

the limits of s in the latter integral must be such as correspond
to the limiting radii vectores of the area considered.

The result can be illustrated geometrically; suppose P, @
adjacent points on a curve, § the pole, p’ the perpendicular
from 8 on the chord P@Q; then, the area of the triangle PQS

=}y’ xchord PQ.

Now supEose @ toapproach indefinitely near to 7, then p’=p,
and the limit of the ratio of the chord P@Q to the arc PQis

unity.

hence, r
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156. Since [pdo= [p % —L/I’”l’ (Art. 85),
we have A=ifv(,,_1,=)~

157.  Application to the Epicycloid.

Here == s

s fc{,(j(c' a’)r:;dr <l c«/_(_fa”—_a?frira])}

2a]m where 2 =r—a

Now

[ #de _(F—(@—a)
JV(f—a’—z’)_.{V(c’—a’—z’)dz+(é "’)f”‘“—“?')

=(- a')fv(c, 4 f«/(c’ —a—)ds
=c—a’ . - z zd(é—a-z)

2 Ot VE—a) 2
_0=d V=) VP-d)y(E-r)
2 N(c*—a") 2

Taking this between the limits r=a and r=¢c, we get

c’;a’_ that is, b (@ + ). Hence the area is -—-b(a+b)-,,-,
that is, (a+2b) 2b a(a +h)m By doubling this result wo ob-

tain the area between the curve and the radii vectores drawn
(a+2b)b (a + b)'lr

to two consecutive cusps, which is therefore

The area of the circular sector which forms part of thls area is
wab ; subtract the latter and we obtain the area between an
arc of the- -epicycloid extending from one cusp to the next cusp
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and the fixed circle on which the generating circle rolls; the

result is
e
a

(3a -+ 2B).

158. Similarly in the hypocycloid the area between the
fixed circle and the part of the curve which extends between

two consecutive cusps may be found. If a is greater than b
the result is

7—:—3—’ (3a — 2b).

Area between a Curve and its Evolute.

159. In the figures to Art. 114, if we suppose the string
or line PQ to move through a small angle A¢, the figure
between the two positions of the line and the curve AP may
be considered ultimately as a sector of a circle; its area will
therefore be % p*A¢, where p=P@. Thus if 4 denote the
whole area bounded by the curve, its evolute, and two radii

(1)1f curvature corresponding to the values ¢, and ¢, of ¢, we
ave ‘

b2
A= *d.
i rap
. Since %:%, we may also write this
A=u}fpds,

the limits of s being properly taken so as to correspond with
the known limits of ¢.

160. Application to the Catenary.
" Here s=ctan ¢, Art. 109,

$:
therefore  p=csec’ ¢, A=1}f¢’c’sec‘¢d¢;
\ .
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and fsec‘¢od¢=tan¢+§tan’¢+ C;
thus A4 is known.

Area of Surfaces of Revolution.—Rectangular Formule.

T °/

P> R

[ 4 o x

161. Let A be a fixed point in the curve APQ ; let «, y
be the co-ordinates of any point P, and s the length of the
arc AP. Suppose the curve to revolve round the axis of «,
and let S denote the area of the surface formed by the revolu-

tion of AP; then (Dif. Cal. Art. 315)

s
&=
therefore 8= f D W,
thus s=f2wy%dx ............ @),
ds
and S-—f2qud—ydy ............. (8).

Of these three forms we can choose in any particular ex-
ample that which is most convenient. If y can be easily

expressed in terms of s we may use (1); if éﬁ can be easily
expressed in terms of y we may use (3) ; in some cases it may

be more convenient 'to express y and e in terms of « and

ase (2).
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In each case the area of the surface generated by the arc
of the curve which lies between assigned points will be found
by integrating between appropriate limits.

162. Application to the Cylinder.

Suppose a straight line parallel to the axis of  to revolve
round the axis of «, thus generating a right circular cylinder :
let a be the distance of the revolving line from the axis of z;

then y=a, and %:1;
thus by equation (2) of Art. 161,
S=27rfadx=2vraa:+ C.

Suppose the abscisse of the extreme points of the portion
of theIiine which revolves to be =, and «,; then the surface
generated :

=2ma f 4”d.«c =2ma (x,— ).

163. Application to the Cone.

Let a straight line which passes through the origin and is
inclined to the axis of « at an angle a revolve round the axis
of z, and thus generate a conical surface. Then

y=wxtan a, and %:seca;
thus by equation (2) of Art. 161,
_S=27rftanasecawdw=vrta.nasecaw’+ C.

Hence the surface of the frustum of a cone cut off by planes
perpendicular to its axis at distances x,, @, respectively from
the vertex is

 tan a sec a (2. — ).

Suppose , =0, and let 7 be the radius of the section made
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by the plane at the distance z,, then r=az,tana, and the
area is
o cosec a r’,

164. Application to the Sphere.

Let the circle given by the equation y*=a®—z* revolve
round the axis of = ; here

w e/ D)5

Hence by equation (2) of Art. 161,
S=21rfy§dm=27m dx =2max+C;
Thus the surface included between the planes determined by

z=w, and z=uw, is 2ma (z,— x,).
Hence the area of a zone of a sphere depends only on the
height of the zone and the radius of the sphere, and is equal
to the area which the planes that bound it would cut off from
a cylinder having its axis perpendicular to the planes and
circumscribing the sphere.

165. Application to the Prolate Spheroid.

Let the ellipse given by o’* + 5’2" = a™* revolve round the
axis of = which is supposed to coincide with the major axis
of the ellipse ; here

&y __Vbz
de~ Y’
ds _ b _ b/ (a® — e'2?)
and p i (l + ﬁ, ————ay .

Hence by equation (2) of Art. 161,
8= 2lbf«/(a’ —e’a) da:=2szf,\/(:—: —a:’) dz

a a
2

. =7%{m N/(g—ac")+%,sin"%}.
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The surface generated by the revolution of a quadrant of
the ellipse will be obtained by taking 0 and a as the limits of
 in the integration. This gives

wab {4(1 —&) +8in:e}.

166. Suppose one curve to have for its equation y = ¢ (z),
and another curve to have for its equation y =+ (z), and let
both curves revolve round the axis of #. Let s, and s, denote
the lengths of arcs measured from fixed points in the two
curves up to the point whose abscissa isz. Let S denote the
sum of the areas of both surfaces intercepted between two
planes perpendicular to the axis of = at the distances z,
and a, respectively from the origin. Then, by Art. 161,

2 ds ds,
§=2m["lo @) Z+v @ P}
Suppose, for example, that there is a curve which is bisected
by the line y=a, so that we may }l)lut y=a+x (z) for the
upper branch and y =a—x () for the lower branch. Hence

ds, _ds,

dx~ dz’
and S=41raf“§—-s—‘dm=4vm ds,,

1 XL
the limits for s, being taken so as to correspond with the
assigned limits of .

ence, if there be any complete curve which is bisected by

a straight line and made to revolve round an axis which 1s
parallel to this line at a distance a from it and which does not

cut the curve, the area of the whole surface generated is equal
to the length of the curve multiplied by 2ma.

167. For example, take the circle given by the equation
(@—R)}*+(y—k)}—c=0.

Here the area of the whole surface generated by the revolu-
tion of the circle round the axis of z will be 27k x 27re.
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There is no difficulty in this example in obtaining sepa-
rately the two portions of the surface. For the part above
the line y =%, we have 27 f y ds, that is,

om f [+ vid = @—Blds,

thatis, 2 f kds +2m fv{c'— (w— k)Y ds.
The former of these integrals is 2mks ; the latter is equal to

am [ V16~ (@~ )} 2,

which will reduce to 27 f cdz, that is, 27rex. Hence the sur-

face required is found by taking the expression 2mks+ 2mwcx
between proper limits.

Area of Surfaces of Revolution. Polar Formule.

168. It may be sometimes convenient to use polar co-
ordinates; thus from Art. 161 we deduce

8= [amyds = [omy 5% 30 = [2er sin 6 % af

ds r\?
where d—0=/\/{1"+(d~o)}.
169. Application to the Cardioide.
Here r=a (1 + cos§), thus
%=ad{(l +cos 0)*+ sin’ 6} =a /(2 +2 cos ) =2a cosg;
therefore '
0 . of 0 . 0
S=47m’f(l + cos ) cos _ sin 0df = 16ma fcos = sin - df
2 2 2
32ma* .0
——5_ Ccos §+ C.
T.I.C. 9
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The surface formed by the revolution of the complete
curve about the initial line will be obtained by taking 0

2

and 7 as the limits of 6 in the integral. This gives 32ma

Any Surface. Double Integration.

170. Let z, y, z be the co-ordinates of any point p of a
surface; =+ Az, y+ Ay, z+ Az the co-ordinates of an ad-

jacent point ¢. Through lp draw a plane parallel to that
of (z, 2 E)oand a plane Raml 1 to that of (y, 2); also through
g draw a plane parallel to that of (z, 2) and a plane parallel
to that of (y, 2). These glanes will intercept an element pg
of the curved surface, and the projection of this element on
the plane of (z, y) will be the rectangle PQ. Supl;;ose the
tangent plane to the surface at p to be inclined to the plane
of (z, y) at an angle v, then it is known from solid geometry

T e @)

where Zx and Zy must be found from the known equation to
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the surface. Now the area of PQ is Ax Ay, hence by solid
geometry the area of the element of the tangent plane at p of
which PQ is the projection is Az Ay secy. We shall assume
that the limit of the sum of such terms as Az Ay secy for all
values of « and y comprised between assigned limits is the
area of the surface corresponding to those limits. Let then S
denote this surface, thus

2 2
s=[[\/ {1+ (&) +(%)} 2o
the limits of the integrations being dependent upon the
portion of the surface considered.

171. 'With respect to the point assumed in the preceding
article, the reader 1s referred to the remarks on a similar point
in Dif. Cal. Art. 308. He may also hereafter consult De
Morgan’s Differential and Integral Calculus, page 444, and
Homersham Cox’s Integral Calculus, page 96.

172. Application to the Sphere.

Let it be required to find the area of the eighth part of the
murface of the sphere given by the equation

L+y+=d.

dz = dz_ y
Hore &= &

thus S=ff\/(1+§:+%:)ady=f[ﬁwf’{—ﬁ.

Now in the figure we suppose OL =z; put y, for LI, then
3, =(a’— ), for the value of y, is obtained from the equa~
tion to the surface by supposing z=0. If we integrate with
respect to y between the limits 0 and y,, we sum up all the
elements comlprised in a strip of which ZMml is the projec-
tion on the plane of (z, y). Now

f.v: dy _ Y1 dy _.
oﬁ/(a""xa_ﬁ'f) oﬁ/(y:’—?/’)—2’

9—2
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thus =7 [a.

If we integrate with respect to  from 0 to a, we sum up
all the strips compriss,d in the surface of which OA4B is the

projection. Thus % is the required result; and therefore

the whole surface of the sphere is 4mwa®

If we integrate with respect to « first, we shall have
S= f ‘[ adydr
0vo ‘\/(ag_xg_y’) ’
¥)

where z, =#/(a® —

173. As another example let it be required to find the
area of that part of the surface given by the equation

2+ (xcosa+ysina)—a*=0,

which is situated in the positive compartment of co-ordinates.
This surface is a right circular cylinder, having for its axis
the line determined by 2=0, zxcosa+ysina=0, and ¢ i
the radius of a circular section of it. Here

dz cos & (x cos a + y sin a)
b

-7

dz _ sina(rcosa +y sin a)
2z ?

dy
thus S=ffad:dy=ffv{ag_(xZo?ad-{ysina)g}.

* The co-ordinate plane of (z, y) cuts the surface in the
straight lines a =+ (x cos a+ y sin a), and if the upper sign
be taken, we have a line lying in the positive q t of
the plane of (x, ).

To obtain the value of § we integrate first with respect to
y between the limits y =0 and y = (a — & cos a) cosec a ; now

f dy _ 1 sin_la:cosa+ysina
Vi@ —(xcosa+ysina)} sina a
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take this between the assigned limits, and we obtain
1 (vr . -1 & CO8 a)
—— sm 4

sin a \2 a ’
therefore ~ S=—2 f{z-r—sin"z cos “} dz,
smn a2 a

and the limits of the integration are 0 and co%_a . Hence we

shall find
a

“ sinacosa’

174. Instead of taking the element of the tangent plane
at any point of a surface, so that its projection shall be the
rectangle Az Ay, it may be in some cases more convenient to

take it so that its projection shall be the polar element rA8 Ar.
Thus we shall have

S= fsec o rd6 dr.

For example, suppose we require the area of the surface
¥y= az, which is cut off by the surface «*+ 3*=¢*; here

— il e’\/(a*+7,) __2_7" 2 o __ s
Thas s_fo D g ar 3 (@ - )

175. Suppose x=r sin @ cos ¢, y=r sin @ sin ¢, z=rcos b,
80 that =, 0, ¢ are the usual polar co-ordinates of a point in
space; then we shall shew hereafter that the equation

sy f+ () e

may be transformed into

s=|f \/ {r’ sin® 6+ (%)' sint 6.+ (%)} rdf dg.
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An independent geometrical proof will be found in the
Cambridge and Dublin Mathematical Journal, Vol. 1X., and
also in Carmichael’s Treatise on the Calculus of Operations.
It will be remembered that in this formula » = 4/ (2* + 3" +2°),
while in Art. 174 we denote /(2" + 3°) by r.

Approximate Values of Integrals.

176. Suppose y a function of z, and that we require
f ydx. If the indefinite integral f ydx is known we can at

once ascertain the required definite integral. If the inde-
finite integral is unknown, we may still determine approxi-
mately the value of the definite integral. This process of
approximation is best illustrated by supposing y to be an ordi-

nate of a curve so that | ydao represents a certain area.

Divide ¢—a into n parts each equal to % and draw n—1
ordinates at equal distances between the initial and final

ordinates; then the ordinates may be denoted by y,, y,,......
Ym Yuy» Hence we may take
h(ytyteety)

:a.sk an approximate value of the required area. Or we may
e

b (Yot Yoeoreot Yurr)
as an approximate value.
We may obtain another approximation thus; suppose the
extremities of the #** and r + 1|* ordinates joined ; thus we

have a trapezium, the area of which is (y, +y,,,) 3 The

sum of all such trapeziums gives as an approximate value of
the area
h{j"‘%"‘% ...... +y,,+'—yﬂ}.
This result is in fact half the sum of the two former re-
sults. It is obvious we may make the approximation as close
as we please by sufficiently increasing n.
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177. The following is another method of approximation.
Let a parabola be drawn having its axis para]lelpto that of y;
let ,, ¥,, y, represent three equidistant ordinates, 2 the dist-
ance between y, and y,, and therefore also between y, and y,.
Then it may be proved that the area contained between t!ﬂe
parabola, the axis of z, and the two extreme ordinates is

h
3 (n+4y,+y,)-

This will be easily shewn by a figure, as the area consists of
a trapezium and a parabolic segment, and the area of the
latter is known by Xrt 143.

Let us now suppose that n is even, so that the area we have
to estimate is divided into an even number of pieces. Then
assume that the area of the first two pieces is

h
3 (ya + 4y, +.’/n) ’
that the area of the third and fourth pieces is

h
5 (.1/8+ 4.’94 +y5)7

and 8o on. Thus we shall have finally as an approximate result

k
g{y1+2(ys+?/s+"“"yu—1)+yn+1+4(."/2+.’/4 """ +,%.)}o

Hence we have the following rule: add together the first
ordinate, the last ordinate, twice the sum of all the other odd
ordinates, and four times the sum of all the even ordinates;
then multiply the result by one-third the common distance
of the ordinates.

EXAMPLES.

1. If A denote the area contained between the catenary,
the axis of =, the axis of y, and an ordinate at the
extremity of the arc s, shew that 4 =cs. The arcs
.begins at the lowest point of the curve.
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10.

11.

EXAMPLES,

The whole area of the curve

x\}, y\i_

G+3)-1
is #7ab. (The integration may be effected by as-
suming x=a cos’¢.)

The area of the curve y (¢ + a”) =¢’ (a — ) from =0
to z=a is c’(%—%log2) .

The area of the curve y'z =4a’ (2a—x) from =0 to
x=2a 18 4ma’,

Shew that the whole area of the curve y"=w%—;—x) ,
su?posing it bounded on one side by the asymptote, is
4a’. (Estimate the area of the loop and the other
portion separately.)

Find the whole area between the curve 3* («* + @°) = o’z
and its asymptotes. Result. 4a’,

Find the whole area between the curve zy* = 44* (22— z)
and its asymptote. Result. 4ma’.

Find the whole area between the curve 3* (2a — ) =2°
and its asymptote. Result. 3ma’.

Find the whole area of the curve y =z + #/(a’ — &7).
Result. wa’.

Find the area included between the curves

2
Yy —daxr=0, o*—4ay=0.  Result. l%a;.

Find the whole area of the curve a'y* + bz = a'bz".
Result, % ab.
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13.

14,

15.

16.

17.

18.

19.

20.

EXAMPLES. 137
Find the area of the loop of the curve a'y* = a* (a* — ).

id?
Result. T .

The area between the tractory, the axis of y, and the
asymptote is 7—;? . (See Art. 100).

Find the area of the loop of the curve
2
¥ (@ +a) =2 (@'~ Result. T (w—2)
Find the area of the loop of the curve

16a'y* = b%* (a® — 2azx). Result. ?—6 .

Find the area of the loop of the curve
29* (' + o) = (o~ 2"
Result. o’ {34/2 log (1 +4/2) —2}.
Find the whole area of the curve

2y’ (a* + @) — day (& — &) + (@’ — ')’ = 0.
Result. am {4 - :ﬁ} :
Find the area of the curve
. & . T
y=c sm;.log sin —
from =0 to z=am. Result. 2ac (1 —log2).

Find the area of the curve %: f—;)” betweer x=a and

z=p, and from the result deduce the area of the hy-
perbola xy =a’ between the same limits.

Find the area of the ellipse whose equation is

ar’ +2bxy+cy'=1.  Result,

o™

Viac—5)"
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21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

‘EXAMPLES.

Find the area of a loop of the curve +*=a® cos 26.
Result.

IVIER

Find the area contained by all the loops of the curve
r=a 8in 6.

Result. -1:— or 2_a’ according as n is odd or even.

Find the area between the curves » = a cosnf and » =a.

Find the area of a loop of the curve #*cos § =a” sin 36.

3¢ o
.Result T—El g2.

Find the whole area of the curve 7= a (cos 26 + sin 26).
Result. ma'.
Find the area of a loop of the curve (2*+y%)*=4a" y’

'rra
Result. —8— .

Find the whole area of the curve
(@ + 97 =4a’2* + 4B, Result. 2w (a*+ b).

Find the whole area of the curve

””'-’g: ( -’/') Result, TS (a* + ).

Find the area of the loop of the curve
34

¥ —3axy +a*=0. Result. 5

Find the area of the loop of the curve
rcos@=acos20,  Result ( - g)a’.




31.

32.

33.

36.

317.

38.

39.

-~ _- ~ «“ T
’\/ V
e EXAMPLES. 139

Find the area of the curve
k

a
r= J@—F o) + & cos 6,
. wa® b
abemg > b. Result. m*‘?.

In a logarithmic spiral find the area between the curve
and two radii vectores drawn from the pole.

Find the area between the conchoid r=a + b cosec 8
and two radii vectores drawn from the pole.

In an ellipse find the area between the curve and two
radii vectores drawn from the centre.

In a parabola find the area between the curve and two
radil vectores drawn from . the vertex.

Find the area included between the curve
r=a (sec 0 + tan 6)
‘and its asymptote » cos § =2a.  Result. (7—2' + 2) a.

The whole area of the curve r=aqa (2 cos +1) is

@ (21['-[-—3-—;/—3) , and the area of the inner loop is
./ 33
@(x-2F).

Find the whole area of the curve r=a cos 8 + & where
a is- greater than 5. Also find the area of the inner
loop.

If = and y be the co-ordinates of an equilateral hyper-
bola a2’ — y*=a’, shew that

a , ¥ % a M %
z=5 (€@ +e?), y=35(P-e®),

where u is the area interceﬁted‘ between the curve, the
central radius vector, and the axis.
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41.

42.

43.

&

47,

. EXAMPLES.

Find the whole area of the curve which is the locus of
the intersection of two normals to an ellipse at right
angles. Result. m (a—b)".

t may be shewn that the equation to the curve is

7* (o’ + b°) (a® sin® 6 + &* cos® 6)°
= (a® — ¥)* (a® sin’® 6 — B* cos’ 6)".
Find the area included within any arc traced by the
extremity of the radius vector of a spiral in a com-

plete revolution, and the straight line joining the ex-
tremities of the arc. If, for example, the equation to
the spiral be r =a (%_) , prove that the area corre-
sponding to any value of 6 greater than 27 is

EA

Find the area contained between a parabola, its evolute,
and two radii of curvature of the parabola. (Art.159.)

Find the area contained between a cycloid, its evolute,
and two radii of curvature of the cycloid.

Find the area of the surface generated by the revolution
round the axis of « of the curve zy = %"

Also of the curve y = ac*.

Also of the catenary y =% (e; + e_g).

Shew that the whole surface of an oblate spheroid is

1-¢ Io 1+e
2e € 1—ef "

2ma’ {l +
A cycloid revolves round the tangent at the vertex;

shew that the whole surface generated is 3?21ra’.
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"-\VI A cycloid revolves round its base; shew that the whole

. 64
surface generated is %— wa’.

50. A cycloid revolves round its axis; shew that the whole
surface generated is 8ma® (m — %).

51. The whole surface generated by the revolution of the
tractory round the axis of z is 4wc’.

52. A sphere is pierced perpendicularly to the plane of one
of its great circles by two right cylinders, of which
the diameters are equal to the radius of the sphere and
the axes pass through the middle points of two radii
that compose a diameter of this great circle. Find the
surface of that portion of the sphere not included
within the cylinders.

Result. Twice the square of the diameter of the
sphere.

53. Find the surface generated by the portion of the curve

y=at alogz- between the limits # =a and = = ae.

Result. 4ma® {1+ NI+e)—v2+ logl—:%} :

54. Find f l—i—g, where d8 represents an element of surface,

and p the perpendicular from the origin upon the
tangent plane of the element, the integral being ex-

tended over the whole of the ellipsoid Z—’:+ 'Z—: + -cz—: =1.

Result. a't’ + b°c* + da’).

Am (
3abc
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CHAPTER VIIL

VOLUMES OF SOLIDS.

Formule involving Single Integration. Solid of

Revolution.

A

178. LET 4 be a fixed point in a curve 4PQ, and P any
other point on the curve whose co-ordinates are & and . Let
the curve revolve round the axis of z, and let ¥ denote the
volume of the solid bounded by the surface generated by the
curve and by two planes perpendicular to the axis of «, one
through 4 and the other through P; then (Dif. Cal. Art.
314),

av
&=
therefore V= [ wy'de.

From the equation to the curve y is a known function of «;
suppose ¥ () to be the integral of wy*; then

V=4 (z)+C.
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Let V, denote the volume when the point P has =, for its
abscissa, and V, the volume when the point P has z, for its

abscissa; thus
Vi=v(z) + C,

N=b@+C
therefore  V,~ V=4 (@) — ¥ () = f .

179. Application to the Right Circular Cone.

Let a straight line pass through the origin and make an
angle a with the axis of «; then this straight line will gene-
rate a right circular cone by revolving round the axis of z.

Here y =« tan a; thus
V=fvr tan'a o’de =

o tan® a
3

a7 tan®a
3 (x,s - wxa) .

a* + C,

Vi~ V.=

Suppose z,=0, and let r=x, tana; thus the volume

2 b 2,
becomes %aw,_’ that is, T~ s
a right circular cone is one-third the product of the area of

the base into the altitude.

Hence the volume of

180. Application to the Sphere.

Here taking the origin at the centre of the sphere we have
y'=a’—2'; thus .

fry’dz:w(a’a:—%s) + C.

_ 2mad’

The volume of a hemisphere = f a'rry’d:c =—
(]

181. Application to the Paraboloid.
Here the generating curve is the parabola, so that
Yy = dacz.
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Thus V- V== f “taw do = 2am (&} — ).
1

Suppose z, =0, then the volume becomes 2amz,’, that is

i, where y.?=4ax,; thus the volume is half that of a

cylinder which has the same height, namely «,, and the same
base, namely a circle of which g, is the radius.

182. Application to the Solid formed by a Cycloid.

Let a cycloid revolve round its axis; here (Dif. Cal. Art.
358),

y=+(2ax—a") +a vers'lz.

The integration is best effected by putting for & and y their
values in terms of 6, (Dif. Cal. Art.358.) Thus

- fy’dx s f (6 + sin 6)" sin 6 d6.
To obtain the volume generated by a semi-cycloid the

limits for « would be 0 and 2a; thus the corresponding limits
for 6 are 0 and .

