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PREFACE.

Tur solutions to the questions, particularly in the earlier
chapters, are exhibited in some detail, in the hope that they
may thereby be better adapted to the purposes of a Key. In
all I have aimed especially at clearness and accuracy, and
trust that no errors will be found.

In one or two of the examples to Chap. XV., the complete
solutions are so lengthy that I have limited myself to proving
the character of the result, and indicating the subsequent
steps, referring the reader for further information, if required,
to the History of the Caleulus of Varietions, or to the Re-
searches

The working of examples 13 and 14 of Chap. V. (based on
the principle of Art. 66) which is given in the Hisfory of
Probability, is shorter than that in the Key; but the latter
may appear clearer, and supplies a different method.

All the references, not otherwise specified, are to the
Integral Colewlus (edition of 1886).

H. St. J. H.
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CHAPTER 1.
. N3 .. 8
L 1-3z~o (x+2) 4, ..1fx+§-z,

=shnni 2"‘ (Cf. Art. 9)

the integral = f

N

2243
I3
2. Integrating by ‘parts’ (Art. 12),

flogxdx:o:loga:~—fda:.x. 1=xlog:v—fdx=wlogm-—x.

=gin~1

3. So /w" logxclx__- log z fol x:+11 i

Qn+1 o xn-l—l gnt+l
sk oo /d il
Tarl et el n+l 8% TSI

4 S0 fbsin6df=-0cosf+[df. cosd. 1 =—0cos 6+sin 6.

‘olx_e"ol:c,.__ s oal te (oo p G
5. i Ti if =2, themtegmlls,(, EZE_I>’

/ -—-ta.n’lz tan—1(ez).
6. If w=2? clx =2zdz, and the integral becomes
fw 22dz=2f~’m+z’-’.dz, and .. by Art. 14, Ex, 4,
z

the integral = ev/m + 28+ m log o+ Nm+2%
=nNa(m+2) +mlog Nz +Nm+},
A

L7
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Lo

7. Integrating by ‘parts,’
fxtan‘lsadx-—m tan-lz - fdx i -1—7,=”’—Nta,n'lx—{;‘/ dx(l -_._.,)
2 '1+2° 2 L+
=2 tan—z - £+ tan-lz.
2 2
8. (1-cosz)?=1-2cosz+3(1+cos 2z) =§~2cosz+}cos 2z,
sin 2z

-, the integral = %7—5— 2sin z+

adz f {x 1+1\_ (1 1\ 1 1

1=z a-=pl O-zp (d-wp/ 21-2p l-z
2¥de _ [2%dz( 1 1 ‘
0. o ?a_ﬁ‘( 3 x3+a,3+x§)

3 1 ) 1 a® 428
6&3.[ dz <w°' a3 a,3+x3 60" og 5o Py

1. fNZaz-dde=fde. @2 -z-a?)=ete. (Cf. Art. 14, Ex. 1)

xde de —— dx
12, _— -(z—0+a)= —M2c&x—x3+a,f—~—.—::.—=—, and
Noaz -2 | N2az - 27 N2 —

. dz -
the latter integral= af-/;;—___——— a sm'l—— = a{ 5 = Cos™ i }

—a)p

a-2 T
_a,lcos 1_.—--} acos‘1<1-—:f)=ccvers-1?-;
@ 2 a o

. ete., omitting the constant.

13. The given integral= f m

and .. by Art. 14, Ex, 2 it =log{z - -3+N2" "6z +13}.

%q.,,
14 If x+sinz = z,%_=1+cosx,

. [l+cosz fdz .
o de=|—== =
Py z= [ logz=1log (z +sinzx).

= z+sinz_2
THNL % ectZ +tan?’,

1+cosx 2 2 2

.-, the integral:xta.n’-z-—fdx.ta.ngf'+fdx.ta.ng=xtang.

16. f : dae d(log ) _ 1 1

log w)" (log z)n Ta-1 1" (log z)r~1"



CHAPTER I

17, flog(logx)%f:flogz.dz if logz=2z
- =zlogz- f clzg integrating by parts
=2(logz-1) =logz. loglog z —log .

dz T 11 (e [FT
18. /x+\/x—z— fd%' 2z —-N2? - —--2-—;\/:6' n élva{wfl“vf-;}.
Cf. Art, 14, Ex. 4.
19, Ifz-1=2,
f x3dx fz"dzz +1)3 2/(1’ 284324+ 322 +1)
=9 a3 513 - _3. 1) 1 .1 et
—~<7+5z +~+z)- +5(:c— P+rz-1+ },e c.

20. Since sinmacosnz=3}{sin(m+n)z+sin(m-n)z}, as in Art. 12,
e [ g sin(m +n)z ~ (m+n)cos(m +n)x

) a*+ (m+n)

pression changing the sign of %.

f e gin m cos ned = } +a similar ex-

21. So by the method of Art. 12, } fe-xcos 8wde + _/'ﬂ-“cos wdz

3;—-( cos 32 +3 sin 3z) + (1+9) + 364:“ (_:.995%"' SIN2) e

Aliter : apply the result of Ex. 16, Chap. IV,

22, f Not—g*, do: if e=asing, the lts. of 8 are Oand (cf. Art. 46),
0

and the integral becomes
T

e 7r
‘/“a cos 0 . a cos 0020--— dﬁ(1+cos20) (0 +§£}°_‘9)/
0. 2 0

o]y

7!'((4"
<2+0 0- o) e,

Cf. also Art. 35. The result may also be simply obtained by regarding the
integral as giving the area of a quadrant of a circle of radius & (Art. 129),
or be deduced from Art, 14, Ex. 1.

.l

23, If x-a=asiné,
T

Qu 3 a2
j :-aac—a;‘-’.dm:/ a%cos2f , df=a? d6 (I+cos28)= -_2“, as in Ex. 22;
0 )

2

or, again, the integral is the area of a semicircle of radins a.

=1y
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20
o

2
— r—-a . xz-
fu/Qaa:—-x’- . clx:-,,—«"lao:—ac‘“’-l-?sm-l——rr
A 2

Aliter: asin Art. 14, BEx. 4, ** 20z -a?=a'-(z~a),

lo

a2 . Co _aifT T ol
=§{s1n'1(1)~sm 1(—1)}—-2-{§—<—.7> ="

B

24, Asin Ex. 4, /;Taﬁ sin 6d0 = o — 6 cos §+sin ) I‘owza .

95. Ifvers1%=0, z=a(l—cosh), ..dz=asindds, and
a .

2 x T oo o T g .
f xvers-l&dx =/ a?sin 8d6 . 6(1 - cos 6) =a-/ dﬁ(e sin 8 —gsin 29)
o 0 0

4

. g
=a2{— 6 cos 0+sin0+gcos 20 _sm20}A

9
=a'-’{—0 cos 0-+sin 6 +g cos 20 —fcos‘edo}/:r

8

26. Putting z=a(l-cosb),

pIe v
[ x9vers*12dx becomes f @®sin 8d6 . 6(1 — cos 6)*
(I 0

T
=a,3[ d6(6 sin 6 — 6 sin 26 + § sin 6 cos?d)
A .

=a3{ -6 cos 0+} cos 0d0+gc0520-f5? cos 26 ~ 2.00876 c;sf’a

+/@(cos$6+3cosﬁ)\/7r

3 Z .
=aﬁ*{ -0cosf+sin 9+g 08 20 ~ S._._i‘;% _8 c?;sﬁ
sin36 , sind\ /7
[l S aniet
36 4 /o
=o3(r e T4T) 1T
#(r+5+3)=7%
T T s
2 F} in3 nd 8
27. / sin? 6 cos® 6df = / 2 cos 0(sin%f ~sintg) = S0 _ 10’0 / 2
0 0 3 5 o
1 1_2



CHAPTER I. 5

of% aof r)}
f dee 1 ([ de 1]‘“‘{5“1 (2+s)+°°s(~+s
S

e e R T (T Py
.z, © ., T
1[4 sm§+g cos-2+§
2] 2 (zc f_r) (x z)
cos 2+8 sin 2+8

2. If z=1

____d_z_,__.‘ = - .1_ dy. = -
znf(e+ bz + cx?) ¥ ,\/(ay~+ by+c ,~/ay'+by+c)
: = ~ilog{2my+b+2~/a~/ ay*+by+c)}  (asin Art.

14, Ex. 5) and .. = - %log {20 + b2+ 2N e (@ -+ bz + cad)} + ;/lEo'IOg z.
Here o is positive: if a be negative the integral will involve not a log. but
the inverse of a sine,

0, If sin-l=0, dz=cosfdb,
f Vi fv_sm'lmdx f Mg—-f f 8d0 . cot?d cosec?d

ntg
-—g. cot36+/dso cot®d
- g cob30+3j-cos Bdﬁ(m——@ "5}11‘9)
= —g cot30—§£1;1—,_,-0—310 sin ¢
. P
S a T S

3l. Ifsinf=z,
sinlede _ (0.050d8 _ (479 o9 = 0 tan 6~ [df tan 0,
(1 - xg)g- 00520

sin 6

(integrating by parts) =@tanfd+logcosd, °* tanb= prer
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. 32, If w=acosd,
{ i 5= ]’a'sm bdd_ _ 4/ @ —-* 6 cosec’d(1 + cot*d)
(a®~a%)Z o at .

afsin®d ing
_1 cot?
TRuts)

33 /sm-a,dx / ( 1 1+b )_ x+a+b da sec
© Ja+bcos b ‘o + b cos*w b b Ja+b+atanie

2, a+b  dxseck
3t |avr L.
Ma—- + tan‘

l|

H ]
x+a+b( )tan -1 tanz.a
a+b

b ab Na+b
e (8 e
b\ ab® No+b

34, Integrating by parts,

f o+ ba:ﬁ)%dx 2= (a + Zm-)’ -5 (e + br—) e

3

35, If z=tan,
de _ [ sec’0dd B cos®o ( 1 1
[ N ta,n49 sec _/ sin*d _[ cos 86 sin%f sm‘-‘@)

= v @
T 3311130 sm0 o sma_,,/l.;.xe

: _(1+x—)‘ 82 0\ _(2a2-1 .
the mtegra,‘l.‘__s‘gﬁ Tig 1}= - ) Vit

3

36. I o=tans dg_ 1 . 1 .
3 e=tand, —=_—m Tz and ..

[tanrads = f e SIEL S f tan®-299 and = %142
: - =

= f]_ o {(w‘.!n + wzn-") (xﬂn—‘z + 1;271—-4) . _(__]_ )n(x'.!_l_ 1) -+ (__ 1 )nl}

a2n~L -3

“gnT1 opog (T (- 1)”12&11“1:1:.




CHAPTER I. 7

T C k) .
37. fsinmxsmnxda::%f dx{cos - m)z - cosn+m)| 2} =, say; - if
o o .

m, nare unequal integers, u=

sin(n-m)x _sin(n+m)z |™_,
2An-m)  2n+m) /_ ’

and so _/ 7rcos; me cosnadr =% f rd:c{cos n- nﬂx +cosn+m | z}=0:
0 0 } )
but if 2 =m and they are integral, ‘
f’rsin ma sin nade = %f"dx(l —cos 2mzx) =} {x-— S ey me} /”:'C"_:
0 0

T
and 8o f "cos ma cos nardz= 3 [ dz(] +cos 2mz) =
- 0 JO

38. Integrating by parts,
f (1og )doa oc(log f dz.z. 3(10g ) (10g -3 f dz . log )
=a:<1og ) 3x(1og +3/mdx 2 log ) =
=o(1ogZ) ~3a{log >+6x(log -6 f adz. L, et

39. When cotf =z,
j cotledz _ _ [ 0 cosec’ddf
231 +2?) ot cosech

f 6d6 tan?f = — f 6d6(sec?6 - 1)
= —0(tan0—0)+fd6(tan 6-6)= —G(tane—e)—%g-—logcos ]
=?j-0tan0—logcos9.

2w+ Ja~-2
4. fdxowx atz ,,/ad'

@2

(1+i)(a~x)

a+z

(a+2)d(a- x)”-”

and the latter integral = w’@

(@+ x) (@— x)
/‘ adz f aclx (o~ a:);!r
(v+2x) ,’(o& — )% % (a + x .
f adz(a - x)% % a-z _ o [F2(a wm)}
(@+a)? atz (@+z)E

=-2a,\/z+z, and ., ete.
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41, Here -oz(verS'lx) A —d—cos‘l(l —?) =1,
dz 2 d a o

1
= L
N2z — 2

and . the -given integral = / vers'1 gx(vers'lx) de=: (vers lzy.

 Aliter : ifvers'lgz 8, 2=a(l -cos f),

-1%
» ffrs % f ofsin 08 / do=7, cte,
Noaz—z J af(l-cosf)(1+cosO)f 2 ,

2d.’L‘ o

——SGC =

43 f dz =/ dz ”f 2
L+ccosz (1+c)cosﬂi”+(1—c)sm2; 1+c+(1—c)tan9§

dz
22 sec?®
2 2 2 2 o1
= tan-1
] ST k| 1+ ALK }’lf
Tt tanty
T
T b _ ,/
e<1; fﬁ’__dﬁ_ =~ _tan- l__c___ _.1__. tan L V1-¢
o 1+ccosz A/ = ¢ I+e JIZ¢2 I+c~(1-¢)
1 NI-¢? 1
tan-1 = _____cos‘lc cf. Art.14,E
~/1 5 . == ( x.14),

43, [e-Bcos®0dd (as in Ex. 21)

-6
_9_.(3 sin 39 - cos 39) +%(sm § - cos 6),
and f 2~ Oeostdd = T)(--3) -ei’(3)+§e'if(1)- gc( -1)

3 8\ _3/r
(em z)(s 40) 10(6 e 2)

4. If z=x+1, dz:dx(l—i,):fl-x@—l),
oz\ oz

_j (’a

/ (2%-1)da f
/(1 + 322+ a%) «/W_ +3) +1)

] 2
=log fe+NFT 1)=log = “W(: +32+1)




CHAPTERS I.-II.

45, If a+bxn=24, nbxn—ldx=423dz,

and [latbeide_ /zs. 4z3dz_ zsdz ] 4 )
/ z =) nbam 5&

4 dz. 22+ 2a dz(
“n n

N3 z~+~/a
4z3 a4 ( 1 ) 20 1, 1%
= dz +=. = tan-12
3w 2~a z+ai at at
3
=§?.3+__ gz ai+%9"fta,n'1z
CONE R a*
==é(a+bx")2+"gloo(a+ba‘n)i'a:} 2a5¥ an 1(a+bm”)%
3n (a+b:c")%+a4= n a
CHAPTER 1II.
A | Bx+(C
L -1 z— l+m‘+x+1’
then 1=4(@+2+1)+ Br(z - 1)+ Oz -1), .~ putting =1 and
{0 successively, 1-3A and - C'=1-4 =3, and the coefficient of 22 gives
—d=-}
. f lfe+2)de_ [ de 1 (dz(2z+1+3)
N 3(x-1) 3 Zrz+l J3z-1) 6/ a¥rz+1

1 1
=_.1 -1)-=Zlog (22 1
3 og(x-1) g g (@ +a+ [__.ﬁ,.xh C
o (B-1P 12 2241

6 m 2" V3 N
22-1 ( )}
/ dﬂ: /d&t‘ 142 poyar x+2f + lorr +0, ete.
o T+l . A B
FrTer2 | RTTee1 C 7+m+;u;—4, say,

- '=a? - 3Tz -84+ A(w+4) + Bz +3),
and putting x=— 3 and -4 successively,
A=84-111=-27, B=148-84=64,

3
and ., f 0?4—-967;%715 = a“)— =Tz ~271log (z+3)+64 log (z+4).
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dz 1 ( 1 1 )
. de ——
* R e a% =2 2
1 (1 _ 1( 1 1 )}
“ag dxla‘-’+x’-’ e\ -0 z+a
_ 1 gz 1y z-a
_@.éta.n A I6;3Iog.-——m_l_m, if z >a,
d =1 fan-2%- ! 10g%=% ifz<a
an -2——“,3 C—b 3 °a_,_—’ 3

79,-—305- _ _1 1 )
5 x*—oﬁ 2.[ Trat fd w‘ a w‘+a~

=_5-tan‘1x—-fd ( .
20, - x+a

=_5_ tan-1% —l log r-a
o a 4o z+a

A:r+B C’x+D)
6. f(x~+1)x~+x+1) x~+1 m-+x+1 S&y»

1=(4z+B)@*+2+1)+ +(Cz+D)z*+1) 3
the coeﬁiments of a3, 2% , and 1 give A+C=0,

A+B+D=0, A+B+C=0,and 1=B+D.

Hence ¢=D=-A4, & B=0, 5. D=1=C0=-4,
-z z+1
and . the integral = f dx T x~+a.+l>

fd 2:c+1+1>
a:2+1 22+l

= 1 z2+1 1_2 _12:1:-;-1
38Ty B
. @2 1 2%8+1-1_1

w2 __{ 1_+1_1(1__1
m4+w‘3—2 9" Hrai~2 2laf 2+2 S\ut-1 xﬂ.l_g)}’




CHAPTER 1II. 11

z?-1 _ Az+B + Cz+D

8 I Prai+l altx+l 2o+l
o @ -1=(de+ B)22-z+1)+(Cr+ D)@ +z+1);
and the coefficients of 23, 22 x, and 1 give A+0=0,
~4+B+C+D=1, A4-B+C0+D=0, and-1=B+pD,
Hence B=D=-}and 4+0=0, -4+0=2,
C=1, and 4=~1, \
) (@-Ndz _ [-(z+})de, [(—3})dz ~z+1
and ./x4+x3+1 24+l * 22—z +1 =11 g:cJ+a~+1'
 Aliter, more simply, if z=2+ %,
-/'(xi’—l)dx_ [ 2%z dz 110 z-1
2 - 4 2 = P] =3 g'_ aetC.
:c4.|..x +1 Jat+z?+1 (x+}) -1 z+1
9. . 2?-3z+3 -1 1 =1J__l__ __1
) (z-1){z-2) (-1)z-2)  'z-2 z-1
: f 2 8x+3 z-2
5 = TR =2
. /(z T&=3) x= x+log =i
' 32-1 _A, B, C
100 If 24—~ -2, £ , Y
0 z2x-2)x+1) = x—2+x+1’
chen ) 3z -1=A(z-2)(x+1)+ Ba(z+1)+ Oz -2),
., putting 2=0, 2, and -1 in succession,
-1=-24 or 4=}, 5=6Bor B=,
and : -4=-~0(-3)or C=-%#;
3x-1)dx
[ togatilog a2 -4 1og a1
N gl _Az+B. ¢

AT e Ta
1=(4z+ B)(z+0) + C(a? +a2),
Sifz=-b, 1=C(e?+0%), and the coeffcients of 22 and give
A+0C=0 orA:—O:-—-zl-b«“; and 40+ B=0or B=

f_ M / 1)1

(@ afpim s h) ac3+a2 z+b) B
sl )t
a*+0* tx-i—b 2\z +a? xﬂ+aﬁ

1
=a2+bg{log(m+b log«/x-x-a.--;- tu,n-l } ete.

FFR
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12, I 1 _ 1 4. B O’x+D
" U a(lvet+at+ad) xz(l+a) i+z) z l+z T+
then 1= A4(1 +z)(1 +22) + Ba(l +27)- +(Cz+ D)x(1+2),
and putting =0 and —1 in succession,
' A=1,and 1=-28 or B=-}; also the coefficients of z* and
x give A+0+D Oor C+D=-1,
and A+B+D=0, .. D=-}and C=-%.
dx _1 f(w+1)d$
Hence (l+x+w2+xs)—10gx blog(l+2)=3 2+l
- 2 )
and the last integral=—% f ax( 1+x~+1

=—3log(x2+1)-}tan"'2, .. ete.

1 A B  Ce+D Ex+F
e A M
1=A4(2?+1)?+ Bz - 1)@+ 12+ (Cz + D)z -1
’ (B F) - DX+ 1)5 i (1)
and putting z=1, 1=44;
0=A(x2+3)(x2—1)+B(m—l)(x‘3+ 1)2+((]:13+JD);,;__1]2
+(Bx+F)(z =172 +1),
0= A(22+3)(x+1)+ B(z*+ 124+ (Cz+ D)z -1)
+(Ex+F)(a:- 1)(22+1),

and putting z=1, 0=A.8+B.4; .. B=—24=-};
also the coefficients of %, %, %, and 20 in (1) give
0=8+E or =14,

0=A-B-2E+F. orF=4,
0=2B+C+E.2-2F or O=1-1+%=},

and 1=4-B+D+F orD=1-}1-3-1=0;
2 1
1 110%(:1: Nt fdx ‘+_/dx(x+§)
(x— 1(x3+1 4(x—1) @+ 1) 221
1 1 11 .1 '
= 1) 2
o) ool g g e
+’itzm'1x.
A B ¢ |, Dx+E
14, If z = s
(To AT Is ) 1+a (+2F 148z 1+a’
then =4 (14281 +22) + B(1 +z)(1 +2?)

+(Dz+ E)(1+z)(1+22)%+ C(1 + 2)(1 +22)(1 +2%),



CHAPTER II. 13

and putting 2=-1, -1=24,

d putting =1 1B §or B=-~ 4 also the coefficients of «%, a3,

and putting z=-5 ~5=%. 7 55

and 20 give 0= 4A+4D+200r‘>D+0=1,
0=44+B+8D+4E+3C or 8D +4F+30=2¢,

and A+B+E+0=0 orE+0=%;+%=%%, 4B+ 40=3,

and .. 8D-C=~1 S 10D=-%or D=~

and .. C=1- "D 1+3 =§, and  E=}-33=4

- 4 32 _17_'57'61""513'\_
and .. thegiven integral= fdx{ e —‘—(l+2x)2+w'l+2ac iz )

1
—1 2
= 510g(1+x)+5.1+2x

=~ 1hglog (1 +2?) + 45 tan 1.