Now fﬁ”sin0d0=—6’0050+2f0c080d0

=—@ cos 6+ 26 s5in 6 + 2 cos 6,
therefore f " sin 040 = —4
0

2fosin=odo=fo (1—cos26) a9 = & 9 5in 20 _ cos 26

2 2 4
. -
therefore 2 f 6sin' 0d5=T.
0
And ["sinsodo=2fs;nsodo=2.§. (Art. 35.)
[1] 0

Thus the required volume
: ™ 4 37" 8
='lra° {7?—4+'§‘+§}=1ra8 (—2- _g) .
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183. This formula for the volume of a solid of revolution,
V= fqry’dm, like others which we have noticed, is one, the

truth of which is obvious, as soon as the notation of the Inte-
gral Calculus is understood. In the figure to Art. 128, if
PM be y and MN be denoted by Az, then wy’Az is the
volume of the solid generated by the revolution of MNpP
about the axis of . Thus Smy*Az will differ from the volume
generated by the revolution of ADEB by the sum of such
volumes as are generated by Pp@), and the latter sum will
vanish in the limit. Thus the volume generated by the revo-
lution of ADEB is equal to the limit of Sary*Ax, that is, to

f-ny’dm.

184. Similarly, if 7 denote the volume bounded by the
surface formed by a curve which revolves round the axis of y,
and by planes perpendicular to the axis of , we shall have

V=|na’dy.
And, as in Art. 178, we shall have

V,— V.= et dy.

N

185. Suppose two curves to revolve round the axis of z,
and thus to generate two surfaces, and that we require the
difference of two volumes, one bounded by the first surface
and by planes perpendicular to the axis of z, and the other
bounded by the second surface and by the planes already
assigned. Let y = ¢ (x) be the equation to the first curve,
and y =+ (z) that to the second. Then if ¥V denote the
required difference, we have

V=[rip@pdo- [r 1y @) &
=7 [[[$ (@) - (@) do.
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If the Elanes which bound the required volume are de-
termined by =, and ==, we must integrate between
the limits «, and z, for .

186. Suppose, for example, that a closed curve is such
that the line y =a bisects every ordinate parallel to the axis
of y; then we have ¢ (x) =a +x (x) an T\]f(x)=a—x(a:)
where () denotes some function of z. Thus

{$ @) - @) =4ax (2),
and V=m |4ax (z) d.

Suppose the abscisse of the extreme §oints of the curve
are z, and x,, then the volume generated by the revolution

of the closed curve round the axis of x is 4am f ﬁx () d.

And 2 f tax () dz is the area of the closed curve, so that the

volume is equal to the Eroduct of 2am into the area. This
demonstration supposes that the generating curve lies entirely
on one side of the axis o .

If the generating curve be the circle given by

(@—h)+ (y—k)'=¢"

we have m¢® for its area, and therefore 2kc’s” for the volume
generated by the revolution of it round the axis of .

187. In a similar waiy if the curves z=¢ (y), z=+v (),
revolve round the axis of y we obtain for the voiq{lme boun(i%d
by these surfaces and by planes perpendicular to the axis of y

V= [[i$ () - ¥ () dy-

188. The method given in Art. 178 for finding the volume
of a solid of revolution may be adapted to any solid. The
method may be described thus: conceive the sohd cut up into
thin slices by a series of parallel planes, estimate approxi-
mately the volume of each slice and add these volumes; the
limit of this sum when each slice becomes indefinitely thin is
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the volume of the solid required. Suppose that a solid is cut
up into slices by planes perpendicular to the axis of z; let
¢ () be the area of a section of the solid made by a plane
which is at a distance 2 from the origin, and let x + Az be
the distance of the next plane from the origin; thus these
two planes intercept a slice of which the thicﬁss is Az, and
of which the volume may be represented by ¢ (x) Az. The
volume of the solid will therefore be the limit of 2¢(x) Az,

that is, it will be f ¢ (z) dz; the limits of the integration will
depend upon the particular solid or portion of a solid under
consideration.

189. Application to an Ellipsoid.

The equation to the ellipsoid is

LA

dtpte=h
if a section be made by a plane perpendicular to the axis of
at a distance z from the origin, the boundary of the section is
an ellipse, of which the semiaxes are «/ (1 -2 and

¢ «/ (1 - z—:) ; hence the area of this ellipse is wbc (1 - g) ;
this is therefore the value of ¢ (). Hence the volume of

the ellipsoid
=f-;rbc(1 —“;:)dm=4”“b".
- a 3

190. Application to a Pyramad.

Let there be a pyramid, the base of which is any rectilinear
figure; let 4 be the area of the base and % the height.
Take the origin of co-ordinates at the vertex of the pyramid,
and the axis of = perpendicular to the base of the pyramid,
then the volume o?ethe pyramid

= f :4) () de.
10—
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Now the section of the pyramid made by any plane parallel
to the base is a rectilinear figure similar to the base, and the
areas of similar figures are as the squares of their homologous
sides; hence we infer that

¢ (@) = %A.
Thus the volume of the pyramid

A Ak
=};,fo w’da:= ?.

This investigation also holds for a cone, the base of which is
any closed curve.

191. As an example we will find the volume lying be-
tween an hyperboloid of one sheet, its asymptotic cone and
two planes perpendicular to their common axis.

Let the equation to the hyperboloid be

@ 7
P Rl

If a section of the former surface be made by a plane
perpendicular to the axis of = and at a distance x from
the origin, the boundary is an ellipse of which the area is

2

abe (% + 1) ; the section of the second surface made by
the same plane also has an ellipse for its boundary, and its

area is Tl;, . Therefore the difference of the areas is wbe.

Hence the required volume, supposing it bounded by the
planes =z, and z=z, is

“abeda, that is, whe (z, — ).

oy
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192. Sometimes it may be convenient to make sections by
parallel planes not perpendicular to the axis of z. If a be the
inclination of the axis of  to the parallel planes, then
¢ (x) sin @ Az may be taken as the volume of a slice and
the integration performed as before.

Formule involving Double Integration.

193. We will first give a formula for the volume of a solid
of revolution. In the figure, let =, ¥ be the co-ordinates of s,
and x + Az, y + Ay those of t. Suppose the whole figure to
revolve roundy the axis of z, then the element s¢ will generate
a ring, the volume of which will be ultimately 27y Az Ay:
this follows from the consideration that Az Ay is the area of
st and 27y the perimeter of the circle described by s. Hence
the volume generated by the figure BEeb, or by any portion
of it, will be the limit of the sum of such terms as 27wy Az Ay.
Let V denote the required volume, then

V=2'n'ffydmdy;

the limits of the integration being so taken as to include all
the elements of the required volume.

194. Suppose the volume required that which is obtained
by the revolution of all the figure BEeb; let y=¢ (x) be the
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equation to the upper curve, y =+ (x) that to the lower
curve, and let OC=wx,, OH==x,. e should then integrate
first with respect to y between the limits y =+ (x) and
y=¢ (x); we thus sum up all the elements liie 2my Az Ay
which are contained in the solid formed by the revolution of
the strip PQgp; then we integrate with respect to « between
the limits 2, and @, Thus to express the operation sym-
bolically

V=2 f"fm dzd
=am X
L4 !P(-“)y 4

== [ [$ @) - ¥ @} .

The second expression is obtained by effecting the integra-
tion with respect to y between the assigned limits, and it
coincides with that already obtained in Art. 185.

195. Thus in the preceding article we divide the solid
into elementary rings, of which 27y Az Ay is the type; in
the first integration we collect a number of these rings, so as
to form a figure, which is the difference of two concentric
circular slices; in the second integration we collect all these
figures and thus obtain the volume of the required solid.

196. Suppose the figure which revolves round the axis of
x to be boum{)ed by the curves z =¢ (y) and z=1 (y), and
by the straight lines y =y, and y=y,; then in applying the
formula for V7 it will be convenient to integrate first with

respect to z; thus
Y2 [$ )
V=2r f dy da.
n !P(Il)y 4

In this case in the integration with respect to  we collect
all the elements like 27y Ay Az which have the same radius
¥, 80 that the sum of the elements is a thin cylindrical shell,
of which Ay is the thickness, y is the radius, and ¢ (y)—¥(y)
the height. Thus

v=2r [ 6 0) - W)}y dy-
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197. As an example of the preceding formulw, let it be

uired to find the volume of tEe solid generated by the re-
volution of the area ALB round the axis of = in the figure
already given in Art. 141. This volume is the excess of the
hemisphere generated by the revolution of SLB over the para-
boloidp generated by tg’e revolution of ASL; the result is
therefore known, and we propose the example, not for the
sake of the result, but for illustration of the formula of double
integration.

Suppose the positive direction of the axis of  to the left,
then the equation to AL is y*=4a (a —x) and that to BL is
y'=4a"—2". Let V be the required volume, then

% 1 /lda— g
V= f [V 2y dy dz.
o 4a7-y2

4a
If we wish to integrate with respect to f first, we must, as
in Art. 141, suppose the figure ALB divided into two parts;

thus
a /(46?29 2a /(462 ~ 2%
V=ff 27ryda:dy+f [ 2y dx dy.

N4 ~4a2) °

Again, let it be required to find the volume generated by
the revolution of LDC about the axis of #. Let the positive
direction of the axis of « be now to the right, then the equa-
tion to LC is y* = 4a (@ + ) and that to LD is y* =4a* —'
Let ¥ be the required volume, then

2a [ y/(4a” +407)
V= f f amy do dy.
o Y Vla-29) R4 J

If we wish to integrate with resgect to « first, we must, as
in Art. 141, suppose the figure LD C divided into two parts;

thus
v=[""  emydyde f""’f’“ oy dy dec
—j:fv(w_mry'y +2a g’-wﬂyy ’
4a

198. Similarly, if a solid is formed by the revolution of a
curve round the axis of y, we have

V=ﬂ27r:cdydx.
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199. We now proceed to consider any solid.

Let @, y, 2 be the co-ordinates of any point p of a
surface, « + Az, y + Ay, z+ Az the co-ordinates of an adja-
cent point ¢. Through p draw planes parallel to the co-ordi-
nate planes of (x, 2) an (‘i/, z); through ¢ also draw planes

arallel to the same co-ordinate planes. %‘hese four planes
will include between them a column, of which Pq is the base
and Pp the height. The volume of this column will be ulti-
mately z Az Ay, and the volume between an assigned portion
of the given surface and the plane of (z, ) will be found by
taking the limit of the sum of a series of terms like zAx Ay.
Let V denote this volume, then

V=ffzdxdy.

The equation to the surface gives z as a function of = and
; the limits of the integration must be taken so as to include
all the elements of the proposed solid.
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If we integrate first with respect to y, we sum up the
columns which form a slice comprised between two planes per-
pendicular to the axis of ; thus the limits of integration with
respect to y may be functions of z, and we shall obtain

fzdy =f(=),

where f(z) is in fact the area of the section of the solid consi-
dered made by a plane per}i‘endicular to the axis of = at a
distance « from the origin. Then finally

V= [f@de;
this coincides with the formula already given in Art. 188.

200. Application to the Ellipsoid.

Let it be required to find the volume of the eighth part of -
the ellipsoid determined by the equation

LA AP AR
aFpte=h

Here we have to find

o/~ E-)e

First integrate with respect to y, then the limits of y are 0
and L1, that is 0 and & (1 - g); we thus obtain the sum

of all the columns which form the slice between the planes
Lpl and Mgm. Now between the assigned limits

f\/(l_g‘%:)dy;%b(l_g);

z

thus V=f%bc(1—;2)dw.

The limits of = are 0 and a; we thus obtain the sum of
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all the slices which are comprised in the solid 0ABC. Hence
Ve 'rrabc

6

201. gpose the given surface to be determined by
=az, and we require the volume bounded by the plane
ot (e, y), by the given surface, and by the four planes = =
x=x, Y=y, y=y,, Here the volume is given by

f myda:dy

=E(y2 ."/1') (m —'m’)

1
E (xn—xx) (.%z_:'/l) {mlyl+m23/2+ml 2+x9.y1}

1
= i (ws—wx) (.% -y,) (zl +2,+2,+ z4)’

where 2, z,, 2,, 2, are the ordinates of the four corner points
of the selected portlon

202. Find the volume compnsed between the plane z=10
and the surfaces zy=az and (z—k)'+ (y—k)’=

Here we have to integrate f f "%’dm dy between limits de-
termined by (z—k)*+ (y — k)=
Now fy dy =3§, and the limits of y are

k—v{c — (@—h)Y and &+ (¢ — (z—B)').

Thus we obtain
2k N/ {— (z — k)*}.

Thus finally the required volume
=2 [aie— (@— Y} da,

where the limits of  are 2 —¢ and % +ec.
il
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And '
[evie—@-m o=@~ Bvie - @ - W} d

+kﬁ/{c’— (@ —h)Y} da.
Put x—~h=1¢t; thus we obtain
fw(c'—z*) dt+kf.,/(c*—a) &,

The limits of ¢ are —¢ and +c¢; therefore the result is
k' k'

- and the required volume is

203. TInstead of dividing a solid into columns standing on
rectangular bases, so that zAxz Ay is the volume of the
column, we may divide it into columns standing upon the
polar element of area; hence zrA@ Ar is the volume of the
?olumn. Therefore for the volume V of a solid we have the
ormula

V=ffzrd0dr.

From the equation to the surface z must be expressed as a
fanction of » and 6.

204. Required the volume of the solid comprised between
the plane of (z, y) and the surface whose equation is
224 92
z=ae o .

Here, since #* +y*=+*
”
V=affe_c_’rd0dr.

The surface extends to an infinite distance from the origin
in every direction; thus the limits of 6 are 0 and 2, and
those of  are 0 and .

”
e

7 <

_”
Now fe Erdr = —
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a f_’ cﬁ
thus f e Crdr = R

0
And f‘" 40 = 2ar.
0

Hence the required volume is 7rac’.

Formule involving Triple Integration.

205. 1In the figure to Art. 199, suppose we draw a series
of planes perpendicular to the axis of z; let z be the distance
of one plane from the origin and z + Az the distance of the
next., These planes intercept from the column pgP@Q an
elementary rectangular parallelopiped, the volume o{which is
Az Ay Az. The whole solid may be considered as the limit
of the sum of such elements. Hence if ¥ denote its volume

V=fffdmdydz.

206. Required the volume of a portion.of the cylinder de-
termined by the equation

2+ y* — 2ax =0,
which is intercepted between the planes

z=wo tana and z =z tan B.

Here if y, stand for 4/(2ax — «*), we have

Y1 [ztanp
v=[ " [ tnay a.
/]

-1/ ztana

=fufyl (tan B —tan a) x dr dy
o Y-
=2(tanB—tana)fme(2am—m’)dx

=2 (tan B—tan) 2.
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207. The polar element of plane area is, as we have seen
in previous articles, A6 Ar. Suppose this to revolve round
the initial line through an angle 2ar, then a solid ring is
generated, of which the volume is 2mr sin 6 » A@ Ar, since
27rr sin 6 is the circumference of the circle described by the
point whose polar co-ordinates are » and 6. Let ¢ denote the
angle which the plane of the element in any position makes
with the initial position of the plane, ¢ + A¢ the angle which
the plane in a consecutive position makes with the initial
plane; then the Fart of the solid ring which is intercepted
between the revolving plane in these two positions is to the
whole ring in the same proportion as A¢ is to 2. Hence
the volume of this intercepteg part is

7 5in 6 A A6 Ar.

This is therefore an expression in polar co-ordinates for an
element of any solid. Hence the volume of the whole solid
may be found by taking the limit of the sum of such elements ;
that is, if 7 denote the required volume,

V=Ufr’ sin 8 d df) dr-.

The limits of the integration must be so taken as to include
in the integration all the elements of the proposed solid. The
student will remember that » denotes the distance of any
point from the origin, @ the angle which this distance makes
with some fixed line through the origin, and ¢ the angle
which the plane passing through this distance and the fixed
line makes with some fixed plane passing through the fixed
line. '

208. Suppose, for example, that we apply the formula to
find the volume of the eighth part of a sphere. Integrate
with respect to » first; we have

3
fr’dr:%.

Suppose a the radius of the sphere, then the limits of » are 0
and a; thus

V=ff%ssin0d¢d0.
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In thus integrating with respect to », we collect all the
elements like +* sin 6 A¢ A Ar which compose a pyramidal
solid, having its vertex at the center of the sphere, and for its
base the curvilinear element of spherical surface, which is
denoted by o sinf A¢ AG.

Integrate next with respect to 6; we have

fsinodo=-cose;

the limits of 6 are 0 and 12_r; thus
aﬂ
V=[5 .
In thus integrating with respect to 6, we collect all the
3

pyramids similar to %sine A¢ Af which form a wedge-

shaped slice of the solid contained between the two planes
through the fixed line corresponding to ¢ and ¢ + Ag.

Lastly, integrate with respect to ¢ from 0 to ;; thus

mwa®
V= T .
In this example the integrations may be Ferformed in any
order, and the student should examine and illustrate them.

209. A right cone has its vertex on the surface of a
sphere, and its axis coincident with the. diameter of the
sphere passing through that point; find the volume com-
mon to the cone and the sphere.

Let a be the radius of the sphere; a the semi-vertical
angle of the cone, V the required volume, then the polar
equation to the sphere with the vertex of the cone as origin
i8 7= 2a cos 6. Therefore

V= f’””’ * )2 sin 0 dp df dr.

210. The curve »=a (1 + cos ) revolves round the ini-
tial line, find the volume of the solid generated.
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Here the required volume
7 (27 [a (1+cos6) .
=Hf r* sin 0 d6 dp dr
00 Yo

3 rr
=2—'ggf (1 + cos )° sin 6 6.
[

Tt will be found that this =8"'T“s.

EXAMPLES.

1. If the curve d:{* (x — 4a) = ax (x — 3a) revolve round the
axis of  the volume generated from =0 to 2= 3a

3
is "% (15 — 16 log 2).

2. A cycloid revolves round the tangent at the vertex,
shew that the volume generated is =°a’.

3. A cycloid revolves round its base; shew that the
volume generated is 57’a’.

4. The curve 3*(2a —=z)=2a" revolves round its asymp-
tote; shew that the volume generated is 27%’.

5. The curve xy*=4d* (2a —x) revolves round its asymp-
tote; shew that the volume generated is 47"a’.

6. Find the volume of the closed portion of the solid
generated by the revolution of the curve (3" — ¥)'=a’z
round the axis of .

256 wb°

Result. 51—5 —aT.

7. Express the volume of a frustum of a sphere in terms of
its height and the radii of its ends.
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10.

11.

12.

13.

EXAMPLES.

If the curve y* = 2ma + na® revolve about the axis of =
find the volume of any frustum; and shew that it
may be expressed either by

Th 4e, s 2 2 nk*
—2—(b+c—a}nk) or by 'rrh(x+ﬁ>,

where £ is the altitude of the frustum and 5, ¢, » are
the radii of its two ends and middle section. Deduce
expressions for the volume of a cone and spheroid.

Find by integration the volume included between a
right cone whose vertical angle is 60° and a sphere
of given radius -touching it along a circle.

wr®

Result. T.

If a paraboloid have its vertex in the base, and axis in
the surface of a cylinder, the cylinder will be divided
into parts which are as 3 : 5 by the surface of the
paraboloid ; the altitude and diameter of the base of
the cylinder and the latus rectum of the paraboloid
being all equal.

Determine the volume of the solid generated by the re-
volution of the curve (2* + %)’ = a’a* + 0% about the
axis of y, supposing @ greater than 4. Shew what
the result becomes when a=2.

Find the volume of the solid formed by the revolution
of the curve (y* + %)’ =a® (&' — y*) round the axis of .
Result, ™11

5 {«/2 log (1 ++/2) —%} .

A paraboloid of revolution has its axis coincident with
a diameter of a sphere, and its vertex outside the
sphere; find the volume of the portion of the sphere
outside the pa;raboloid.

Result. —m% where % is the distance of the two

lanes in which the curves of intersection of the sur-
aces are situated.
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14. Find the volume cut off from the surface
2.y
et

by a plane parallel to that of (y, 2) at a distance a
from it. Resuls, ma’® A/ (be).

15. A quadrant of an ellipse revolves round a tangent at
the end of the minor axis of the ellipse; shew that
“the volume included by the surface formed by the
curve is
wab’
6

(10 — 8m).

16. Find the volume of the solid generated by the revolu-
tion of the closed part of the curve

o —Baxy+y’=0

round the line =+ y=0. 8n'a’
Result. -3_1\/_6- .

17. If the axes of two equal circular cylinders of radius a
intersect at an angle 8, the volume common to both is

3
% —siz_ﬂ; and the surface of each intercepted by the

. 8a
other is smp

18. Find the volume enclosed by the surfaces defined by
the equations

L+y’=cs, T+y=axr, 2=0,

illustrating by figures the progress of the summation.
3ma*

Result. 3—20 .

-

19. If S be a closed surface, dS an element of S about a
point P at a distance r from a fixed point O, and
¢ the angle which the normal at P drawn inwards

T, I. C. 11
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20.

21.

22.

23.

EXAMPLES.

makes with the radius vector OP, shew that the
volume contained by the surface

=3 |7 cos ¢ dF,

I‘he summation being extended over the whole sur-
ace.

Taking the centre of an ellipsoid as the point O,
apply this formula to find its volume interpreting geo-
metrically the steps of the integration.

The centre of a variable circle moves along the arc of a
fixed circle; its plane is normal to the fixed circle,
and its radius equal to the distance of its centre from
a fixed diameter; find the volume generated, and if
the solid so formed revolve round the fixed diameter,
shew that the volume swept through is to the volume
of the solid as 5 to 2.

Fihd the value of f f f @’ dx dy dz over the volume of an

ellipsoid. Result. 47r1a5“bc ]

The centre of a regular hexagon moves along a diameter
of a given circle (radius = a), the plane of the hexagon
being perpendicular to this diameter and its magni-
tude varying in such a manner that one of its diago-
nals always coincides with a chord of the circle ; shew
that the volume of the solid generated is 24/3 a’
Shew also that the surface of the solid is

a* (2m + 8 4/3).
Determine the limits of integration in order to obtain

the volume contained between the plane of (z, y) and
the surface whose equation is

A2* + Bay + Cyf — Dz — F=0.
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24. State the limits of the integration to be used in apply-
ing the formula f f f dzdydz to find the volume of a

closed surface of the second order whose equation is
ax’+ by’ + c2' +a’yz + Vwz + 'y = 1.

25. State between what limits the integrations in

[[Jasya

must be performed, in order to obtain the volume
contained between the conmical surface whose equa-

tion is
z=a—~/(x"+y’),

and the planes whose equations are x =2z and z=0;
and find the volume by this or by any other method.
3

Result. 291.

2. State between what limits the integrations must be

taken in order to find the volume of the solid con-

tained between the two surfaces cz=ma* +ny* and
2=ax+by; and find the volume when

m=n=a=5b=1.

27, A cavity is just large enough to allow of the complete
revolution of a circular disc of radius ¢, whose centre
describes a circle of the same radius ¢, while the plane
of the disc is constantly parallel to a fixed plane, and
perpendicular to that of the circle in which its centre
moves. Shew that the volume of the cavity is

gg (87 +8).

28. The axis of a right cone coincides with the generatinﬁ
line of a cylinder; the diameter of both cone an
cylinder is equal to the common altitude; find the

11—
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29.

30.

EXAMPLES.

surface and volume of each part into which the cone is
divided by the cylinder.

Results.
Surfaces, 4’“/5;3“/15a’and 2“/52-3415“,;
Volumes, 81r+2794/3—-64 2 ang 5427 s;/3—2qr &

where a is the radius of the base of the cone or
cylinder.

Find the volume of the cono-cuneus determined by

2 2
z’+% =,

which is contained between the planes 2 =0 and z=a.
Result wda
-z

A conoid is generated by a straight line which passes

through the axis of z and is perpendicular to it. Two
sections are made by parallel planes, both planes
being parallel to the axis of 2. Shew that the
volume of the conoid included between the planes is
equal to the product of the distance of the planes into
half the sum of the areas of the sections made by the
planes. o :
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CHAPTER IX.

DIFFERENTIATION OF AN INTEGRAL WITH RESPECT TO ANY
QUANTITY WHICH IT MAY INVOLVE,

- 211. It is sometimes necessary to differentiate an inte-
gral with respect to some quantity which it involves; this
question we shall now consider.

D
Required the differential coefficient of f ¢ (#)dz with

;esdpect to b, supposing & (z) not to contain b, and a to be
independent of 4.

Let u=f:¢(a:)da:,

sn%zose b changed into 5+ Ab, in consequence of which
u becomes u -+ Au; thus

b+Ab
u+Au=L $ (2) du;

b+Ab b
therefore Au= f . ¢ (x) de — f aqS (x) dz

b+Ab
- f % @) do.
Now, by Art. 40,
b+Ab
f () dw = Ab & (b +0A8),
b
where 6 is some proper fraction; thus

%%‘=¢(b+0Ab).
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Let Ab and Au diminish without limit; thus
d
=0

212. Similarly, if we differentiate » with respect to g,
supposing ¢ () not to contain a, and b to be independent

of a, we obtain
d
==

213, Suppose ¢ (x) to contain a quantity e, a;,nd let it
be required to find the differential coefficient of f ¢ (z) de

with respect to ¢, supposing a and b independent of c.

Instead of ¢ (@) it will be convenient to write ¢ (x, c),
so that the presence of the quantity ¢ may be more clearly
indicated ; denote the integral by u, thus

u=f:qb(a:, ¢) dx.

Suppose ¢ changed into ¢ + Ac, in consequence of which »
becomes u -+ Aw; thus '

u+Au=fb4>(a:,c+Ac)¢h;
D b
therefore Ay= f ¢ (@, c+Ac) da — f ¢ (z, c) de

=f:{¢(a:, c+Ac) ~ ¢ (z,c)} dz;

Au_ [ ¢ (x,c+ Ac) — ¢ ()
thus E-—f, " dzx.

Now by the nature of a differential coefficient we have

t +A e (mi )_d:{)(m,c)
¢(wc z)c ¢ ¢ = do +p
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where p is a grnantity which diminishes without limit when
Ac does so. Thus we have

e[l

When Ac is diminished indefinitely, the second integral
vanishes; for it is not greater than (b—a)p” where p’ 18
the greatest value p can have, and p’ ultimately vanishes.
Hence proceeding to the limit, we have

du _ [*d (x,c)
=[ 22

214. It should be noticed that the preceding article sup-
poses that neither a nor & is infinite ; xfI,) for example, & were
mfinite, we could not assert that (b —a) p’ would necessarily
vanish in the limit.

215. We have shewn then in Art. 213 that

We will point out a useful application’ of this equation.
Suppose that 4 (x, ¢) is the function of which ¢ (z, ¢) is
the differential coefficient with respect to z, and that x (z, ¢)

is the function of which dqugx’—‘—;) i8 the differential coefficient
with respect to ; thus (1) may be written

d#’cg 9 d¢§:’ I x (8, ¢) = x (@ 0) ceveen @),

let us suppose that & does not occur in ¢ (z,c), and that
a i8 also independent of ; then (2) may be written

where C denotes terms which are independent of 5, that
is, are constant with respect to 5. Hence as b may have
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any value we please in (3), we may replace b by @, and
write

x(z,c):ﬂg’—c)+0. ................. (4).

This equation may be applied to find x (z,¢); as the
constant may be introduced if required, we may dispense
with writing it, and put (4) in the form

fd"’ ) g = df([)(a:,c)dw.

1
W 3 then

[0 do= [ =Lt er,

For example, let ¢ (z, ¢) =

: dn,. . \_[d 1
thus (5 =)= (o)
2cx’
== T ™
Thus from knowing the value of f Ty o e are able to

deduce by dxﬁ'erentxatlon the value of the more complex

integral f T+ &

b
216. Required the differential coefficient of f ¢ (z,0) do
with respect to ¢ when both 5 and a are functions of c.
Denote the integral by u; then @ consists of three terms,

one amsm%l from the fact that (ib(a:, ) contains ¢, one from
the fact that & contains ¢, and one from the fact that e
contains c.
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Hence by the preceding articles,

du qub(z,c)dgc guz zia
3

[ B2 4t 40,0 5~ (@) G-

217. With the suppositions of the preceding article we

may proceed to find OZf By differentiating with respect to ¢

the term f d%:l dx we obtain

f”d’cﬁ(x,c)dm d¢ (b, c) db _de (a, ¢) da
dc* de de  de  de°

From the other terms in ? we obtain by differentiation

&b dp (b, 0) (db) L 46, 0 %lg

G ) m+—5— (7 2

_¢(,)¢$ d¢$,c)(dc)’ dcb((;,c)gz
Thus % ,d"ﬁdﬁx’ ) g

+400 2+ BLA (DY, 800D

_4,( o) 2 da d¢a(;;,c) (Z_;z)’ d¢‘(itz,c)da.

Similarly %, may be found and higher differential co-
efficients of u if required.
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218. The following geometrical illustration may be given
of Art. 216.

X

0 g y ey X

Let y=¢ (x, ¢) be the equation to the curve APQ, and
y=¢ (x, c+Ac) the equation to the curve A'P'Q.
Let OM=a, ON =,
MM =Aa, NN'=Ab.

Then » denotes the area PYNQ, and u+ Au denotes the
area PM'N'Q'. Hgnce

Au=PpqQ + QNN'g — PMM'p,

Au_PpeQ QNNg _PMM'p

and Ac Ac Ac Ac

It may easily be seen that the limit of the first term is the

b —
limit of [ ¢ @et AZ)(, ¢ (® ) g, that the limit of the

second term is the limit of ¢(b, 0) 2—2, and that the limit

of the third term is the limit of ¢ (a, o) 22, This gives the
result of Art. 216.
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219. Example. Find a curve such that the area between
the curve, the axis of x, and any ordinate, shall bear a con-

stant ratio to the rectangle contained by that ordinate and the
corresponding abscissa.

Suppose ¢ (z) the ordinate of the curve to the abscissa «;
then f ¢ (x) do expresses the area between the curve, the

axis of «, and the ordinate ¢ (c): hence by supposition we
must have
[ ¢ (@) da= 209,

where n i1s some constant. This is to hold for all values of ¢;
hence we may differentiate with respect to ¢; thus

¢ (c) ¢ (c) 64’;(6) ;

therefore o’ (d) = (n—1) $ (o),
¢ () _n-—1
tad i
By integration log ¢ (c) = (n— 1) log ¢ + constant ;
thus ¢ () =A™,
and ¢ (a:) = Ax™,

which determines the required curve.
220. Find the form of ¢ (z), so that for all values of ¢
[s@ra
[ worea ™
By the supposition

[ er do= [ 6 @) da.
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Differentiate with respect to ¢; thus
e Or=1[ wErdet Lo O
s o(1-2)pEr=; [ W)

Differentiate again with respect to ¢ ;

thus  (1- )@@ +2e(1-1) g0 ¢ (9 = 2L,

n
hence (1—;)¢(c)+2c(1_%)¢,(0)=0; ,
therefore ¢ 2-mn 1

dl) 2(m—=1)c’
Integrate; thus

log ¢ (c) = 5?7_:% log ¢ + constant ;

2-n

therefore ¢ (c) = Ac3=-1,

where A4 is some constant; thus we have finally

¢ () = Az?®-D,

This is the solution of a problem in Analytical Statics,
which may be enunciated thus: The distance of the centre
of gravity of a segment of a solid of revolution from the

vertex is always %th part of the height of the segment ; find
the generating curve. The required equation is y = ¢ ().
221. Find the form of ¢ (a) so that the integral °%
may be independent of c. : °
Denote the integral by u, and suppose = cz; thus
v °¢(av)da:= tae (cz) dz
oWie—2) J, N(l—2)
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Since « is to be independent of ¢, the differential coefficient
of u with respect to ¢ must vanish., Now

o [[Errieris

e~ V(1l—2) dz
_[¢@+2e¢ (@) ,
R 2cW/(c—a) .

This last integral then must vanish whatever ¢ may be;
hence we must have

¢ (@) +22¢ (x) =0;

’ 1
therefore ‘ ‘i Ez; =—5z
therefore log ¢ (x) = — % log x + constant,
A
therefore ¢ (x) = VS

This is the solution of a problem in Dynamics, which may
be thus enunciated. Find a curve, such that the time of
falling down an arc of the curve from any point to the lowest
point may be the same. If s denote the arc of the curve
measured from the lowest point, then

%=¢(x) and s =24 y/z;

80 that the curve is a cycloid.
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CHAPTER X

ELLIPTIC INTEGRALS.

222. THE integrals f J(_l:%’m , f V(1= ¢& sin® 6) db,
do

an

d (1 + @ 8in® 9) 4(1 R 0) , are called ellzptw ﬁmc—

tions or elliptic integrals of the first, second, and third order
respectively ; the first is denoted by F'(c, 6), the second b{
E(c, 0), and the third by Tl (c, @, §). The ntegrals are all
supposed to be taken between the limits 0 and 6, so that they
vanish with 0; 6 is called the amplitude of the function.
The constant ¢ is supposed less than unity; it is called the
modulus of the function. The constant @, which occurs in the
function of the third order is called the parameter. When

the integrals are taken between the limits 0 and I, they
are called complete functions; that is, the amplitude of a

complete function is 72_1-

223. The second elliptic integral expresses the length of a
portion of the arc of an ellipse measured from the end of
the minor axis, the excentricity of the ellipse being the
modulus of the function. From this circumstance, and from
the fact that the three integrals are connected by remark-
aibledproperties, the name elliptic integrals has been de-
rived.
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224. The subject of elliptic integrals is very extensive;
we shall merely give a few of the simpler results, and refer
the student for %uller investigations to Hymers's Integral
Calculus, or to the writings of Legendre, Jacobi and Abel.

225. If 0 and ¢ are connected by the equation

F(c, 0)+ F(c, ¢)=F(c, )
where p is a constant ; then will
cos 6 cos ¢ — sin 6 sin ¢ /(1 —¢” sin’ ) =cos .

Consider 6 and ¢ as functions of a new variable ¢, and

differentiate the given equation; thus
1 do 1 do
Ji—caw) & T Vi=cang) a0l

Now as ¢ is a new arbitrary variable, we are at liberty to
assume

%g=4/(1 —¢* sin* 6),-
thus from the equation (1)
%—t: — #/(1 = ¢ sin’* ¢).
Square these two equations and differentiate; thus

2
%’Fe—:—c"sinecose, %—t?=—c’sin¢cos¢;

2
therefore, i_ﬁ(%’i__@ = —-%ﬂ (sin 20 + sin 2¢).

Let 6+ ¢=+4 and 0 —~p=1; thus

2
%=—c’sin¢ €O8 X, % =—cginy cos Y.
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d "l' %
therefore =cot @ __ cotr
HE T
dt dt dt dt
therefore
dyr d dx\ _d .
7 (log dt) 7 log sin y, 7 <log E) == log sin+r;
therefore log -d—‘f =log sin x + constant,
therefore {;f Asiny
By o [ ),
and similarly, Zf = Bsinyr
where A and B are constants.
dyx
Hence A sin x — d Bsm\[r a’t )
therefore Acosy=DBcosY+ C............... (8).

Now from the original given equation we see that if ¢ =0
F (c, 0)=F(c, p);
therefore then § =p and y=+Y=p;
thus from (3) (A—B) cos p=C;
thus A4 cos(@—¢)=DBcos(0+¢)+(4—B)cosp;
therefore
(A —B) cosfcos¢ + (A + B) sin 0 sin ¢ = (4 — B) cos p...(4).
In (2) put for %—f its value

V(1 —¢" sin*6) — V(1" sin’ ¢),
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its value
~(1—¢ 8in* @) + 4/(1 — ¢ sin* ¢),
and then suppose ¢ =0; thus
(1 —¢ sin® p) — 1= A sin p,
and V(1 —¢"sin® p) + 1= B sin p.
Substitute for 4—B and A+ B in (4);
thus cos @ cos p — 4/(1 — ¢* sin’ u) sin 6 sin ¢ = cos u.

and for

SR

226. The relation just found may be put in a different
form. Clear the equation of radicals; thus

(cos 0 cos ¢ — cos p)*= (1 — ¢ sin® u) sin® 0 sin’ ¢;
therefore
cos® @ + cos® ¢ + cos® u — 2 cos & cos ¢ cos p
= 1—¢* sin’ u sin® 0 sin® ¢.
Add cos® ¢ cos® u to both sides and transpose ; thus
(cos @ — cos ¢ cos w)*
' =1—cos'¢ — cos’ u + cos’ § cos® u— ¢* sin® p sin® @ sin’ ¢
=gin’ ¢ sin’ u (1 —¢* sin® ) ;

therefore cos @ = cos ¢ cos u + sin ¢ sin u 4/(1 — & sin® §).

The positive sign of the radical is taken, because when
6=0, we must have ¢ =pu.

227. We shall now shew how an elliptic function.of the
first order may be connected with another having a different
modulus.

Let F'(c, 6) denote the function; assume
sin 2¢
¢+ cos 2¢’
T. L C. 12

-

tan0 =
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1 df _2(1+ccos2¢)
cos’@dp  (c+cos2¢) ’
df _ 2(1+c cos2¢)

dp  1+2cos2¢p+c*’

cap & sin’ 2¢
And 1-¢ sin 0_1—1+2ccos2¢+c’

_ 1+2c cos 2¢ + " cos’ 2¢
T 1+2ccos2¢p+c

therefore

therefore

therefore

f 2(1+ccos2¢p) #(1+2¢ (30324)-{-(;*)dqS
4/(l—c’sm0 1+ 2c cos2¢ +c*° 1+c cos2¢

=2fv(1+2cﬁ2¢+c*) = 1-2I-c L/{l - (T‘l.;c?)‘2 Sin"f’}
No constant is added because ¢ vanishes with 6. Thus
F(c, 6) = —1% F(c,, ¢), where
= (11 Pk and tane—(%.
The last relation may be written thus
¢ 8in 6 = sin (2¢ —0).

‘We may notice that c, is greater than ¢ for
2

4
1

- =

¢ c(l+o”
and since c is less than unity, 4 is greater than ¢ (1 +¢)*.

[=)

1f¢=g, then @=ar; thus

PR -
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228. We will give one more proposition in this subject,
by establishing a relation among Elliptic Functions of the
second order, analogous to that proved in Art. 225 for func-
tions of the first order.

If  cosd cosp —sin6 sin ¢ /(1 — ¢’ sin’ u) = cos p,
then will

E(c’ 0)+'E(c’ ¢)_E(c’ ll‘)=c’ Sin08in¢ Sinl""

By virtue of the given equation connecting the amplitudes,
¢ is a function of 6; thus we may assume

E(c, 0)+E(c, $) = E(c, ) =£(0).
Differentiate ; thus
f(8) = /(1 — ¢ sin® 8) + /(1 — ¢ sin’ ) g_g’

_cosB—cosdeosp cosp—cosfcosp do

8in ¢ sin p sin € sin p do
(by Art. 226),
_ d{sin’*0+sin’ p+2cosfcos ¢ cos pu} 9 1
- do 2sinfsingsinp”

But sin® 6 + sin® ¢ + 2 cos 8 cos ¢ cos u
=1+cos’ u+ ¢* sin’ @ sin’ ¢ sin’p ;

thus £O)=c d (sin 6 s(iil;¢ sin w) )

Therefore, by integration
F(0) =¢* sin 0 sin ¢ sin p.

IiTloeconsta.nt is added, because f(f) obviously vanishes
with 6.

12—2



180

CHAPTER XI.

CHANGE OF THE VARIABLES IN A MULTIPLE INTEGRAL.

229. WE have seen in Art. 62 that the double integral

f:f:¢ (x, y) dxdy is equal to f:f:¢ (z, y) dy dz when the

limats are constant, that is, a change in the order of integra-
tion produces no change in the limits for the two integrations.
But when the limits of the first integration are functions of
the other variable, this statement no longer holds, as we have
seen in several examples in the seventh and eighth chapters.
We add here a few additional examples.

230. Change the order of integration in

f : f:/(a’—z’)¢ (a;, g) d dy.

Y]

B

A X

The limits of the integration with respect to y here are
y=0 and y=4/(a’—2"); that is, we may consider the
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integral extending from the axis of = to the boun of a
circle, having its centre at the origin, and radius equal to a.
Then the integration with respect to  extends from the axis
of y to the extreme point 4 of the quadrant. Thus if we
consider z=¢ (z, y) as the equation to a surface, the above
double integral represents the volume of that solid which is
contained between the surface, the plane of (, y), and a line
moving perpendicularly to this plane round the boundary
0APBO. :

It is then obvious from the figure that if the integration
with respect to z is performed first, the limits will be =0
and z=4/(a" ), and then the limits for y will be y=0
and y=a. Thus the transformed integral 1s

a (i@ ~-y9
[T @9 ay .
oY o
231. Change the order of integration in

ff:m""p (r, 6) rd0 dr.

Let 04 =2a, and describe a semicircle on 04 as dia-
meter. Let POX = 6, then OP=2a cos §. Thus the
double integral may be considered as the limit of a sum-
mation of values of ¢ (r, 6) » &0 Ar over all the area of the
semicircle. Hence when the order is changed we must inte-

grate for @ from 0 to cos™ —2%, and for » from 0 to 2a.
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Thus the transformed integral is
cos1 .~
f ’“f % (r, 0)  dr do.
[ [

232. Change the order of integration in

- ; "% (@ y) de dy.
'[° y

%

V& X
The integration for y is taken from y = 1, P y=3a-=z

The equation y = z belongs to a parabola OLD, and
q Y =12 8! p

y=38a—=z to a straight line BLC, which passes through L,
the extremity of the latus rectum of the parabola.

Thus the integration may be considered as extending over
the area OLBSO. Now let the order of integration be
changed; we shall have to consider separately the spaces
OLS and BLS. For the space OLS we must integrate
from =0 to x=24/(ay), and then from y =0 to y=a;
and for the space BLS we must integrate from x=0 to
#=238a—y, and then from y=a to y=38a. Thus the trans-
formed integral is

f:f:mﬂé (@ 9) dy d+ [ :“f:“-’.p (=, y) dy da.
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233. Change the order of integration in

[["7s @y doay

Here the integration with respect to y is taken from y ==
to y=x(2—z). The equation y =z represents a straight
line, and y = (2 —x) represents a parabola. The reader
will find on examining a figure, that the transformed inte-

gral is
1y
, y) dy da.
[] . s
234. Change the order of integration in
fa z+26 du d
0 \/(a’—a‘)¢ (.’l:, y) 3/-

Here the integration with respect to y is taken from
y=4+(a—a") to y=x+2a. The equation y=4/(a"— )
represents a circle, and y =z + 2a represents a straight line.
The reader will find on examining a figure, that when the
integration with respect to z is performed first, the integral
must be separated into three portions; the transformed in-
tegral is

[1., bendes [ a
| L] ey

235. Change the order of integration in

[] f:—”rﬁ (@,9) do dy.

Here the integration. with respect to y is taken from y=0
. b
toy=s3a The equation y= g represents an hyper-

bola; let BDE be this hyperbola, and let O4=a. Then
the integration may be considered as extending over the
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¥
B
C D
E
(4 — X

space OBDA. Let the order of the integration be changed;
we shall then have to consider separately the spaces 04DC
and CDB. For the space 04DC we must integrate from

x=0 to Tr=a, and then ﬁ'om y=0 to y:l-’—-?-—a. Forthe
space CDB we must integrate from =0 to m=_—b (1-9) ,

and then from y = b—f’; toy=1. Thus the transformed in-

tegral is
1=y
v

E,—f;ﬁw (@ y) dy de +rLf: ¢ (z,9) dy d.
b+a

236. Change the order of integration in
h fe—pz
ff ¢ (2, y) de dy,
o/ Az

C . .
where & = g The transformed integral is

f:hff‘“"”y)dydx+f;f:_‘?¢(w3y)dydm§
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237. ' Change the order of integration in

]:f:f:‘ﬁ (@, y, 2) do dy dz.

The integration here may be considered to be extended
throughout a pyramid, the bounding planes of which are
given by the equations

_ z2=0, z=y, y=z, x=a.
The integral may be transformed in different ways, and

thus we obtain

f:f:f:‘f’ (@, y, 2) dy d da,
" j:]:_/:¢(x’y:z)dydzdx,
” f:f:f:wx,y, 2) dz dy dz,
" 'f:[:f‘,’(x:.’laz)dzdzdy,
" [ tenaawa

These transformations may be verified by putting for
¢ (x, ¥, z) some simple function, so that the integrals can
be actually obtained; for example, if we replace ¢ (, ¥, 2)

by unity, we find % as the value of any one of the six
forms.

238. These examples will sufficiently illustrate the sub-
ject; it is impossible to lay down any simple rules for the
discovery of the limits of the transformed integral. It is not
absolutely necessary to draw figures as we have done, for the
figures convey no information which could not be obtained by
reflection on the different values which the variables must
have, in order to make the integration extend over the range
indicated by the given limits. But the figures materially
agsist in arnving speedily and correctly at the result. '
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We now proceed to the problem which is the main object
of the present chapter, namely, the change of the variables in
a mulﬁ'ple integral. We begin with the case of a double

integr:
239. The problem to be solved is the following. Required
to transform the double integral f f Vdxdy, where V is a

function of « and y, to another double integral in which the
variables are u and v, the old and new variables being con-
nected by the equations

¢, (x, y, u, v) =0...... &, (, ¥, u, v) =0...... (1.

We suppose that the original integral is to be taken be-
tween known limits of ¥ and «; as we integrate with respect
to y first, the limits of ¥ may be functions of @. Of course
while integrating with respect to y we regard « as constant.

We first transform the integral with respect to y into an
integral with respect to ». This is theoretically very simple;
from equations (1) eliminate » and obtain y‘as a function of
z and v, say

from which we get
dy =Y’ (z,v) dv,

where VY (z, v) means the differential coefficient of Y (z, v)
with respect to .

Substitute then for y and dy in f Vdy, and we obtain

j’Vl\]/ (e, v) dv, where V, is what V" becomes when we put

for y its value in V. Hence the original double integral
becomes

j[Vl\[r’(x, v) da do.

Thus we have removed y and taken v instead. As the
limiting values of y between which we had originally to
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integrate are known, we shall from (2) know the limiting
values of v, between which we ought to integrate. It will be

observed, that in finding d—‘z from (2), we supposed & constant;

this we do because, as already remarked, when we integrate
the proposed expression with respect to ¥ we must consider
constant.

The next step is to change the order of the above integra-
tion with respect to  and v, that is, to perform the integra-
tion with respect to « first. This is a subject which we have
already examined; all we have to do is to determine the new
limits properly. Thus supposing this point settled, we have
changed the original expression into

f]mx (=, v) dv d.

It remains to remove « from this expression and replace it
by . We proceed precisely as before. From equations (1)
eliminate y, and obtain x as a function of v and , say

from which we get
dae =y’ (v, u) du,

where x’(v, ) means the differential coefficient of (v, u)
with respect to w.

Substitute then for # and dz, and the double integral be-
comes

f V' (=, v) %’ (v, u) dv du,

where V" is what V, becomes when we put for z its value in
V.. Thus the double integral now contains only « and o,
since for the # which occurs in Y (, v) We suppose its value
substituted, namely, x (v, ). Moreover since the limits
between which the integration with respect to = was to be
taken have been already settled, we know the limits between
which the integration with respect to » must be taken.
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We have thus given the comglebe theoretical solution of the
problem ; it only remains to add a practical method for de-
termining Y (z, v) and y’ (v, %) ; to this we proceed.

‘We observe that y (z, v) or - &y is to be found from equa-

tions (1) by eliminating u, cons1denn x constant; the fol-
lowing is exactly equivalent; from (1

d¢l dy + d¢! du d¢l
dydv" dudv dv

dgy dy A, du b, _
dy 't v

Eliminate (—i?—‘; thus
dv
ab, dy b b, dy 4,
dy dv  dv _dy dv
b 44,
du : du

dy dv du  du dv

T d, dp, dp, db,”
du dy d_y du

therefore

This then is an equivalent for ¥ (z, v).

Again, 5’ (v, u) or g—w is to be found from equations (1) by

eliminating y, regarding v as constant; the following is
exactly equivalent; from (1)

d, de | db, dy  db,_,
dx du” dy du

d"’ad_x_ &Ps _ﬂ+d¢z._0
dz dutdy dut du
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From these equations by eliminating Z—Z we find

%, db, _dé, d¢,
de _du dy dy du

du” d§, dp, do, 49,

dy dx dx dy

This then is an equivalent for x’ (v, u).

b, d, _ dé, d¢,

Thus ¥ (a ) ¥ (%) = Fpi—gig-
—ri_ra__ 7173
dy de dx dy

Hence the conclusion is that

dp, do, _dé, do,

dv du  du dv
fdewdy—ffV%%—%%dvdu ........... @),
dy do dr dy

where after the differentiations have been performed, we must
g-ut for « and y their values in terms of « and v to be found

om (1); also the values of x and ¥ must be substituted
in V.

An important particular case is that in which = and y are
given explicitly as functions of « and v; the equations (1)
then take the form

z —f, (u, v) = 0, y—Ffi () =0..cecuuens (5).

db,_, db_, 9b_, %b_
Here Td—x-‘-—-l, -@—0, o —0, dy —1,

and the transformed integral becomes

(7§ Bwe

where we must substitute for « and y their values from
(8) in V.
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Thus we may write

ﬂmw;,#fv(% %—% B) o du..... 6).

The formule in (4) and (6) are those which are usually
given; they contain a sim;ile solution of the proposed problem
in those cases where the limits of the new integrations are
obvious. But in some examples the difficulty of determinin
the limits of the new integrations would be very great, ang
to ensure a correct result it would be necessary instead of
using these formul®, to carry on the process precisely in the
manner indicated in the theory, by removing one of the old
variables at a time.

240. The following is an example.
. a rb
Required to transform f f V dx dy, having given
oY o

yt+zr=u, Yy =uv.

From the given equations we have

z=u(1-0), y=uv;
dx dx dy dy
thus %=l—v, %——u, %—v, %—-u,
de dy dx dy _
therefore g d—u._u(l-—v)+uv-u.

Hence by equation (6) of Art. 239, we have

ffb Vi dy = [V dodu;

but we have not determined the limits of the integrations with
respect to % and v, so that the result is of little value. We
will now solve this example by following the steps indicated
in the theory given above.

et
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From the given equations connecting the old and new
variables we eliminate »; thus we have

_w dy = |
y=1= ?hereforea;—(l_v),,

to the limits y=0 and y =5, correspond respectively v=0

b
and v=m, thus

[:f:Vda: dy:f:f:—bﬁ Ve (1 ~v)*dedv.