+38log (1+22)

15 % = ArtB 024D o equating coefficientsof like

4'l'] BBl e+l
powers of 2 in 2= (4= + B)( V@2 + N2+ 1) + (O + D) (22~ 2n2+ 1),

0=4+0, 1=AN2+B-0N3+D,
0=A+BN3+C~DnR, 0=B+D.

Hence B+D=0=B-D, . B=0=D,

d A~ (/=—-,:, .A.=— and O“

an NG PN 2«/2

Thus x_d_x.__:__l__/’ x( r___ - 9:‘ )
i+l oVl \a2-avB41 a?+and+1

- jd (2x ~N2+N2Z 2w +N2- f\/")

D) P-aNZ+l aRanerl

1, af-av241 1 1 1
=——log ————————-—--(- dz —+
N2 TatianB+l 4 {(x_L_);{ (,Hl)z 1}
N2/ 2 N2/ 2
1 2P-anB41 N2, -
= log & TENET L L VA fhan - anR-1) + tan~Y{zNB+ 1
W CEraiel & ) ( o
3 _Az+B, Cxz+D Ex+F
16 -2 = — — —
25417 241 g2oavi+l 2+an3L£l
equating coefficients of like powers of z in
#3=(dz+ B)(z* -2+ 1)+ (Cr+ D)2+ 1)(22 + 23 +1)
+ (B + Fy 2 +1) (a2 - 2N3+1),
0=4+C+BE, 0=B+CN3+D-EN3+F,
1==A+20+DN3+28-FN3, 0=-B+ (N3 +2D-EN3 +2F,
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0=A+C+DN3+E-Fv3, and 0=B+D+I.
Trom the first and fifth of these equations

D=F=-%3 by the sixth equation,

and from the second and s1xth equations

C=F =—é by the first equation’;

> by the third and fourth equations
]=—A-24 or A=-3%,and 0=-B~- 2Bor B=0=D=1F,

Hence ff“—@=fdx ——.—,,—-+1—, z_ +-1-. £ }
z5+1 { 3°22+1 6 g2-aN3+1 6 224anN3+l

=-llog(x3+1)+—1—'/dx( 29:_"_/:-3 + 2x+§/§_)
6 12 x‘-’-m/3+1 w‘-’+w~/3+1

fd{x L (x+Js) 4}

1 L) o 3
=-glog (22+1) +1—2-10g (2t~ 2+ 1)+“—/g{tan‘1(2x k)

—tan (22 4A/3)}. ete,

17. Ifl- ys—J33or1—1—7"’ —-—.dy=~~d~ and

f dy _i.*__ zdz - ( + B+ C
A-w) I+2° Ttz 1-2 +~) say,
where z=A(1—~+z-)+(B«+g)(1+z)’ and .. putting z=—1,

A4 =-1, and the coefficients of z* and 2° give
A+B=0or B=% and 4+C=00r C=1,
wde L[, 1 _ =2+l
1+2 3] \T4z T-z+2

,[ {1+7 Zz?fz-il m3+a)}

1
1°g(1+Z)— log (22~ 2+1) ——. 2 jan-iZ-l
2 V3 V3
llog{1+ - /3} llogf 1____]
6 " \yppy2 12y
1 Ry -
- tan -1 -—-y-_—;’!
N u/
?/A/R

and .. -

1 317
=210g{y+f~/1—y3}—-71§tan
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18, Ify= T +m x:%};, and the given integral becomes

2° 3 377 : 3 )
x 1-y)P? Jl+3x+3w) (1_:1/)%\/(-_1‘)3_ W ! -y
I-y/ (1-yF
d .. by Ex. 17 the proposed integral, replacing y by =,
LogztNIrBe 43T 1 tons [T :—m——}
l+z A3 /3

CHAPTER III.
1. Integrating by parts
f(w2+x~)2 dx= x(ca-+x-)2 n | dz, 2Xa?+2%)? b

—— n n_
=2(02+2%)? -0 | da(a?+22 - a%)(a? + 222

n
=z(a*+27%)° - n | da(a® + 22) 2+ ne? [clx (@ + 22 )
~. transposing and dividing by n+1

.
1

2 ne?

x
f(a-+x-)d =@+t fm 2pat)p

2, f 2202 — ) dea: = f &Nz - o+ a)(20x— m‘-‘)gjzlru

=_fll7;; l(oam o,-)v_l_ /dx 9,.’"’"“(‘)(&3? x..)’f +ﬂ/da, o 1(9£tx ﬂ.')%
m~1 -
=— x:; (az - mﬂ)’f’.{. l‘ fdx- a1z 22)2 ‘IT m-— lfdx (20 1,“)}

+afd:v. m’“'1(2co:c-x2)%,
(1+3’.§.'.'_)fdx (a2 — 2> )]f '

il r
=—5§-%-—1(2m x-)? 3( m—2+3)} dx.xm‘l(Qm—xﬂ)"l‘,

.

» ~1(0 a2 3
- }x’"(Qam—x‘l){’dam-xm (202 - 2?)* | a2m+1)

1
xm-lQ AT 3
m+2 m+2/ (Ra - 2%)*dz

3. ﬁJ 202 - 2*de = ﬁw —a] + a2z - 2dz

=~-},(2ax-x2)%+0_n/‘~/2ax— adzx:
a simple case of Ex. 2.
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v 2 20
4. By Ex 3, fb e 200 —a¥de = - %(‘.?.a,:c - ﬁ)%/ +a | N2z =2
0 . 0 0

_a @ N
”f VEz=Flr=al (o (-0},

a? z—a/%
. as in Art. 14, Ex. 1, the mtegra,l—a-—— 202 ~ a:-/ +—2—sm 1 - /
fo

_lx o&* 1r _wad
=3 sm To)%

8
T

5. f e 2ux =2z = |2(2 - a+ o) 2ax - ’dr=— §(2“” - a?)’
;/da,(2ax z~)’-f+a/x~/2ax z°da
= —g(an - mﬂ)% +g§ oz (20 — x’)%
- é f (202 ~ xQ)%dx +a f an/2az — 2. du:

Ao =d =- Haa- 4 o / o Taz =7, ete.

20 2a 5
6. ByZEx. 5, A x?rs/2ax—a:‘~’dz~=—gf(2m -7 / - x~/2ax 2%z

54 xl\/"ax xz%dz,

. 3 4
and ., as in Ex. 4, =9§ . ’5;‘ =_5l§_“_,
Aliter : putting z=a(1+5in6), dz=acos 6dd,

[CIE]

and a:?v 20z ~ 2 = / a*(1 +sin 8)%cos®0de

a4d0{2 c0s’6 — cos*d +2 cos*0 sin §)

m:«\k;q l:RI

[z
)

= 23[3 cos30/ + 204 f (2 cos*f - cos*p),

|:I=i

and -, by Art. 35 =ogtfo. ’r_,-ﬁ_ T 4( )’5 ‘
y )y “1 4 j' aad(1- Sm.

7. InEx, 2, putting m=3, 2, and 1 in succession, the result can he
obtained, but practically the simplest way is to put z= a(l+sin 6) when
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the integral becomes

a’ f “do(1 + sin 0)3cos®0d =245 [ “d0(cos™0 + 3 sin% cos?h)

[SIE]

=203 ﬂ *08(4 cos% - 3 cost6)

—oas (el 2 )eras]

=9q .2(4.2 3.4.2 T g
assuming the results of Art. 35. Cf. also Arts. 41 and 42.

8. x”(logx)mdx— log @)™ — f dz 2" m(log z)m- }G

!Z"+1 m
=21 m . n m=-1
s 1( og ) 771/ ? (log )™-1dz,

9. ,/[ «"(log «)°dx gllﬂog %) - n_2_+1 z"*1, (log z) }c . dx
= ::+11(10g %)% - n_-?- ) / z*(log x)dx

ol

Tn¥l

gt

=n+l

(log z)?— ——-—2 z"Hlog 2+

+1)2

logz, 2 3
(log z)? _-I ey NIk
3

10. f4sec4ado f sec?0(1 + tan0)d0 = tan 6|4+ BA'0/4_ ) 1 _4
0 0 3 0 3 3
. 2 o2dan o — x_ :zdx(ax z?)
o Vatz Nai—a?
=— (a2 - 22 a? - / daN @ =2 ¥ —2z)

=a Ja‘ i, da:+g(a x-)%’

I
I

=g{x~a-—x-+a~sm'1—}/ 3a “3(1 g)

ﬁsin"’@ cos39df = fsin 0dif(cos’d - cos®9) = %f cos*d + %— cos,

1 1 )2
a0 L
f sing cos40 (sin”é) * cos®

= /da{cosec40 +seci + 2(1 + cot?d)(1 + tan)}

= [db{cosec*d +see’d + 2(cosecd + sec®d)}
B

—
o

—
w

17

~dx
z

- +1)‘/xn+11
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= [db{cosec’d(3 +cot%) +3ec20(3+tan’)}

3
- —?cot@—%€+3tan0+t%f, ete,

14, sin’0dd _ sin 0 _sinf _1fd0._(£s_0
f cos*0 costd (b “5costd 2 cos™d
- sing 1 1[df.cosf
Jcost0 2) T—sin'd
sing _1 1 1
L =)
"cosﬁﬁ 4 8 o088 1-siné l+sm0
_sinf 1, 1-sinf
"o 4 Cl+sind

s6d8 becomes (pubting NZsinf=sing, and .

15. (cos 20)%co

Wi ey

N3 cos 8d8 =cos ¢dg)
J§co ¢ cos ¢d¢ ,\/Zf COS4¢'d¢ ~/ _1_1‘ 3.1 =3_I§/_2.
.z 24 16
16. If cos‘la-: = 0, z=acosf, and

J NE— 7. cos 1-dx fasme 0.0 sinfdf = ‘j %38 . 6(1 - cos 20),
0

| S,

E -
z T
. integrating by parts, = 4( sm 205 - 2cl(? 0—___51’1?20_)
o 20 2
m\? aﬂ(al cos 20) |
T ST+ =
( ) 9\2 4 /|,

@ dfe 1 8T
-2 -G n}=4(5+)

17. I vers“f =0, z=a({l-cos ), and
f (vers -1 dx f 02, ¢ sin 0df = - ab’cos 0 +‘7a f 0df .cos §
0
= 1%+ 2a0 sin 9/ —Qa[ dfsin 0
J0

=0+ 20 C08 0/ o —4a, ete.
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sinz _sinz c-ccos’r _sinz [ c+cosz
18. Here " { _ a,}
1+ccosz ¢ " l+ccosz s \l+ceose
smx -1
LSBT 9
1+"cosa: /

7 sind
2 sidedz f df(amz~ﬂsmxcos x+ _Vljl}l_??)
o ltccosz pe l4+ccosx
=—1-2{ cosx—_smzac—m-loo'1+”008'—*~)
¢ 2 c /
1{ ¢ -1 11_¢-1 2-
=-41-2-Y" " 1oo -___1 1
=] G R al gy gL 2

dx sin¥e + cos®

A = | = dr. e T
19. o) /(1+ccosx)“ /m(1+ccosx)

-1 sin 2 _ 1 dz,cosz /dx.cos”x

e(rn-1) (L+ccosz)r-t ¢n-1)) (1+ccosz)*"t J(l+ccosa)”
_sin (1 +¢ cos x) =" H

(m-1)e Q

_ 1 [dz(ccosz+1-1) l/dx(cﬂcos”m+2ccosx+l)

¢Fn-1)) (I+ccosz)r™l ¢ (1+c¢cosx)™

1 dz(2¢cosz+2-1)
c? (L+ccos )

- )+ lom-2)- Zpm-1)+ 1
= - o9 =2) = gla = 1+ Zotn-2) - Zgtn-1)+ ol

and .. ¢p(n)(ct—1)(n—1)
=c¢sin2(l+c¢ cosz) "+ (n-2)p(n~2)—p(n—1)(2n - 3).
20, If vers- H =0, z=a(l-cosd), and

- 26
/ Nz - . (vers‘1 )dcc fasmﬁ 6. asxn&tlﬂ~a~[€ d@-—-f—oi—

_« sin 26\ /™ a-[" ( sm'lﬂ)
d(e 2 )/o 5y W05

L conze)
2 2\2 4 [

_atrt aﬁ(rﬂ 1 l) ot

BRI
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Aliter : by Art. 41 (3),
2 x 2 x
N 205 — o vers‘lada: = f N 'Vers-1<2 - a) dee
0 [}

= f -c:/ 20z — x?(w - vers‘%)dx
[
1026, — T [ _
=§f N2az— o wd; =3 odx.da-’—(x—a)’
0

9,2

=7§r . area of a semicircle of radius a = a
21, If vers‘lz =0, z=a(l-cosf), and
2a 2 T . .
ﬁ 220 ~ wivers™l dz = f a*(1-cosf)sinf.d.sin 6de
=a? f eda(l:E;_S_gf—sinﬂa co 0)
_ah _sinsz) T o ”de(e §El£0> .
——2_(0 2 /0 2 0 2
Ssing /" "6 sin30
_ gsin / +a3/
3 0 o 3
3,2
=‘i2’f _2‘23’@ c.._"s 20 +& f 20 sin 0(1 - cos6)
_o*r®_ofn? ad cos®d
Ry ‘3( s“"is 3/0
e | a? 1 l) il 4,
= — ]-C-=)=—Z 42 3,
o g(ogeg) T e
f dz tan™z (Zx(tanvx sec’x — tan®a)

= f * dax(tan’z sec?r — tan’s sec’z + tan 2 sec®z — tan z)
1 z
B (6
1_
6

= tanfz — i tandz + 2 tanz +log cos m) / *
0

T . .
23. Here 2 may = 5 and .. sinz=1, .. ¢ must be not >1 for real
2
values of &1 = ¢%sin’z, and

dw(l + 6-51211 %y lwz cisinie +;— z 2 Ssinba + .. )

f A/l c-n—mv, Jo
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Ly the Binomial Theorem, and .. by Art. 35,

R 1.3, 3.1,1.8.5 ;5.3.1 }
’{”‘ ()+24° 107526 54

.3\, (1.3.5) 6
{1+<) ( ) “+\51s ‘°+“'}'
24, fx’”P"dx = fx’”. Pr-lde P =fac’“P"'1dx(Axﬂ+ +...)
=EfAdx amte, Prol=sig Voo, n=1fe oveeererrenrennenne (1)

Also, integrating by parts,

xm+1 Pn n ClP
. Pn - m+1 n-1
jm PV, n=t m+1fx da. P

or xm“.P"“(m+1) m, nF0fde, P 1x’"“‘l(Aow.:“ 14 Bhad-1+...)
(mA+1) Vi, g+ 0Zfde . Pr-2 dagme

( ) m, ﬂ+nE{Aa’Vm+a n= 1}3

Lby (1) = 3{4(m+1 +na) Visia, n-1t =204 Vg more

n

CHAPTER 1V.
1.. If # = o sin%, ’
T 5 T
“whde _ f 202in%9 . 20 5in 6 cos 60 _ 2“3fé'd0 sinth
‘Na-z aeos 0 0
27 5.3.1_5

o= ral

6.4.2 16

W xdy fﬁf‘(Qa-m)dx_ 1[% dzx.2q -a 2 dz

0 N2az -2 Jo Naz -2 2/0 N2uz—o? 0;/_&,—"-:—(;:—01)'?

N
=gsin- "% :a{f— -7_" =7
@ /o 2 2

3. Ifz=asing,

“(agieﬂxe)dx_/.g 201 _ n2ain? _ 2{1"_ o T 1}_7"“2( _62
/0 N7 =], a?(1—e?sin%f)dl = o 3 e'§'§ _—2».1 §)

4. Here 1 = 1‘,/ 1 -‘1 )
z4+

© g 1 {1 e 1w
= Tt 1 1
ﬁ T il R }/

RN (1 I
=0 2\b a) 2abla+D)
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5. Hence ﬁ a¢(a+ z)de= / “¢' x)dz and = [ 2é(oc)d:c
¢(a+x) / ¢(z)dz, and so on,

Thus fqb(wdm fqb dz+/ z)dz+ .. +[

Jn- l,u

=n‘/; o(z)dz.

6. If b+“+ —-w =y, the Its. of y, corresponding to —¢ and ¢ for 2,

bta b -a bta b-a
are 5T % and—j_+_5-. or b,

ste= sy 2.,

b 2 b- ¢ _
[oway=[[teraa="22 [ o140~ )

f"gsiuxdw j (m - z)sin(r - )de _ /"’El—z)sinmdx
0 0

o 14cos 14 cos*(m - ) 1+cos?z
- 1 Trsin adx _ - T wf T T\ _m
lition, T tan-1 =.._{-___ =
by addition, 3 Torooss ~ 2ta.n (co; A i

A ol z 20 o
8. (202 - 2*)2vers=¥ dz::f (2az ~ 2
(] a 0

2a 3 :
a3 iz .
= [ (2az-2%cos™YZ~1)dg, changing
0 @ ht

mto g -2z; .. u=?.; ﬁ La(2ax—m’-’)%dm, by addition; if now
=a(l+sin 6), u:{fﬁa{oos%. cos 8dd
=mat [Fcostpag =m0t 3.1 8
mﬁcos 2 I
9. If--h the series= h{1+ ! +..+ ! 1,
N A (2R} N1Zn 1)
and .. (Cf. Art. 4) f Avpure m the limit when A=0, -+ the ferms

k, 2b .0 —1]k & from 0 to (n- 1)k or 1, and differ successively by &: . the

. N . il
required limit is  sin-la =5
o =
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b2 +(2h)? +(3R)2 + ... + (2uh)?
(IT+R)P+1+20)2 4. +(1+nh)?
and . multiplying numerator and denominator by %, the fraction in the

2+l (2 P41(1
limit, when A= 0, dx xP dx 142 p_cc [2. (_1_"'1)__
’ / p+l

10. If %: h, the proposed fraction =

=27+l (21 1)- -@)—pﬁ

1
11, fu= fﬁ}”, andlz:-l-,
1-",7! n
logu=7%{log1+log2+...+logn—n10gn}
S I1f 1,2 n
-ﬁ{log;&+log;—z+...+log;z}
=Iflog h+log 24+ ... +log nh},
11
., in the limit logu= f:dxlogx=xlog x/ - Jo zdz . 510’
0

and, - the limit of 2logw, when =0, is 0,
1

logu=-1, and . LU=z

f ?log(tan *log tan- ~2de = f *log cot dz,
0 0

and .. by addition ’ log(tan . cot 2)dz =0,
<> every term of the last integral series is zero.
13. Integrating by parts,

T T
[ sin zlog sin zda = - cos 2 log sin x/ / dee 255 K
0 0 sm Z

f clx( - sinx)
sinz

=~ cos % log sin x/ (log tan® + o8 a:) /
0

ka

w:a

=-cosxlogsinx/
0

and when = =g, ~-coszlogsinz=0, cosz =0, and log tan Z 3= log tan Z

=log1=0, .. the required integral (" cosz =1 when x=0) ultimately
-1

z=0

= <log sin z - log tan 7_26)

- oL [y ~-1.
=log2 cos 2L=o 1=log2~1



24 TODHUNTER'S INTEGRAL CALCULUS.

14, Ii P= {f(a) f(a,+7%)... f(a,+7li_1c)}%,
logP=;_lz{logf(a) +1ogf(a+;z) 4+ +logf(a+”_'_;_}¢)

——

- as in Art. 39, 10gP=(1? :-glcx log f(), %:dx, or h=d?x,

ate
E/‘ daxlog flz)
P=e™¢

Here f{z) must be positive from z=a to 2=a+¢, for log f(z) to be always
real for such values of «, and f{z) must also be finite by Art. 2.
Also, if f(z) be not constant,

c n-1 1l . 1 [o+g
P<{f(a)+f(a+ﬁ)+...+f(a+Tc)}.7—2, Le, P<5L Hede.
If 0 =0, ¢=1 and u=log f(z), and . f(z) =¢% it follows that

1 1
ejﬂ' ws | g,
0

unless u be constant from z=0to z= 1, when the two expressions are equal.
15. L 2 39 log(1-+n.cos%9) = ﬁ % 19 Tog(L +nsin), by Art. 41 (3),
= % ﬁ 2dp log(1 +n+n*cos?d sin’f) by addition,
= ‘12 ﬁ 2 d6{log(1+m)+log(1l +nsin®20)}, and ..
20 bereplaced by 6, =y ﬁ " 16{log(1 +n) +log(L + nysin?6)}
=T log(1+n) +1fgd0 log(1 + n,sin?f) ;
4 2Jo 1 ’

similarly j; % 16 log(1+n,sin’) = Z log(1+my)+ é j; a8 log(1 +nysin®f),
and so on ; thus

ﬁlog(l +ncos®0)df = E log(1+n) +%1Og(1 +m) +TT‘—5 log(l+2y) + ...