‘We have now to change the order of integration in

b
f b”Va: (1—v)? dx dv.
[}

0

This question has been solved in Art. 235; hence we obtain

afd a b:—z
ff Vdmdy=ff V.2 (1—v) " dadv
ovo oY o

b T

=" nea-ordedzr[ [T Mz
° ) b'-r_a. [

‘We have now to change « for » where

z=u(l-"v), %:1—0;
thus we obtain

b o -
’Ha lan'u dv du +f r V'u dv du,
0 0 ._b_ 0
a+b

since to the limits 0 and @ for correspond respectively 0 and
for u, and to the limits 0 and ( — ) for = correspond

1 —
respectlvely 0 and % for u.
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If a=0 the transformed integral becomes

3 [iss 15
f V'udv du + fl f V'u dv du.
oY 0 a 0

If ¢ 18 made infinite, these two terms combine .into the
single expression
1
[ vudvau.
oY o

241. Second Example. Required to transform
j'c c—a;V dos dy,
oYo

having given y +z=u, y=wuv.

Perform the whole operation as before; so that we put

_ v dy =
Y=1— ™M %= T

‘When y =0 we have v=0, and when y =c—a we have

c_
v=

Thus the integral is transformed into

c—-

ff * Y.z (1— ) dedv.
ovo
Now change the order of integration; thus we obtain

f: f:"'”’Kx (=0 dod.

Now put x=u(1~v) and %:1—0; the limits of
will be 0 and ¢. Hence we have finally for the transformed

integral
ffc V'u dv du.
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242. Third Example. Transform f f Vdzdy to a double
integral with the variables » and 6, supposing

z=rcosf, y=rsiné.

‘We may put 6 for v and » for » in the general formula;
thus

do dy _de dy
dudv dvdu
and the transformed integral is

=rcos'f+rsin*l=r;

[ V'rdo dr.

This is a transformation with which the student is probably
already familiar; the limits must of course be so taken that
every element which enters into the original integral shall
also occur in the transformed integral.

A particular case of this example may be noticed. Sup-
pose the integral to be

[[$ @+ 39) aw ays

by the present transformation this becomes
[ f¢ {lr cos (60— a)} rdé dr,

where kcosa=a and ksina=b. Now put —a=¢, so
that the integral becomes

fqu(kr cos &) rd8 dr ;

then suppose 7 cos ¢ =2’ and rsin & =y’ and the integral
may be again changed to

f f¢ (k) de? dy'.

T. I. C. 13
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Thus suppressing the accents we may write

[[6 e +23) dm dy = [[ (o) = g,

where %= v/ (@®+8"). The limits will generally be different
in the two integrals; those on the right hand side must be

determined by spec1a.1 examination, corresponding to given
limits on the left hand side.

243. Fourth Example. Transform f ’ f Vi dy, having
given o
z=au+bv, y=>bu+ay, a>b.

Eliminate u, thus ay — bz = (¢® — 8*) v, and the first trans-
formation gives

z
272 felaid
@ Z’H*" V, do dv,
a o bzr

at-b%

where V, is what V becomes when we put —+ v for

bx -0
a
y. Next change the order of integration ; thlS gives

272 a-L " 2 0
L[ Voo ”f f Vv
a o Jla+bo

a’—b’

‘We have now to change from z to by means of the

equation z=au+ by, which gives %=a; the limits of u

corresponding to the known limits of x are easily ascer-
tained.

Thus we have ﬁnally for the transformed integral

(a* _zf)f“*" V’dvdu+(a—b”)f .FV’dvdu
P~ M

The correctness of the transformation may be verified by
supposing V7 to be some simple function of « and y; for
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example, if V be umty, the value of the original or of the

transformed integral is §

244. Fifth Example. The area of a surface is given by

the inte
2 2
fdzdy\/{l+ g—i + g—z)} (Art. 170);

required to transform it into an integral with respect to 6 and
¢, having given

z=rcosfd, ax=rsinfcos¢p, y=rsinf sing.

From the known equation to the surface z is given in
terms of  and y; hence by substituting we have an equation
which gives r in terms of & and ¢.

We will first find the transformation for dx dy:

% gﬂ sin @ cos ¢ + r cos 6 cos ¢,

" sin @ cos ¢ — » sin 6 sin ¢,

d¢ d¢
zﬁ 325m05m¢+rcosﬂsm¢,

% Z¢sm0mn¢+rsm0cos¢

_—— d—— r8in 6 (rcos 6+30 sin 0)
thus dzdy will be replaced by
r sin 6 (rcos 8 + 7 cin 6) ap .
‘We have next to transform

Vi @+ @)

13—2
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dz _dz dx dz dy

We have B ot dy b’
dz _dz de dz dy
dp = dw dp Ay dp
Also A fzi) Zz co8 § —r sin 0,
dz dr
P73 = 7 cos 6.
Thus % is a fraction of which the numerator is
ds dy _do dy
do d¢p do do’

that is, (% c(;se—r sinﬁ) (d¢

dsbcosﬂ(ge sin 0 sin ¢ +  cos 4 sin ¢)

gin 6 sin ¢ +sin 6 cos ¢)

that is,
. di . d .
—r sm¢#;+r sin € cos 6 cos ¢ d—z-r* sin® @ cos ¢,

and the denominator is
de dy dx dy

d6 dp ~ dp d’

the value of which was found before ; thus

d—z_rsinﬁcosecoszp% —r sin¢%-—1" sin® 0 cos ¢
de rsm0(rcos€+sm0§o)
Similarly

s rcos¢d¢+r sin cosOsm¢——r’s * 6 sin ¢
F .

r smﬂ(rcos 0+sm03§)
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therefore ’ |
dz\* /dz a_r‘sin"6+,3(3_;) _I_r,sin,o(%)
1+ (d_m)+(@) B ,ﬁsin*e(rcosoﬂine%)a ,

and finally the transformed integral is

f [ \/ {r’ sin® 6 + (%)’+ §in* @ (%)’} rd d.

245. There will be no difficulty now in the transformation
of a triple integral. Suppose that V'is a function of z, y, z,

and that Vdxdydz is to be transformed into a triple
Y p

integral with respect to three new variables %, v, w, which are
connected with z, 7, z by three equations. From the investi-
gation of Art. 239, we may anticipate that the result will
take its simplest form whenJthe old variables are given ex-
plicitly in terms of the new. Suppose then

' w=j; (u’ v, w)3 y=.f; (uy v, 'w): z =j; (’d, v, ’llJ) ...... (1).

We first transform the integral with respect to z into an
integral with respect to w. During the integration for z we
regard « and y as constants; theoretically then we should
from (1) express z as a function of x, y, and w, by eliminat-
ing » and v; we should then find the giﬁ'erential coefficient of
z with respect to w regarding « and y as constants. But
we may obtain the required result by differentiating equations
(1) as they stand,

o du_ df dv &, _
thus d—u%-l‘%% 7{:’-—,
df, du  df, dv qlf;_o

dudntd dwtdw =
%du %dv %_iz
du dw dvc—i%-l-dw_dw'
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du

Eliminate —- and D ; thus we find
dw dw
dz _ N
do™ df, af, _df, 4,
du dv du dv

du dv du dv
N ACE

ds dxdz dgdl dx dsda dsdg
wherel\f:%o(zé (7-5_%“—15 +d_¢fo(l i__-f _f)

dw \du dv ~ du dv

Hence the integral is transformed into -

du dv du dv

where V, indicates what 7 becomes when for 2z its value in
terms of @, y and w is substituted. We must also determine
the limits of w from the known limits of z. Next we may
change the order of integration for y and w, and then pro-
ceed as before to remove y and introduce ». Then again we
should change the order of integration for w and « and then for
v and z, and finally remove « and introduce ». And in exam-
ples it might be advisable to go through the Frocess step b{
step, in order to obtain the limits of the transformed integral.
: 'BVe may however more simply ascertain the final formula
thus. Transform the integral with respect to z into an
integral with respect to w as above; then twice change the
order of integration, so that we have

du dv du dv

Now we have to transform the double integral with respect
to = and y into a double integral with respect to » and » by
means ofy the first two of equations (1). Hence we know
by Art. 239 that the symbol ddy will be replaced by
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o, &, df,d, .
(zz; & " dy do) T

and the integral is finally transformed into

ff V' Ndw dv du,

where V' is what V becomes when for =, y, and 2z, their
values in terms of u, », and w are substituted.

The student will now have no difficulty in investigating
the more complex case, in which the old and new variables
are connected by equations of the form

¢, (@, ¥, 2, u, v, w) =0,
&, (x, ¥, 2, u, v, w) =0,
é, (=, y, 2, u, v, w) =0.
Here it will be foﬁnd that
&e_N, d_N, do_N,

i &Y _ .
dw D3 dv D, du ?

also that = - N,=D,, and N,=D,

Thus [ Vda:dydz=fffl"%—;dudvdw,

where
d¢1 d¢a d¢s d¢a d¢2 d¢z d¢s d___‘é;_d_‘k; %
W= (- )+ (-G )
do, (dp, db, do, d,
+¢—i—1;(% v du dv)’

and — D, is equal to a similar expression with =, , 2 instead
of u, v, w respectively.
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246. It may be instructive to illustrate these tra.nsformae. ’
tions geometrically. 'We begin with the double integral.

Y]

0 X

Let f [ Vdx dy be a double integral, which is to be taken

for all the values of # and y comprised within the boundary
ABCD. Suppose the variables # and y connected with two
new variables » and v by the equations )

e=f (1), Y=F00V)reennnss eees(1).

From these equations let » and v be found in terms of
z and y, so that we may write

u=F(2,9), 0=F, (@ Y)eeeererercruee. (2).

Now by ascribing any constant value to « the first equation
of (2) may be considered as representing a curve, and by
giving in succession different constant values to u, we have a
series of such curves. Let then 4PQC be a curve, at every
})oint of which F] (z, y) has a certain constant value »; and
et A'SEC’ be a curve, at every point of which Z, (z, y) has
a certain constant value u+ u. Similarly let BPSD be a
curve, at ever{ point of which  (x, y) has a certain constant
value v; and let B'QRD’ be a curve, at every point of which
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F, (z, y) has a certain constant value v+8v. Let x, y now
denote the co-ordinates of P; we shall proceed to express
the co-ordinates of @, S, and A.

The co-ordinates of @ are found from those of P, by chang-
ing v into v + 8v ; hence by (1) they are ultimately, when
is indefinitely small,

dx dy
m+d78v, and y+%&v.

Similarly the co-ordinates of S are found from those of P
by changing « into » + du; hence by (1) they are ultimately

dz dy
x+£8u, and y+%8u.

The co-ordinates of B are found from those of P by changing
both = into % + 8w and v into v +&v; hence by (1) they are
ultimately

dx dx dy dy
x+z&8u+% 8y, and y+%8u+%80.

These results shew that P, ), R, § are ultimately situated
at the angular points of a parallelogram, and the area of this
parallelogram may be taken without error in the limit for the
area of the curvilinear figure PQRS. The expression for the
area of the triangle PQR in terms of the co-ordinates of its
angular points is known, (see Plane Co-ordinate Geometry,
Art. 11), and the area of the parallelogram is double that of
the triangle. Hence we have ultimately for the area of
PQRS the expression

de dy dx dy
i{@%‘d—v &)

Thus it is obvious that the integral f f Vdx dy may be

replaced by . |
t [V (G oG o) dudos
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the ambiguity of sign would disappear in an example in
which the limits of integration were known. In £lding
the value of the transformed integral, we may suppose that
we first integrate with respect to v, so that u is kept constant;
this amounts to taking all the elements such as PQRS, which
form a strip such as 44'C’'C. Then the integration with
respect to w amounts to taking all such strips as 44'C'C
which are contained within the assigned boundary 4BCD.

247. We proceed to illustrate geometrically the trans-
formation of a triple integral.

Z|
N4
D
=Y
LA/
[~
(7] X‘

Let f f f V dx dy dz be a triple integral, which is to be taken

for all values of =, y, and 2 com%rised between certain
assigned limits. Suppose the variables x, y, and 2z con-
nected with three new variables u, v, w by the equations

z=f(u, v, w), y=f(u v,w), 2=f 0 0)...... (1).
From these e%uations let u, v, and w be found in terms of
z, y, and z, so that we may write

u=F,(z,y,2), v=F(y2), w=F((zy,s2)...(2).
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. Now by aseribing any constant value to u, the first equa-
tion of (2) may be considered as representing a surface, and
by giving in succession different constant values to » we
have a series of such surfaces. Suppose there to be a surface
at every point of which F, (z, y, z) has the constant value u,
and let the four points P, B, %, C, be in that surface; also
suppose there to be a surface at every point of which
F,(x, y, z) has the constant value u + &u, and let the four
points 4, F, G, E be in that surface. Similarly suppose
P, A, E, C to be in a surface at every point of which
F, (z, y, 2) has the constant value v, and B, D, &, F to be in
a surface at every point of which F, (z, y, 2) has the constant
value v + dv. l]—:‘ywstly suppose P, 4, F, B to be in a surface
at every point of which Z; (z, y, z) has the constant value w,
and C, D, G, E to be in a surface at every point of which
F, (z, y, z) has the constant value w + Sw.
Let z, y, 2 now denote the co-ordinates of P; we shall
roceed to express the co-ordinates of the other points.
R‘he co-ordinates of 4 are found from those of P by chang-
ing w into » + 8u ; hence by (1) they are ultimately when
i8 indefinitely small,
dx dz
Tt o
The co-ordinates of B are found from those of P by chang-
ing v into v+ 8v; hence by (1) they are ultimately

Su, y+%8u, z+

dx dy dz
x4+ o 81}, y+%8v, z+ %8’0.

Similarly the co-ordinates of C are ultimately

dz dy dz
w+g{08w, y+%8w, z+d—w8w.

The co-ordinates of D are found from those of P by chang-
ing v into v 4+ &v, and w into w+ 8w ; hence by (1) they are
ultimately

- dx dx dy dy dz dz
$+d—vs’v+%8w, y+%b‘v+%b‘w, z+%b‘v+% w.

Similarly the co-ordinates of E, F and G' may be found.
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These results shew that P, 4, B, C, D, E, F, G are ulti-
mately Bituated at the angular points of a parallelopiped;
and the volume of this parallelopiped may be taken without
error in the limit for the volume of the solid bounded by the
six surfaces which we have referred to. Now by a known
theorem the volume of a tetrahedron can be expressed in
terms of the co-ordinates of its angular points, and the
volume of the parallelopiped PG is six times that of the
tetrahedron ABPC. ence finally we have for the volume
of the parallelopiped

& (dwdy dz d-’/) ‘

du\dv dw ™ dw dv }SU&USw=iN8u81,8w say.

Hence the triple integral is transformed into
1 [[[v Nauwaodw;

the ambiguity in sign would disappear in an example where
the limits of integration were known.

248. 'We have now given the theory of the transformation
of double and triple integrals; the essential point in our
investigation is, that we have shewn how to remove the old
variables and replace them by the new variables one at a
time. We recommend the student to ipaﬁ attention to this
point, as we conceive that the theory of the subject is thus
made clear and simple, and at the same time the limits of
the transformed integral can be more easily ascertained.
We do not lay any stress on the geometrical vllustrations in
the two preceding articles; they require much more develop~
ment before they can be accepted as rigid demonstrations.

249. Before leaving the subject we will briefly indicate
the method formerly used in solving the problem. This
method we have not brought prominently forward, partly
because it gives no assistance in determining the new limits,
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and partly on account of its obscurity; the latter defect has
been frequently noticed by writers on the subject.

Sui)pose j’ [ Vdzdy is to be transformed into an integral

with respect to two new variables » and v of which the old
variables are known functions.

Let the variables undergo infinitesimal changes: thus

d da
do = dut S dvceensrnnninniinanne ),
Y= Ty D0rereessnsmsnesnnincane (2).

Now in the original expression Vdzdy in forming dx we
suppose y constant, that is dy =0; hence (2) becomes

dx

dv

Again, in forming dy in Vdx dy we suppose = constant,
that 18, dz=0; hence by (4) we must suppose du =0; thus
from (2) '

From (4) and (5)

and f f V dx dy becomes

(dxdy  dx dy
.[V(Z‘l;d—'v—%%) dudv.
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With respect to the limits of integration we can only give
the general direction, that the new limits must be so taken as
to include every element which was included by the old
limits.

250. Similarly in transforming a triple integral

ﬁ Vde dy dz

the process was as follows. Let the new variables be u, », w;
in forming dz we must suppose # and y constant; thus we
have

dz dz dz
dz =%du+-—dv+d—wdw,

dv
o=§l;du+‘dl—:dv+%dw;
o=%du+%dv+g—z dw,

thus ds = == d;V ‘ZZE R (1),
du dv~ dvdu

where N has the same value as In Art. 247.

Next in forming dy we have to regard = and 2 as constant;
hence by (1) we must regard w as constant ; thus we have

dy =Y au+ D i,

dx dx
0= %du-i-%dv,

therefore dy = dv du (Z: B0 ieeseaenenseons (2).

du
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And lastly in forming dx we suppose y and z constant,
that is, by (1) and (2) we suppose w and v constant; thus

From (1), (2) and (3)
dx dy dz = N du dv dw.

251. The student who wishes to extend his knowledge of
this subject may be assisted by the following references.
Lacroix, Calcul Diff. et Intégral, Vol. 11. p. 205; also the
references to the older authonties will be found in page X1 of
the table prefixed to this volume. De Morgan, Diff. and
Integral Calculus, p. 392. Moigno, Calcul Diff. et Intégral,
Vol. 11. p. 214; Ostrogradsky, Mémoires de U Académie de
8¢ Pétersboury, ‘Sixidme Série, 1838, p. 401. Catalan, Mé-
movres Couronnés par U Académie.. de Bruzxelles, Vol. X1v. p. 1.
Boole, Cambridge Mathematical Journal, Vol.1v.p.20. Cauchy,
Kxercices d Analg/se et de Physique Mat}zématzque, Vol. 1v.
p- 128. De Morgan, Transactions of the Cambridge Phil.
Soctety, Vol. 1x. p. [133.]

EXAMPLES.

1. Shew thatif z=a sinf sin¢ and y=>5 cos 0 sin ¢ the
double integral f f dx dy is transformed into

iffab 8in ¢ cos ¢ dep d6.

2. f e=usina+vcosa and y=wu cosa— v sin a, prove
that

[J1e g =[hwo g
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7.

8‘

EXAMPLES.

Prove that

[ o°° f :°¢ (e + ") de dy = = f °°°¢ (@) da.

' v
Transform _UVdmdy, where y =au and T=ira

If the limits of # be 0 and « and the limits of 2 be
0 and q, find the limits in the transformed integral.

1 ra(l+%)
Result, f f V' o(1+u)" dudb.
o 0

Transform f fe“‘"r”’m“ﬂf” dx dy from rectangular to

polar co-ordinates, and thence shew that if the limits
both of x and y be zero and infinity, the value of the

integral will be —-

2sing’

Prove by transforming the expression from rectangular
to polar co-ordinates that the value of the definite
integral

f f e~ @ +2Pyicosatyy gy dy
oYo
is equal to b/qu(sin g) where F (sin g) denotes a
complete elliptic function of the first order, of which

sing is the modulus.

Apply the transformation from rectangular to polar co-
ordinates in double integrals to shew that

f*“’f+°° adx dy _ 2w
o) a (@ +g+ A @+t + 0 ot

Transform the double integral j’ f Jf (@, y) dedy into one
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in which ~ and 6 shall be the independent variables,
having given

x=rcosf+asinf, y=rsinf+acosh.
Result.

f[f(r c08 0+ sin 6, r sin 0+ a cos 6) (a sin 20 —7) d9 dr.

9. Transform f f ¢ " dz dy into a double integral where

r and ¢ are the independent variables where Z =¢ and

*=2'+3"; and if the limits ofa:andybeeacho
and o, find the limits of » and &

“e?rdrdt
Result. ff a3 F -

10. If x and y are given as functions of » and 6, transform
the integral f f f dx dy dz into another where », § and

z are the variables; and if =7 cos @ and y =17 sin 6,
find the volume included by the four surfaces whose
equations are r=a, 2=0, § =0, and z=mr cos 0.

Result. Thevolume=fifar’mcosﬁd0dr=——
oY 0

11. If ax=yz, By =z, yz=xy, shew that
ffff(a, B, ) da dB dy = 4fﬂf(yz 2 “y)dxdydz

12. Transform f ”f V dx, dz, dz, dz, to 7, 6, ¢ and 4 when

@, =r 8in 0 cos ¢, . =17 €08 0 cos Y,
z,=rginf@sing, x,=rcoslsiny.

Result ffffV’r‘sinOcosBdrdﬂd¢d1}r.

T. 1.C. 14
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13. Find the elementary area included between the curves
¢ (x, y) =u, ¥ (x, y) =v, and the curves obtained by
giving to the parameters » and v indefinitely small
Increments.

Find the area included between a parabola and the
tangents at the extremities of the latus rectum b
dividing the area by a series of parabolas which touc
these tangents and by a series of lines drawn from the
intersection of the tangents.

14. Transform the triple integral f f f J(@, ¥y, 2) de dy dz into

one in which 7, y, z are the independent variables,
having given ¥ (x, y, 2, ) = 0; and change the vari-
ables in the above integral from z, y, z to r, 6, ¢,
having given

‘\," (m;.% 2, ") =0, ","1 (3/7 2,7 0) =0, ‘,’n (z, r, 07 ¢) =0.
dyr dr, diry

dr df d
Result. —fff—‘kd_‘h%ﬁ(r,ﬂ,tﬁ)drdodcﬁ.
dx dy dz

15. Transform the double integral

dz\*  (dz\*
[Jawanp/ {1+ (@) + ()}
in which @, y, z are connected by the equation

'+ y'+2'=1, to an integral in terms of @ and ¢,
having these relations

x=sin¢ /(1 —m'sin’f),  y=cos O cos ¢,
z=sin 0 4/(1— 2’ sin* $), m'+nt=1.

Hence prove that

i m? cos® 6 + n® cos® ¢ .
fo o V(1 —m’ sin® ) y/(1 —n* sin"¢)dad¢=5'
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Transform the integral f f fdx dydz to r, 6, ¢ where
z=rsin¢4/(1—n’cos’f), y=rcos¢sinb,
z =1 cos 0 /(cos’ p + 7’ sin® ).

{(n* — 1) cos® ¢ —n’ sin 0}drd0d¢
Besult. fff ¥ (1 —n" cos’ 6) ¥/(cos’ p +n sin* ) *

Transform the expression f f % sin 6 df d¢ for a volume
to rectangular co-ordinates.
Resalt. } [[(e~po~gy) dudy; this should be in-
terpreted geometrically.

Prove that

[[omafosffomef 2

o (1 + xﬂﬂ)n
(See Arts. 263 and 66 ; and transform as in Art. 242.)

If x,=rcosf,
x,=r 8in 6, cos 6,,

x,=r sin 6, sin 6, cos 6,,

@, , =7 sin f, sin 6,...8in 6, , cos 6,_,,

@,=rsinf, sinb,...8inf, ,sinb, ,

shew that f f f ...... Vdx, dx,...dx,
-4 j' f f ..... V4% (sin 6,)"* (sin 6,
...... sin 8, , dr d6, d6.......db, ,

where V'is any function of z,, #,,... #,, and V" what
this fanction becomes when the variables are changed.

14—2
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CHAPTER XII.
DEFINITE INTEGRALS.

252. 'WHEN the indefinite integral of a function is known,
we.can immediately obtain the value of the definite integral
corresponding to any assigned limits of the vanable. Some-
times iowever we are able by special methods to assign the
value of a definite integral when we cannot express the
indefinite intes-al in a finite form; sometimes without actually
finding the value of a definite integral we can shew that it
possesses important properties. In some cases in which the
indefinite integral of a function can be found, the definite
integral between certain limits may have a value which is
worthy of notice, on account of the simple form in which it
may be extpressed. We shall in the present chapter give
examples of these general statements.

253. Suppose f(z) and F (x) rational algebraical functions
of z, and f(x) of lower dimensions than F'(z), and suppose
the equation ' (x) =0 to have no real roots; it is required to

find the value of
A C))
f R
It will be seen that under the above suppositions, the
expression to be integrated never becomes infinite for real
values of .

Let a + B4/(—1) and a—B84/(—1) represent a pair of the
imaginary roots of F'(x)=0; then the corresponding quadratic
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fraction of the series into which {% can be decomposed,

may be represented by
24 (z—a)+2BB
(@—a)+ 4"’

the constants 4 and B being found from the equation

A-van=§%£%%ﬁ%% (Art. 21).
Now %=2Bm“m—g—“,
therefore f:%= 2B
N

and it is obvious that the latter integral between the assigned
limits is zero, for the negative part is numerically equal to
the positive part. Thus 2Br represents the part of the
integral corresponding to the pair of imaginary roots under
consideration.

If then we suppose F(x) to be of 2n dimensions, and

B, B,,...... B, to be the » terms of which we have taken B
as the type, we have
® fl=
f_m %dx=2w{Bl+Bg+ ...... + B,}.
- 254. As an example of the preceding article we take
® " dx
o 1+’

where 7 and n are positive integers, and m less than n, Here

A-By(-1)=

1
2n {a+ B/ (- 1)}
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and it is known from the theory of equations that the values
of a+ B4/(—1) are obtained from the expression

(2r+l)w+v( 1) si (2r+n1)'n"
by giving to r successively the values 0, 1, 2,...... up to

n—1.
Thus, by Demoivre’s theorem,

{a+B V(=" =cos p+4/(—1) sin ¢,

where
¢=(@2n—2m—1) (%—Jrnl)—'” @r+1)r—(2r+1) —(2"‘2':1)" .
so that
cosp+4/(—1) sing=—cos (2r+1) §+4/(—1) sin (2r+1) 6,
where g=2mt1l_
2n
Hence
1
4-Byt-n= —cos 2r+1)0+4/(—1)sin(2r+1) 6
_cos (2r+1) 6+ 4/(—1)sin (2r+1)0
2n
therefore B= sin (2r +1) 6
2n :
Hence
® adx

Rera {sm0+sm30+sm50+ +sin (2n—1)6}.

The sum of the series of sines is shewn in works on Trigo-

nometry to be sin 7;0 , and in the present case nf = 2m2+ !

80 that sin® 8 = 1 Therefore
® a™dr T
o nsin2m+17r
2n

)
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It is obvious that fo % is half of the above result,

that is,
o™ dx T
o1+ . 2m+1
2n sin

™

" 255. In the last formula of the preceding article put

«™ =y, and suppose 2”;:1 =/; thus we obtain
fﬂf—ldy.— [
o 1+y sinkr’

This result holds when % has any value comprised between

0 and 1; for the only restriction on the ({)ositlve integers m

and 7 is that m must be less than », and therefore by pro-

m+ 1
2n

perly choosing m and n we may make equal to any

assigned proper fraction.

In the last result put 2 for , where = is any positive quan-
tity ; thus :

f"’m:"""x"‘dz_ T
o l1+4a”  sinkm’

. o dx T
that is, fo 1+ rsinkr’
] liﬂ:
Let kr=s; thus v_or T
o 14 . 8
78—

The only restriction on the positive quantities » and s is
that s must be less than r.
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Eulerian Integrals.
256. The definite integral
[ B (1— )™ do
[}
is called the first Eulerian integral; we shall denote it by the
symbol B (I, m).
The definite integral
f e—z xn—l dx
. [}
is called the second Eulerian integral ; it is denoted by the
symbol T'(n).

‘We shall now give some of the properties of these inte-
grals ; the constants in these integrals which we have denoted
by 1, m, n, are supposed positive in all that follows,

257. In the first Eulerian integral put 2=1—z;
. 1 1
thus f & (1—2)™ dz= f (1= ) des
(] 0

this shews that the constants ! and m may be interchanged
without altering the value of the integral ; that is,

B(l, m)=B (m, ).

Again in the first Eulerian integral put z=—/—; thus

1+y
1 @ ld
F -ty do= | LD .
fo (=2 fo(l+y)‘“‘
. 1
In the same integral put m=1-_r?}, thus

P PR N ® ydy
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258. Let €*=y, so that z= Iogé; then we have

f :e" " de= f : (log %)H dy,

which consequently gives another form of T' (n).

259. We have by integration by parts
fe” arde=—e 2"+ nfe"’a:""d:v ;

and ¢” 2" vanishes when o =0, and also when 2 =e0. (See
Dif. Cal. Art. 153) ; thus

f e"a:"da:=nf e dx;
0 o

that is T m4+1)=nl'()ciinniannaen. 1).

Since fe“’dfc;*—e" we have[ €“dr=1; that is
(]

T(@)=1iireirieiiinncininnnnns (2)
From (1) and (2) we see that if » be an integer
Tn+1)=|n

‘When =7 is not an integer we may by repeated use of
equation (1) make the value of T (n) where n is greater than
unity depend on that of I' (m) where m is less than unity.

260. By assuming kx =2z we have

]e"“w”"dw=l,, e"z""dz=rlgl).

[ [}

261. We shall now prove an important equation which
connects the two Eulerian integrals.
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Integrate the double integral f f T BT dy dy
first with respect to z; we thus of)ta(i’n, by Art. 260,
L] ym—l dy
T (l+m)f QT

Again integrate the same double integral first with respect
to y; we thus obtain

T (m) f e i,
that is, T (m) ] e o da,
that is, T (m) T Q).

Hence cyTdy (l) T (m)

LA™ T{+m)
Hence, by Art. 257,

L@T(m
B(, m)= T(@+m) "

262. In the result of the preceding article, suppose
!+ m=1; thus, if m is less than unity,

. 1+;I/ =I'(m) T (1 -m),

since I' (1) =1. Hence, by Art. 255, if m is less than unity

T (m) T (1—m)=

sinmm

263. Put m =} in the last result; then

r@ra@=m
therefore ré)=
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‘We will give another proof of the last result.

a0
Let u= f e dx; then it is obvious that v also
0 .

thus u’=f e“’dxx[ e¥dy
0

= e~ "Y' dx dy (Art. 66).

This double integral is shewn in Art. 204 to be

= ’"f:e—ﬂ rdfdr="T,

therefore u= 1/21 .
Now P(%—):f e"’m"da:; put m=y’,
0
thus T(}) =2 f ¥ dy = 2u = y/m.
1}

264. We shall now give an expression for I" (rn) that will
afford another proof of the result in Art. 262. We know that

the limit of -1

k
hence

when % is indefinitely diminished is log z;

(log :%)ﬂ= limit of (l;kaf )H;

80 We may write

1 n-1 1 - z]x n-1
(osz) =(57) +o
where y is a quantity that diminishes without limit when %
does so.
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Put 2= ;, then, by Art. 258,
T (n) =r** f (1 —a7)" dz+ f ydz.
In the first integral put =2"; thus
T (n) -—f:;:;d::::f‘f:z"‘ (1=2)""da.

We have it in our power to suppose » an integer; then
R ST
e,

the integral on the right hand side, by Axt. 33, 18
1.2.8....7 -
n(n+1)...... n+r-1) °

Let r increase indefinitely, then y vanishes and we have

1.2.3...... r n-1

I‘(n)=limit0fn(n+1) ...... (n+r—l)r :

265. From the result of the preceding article we have

Tn —{z)(flz‘)}(gn +m) {1 - %} {1 T fn*} {1 T :Lnsz)*}"'

A particular case of this is obtained by supposing n=1;
thus

1 m m m

I'(l —m) I‘(1+m)=(l_F.>(l’—?k>(l—_3_:) """""" ?
the expression on the right hand side is known to be equal to
sin mm

; th
mar
mmw
TA—m)T(1+m) = g

therefore T'(m) T (1—m)=—0 (Art. 259).

8in mwr
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266. We shall now establish the following equation, n
being an integer,

r (i) T (Z) r (%) ...... T ("—;—1) = (em) T b,

1 2 3 n—1 .
7w o WP, and multiply ; thus
n-1
1 2 3 n—1 a3
P(;)F(;Z)PGL) """ F( n )= .. 2r . (n—1)mw
sin — sin —...sin ~———
n 2n

)
(See Hymers's Theory of Equations.)

Next suppose n even; in this case put for m successively
1 2 —
20 pre WP to'—‘%%, and form the product as before; then

maultiply the left hand member by I' (}) and the right hand
member by the equivalent 4/7; then we obtain the same
result as before.

267. A still more general formula is

T () I'(w+;ll)l‘(w+§> ...... I‘(m+”T—l)

=TI (nx) (271')1;_1 nde,

which we shall now prove. Let ¢ (x) denote

n*T (z) T (m+7ll) ...... r (x+ ”—;1)
nl' (nx) ;

n-1
we have then to shew that ¢ (z) = (27) 3 n L.
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‘We have
nrtn 1 n—1
! I‘(x+l)I‘(:v+l+;&)....1‘(x+_l+

n

$@+1)= al' (nx + n)

n" @ -’”"‘l C!«‘+2 ....... x+nLl
- <n£+nnzg><m"1n_2§ ...... = )m
=¢ ().

Similarly ¢ (x+2)=¢ (x+1)=¢ (z); and by proceeding
thus we have .

¢ @) =¢ (@+m),

where m may be as great as we please. Hence ¢ (z) is equal
to the limit of ¢ (u) when u is infinite; thus ¢ (x) must be
sndependent of x, that is, must have the same value whatever
« may be; hence ¢ () must have the same value as it has

when m=;‘; thus the theorem follows by the preceding ar-

ticle. This theorem is ascribed to Gauss; a more rigid proof
is given in Legendre’s Euwercices de Calcul Intégral, Vol. 11
p- 23; see also the Journal de I Ecole Polytechnigue, Vol. XVI.
p. 212.

268. Many definite integrals may be expressed in terms
of the Gamma-function ; we shall give some examples.

The integral f ¢*# dx becomes by putting y for o’z

eV dy .1 Y,
fo 2a,‘/y,that 13,%I‘(1}), or 5+

. . [ (l—2)"de z Yy .
Again, in fo @t put prorial Bt thus we

obtain

1 Y i . 1 T({OT(m
a”‘(l—i—a)‘foyz- (1 —g)™" dg, _"h““sa"'(ua)' T(l+m)
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1
Again, in f 27 (1—a")"" dx put 2" =y; thus we obtain
[\
{
r(5)Tm

T .
I’ (§+m)

1 1
i f yT ' (1—y)"dy, that is
[

bl 1 -1
Thus ]’sinfocos«edo= f o (1—a)7 do
: 0 ]
+1 +1
: v, TEZ)T(1F)
=f @ (1—af) * dw=
+Jo 2I‘(p—42"=’+1)

. [T (—2)" de _
Again, in fo fam + b (12 put x=

by
} a(l-y)+&y’ thus
we obtain A

I R .. T ()T (m)
o ] 4 -y thatie, g

269. In f @ (@ —=x)"" de put x=ay; thus we obtain
o

av [ : o (1—3)™ dy, that is, @™ P—ﬁr(?l f;’;‘) :

270. It is required to find the value of the multiple in-
tegral

f f oy e dy de...

the integral being so taken as to give to the variables all
positive values consistent with the condition that z+y+2+...
18 not greater than unity.

We will sup se that there are three variables, and conse-
quently that the integral is a triple integral; the method
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adopted will be seen to be applicable for any number of
variables,

We must first integrate for one of the variables, suppose z;
the limits then will be 0 and 1 —=% —y; thus between these
limits

n—1 (l— —y)” P(n) b4
fz de=m =Tlug1 29"

Next integrate with respect to one of the remaining varia-
bles, suppose y; the limits will be 0 and 1 —a; and between
these limits, by Art. 269,

. wg _(1=2)""T (m) T (n+1)
[ym- (1—@—y)dy= I'(m+n+1) i

Lastly integrate with respect to  between the limits 0 and
1; thus between these limits

1 ming LT (m+n+1)
fml— A=) = et at1) -

Hence the final result is
IF'n) Tm)T(n+1) TOT (m+n41)
I'e+1) I'm+n+1) TI'({+m+n+1)’

QT (mT(@x)
Fl+m+n+1)’

that is,

271. Tt is required to find the value of the multiple in-
tegral
,Uf“"EH e dEdn dt...

the integral being so taken as to give to the variables all
positive values consistent with the condition that

6+ (@) +

is not greater than unity.
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. _ _p _ 2)q _ g)r
Assume m-(i), y_(ﬂ , z—(& yevanes

Then the integral becomes
13 n "
‘B fff 2yt g L dady de...
prar...

with the condition that £ +y+2+ ... i3 not greater than
unity. The value of the integral is, therefore, by the pre-
ceding article

a'B"y"...P(,%)F("i)P(;) ....... |
pgr. I‘(;l)+%+§+...+1)

272. As a simple case of the preceding article we may
suppose p, g, 7, ... to be each unity, and @, B, v, ... each equal
to a constant 4; thus the condition is that F+#n+¢+... is
not to be greater than 2. The value of the integral

Uf'--fﬂ e dEdn dE...

Jrment Q)T (m) T (n)...
L(l+m+n+...4+1)’

then 1s

which we may denote by
N}LH'M‘HH'....

Similarly if the integral is to be taken so that the sum of
the variables shall not exceed % + A%, we obtain for the result

N (B + AR

Hence we conclude that the value of the integral extended
over all such positive values of the variables as make the
sum of the variables lie between % and % + A is

N{(h +A}‘)l+m+n+...__ kl+mﬂ+...},
T. I C. 15
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and when A# is indefinitely diminished, this becomes
N(l+m+n+..) ™" AR,

QT (@@)T (n)..

O pymint, 1
T(l+m+n+..) k Ah.

that is

- 278. It is required to find the value of the multiple
integral

m...ar'ym e fl@ty+2+..) dodyda...

the integral being so taken as to give to the variables all
ositive values consistent with the condition that z+y+2+...
18 not greater than c.

. 'We will suppose for simplicity that there are three varia-
bles. By the preceding article, that Fart of the integral
which arises from supposing the sum of the variables to lie
between % and A+ Ak is

T T(mT (n) —
T'(l+m+n) QL Ab.
Hence the whole integral is

PO T mT (n)

(Rt Lf(k) R g,

274. Similarly the value of

[l {9 (' () ae

for all positive values of the variables, such that

HELEO)

is not greater than ¢, is
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2 I‘(;l)) r(%‘) r(%) ff(k) I
e R

The result of this and the preceding article may be ex-
tended to the case of any number of variables.

275. It is required to find the value of the multiple
integral

jf flex, +ax, +...... + a.x,) dz, de, ... dz,,

the integral being so taken as to give to the variables all
values consistent with the condition that =+ a}...+x,? is
not greater than unity.

By successive application of a transformation for a double
integral given in Art. 242, the multiple integral may be
reduced to

f f f .l da, d,... dec,
vyhere k=+(a’+a’+ ... +a,).

‘We have first then to find the value of the multiple integral
f f ...dz,dx,... dz,, the variables being supposed to have all

values consistent with the condition that .+ +...+,.°
is not greater than 1 — . First suppose that the variables
are to have only positive values; then we obtain the value of
the integral by supposing in Art. 271, that each of the quan-
tities I, m, ... is unity, that each of the quantities P Qe 18
equal to 2, and that each of the quantities a, 8, ... 18 equal to

V(1 —=7). Thus the result is

e ]
gt 1‘(”—;—1 +1) e

15—2
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But if the variables may have negative as well as positive
values, this result must be multiplied by 2*. Thus we get

n-1 n-1
T2 (1—27)2

n—1 :
Pt +1)
Hence, finally, since the limits of «, will be — 1 and 1, the
multiple integral is equal to
'rr”_’;l ! n-l

e | f) - )T .

(g + 1)
This agrees with the result given by Professor Boole in

the Cambridge Mathematical Journal, Vol.. 111. p. 280, as it
may be found by integrating his equation (15) by parts.

276. It is required to find the value of the multiple
integral

'-U‘f“f(alml+a¢7:2+...+a,,.'v,,) da, da, ... dz,,

Nl—zt-zt .. -2,

the integral being so taken as to give to the variables all
values consistent with the condition that z*+z}+ ... 4+,
is not greater than unity.

As in the preceding article the integral may be trans-
formed into

] N

First integrate with respect to the variables =, z,,... ,,
the limits being given by the condition that .+ x?...+ =z,
is not greater than 1—x’ Now if the variables were re-
stricted to positive values, the integral

[l ae e e
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by Art. 274 would be equal to
LGN f BT

T

that is, to

n—1
2_}__1%(1 —ani E)_g_z, (Art. 269),
() P(a)
that is, to ! iI‘—@i—(l -z}

()

But if the variables may have negative as well as positive
values, this result must be multiplie % y 2. Thus we get

Hence finally, since the limits of «, are —1 and 1, the mul-
tiple integral is equal to

on-i

[ flen) o .
-

277. Many methods have been used for exhibiting in
simple terms an approximate value of I' (» +1) when = is
very large: we gwe one of them.

The product ¢”2” vanishes when =0 and when z=o0;
and it may be shewn that it has only one maximum value,
namely when =n. We may therefore assume

€T = € R € eeeeeieereeeseeeenaenenens 1),

where ¢ is a variable which must lie between the limits — o
and + .
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Thus | e"w”da::e""nf -2 T @).
0 -®
Take the logarithms of both members of (1); thus
z—nlogz=n—nlogn+£............... 3);
put z=n+u; thus
u—mnlog (n+u)=¢—nlogn.............. (4).
Bat by Taylor’s Theorem
u u?
log (n+u) =logn +;—m,

where 6 is a proper fraction ; thus (4) becomes
N 2
2 (n+60u)? "’
Vm)u ,
Vm t ooooooooooooooooooooo (5) ?
v (2) nt
W ...................... (6).
de 2zt 2nt
But from (3) e e
=#(2n) +2 (1 -0)¢ by (6)-
Hence (2) becomes

fme"”w"dx=e""n“fm et {W(2n)+2(1—0) ¢ dt;

therefore

therefore

a.ndf ¢t dé=/(m); thus

fe"‘ * g = o n* o/ (2nm) {1+4/(2 )f ¢t (1—0) tdg (7).

But since 1— 0 is positive and less than unify, the nume-
rical value of f e ?(1—0) tdet is less than f -®¢dt, that

is, less than ;» Hence we conclude from (7) that as = is
increased indefinitely, the ratio of I' (n+1) to €™ 2" 4/(2nm)
approaches unity as its limit.
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‘We may observe that the right sign is taken in (5), for if

% be positive ¢ must be positive; and 7 is always to be posi-

tive, and the value of % would be negative when ¢ is nega-

tive if we used the other sign.

(See Liouville’s Journal de Mathématiques, Vol. X. p. 464,
and Vol. XVIL p. 448).

Definite Integrals obtained by differentiating or integrating
with respect to comstants.

278.  'We shall now give some examples in which definite
integrals are obtained by means of differentiation with respect
to a constant, (See Art. 213.)

To find the value of f e~ cog 2rz dx. Call the definite
integral » ; then °
_d_u =— 2[ xe—% gin 2rx da.
dr 0

Integrate the right-hand term by parts; thus we find

@ __2ru,

dr~  a’
dlogu 2r

therefore drg =—F
7'2

therefore logu=-— 5 +constant,
e
therefore u=Ae @,

where 4 is a quantity which is constant with respect to r,
that is, it does not contain 7. To determine 4 we may suppose
@®

r=04 thus » becomes f e dy, that is, %, (Art. 268).
0
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Hence A=ﬂ, and

2a
@®
f e~%2 cos 2rx dx = ki e .
0 2a

279. We have stated in Art. 214, that when one of the
limits of integration is ¢nfinite the process of differentiation
with respect to a constant may be unsafe; in the present case
however it is easy to justify it; we have to shew that

f e~% p dx vanishes where p is ultimately indefinitely small;
it is obvious that this quantity is numerically less than

P f e~“% dx where p, is the greatest value of p, that is
[}

/ . . . . .
less than %pl; but this vanishes since p, does. Similar
considerations apply to the succeeding cases.

280. To find the value of f e‘“m—r:di; . Denote it
0

by u, then
@ =f e cos rx de.
dr J,

But fe"‘”cosrxdm=e"”’r8inm~kcosm‘
B+ ’
® k
o —~kx —_— .
therefore fo e cogrx do = et
du k
thus &rTRT A
therefore u = tan™ % .

No constant is required because » vanishes with ». This
result holds for any positive value of %; if we suppose k to
diminish without limit, we obtain

® gin 72 T
J, 5=t

o &z

if 7 be positive ; if » be negative the result should be — ;_r
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281. To find the value of f Qe-(’H?) dx. Denote it by
u, then °
du o [" () e,
E‘"Mfe Fk

assume a:=§, then the limits of 2z are w and 0; and we
obtain

3—1; =—2u;
therefore d 125 Y=—2 ;
therefore log u = —2a + constant ;
therefore : u=Ae™.

To determine .4 we may suppose a=0; then u=5/2i H
therefore 4 = ﬁg’:; thus
f"’e-(zu:—:) dm=¢e”“.
o 2

282. We may also apply the principle of <ntegration with
respect to a constant in order to determine some definite
integrals ; the principle may be established thus.

Let u=f:¢ (, c) d=,
then ffudc: f‘T.p (=, 0) de da
oo

since when the limits are constant, the order of integration is
indifferent, (Art. 62). 'We shall now give some examples of
this method.
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283. We know that f ek dy = —1- .

o

Integrate both sides with respect to & between the limits

a and b; thus
® e b
f p dx:log—.

o

© ‘bc
Tt should be noticed that f " dx and [ dez are both

infinite ; for f erdz is greater than ¢ f % and f d
is inﬁxgte. But this is not inconsistent Wlth the assertion
that ] e‘"m dz is finite, and without finding the value
of this’ integral it is easy to shew that it must be finite. For
it is equal to the sum of ] $ (@) d f ¢ (@) do (a:) da: here
¢ (@) =e*—¢e™; the second of these mtegrals is ﬁmte, for
it is less than l f ¢ () dx, that is, less than — (‘%ﬂ —%) .

‘We have then only to examine f ¢ ()

Now by Maclaurin’s Theorem
$@)=(0-az+3 ¢” (0),

where 6 is some fraction; thus ¢_Sv_) is less than b—a+£z

where A is the greatest value which ¢” () can assume for
values of & less than ¢. Hence

f?gzdw is less than (b——a)c-i-é:—

and is therefore finite.
284. We know that

k

—kx —_
fo e cosre dr= By
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Integrate both sides with respect to £ between the limits'
a and 6; thus

B+
a+r’

@® _ ot
[ ¢ ¢ cos rz dx =4 log
° r

285. Let [ 272z be denoted by 4, and [ P
by B; we shafl now determine the values of 4 and B ; the

former has already been determined by another method in
Art. 280.

In the integral 4 put y for 7z ; thus
A= f sinydy,
o ¥

this shews that 4 is independent of 7.

‘We have %g:-f:gii—lr%@,
N
hence f: Bdr — :—Zlg—A B | 1).

Multiply by ¢ and integrate; we obtain since 4 is con-
stant with respect to »

e {f Bdr + B~ A} = constant.
0

Now whatever be the value of », it is obvious that the
integrals represented by 4, B, and f Bdr are finite; hence

the constant in the last equation must be zero, for the left-
hand member vanishes when r is infinite.
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Thus f'Bdr+B—A=o ................... @).
From (1) and (2) % =-B;
therefore B= (e,

where C is some constant. And from (2)
A=C"~C("—1)=C;
therefore N N (3).

Now when r is indefinitely diminished, B becomes
* dx .
fo Tr & that is 37 hence from (3)
ar T
A= 5 and B= ¢
We have supposed » positive ; it is obvious that if » be

negative, B has the same value as if » were positive, and

A has its sign changed; that is, if » be negative B=%—r ]

and A=—72—l:. (Transactions of the Royal Irish Academy,
Vol. xIX. p. 277.)

286. From [ c—(;s_l_L:Em=ge", we obtain by differentia-
o

tion with respect to 7,
[ “xsinrede w

s 142 =2

And from the same integral by integrating with respect
to » between the limits 0 and ¢, we have

® 81 de -
|, saFm-T0-
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Definite Integrals obtained by Expansion.

287. If we expand log {1—ae®¥(-1} and log {1—ae~2¥(-D
and add, we obtain gl ) g1 }

log (1 —2a cos = +a”)

=—2(acosw+°—l-cos2m+%c033m+ ...... )

the series being convergent if  is less than unity. Integrate
both sides with respect to = between the limits 0 ang-m
thus

f log (1 — 2a cos = + o®) dz=0, a being less than 1.
(/]

If a is greater than 1, since
log (1—2a cos z + a®) = log a* + log (1 - % cosz.,.;l,),

we have

[rlog (1 —2a cos z + a*) dw = 7 log a® =27 log a.
[

288. By integration by parts we have

flog (1 —2a cos z + a*) dz
z sin z dz

=zlog (1-2a cos v+ a’) — 2“,[1 2a cosz +a*’

Hence, if @ be less than 1,

* gsinzdr \ o .
.[1 2acosz+a  2a 10g(1+a) thatls,zlog(l_;.a),

if a be greater than 1, the result is

T T . T 1
2 log (1 +a) - log a, that is, ;log (1 + E) .

289. In like manner we have, if » be an integer
f'cosrx log (1 - 2a cos z + @) dor = —";ra', or ,..'_:-_r a”’,
o

according as a is less or greater than unity.
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290. Integrate by parts the integral in the preceding
article; thus we find

fn sin z sin rx dx “T o or T gt
o 1—2acosx+a’ 2 2 ?

according as a is less or greater than unity.

291. Similarly from the known expansion
1-a .
1—2acosz+a
=1+ 2a cos &+ 24® cos 2 + 2a° cos 3x +...... ,

where ais less than 1, we may deduce some definite integrals;
thus if » is an integer

f T cosrzdx wa
o

1—2acosz+a 1—a’

for every term that we have to integrate vanishes with the
assigned limits, except 2a” f cos’ rz dz.

ol

1 dx
142 1—2acosce+a®’

292. To find the value of f °
0

1 .
The term T pve————— be expanded as in Art.

291; then each term may be integrated by Art. 286, and the
results summed. Thus we shall obtain

T 1 1+ ae”
2'1—a* 1—ae™*’

293. Similarly,

f log (1 —2a cos ca:+a’)-l¥i%, =mxlog (1 — ae™).
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294. Tt is also known from Trigonometry that

1—2:::1(1)::a;+ — =sin ez +a sin 202 + o' sin3ex + ...,
a being less than 1. Hence by Art. 286, we obtain

® @ sin cz dx ar

JA+@)(1—-2acoscz+d) 2(—a)

This also follows from Art. 293, by differentiating with
respect to c. :

295. To find f 1°g g

By expanding (1— )"‘, we find for the integral a series
of which the type is

f x" log  d.
o

By integration by parts this is seen to be equal to
1 Hence the result is

D
1
—{ +32 +Z§+....},
. 7
that is, by a known formula, — "

996. To find j "zsinacde
1+ (cosx)

Expand the factor {1 + (cos )™, and we find for the
integral a series of which the type is

(1" f z sinz (cos z)™ dz

By ;ntegratlon by parts this may be shewn to be equal
(=1)"=

Wt 1 2n+41



240 DEFINITE INTEGRALS.

Hence the result is

Pl 1 1,
LW N

that is, by a known formula, g .