1 (% .
+§"'ﬁfo d6 log(l +nr4185in%0) ;

but &:.-—E-— .]i 73'2:__._&__.. 1 ¥ . Mg __1-
" 'n. 4(n+1)<4’ i 4(n1+1)<4c’ and so om, . P TS

us
T

: 1 (2 - : :
., the term i .L % 46 log(1 + my415in%0) approximates to §r1+—1 A df.1og(1), or
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zero, as r increases. Hence
™
f *log(1 +n cos*0)d6 ='.’£ logf(1+n)(1+ ,@1)%(1 + n2)é.__ b
1]

when the number of terms is increased indefinitely.

16, Integrating by parts,

f ecx ec .
j €%, cos axdr = e cosax+ | — . a sin axdz +a constant
¢

el
=¢7cos ax+ and .asin oz~ f Z.a?cos a,a,dx +a constant,
¢ c?
a®\_ ecos ax | e ax
f €°%¢oS axdx(l + ) CZS +270 f;n +a constant ;
s 27
oA — ( ot -)
sin ¢ cos ¢ Nai+¢ )
[ -
f e cos andx = Py ———(cosax cos ¢ +sin ax sin ¢)Wa? + ¢ +a constant

_ ¢*cos(ax — ¢)
(a?+c?)2
Hence if ax — ¢p=az’, the second integral with regard to z of

€°%C08s Ak = f dx 6“003(“” ¢)+A}
(@ +e)k

+a constant.

°¢ cx! ’
ew [ dxC0S 0T az’ +4x'= e‘{@s—“—x;-—@ +a constemt} + Az
(a?, + 62)% 24

=t

cos(aw 2¢)+ Az + 4,, and so on.
a?+c?

‘Thus, integrating » times successively, the result is

ew%mb@+On_lx"-1+0,,_2xn-‘~’+... +Ca+C.
(a?+¢)3

1
17. Comparing Art. 49 (11r.), x(%) =a®~1,

1
k _Q=M.}-loga-m—0whenm ©,
x() o z? @

and the limit is © < 1, and the series accordingly divergent.
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18, Here, by Art. 40 (mw.), ™ y()=2""%,
wy(z)_ 2 fa+- b b a+-—1
S gt e ) (e}

= —élogx+a+é,
z z

!
and .. when z=c0 M)za, and .. ete.

Y(z)

: . plp+a)(p+24)...(p+2a)
19. Here x(2) in Art. 50 is qlgTa)lg+2a)...(g+aa)’ and

—1} when n=om,

Py=lt. ofx{ e

=1t. of = gtlz+la_ l} It of 24-P) -2 272 when = w,
p+(x+1)a 6 o
and .. the series is convergent if g—p >a, i.e.,, ¢>p+a, and dlvergent if

g be not >p+a.
20. By Art. 50 the series is convergent or divergent as P,>1 or not

[ 22 +axp=14+b2P=24 ... 1}
\z# + AzF-1+ But2+ ..

>1; and here Py=1t. of z
=1t of x{(__-—._—a - ‘:Z - } approximately =a ~ 4, ete.

21. Comparing Art. 4, fu?dx is the limit of a series containing n terms,

which may be written
3-Z(a,f+aé+ wta)=4,

and similarly, the limits of the three integrals being the same,
B =1t of %(alcl +0yCa+ oo+ 0yCy)

and 0=1. of %(cf+c§~’+ o),

and .. by the Algebraical Theorem quoted 4 (' cannot be < B2

CHAPTER V.

1 Ifng:y

Y
Vads =/y 3 / 2.
N e L T
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28 _q  (@+d+e)x?— (be+ca+ab)x+abe

2. If =
(2~ a)(z-D)(z-c) (2 - a)(z~D)x-c)
A B C

=1+,
x—-a -0 ZXT—C

then (a+Db+c)2®—(be+ca+ab)z+abe
=A4(x-0)(x - c)+ Bz ~c)(z-a)+ Clz~a)(z-b
and .. putting z=gq,
Ala-b)a~c)=a*a+b+c)—albe+ea+ab) +abe=ad,

3
A=—"9
or @-b)a-c)
and similarly for B and ¢' by symmetry: thus
de. o3 aflog(z - a)
= + 4.
[e=ame=a"* tiaza™* *
3 ' tanzdz ___fdm .sinz cos 2
’ 1+m2tane ) cos’x +msin’z’
and EZ%(: (cos®x +m?sin*z) =2 sin z cos 2( — 1 + m?),
tanzdr _ 1 2 .
[T mttans 2 =) log(cos®z +m’sin’z).
4. Ifz=9 f__*_c@m___?_a'cig_g‘ 1 = [ 2.yt
Y m(aﬂu + 7).‘,2”)% y oo an(l + 5%7‘)% an(l + yen)é
= L[ B ipyney,
= (1 +,¢;2)‘~,!§’ if Y=z,
and -~ the integral =— n—iﬁ logfz+(1 +z‘~’);~’}
= salos{(5) +n/1+ (5]}
- Ea"log{(x> A/ 1E *
1 X2

=—log
no an + (a2 +x2n)&

_ cos xd
5. f sec z sec 2udr = f (= sta)(1 - 2 5in%)

2 1
= [eosade] gy sy }
fcosx z'\1«2sin2x 1 —sin?z
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‘ ._l' -";:. 1 1
= cosxdx{-—-—————»-i—-—-—-— ——
f 1-A2sinz 1+~2sinz
_l<__1__+__1_~)}
o\1-sinz l+sinz
=11 1+AZsina }1g1+slnw
B Cl-N2sine 2 l-sa@
6. fdxtana tanz _fdxsin(x—-a,)_____f xgi_n(_x+a‘—2a,)
tan @+ tan z sin(z+a) sin(z + o)
=—fdz{cos2a—sin 2aw}
' . sin (z+a)
: =smﬁalogsin(xv-}-a)—mcos,?a.
- 1 1 1
C FraR T @rdr- ot © @toz+a)(@?-ar+a?)
_ Az+B Cz+D
—x'3+ax+a2+x2—ax+a2 SUppOse,
. 1=(4z+ B)(x* - —az +a?) +(Cz+ D)(@* + ax+a?),
- equating coeﬂiclents of a8, 2%, #, and 20,
) A+C= ~ad+B+aC+D=0,
Aaﬂ—Ba+C'm‘-’+Da—0 and 1=Ba?+Da’
A——C’_—(B+D) ,andB:D:blz,
. 20
and - f dalz+ w) dz(z - a)
a:4+a-a.-+a4 2a3 22 +az+ o 2a,3 22— ax+a?
1 2z+a a w-a o
= |d
403 w{m‘2+aw+a2+( . )+?£L: -ax+a?+(x__a. ”+3a,2}
2 4 2/ "4t .
(), 2 e
1 atoxtad 2 g 3) . 2 (x-—§)
== Jlogt——— = % b S SV AN B -1
1) T B ) B wE [
3
z+ z 2
and tan- _—2-+t _2
a3 ‘o
5 =y
1220 22r-a o1 dozy3 3
=tan~? +tan 2" = tan~? = -1(35%/
3 a3 Sl vy e e = tan -z’

and .. ete.
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7
u = -‘1 - = —d_ l“

8. If 50+bx—y, dx( x2+b) dy =

(a=badx  __ xzdy

a{ex® — (o - ba))d {ez® - (@~ bxﬂ)g}g-’

=- f -—-dz—-—-.cos'l__L_
(c®+4ab —y? )é ((GES 4ab)g~’

= cos"l{ _a_-i—ﬁx:_ .
2N+ dab;

. . 2 . n-1) 1
9. If u=limit (when z=c0) of {sm%.sm%..,smn__nllr}”,

and ..

logu= l{Iog sin 7—r+loo"sin2__7r+ ...Jlogsin? -rbl 7"}
n
=1 {Iorrsm +logs1n = +logsm-—-1 ar}
T 1
=-f dxlogsinz, - 737:%_175-:1{' when n=ow, and .. by Art.

" 1 1
51, logu-;r .mlog 2, or %= 5

10. If tan~'z=0, x=tand, dz=secddf, and the limits of 4 are 0 and 5,

. ™
‘, / z(tan ~1z)dz = ﬁ “tan 0. 62 sec—ﬁclﬂ- tan24. 0"/ / df. 0 .tan
0

=T j 26, 8(sec2-1) =
0

% B(tanﬁ—ﬂ)l + ﬁ df(tan6-6)

R’;l 1

I

t3
32—1+E—(logcosﬂ+2)/o 16 ZHOg"/Z

@ (% [zty @ (2 2=xty
f [ f extutrdadyly = / [ dwrlye"+y+2/
0 Jo Jo ) o Jo 2=0

a [
= / / dmdyfe'l(x+z/)_ez+.v/l

f d:z, L ooty _ ex+y}//
y=0

or 1 1\
= | dx --64"--6 ~ZeR 4R
/; 5° +ef
1 30 1,,.3
=261 g2 gt 001900 _ 00
3 e +e Se+4c e

- :_lp-(a 30.’.[&_‘_ 0 — 3
8
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12, Supposing (for simplicity only) the variables to be equi-crescent,
i.e., in Art. 60 all the #’s to be the same, say Az, and all the s the same,
say Ay, as this will not alter the values of 4, B, or C'; then the limits of
the integrations being the same in .the three integrals, 4 may be regarded
as the limit of the series

AzAyfaR+ad+ ...+l
+AzAy{a'E+ '3+ ... + a2} + (0~ 2) similar rows,

and s0 on, as in Ex. 21 of Chap. IV., so that 4C is never < B% m and »
being each the same quantity for B and C as well as for 4.

13. Asin Art. 4 (comparing the previous example), ﬁqu(z)dz may hbe
vegarded as the limity when }=0, of Rip(0) + p(b+h)+p(b+2R) + ... + p(a-h)}
which, .,=1. Then /a adzqs(z)cos ¢z is the limit of '

R{p(b)cos ch+ (b +h)cos e(b+h) +... + p(a~ h)cos e(a — h)}
and j; aqs(z)sin ¢zdz is the limit of
h{g(b )sin cb +¢(b+R)sine(b +4) + ... + (e - h)sin ¢(a - R)},
f dz¢(z)cos cz f dap(z)sin cz) =limit of

h“ﬂ VE+@(0+0) 12+ ... +dla—R)R+2p(b+17h)p(b +sh)eos ¢(r - $)h+.. 3
which, = ¢(z) is always positive, <h*@(d)+¢(b+h)+...+p(a~1)}, and
L=<l

4. If /- #(2)dz be the limit when A=0 and n=o0, as in Art. 4, of
Mp(d)+ (b +h)+ ... +p(b+n—1]R)}, this series=1; and
v/blzqs(z)dz:thelt of h{bp(B) + (B +A)p(b +A) + ...+ (b+n — 1| h)p(b+n— 1)}
=b+h¥p(b+R) +2¢(b+2h)+ +(n-1L)p(a—h)}; also
¢(z)dz the 1t. of

NP (8)+ (b + PP +1) + (b +2hVp(b +2h) + ... + (b +1m—1) h)’p(c ~ )}
=2+ 207b{p(b+ k) + 2 (b +2h) + 33 (D + Bh) + ... + (n—1)gp(cs - )}
+ D31 @b+ h) +22(8 +20) + ...+ (n ~ 1)2p(cr ~ ~h)},

L az?gs(z)dz— ( j; “z¢(z)dz)2

=200 (b +R) +2¢(b+ 2h) + ... + (n - 1)p(@ - 1)}
+13{1% ¢(b+h)+2(b+2R) + ...+ (n - 1)2¢(a ~ h)}
~ 260 (b+R)+26 (b +2h) + ... + (n - 1)gp(a — h)}
= B0 +1) +20(b+20) + ... + (n—1)p(c ~ B}
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=112 ¢(b+h) +2%p(b+2h) + ... + (n - 1Yp(a ~ h)} .
— BB +R) +20(0+2h) + ...+ (n=1)p(@ = )5 vri 6)]
wnd if the coefficient of A% in this be multiplied by
WMod+h)+p(b+2h)+... + p(a - h)}
which ultimately =1, the square terms cancel with those in the coefficient
of #*in (1) and the general terms formed by products in the two series in
(1) are respectively SO+ rh)p(d+sh){r?+%,
and (b +rh)p(b+sh)(2rs),
therefore, as ¢(z) is always positive and cannot be always 0,

j; Ez2¢(z)dz > { j; aqu(z)dz}z.

CHAPTER VI.
min

1. Here y=bx » suppose,
(dy) 1+c~xn say, and s= fdx{1+c-x " }J’

d
o (cf. Art. 15) p=1and q =2 here, and the conditions for integrability ave
that (1) 2—1— = "." should be integral,
' 0
1 =n n o, 1 .
and (2) 5 5 or o +§ should be integral.

2. By Art. 100, the equation to a tractory may be written
@ N -y =clog {mﬁ-'\/;‘ -yd}:‘

flf___,y —+ 4 (__ ¥ ) ¢

Ay NEZyP cNE—P\ NE- P
_ Yy  _c_c~NE—y? _c__ry/?-’ﬁ
TetNE- ¥ y oy

s:ifdy{l +c'—2-;jgy—2-}?§=ifc—§-?{=iclogy+¢4.
If, when =0 and y =¢, §=0, then 0=%clogc+ 4, and therefore the length
of the arc from the cusp to the point (z, ¥) is *eclogyFeloge=rclog ?{
Since % is negative for positive values of y, then for such values y dimin-
ishes as z increases, .. Ccll is here negative, and .. the negative sign of the
radical in the integral is to be taken, and s = 100—/ Also, v y<c except

when z =0, logy is positive.
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N.B.—It is a property of the tractory that the length of the tangent
intercepted by the asymptote is constant ; whence y@ =cC.

(cf. Todhunter’s Dif.

’ 3
3. The equation of the cissoid being ¥ = 2’3
Cal. Chap. XXVL, Ex. T} a=%

31, 1s
dy_{)tb (20 - x)'*‘g . (@‘)L +w(3a——x)"’=m2(8a-—3x)
dz (2a-z)¥ © U \de 2a-zf  (Za-zp’
s= afdx.(sa 39’ nLif2a-x=2
(2a— 9:

a:-fclz (26 - 33)- .3 %=—fdz(2az'1+3)%z'1,

s if 2271+ 8=2 and .. —az7dr= tdt,

5_[tdtz- -l= ftﬂdt t_“_—__ _2/‘” ‘_2t+6f~,,-"lf—
o '70& -3

o J o
=2 +,/3 logt j 3 thus the curve is rectifiable.

=l

4. The curve is symmetrical as to both axes, and meets them in the

points(ig, 0) and (0, £a); and if s be measured in the first quadrant

from (g, O), y and s increase together. Hence
8= 4fady{1 + (flf)“}%, and here
0 dy
Oy = J'af-’- + 3fb§y§ - 4y2}'?§’
“% = {a‘-’ + Bﬁgj& - 4y91'%{a%y'% - 4y},

1 (24 a2+ 30858 - )y (05 -4y
dy 41/%fa*+3a,dy’-f 49

a,?(4a'5y'3 4+ 4y”3 + ad) - g s
4had- y*)(a Fraabytrayl) gyiad- ﬁ)

8= 4f dy .a* Y2 or, i y=ad,
Qy%ad— )z

1 S0gde.ab L g, -
=2 2T _=6a dz'zl=—6a~/i—:z‘-’ =60,
® ¥z, ¥ (1 -2y (1 - )% 0
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5. If z+y=asec’, then z-y=a tan®),

z= g(sec30 +tan®), y= % (sec®d - tan3g),

2% = 3% sec(sec § tan 6+ tanc0) = 32_“ sec®d tan f(sec 6+ tan ),
and %’:;ﬂ sec? tan 6(sec f — tan 0),
(ds )2 (d—“) sectd tan®f . 2(sec26 +- tan2f),
as) “\32

=3 f df(sec?) + tan0) ¥ sec’d tan 0,
if 4, and 6 correspond to the limits 2; and 2;

6
s:.‘?ﬂ‘ / dﬁ(bec~6+tan°6)% 1 d(sec—ﬂ + tan?4)
2Jp, 4 dp

\'3.
3
¢ (sectf+ tan-e)“-‘/
N 8,
1 2 23 1 2 3
=m{(x+y)“ +(x‘y)3}? _Qgé{(xl"'yl)d + (@ -) } .
9 x ey
6. Here fl_ = {1 +(-/ }’1-’= Bz, . .CZ—'?l:l"/aze':— e,
dz ¢ dx ¢
ol 2
or if a-e F 22 and . z.ecolx =zdz,
R NI
fda, / ,=s—ctan-1Z —\/a-¢c~c~-ctm Yatee “,
PR, ¢ c
7. Asin Avt. 104, if the pm'a.bola be y = "'s/daf
coto = C_ll/_ ,\ , or & = tan?p, ., Zl}s = 20 tan ¢ sec’e,
and (% =cosec ¢, .. gl% =2asecip ;
and §=2a f secpdep =20 / de sec®p(l + tan?cp)"";

1 1 -
oriftang=2  s= °cofclz(1 +2) =021 +2%)% + alog(z+ /1 +2%)

=atan ¢ sec ¢ - ¢ log (tan ¢ +sec ¢)
amngb_l_“lo 1+s1u¢ -

e —_— v

cosigp 2 cosg
C
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12 1
8. ) Here cotqb:%: Egc(a”‘x") 22((5:)—5’

z =—‘-)877a tan3g, and % = ga tanZp sec’p,

also . gi =cosec P, - fll—-; = ga tan ¢ sec’p,
and .. s= §7a secdp+¢, and if s=0 when ¢ =0,
:28—7a.+c=0, s=%a(sec’3¢‘— 1).

Clearly the curve is the evolute of a parabola.
9. The intrinsic equation to the parabola being zll;) =2asecp(=p), " p

increases with ¢, the first figure of Art. 114 will apply, 4 being the vertex
and AB the axis of the parabola 4P, and B the corresponding position of
the evolute ; for which .. ’
Sl,z %1 - (%)(’: 2a(sec®p — 1).
Also, if (=, y) be any point on the evolute,

de _ . do _ N 3

FA cos g, .. aﬁ’ = oS ¢ . b secio tan ¢,
and « = Bafdp sec’s tan ¢ =30 sec?p + ¢,

orif, when =0, &= (g;; >°= %,

#=3aseckp—a; also ‘%:sin%
A ds

‘ f)lzqub =sin¢.6a secie tan @,

y=6a f de secp tan’p = 2 tan®p + ¢/,
or if y=0 when ¢=0, ¢=0,and .. y=2a tan®e.
Thus, where the parabola and evolute meet
deltanSe = 4a%(3sec’p ~ 1) or tanbe = 3 tan?p 1 2,
tan®e — tan%p = 2(tan’p +1),
tan?p(tanp —1) - 2=0or tan’p =2,
and .. sec?p=3, and §'= 2u(33 - 1).

10. The epicycloid is (cf. Todhunter’s Diff: Cul.) given here by
a(a+0) ‘ab a+b
= : g2 COS e .
w=2re; T axn
ala+h) g ab . a+bd
535 sin 6 Tiol sin—— 0

6+ 20 & ’

and y=



(V)
Y

CEAPTER VI.

a(a+0) cosf)—“(a"'b) cos ”’e

ban = dz/ _y. clx w+2b +2 D
dz~d6 " d” a(a+b) a+b (m+b)sm6
°b b +2b
a+d
cos § —cos -, —8
'—“”b—b‘“'t*“‘ a+2b
sin q;- 0 —sin §
w+20 (ds‘) a,~(u+b){ a,\
= 8; also 2-2cos -0
o= 0 M0 \G) T araE \ 2R
ds _2ab(a+b) oo af_ ap e
4™ (e 2R .2sin = 37 csm—-—b, say; .. for the evolute

! ds ¢ . 3 T (l¢’ ¥ (I¢)
o ~¢E‘+A csm - »5—}‘4 .. putting §+d+2b r w2l

(47
4 _ o sin 49

l¢ T3 ,and . the evolute is also an epicycloid.

11. Here (?% =sin 8¢(8) + cos 6y"(6) ~ sin 6y"(0) +cos Oy/(6)
= cos 60J/(8) +¢"'(6)),

and ;% cos 6/(6) - sin 6/(6) ~ sin 04/(6) - cos 0/(0)
= sin 8(y/(6) + ¢/"(6)},
tly .Y 7%
=@ +ye),
and ., §=y(0) +¢"(8) -+ constant.
2y

12, Here Sa i 423+ 120%z,
WL

2,38 (4 3, 9Ny
2 - = 4o’ + (2® + 3a2)*}*;
wx

but 4ab + 2422 + 362)2 = 26 + Galet + Yate? + dab
=8+ 4ot + 2t + Sata? - atet + 4
=(&*+ 4a?) (24 + 2022 a")

e’y = / rlx(a:2+co-)(sc~+4a-) or if # =2« tan ¢
s = J datde . sec‘iqb(l + 4 tan®),

:(_( = f do sec’p +§ sec’s tan ¢ - % f de sec’e,
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and also 2‘; = f de(4sec’d —3sec®p), .., eliminating f do . sec’s,

45 25 _ _dxf ) 3
;-E—4sec3¢tan¢--2a{%] +1} ,

s= %(a:ﬂ-{-zm?)%, measured up to the point (z, y).
a’)

CHAPTER VIL

7
1. The equation to the catenary being y = (eé+e ¢),and 2;; the abscissa

corresponding to 5,
9 % ]
[ /

A= /.yflz-[dx ec+e acc) —2..(k -e c)/

.o 0

7y E 2
——-(Ec—e L), and s_v(ec-e ¢), .. A=cs.

2. The curve is symmetrical as to both axes, and when y =0, w=+aq,

whole area = 4{ydm 4{(1951){1 < ) }7 orif = asm"q&,

the area =4 [ "3 sin% cos ¢de . b cose = 12ab / gd¢(cos4¢-cos""¢)
0

3.1 5.3.1\_. , 1 3_3mal
=190, 7{3:10:3- 1\ gy 1 3 _dmab
A ol oo I AP SN

3. The area, bounded by =0,

a 2 2 2 w ]
= dm.fﬂl@=ﬂtm‘ls—c—~(—lo cc'-’+aa'-’/=cz7r—‘. log 2
I; a+2: a a 2 g )fo 4 g %8

4. The coefficient of 9? gives 22=0 for the asymptote, the other two
asymptotes being imaginary ; also, the curve is symmetrical as to the axis
of %, and, when y =0, =20, and = cannot be greater for real values of y,
nor can & be negative. Hence

the area =4 f xdy = f (ly S“ , = 8o ta.n'1 Y / 8a?. —4:7ru

Tle above is simpler than mtegratmg with respect to 2.

5. The coefficients of 22 and y? give for asymptotes y=+a, and two
imaginary asymptotes, and the curve is symmetrical as to both axes, which
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it meets only at the origin, and there are but two values of y for any value
of z, and those equal and opposite. Hence

ay
4 e e daNaE 02 =4
the area = /d_/ f\/a~—/- dan'a* y/ =4a’
6. The curve is symmetrical as to the axes of 2 ; has only one real
asymptote z=a; and when y=0, =0 or -a, and y is real for all values

of z from 0 to —a but not for larger negative values, nor for positive values
>a. Hence the area of the loop is -2 e x\/ 2HZ pecause x is nega-
-

tive and y must be positive,

0 r0 2 o o
o = 20— (L~ 3 2
ar+x :_2/ Attt ta

——

Joa Na? - z*

0
==2| da
J-u ,\/a'l_w‘l

- s . &0
=N — 2+ aNa? o + a? sm'l& - 2a‘~’sm'1& /

— 202+ a'z( - ’g) = 2a2(1 - D CE. Art. 136,

b

7. Here from Ex. 6 the area= [ i 5’75'?‘,
Joo Nat-

N S o o . w @
and . =—2an0? — 22— a2y a%sin- 1&: / .

=202 +a?.

l\.‘

8. The real asymptote is given by the coefficient of 32, i.e., x=2;
the curve is symmetrical as to y=0; x is not > 2a and cannot be newabwe,
and when y =0, =0, and for each value of 2 from 0 to 2 there are two
real values of ¥, equal and opposite. Hence

20 a

.‘}
the area= fdx —-::_~—_—:=-4.L v’a J +6[do:~’2ax-x‘~'
Now—z o o

2t 2 . 0
f"“‘——“— v -
_Gf daNa® - (z—a) = (x—a)\i’ax—x/ +3a-51n—1m£/

0

= 3a* {_—(——)f_&m?.

9. TFor a given value of 2 if y be possible, ¥ « from =-~Na*-z? to
z+Naf =22 and the extreme possible values of z are obtained when these
limits of y coincide, and therefore a*~22=0, and =+a. Thus the

area:fdx‘o,+~/a~—x~ —z+Nui-ot =2 dx\a-— [d:z.«/ar-- 2

w -t

=4 times the quadrant of a circle of radius ¢ obviously, .. =ru2
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10. These two parabolas meet where 4ax = (4: )' and therefore =0 or

4a, and the included area will be seen from a figure to involve only positive
values of the co-ordinates. Thus the

A [ 4 12 3 /w
B = __ e
area= , clxl-\m, 4 J o Y T2

43 o= 4 16 ,
(s 8_T5> == g

11. The curve is symmetrical as to both axes, and when =0, 22=0 or

e ala
a2, .. the area=4 ’ dx b““;, 24 b( -2 =‘:%“”-
a~ 3 a? o ©

12. The curve is symmetrical as to both axes; has no veal asymptotes;
2 must be between ¢ and - a, and for each value of z between those limits
there are only two real values of g, equal and opposite; and when y=0,
2=0or +a. Thus there are two equal loops and the area of either

=2 [@E e - o)t =- A (ar- I
0 af Sy o 5
e+NcT g y*
13. Here z=—-Ac?—y?+ clog———-/—, and the lts. of ¥ are 0 and ¢,
NeE 2

[V ( ¢y )\

area = [clyL Net =y +clog 7 |
_—16:+cyloac__|_i/(‘£?zl/d—c/.cdy :,/f ‘ -y N
4 © y  lo o UL AN )

14. The curve is symmetrical as to both axes; has no real asymptotes;
# must lie between @ and — a, and for each value of 2, y has but two values,
equal and opposite ; and when =0, 22=0or a®. Thus the curve consists
of two equal loops, and the area of each

3 [ 2 9, D}
{dx ZA ) = = __,j dxﬁ."‘_’_)’ fdxf’/—a Lro | 2% ]
[} 0

o'+ 2t Nal-ot Waf—azp Nat—a)

»»»»» @ Ct" a Z‘
-—a,-sm"‘—/ +~/a4 x"/ ——2—‘“‘=l§-(1r-2),
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15. The curve is symmetrical as to y=0; 2 cannot be >g but may
have any less value up to —o; for each of such values of @, ¥ has two
equal and opposxte values, and when y=90, =0 or % 5 S0 that there is a loop

from 2 =0 to a:—; Hence the area of the loop is

-

[ 3
{'(Zo haNa? =20 b 1, o /2‘ b Fd 2ok
2], 4a? "o 3 2l - 2a)* a2 o 2(a* - 2a2)

b1 e o R b.0°_ab
" 5 ‘“x)/, 300+~ 30

16. The curve is symmetrical as to both axes; when =0, y? =%‘, and

when y =0, x = +a, and between these values of 2, y is finite, and there are
two real values of ¥ (equal, and opposite in sign) for each value of z. Thus
there is a loop from z=—a to a. TFor values of 2*> 4?, y increases indefin-
itely in magnitude with x. Hence the area of the loop is
ade(e?—2%) _4a? ] / /73
4[0 N ,ra-_:_ N logie +~a? +a] {' —2~/§x~a +x/+2»~ {dx\a--i-m-

+~2alog{z+ N2+ a?,
from =0 to @, =3v2alog(l+n3)~ %m/z =a*{3v2 log(1 +~2) -2},

17. The curve is symmetrical as to z=0; when y=0, 2?=¢% and

solving for 9, 902 4 42~ 902 - 2%) = +(a? - %%){4a? - 2(a®+ )
= £n2a -2
-, must lie between —« and ¢, and for each value of @ between these Its.
there are two values of 7 ; and there are no real asymptotes, and the curve
is therefore closed. Thus the area of the curve is
o i ) 37,9 A\
o [ (2002~ ) + N30t~ 2¥)F _2u(a?~2?) ~ N3(a?~ x-)%}
2(a* + 2% 2(a?+ z?)

Hi
, or if z=asin g,

B

—‘.Zr\/chZL“ :—x)
+2?

: "-’d¢ costp
ren = 20202 ——
the area = 2/ )y 145

cos’p _ cos' _ cos'o ~2cosp+2cos’p - 4-1—4

bus =
" T+sin%  2—cosp 2 —cos%p
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50 * / 2, 9 4
the area =2+ 20 / dé —cos~¢-..+;2.\_:.;“._:(:, .-(:oé'-(:i}
1 % c?
=_’-25 5t }2\za-+8~/2afd¢l+9t§n“¢
5 D) 13,2 _s,ec_(p_.
=—-_!,'51ra“+4<\'.’.aﬂd¢é+tang¢
/%
=_g‘£+4\ V2 tan~Y(tan c;l>~/2)/0
\

5mra? T_ s 5
=- Sa‘-’ = a~(4— —)
N2 2" N2
18. Replacing 2 by x, the area contained between the ecurve
y=c¢sinzlogsinz and y=0is f aydz, y being taken positively and z be-

tween the proper limits. Here as sin« cannot be > 1, log sin« is negative,

and therefore y negative ; and when 2=0, y=0 <for y=limit of c}_c_w ;m a,

sin 2
y=clog1=0 again, and when z=m, y=0 again.

T

m - - z . -
Thus the above area=-a / edx .sinz logsine=-2ac | dusin logsinz
0 0

=- csinm); when z= 2,

=-2ac(log 2-1), by Ex. 13, Chap. IV.

e ﬁn+1 - a’n+1

B a\*
19. The area= fa dz. c(a) RS ) the area being bounded

by the axis of z, as there is but one value of y for each value of z, % being
integral or a fraction in its lowest terms with an odd denominator, for if »
be a fraction which in its lowest terms has an even denominator there are

two values of y (equal and opposite) for each positive value of 3’ and the
area would then be doubled. For zy = aﬁ’ n=-~1, and a=c, therefore the
area =the 1t. (when n=-1) of - ﬁ""‘l ~ oty
=the lt. (when z=0) of a?. ’8 ;a =a2./3‘"10gﬁ-1-a"logg.
=a?(log B -loga).

20. Solving for ¥, cy =— bzt (D*2?— aca®+ c)% and the Its. of  are given
when these values of y are equal, and therefore by (ac-0%)a*=¢, say
z=*2z; therefore
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1
O]

“dz 0% ;o
the area = -—c—[—bx+{c (ac— b*)a?} +bx+{c—-¢u Sy
-2

¢ [dafo-(an- et =N E Mty o
0 ,

¢
_dnac—1? T T
T 4 e

91. This curve is the lemniscate, aud the area of either loop is

s

1w

472 i
2 Ldi= /d@ a~cos?9- 511190 =

0 2 Jo 0

9] 2

92, If n be a positive integer, when =0, »=0; when 720:7‘—:, r=a,
and when 7=, » =0 again ; thus there is a loop from §=0 to :—Z: a:;ld turn-
ing the initial {ine round the pole through the angle 15 the equation be-
.cozfxes r=asinn €+~ =-q sin 26, thus there is a,nother equal loop
hounded by 0=— and 0—2— both produced through the pole; and so on.

Thus the angular space 21r round the pole is divided into 27 equal parts,
.and in each of the odd divisions counting from the initial line there is a
loop, in the even divisions a loop produced backwards. Thus on the whole
there are 2n or n loops according as the vacant even divisions from 6=0 to ,
are or are not filled up by the negative values of » from §=m to 2r. To
test this, examining the case of the second division, the corresponding divi-

sion on the opposite side of the pole, is the <2+§>th or (2+n)th division,
n
and there ave therefore 2n loops if 2+u be even (when r is negative), and

there are only n loops if 2+ and therefore n be odd.

T .. g
Also the area of each loop= f M’“Mg Ui .de,

-or putting nd for 6, = 5 sm-6d0 =— [ sin®0df = -——.

()""

T
o Or T as n is even or odd. If n be a negative
-~

integer, considering negative values of 4, a similar result follows, the only
difference being that when u is odd the gaps in the first case become loops,
and vice verse, Generally when n is odd, there arve really n pairs of
-coineident loops.

Hence the whole area is

It n=2 a fraction in its lowest terms, (1) if =2, p is odd, and there are

“2n=p divisions in all, and » being odd, no two divisions are exactly oppo-
:site, and therefore some of the loops overlap others; (2) if ¢ be not 2, the
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number of divisions is fractional, and therefore again there is overlapping
and the problem of determining the area would be very difficult and involve

special interpretation.

23, If the initial be turned round the pole through an angle —z—, the
equation becomes 7 = a cos n( 60— 25;) asin 2, and the greatest va,lue of
being «, the area between the circle 1'=a, and the loops = ra?— %‘L' =% or

3ra?
- as n is even or odd, by Ex. 22.

24. From =0 to 7—r + 7 increases from 0 to N:/:’:-;f and then decreases to
0, thus forming 2 equal loops ; from 6= 3to 57 is 131possxble, since cosf
is then positive and sin 36 is negative; from ¢ -lr to — 37 7 decreases from
+® to 0. For the remaining range of angular space, from 6=0to ~ §, ris

impossible. Thus the area of a loop is

AT
ar
v

Tpa 2
/u%.dozf— apSim30 J @ s ing- ~45in 6(1 - cos’)}
0

2 cosd 9 cos 6"

Ay

@ o /°
=_{log cos f - cos 24}

2 0

2 1 1 2 3 ;
=Cé»-{log2+é+l} =§.4.?~%—10g 2.

25. Here r= a(cos 26 +sin 20) = a,\i‘z . cos| 26 ~ 7—;) and turning the initial
line round the pole through the alwle ¥ this bccomes =02 cos 26, and
therefore by the method of Ex. 22, as the area= / 2d0 between the proper

limits, the whole area—-o—» (N2 =Tk

26.  Changing to polar co-ordinates the equation becomes + 7= gsin 20,
therefore » is limited in value, and from 8 =0 to 'f—l:, 7 o from 0 o 0 again,
thus there are two equal loops ; turning the initial line through the angle g

the equation becomes +7=qsin(20+ )=~ sin 26, which gives the same
results, and so on. Thus there must be four equal loops, and the area of

each is .
as. -—sm [(101 o5 49) =T , Sin 40 /f_fq‘f)
[ =), - cos )=kl s n
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97, Changing to polar co-ordinates »2=40%c0s*0 +45%in), and therefore
»is limited in value, and for any particular value, as a of 6, » has only two
equal and opposite values, corresponding also to a+, thus the curve is a
-single closed curve, and it is symmetrical as to both axes. Hence
T

the area =4 Lg_ﬂ = / .clﬁ(a-cos~0+b—mn 26)
Jo

0 -
= 47r<§”)_' + fo) =9r(a? 4 13).

5}
=

98, Ifax=arcost and y=br sin 0, the equation becomes

=5 cos*B +& bl sm °p,
a®

b
andd the area=4 a_&:)iﬁ , a8 in Kx, 27,
0 -
e =ab.2 <.,62 L‘.l>=71'(;2’2, 2y,
and ab .27 44__&_}/)2 ‘lab( G 03

29. If x and y be of the same sign, both = and y are finite, but they
can be oo if of different signs ; and if « and y be both negative they are un-
real, therefore for a loop they must be both positive, and the tangents at
the origin are the axes. Hence, changing to polar co-ordinates,

_3_q§_in 0 cos B

sin3f +cos™d’
and the area of the loop is

[ %0 Qalsin®d cos?d _ Qa2 / %46 tan® sec20 _ _3a® 1 / T o3
0 0

2 S +cos8) 2 Jy (Sam+1) 2 tandf4l, 2

30. The curve is symmetrical as to the initial line; from =0 to -Z ,

T ™
decreases from @ to 0; from 6= 41;0 , 7 o from 0 to -0 from

P

0-—to3 —, roc from o to 0; and fmm 0—§4~ to 7, » o from 0 to -a.

T hus there is a loop from 6 ——Z to 2 , and its area is

4

2 Bf
d@a' cos20 1/ Pl *cos%0 , (putting 8 for 20)
o cos 2 2

cos’y

=a2f:7d0 cos?d =a2/§d0(cos.30+coso—cosﬁ—1+1)
o l4cosd 0 1+cosé@
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T s S
o E ol o1 L secd) masing) =T a?+attan?/”
—a A dg.Lcosﬂ l+gsec 3 =a’sin 0 , 2.a, +a~ta,n2-.o

= a’l(l - g)+a2:a2(2 —;)

31. With the positive sign of the radical, for each value of 6 there is
= ¢ and therefore > bcosé,

o
but one positive value of 7, since —===
P ’ N = bPcos

1" a?
and the area is 3 f doSr2+r, where 1= ————=—=0" +bcosh, and
2Jo i+l 17 Ja? = Lcos’d ’
a? a’
7’-)=—:;—::—_~—_::-_+bcos(9+7r)=-——‘——-,——~—bcose
® Na2= beos (0 + ) ~a? - bcos® ’

T
* at . aisectd ‘
Q= —— be s-H) z2f d@{_..._‘_f,‘____ Bleos }
e Jo Lw(a‘-’ -b2cos™d one 0 Ftanil + A b° +bcos™d

=92, T+ 202
it

ET g 2 N@-F Ne? =12/

[/

ﬁ dﬁ.secfg_“___r___bﬂ_l_ 203 ,Gan_lata,ne/%_
0

_al? Gmxﬁ

RN
Comparing the values of 7, and r, it will be seen that if the radical be con-
sidered negative, the same curve is only obtained over again, as if the
initial line had been turned through the angle .

39, See Art. 145.

33. (1) If @ <B, putting 6+7 for 8, r=a - bcosec 8, which is negative,
therefore, corresponding to the direction 8, measured positively above the
initial line is either a-+b cosecd or beosecd -a, and accordingly the area
between the limits 6y, 8, corresponding to the two radii vectores (on the
same branch) is

s 02
, dt (beoseca)?= % j d6(b2cosec®d+2ab cosec 0 + a?)
J 91

6, 2
B tang-'-’ .
=2 (cot ;- cot 0,)Eablog —— . + “(0,-0)
2 on 2

5
(2) If a> b the above holds so long as sinf <%, or, if a be the least

. b .
value of sm'la’, so long as 8 <a Of >7T—a; but if 0 lie between these

limits, for the upper branch r=a-+bcosecd as before, but for the lower
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branch, putting 8+ for 6, r=a—bcosecd, which is positive and corre-
sponds to a point on the loop below the pole. The integration will still be
the same unless 6, <a and 8,> a, and so on, i.e., unless one radius vector
be drawn above the initial line and the other below, or both above the
initial line but on opposite sides of »cosf =0, in which cases some conven-
tion would be required. Thus the limits of § might be taken as from 6, to

™
a, and from ¢+ to 8,; or from 6, to a and from statod,
2

3+ The equation to the ellipse beintr
07sin?f +1%08%0 = ——, oivii (1)
i
the areas included between the curve and the radii vectores 7, and 7, cor-
responding to the values 6; and 6, of 6 is

1[02 a2h® _{)”/E‘dﬁ .sec® _ab, _lon;a,ne‘(’2
5 8 " a%sin + bcos?d »2 2 b 6,

+ tan%9
ab{tan*( tan 6, ) ta,n“l( tan 91>
This can be expressed in terms of 7, and 7, from equation (1).
35. The pa,ra,bola, y*=4ax in polar co-ordinates is sin®f =4a cos 6, and

the area = 1 d6 16a2cos’d 8a? Zlﬂ cot? cosec?d =- §‘.‘:(cot30;, - cot?d,).
sintf 9, 3 -

36. The part of the curve bounded by the asymptote is given by 6=0
tor, -  thearea=j; f db{da’sec®d — a*(sec § + tan 6)%}

[dﬂ%secﬁ —2sec § tan 6 +1 - sec?f}

=q? d6(2 sec’d — 2 sec 0 tan -+ 1)
0

=a2.:’—;+af~’(2tan0~2sec 9)/'7‘-"'
0

__—-+2m I, ofsma -L +20°
2 80 0=;r'_
o 0 cos 6 T
= Q=g - +2).
2 +2 —smB/_j = (fﬁ )

37. From 6=0 to 2,  decreases from 3a to 0 ; and so from 6=0 to
~27; from 6=3r to 7, » e« from 0 to -, and so from —3w to ~7. Thus
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the curve consists of two closed curves meeting in the pole, and for any
™ ; )
value of § < 3 for the first curve r, =2a cos 0 +a, and in the same direction

on the second curve, r,=2a cos 6 —a, therefore measured in the same direc.
tion 7, > 7y ; therefore it follows that the second curve lies within the first,
Also the area of the inner loop is

23 nrde o 03 n7r "
Qa-j _:)_.(2cosﬁ+l)-=a‘/ A0[2(1 + cos 26) +4 cos 6+ 1}
2w & 2
3 3

‘.,'3?+ R 4,\/3} _ ag(_’r _ _3%@)’

and the area of both loops is

a‘-’j 7r(l“}{é‘ cos®0 +4 cos §+1}=a? fs. g . :17+ r}- =3mra?,
o ~

therefore the area of the outer curve, which is the whole area bounded ex.

ternally by the curve, = a'-’( o + :3_‘.:'_"

38. This is only a more general case of lix. 37, where instead of —%—

l
the critical angle is a, where cos a=— E:' Thus the area of the inner loop is
/ 1rda{g":(l +¢0s 20) + 2ab cos 0+ = (?‘f + b“’) (r—a)- @ in 90 - 2ab sina;
Ja 2 J 2 4 ?

and the area of both curves is

J ”da{aﬂcos‘lﬁ +2ah cos 6+ 0%} = 9)— + b,
0

9

. = 2 a~ . .

and .. outer area is “(T)‘ -+ b3> + T sin 2a + 2ab sin a.
-

39. If 2/, ¥’ be current co-ordinates, and the area u be divided into
strips parallel to the axis of 2,

I‘)
u= fdy’ rf\af—i-,/’“’—?“"} \/t' ,/”+‘, logly +Nat+y’ 2J/y
0

I+ 2 2y g
yrs/a~+y‘—®‘/+a lo, g———”"c‘: nlll ; log y+ \;‘ 'H/

b 2
3 la? + Nat+12 -1
(=Y ENTTY +y” ,and ¢ @ = w/ i
a

20 2 ) /”., ;45 2 "lb “" 0
R ANE -y L 2
e @ --____a_m;/ = and e’ —¢ = :I/ . cte.
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40. The curve is symmetrical as to both axes, and any line f=a cuts
it in two points equidistant from the pole, so that it is a single closed
curve. Hence

Eo (a™D*? (a’sin’f — hPcos™0) _ -4
the area = 4,[ ) af+b- (0’sin®0 + bPcos®) SaYs
. A 20 { 40?b’sin’ cos*f |
. ( f (a%sin®0 + bcosd)' S
=T. 2ub>  sinfeosf / {L Qa2 f T dh.cos20
2 - a’sin®6 + b*cos™d a* = %)o a’sin®f + b2cos®d
o1 B
T 20 _
oy A chsm BT R
2 a*-D%e (a2 - b*)sin®d +0°
_mlyy 4 ) 26D [" d6 . sectt
207 {a@-b*) (@2 =%

Jo aftan?g + 02

: ')“__ A2+ @y _la.tanﬁf"g'

(@-0 b b,
(S} e x_r )
—§<a2_b2 (TR 272 (-0 (o),
N A=wa- b)2

41. Here the straight line joining the extremities of the arc is the part
of the radius vector in the initial position produced to meet the next branch
of the spiral. Thus the area in nestion

by +2m

= jé?l 3._;)‘49, and 7 is given in terms of by the equation to

the spiral, Hence when 7= a(sq )n,

&

4
o 0'.!", ra® f( [} >2ll+1 (0 __27r)‘.’n+1)
=7m¢*| df.—er = —— o | - .
m jg_(g.,r @rp ™ Zurl \or % )

To avoid negative values of 6, when 7 would be positive or negative as n
was even or odd, 6 must be taken >- 2.