297. Let v denote e#Vv(~V, that is, cosz +4/(—1) sinz;
then if £ denote any function, we have by Taylor’s Theorem,

Sfla+v) +fla+v7)

=2{f(a)+f(a)cosx+‘%cos2w+ ...... }
And '
——:—L—= 14 2¢ cos z + 2¢ cos 2 + 2¢* cos 3z +......
1-2ccosz+ct
Therefore

f fiaf ;Z iﬁiﬁ”é )d“‘ = 12_1: {f (@) +cf (a) +%f’(a)+ }

© 2
= 1_c,,f'(a+c).

In this result it must be remembered that ¢ is to be less
than unity, and the functions f(a+v) and f(a+ v™) must be
. such that Taylor’s Theorem holds for their expansions.

In a similar way it may be shewn that

[ LoD SCE nodo=TYED (fla 4 o — (o)

1—2ccosz+c*

o

T 1l—ccosx
o 1=2ccosz+c*

=m{f(a+c) +f(a)}

and

U(a+o) +f(a+v™)}dz
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Substitution of imaginary values for Constants.

298. Definite integrals are sometimes deduced from
known integrals by substituting impossible values for some
of the constants which occur. This process cannot be con-
sidered demonstrative, but will serve at least to suggest the
forms which can be examined, and perhaps verified by other
methods, (see De Morgan’s Differential and Integral Calculus,
p- 630). We will give some examples of it.

We have ] o do = g T (n).

For p put a+b4/(—1), and suppose r=4/(a*+5°) and
tan0=§, so that p =7 {cos @+ 4/(—1) sin §); thus

f ® g-la b}z g dp = 17 {cos n — v/(— 1) sin n6} T (n).
1]

Thus by separating the possible and impossible parts we
have

® T' (n) cos (n tan™ Z—’)
f e 2™ cos brdr = - =.

0 (a® + 02

© T' (n) sin (n tan™ ?z)
f e 2™ 8in b dx = - .

° (a® + 872

For modes of verification see De Morgan, p. 630.
299. In the formula

fe‘“”'dx:ﬂ
o 2a
Lo 1R (=1)
change a into 4/—20’ thus
® iy g 1=V 1) W
e %

T.1.C. 16
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therefore

f (cos ¢ — y/(— 1) sin &) dor= - «2/£—1) ://.,;
therefore f :cos crde= %3_2 ,
and f:sinc*x*dx=2ciz/r§_

If we write y for ¢z’ these become
f smydy f cosz/dy

2 .

300. In the integra.lf o (=+3) dz, suppose y =z Wk;

thus the integral becomes :/7;: '(”"* y’) dy, which is
known by Art. 281. Thus

® '(”’*'Z;)"da,— LN o
e =—=—— ek,
.[ 0 vk 2
Now put cos@+4/(—1) sin 8 for k; thus the right-hand
member becomes
1 . 1/1" ¢-30{c0s0 + ¥(~1) sind},

0 . 0
cos §+»,/(— 1) sin 3

that is,
“g—w{cos (2a gin 6 +g> —/(—1) sin (2a sin 6 + g)} o-26C080,
® _ a_n s Q. .
Thus fo R G LI {(m’ +%,) sin 0} dx

=!27—re—“°°“cos (2a sin9+g) ,
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and fme_(zw‘-;;) cosb o {(m’+ g—:) sin 0} dz

o

=%e-’“°"“ sin (2a sin 0+g) .
EXAMPLES.

® («® +a®) dx (@+8m

1. Evaluate o=y Result. TV
i

2. Evaluate f cos (@ tan z) d. Result. 22‘:6-“.
1

3. Evaluste [ oo do. Result. .
[)

3 dzx /1 1
4. fo (@ cosz+ b ez 4 (_” +a—’b) .

5. Prove fj«/(tancﬁ)d =% [§+1ogw(2)—1}].

6. Prove ]j#(cot )] d¢=:/1§ [g +log {#/(2) + 1}] .

7. Find the limiting value of ze~+ [ ¢*dz when o= rco.
° Result. }.

.

8. Shew that f wdx = logé
o z a

9. If F (:z;, 1) be any symmetrical function of # and i,

z

then - C
f° a:F(x, é) =2'[° a:F(a:, }c) .

16—2
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10.

11.

12.

13.

14.

15.

16.

EXAMPLES.
If F(z) be an algebraical polynomial of less than n
dimensions
*Fl)de 1 d™° a—c
» @—o)"  [n—1dc™ {F(c) logb - c} .

Prove that f he“”" cos (sin 6) df = 2.
o ,

Prove that f : ;/_(} ;cf))s:i z = '\/Z;”) when c is indefinitely

nearly equal to unity, » being a positive quantity.

Evaluate f ”(a cos @ + b sin 6) log (a cos® § + b sin® 6) d6.
o

2/ - Vb}
. Result. 2b {loga—2 +Z/'(—a—_—55‘005 % y
supposing a greater than b.

Shew that

Y 2 2
A f 10g1+21:v,cosaa:+n d—x=log(1+n) log%,-,
° N

1+2ncosbr+n*" =

2
or log (1 + %) log%g, according as n is greater or less
than unity.

Find the value of
fw[g-(a+¢\/(—l)¢}_ e—{b+ﬂ«/(—l)z}] d_“'_’ ,
0 x

where a and b are positive, but a and B positive or
negative; and shew that it is wholly real when

W

QIR

Prove that f cot? (1—-z+2°) de= g— log 2.
o
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® de 1
17. Prove thatfo 1+w,log(a:+5)=1rlog2.

sin &

18. From the value of [ dz deduce that of

J, () =

Result. The two integral; are equal.

(20)™ (25)®
& @royem’

19. da: log

20. Shew that

w

fzta.n" {m /(1 —tan® z)} dz= 7_; tan™ m /2 — cot“ \/(1+ )

21. Shew that fn (e":—:— e'%:) dz = (b— a) Jm.

(Solutions of Senate-House Problems, by O'Brien and
Ellis, p. 44.)

1 =™,

22. Shew that f logez+ 1

- d._a: = log@, and reconcile with

lgm z l!‘—ldx

23. Prove that f

this equatlon the result of transforming f by

making "=
N T (n_-l_-_l)

2 n+ 2

()
‘2 (1—a)™de _T(OT(m) 1

25. Shewthatfo G+ )™ TT(0+m) "G+o)

24. Shew that f sin® 0 46 =
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26. Shew that

27. Shew that 1 tan"0db kil

1

T co fsin™ §df T()T (m) 1
. (@cos' 0 +bsin’ O™ 2T (I4+m) 40"

,acos 0+bsin’ 0 2 cos jnm
n being less than unity.

1-n

1+n?

a2z b2

sin™ 0 df {F @} gt

98, Shew that f (
0

at+Bcosd) I (m) @
1 m—1

29. Shew that | — da:m= T __.
° (1—a)n nsinﬁn’-’

" dr L

— B‘)%

1
30. Shew that fo T

C e . .
31. Shew that wda;:o,il_”

cording to the values of a and c.

32, Trace the locus of the equation
g =] sin 0;08 Ox 6.
[

33. Trace the locus of the equation

:Zb:f'log{l—2e"‘cos€+e‘*“} db,
0

. x
where u=sin—.

34, Trace the locus of the equation

_fn’r « cos 0 df
y= =/ (@+2zxcosf+1)’
2 .

@) (1—2) (1 +o) sinnw



35,

36.

37.

38.

39.
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in which the sign of the square root is always taken so
as to make the quantity in the denominator positive.

Shew that
L
4

T
5 -

j’f’sinx sin™ (sin & sin ) dz dy =
ovo

Compare the results obtained from

f f sin ax ¢ dx dy,
0Yo

by performing the integrations in different order.

Find the value of f _ w’ dx, and hence shew that

(g Fatages ({2 Ea

Shew that
5 wa=5G-1).

the integral being extended over all the values of
« and y which make 2* + 3* not greater than unity.

Shew that
n+l
ﬁ'f dx dy dz... w2
CNA—F—g—2—...) —2,P{n-|2-1} ’

the number of variables being =, and the 1ntegrat10n
being extended over all values which make

not greater than unity.



248 EXAMPLES,

40. If ' A+ Ax+Ag +...... =F (),
and %+ ax + aﬁ’-i- ...... =f(x),
prove that da + Aaa®+ Aax'+ ......
1 2
=55) F@)+FE}fW) +f0)} 8- Ag,
where u=xf VD and p = ge—0VI-D, ’

Apply the above formula to express the sum of the

series
w’ w& xxo

T bl '5', BT e
41. If the sum of the series a¢,+az+a2’+...... can be
expressed in a finite form, then the sum of the series
a’ +a’@ +ajx'+...... can be expressed by a definite
integral. Prove this, and hence shew that the sum of
the squares of the coefficients of the terms of the expan-
sion of (1+ )" when = is a positive whole number,
may be expressed by
g™ 17
—— | cos™ @ cos®nf df — 1.
™ o

f“’cosca:da;_q_r et + e“}
142  2114+0°'1409°

43. Shew that

42. Prove that

f §¢ (sin 2z) cosx dx = F ¢ (cos’x) cos x dz.

(Liouville’s Journal de Mathématiques, Vol. XVIIL

page 168.)
' 2
44, Shew that 1—§§+§-¢;—2—....

=3f2cos (a sin y) dy.
™ 0
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45. Prove that

(See Art. 66; and change the variable y to » where
y =uz.)

46. Shew that
f"’ _(,smm.ﬁ mm) €08 o (@' 8in 20 + a:’ cos 26} da.

_‘R'& - COS

in (@+a);

0 being comprised between the limits + 'f
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CHAPTER XIIL

EXPANSION OF FUNCTIONS IN TRIGONOMETRICAL SERIES.

301. THE subject we are about to introduce is one of the
most remarkable applications of the Integral Calculus, and
although in an elementary work like the present, only an
imperfect outline can be given of it, yet on account of the
novelty of the methods, and the importance of the results,
even such an outline may be of service to the student. For
fuller information we may refer to the Differential and Integral
Calculus of Professor De Morgan. The subject is also fre-
quently considered in the writings of Poisson, for example, in
his Traité de Mécanique, Vol. 1. pp. 643—653 ; in his Traité
de la Chaleur; and in different Elemoirs in the Journal de
UEcole Polytechnigue. The student may also consult a Me-
moir by Professor Stokes, in the 8th Vol. of the Cambridge
Philosophical Transactions, a Memoir by Sir W, Hamilton, in
the 19th Vol. of the Transactions of the Royal Irish Academy,
and a Memoir by Professor Boole, 1n the 21st Vol. of the same
Transactions.

302. Itis required to find the values of the m constants
4,, 4, 4,,... 4,, so that the expression

A sinz+ A 8in2zx+ 4, sin 3z +...... + A, sinmz
may coincide in value with an assigned function of  when «
™
has the values 6, 26, 30,... mf, where 0=m—_ﬁ.

Let f(x) denote the assigned function of , then we have
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by hypothesis the following m equations from which the
constants are to be determined,

J(6)=A, 800+ 4, 5020 + A, sin 36 +......+ 4,, sin m#,
J(20) = 4,5sin20+ 4, 8in 40 + 4, sin 66 +......+ 4, sin2mb,
S (mb)=A sinmf+ A, sin2mb+ 4, sin8mb +......+ 4, sinmmb.
Mulﬁp(l)y the first of these equations by sin 76, the second

by sin 274, ...... , the last by sin mr8; then add the results.

he coefficient of 4, on the second side will then be

sin 70 sin s6 + sin 270 sin 250 +...... + 8in mr@ sin ms6 ;

we shall now shew that this coefficient is zero if s be different
from 7, and equal to } (m + 1) when s is equal to 7.

First suppose s different from ». Now twice the above
coefficient is equal to the series

cos (r—s) @ +cos2 (r—s) 0 +...... +cosm (r—s) 0,
diminished by the series
cos (r+8) 0 +cos2 (r+s)0+......+ cosm (r+3) 6.

The sum of the first series is known from Trigonometry to
be equal to

sin (2m + 1)(7—_;2—0— sin (r_—;)_g
(r—s)0 ?
2

2 sin

sin‘{(r— s)m— gr;;)_t?} —sin Q———Ei)—o
2 sin =8¢ _28) ¢

This expression vanishes when » — ¢ is. an odd number, and
is equal to — 1 when » —s is an even number.

that is to

The sum of the second series can be deduced from th?.t of
the first by changing the sign of s; hence this sum vanishes
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when 7+ ¢ is an odd number, and is equal to —1 when r+3s
is an even number. :

Thus when s is different from r, the coefficient of A4, is
Zero.

‘When s is equal to 7, the coefficient becomes

sin® 70 + sin® 276 +......+ sin’ mr6,
that is, %2 — % {cos 270 + cos 470 +......+ cos 2mr0).

And by the method already used it will be seen that the
sum of the series of cosines 1s —1; thus the coefficient of
A, is § (m+1).

Hence we obtain

mi (60 70£(6) +8in 20 £ (26) +......+ sin mrd £ (mf)},

=

and thus by giving to r in succession the different integral
values from 1 to m, the constants are determined.

Now suppose m to increase indefinitely, then we have
ultimately

A,=Zf”sin rvf(v) dv.

™ [

And as f(x) now coincides in value with the expression
A, sinz + A4, sin 2z +......

for an infinite number of equidistant values of x between
0 and 7, we may write the result thus

Sf@)= ;2:’ sin nz f :sin n f(v) dv,

where the symbol 37 indicates a summation to be obtained
by giving to n every positive integral value.

303. The theorem and demonstration of the preceding
article are due to Lagrange; we have given this demonstra-



IN TRIGONOMETRICAL SERIES. 253

tion partly because of its historical interest, and partly because
it affords an instructive view of the subject. &e s{all how-
ever not stop to examine the demonstration closely, but pro-
ceed at once to the mode of investigation adopted by Poisson.

304. The following expansion may be obtained by ordi-
nary Trigonometrical methods,

1-7 T (v — )

W(v_m)+h’=1+2hcos——l—

1 — 2/ cos

I+ 247 cos 21(—3—_—9:) + 24 cos 3m(v—az)

& being less than unity, so that the series is convergent.
Multiply both sides by ¢ (v), and integrate with respect to »
between tze limits — 7 and 7; also make % approach to unity
ag its limit. On the right-hand side the different powers of 4
become ultimately unity. The numerator of the fraction on
the left-hand side will ultimately vanish, and thus the inte-
gral would vanish ¢f the denominator of the fraction were
never zero. But if x lies between — ! and I, the term
7 (v—x)
cos ———*
tion, and thus the denominator of the fraction will be (1 —4)?,
and will tend towards zero as % approaches unity. Thus the
integral will not necessarily vanish; we proceed to ascertain
its value. Let v—x=2 and A=1-—g, thus

f (1—7%°) ¢ (v) dv =]_q(1+h)<;b(w+z)dz.
1 + B

T (v—=x) 2 s 2 T8
—2hcos—l—— g +4h sin 27
Now the only part of the integral which has any sensible
value, is that which arises from very small positive or nega-
tive values of z; thus we may put

will become equal to unity during the integra-

gin 72 = T2
2l 20’

and $@+2)=¢();
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and the integral becomes

g(1+h) ¢ ) —-‘%‘j—,r,z,=2g¢(m>[—"%
g+—F 9+F

+

™ gl’

Suppose a and — B to be the limits of z; we thus get

T gl gl)’

Hence, finally, when g is supposed to vanish, we have
2lp (z). Thus if z lies between — [ and [,

1 ) I nwr (v—2x
¢(x)=§if ¢ (v) d'v+721 f ¢ (v) cos——(—l——)d-v.
- ]

If = does not lie between — 7 and [, the left-hand member
must be replaced by zero. If however x=1[ or —, then the
integral on the left-hand side has its sensible part when v is
indefinitely near to / and —7; we should then have to per-
form the above }irocess in both cases, but the integral with
respect to z would only extend in the former case from — 8
to 0, and in the latter from 0 to a. Hence instead of 2l¢(J)
on the left-hand side, we should have

e )+ (=D

305. In the same way as the result in Art. 313 is found,
- we have, if we integrate between 0 and /,

¢(w)=§ll~f:¢(v) do+ 730 f:gb(v) cos 27022 ... (1);

this holds if z has any value between 0 and /; but when
2 =0 the left-hand member must be 4 ¢ (0), and when z=1

the left-hand member must be 4 ¢ () ; for all other values of
z the left-hand member should be zero.
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Similarly
0—2lf¢ ) dv +5 2‘”f ¢ (v) cos (l Dererenee (@);

this holds for any value of & between 0 and 7; but when
2 =0 the left-hand member must be 4 ¢ (0), and when z=1
the left-hand member must be % ¢ (7).

From (1) and (2) by addition

(@) =%f:¢(v) dv+ 33 cos?f: o8 7 ¢ (v) do...(3).

This holds for any value of = between 0 and [, both in-
clusive.

From (1) and (2) by subtraction
$@)=230 sinf‘l’r‘”f' sin 77 6 (0) do......(4).

This holds for any value of « between 0 and ! both exclu-
sive; and when =0 or [, the left-hand member should be
zero.

Equation (4) coincides with Lagrange’s Formula.
‘We will now give some examples.

306. Ex gand z in a series of sines. Take formula (4) of

Art. 314, and suppose /= ; then
f" sin o dp = — 20870 +sm:w :
n n

therefore f " sin v dv=;1if n be odd, and —%: if » be even.
Thus °
z=2{sinx—4s8in2z+ }sin3z—} sindx+...... 1

This holds for values of  between 0 and =, and as both
sides vanish with z it holds when & =0; and it is obvious
that if it holds for any positive value of = it holds for the
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corresponding negative value ; hence it holds for values of =
between —ar and =, exclusive of these limiting values.

307. Expand cosz in a series of sines. Take formula
(4) of Art. 314 and suppose I =; then

fcosv 8in nv dv =1}f{sin (n+1) v +sin (rn—1) v} dv

_ cos (m+1)v  cos(n —1)v)
_—1}{ n+1 T }’

therefore f cosvsinnvdv=0 if n is odd,
[
2n . fni
=57 if n is even;
therefore
14 (—1)"
—1

2(4 . 8 .
cosa:_;{gsm2x+~l—58m4w+...+ e

This holds from =0 to =, exclusive of these limiting
values.

n sin n:z:+}

308. Expand z in a series of cosines.
Take formula (3) of Art. 314, and suppose /= ; then

vsinmy  cosnv

nﬂ ’

f v cos nv dv =
" . 2
therefore f v cos nv dv = zero if # be even, and - if n be

odd; and °
- o
fovd'v= ?,

4 1
thus w=72-':—7—-r{cosa:+§—zcosaw+51,-,cos5w+ ...... }

)

This holds from =0 to == both inclusive.

If we put z= -;2_1-__ Y, we obtain the following formula,
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which holds for any value of y between —g and ;—r, both in-

clusive,

4 . 1 . 1.
g=:’—r{smy-§,sm3y+§,sm5y—...}.

309. Expand € —¢™ in a series of sines.

n (e"”-—e-a’r) cos
az_l_ n® - nmw.
Therefore — ¢ —e~% ginzr 2sin2x  3sin3z
27— v ad Z4+a g

w
Here f (65 — ¢5%) sin v do = —
0

310. Expand e*"~2 4 ¢-etm—2) in a series of cosines.

T ar __ ,— G
Here f {e3t—0) 4 e-alm} cos nv dv = afem—e®)

o ai+n3 ?
L4 ed‘n‘ -— e—ﬁl'
and f {eam=0 fe-abr-ol gy =———
0 a
o edr—2) 4 g-alra) ] cosx = cos 2x
Therefore — il il G 3

2a €% — g0 2a° 1’+a’+2"+a"+"""

311. We have shewn that the formula (3) of Art. 314
holds for any value of & between 0 and [ both inclusive;
it is easy to determine what the right-hand member is equal
to when « lies beyond these limits. Suppose « positive, and
between ! and 20; put x=2]—2a’ so that &' is less than [,
then

nwTe n: nra’
€08 —— =08 {2n7m — —— | = CO8 ——;
l ( l l’
therefore the value of the right-hand member is ¢ (/). Next
suppose x greater than 2/; and suppose it equal to 2ml + «’
where « is less than 2{; then

nmwe nwx’
cos 7 = cos 7

T. I C. 17
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80 that the value is the same as it would be if «* were put
instead of 2 ; that is, the value is ¢ (') if &' be less than [,
and ¢ (2! —«’) if « be greater than I

It is obvious that for any negative value of « the value is
the same as for the corresponding positive value.

Similarly we may shew that if @ is positive and = 2ml +«,
the value of the right-hand side of equation (4) of Art. 314 is
the same as if 2’ were put instead of z, and is ¢ (=) if o’ be
less than /, and — ¢ (2! — &) if & be greater than . And for
negative values of x the value is the same numerically as
for the corresponding positive value, but with an opposite

sign.
312. It may be observed that in the fundamental demon-

stration of Art. 313, we suppose that when % approaches unity
as a limit, the expression

fk" ¢ (v) cos Ml———x)dv

may be replaced by
f ¢ (v) cos Ml_w) dv,

however large n» may be. We may shew that no error arises
from this supposition, by proving that the latter integral
vanishes when 7 is increased indefinitely. For

Y
j‘ $ (v) cos nw (vl—- x) do= I (v) sin ™ (vl—- x)

™

L[, , . nr(v—x)
. _Hf¢ (v)sm—l—dv,
which shews that the integral on the left-hand side will vanish
when # is infinite, at least if ¢’ (v) be not infinite.

313. We have not yet alluded to one of the most re-
markable points in connexion with the formulz (3) and (4) of
Art. 314, In these formule ¢ () need not be a continuous
Junction ; for example, from =0 to x=a we might have
¢ (z) =f.(x), then from z=a to =05 we might have
¢ (z) =f,(x), then from =05 to =c we might have
¢ (x) = _)%,(ac), then from & =c¢ to x=1{ we might have
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¢ (x) = f,(x). The formula (3) for instance would still be
true for all values of « between 0 and [ inclusive, as is evident
from the mode of demonstration, except for the values where
the discontinuity occurs. When for example & =a, then the
value of the right-hand member would not be £, (a) or f, (a)
but % {f,(a) +f,(a)}. If therefore for * =a we have
fi (@) =Ff, (x), the formula holds also when z=a.

314. Find an expression which shall be equal to ¢ when
x lies between 0 and a, and equal to zero when « lies between
a and L

Take formula (3) of Art. 314. Here ¢ (v) =¢ from v=0 to

v =a, and then from » = a to v =1 it is zero; thus

f‘ coszrg—vcﬁ(v) dv

[]

e nmwY cd . nma
becomes ¢| cos —— dv=— sin ——
0 l nr l
'l

therefore the required expression is

ca  2c,. ma wT . 2ma 29z
T+—;{sm-l— cos—l—+%sm 7 o8 —7—

+ % sin Eiqlr—a coss—;m +...}

this will give 3¢ when  =a.
Or we may use formula (4) of Art. 314. Then

cf“s;nmd,,=i(l_cos M),
o { nw {

and we have for the required expression

2wa . 2Tz

ma . T
Sin g vers - s

2o {vers -
T l

+§verss%zsin§7;—x+ ...... 1

this gives 0 when # =0, and }¢ when z =a.
315. Find an expression which shall be equal to %z from
z=0 to x=§l , and equal to % (! —z) from z=%to z=1
17—2
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Here

1
£ 1
]'¢(’D) COSETEdﬁ)=f kvcosn.lvdv_*_j k(l—‘v)cosmdy
[) l 0 l % l

=‘E{—l-sin"—"+ }_cos’f’f__}_}_,fff (sinmr—sin ’E)
T 2

T (2n 2 2 nw) arw
cos =
kr {1 . 1 . nr  cosnr 2
— — )=sinar—— 8in — + ————=
T (n 2n 2 n'mw nmr
='nk-_,—l;—, {2 cos ';—W— cos nar — 1}.
.. ARP . ]
This is — i when 7 is of the form 4r+2, and 0 in every

other case, and

f:¢(v)dv=kffvdv+kf; (=X dv=%’;

thus the required expression is

I 8kl(1 2mx 1 67x
%—? {—2—,cos-—l—-+a,cos—l—+....}.

If we denote this by 7 then from =0 to =37 both in-
clusive y = kr, then from x =134l to z=I both inclusive
y=k (l—2); for values of = greater than / the values of y
recur a8 shewn in Art. 320. Thus the value of y is the
ordinate of the figure formed by measuring from the origin
equal lengths along the axis of = to the right and left, and
drawing on each base thus obtained the same isosceles tri-
angle.

316. As another example we may propose the following:
find a function ¢ (x) which shall be equal to = from = =0 to
« =a, then be equal to « from x=a to z=m—a, and then
be equal to m—2 from =m—a to z="m.