. 6, +2m
the avea = Cf—): f dae . (;) or if # denote the superior limit,
) o
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49, If ¢y, ¢, be the angles, measured in the same sense, which the twe

radii of curvature make with the axis, the area is 5 f p-qu, and in the

parabola  p= (()Jllg =20 5603,

Lo
the area =2a® [ de sec’o(1 +tan’p)?
1

90 { tang, ~ tani) + +2(6an’g, ~ tande) + tan gy ~ton g, .

43. In the cycloid s=4asin ¢,

p=z(ll—;;=4acos¢,

®s
and the area in qnestlon-m/. deo. p* where ¢;, o correspond to the two
"¢y

radii of curvature, =8a® / Elqb . cos’p

by
b2
=4cc'3f de(1 + cos 2¢)
@

1

=4:¢‘3{( - ¢))+ (sm 2p, — £in 2¢1)}

44, Tt follows from the equation 2y = 12, that, corresponding to any
value of z, there is one and but one value of 3.

The area between the values 2; and z; of x is (Art. 161)

CE T S
"7r/ yl dx: mndg/-— ,\/1+ a.rea;:?r{dw.i,\//ﬁ—f-x*;
l"de dac Jep 2
A [ 4 ok ;
but jda, N "/".)'*',x 1-/ "i"f -«+]l)l_.___dj_ ,
;\/,4.]-'”3 P 2 ,\/,;4_}.22
N
(ifz=2%), and .. ", 2 1 locr‘o:- FA ),
P

CIUSM B B SN

/4 ) 4" 9 N
the a,rea.=m:9-"logm’_M'c RE Nt e | Vg }
U™ g i+ ’11 w5

oy

45. Here 1=Y. dz . ds "/C +y , and the area is
¢

d iy

271-] J% dy:"r[ dyNc* +y?,
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where ¥, ¥ correspond to the limits of 2 supposed thus the area is
TN e e o e

taken between the proper limits.

H f’

46. As =0 bisects the curve, by a complete revolution round z=0, the
two portions of the curve only produce the same surface, .and this
ds c % 5 ds
—Qfx-_d ds=les-c), - BV
T . % 2z, and 8 2( ~¢ ¢, T
e 2R & % yx Ty oZ z
and the area= 2#[ dr.Z(e—e ) =mex(e—e ¢ ~mc| dalec—e ¢
1 2 1 1
x x x

z _z
=mrex(e—e °)—mwcXe’+e °) taken between proper limits.

47. With the equa’uon a® y—+b~x-= b,

dx a, ds
dy~ - gr“‘ﬂ/“‘* = GV = N T

and .. the whole surface is
) s
sl dy =4 f dy . e s
f 1rx y=4dr| dy. o y* -;-a262

4 T\ I
“2-—{\/"_ B oy n/Pr T
TENV VT e TN Y g T
27ra,°eJ’ TE b+b\/ 1 +}(ﬁ:_ﬂ
= i b‘-",\/ L0y e

) [ l+a'-'e'3+aj-’c2 og 7

ae

1
) 1+ o
=2rae [ 1.0 de-) log 87 €
o V=)
) 1 1
=21rca~{1+ 10,= 1+e}

48, Here (cf. Todhunter's Diff. Cal., Art. 358) z=a(l-cosd), also

s=dasin’ o -, the whole surface in question

=2 [ 27rx . df = dra? f (1 - cos 8)2 cos gdﬂ =16ma? dB sm‘-’g cos-g
=32ra? [) (6 sin* cos 0 =:—3;;—21ra2.

D
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49, Here the surface=2 f 2r(2a - w)gz df = 4ma® f "dﬁ(l +cos 6)2 eosg

” 5

Tl f de.cos:" =32ra?| df.cos
0 0

2 64

=82, ==

2
31 3"

50. Here the surface is, since y = a(f +sin ),

f °1ry—~ df= f 2ra(f+sin 0). 20 cos
0

d@

=4ra? f dﬁ(& COS = 5 + 2sin g cosﬁg)

3
=8mo? f d6(26 cos 6 +2sin § cos?),
0 B

and S8 cos 6d6 =0 sin 6+ cos 0,

.. the surface is Smﬂ{fze sinf+2 cos 6~ g cos3f 1. H
/0

=§rat {7 2431 = 8#@2(7r—§-).
51, The equation to the tractory being (Art. 100)
:c+~/c?-y2=clogc+ Ve =¥ as in Ex. 2, Chap. VI.

ds __ :7/’ and . the whole surface is

dy
2 f 21ry dy dme dy=47rc2.

52, If the equa.tions of the sphere and one of the cylinders be
2 +yP+2 =0, and 2*+y*= az, as in Art. 170 the surface of the sphere in-
cluded within the cylinder is 2/fdzdysecy, taken between the proper
limits for z and y, which are determined by the equation 2®+y2=az, so
that the limits of y are ~~az - 2* and Naz: - 27 (say y,, ¥), and those of 2
are 0 and a : also sec+y on the sphere = ¢ +z, therefore the above surface
y |
dx sin-? /

‘>f”fza @
=2 xy__..;.._.____
o Vot -t -y NaF =zl

-—4af clx{sm“l }
o+
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dx { } 20z
22(1 —2%) +22%
7 (l T 1 (1 -2+ T and
cla: sm‘l / f"aadz sin"%z_asin"lz_ [ ade
4tz (L—z°)3 1-22 (1_22)4:3.
_asin"z__ a2 as above,
1-22 JI-2 '
1
-1
.. the above surface =4a { asin’z_ _as 1ve *, the lts. corresponding to 0
1-z2* ,\/ 1- z‘J
402.T
and « for z, = 4 4u?=9rar- 4a?;

¥

. the surface not included within the two cylinders
=4ma? - 2(27ra? - 4a?) = 8a.

53. Here y=a Disects the curve, and the extreme value of z, i.e., ae,
gives y=a(lxloge)=2« or 0, therefore the curve meets but is not cut by
the axis of z from 2 =c to ae. Hence (cf. Art. 167)

the surface =2ra times the length of the curve between the given Its.,

dy _ =+% - ds _No+a®

and dz ~2 Cdz =@
and §= ] dx-———-‘(icw for each half of the curve:

and putting x=atan¢, dz=asec’pds,

sec g _ ¢2 d - 8in’¢ 4 cos’p
tang Jy " cog%p sin ¢

s smqs 1 {1
_-/ a ¢( ~_—_>—a{»~—+logtan J-/

. cos?p sin ¢ cos ¢

Pa
and §= f asec’pdo .
¢

)
also sec ¢ = aJ 2+ a?,

ta,n'% =(sec p— 1)+ (sec ¢+ 1) = (Wl +a?— a)+ 2%

. (zand .. tan ¢ being positive)

NaF 2 +x“ }“

a

§= a{ 1~/x‘~‘ +a*+log ——

calNITE-n2 :/_1_‘:_?“:_1 L
aNT+e J:}+alog{ N

1
..a-f'\/l-i‘(" '\/-‘ lwlogl:m} ,\//.*_1):1
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v 2} +alog _iQil—-
T+e+l
and the surface is 4ra times this quanm‘oy
54, Comparing la’+my +ne'=p with — zz %Z/ e =1, C‘TL—_C‘COS')/,
]

and dS =dzdy secy,

f 45 _ f dady secy

i

dz_ & =z dz__¢ y o (2 y2)

and here c—l;:-—a“'z @- By secv_z—g{_3+§1+7;7lf’
and .- f[da.dy = +y +;},

and the limits of z and y are determined by the equaﬂ:mn ai,-l-?g‘, =1,

a given value of 2 the extreme lts. of y are b

treme lts. of z are (given by equating those of

integral — is

dedJ- 1+?‘;‘ CJ)

2

" for
1-Z - and thence the ex-
a”

y) z=+a. Thus the whole

@ kvu -
“ dady.c (22 9P 1‘( y*)}
8 e y—la4+b4+c~ L= ot B
0/0 l 2
or1f--x and _==y, .
dxclJ m~'J" 11 ~_‘ }

or, dropping the dashes,

A1oF

5[5 abedely (1_1)(1 oo 2> 2 2, 1)
P e S,\/ml e I Ty )Ty b'3+b‘3

_c- —_—— 1 ?/
fSa,bcda,\ e (Jl - y+-2—'sm T )

+m-(b- —.fl:)+a-sm'1 ¥ } Vi-d

@i Niprtl/ B

1 Iec® 7 ) wwg(bg—a,‘-‘)+a2}

| s =(l=2?)+ =
{o Sabedax | 7% 4( nc)+2 —
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RO R L e
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el
" abe 6( )t 373
= T ) Lt 92 = AT R Bt R
5 @ =130 200 = o (P e+ ).

CHAPTER VIIL

1. The volume= f 3é-flry%lx = f s e~ 30)
o 0 z-4a
" de {x(z - 40) + a(z ~ 4a) + 40}
o 2 —4a'

= m{g—g+ax+4a’-’ log(4a— x)}/&f—. wct”{g+3+4 log %}
0

=T2015- 8104} =T (15 -1610g 2}

2. With the notation of Todhunter’s Differential Calculus, Art. 358,
the volume is

fom-g” dé = 21ra3fcl6 1 - cos 8)(1 + cos §)

=7

=2rg? f Ad{1 ~ 2 cos 6+ cos? + cos 0 — 2 cos*0 + cos®d}
= 2w’ [ d6{1 ~ cos’f} = dmad [ d6 sin®0 = 7%ad,
Jo Jo ‘
3. Here the volume=2 ﬁ rr(2a - x)‘“’%’ .40 =2mrg? / rcw(l +cos §)?
0

=2rad f wcl@(l + 3 cos?0),
0
the other terms vanishing between the limits,
= 21ra3{1r +6. } 573,

4. The asymptote is x=2a, therefore the volume in question is
j dy (20— %)% as z must lie between 0 and 2a; and conespondmg to

the limits 0 and oo of y those of # are 0 and 2a; also, y= , there-

20— )2

fore if z= =2sin%, y= 2@ and the limits of 6 are 0 and 6y and

in3g
P . cos &
d—é; = 25&(3 sin®f + 5_19_3). Thus the volume is -
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2r [a9.20(35in% + 207) . (2a)%c0stt
0
)
=16mwa? [ d6{3 5in®0 cos*d + sin*g cos®6}
0
5
=16ma® | d6{3 cosd — 3 cos®d + sin* - sin0}
0

3.3 353+‘31 5.3.1
4.9 6.4.2 4.2 6.4.2

=823
=272,

5. The asymptote is 2=0, and g must lie between 0 and oo, and
therefore the volume in question is

oy =2 [
2/; T dy--21rf0 (a2

or if y = 2a tan ¢, the limits of ¢ are 0 and ;, and the volume is

Tﬂ 16a4sec4¢ =16ma d¢°05¢ 161ra.4 47203,

6. The limits of y are +b, and therefore the volume is

/ mady =2r [‘ay P2 f Ay (o — 400+ ByAls - 4y05 1)
_°b91r 16,84, . 200(05- 1001378 430 51
5777573 315 )

BRI

7. Tf the sphere be 2°+32+2*=a? the volume of the frustum from
r=x to x=2, is

%)
2 _ 2l = o
[+(@ a2z = ratla - ) - T(ap -2,
Ja 3
and here zy -2y =h; ri=d’-2f, rf=a?-z3,
~ the volume = -§{3a- ~ (g + 2y, +2f 2)}

7rh{fm 4 (- 2t 32— 32

= T{h2 +3(rf+ )}
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8. The volume of the frustum from = =2y to z, is
Z 2
j Tyidx= f w(2ma + nat)dz = wm(wg - o) + 7';"(95 $—af).
71 %1 ‘ '
If then z,- @, = A, and 0°=2ma, +nxf, and 3= "mx2+nxo,

the volume = rh{m Zo+ %) + Mg+ 292y + X ) J

3
= rl»{c‘ g 7;(mz2 +2) + g(x._}’ +azf+ xgxl)}

_Thf 2. h o Ngg
5 (2 +b%) - 3(xn+x1 29:.1z1)} 2{(c+b) §h}

Also = an.x_f-’ﬂl 3 97,(%)2
5 3
B \ P+
=D Bt a2 - D) =L - T,
2 2 2
- the volume= 7k ’l_;i - %%2} =7h {w 20 —%hz} = 7rh{r'-’+ ’i_’;}

For a cone, m must vanish, and 7 = tan®s, where 2a is the vertical angle
of the cone. Accordingly the frustum of the cone is given either by

Th 2 h?
5 (b +c-——3ta,n a) or by 1!‘}&(9 +1—51:an- ) If b=0, ¢c=htana, and the

yolume is T 3 Btan’a.

For a spheroid n is negative, and for the whole volume b=0=¢, and

therefore the whole volume is _mhn. thus if the generating ellipse be

6 ’
y s
@yt + B = 2ma, the volume is — ﬂ2> = Sapt

9 If the cone be generated by the revolution, round the axis of z, of

y= ;\/3’ the sphere of radius # is generated by the revolution of (z—c)*+y*=1*
(whele r= csmz)-), i.e., of (x—2r)+y*=2% Hence the volume required
1:\‘)@ - /"‘-“r‘_?/ ra/3
= / f 21rg/dydx=21rf dy(2ry ~yNri—y* yJ3}
0 Yy
3y |28
=27r{7~j~’ é('ﬂ g/ﬁ)g—%g}
3,111 3\, _=* 1r7'3
= O “3"3 "1
omt {343 s-3- 3} =508 +1-8-0)=

10. If the vertex of the paraboloid (of revolution) be at the origin, its
axis, the axis of z, and latus rectum = 2a, its equation is y*+2*=2az; and
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if the cylinder touch the axis of y its equation is y°+2*—2az=0, and it is
supposed to extend from z=0 to x=2a. The whole volume of the cylinder
is then 2¢.ma?=2ra®: for the volume (V) bounded by the cylinder, the
paraboloid and the plane z=0, for given possible values of y and z, the ele.
ment of volume is a small prism on the base AzAy extending from the plane

of yz to the paraboloid, therefore 2 o from 0 to

sible value of 2, y is limited by the cylinder, ie., the limits of y are
-2z -2 and &2z~ 2, and lastly = can e from 0 to 2a ; therefore

Vo2t 4 9 Vi Z
20 il 2 aa =
V:f/ dzcly.y;; _i/ d~(y_33 yz2>/
0=V oz 22 v ) 0
]_ 2a (_az R

o by
Y7+ -
55 and for a given pos-

dg~/2az.. ] i _> or if z=a(l +sin ),

3 3
V—-— dﬁcos-0(1+sm0+ +sing)?)

g2

= ‘)T;L—- 'd6(2 cos™ + 8 cos?d sin 6+ cos™ ~ cos?h)

(% 4a.3 /3 3
2 4
—~3- (3 cos®d —costf) - 7" . 22 8/
A s 9.3 5 C Vi%rad-V::3:
-6'm,8—47ra,,and Lo Vi2ma®-V::3:5.

11. If the generating parabola be 4= lz, and the axis = «, the radius of
the base «/Iz, and the volume ( ;) between the paroboloid and cone is

ﬁdx(vry e al) = /da(lx 7;) z( 3) 6"“‘1

. 3
the volume V5 of the sphere =i,§1r(g> 50 Vi Vartlia,

12, If for =z, y, = there be written az, by, ¢z, the volume (V) is
abcf f fclzclxdy, subject to 2% +y%+24=1; or V= /dz. A4 where 4 is the area
of 22+y*=1-2* (2 being constant), therefore 4=m(1 -z4), and the extreme
values of z are given when 4 =0, which leads to the two, viz.,, z==+1; thus

V=abe f wdz(l—24) = Qabcw(z - f)l = 8"'.'az
1 5/0

5

13. TFor real values z, g, 2 are all positive, or clse one of them is posi-
tive and the other two are negative, and by changing the signs of these
negative co-ordinates the form of the equation is unaltered, and therefore
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the surface is composed of four equal portions, which meet only at the
origin. Changing to polar co-ordinates, where z=7cos8, x=#sind cos @,
and y =7 sin @ sin ¢, the equation to the surface is

7 =27 a’cos A sin0 cos psing, ......o..oooiiii (1)
so that  is limited in value, and for given (permissible) values of § and @,
7 has but one real value ; and therefore the surface is composed of four
equal single closed surfaces meeting at (0, 0, 0). The limits of § and ¢ are

therefore obtained by putting »=0 in (1), and are therefore 0 and 1-; for
each. Hence the volume required is -

b
T

ErE z
4 f TQaﬁcos 6 sin3@ sin ¢ cos pdfdep = 1843 / a8 cos 0 sin3 sin2¢/
0/0 0

0
= g(&:‘lsl‘.ll‘j‘@‘I H = 9“3‘
2 o
Aliter ; for the limits of 6, ¢, when #, ¥, = are small the equation to the
surface approximates to zyz =0, and therefore the co-ordinate planes touch

it, ete.

14. The curve is symmetrical as to both axes and the tangents at the
origin are given hy a%x®+0%%=0, therefore (0, 0) is a conjugate point.
Since the asymptotes ave imaginary, the curve is closed, and any straight
line y=mx meets it where =0 or 2%(1+m2)2=a?+%n2, ie., in only two
points besides (0, 0). Hence the curve is a single closed curve around
(0, 0), and solving for %> from the equation

o= g2(12 - 200 4ot — a2 =0,

' 22 =0 - 22 {(0% - 222)% —4(gt - a?wﬁ)}i’.,
therefore for real values of y, so long as a? is not > a?, the upper sign of the
radical must be taken ; and if #> a, the extreme values of z are given by
equating the two values of 2% which gives I*+4(a?-%a2=0, i.e., imagin-
ary values of #, therefore the limits of 2 are +a. Thus the required
volume is i

(4] 13 e
2 f Tydz =T f daxll? ~ 222+ N+ 4(a? - 1))
0 0
2 T 20V a? -2 .
=7ab? - g‘lr'.’&a +2N/CI— 3 [o dz\/z‘-’+ b4

) »)
e/ u" - o

. 2 ” s , "
= Tab? - §1ra»3 + m{zrs/z~ + 04+ bilogiz + r\mT)}/o

2 T [
=mab® - grad —— 9unoF — 502 — 1

37 +4~/a,~’ 2\ (2 )
20NaT =7+ 22 - 1)

+ ltlog |
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4Ja =5 U{H(a‘;—@}g’ eto,

When o =b, the curve becomes the circle 2*-+3°= 5%, and therefore the

=rab’— 5 s + T2 2( -0+

volome is %ﬂlﬁ: also the above result becomes

6 Wbs «\/ o —b"}
= §Wb3 + __’3'.6.4 Nai- +vanishing terms (expanding the
6 2Ja? -2
log) = %rb3 +7—r§3- wb% as before

15. The volume required = / w2’dy taken between proper 11m1ts, and, as
in Ex 14, 9% = a? - 2P {(a® - 27 ~ d(y* - Yy )}
and for real values of z, so long as y? is not >0? the upper sign of the
radical must be taken ; and if y > b, the extreme values of y are given by
equating the two values of 242, which gives af=4(a?~5%)y? and then

ot _a¥a?—2b°)
APt Aa*-1Y)”
* these values of z? are real or imaginary as a?is > or < 2%  Thus the
required volume (1), if a?< 2b%, is

20t =a?~

b
W] dy{a?—2? +N @ - &~ )y}
0
2V a5

Q2 ., v
=rafh— T+ —— | g2
e 2(@2 - b‘-’);-’“ 0

’b'\/a‘—b‘
— b~ T 520 ghain-1—
walh 1rb +4J {zJa 22+ atsin }/

T Ny == =
= ol -§wb3+ TN {2;,\"4,_{’_"‘2,,__4‘,} ,,4§m-121)\/a {)}
. s — b2 :

also as z « from 0 to 26/a? - 0%, sin-? d" will only pass through the value 5
zwa B

- . ! w
for some value of z stich as 2o8 ¢ = w', if ¢ < b, and therefore if

2 e
which is impossible, .- cos(sm'lo—ﬁ) is. positive throughout, thexefore, if

WA/?:—Q- =5in 26, 1-2sin2 is positive and = --.‘.‘b
(a «*

, therefore

sin? 1(1 %~ - ~ @ ) and 0= sm‘l“/a' and. the volume required is
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2 ‘ﬂ'b 173 S
ma?h - T3+ - ( -0®) + Sln -l -b
3 "~/ @b a
When ¢ =b this becomes 7al. g 1-% _f_;ms_

But (2) if a?> 207 the volume may be divided into two parts V5, Vi,
where V1 is the same as before on changing the sign of 252~ 42, so that

"
-2+ T -5,
5 (a? - 2% + ST sin oz

42 b‘

and Vy=2r '/; dy(xf - z3),

where 2y, 2, correspond to the upper and lower signs of the radical in the
equation for 2z7
o2

2‘/a~:b~
M V2=27r dylet - 4(a J~}
w/ai—z +afsin- 1——}/ .+ Th
PN

D, o ora Tt - b Tot T
= w02 — 2 = T2 (a2 - 202) 10 T
Vi+ Vy=7a 3705 (@ ) N sin - 2"/“‘ ="3
ot Py
=51§1r63+ Lo + J__— 5 sm'l“’/a’a b y
which is the same as when 202> a® This is explained by the fact that the
volume might have been integrated with regard to z, by transformation,
the limits being then the same in both cases. The transformed integral .

r’dy J 2mrxdady ) is 4m j; wxydx, and the value of y would have to

be substituted, which does not involve any ambiguity, so that the second
part might have been assumed.

16. The curve is the lemniscate, and solving for ° the volume

—2]01;:.2[ (024 208 e T
——r(a3+3a")+2m,\/2-/ dx\/ *+98—

e RN CVERt T CV Ty
3"'“‘*‘7"%/ # z+8+810g z+ +S}o
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\

__9_3 ; (a 3 cc-l
= :-gm + man/2! d,\/’ oc*\ ——1 )

A =L 11
=-TE T 1051+\/’ {N/ og(l+n2)~ }

17. If the paraboloid be y*=mz, and the sphere be (2 —¢)*+y*=7*, and
if they meet where 2= xl and 2= x,, the volume included between them is
j; mydz=m| da:"a“—x 2 - ma} ;
also 2~ 2, =7, and 'cl, s are given by the equation
(2= CR ML =15 ceeiiiiei st e, 1)

= 2 _ g2 ai-af 1.3 .3
thus the volume =7y (1?~—¢ )71.+(2c—m)—_2 = _é(x2 —zf)

=, iz,{r* c+ ;20— m(2 m)— (xo+xax1+x1}

2 3
= bt =2+ 32 - m)? - 312 - (-7}
=7, h{2(r2 - ) +3(2c - m)* - 3%,
but 1= (2 —m)® - 4(P— 1Y),
2 9 3
the volume=m.7% —%+1”2. =_"'67_‘,

18. The surface passes through the origin, and for a given value of
the section is an ellipse, if 0, ¢ be of the same sign. Thus the volume re-

] — o a? e
quired = f dz . mlbe . 22 =2mnle. - = ma®/be.
0 2

19. The ellipse being (referred to this tangent and the minor axis as
O j— . 1:
axes) a*(y +b)+ % =a®l?, or y=- bia}/ o? - 2% taking the upper quadrant
and z as posmve, the volume required

204 -% 94, 7o }: ﬂ ~3m).
{ 7o} =720 -3m)

20. Referring to the Fig. on p. 177 of Todhunter’s Integral Caleulus, it
P, Q be adjacent points within the circle {#®+ 3= ax, 2=0}, the integrativn
with regard to z in / _/ fclwdyd:, is the summation of all the rectangular
parallelepipeds such as st from the plane z=0, to the corresponding point
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(for the same values of z and y) of the paraboloid z%+32=cz, so that the

a?+y?
limits of z are 0 and cJ

: secondly, the integration with respect to ¥, is

the summation of all such columns as z
pqQP, as P and @ move along /LI and
mMmn', from one side of the circle

OlmAm'l, to the other side, so that the !

limits of y are the values of y in the 0 L A X
equation 2°+y*=az. Lastly, the in- M _AA
tegration with respect to z is the sum- I

mation of the slices Ipl'm'qm, as L is

moved from O to 4, so that the limits ¥

of z are 0 and . Thus the required volume is
‘\/uz-zg

2[] oy :c~+11__/ {o:m/ax p 3 ax x.)}

or if 2= 2(1+sm0)

the volume = f/ 5 008 eol@{ ‘ (1 +sin 6)2%cos 6+°°§ 30 l‘!}

=2 f das f €080 +2 c0s?0 sin 4 + cos2(1 - cosd) +cos *

dg'{ 2 __ 4} met (1 1 ';) g‘l_l_’ﬁ&i
f 2cos’d cosB 573" § 5,

91. If straight lines be drawn from 0 (supposed within 8) to all points
in the boundary of dS, these straight lines enclose a thin cone of height
rcos ¢, and base ultimately dS, and the volume of this cone is therefore
37 cos ¢dS, and summing all such elements as dS of the surface S, the
volume conta,med by S=3 ﬁ cos ¢dS, taken over the whole surface. In the

ellipsoid —+J +-- 1, if the tangent plane at P be {x+my+nz=p, then

Pp=7008 ¢, and if .P be (z, ¥, %), 2% +Z4+-—, and if dS=dady secry,

9 dz dz\?_ e+, _c B
secty= 1+<dm> ((l) “Er pdsS —-.dxcly, and the vol

ume of the elhpsouL = f f dudy extended over the surface
le__ o

8¢ dW?_v _8abe f __dady__
3 \/ 2 f a1 — wr:gﬂ
0 Jo @ b
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‘/1 -
_Sabe [* d sin-1_Y / 47rabc
3 NI=2?lo 3
Here, in integrating with respect to y, the elementary cones are summed
which correspond to a zone of surface between the planes 2'=2 and
#"=2+dz, and the integration with respect to z sums all such elementary -

conical volumes.

92. For a given value of z, the f /dyd~ extended over the volume of

9‘2 gg‘,+—— 1, contained between ' =z and 2'=z+dz, is dz. wbc(l - )
o?

5 o 2N\ _o s (1 1) 4 .
fffxdmdydahere 21rbcfdx(x cT>_ ma®he 375) =" rabe,

P

Ty Yo
23. If the volume be / f dadydz, the limits of z are 0 and the

value of z from the equation to the surface, therefore

2z, =0 and 2, =(42°+ Bry + Oy~ F)D ;
and for a given value of z, 1, ¥» are the values of ¥ when 2 =z, therefore
%1, Yo are the roots of

Az*+ By +Cy*=F,
and =, 2, are the values of 2 when y;=y,, and are therefore given by

92,2 — 2_F 2 4CF
B?2=40(42?- F), or « 0T

”7
24, If the volume be / f / dadydz, #, =, are the roots of

ax? +byt e +a'yat bz ey =1,
and ¥, ¥ ave the values of ¥ when 2, =z,, and are therefore given by
(a'y +'z)? = de(as®+ by + 2y = 1), or
Yo' ~4be) +2ya(a'b’ — 2ec’) + 2* (0" ~ dea) +4¢=0 5
and 50 %y, @, are given when y; =¥,, and therefore by
('b = 2¢c\2z? = ( /2 tl:bc)»r ("% — dea) +4e},
or  4a¥(c%?+be. b2+ can - a'b'c’. ¢ — dabe?) = 4e(a? - 4bc),
or 22(aa+ b0+ ce™ - a'b'c’ ~ dahc) = ' ~ 4be.

25. The trace of the cone-on the plane ¥ =0 shows that with the nega-
tive sign of the radical the cone extends from the vertex (0, 0, a) towards

Lo Yo 12
the plane z=0; ..if the volume be f / dadydz, then z,= &, z=a - Nz 5
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for Yy, ¥ T=0—N2T+yY% or y?=a’-2az; and ;=0 and #, is given by
$rua

y =Y O &= g. Hence the volume is f dady(a—z - N/a-:g_l_—yﬂ)

.

-'/2
=/dx{a Z)(Ys— 1) - %/,r\/xﬂ f ——logy+~/x-+y~ }

- [ a2-9,
f dx{ a-2)W =20z - o’ 2ax(a-x) ~ CM__‘“"

2 ° gz —Na=2az

If 2= Qsm-ﬁ this becomes

T, 1+ cos 9)2}
+ cos? - gint i
’o @ sin 6 cos 0d0{ (1+ cos®d)a cos @ 3 s1n 0 log <l ey

1+uos6
sind

1.1\ &?in®, 1-+cosd / f cosf, sinf )
-2 "log df.s 6«9 — + =
(3+5) 12 ° sind /, sin sm0+1+cos0

L
= 0_? ] &015111 0 cos’) +sin 6 cos?d ~ sin %6 cos 6 log
zJo

]

m|a

4 “3ﬁw"o 8 +5in% T—cos 6
={5¢ —120 (sin®f cos f +-sin°0 1 — cos 0)
A 0 4.2 4 3(1_1) 20 3
"B 53 B\ 6/ 80"

2y My 2o
96. If the volume be f j , dadydsz, z1=%: (ma® +ny?), za=ax+by; 1,
DI
7, are the roots of 2, =1y, .., of ma*+ny?=claz+by) ; and 2, x, are given
by §1= Yoy L€, b* = dn(ma® ~ caz).

Im=n=a=0b=1, -~_’:‘-’-,~,-x+,/, Yo+ Y=, Yy =2 —cx, and the

Lo Py
volume = / lclde (ex+ey~22—y?)
=, f dady( =~ s + Y7 F5)
1%
1 [ar?s
=3 f dady(y - y1)(ya—y)
199

1 (Parts 1 ’l/ )
== | 7| dady{(y-y)ye~3) - (¥ - v /J =,
ey Juy

but (Yo—1, )%= —4(x* = cx),

2 2
’ohevolume—,-fal:z:{c (x—é)} ,or if x— g jzsino,
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[ s

9 (02 3

the volume = 22 { cos 0d6 .- . cos®d, where 6, 6. may be shown to
3 J, 242

2 2
be —3-; and 3:5, since the equation for @y, y is %: (x— 5) ; thus

the volume = _2:;—3 Lo e=12

97. If the centre describe the circle {a?+y*=c? 2=0}, and the fixed
[

plane be that of yz, the volume of the cavity = | dz.S, where, correspond-
-c

ing to a given value of  between the limits, S is the extreme area contained
by the circle in the two positions corresponding to % and -y, where

2 Y
w2 4+yt=c% Thus § =2{E;— +2 f yi’dac}, since the common chord of these
40
$wo cireles is {y'=0, 2/=2}, therefore

v . v .
S=mc?+4 / daof =t = et 2unct - & / +2¢%in-1% / !
0 0 Clo

P
=mc?+2yx +2¢%sin '12 ,

: I
the volume =2 f clac{'lrc2 +22/E —2° +2c%in "t p }
0

34 [c e z
B (R K / +4¢? (dx cos™i=
3% ¥i] 4

. 4 /¢ e du.x
=27 + - P+ e cos‘l—/ +4¢% | ===
3 ¢lo o N
—Jc 9p3 3
=°rcz+§cs—=cg~/c2—:u;}i=%(31r+2+6)=‘2§"'(3n-+8).

98, a2y =a%(c®~+), therefore for the limits of # in f f f dadzdy, z=+e,
\therefore the volume is

afc a
e 2 e
4] dxdz.—«/cz—z‘l:/dm.—.-zrc‘-’: ce,
_Jodo @ Jo 4 2

99. If the base of the cone be on the plane of xy, its axis along the axis
of z, and the altitude =2a, its equation is 2a ~z=2/27+ 7 or, in cylindri-
cal co-ordinates, z=2(a—r), for the finite cone in question: also, if the
cylinder touch the axis of ¥, its equation in cylindrical co-ordinates is
r=20cosf; and the circular sections by the plane z=0 meet where

cosf= %, and therefore 0 =+", Thus the volume V; of the cone included

within the cylinder is [/' rdfdr. =, integrated over the area included between
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the two above-mentioned circles, or

T r2a cos 0
I:ffrdﬁdr 2(a- r+2[/. rdédr. 2(a - 7r)
g0

1 1) 3/’* ( c0s%0 800530)
_431»(2 5)+aat [ a(22 °
T
D)
3

=27ra3+4afd0{1+00520— (cos30+3cos6)}

ol +4a“{0+sm 26 3

+4a3{ A3 ?—2+¢3\

9
? sin 30 — 2 sin 0}
9

=2ras

9

=

{8 +33— M}__ls +273-64);

and the whole volume of the cone is grw‘, therefore volume of the remain-
3
der is %{64 - 273~ 2r}. )
If 2« be the vertical angle of the cone, cosa:—'15, and for any given

value of z between 0 and 20, the element of the surface S of the cone in-
cluded within the cylinder from z to z+ dz =dz sec a . 200, where 2r=2a -z,
and 8 is given by 7 =2¢ cos 6 ; therefore

20 Ly - %
8 =2 \ dzseca .i%: eos‘lQZa = / (t'lz seca.z? cos‘l‘m
or if =4« cos ¢,
Seosa= f‘{m sin ¢pdep . 4o cos ¢ . ¢ =~ 4a’cos 2¢ ¢/._,+ 4aﬁf.d¢ . cos 2¢
4 0 ;) 4 . ()u /3 _:r
0 <——6)+ s (smr—-sm 3) ;}7"“ — QN3
and & 8= (3'(4”"/5 —3,/15); and the whole surface of the cone

= mﬁcosec a=ma®y/b, therefore the other portion of the surface

of the Lone- ’1r~/o + 3./15).

30. The parallel planes PplMu and QqNn may be taken to be 2’ =z,
and 2’ =z, and if ZPQ, 7pg be two adjacent positions of the generator, the
corresponding elements of area between the conoid and z=0 on &' =z, and
%' =y, are Ppmi{ and QqnN, which (since PM =QN) are ultimately as
Mm : N, or by similar triangles as ; : @, Thus when RPQ has made a
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complete revolution round the axis of z, if 4, denote the corresponding
z

Y

section by 2’ =, then A, z, and the volume between the planes ' =z

2 K
and &'=z, = f dz . dy,= é(x.f—xf), where « is a constant and Ay = iy,
A, +4,

2

JZI
A=k, therefore the volume = (v~ ) - 9 1 and similarly for any
number of revolutions of the generator.

From the above, the same result holds if the volume and areas be
bounded by the coneid and the plane z=0.

CHAPTER IX.

2T+a
L. If, at Py, 0=a, the area= j;t %é(r’2 —-2%), where r=a’, and =a/"T,
o
. . | dB, 20+em 28 1 ofam 20
o th - - )= o -
e a.reaxs[z (a a ) 410gea(a )
1 2 ABT _ o SA+aT |, 0
iToga @ 2a o)
1
4 log,a
ie., the area = (PyP;)*+4log.a.

/a+~z1r

(8Py— 8P, 8 being the pole;

2. The curve is symmetrical as to y=0, and, solving for y,
2y? = awtan/a® - 2%, therefore 2 cannot be negative, and must lie between

a o s —— ——s .
and 5 and if 2yf = oz + 2va? - 427, and 2yf = oz - an/a’ - 427, the area is
a
%

2 A da(y,~ 1) ; but

(=



CHAPTERS VIIL-IX. 67

~ Y1) N/—“{Q (y3+yL - 2Y,) }§=~/2a,c 2,222,

- the area = 2,\/2/. da. 1_6_(%_ ) ‘)f\/" g ;1,62 Wﬁ_é\/o‘

3. If n be even, # and y must be of the same sign ; if % be 0dd, 2 and
y may be of the same or opposite signs ; also the axes are tangents at the
origin, and the equation in polar co-ordinates being 7%(cos™f+ sin*6)
= aZcos® 18 sin" 16, for any value of 9 there are 2 or 0 real values of ; thus
there are four loops or two as = is odd or even, and the loops are clearly all
equal. Hence, if z be even, the area is

902 546 cos™-10sin®-10 — [ sec®f tan” 10 _ a?
0

Y )
—_— —_ta -1 ng /"__:a‘r.
o 2 " cos™O+sin™g ) I+ tan?g n~H(tan"0)/ =~

I

Hence, if 7 be odd, the area= g’g,

4. If O be a fixed point on the oval, P the point from which the un-
winding begins, @P' the tangent to the oval at @ (any further point on it);
and OP=¢, 0Q =s, QP =arc QP, then P’ is on the involute ; and if ¢ =arc
PP’ of the involute, and yq be the angle between the tangents ab @ and 0
to the oval, and ¥»= a, then do = PQdyq approximately, and therefore

a2
a':j dy(s~c¢), or if s=/(y)
a
a-2m
= L dy{ fl) = fla)}, therefore by Art. 216

dcr a-+21m
de / @Y —f @)+ flat2m) - fla)

therefore, if I be the length of the string, and p, the radius of curvature at

P, when the length of the involute is a maximum or minimum, since

d" then vanishes,
da

o432 Z

ap. s =t=2m ey =2m

=2mpp.

~

5. Here = is limited by the two planes, and if the cylinder be given in
cylindrical co-ordinates p and ¢, its equation is p*=prcos ¢, and the limits

T s . .
of p are 0 and rcos ¢, and of ¢ are - 3 and . Thus the volume required is

»eos P T
f A pdq':dp(a’——a)pﬁ‘l? ¢ (o -a)g—z f dg . cosie
“F

73 3 _m(a ~a)rs
R

’

=(a,
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6. The surfaces meet where 22+ 4a(z+a)=c% and therefore z=-2u+,
and therefore +a=*c—a, therefore if ¢>a, the upper sign only of the
ambiguity gives real values of ¥ and z, and the volume bounded by the
mutually concave parts of the two surfaces is

c_d[;:.w.4a(m+a)+ {dx.wr.(chx-)

—-a Je=2a

c-2a 2?3 ¢
=2m(x+a)2/ +1r(c'-’x - 5) /
-0 c-2

=2ra(c-a)+T ?-36—3 - c¥c~2a)+ fe= 32 a)s}

{(26*—-4m+2w)+<2c- 262+ 4ea -5 | <22 A

The other part of the volume is the difference between this and the volume

of the sphere.
CHAPTER X.
1‘) o)
1. If the volume be / f wdfdrdz, %, % are the values of z in the
by 1

given equation, which in polar co-ordinates is z*=ar sin 26 - %; therefore
the limits of 7 are 0 and & sin 26, and therefore those of & are 0 and 7—;, as-

suming x and y both positive, Hence

) asin2l
the volume =2 fo { rdBdrwor sin 26 — 77,
<0

orif r== sin "0(1 +sin ¢), the limits of ¢ are —5 8 Tand T oy therefore
volume = J 7 ‘d9 . asin 26(1 +sin ¢) sin 26 cos ¢d¢ sin 26 cos ¢
T

m T

=’Zf “dBd¢p sin 2 cos’(1 +sin @) = %L/ 0. 520
0

0

.,{

t:Fl

S 2 _mad

Wsnw="" 272

T, 0= 5=
Similarly when z and y are both negative, the form of the given equation
being unaltered, the volume is the same, and thus the whole volume with

3
the restriction specified is Ig' .
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2. If the volume = V, then

L

Py 9 P 3 rlo o
Y~ volume of 23 +33 +43=1, =2 / dady(1 - o8 - By,
abe \ ey Sy
and the 1175 of y are given bY 1-2% -y%=0,and .. thelts. of z are +1; hence
17% 23
. _a5E,
tubc = S dxcly ys, ¥4,

and if y= y;sm3€ dy 3y,5in26 cos 6d6, and the limits of 6 are 0 and = > and

—————ff dadf . 3ydsin®g cos%-?fdx i "’(3 5 3)
Sabe 5 8

=3 f dz(l -2 ) or putting x = sin’p,

371' ) 7 _ 7 9
Sabc 3?/3sm¢cos¢d¢ 32fd¢:.os¢ cos’e),

V= Slwabc(ﬁ 4.2 8. 6 4.¢ ) _mabe 6. 4 41rabc
4 \7.5.3 9.7.5.3) 4 ° - )
23 aky ~ Y,

3. If the volume V= f _} d zdedy, 11,y ave given by ay=x(a-22)-x%,
Y

therefore @, %, are given by 2*=a®-2% and therefore zy=a. Hence
IR

T dedz Yo “”‘“’““_/ \
V—4_/00 s N d~\/ w{(a? - 22)

@

2_2\_8ra?
=mat(3- 7) 2
4. If O be the centre and C the fixed point, by revolution round 0G,
dS will generate a ring of surface the distance of each point of which
from O ig »; and if dY be at P on the sphere and the angle POC=9,

d
2= @+ a2 ~ 2eq cos 0, and therefore /. ,SL over the whole of the surface

adf .2rasing _  -wa 1 i

_j (a2 + ¢? - 2ac cos 0)% c<n—l) (a-+o~—2accos0)" 1/0

..a

_ %2 ( 1 1 }
Tem-2\e—aj? (at ey
5. In cylindrical co- -ordinates the equation to the sphere is 72+ = a?

weos ne

o, ff«t(iﬂ?l,g 3
and .. the volume =4 f / redfdy . uc‘—r-:—:— / de . (a*-r2)? /

I

4 2
if a8]* — asin®nl} = 3 jtl@ ~8in’f) = 0(’; 3)
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For the surface S, secy on the sphere is 9, and therefore

l.,H

1]

4“‘[ 2601 — sme)_“i_(?)- 1)

6. In polar co-ordinates the curve is 7(cos’d +sin’d) =3a sin 6 cos 4,

)n 005110
S f /- rdodr . r—~——_4a{ B — o sin n6)

1 . T
and the volume "= [ f rdédr . 2mr sm(ﬁ—l— 4>

9a’sindd cos®d

= 1r,‘/2f df(sin @+ cos 9>(cos’0 i)’

clB(l + tan f)tan’f sec® 26
= J2) seCV orif -
9maly j (1 a6y orif tanf =z,

*ds(1+: 1
3 3 —
V=9ra ,J..f; (1 3 ,0 rif 1+28=

1
V=9ma’\/2 [ _C_Z‘.?in(l + 5)s828
Jo 3%

=31rc¢3,\/2ﬁlxdx{ }_"_“)gs ( ) }

1 2
—3m&"~/’fdx 2° (1—-2 *"+:z: (1 - x)"}
=6mad 20(5)T($)+ I'(3), by Art. 261,
=67ra3,\/2.31‘? ATE) =12

by Art. 262 47{' CL‘},\/‘) S8

303 36"

Aliter : to avoid the use of Gamma Functions the above integral in
might be evaluated by the method of partial fra,ctwns, but V' is more easil;
found by turning the initial line through an an gle -, when the polar equa

tion of the curve becomes

oo ) Sensf)

or A%(cos"ﬁ +3 cos fsin?f) = ‘—gcos 20,
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T

and V-d/'f"m*cose rdfdr = -_/*de cos 6. 219 27 ___ﬂsﬁi__
3 2\/2 cos*g(1 +2sin26)*

5[ 1—tan’d
=90¢3~\/27rj df sec? 9(1+ota.n 0) or if A/3 tan @ = tan ¢,

3
"= 3a3A/§7rf d¢sec~¢< a‘? 4-)) !

secbp

a® - ¥ d. o 2ra® %
=35 «/671-/ ééﬁ%(‘;‘ -sec’p)’= 376 /d¢(64cos4qs—48 cos?p+12-sec?¢p)

k3
23”;2 dp{16(1 + cos 2¢)* —24(1 + cos 2¢) + 12 — sec’¢}
%7:/6:; d¢f4 secp + 8 cos 2¢ +8(1 + cos 4¢)}

_?l'“_(l‘)qs tan ¢ +4 sin 2¢+‘)szn4¢)/

27ra, 872 w"
3,\/6 (4m - /B3+2/8-N3)= N

-

7. If the equation of a eylinder be z*+y°=a? and the axes of z and 2
be turned round the axis of y through an angle a, ¥ is unaltered and « be-
comes z cos a — zsin a, and therefore the equation of the cylinder becomes
(zcosa~csina)+y2=a
Tence if 8=2¢, and the last equation represent one of the cylinders, the
other may be represented by
(x cosa+zsina)+y?=a?
by changing the sign of a : and it follows that when # and z are both posi-
tive or both negative, the corresponding value of 7 on the second cylinder

<the value of i on the first cylinder, or the second cylinder lies within the
first. Thus if ¥ be the whole common volume

v [ i1
5= /0 fn dadz. 2{a® - (xcosa+rsina)?}?,
where #, is the positive value of z when y=0, and therefore

%sina =@ -z cos a, and therefore z,=aseca; therefore
a,svu d.
V.