The result is

¢ (@) =;ir {sina sinw+31,sin3asin3x+5l, sin 5a sin 5z +...};

this is true from x =0 to =7 both inclusive.
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317. The student may verify the following examples.
If = be numerically less than a the expression

{cos (2n+1) ;L:}z

82 o
2 2n+1

71—" o
is equal to @ —z if = be positive, and a + x if = be negative.
Prove that for values of « between — o and 7 inclusive -

2 o cos 2x¢ cos 3z

z=E—COS:D+ oF —T ......

This may be obtained from Art. 315 by integré,tion; or
from equation (3) of Art. 314.

318. In the formula
¢ (@)= o qu(v) do+7 37 Lcos’i”—(”{—mlw) d,

suppose ! to increase without limit; then if ¢ (v) be such that

1
the term % f ¢ (v) dv vanishes with % we have
-J

¢ (x) =%f:f_:cosu(v-—w) ¢ (v) du dv.

This is called Fourier’s Theorem.
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CHAPTER XIV.

APPLICATION OF THE INTEGRAL CALCULUS TO QUESTIONS
OF MEAN VALUE AND PROBABILITY.

319. WE will here give a few simple examples of the ap-
plication of the Integral Calculus to questions relating to
mean value and to probability.

Let ¢ (x) denote any function of @, and suppose x succes-
sively equal to @, a+ %, a+2k, ... a+ (n—1)Ah Then

¢(a) +p(a+h)+¢(a+2h)+...+Pla+(n—1) A}

n

may be said to be the mean or average of the n values which
¢ (x) receives corresponding to the n values of . Let

b—a=nh,

then the above mean value may be written thus
[$@+d(ath) +éa+2h)+...+pla+n-1)A}] A

b—a

Suppose a and 4 to remain fixed and » to increase inde-
finitely ; then the limit of the above expression is

[ 4@
g
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This may accordingly be defined to be the mean value of
¢ (x) when x varies continuously between a and &.

320. As an example we may take the following ques-
tion; find the mean distance of all points within a circle
from a fixed point on the circumference. By this enunciation
we intend the following process to be performed. Let the
area of a circle be divided into a large number = of equal
small areas; form a fraction of which the numerator is the
sum of the distances of these small areas from a fixed point
on the circumference, and the denominator is n; then find
the limit of this fraction when = is infinite.

Suppose 7,, 7,... 7, to denote the respective distances of
the small areas; then the fraction required is

1
y {rotry+ oo + 7).

Multiply both numerator and denominator by » Af Ar, which
represents the area of a small element (Art. 148), thus the
fraction becomes

fry+r+..+2r}rA0Ar
nr AG Ar ’

The limit of the denominator will represent the area of the
circle, that is orc?, if ¢ be the radius of the circle. The limit
of the numerator will be, by the definitions of the Integral

Calculus, f f'r’ d8 dr, the limits being so taken as to include
all the elements of area within the boundary of the circle.

Thus the result is
% ¢ cos 6
f f P df dr
..% [ .

e

This will be found to give 2o
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321. The equation to a curve is »=csin 6 cos §, find the
mean length of all the radii vectores drawn at equal angular
intervals in the first quadrant.

It easily follows, as in the last article, that the required
mean length 18

”

chinecosode

0

’
™

2
that is, c.
T

Again, suppose the portion of this curve which lies in the
first quadrant to revolve round the initial line, and thus to
generate a surface. Let radii vectores be drawn from the ori-
gin to different points of the surface equably in all directions:
1t is required to find the mean length of the radii vectores.

The only difficulty in this question lies in apprehending
clearly what is meant by the words in Italics. gonceive a
spherical surface having the origin as centre; then by equable
angular distribution of the radil vectores, we mean that they
are to be so drawn that the number of them which fall upon
any portion of the spherical surface must be proportional to
the area of that portion. Now the area of any portion of a
sphere of radius « is found by integrating

a’ffsin0d¢d0

within proper limits (Art. 175). Hence a*sinf A¢ A6 may be
taken to denote an element of a spherical surface, and 2ma’ is
the area of half the surface of a sphere. Thus we shall have
as the required result

ffa’c sin @ cos 0 sin 0 d¢p d6

2ra’ ?

the limits being so taken as to extend the integrations over
the entire surface considered.
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Hence we obtain

fhfic sin® @ cos 8 d¢ do

2m

. ¢
that is, 3

322. A large plane area is ruled with parallel equidistant
lines; a thin rod, the length of which is less than the distance
between two consecutive lines, is thrown at hazard on the
area; find the probability that the rod will fall across one of
the lines. Let 2z be the distance between two consecutive
lines and 2¢ the length of the rod. It is easily seen that we
do not alter the problem by supposing the centre of the rod
constrained to fall upon a line drawn between consecutive
lines of the given system and meeting them at right angles,
for the proportion of the favourable cases to the whole number
of cases remains the same after this limitation as before.

Let the centre of the rod be at a distance = from the nearer
of the two selected parallels; then suppose the rod to revolve
round its centre, and it is obvious that in this position of its

. .. 4
centre the chance that it crosses the line is 5%, where

¢ cos ¢ = .

And we may denote by % the chance that the centre of the

rod falls between the distances 2 and « + Az from the nearer
of the two parallels. Thus the chance required will be de-
noted by the limit of the sum of such quantities as % Az

that is, it will be

b

e

X
where cos ¢ = z°
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The limits of = are 0 and c¢; hence the result

”

EXAMPLES.

1. Ifr=£(6) and y =f(§) be the equations to two curves,

f(6) being a function which vanishes for the values
0,, 0,, and is positive for all values between these
limits, and if 4 be the area of the former between the
limits 6 =0, and 6 = 6,, and M the arithmetical mean
of all the transverse sections of the solid generated by
the revolution about the axis of  of the portion of the
latter curve between the limits # =af, and = =ad¥,,
shew that

2

6,— 6,
supposing 0, greater than 6,.

M= 4,

2. A ball is fired at random from a gun which is equally
likely to be presented in any direction in space above
the horizon; shew that the chance of its reaching
more than %th of its greatest range is ,\/ (l - l) .

m,

3. From a point in the circumference of a circular field a
projectile is thrown at random with a given velocity,
which is such that the diameter of the field is equal to

the greatest range of the projectile; find the chance of
its falling within the ﬁeltf

4. On atable a series of straight lines at equal distances
from one another is drawn and a cube is thrown at
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random on the table. Find the chance of its resting
without covering any part of the lines.

Prove that the mean of all the radius-vectors of an
ellipse, the focus being the origin, is equal to half the

‘minor axis.

An indefinite number of equidistant parallel lines are
drawn on a plane, and a rod whose length is equal to
r times the perpendicular distance between two con-
secutive lines is thrown at random on the plane; find
the probability of its falling upon n of the lines. If

n=r =1, shew that the probability is 121- .

Two arrows are sticking in a circular target; what is
the chance that their distance is greater than the
radius of the target?

Supposing the orbits of comets to be equably distributed
through space, prove that their mean inclination to
the plane of the ecliptic is the angle subtended by an
arc equal to the radius.

A certain territory is bounded by two meridian circles
and by two parallels of latitude which differ in longi-
tude and latitude respectively by one degree, and is
known to lie within certain limits of latitude ; find the
probable superficial area.

A line is taken of given length a, and two other lines
are taken each less than the first line and laid down in
it at hazard, any one position of either being as likely
as any other. The lengths of these lines are 4 and &';
it is required to find ’g]e probability that they shall
not have a part exceeding ¢ in common.

p (a—b-¥+0
(@a=0)(a—?) "
Camb. Pkil. Transactions, Vol. VIIL p. 386.

Resu
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11. An indefinitely large plane area is ruled with parallel
equidistant lines, the distance between consecutive
lines being ¢. An ellipse whose major axis is less
than ¢ is thrown down on the area. Shew that the
chance that the ellipse falls on one of the lines is

7% where [ denotes the perimeter of the ellipse.

12. A messenger M starts from 4 towards B (distance a) at
a rate of v miles per hour, but before he arrives at Ba
shower of rain commences at 4 and at all places occu-

ying a certain distance z towards, but not reaching
geyond, B, and moves at the rate of » miles an hour
towards 4 ; if M be caught in this shower he will be
obliged to stop until it is over; he is also to receive
for his errand a number of shillings inversely propor-
tional to the time occupied in it, at the rate of n shil-
lings for one hour. Supposing the distance z to be
unknown, as also the time at which the shower com-
menced, but all events to be equally probable, shew
that the value of M’s expectation is, in shillings,

w(l u w(wt+v), uw+v
7{5*? F 0y }

THE END.

Cambridge: Printed by 0. J. Clay, H.A. at the University Press.
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BUTLER (Professor Archer).—A Second Series of Sermons.
Edited from the Author’s Manuscripts, by J. A. JerExiz, D.D. Regius
Professor of Divinity in the University of Cmbridge. 8vo. cloth, 10s. 6d.

BUTLER (Professor Archer).—Lectures on the History of
Ancient Philosophy. By the Rev. W. ARCHER BUTLER, late Professor
of Moral Philosophy in the University of Dublin. Edited, from the Author's
Manuscripts, by WiLriax HepworTE THoMPSON, M.A. Regius Professor
of Greek in the University of Cambridge. 2 vols. 8vo. cloth, 12, 5s.

BUTLER (Professor Archer).—Letters on Romanism, in
Reply to Mr. NEwwmax’s Essay on Development. Edited by the Very Rev.
. T. WoopwARD, Dean of Down. 8vo. cloth, 10s. 6d.

BUTLER.—A Hand Book to Butler's Analogy.
With a few Notes, By C. A. SWAINSON, M.A. Principal of Chichester
Theological College, formerly Fellow and Tutor of Christ’'s College, Cam-
bridge. Crown 8vo. ls. 6d.

CAMBRIDGE.—Cambridge Theological Papers. Compriging
those given at the Voluntary Theological and Crosse Scholarship Examina-
tions. Edited, with References and Indices, by A. P. MOOR, M.A. of Trinity
College, Cambridge, and Sub-warden of 8t. Augustine’s College, Canterbury.
8vo. cloth, 7s. 6d.

CAMBRIDGE PROBLEMS.—Solutions of the Senate-House
Riders for Pour Years (1848 to 1851). By F.J.JAMESON, M.A. Fellow
of Caius College, Cambridge, 8vo. cloth, 7s. 6d.

CAMBRIDGE PROBLEMS.—S8olutions of Senate-House

Problems for Four Years (1848 to 1851). By N. M. FERRERS, and
J. 8. JACKSON, Fellows of Caius College, Cambridge. 8vo. cloth, 15s. 6d.

CAMBRIDGE PROBLEMS, 1854.—Solutiongs of the Pro-
blems proposed in the Senate House E ination, January 1854. By the
Moderators (W. WALTON, M.A. Trinity College, and C. F. MACKENZIE,
M.A. Fellow of Caius College). In 8vo. cloth, 10s. 6d.
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CAMBRIDGE.—Cambridge Guide: Including Historical and

Architectural Notices of the Public Buildings, and a concise Account of the
Customs and Ceremonies of the University, with a Sketch of the Places most
worthy of Note in the County. A New Edition, with Engravings and a Map.
12mo. cloth, 5s.

CAMBRIDGE FITZWILLIAM MUSEUM.—A Hand-Book
to the Pictures in the Fitzwilliam Museum, Cambridge. Crown 8yo. sewed,
1s. 6d.; orin cloth elegant, 2s. 6d.

CAMBRIDGE. — Cambridge Mathematical Journal. Vol. I.

Second Edition, 8vo. cloth, 182,

CAMBRIDGE.—Cambridge and Dublin Mathematical J onma.l.
The Compleie Work, in Nine Vols. 8vo. cloth, 7I. 4s.
ONLY A FEW COPIES OF THE COMPLETE WORK REMAIN ON HAND,

CAMPBELL.—The Nature of the Atonément and its Rela-
tion to Remission of S8ins and Eternal *Life. By JOHN M°LEOD
CAMPBELL. 8vo. cloth, 10s. 6d.

COLENSO.—Ten Weeks in Natal. A Journal of a First
Tour of Visitation among the Colonists and Zulu Kafirs of Natal, By the
Right Rev. JOHN WILLIAM COLENSO, D.D. Bishop of Natal, with a
Map and Illustrations. Fcap. 8vo. cloth, 5s.

COLENS0.—Village Sermons. By the Right Rev.JOHN WIL-
55131“2?%2’3}‘80, D.D. Bishop of Natal. Second Edition. Feap. 8vo. *

COLENSO0.—The Communion Service, from the Book of
Common-Prayer, with Select Readings from the writings of the Rev. F. D,
MAURICE, M.A. Edited by the Right Rev. JOHN WILLIAM COLENSO,
D.D., Bishop of Natal. Fine Edition, rubricated and bound in morocco,
antique style, 6s.; or in cloth, 2s. 6d. Common Paper, lymp cloth, ls.

COOPER.—A Geometrical Treatise on Conic Sections. By
the Rev. J. E. COOPER, M.A, late Fellow of St. John’s College, Cambridge.
[Preparing.

COTTON.—Sermons: chiefly connected with Public Events
of1854. By G. E. LYNCH COTTON, M,.A. Master of Marlborough College,
formerly Fellow of Trinity College, Cambridge. Fcap. 8vo. cloth, 3s.

DAVIES.—St. Paul and Modern Thought:
Remarks on some of the Views advanced in Prof Jowett’s C y
on St. Paul, By Rev. J. LL. DAVIES, M.A. Pellow of Trinjty College, Cam-
bridge, and Incumbent of St. Mark's, Whitechapel. 8vo. 2s. 6d.

DEMOSTHENES.—Demosthenes de Corona.
The Greek Text, with English Notes. By BERNARD DRAKE, M.A.
Fellow of King’s Coll. Cambridge, Editor and T: lator of the “E id
of Aschylus.” Crown 8vo, cloth, 5s.
A2
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DEMOSTHENES. — Translation of Demosthenes on the

Crown. By J. P. NORRIS, M.A. Fellow of Trinity College, Cambridge, and
one of Her Majesty’s Inspectors of Schools. Crown 8vo. cloth, 3s.

DRAKE.—Notes Explanatory and Critical on the Books of
Jonah and Hosea. By WILLIAM DRAKE, M.A. late Fellow of 8t. John’s
College, Cambridge. 8vo. cloth, 9.

EVANS.—Sonnets on the Death of the Duke of Wellington,
by SEBASTIAN EVANS. 8vo. sewed, ls.

FERRAR.—Lives of Nicholas Ferrar, Fellow of Clare Hall,
By his BROTHER JOHN, and Dr. JEBB. Now first Edited, with Illus-
trations, by J. E. B. MAYOR, M.A., Fellow and Assistant Tutor of St.
John's College, Cambridge. Fecap. 8vo. cloth, 7s. 6d.

FROST.—The First Three Sections of Newton’s Principia.
With Notes and Problems in illustration of the subject. By PERCIVAL
FROST, M.A. late FeHow of 8t. John’s College, Cambridge, and Mathe-
matical Lecturer of Jesus College. Crown 8vo. cloth, 10s. 6d.

FROST.—Thucydides, Book VI. The Greek Text,and English
Notes : with a Map of Syracuse. By PERCIVAL FROST, Jun. M.A. late
Fellow of 8t. John’s College, Cambridge. 8vo. cloth, 7s. 6d.

GODFRAY.—An Elementary Treatise on the Lunar Theory.

‘With a brief Bketch of the History of the Problem up to the time of Newton.
By HUGH GODFRAY, B.A. of 8t.John's College, Cambridge. 8vo. cloth.

‘58, 6d.
GRANT.—Plane Astronomy.
Including Expl fons of Celestial Ph and Descriptions of Astrono-

mical Instruments. By A.R.GRANT, M.A., one of Her Majesty’s In-
spectors of Schools, late Fellow of Trinity College, Cambridge. 8vo.boards, 6s.

HALLIFAX. —Blshop Hallifax’s Analysisof the Civil Law. In
which a parison is ienally made between the Roman Laws and thm
of England. A new Edition, with alterations and additions, being the heads
of a Course of Lectures publicly delivered in the University of Cambridge, by
J. W. GELDART, LL.D. 8vo. bds. 8s. 6d.; interleaved, 10s. 6d.; double in-
terleaved, 12s. 6d.

HAMILTON.—On Truth and Errer: Thoughts, in Prose and
Verss, on the Prineiples of Truth, and the Causes and Effects of Error.
By JOHN HAMILTON, (of 8t. Ernan’s,) M.A. of St. John's College,
Cambridge, Crown 8vo. cloth, 10s. 6d.

HARE.—Charges to the Clergy of the Archdea.conry of Lewes,
delivered at the Ordinary Visitations from the Year 1840 to 1854. With Notes
on the Principal Events affecting the Church dunng that period. By J ULIUS
CHARLES HARE, M.A. Archdeacon. With an T
of his position in the Church with reference to the parties wluch divide it.
3vols. 8vo, cloth, 14, 11s. 6d.




MACMILLAN & CO.’S PUBLICATIONS. 5
HARE.—Charges to the Clergy of the Archdeaconry of Lewes,

delivered at the Ordinary Visitations in the Years 1843, 1845, 1846. By
JULIUS CHARLES HARE, M.A. Archdeacon. Never before published.
‘With an Introducti L y of his position in the Church with
reference to the parties whwh divide it. 6s. 64.

*,.% This is included in the three vols. of Charges.

HARE.—Miscellaneous Pamphlets on some of the Leading

Questions agitated in the Church during the last Ten Years. 8vo. cloth, 12s.

HARE.—The Victory of Faith.
Second Edition. 8vo. cloth, 5s.

HARE.—The Mission of the Comforter. .

Second Edition. With Notes. 8vo, cloth, 12s.

HARE.—Vindication of Luther from his English Assailants.
Second Edition. 8vo. cloth, 7s.

HARE.—The Contest with Rome.
With Notes, especially in answer to Dr. Newman’s recent Lectures. Second
Edition. 8vo. cloth, 10s. 6d.
*,* This is included in the three vols. of Charges.

HARE.—Parish Sermons.

Second Series. 8vo. cloth, 121,

HARE.—Portions of the Psalms in English Verse.

Selected for Public Worship. 18mo. cloth, 2s. 6d.

HARDWICK.—Christ and other Masters.
An Historical Inquiry into some of the chief Parallelisms and Contrasts
between Christianity and the Religious Systems of the Ancient World. With
special reference to prevailing Difficulties and Objections. By CHARLES
HARDWICK, M.A., Fellow of St Catherine’s Hall, Divinity Lecturer at
King’s College, and Christian Advocate in the University of Cambridge.
Pt. I. 8vo cloth, 7s. 6d. [Part II. in the Press.

HARDWICK.—A History of the Christian Church, during the
Middle Ages. By CHARLES HARDWICK, M.A. Fellow of 8t. Cathe-
rine’s Hall, Divinity Lecturer in King’s College, and Christian Advocate in
the University of Cambridge. Author of ¢ A History of the XXXIX.
Articles.” With Four Maps construeted for this Work by A. KEITH
JOHNSTON. Crown 8vo. cloth, 10s. 6d.

HARDWICK.—A History of the Chnstla.n Church durmg the

Reformation. By CHARLES mumwrcx, M.A. Crown 8vo. cloth,
102, 6d.
*4+* These two Books are pnt of a Series of Theologiul Manuals

now in progress.

HARDWICK.—Twenty Sermons for Town Congregations. By
CHARLES HARDWICK, M.A. Crown 8vo. cloth, 6s. 0d.
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HARE.—Two Sermons preached in Herstmonceux Church,

on Septuagesima Sunday, February 4, 1855, being the Sunday after the
Funeral of the Venerable Archdeacon Hare. By the Rev. H. VENN ELLIOTT,
Perpetual Curate of St. Mary’s, Brighton, late Fellow of Trinity College, -
Cambridge, and the Rev. J. N. SIMPKINSON, Rector of Bringten, North-
ampton, formerly Curate of Herstmonceux. 8vo. ls. 6d.

HEMMING.—An Elementary Treatise on the Differential
and Integral Calculus. For the Use of Colleges and Schools. By G. W.
HEMMING, M.A. Fellow of St. John’s College, Cambridge. Second
Edition, with Corrections and Additions. 8vo. cloth, 9s.

HERVEY.—The Genealogies of our Lord and Saviour Jesus
Christ, as ined in the Gospels of 8t. Matthew and St. Luke, reconciled
with each other and with the Genealogy of the House of David, from Adam to
the close of the Canon of the Old Testament, and shown tobe in harmony with
the true Chronology ef the Times. By Lord ARTHUR HERVEY, M.A,
Rector of Ickworth with Horringer. 8vo. cloth, 10s. 64.

HERVEY.—The Inspiration of Holy Scripture.
Five 8ermons preached before the University of Cambridge, in'the month of
December 1855. 8vo. cloth, 3s. 6d.

HOWARD.—The Book of Genesis, according to the Version
of the LXX. Translated into English, with Notices of its Omissions and In-
sertions, and with Notes on the Passages in which it differs from our Authorized
Version. By the Hon. HENRY E. J. HOWARD, D.D. Dean of Lichfield.
Crown 8vo. cloth, 8s. 6d.

HOWARD.—The Books of Exodus and Leviticus.

Uniform with the above. [In the Press.

HOWES.—A History of the Christian Church during the First
8ix Centuries. By J. G. HOWES, M.A. Fellow of St. Peter's Coll. Camb.
[Nearly ready.
*,* Thisis part of a Series of Theological Manuals now in progress.

HUMPHREYS.—Exercitationes Iambicae; or, Progressive
Exercises in Greek Iambic Verse. To which are prefixed the Rules of Greek
Prosody, with copions Notes and Il i of the E i By E. R.
HUMPHREYS, LL.D. Head Master of the Cheltenh Grammar School
Second Edition. Fcap. cloth, 5. 6d.

INGLEBY.—Outlines of Theoretical Logic.
Founded on the New Analytic of St WiLLram HaMirToNx. Designed for a
Text-book in Schools and Colleges. By C. MANSFIELD INGLEBY, M.A.
of Trinity College, Cambridge, Teacher of Logic in the Industrial Department
of the Birmingham and Midland Institute. In fcap. 8vo. cloth, 3s. 6d.

‘ [Just ready.
JEWELL.—An Apology of the Church of England, and an
Epistle to Seignior Scipio ing the Council of Trent, translated from the

original Latin, and illustrated with Notes, chiefly drawn from the Author's
¢ Defence of the Apology.” By A.T.RUSSELL. Fcp. 8vo. bds. 5s.
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JUSTIN MARTYR.—8. Justini Philosophi- et Martyris

Apologia Prima. Edited, with a corrected Text, and English Introduction
and explanatory Notes, by W. TROLLOPE, M.A. Pembroke College, Cam-
bridge. 8vo. bds. 7s. 6d.

JUVENAL.—Juvenal: chiefly from the Text of Jahn.
With English Notes for the Use of S8chools. By J. E. B. MAYOR, M.A.
Fellow and Classical Lecturer of St. John's College, Cambridge. Crown 8vo.
cloth, 10s. 6d.

KENNEDY.—The Influence of Christianity upon Inter.
national Law. The Hulsean Prize Essay in the University of Cambridge for
the year 1854. Crown 8vo. cloth, 4s.

KINGSLEY.—"“ Westward Ho!” or, the Voyages and Adven-
tures of Sir Amyas Leigh, Knight of Burrough, in the County of Devon, in
the Reign of Her Most Glorious Majesty Queen Elizabeth. By CHARLES
KINGSLEY. Second Edition. S vols. crown8vo. 14 1ls.6d.

KINGSLEY.—The Heroes: or, Greek Fairy Tales for my

Children. With Eight Illustrations after Drawings by the Author. In 8vo.

- beautifully printed on tinted paper, and elegantly bound in cloth, with gilt
leaves, 7s. 6d.

¢ If the public accept our recommendation, Mr. Kingsley’s little book will run
through many editions.”—Guardian, March 12, 1856.

KINGSLEY.—Glaucus; or, the Wonders of the Shore.
Third Edition, corrected and enlarged. With a Prontispiece. Fcap. 8vo.
elegantly bound in cloth, with gilt leaves, 3s. 6d.

KINGSLEY.—Alexandria and Her Schools: being Four Lec-
tures delivered at the Philosophical Institution, Edinburgh. With a Preface.
Crown 8vo. cloth, 5s.

KINGSLEY.—Phaethon; or Loose Thoughts for Loose
Thinkers. Second Edition. Crown 8vo. boards, 2s.

LATHAM.—Geometrical Problems in the Properties of Conic
Sections. By H. LATHAM, M.A. Fellow and Tutor of Trinity Hall. 8vo.
sewed, 3s.6d.

LECTURES to Ladies on Practical Suhjects.
Delivered in London during the month of July, 1855, by the Rev. F. D.
MAURICE, Professor TRENCH, Archdeacon ALLEN, J. 8. BREWER,
J. LL. DAVIES, CHARLES KINGSLEY, Dr. CHAMBERS,
Dr. SIEVEKING, Dr. JOHNSON, TOM TAYLOR, Esq.,, and
F.J. STEPHEN, Esq. Second Edition. Crown 8vo. cloth, 7s. 6d.

LETTERS from Italy and Vienna.

Small 8vo. cloth, 5s. 6d.