4 ), sina

{(x cos & 42 8in a)Wa? ~ (x cos a+2 sin a)?

+afsin~ 1%&@,@} / 2
o ,
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sec 0L

dz | T g 12008
=] ——16.0+a - zcosany’ - sTC0STa — TSI T
o sinal 2 o
o N 5 %ﬂ_ asecd o asecL
_mad seca  (a®— 2lcos’a)?  _ o’m g, a%c0sC
3 sina 3cosasina/o sin a & .0
. asec o
s o / dz.za COS 0
sinaf,vu® - zicosts @
asee
e 23 o _ 2% / __ 20 | 2
SO L AP M ol @ —oosta] T et i
Sinf 3smp s 8 sing 0 3sinB sinf

, 1608 | [ et \/ (dy>2 (dv)
= . ., 170, S= | |d s =,
Vegm. By Am.170, 8 H edon/ 1+ (2 ) + (%
and for the second cylinder, the limits being the same as before,

cos a(z cos a+2sina) +ygﬂ =0,

sin a(z cos a+5 s1na)+yd =0,

(xcosa+vsm a)?

- secly=1
v= + —(zcosa+ssin a)

., by symmetry, the surface of either cylinder intercepted by the other

Xo Fa ) iy
A 4(1/ . i ,
ff dzdz . 2a - dsin 1xcou+zs1na_i
{o? - (x cos a-+2sin a)”‘l" sinaly @ 0

~ry

= / dw ﬁr — sin-1E908 @)
Y a )

a.secd.4 soccg
2 4oz p-1zcosa ) x . 20
207 cenq - 30T n-i®COSE) | %0 | 0%.%4  cose

sin o sina @ o sinalona?—glcosta @

asee o N

41rcu~ 8a? m_ 8o s —; Sa?

o - %a
“snB sin sing’ sin /SN e

o sinf

8. The plane of the moving circle, being normal to the fixed circle,
must pass through its centre ; and if two adjacent positions of the moving
centre, in polar co-ordinates, be (a, 8) and (a, 6-+A49), the element of area
between the corresponding diameters 2r and 2(r+Ar) in the plane of the
fixed circle, neglecting higher powers of A¢ than the first, is

46 (a +7)2 - (a—1)% = 2arAf,

and r=asiné, if the initial line be the given fixed diameter. Similarly
the element of area between the planes of the moving circle in the above
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adjacent positions at a distance z from the plane of the fixed circle is
QaAINTH ~ 2
Then the whole volume of the tube surface, which o« from a point when

=0 to a maximum normal section = ma® when §=" is

w 8in 0 T
8.2a /7 dOdana?sin - 22 = dadr / d.sin20 = w25,
0J0

The trace of the tube surface on the plane of the fixed circle is bounded by
the two curves 7 =a(1£sing), and therefore the volume swept out by the
tube in a complete revolution round the fixed dmmeter =the difference of
the volumes described by these curves

5 a(1+sm 0) 4 T
= 2[] 2rrsin @ . rdbdr = gﬂ-asf df . sin {(1 +sin 6)°~ (1 - sin 6%}
0Ja(1-sin 6) 0

=—_§m3 -/0 d6(3 sin?6 +sinif) = ;r-as(g g) iy .5

= 5) .volume of the tube.

9. If 4 be the area of a regular hexagon of diagonal 2a, the volume
required is, if 2% +47= oﬂ be the circle,

A"/-—-— fdx a* - z?)

and the side of the hexa.won = cc,

and 4=6.% sm = 3a?, '.\@

2 3 2’
the volume generated = 2x/3a?
If PQRS be half the hexagon on one side of the
circle, when the side of the hexagon=y, the /!

element of surface between QX and its adjacent QS “R
position is to the first order of small quantities

PQ\/ A’::~+A1 *sin®’. = PQ . d say ;

P S
and if PQ, SR produced meet in 7, by turning PQT in the plane PQR
round 7, till P is parallel to @R, it will be seen that the distance between
P@Q and its adjacent position also =d. Hence, as PQ=y=¢R and

ZZ ; PQ.d= A:L\/ af - % 39,‘-’ and the whole surface is therefore
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{dr\/ -=24=/ daN u--—x-—IQIQ\’a--o,-’-{-a-s:n'lﬂ/
allo
=1942 +’£\ = 333+ 2m).
10. If x=asin’%,
[' dx _1/% 2sin 0 cos A9 _ :__l/!" 246
l N2z - 2a? -2 o) sinfv TTsin®s T—sin0 @on{1 | siner |2 -sint
26
1-cos 20 1-cos 26\ 4
{(1 ; )(2 ; ),
T ‘M[ 1
{3 cos 0)(3 + cos 0)}* 1___ 0820

=2 ( > when c-}

ot
=

2

30 3
5 clr
11. Here s= | db, 9-+ 7 , and rcj?) =-a%in 20,
d0 _0052‘9+a smd’ﬁ\’; adb _f add
f 0526 J Neos20 J N1=Zsin%
orif ¥2sin 0 =sin ¢, and therefore @ cos #d8 = cos pdp,
a cos ¢d¢ d¢

VB —sinig . cos ¢ sin’® . cos ¢ r\/2 N L sintgy
which is an elliptic integral of the first kind.

12. If the angles AOP, BOQ be 8, ¢, since the arce AP =QO0, the are
AP+ AQ=arc A0, therefore

] ‘ 3 7
a6 __dg f T r]a:
— e i -- =2 constant,
/o Vi-Zsm% Jo WI-2sinig NT = 2sin®e

and the proof of the proposition in Art. 225 holds good for positive values.

of ¢% so long as ¢®sin’ is not > 1, and here u =Z and ¢®=2, therefore

cos0cos¢—sinosin¢/\/1-2sin2£=cosg, or cos 0 cosp=-—
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CHAPTER XI.
t. 239 (6) dady is changed into dedd de dy _dy d”>
L By vk 290 () dsdy i changed nto dgan(25. 90 0
which here = dpdbab(cos®d sin ¢ cos ¢+ sin 0 sin ¢ sin 6 cos ¢), therefore

Sfdecdy = [fabded sin ¢ cos ¢.

dx _ - dz dy dy
9. Here d_u=sma, Zzﬁlﬁ_cos‘au, E{b-cos d——v-sm a, and x?+ y?

da, dy _dz dy
“du du’ dv

and [ [ Az, y) - d"’dJ f } Filu, v) dudr

k4
N T

=y2+0?; thus

/;, denoting the function of u, v wh1ch f {%, y) becomes on substitution.

3. If the limits of « and ¥ are both constants the boundary ABCD in
the figure to Art. 246 is a rectangle with its sides parallel to the axes, sup-
pose OLMN. Then the curve AC will in general, as w « , meet some two
sides of the rectangle in three different sets of ways, for it must cut two
sides, say OV and N, and as 4 and C approach O and M, 4 and 0 will
coincide before ¢/ and M or wice versa, or simultaneously. In the last case
there may be only two integrals in the transformed integral, but otherwise
three. If AC be a straight line parallel to either axis there will be only

N C_Cwm N C M

pya) ap
o v

0o A AL (o) L

one integral. The method assumes that AC actually cots the rectangle,
As explained in Art. 246, if the integration be with regard to v first, the
limits of v are determined by the values of = and y corresponding to the
extremities 4, C of the curve A ¢ within the boundary, for a given value of
u. Similarly for the integrals corresponding to A’C’, A"C”. The limits of
w are found from the values of « and y at (1) O and IV, (2) at O and W7, and
(3)at L and M, Yor example in Art. 240, OL=a, ON=0D, w=24y, and
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v= ﬁ*, therefore AC is a straight line through the origin ; and while C'is

between L and M, u « from 0 at 4 tog at C where z=a, and therefore

Z =TOL1-: ; and the corresponding limits of v are 0 at L where =0, and %
- (3

at M ; therefore the first part of the integral is

5 o

Wt b(1-v
[ / udvdu V',
J00 Jo
For the second part of the integral, w « frombO at 4 to g:g at ¢, and the
corresponding limits of v are 1 ab N and ash at M, and therefore the
second part of the integral is 4
v
. J V udvdu.
atp 0
4. Hoazx=2, and by=9,
0 R 0 0 J !
[ Pla2a® + 0y dady = f ¢(x’2+y’3)(£x—g-l‘li, and transforming to polar
Jo Jo 0 Jo @
co-ordinates this =1 F { %qb('r'l) rdrdf= T tp('ﬂ) . @'—2,
abjy Jo 2ab Jy 2
which is the same as x /- o(x)dz.
4ablo
e P g2 W ol Y
5. Herews i V=1 0™ " Tvw
de_ 1 dy_ v dz _ v dy_ %
e T ey g Sy 3 =T 57 and ==y
dv 1+w du (142 du  (L4+u)? dv l+4+u

. dz dy_d
and .. dedy, which becomes dudv(ag . ,d-z - Zl—zi . Cé%),
=d ld’l){_g L Zdudv. v
W Trap T FupS T T
TFor the limits, eliminating v, y=ua, therefore the limits of u corresponding
t0 0 and z of y are 0 and 1 ; and changing the order of integration between

2 and w their limits, being constant are unaltered, thus those of z are still

—v—, and therefore the limits of » are

0and a. Lastly, eliminating y, = "

0 and a(1+u). Hence

98] 1 a({142)
H Tdzdy = [f V' ol +u) " *dude.
oo JoJo
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6. In polar co-ordinates

f" dde = U (say) = / rdfdr
Joe

(z2+2zy cos A7) {1+ cos @ sin20)
()
1 -gda (—r‘(l+cosasin29)
and .. =y f Trosasmr " being taken between the
s
1/# df 1 df . sec?
g s U=
lis. O and =, 2Jo T+cosasin2f 2/o 1+ta,n0+Qcosa.tan0
lf dz 1 jan-i1tcosa
L S— Z+eosa
(24 cos a )+ sin*a “9sina sina
when ¢ is taken between the limits 0 and oo, and therefore
. 1 1
U= { “Toal= % . Cf Art.46.
2¢inal2 2 J2sm Of. Art. 46

ary
7. Clearly f / ¢(w, y)dady in polar co-ordinates
0

tan =12 @ecc T b cosec §
= [ [ oy, y)rdodr +[ [ &y (z, y)rdfdr,
mu‘] 0

v .0
supposing o and b both positive. If « be negatwe and b positive, the limits
© of 6 will be successively = —ta,n‘1~_b a and 7; and
similarly for the other possible cases. Thus
[ "{‘b dady

3
2

0.0 (Cﬂ+mﬁ+y2):'

T and - tan“—g—: and
2 -0

= U, suppose,

tan =17 see 0 7 b cosec §
- [ 7 rdfdr + f / rdfdr
‘tan ™ 1 2

-0 0 (c2+2? )"} (GGER}

tan - 12 asecf % b cosec
/‘ “de
=T o )y

0 (c-+r’-)‘1-' 0 tgm_1'(6‘-1-1
tan 1’: T
== dBl__.__._l_.__, 1 —-[ dab ,.____!_.__.i }
.0 (c2+a‘~’sec-6)* 3 “tan-12 (2 BRcosec?))?
% tan =12 %
=1[da.f dai‘_ﬁf____f g S0
¢lq 0 (E+at— Ssin2)? i -1"\', —-(,-—c-cos"ﬁ)
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mu‘l /7‘3
_y¢siné —pccosb

s cU=T—sin-1°20 +sm s
2 Ne2+afo N/ZEw I -l
1l' -1 bc _ -1 ¢
T _sin i
) NE TN b NBE+ AN+ b2
.—.g tan~L be l-—t&n-l @
= a(a -+ b2+ c?)= Ba+ 02+t
T tan-l c(a®+b?%) {ab(w +02+¢?) — abcg}
2 ab(a®+07 +c?)

ab(a- +b2+ )2 B

= cot‘l{——(a2+ B2+ cﬁ)*’} = ta,n'l__ag’—y
ab c(a® + b2+ ¢2)
v=1 tan-1— % ___
¢ eNla? + 0%+ 62
8. The integral= ] "7‘00—-—@1(1-@-—-% =7a. f : ___%(L’
(24 a?) 3 (r2+ a'2)3 (P +a?)i(r2 +a)d

let 72 +a'2=?, and therefore d(r2) =2udu, and the integral becomes

@ 2 o @
2ra f udw = =mat . / , (per Ex. 3, Art. 15)
a (262+a2—ﬂ/2)§16 (ag_ajﬁ)(u‘-’_)_ al _a/ﬁ)z @
2 2raa’ 2

Ta—a? (@P—a?).(a) et

dy dz
. H = == = -
9 ere —— d cos @, a0 rcosf—asing, F7 rsin 6 +a cos 6,
Zy =sin §; .. dady transforms into
(7 cos20 — av sin 0 cos 0 + 7 sin*d — @ sin 6 cos §)dbdr
or (r—asin260)dbdr; .. ete.
10. Herez= __.Z'__ y= ki -
1+ tg) (L+2y7 .
R de_ 7t dy _ t de 1 -ldy 7
o dt oF dr (149 dr Y U w T
(1-+2?)= (L+2%)2 1+e3)7 (1427
and dady _ ,_@i__- T - T

drde (1422 (L+)P2 14+

For the limits changing from y to 7, 72 =2%+ 42, therefore limits of ~ are z
L=Fal-]

and «, and the integral U (say) is 0% the form f Vdzdr: now changing
0 Jx



CHAPTER XI. 79

the order of mtegza.tlon, the limits of » are 0 and <o, and of z are 0 and r,
therefore U= j Virdz. Lastly, to change from z to ¢, eliminating v,

, and the1efore the limits of ¢ are w0 and 0. Thus

- pdpdt
U ]j T+

(1+8)E

11, Asin Axt. 239, the integral becomes

Sfaraeas( & . % Iz ‘W)
dr dr " db

With cylindrical co-ordinates the integral is

S [rardédz,
and a ﬁaure will readily show that the limits of » are 0 and a, of § are 0

;md 5 and of z are 0 and mrcos . Hence

iy mareos O @ 7—5-
the volume = f / / rdrdfds = f [ mr2drdf . cos 6 = [ mridr = ma? -
nJo Jo oo Jo 3

12, Here =By, y=~va, s=~af, .. as in Art. 245, dadyds becomes

f([l(dl/ ds _dy d*)_{ (l//((l» dx _dz dx) d~<(lw dy _dz gly)‘\_
Nda\dp dy " dvy' ds) " da\dg dy ~ dvy’ dﬁ da\dB dy dv  ag/)

SO CNEINL BN ENANG)

=l<zadﬁczy, - ete.

dadBdy

13.  To change z; to ¥, Jiminating r, 8, and ¢, x;=wytany, therefore
dzy = zysec®ydy, and the integral U becomes f /f f Vlda:lcla. L,y w3560‘¢d¢
next, to change 2; to 0, eliminating », ¢, and 2, Nz Fzi=rsinf= zsta,nesec,yb
therefore day=- cosy. Nz} 2} . cosec®0dd = —r cos y cosecddd, therefore U
becomes -~ ﬂ'/.'/'ndxldmztlﬁdyb .1%cot 6 : thirdly, to change z, to ¢, eliminat-
ing zy, 2, and 7, z,=2tan¢, therefore duz,=zsec’dpdep =rsin b sec pdg,
therefore U becomes ~ _/_'/:/]‘I”sda:lqudﬂdgb. 18cos @ sec ¢ : lastly, to change @
to r, eliminating 2., 4, %, dz;=sin 6 cos ¢dr, and therefore

=— /f/fll' drdedfdy .r3sin 8 cos 6.

dz dy _dz dy N
14. By Art. 246 the clementary a.rca.-+cludu( o do dw du) The



80 TODHUNTER'S INTEGRAL CALCULTS,

tangents being at right angles, let them be axes, and the fixed parabola

Nz +ny =g, any variable parabola Nz +Ny =~u, so that v e from 0 to g,
and let one of the straight lines be y=vz, so that v « from 0 to ., Then

1 1 -1
du_ -%.%. .5 dv__¥y
vt (2% +y7), i

du dv_du dv_ o 3
dx ’ dy dy " dz ’ 2
or since w"l-f(l +122 )..u’ the area, by Art. 239 (8

ffdxdj /fdvdu
1+’b7

aﬁ dv

O (L4ody

_ o [“(z=1)ds _ .3<_l _1_) ® (1 1) @
then zmaza,--a,./1 = @ 222+333 =a? 573§

If 4¢ be the latus rectum of the given parabola, a®=8¢?, and therefore

s let 1+'U‘ =3z,

the area =§c’3; which may be verified geometrically.

dy de__dy
de'dr

ffj;(:c,y,~da,dydz_ f//fii 7’~drol‘/dz.%l;_:_

(2) In changing from 2 to #, y and = are constants,
@ dx d\[/
de d1 0;
in changing from ¥ to 6, s and ¢ are constants,

dlpl dl/ +d¢1

15. (1) y and = being constants,

dy "ab’ do 0;
and in changing from 5 to ¢, * and 6 are constants,
d% ds +cl1,b,
Tdg dg
@ dyy dys
- jut il ¢ iad &
Hence [f}f(a:, Y, z)clq:clyds:—ffffl(r, 8, ¢)drdfde . g_:_b- g_‘% . gu%

dz cly—d?
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Pytpp=l, B2 di_ Yy
16. Since 22+y*+22=1, = P dy 7
dz\? | [dz\"\3_1 1
R ) e —
dz dy } % gin 0(1—77?sin2¢){"
Also % =cos ¢(1 - mgsinzﬁ)%, g%/ =—sin @ cos ¢,

dz __m?in 6 cos b Sii»lib, and ﬂ=_ cosOsing;

ab (1 —m?sin?9)2 dae

—déde . sin 8{cosp(1 — m%in20) + m%sinp cos?
(1= m‘sml&)’}!

double bracket in the numerator = cos’p — m*cos’¢p +mcos?f

- dxdy becomes 6} and the

=n’cos’p + mPcos*,

26082 20082
and .. the integral transforms to - f dbdg(ncos ¢+m ©05%) | When
(1 —m3sin? 0) (1— n*sin%ep)¥
this is taken between the limits ?Z a(:ixd 5 for both # and ¢, to find the cor-
Y

responding lts. of y and z in f / , changing from ¢ to 7, and therefore
eliminating z, y=cos @ cos ¢; therefore the limits of ¥ so far, corresponding
to 0 and g for ¢, are cos 6 and 0; now changing the order of df and dy,
the limits of y are easily seen to be 0 and 1, and of 6 (viewed as an
absclssa) to be 0 and cos™y ; lastly, changing from 6 to z, eliminating ¢,
——ﬁ-—— ,, =1, and .. corresponding to the limits of 0 and cos~ly
1- m-sm*@ cos?0

of 6, those of 2 are &1 —y* and 0. Hence the proposed integral in 6 and ¢

1 2
»_-_/[0 ________dz/dx ]d‘/ sin-? /A/1 J—-g.
WL - 22 - g NI-y

17. Let (1 -n%os‘-’ﬁ)"lf:p, and (cos‘-’¢+n2sin‘-’q‘))%=q; then changing
from z to 8, and therefore eliminating » and ¢,

#=cos9] Y. nia? } %eot?d -f 1
O¥ s R T=nteostd) Y T2 -1+ 1= 72cos8)’

da nx%in 6 cos 6 7°risingsin 6 cosd
s— == g0t 0 cosec™) ~ —F——— "~ =—120s? cotB —_—_—r
ap- Y ¢ (1 —ncos*d)? ke 1 - nPcos®s

2
=- ;: , €0t 0{cos®p — ncos’p cos™) + nsin¢p sin%)

a5 - ﬂ’fccakos«/j( 1 —n2) +n%sin20} ;
Pq

next, changing from ¥ to ¢, and therefore eliminating s and 7,
F
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% cob ¢, S g cosecp=— 15 sin ‘9
dp  p sing

and, lastly, changmg 2 to r, and therefore eliminating y and 2,
gﬁ.—_ psing.  Hence f f f dudyds transforms into

y=sinéd.

f f f drdfde . “‘c°se° 8{cos(1 - n* +n-sm-a’“nf; sing
= f f f drdfde 72{cos?p(1 - n?) + nsin’0}
(1

- n%c0s°6) 3, (cos® ¢+n-sm-¢)§

18, If z=rcosd, 2=7sinf cos ¢, and y=r sin §sin ¢, then eliminating 7,

ta.nqs_— tan § = VL-H/ , and, as in Art. 244, sec~¢d¢ 1 or¥__=

dy x-+ J2’
sectpll o2 _NEE s o 00 _use p<x;+ 7,
dx W+ 2° dw dx s Ty
50 d6_ws-q@+y?), qde___ v __ g

dy T’J,‘/m-_l../: ’ dz m— m’

ff singdodg ff sin fdady| [ -ap(a®+y?) +y’s - ?/'1(9—"1"7/‘)}
3 3 7“(x'+7/ )'2‘

3/fdxdy v-—pa:l“q?nsmﬂ 1ffdxdyz 25~y

Now if I, m, 7 be the direction cosines of the normal to a surface at a given

point, p= , q= - ? and
Z-px—-qy =}L(lx +my +nz),

. dedy(z - pe - qy) = dS(le +my +nz),
.. the integration amounts to summing the product of an element of the
surface by § of its distance from the origin, so that the volume is divided
into thin cones with a common vertex at the origin.