LUSHINGTON.—La Nation Boutiquiére: and other Poems,
chiefiy Political. With a Preface. By the late HENRY LUSHINGTON,
Chief Secretary to the Governor of Malta, Points of War. By
FRANKLIN LUSHINGTON, Judge in the Supreme Courts of the Ionian
Isles. In 1 vol, fcap. 8vo. cloth, 3s.
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MACKENZIE.—The Christian Clergy of the first Ten Cen-
turies: their Influence on European Civilization. By HENRY MACKENZIE.
B.A. formerly Scholar of Trinity College, Cambridge. Crown 8vo. cloth, 6s. 6d.

MANSFIELD.—Paraguay, Brazil, and the Plate.
With a Map, and numerots Woodcuts. Edited from the Author’s MSS.
With a S8ketch of his Life. By the Rev. CHARLES KINGSLEY. Crown
8vo. cloth, 12s. 64. [Just ready.

MANSFIELD.—On the Constitution of Salts.
Edited from the Author's MS. by N. H.S. MASKELYNE, M.A. Wadham
College, and Reader in Mineralogy in the University of Oxford. [In the Press.

M‘CQOY.—Preparing for Publication; to be completed in about Five Parts,
price 5¢. each, forming One Volume 8vo. of about 500 pages, with nearly 1,00¢
illustrations in the text, drawn and engraved by the Author,

A Manual of the Genera of British Fossils.
Comprising Systematic Descriptions of allthe Classes, Orders, Families, and
Genera of Fossil Animals found in the Strata of the British Isles; with
figures of all the Generic Types. By FREDERICK M‘COY, P.G.S., Hon.
F.C.P.8., Professor of Natural History in the University of Melbourne, Author
of ¢ Characters of the Carboniferous Limestone Fossils of Ireland,” ¢ Synopsis
of the Silurian Fossils of Iteland,” one of the Authors of ‘‘ Sedgwick and
‘M‘Coy’s British Pal®ozoic Rocks and Fossils,” &e.

M‘COY.—Prepaﬁng for Publication, in One Volume, crown 8vo. with numerous
Illustrations,

An Elementary Introduction to the Study of Palmontology.
‘With numerous Figures illustrative of Structural Details.

#4* This little Work is intended to supply all that elementary information on the
Structure of Fossil Animals, with reference to the most nearly allied existing
types, illustrated explanation of technical terms, &c. which the beginner may
require, but which would be out of place in the Author’s systematic volume
on the Genera. .

M‘COY.—Contributions to British Paleontology; or,First De-
scrlptionsur several hundred Fossil Radiata, Articulata, Mollusca, and Pisces,
from the Tertiary, Cretaceous, Oolitic, and Paleozoic Strata of Great Britain.
With numerous Woodcuts. 8vo. cloth, 9s.

= % This forms a complete Series of the Author's Papers from the ‘¢ Annals of
Natural History.” .

MASSON.—Essays, Biographical and Crifical; chiefly on the
English Poets. By DAVID MASSON, M.A. Professor of English
Literature in University College, London. 8vo. cloth, 12¢. 64.

MAURICE.—Discourses on the Gospel according to St.John.

Crown 8vo. cloth. [Nearly ready.
MAURICE.—A Photograph Portrait of Rev. F. D. Maurice.
4to. price 6s.

MAURICE.— Lectures on the Ecclesiastical History of the
First and Second Centuries. By FREDERICK DENISON MAURICE,
M.A. Chaplain of Lincoln’s Inn. 8vo. cloth, 10s. 6d.
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MAURICE.—The Unity of the New Testament, being a

Synopsis of, and Commentary, on the first three Gospels, and the Epistles of
St. James, St. Jude, St. Peter, and 8t. Paul. 8vo. cloth, 14s.

MAURICE.—Patriarchs and Lawgivers of the 0ld Testament.

Second Edition. With new Preface. Crown 8vo. cloth, 6s.

MAURICE.—The Prophets and Kings of the 0ld Testament.

Crown 8vo. cloth. Second Edition. 10s. 64.

MAURICE.—Theological Essays.

Second Edition, with a new Preface and other additions. Crown 8vo.
cloth, 10s. 6d.

MAURICE.—The Doctrine of Sacrifice deduced from the
Scrip With a Dedi y Letter to the Young Men’s Christian Associa-
tion. Crown 8vo. cloth, 7s. 6d.

MAURICE.—Christmas Day, and other Sermons.

8vo. cloth, 10s. 6d.

MAURICE.—The Religions of the World, and their relations

to Christianity. Third Edition. Pcap. 8vo.cloth, 5s.

MAURICE.—The Prayer-Book considered, especially in re-

ference to the Romish System. Second Edition. Fcap. 8vo. cloth, 5s. 6d.

MAURICE.—The Church a Family. Twelve Sermons on the

Occasional Services of the Prayer-Book. Feap. 8vo. cloth, 4. 64.

MAURICE.—On the Lord’s Prayer. |
Third Edition. Fcap. 8vo. cloth, 22, 6d.

MAURICE.—On the Sabbath Day: the Character of the

‘Warrior; and on the Interpretation of History. Fecap. 8vo. cloth, 2s. 6d.

MAURICE.—Learning. and Working.—Six Lectures delivered
in Willis’s Rooms, London, in June and July, 1854. The Religion of
Rome, and its influence on Modern Civilization.—Four Lec-
tures delivered in the Philosophical lnstitution of Edinburgh, in December
1854. In One Volume, Crown 8vo. cloth, 5s.

MAURICE.—An Essay on Eternal Life and Eternal Death,
and the Preface to the new Edition of *‘ Theological Essays.” Crown 8vo.
sewed, ls. 6d.

*.* Published separately for the purch s of the first edition.

MAURICE.—Death and Life. A Sermon Preached in the
Chapel of Lincoln’s Inn, March 25, 1855. $n fRemotiam €. B. M. 8vo.
sewed, ls,

MAURICE.—Plan of a Female College for the Help of the
Rich and of the Poor. A Lecture delivered at the Working Men’s College,
London, to a Class of Ladies. 8vo. 6d. :

MAURICE.—Administrative Reform.

A Lecture delivered at the Working Men’s College, London. Crown 8vo. 3d.
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MAURICE.—The Word “Eternal,” and the Punishment of
the Wicked. A Letter to the Rev. Dr. Jelf, Principal of King’s College.
London. Fifth Thousand. 8vo. ls

MAURICE.—The Name “Protestant:” the Seemingly Double
Character of the English Church; and the English Bishopric at Jerusalem.
Three Letters to the Rev. Wm. Palmer, Fellow and Tutor of Magdalen
College, Oxford. Second Edition. 8vo. 3s

MAURICE.—On Right and Wrong Methods of Supporting

Protestantism. A Letter to Lord Ashley. 8vo. ls.

MAURICE.—Thoughts on the Duty of a Protestant, in the

Oxford Election of 1847, 8vo, 1s.

MAURICE.—The Case of Queen’s College, Liondon.

A Letter to the Lord Bishop of London, in reply to the ‘ Quarterly Review.”

8vo. 13, 6d.
MAURICE. —Lectures on Modern History and English
Literature. [Preparing.

MAURICE.—Law’s Remarks on the Fable of the Bees, with
an Introduction of Eighty Pages by FREDERICK DENISON MAURICE,
M. A, Chaplain of Lincoln’s Inn. Fep. 8vo. cloth, 4s. 6d.

¢¢This the Reli P Social, and Ethical Theories of our
day, and shows the special worth of Law’'s method, and how far it is applicable to our eir-
cumstanees.”

MINUCIUS FELIX.—The Octavius of Minucius Felix.

Translated into English by LORD HAILES. Fcp. 8vo. cloth, 3s. 6d.

NAPIER.—Lord Bacon and Sir Walter Raleigh.
Critical and Biographical Essays. By MACVEY NAPIER, late Editor
of the Edinburgh Review and of the Encyclopedia Britanni Post 8vo.
cloth, 7s. 6d. .

NIND.—Sonnets of Cambridge Life. By Rev. W. NIND, M.A.

Fellow of St. Peter's College. Post 8vo. boards, 2s.

NIND.—The German Lyrist; or, Metrical Versions from the
principal German Lyric Poets. By Rev. W, NIND, Fellow of St. Peter's
College. Crown 8vo. cloth, 3s.

NORRIS.—Ten School-Room Addresses.
Edited by J. P, NORRIS, M.A, Fellow of Trinity College, and one of Her
Majesty’s Inspectors of Schools. 18mo. sewed, 84.

PALEY.—An Analysis of Paley’s Evidences of Christianity,
in the form of Question and Answer. With the Senate House Papers for
the Year 1854. By CHARLES H. CROSSE, M.A. of Gonville and Caius
College. 18mo. boards, 3s. 6d.

PARKINSON.—A Treatise on Elementary Mechanics.
For the Use of the Junior Classes at the University, and the Higher Classes in
Schools. With a Collection of Examples. By 8. PARKINSON, M.A. Fellow
and Assistant Tutor of 8t. John’s College, Cambridge. Crown 8vo. cloth, 9s. 6d.
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PARMINTER.—Materials for a Grammar of the Modern

English Language. Designed as a Text-book of Classical Grammar for the
use of Training Colleges, and the Higher Classes of English Schools. By
GEORGE HENRY PARMINTER, of Trinity College, Cambridge; Rector
of the United Parishes of 8. John and George, Exeter. Fcap. 8vo. cloth, 3s. 6d.

PAYN.—Poems. N

By JAMES PAYN. Fcp. 8vo. cloth, 5s.

PEACE IN WAR. $n ffiemoviam %L, X,

Crown 8vo. sewed, 1s.

PEARSON.—Elements of the Calculus of Finite Differences,
treated on the Method of the Separation of Symbols. By J. PEARSON, M.A.
Rector of St. Edmund’s, Norwich, Mathematical Master of Norwich Grammar
School, and formerly "Scholar of Trinity College, Cambridge. Second
Edltlon, enlarged. 8vo. 5.

PEROWNE.—" Al-Adjrumiieh.”
An Elementary Arabic Grammar, with a Translation. By J.J. 8. PEROWNE,
M.A. Fellow of Corpus Christi College, Cambridge, and Lecturer in Hebrew
in King’s College, London. 8vo. cloth, 5s.

PERRY.—Five Sermons Preached before the University of
Cambridge, in November 1855. By the Right Rev. CHARLES PERRY,
Lord Bishop of Melbourne, (ormerly Fellow and Tutor of Trinity College,
Cambridge. Crown 8vo. cloth, 3s.

PHEAR —Elementary Mechanies.
ied by Examples solved Geometrically. By J. B.
PHEAB., M.A., Fellow and Mathematical Lecturer of Clare Hall, Cambridge.
8vo. cloth, 10s. Ga.

PHEAR —Elementary Hydrostatlcs.
panied by Crown 8vo. cloth, 5¢. 6d.

PLATO0.—The Republic of Plato.
Translated into English, with Notes. By Two Fellows of Trinity College,
Cambridge, (J. L1. Davies M.A., and D. J. Vaughan, M.A.) Second
Edition. 8vo. cloth. [Preparing.

POWELL.—The Scriptural Doctrine of the Influence of the
Holy Ghost, as Illustrated by the Analogy of Nature. The Burney Prize Essay
for the year 1853. 8vo. sewed, 2s. 6d.

PRATT.—The Mathematical Principles of Mechanical
Plulosopl.y By J. H. PRATT, M.A., Pellow of Caius College.

L ‘The above work is now owt of Print: but the Part on STATICS kas deen re-
ed:ted by Mr. Todhunter, with numerous alterations and additions: the Pari on
DYNAMICS by Messys. Tait and Sleele, is just published. The other parts will be

in sey forms, imp: d and altered as may seem needful.

PRINGIPLES of ETHICS according to the NEW TESTA-
MENT. Crown 8vo. 2s.
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PROCTER.—A History of the Book of Common Prayer: with
a Rationale of its Offices. By FRANCIS PROCTER, M.A., Vicar of Witton,
Norfolk, and late Fellow of St. Catherine’s Hall. Second Editionm,
revised and enlarged. Crown 8vo. cloth, 10s. 6d.

#4* This is part of a series of Theological M s, now in prog

PUCKLE.—An Elementary Treatigse on Conic Sectlons and
Algebraic Geometry.” With a numerous collection of Easy Examples pro-
gressively arranged, especially designed for the use of Schools and Beginners.
By G. HALE PUCKLE, M.A., 8t. John's College, Cambridge; Principal of
‘Windermere College. Second Edition, enlarged and improved. Crown
8vo. cloth, 7s. 6d.

PURTON.—The Acts of the Apostles.

With a Paraph and E ti tary. By JOHN SMYTH
PURTON, M.A, Fellow and '.l‘utox of St. Catherine’s Hall, Cambridge. 8vo.
[Preparing.

RAMSAY.—The Catechiser's Manual; or, the Church Cate-
chism illustrated and explained, for the use of Clergymen, Schoolmasters,
and Teachers. By ARTHUR RAMSAY, M.A. of Trinity College,
Cambridge. 18mo. cloth, 3s.64. ~

REICHEL.—The Lord’s Prayer and other Sermons.

By C. P. REICHEL, B.D., Professor of Latin in the Queen’s Umvers\ty,
Chaplain to his Excel.lency the Lord Lieutenant of Ireland; and late Don-
nellan Lecturer in the University of Dublin. Crown 8vo. cloth. 7s. 6d.

ROBINSON.—Autobiography of Matthew Robinson.

Now first published. With 111 i ByJ. E. B. MAYOR, M.A. Pellow
and Assistant Tutor of 8t. John’s College. Fcap. 8vo. uniform with Lives of
Ferrar, bound in cloth, 53, 6d. [Just ready.

ROBINSON.—Missions urged upon the State on grounds
both of Duty and Policy. An Essay which obtained the Maitland Prize in
the year 1852. By C. K. ROBINSON, M.A., Fellow and Assistant Tutor of
St. Catherine’s Hall, Cambridge. Fep. 8vo. cloth, 8s.

ROSE (Henry John).—An Exposition of the Articles of the
Church of kEngland. By HENRY JORN ROSE, B.D. late Fellow of St.
John’s College, and Hulsean Lecturer in the University of Cambridge.

. [Preparing.
*.* This is part of a Series of Theological Manuals now in progress.
SALLUST.—Sallust.

The Latin Text, with English Notes. By CHARLES MERIVALE, B.D.;
late Fellow and Tutor of St. John’s College, Cambridge, &c., Author of the

* ¢ History of Rome,” &c. Crown 8vo, cloth, 5¢.
SEDGWICK AND M‘COY’S British Palmozoic Fossils.

Part I. 4to. sewed, 16s.

Part I1. 4to. sewed, 10s.
Part III, completing the

work, 16s. just ready.
*,* THE WHOLE BOUND IN Two Vois., “o. cloth, £2 2s.
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SELWYN.—The Work of Christ in the World. Four Sermons,

preached before the University of Cambridge, on the four Sundays preceding
Advent in the year of our Lord 1854. By the Right Rev. GEORGE
AUGUSTUS SELWYN, D.D. Bishop of New Zealand, formerly Fellow of
St. John’s College. Third Edition. Crown 8vo. 2s.

SELWYN.—A Verbal Analysis of the Holy Bible.
Intended to facilitate the translation of the Holy Scriptures into Foreign
Languages. Compiled by THE BISHOP OF NEW ZEALAND, for the use
of the Melanesian Mission. Small folio, cloth, 14s.

SIMPSON.—An  Epitome of the History of the Christian
Church during the first Three Centuries and during the Time of the Refor-
mation, adapted for the use of “Students in the Universities and in Schools.
By WILLIAM SIMPSON, M.A. With Examination Questi 8 a
Edition, Improved. Fcp. 8vo. cloth, 5s.

SMITH.—Arithmetic and Algebra, in their Principles and
Application: with numerous systematically arranged Examples, taken from
the Cambridge Examination Papers. With especial reference to the ordinary
Examination for B.A. Degree. By BARNARD SMITH, M.A., Fellow of St.
Peter's College, Cambridge. Third Edition, enlarged and revised
throughout. Crown 8vo. cloth, 10s. 6d.

SMITH.—Arithmetic for the use of Schools. By BARNARD
SMITH, M.A. Fellow of St. Peter’s College. FPourth Thousand, with
Additions. Crown 8vo. cloth, 4s. 64. .

*+* This has been published in accordance with very numerous requests from

Schoolmasters and Inspectors of Schools. It comprises a complete reprint of the

Arithmetic from Mr. Smith's larger work, with such alterations as were

in separating it from the Algebra, and references throughout to the Decimal Synem

of Coinage.

SMITH.—A Key to Mr. Smith’s Arithmetic for Schools.

Crown 8vo. cloth, 8s. 6d.

SMITH.—Mechanics and Hydrostatics, in their Principles
and Application: with numerous systematically arranged Examples, taken
from the Cambridge Examination Papers. With a special reference to the
Ordinary Examination for B.A. Degree. By BARNARD SMITH, M.A.
Fellow of 8t. Peter's Cellege, Cambridge. [Preparing.

SNOWBALL.—The Elements of Plane and Spherical
Trigonometry. Greatlyimproved and enlarged. ByJ.C.SNOWBALL, M.A.
Fellow of 8t. John’s College, Cambridge. Eighth Edition, with Addition
and Improvements. Crown 8vo. cloth, 7, 6d.

SWAINSON.—A Hand Book to Butler's Analogy.
With a few Notes. By C. A. SWAINSON, M.A., Principal of the Chichester
Theological College, formerly Pellow and Tutor of Christ's College Cam-
bridge, and Preacher at Whitehall. Crown 8vo. le. 6d.
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TAIT and STEELE.—A Treatise on Dynamics, with nume-
rous Examples. By P. G. TAIT, Fellow of St. Peter’s College, and Professor
of Mathematics in Queen’s College, Belfast, and W. J. STEELE, Fellow of
8t. Peter’s College. Crown 8vo. cloth, 10s. 64. [Just ready.

This is a new Edition of that part of Pratt’s Mechanical Philosophy which
treats of Dynamics, with large additions and improvements.
. . Y L

TAYLOR.—The Restoration of Beli T

By ISAAC TAYLOR. Crown 8vo. clo od.

THEOCRITUS.—Theocritus. :
The Greek Text, with English notes, Critical and Explnnntory, for the use of
Colleges and Schools. By E. H. PEROWNE, M.A. 7} Fellow of Lqrpub
Christi College. Crown8vo, : } { a0 [Bregoring.
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CHURCH HISTORY: THy M g;.zadzs By )f&.m(.ns HARD-

WICK. With Four Maps. Crown 8vo. cloth, price 10s. 6d.

THE COMMON PRAYER: ITS HISTORY AND RATIONALE. By
FRANCIS PROCTER. Second Edition. Crown 8vo. cloth, 10s, 6d.

A HISTORY OF THE CANON OF ’If "NEW ,'TES?KMHT &By
B.F. WESTCOTT. Crown 8vo. cloth, 1

CHURCH HISTORY: THE REFORM, ION. By CBAIQJ?.S HARD-
WICK. Crown 8vo. cloth, 10s. éd. - __....u wh ‘_‘__ — M

The following will shortly appe:

INTRODUCTION TO THE STUDY OF THE OLD TESTAME

NOTES ON ISAIAH,

INTRODUCTION TO THE STUDY OF THE GOSPELS.

EPISTLES.

NOTES ON THE GOSPELS AND ACTS.
EPISTLES AND APOCALYPSE.
CHURCH HISTORY, THE FIRST 8IX CENTURIES.
171 CENTURY TO THE PRESENT TIME.
THE THREE CREEDS.
THE THIRTY-NINE ARTICLES.
*4* Others are in progress, and will be announced in due time.

THRING.—A Construing Book.
Compiled by the Rev. EDWARD THRING, M.A. late Fellow of King's
College, Cambridge, and Head Master of Uppingham School. Feap. 8vo.
cloth, 2s. 6d.

THRING.—The Elements of Grammar taught in Enghsh
By EDWARD THRING, M.A. Head Master of the Royal Grammar
School, Uppingham ; late Fellow of King's College, Cambridge. Second
Edition. 18mo. bound in cloth, 2s.

THRING.—The Child’s Grammar.
Being the substance of the above, with Examples for Pm:tlce. Adapted for
Junior Classes. A New Edition. 18mo. limp cloth, 1s.
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THRUPP.—Psalms and Hymns for Public Worship. Selected
and Edited by JOSEPH FRANCIS THRUPP, M. A. Vicar of Barrington, late
Fellow of Trinity College. 18mo. cloth, 25. Second paper in limp cloth, 1s.4d.

THRUPP.—Antient Jerusalem: a New Investigation into the

History, Topography, and Plan of the City, Environs, and Temple. Designed
principally to illustrate the records and prophecies of Scripture. With Map
and Plans, By JOSEPH FRANCIS THRUPP, M.A. Vicar of Barrington,
Cambridge, late Fellow of Trinity College. 8vo. cloth, 15s.

TODHUNTER.—A Treatise on the Differential Calculus; and

the Elements of the Integral Calculus. With numerous Examples. By
I. TODHUNTER, M.A., Fellow and Tutor of St.John’s College, Cambridge.
Second Edition. Crown 8vo. cloth, 10s. 64d.

TODHUNTER.—A Treatise on the Integral Calculus.

With numerous Examples. Crown 8vo. cloth. [In the Press.

TODHUNTER. — A Treatise on Analytical Statics, with
numerous Examples. Crown 8vo. cloth, 10s. 6d.

TODHUNTER.—A Treatise on Conic Sections. With

numerous Examples., For the Use of Colleges and Schools. Crown 8vo.
cloth, 10s. 64.

TODHUNTER.—A Treatise on Algebra, for the Use ~of
Students in the Universities, and of the Higher Classes in Schools. [Prep.
Also by the sume Author,
An Elementary Work on the same subject for the use of

Beginners.

TRENCH.—Synonyms of the New Testament.
By RICHARD CHENEVIX TRENCH, B.D., Vicar of Itchenstoke, Hants,
Professor of Divinity, King’s College, London, and Examining Chaplain to
the Bishop of Oxford. ‘Third Edition, revised. Fcp. 8vo. cloth, 5s.

TRENCH.—Hulsean Lectures for 1845—46.

CoNTENTS, 1.—The Fitness of Holy Scripture for unfolding the Spiritual Life ~
of Man. 2.—Christ the Desire of all Nations; or the Unconscious Proe
‘phecies of Heathendom. Third Bdition. Foolscap 8vo. cloth, 5s.

VAUGHAN.—Sermons preached in St. John's Church,

Leicester, during the years 18565 and 1856. Crown 8vo. cloth, 5s. 64.

WATERS OF COMFORT.—A Small Volume of Devotional
Poetry of a Practical Character. By the Author of ‘¢ Visiting my Relations.”
Fecap. 8vo. cloth, 4s.

WESTCOTT.—A general View of the History of the Canon of
the New Testament during the First Four Centurfes. By BROOKE FOSS
WESTCOTT, M.A., Assistant Master of Harrow School; late Fellow of
Trinity College, Cambridge, Crown 8vo. cloth, 12s. 6d.
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WESTCOTT.—An Introduction fo the Study of the Gospels;

including a new and improved Edition of ‘ The Elements of the Gospel
Harmony.” With a Catena on Inspiration, from the Writings of the Ante-
Nicene Fathers. 'Crown 8vo. [Preparing.

WESTCOTT.—An Introduction £6 the Study of the Canonical
Epistles; including an attempt to deteifiilne their separate purposes and
mutual relations. By BROOKE FOSS WESTCQTT, M.A. [Preparing.

#,* These three books are part of a series of Theological Manuals now in progress.

WILSON.—The Five Gateways of Knowledge.
By GEORGE WILSON, M.D., F.R.S.E., Regius Professor of Technology in
the University of Edinburgh. In feap. 8vo. cloth, 2s. 6d.; elegantly bound
in cloth, with richly gilt back and sides, and with gilt leaves, 8. 6d.

[Just ready.
WILSON.—A Treatise on Dynamics.
By W. P. WILSON, M.A., Fellow of St. Johif's, Cambridge, and Professor of
Mathematies in the University of Melbourne. 8vo. bds. 9. 6d.

WRIGHT.—Hellenica; or, a History of Greece in Greek,
beginning with the Invasion of Xerxes; as related by Diodorus and Thucy-
dides. With Explanatory Notes, Critical and Historical, for the use of
Schools. By J. WRIGHT, M.A,, of Trinity College, Cambridge, and Head-
Master of Sutton Coldfield Grammar School. 12mo. cloth, 3s. 64.

#.* This book is in use in Rugby and other Public and Private Schools.

WRIGHT.—A Help to Latin Grammar;

or, the Form and Use of Words in Latin. With Progressive Exercises. By
J. WRIGHT, M.A. Crown 8vo. cloth, 4s. 6d.

WRIGHT.—The Seven Kings of Rome:
An easy Narrative, abridged from the First Book of Livy by the omission of
difficult passages, so as to make a First Construing Book for Beginners of
Latin. With Grammatical Notes. By J. WRIGHT, M.A. Fcap. 8vo. cloth, 3s.

THE J OURNAL
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No. VIII.for June 1856, 4s.

Vol. I. for 1854, and Vol. I1.for 1855, are now ready, cloth lettered, 12s. 6d. each.
CABES CAN BE HAD FOR BINDING VOLS, I. AND II.
*,* Three Numbers published lly, at 4s. each.
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