19. If the given integral be denoted by U, changing from z to u, and

therefore eliminating v and w, d;:l, y

and the limits of u are z+y and o,

there ore U= f 7 7 w!’clxdydu: now

changing the orier of y and u, the

integration extending over 4, U be- / A

® "0 Ly

comes f j Vdzdudy; next, chang-0 ™~ X u
0 Jx

o
ing from y to v, and therefore climinating z and w, =4y =uw, and therefore
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. w00 0]
Zy =u, and the lts. of v are E and 1, therefore U becomes f f f Vudzdudy:
/ Jz

now changing the order of z and u, U becomes Vudud:cdv;aga.in,
-<}

changing the order of # and », U becomes f f Vut;ltudvda: lastly, to

z
change from « to w, eliminating y and 2, +uvw=uv, therefore -~ =~up,

dw

0

0 X o X

and the limits of w are 1 and 0, therefore, finally,

U= / 71[ qu‘-’vduclvdw.
0Jolo

20. Changing from =, to 8,,_;, and therefore eliminating», 6, ..., 8.2,
2,=%,_qtan 6,3, and .. d&, =%, -156¢%,,_1 .df,_1 ; and changing from 2,_;
to 0n-—2’ Zp-1= a”‘n—f.’t’an Gn—i’.cos Bn-I:

A, -1 = %, -5€08 0, _18e¢%0,, _odf,, _s, and s0 on up to
dz, =08 0,8ec%0;d0;, and then eliminating ., a3, ..., %, da;=drcosd).
Hence the given integral becomes [//... '+~ Hdrd6,df,...d0,,, if
=1, H = 2,2,...%,, -15€C 0, _13ec §,,_a...80C 0;
=¢2=1(gin 6;)"~¥(sin 65)" 2,510 6,,_o, .\ ete.

CHAPTER XII.

1 e’+a? | A+B |, Ax+ B,
COT bt B b+ 2 b+ b
2+ at=( Ay + 4,28+ 22 Ay — Ao)b+ By + By + z{( Ay + 45)0* +(By - B,)b}

+(B1+B2)b29

then

A1+A2=0, 1=(A1_A2)b+Bl+B2,
0_(A1+A V024 (By = B)b or By= By,

2
and : b' =B+B,y, .. B= B2——F’

a®\ _b-a®,
and A== dy=g1- ) =P
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9 (22 +a?)dz ~fdxmAlm‘AlerAlb*QBMMﬁw"' Agb—A‘_,b+232}

4+ b+ b 2f b +b? 224 b+ ?
B 22-ba+b? A b+231{t 2z- b _1~1.+b
=408 et 58 v M i

and when z=0 or o, the logarithmic par‘b = A;log 1 =0, therefore the

s oy AD42B [r T :l_r T\ _ (b~-a- a~> a-+b"
given integral = —————[ 5 \’+ 575/ T NE RN b&'\/3

-r

T

T
2. Ifu= f cos(e tan z)dzx, and tanz =6,
0

“cos addo T
= — - by Art. =",
u -/; T and y Art. 200, 2e

3. Ifu= f 2n-1, ¢ g, and 2" =y,
1 11 1
n= /dy.ye?/:ye” —fehly:e-—e-}-l, SLuss.
Qo 0 Jo o

4. Ifbtanz=atanb,
= df.a sec‘*’0<l +?)’—ztan‘~’6)

f-r’ dx _fdx(l+ta.n~x)sec-x f~
o (aPcos’z+bsin’z)®  Jo (e +b*tan’e)y  Jo ba*sectd
r 9i 9 6 am_ T ?
= 70 Aot + T’ )'Q’T(§ 2)
il 1
=)

5. If tanp =27,

L 192
./o Ntang . de = j; i and therefore, as in Ex. 15 of Chapter IL, the
.. 1 NG +1,
iven integral= —~_ lo {tan'l (anZ +1) + tan L zn2 - 1
§ RN gx‘+x~/_+l N ) )
(taken between the limits 0 and 1)

9-
=..1_:lo NF 1 {tan‘l (VZ+1) +tan N2 - I
W2 2+r~/" N2 '

.__._1og I lt -1{f“/21}—J,{log(J§~1)+g}.



CHAPTER XII. 85

N i ®dxde .
6. Ifcotop=a, fo Aot g = 1[ Tigh and using the limits 1 and ®

in Ex. 5, instead of 0 and 1, the result is

‘H’
T

“loew3-1)+—2, and -
N2 vz’
7. Hu= f ze"gdw+o-lce"2 ; when 2=, u is of the form % , and
0

u=lb. of & +¢ (2—l>-l when 2=,
z*/ 2

o 1 2% 5.1
8. By Art. 201 -/osm mdx:;, f ﬂ sin redrde = f d'r.;

0
L6, / ‘gx(cos az - cos bx) =log é
[ o

fccos az—cosbx ;. _[“cos 20 b"coswdx
= - )
cl

Aliter :
x ¢ X e @

[“‘cos % g *¢cos 08 %,

--]
cos ax — cos bz .
- when ¢= o and ¢'=0, f — dz approximates to
o

fac_l_ 2 — /‘M’—ldx=logé.
b @ Joe 2 o

9, fﬂ de =fl dxl +/m g ,andifx:!
0 xF(x, }) ¢ a:F(x, ) ! wlv(x, l) z
2 @ z
(R
the latter integral = f di‘ = f t_dz T .. ete,
°-~F(- z) °xF(x, )
z
v F(w) - AI A? —An
0. By Avt. 20, = B T
where Ar+1———l-(—-), and 4, =F(c),
Pe) _ I, PO, PO L, P

Ce=er (m-e) (x-c)"'1+ Rlz-cp? @—__l t—c)
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and by Leibnitz’s Theorem,
.1 Fle) o ofy 1y F(e) _oln=1)(n—
Ln_!(x_c)n—l. R ‘(n l'(’r_c)u—1+w @(x.uc

- g (P,

deT\z—¢

“Flayde_ 1 dr-1§ S—c
/a- @=eyr [n=1 ch\F (6)10%- c} :

I i )
'x‘“.c

2)F"(c)
g

11. [ o8 0cos(sin 6)do
Jo

=2 f " Ocos(sin 0)a =2 [ (e + o~ )cos(sin o)
Jo Jo

:f"’de(ecuso+e-cose)(esin0&/—_]+e—sin0«/—1)

0

= /az';da(ecoso+\/—:lsiu0_‘_603050«V:Lsin@+e—cose+sin9\/:i+e—cose—sin01/?:l)
0

=]fd0{1+cos€+~/——7 sin6+.12(c0520+~/——_1sin20)+...
+1+cosl)—~/—:—fsino+é(cos 20 —N =T sin 26)+...
+1—cos 0 +sin GN/j+é(—00529+'\/:T5in20)+...
+1—-cosﬂ—siuij+é(—cos20—«/:15m20)+...}
='[§d0.4.=2w.
0

12, The object here is (1) either to integrate, if possible, and then find
the limit when ¢=1, or (2) to expand the function in the denominator of
the integral in a series of powers of 1-¢; and as this is not immediately
possible, the expression must be transformed by a suitable change of variable.

If then (1) # be a whole number, and a”=c¢ as in Arts. 25 and 26,

= oreosd oY be separated into a series of integrals of the form

as s ek .
/ A1Thcosd) which is integrable as in Art. 14, Ex. 14, and it will be
' de

found that-the only integral which vanishes when a=1 is |—02"
l-ocosd
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Hence the proposed integral reduces to

. n
ufl—c[f dg___ Nl-c 2 tan‘l(,\ / l*“‘tau")/y
Jo n NI-a? L-a  2/i,

n(l-acos f)

=2A /_1.—- tan=(c0) when ¢ =1,
nY l-a

f1 c _l-c_1

= ~¢ , and the It. o
A

the integral = —_.
¢ N

87

This only applies when n is integral, therefore (2) for a more oeneral in-

vestigation, suppose cos™@ =z ; then

f / wnﬂl 1 =1, 8y
- z - Wy 2
1~c¢cos"d cos"@ N (1-ca)(1- mﬁ

oriflﬂcwmgf(: ! )
I-¢ y\ l-c+ey/

o(l—c+cy)2\l—c+cy I-¢

U= f ~dy .3 n _._...__._1_.__..__
" {1-ct eyt -yt
1
*{l-ctesm—aE
which =co when ¢=1, and expandinrr in powers of 1-¢,

uwl-c= /
f cz“ et o) -—1 { Ak -

l1-¢ 9

=/ dz.:17 f VI I
\/127») ”\/1:,:2 2'*/2’”

13. f db(a cos f + b sin 6)log(a cos® 6 + b sin6)
f d( - a cos 0+ b sin 6)log(a cos®d + b sin?f)

=b f 6 . sin 0 log(@ cos®0 +b 511120)
0

=~ cos 0 log(a cos?d +D s1n-€ + b-[ g, 208 Blh - a)sin 26

& ¢os%0 + | sin®d

1
mc:fl dyl-c) [y )31-11—c+cy (1-c+ey)
{(1- ceyn-yift
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msin 0d6(cos‘~’0 -|--.b_7) - a_b"b )

=1 26(b - f
loga+24b-a)| (@ —0bjcos?0 + b

%
=2bloga+2(7c:os€/’r— 2b* tan -1cos¢9~,/u_/
¢ (“—b)% Nbo o

-, feb
tan 5

ab?
(o~ )7

(loaa, 2+2,\/-—- cos'l'\/b>

1-+2n cos ax +n?
1+2n cos bz +n?

2 3
= Q{n(cos a2z -Cos b:c)—?},—(cos 2az - cos 2bx) + %—(cos Saz- cos 3bz)~ + },

=2blog a-4b+

14, Asin Art. 292, log

. the given inteaml u say, by Ex. 8

{ og? —-__lg +~logb } ifnel,
. u=log bﬂ(n-qz+% +...)=Iog(l+'n)loggz. Similarly if n > 1,

d; 2 1y, _8°
u:log(1+;z log(.;z+fo f(logn‘*-—logn-*):log (1 +;L>Iog&—2.

15. By Art. 288,
j”fe_az_awrl_ By l)da: o gb + ﬁ~/ 1 _10g@" an=1)(b+ N“n
0 o+ay -1 a2 +a?
This is consequently real if ab=ap.
Tn Art. 288, x must be positive and therefore o and b must be both posi-
tive here, but the signs of « and 8, the coefficients of imaginary quantities

are necessarily immaterial, When the final expxessmn is real, since - Pt
h

a, B ave of the same sign, and therefore log :Zg is real, whether that

sien be positive or negative.
g g

16. Ifz-}=2
) 3 ] g 3 .
[cot‘l(l—x+x2)=fdzcot'l(zﬂ—:—:z)=acot‘1(z‘~’+~) + | dg
-0 St 4y g 1+(:~s+g)-

¥ y
=£+fdz.--—25z: =34-:+f%dz —-—f————g—wf‘-—-l,
-4 (22+ZL-) -2 b \tezbd 24t
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=I+!f"dz 2:-141_2+1-1
42y <z3—2:+§ z'-’+z+§>
4 4
[ o#eae f
=T 2]log +tan‘1<z—1)+tan"<z+i> '
42 z2+z+§ 2 2
4 -k

5ol - (-5 e
17. Ifz=tany,

f ldxx log (x+ f dylog(tan y +cot y) =- f dylog(siny cos y)
L Tra

=- f?cly(log siny +log cos ) =~ 2fydy logsiny
0 0

=-—7rlog.é (by Art. 51) =xlog2.

18. By Art, 285 f mii-n.g;@dx =T if » be positive
0

7_‘: f sin 2z A= _sin? / f sm-xd
/ <smx) dx———j smxd
0 X

-] w -]
19. f qf(e—m_e -bx)ﬁh___ _1 (6' aa',_e-bz)f.’/ + 2/ .o_l?(e"“”—e - bz)(_ae-a.t.i.be-bx)’
0 x- 4 0 [

and when 2=c0,
(e—az___ e—-bz)ﬁ
@&
e-u,:z_e-bx) _2((; _(-bm)
x 1

=2.=0;
[+0]

when z=0, ( ( — o=t~ be~t%)= 0,

o g
< the given integral =2 jo %{ — (=202 — g (0+U2) L ple-(0FU)z — ¢ -22)},

70)215 t)b ”bl

. o 9 ra+b 1w ,,—
. (by Art. 288), Jalog -+ log oy =lo, {(a+b-\‘wb!,‘
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*arlogade _ d [ ardz _ d [T(1+#)T
TtzF  drb rap drl 1*(2)

- ")} by Art. 261, when

_df rm \_ ( 1 _7'1rcos1'7r> . putti 1
7 <1, .. by Art. 265 dT(SlD.?ﬂ') N&nrr simier ) PUURET=5
{ Nz logade _
Jooo (L+2)?

A

o "‘? __?E ] o o
o Tfz=_t, f (¢ 2 Bdz=1 f B (gay — ¢-s2)
Yy Jo 2Jo yE

p‘uzy —_ e—b2y

=—.Z.__.__._/i w.o,ly (CL“"G' azy__bEe_b‘.’y)

NY o JoNY
«©
and ﬁm%aﬁ'e—azy =a| do.e~5.7 t= an;
—a2y _ _b2” 0
also when y =0, e_;’:/?e_— =;5 =0,
-a — g=t%y o a2y 72,12
and when y=0, &Jyﬁ'—=_ %(a*e"“ V= e by =0,

the given integral = (b - a)a/m.

22, Ife-*=y, dx:—.‘;_y,

“ qa +1 1+y dy
and ﬁ log dac-f‘logl =y Y

_(dyf, ¥ ¥ 1. ye
—f——{g/ Tty +...+y+—2-+;3—++...}

1,11 T
"2fdy 2= <1‘+3"+5’+ ) T
23. Ifw=es, flxm_xn . cﬁ:/tlz(w),
o logz = Jo -z
a .. (by Art. 288), =log (Z’:)
M 1@’_’_’:} — d!/
If =g, j;logxdm_,/ology’

and .. the first given integral would appear to vanish, but, as in Art. 288,

[lam=Idy . o em . .
/ which equals - [ dz. =0, and ®-cw may be finite, and in
o logz o %

this case is 50, and not zero, unless m = .
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3
94, Ifsin?= x,/sm"odﬁ f_x_c_lx__ %[ (1 x)%
0 0 03 {1 m)é' =
1 (n+1> (l> (n+2>
2 p)
AT (n+l> (7 +2> B
R ) I‘—Q solongasn> - 1.
) P _b_z]___"ﬂ_ h L _ d_/
%. b¥ex b+c b+ex b+e therefore bFeaf (B+c) and
oy _(b+ox _b(l-z)
1-y=1 Tiew S hrem’ therefore

Y1z~ ledee _ flﬂj_ (b +cx)? '('_y_ﬁ)l-l 1 (1= ),,,~1(b+cm)m-1
h Tt b b btc  \bto) Fremmr Y\
1 _T()T(m) 1

1
= dy .yl -y)m-L - ’ s
j; Y YHLl-y) 0 b+c) T(+m) 0™b+c)

‘96, Ifsin¥ =z,
f %10 cos?-19 . sinm-19 21 1dzx . cos¥-26 sin¥™-2§ 21 [da(l—a)-L gm-1
o (@cos?0+b sin20)+m 2o (acos®d+0bsin®)+m 2o fa—(a-D)aftm’
and therefore by the method of the preceding example,
1 AU e

T T(l+m)
27, Ifsin?f=z,
T -1 _'n+1
f’-’ df . tan@ 7d9sm"0cos'“0 { 2 _2,,1, x) 2 and -
o Goos 0+ sl Jo oSGl Jo 2 +o-ay
ntly(1-n
by the method of Bx. 25 =1 ( 2 ) ( 2 ) 1 . n must be <1
o ST (1) ' n T’ ’
b ‘1
n_Ll) (1,—1%)_.__,",.,_‘- r ,
and P( ()= e byArt. 262, .. ete.
sin -7 cos -

w2"~lsin"‘lg- cos""lg .dé

28. The f T sinl0d9 /
o (a+Bcos )™ Jo <a+/3-2,8sinzg)"

—on f Binn-10 cosn-16d6
o {a+ B - 2B sin20y?’
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1o n-2
o, if sin?§ =2, the integral =271 f (1 @) 2 and .. (by the method

om’
Qn'l{r(g>}2 1
T et

de_ 1
de ugn-v

of Ex. 25), =ete.

29, Ifan= A

7 7 (1)

wGre-5)
and f g I ﬁ o] ) = lil?z" (1-2) "—1 n)\m

* (12
i =17 262
if m <mn, ==, , by Art. 262.

2’ . mm
% §in

n

30. Asin Ex. 25,
{‘195"'1(1 -2)""dz _T(n)I(1-7) 1 _ 7
0 1+cx T(1)  ~(I4¢)* simar (1+c¢)®

3 by Art, 262,

31. Sinawsin®cz =} sin az(l - cos 2cz)
=%sinax - } sin(a +2¢)z -1 sin(a - 2¢)z,
and this is unaltered in value by changing the sign of ¢; ¢ may, therefore,
be taken as positive. Thus, by Art. 285, if o> 2¢, numerically, as a is
positive or negative the given integral u, say,

=i7_;$’g+g =0; but if @ <2¢ numerically, as a is
positive or negative, u= +1 - 18£+18r =% ; lastly, if a=+2¢ accordingly
=+T7 T4l
YIS

This is assuming that neither o nor ¢=0, for then « would vanish altogether.

32. The equation y= ] m—gocos(ﬁx)dé) is unaltered by changing the
sign of z, therefore the locus is symmetrical as to =0 ; and

2y=f°"sin(1 +x)0d9+f°°sin(l —x)ﬁda,
) [} 0 [
and . by Art. 285, y:% if (1+) and (1—2) be both positive,

y=- 7-; if (1+z) and (1 - z) be both negative,
and y=0 if (1+2)and (1-2) be of opposite signs;
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also, if one of the two quantities (1+2) and (1-2) vanish, ¥ -+ 17 accord-
ing as the other of these two quantities is positive or negative, Hence for
the locus (1) ultimately from z=-1 to z=1, g/— o B finite straight line
parallel to y=0: (2) from z=1 to », and from z=-1to —w, y=0, Le.,
two infinite parts of a straight line: (8) y=-5 1s 1mpossﬂ)1e, for the sum of
two negative quantities cannot =2: (4)if z =—1 y— — andif z=1, y-—

which values correspond to two conjugate points.

33. By Art. 202, 5—21rlocre'“ or 0, ase™" > or not >1 ie,as u is
negative or positive, and therefore for positive values of sm Y= =0, and for
negative values of sm— y=-2r sin? - (and therefore y is posﬁ;we) Hence

the locus consists of an nlﬁmte series of segments of y=0, of length ma at
intervals =ma, the intervals being bounded on the +y side of the axis of «
by equal concave arcs.

34. Herey=+~’x2+2xsin0+1/ =t+(z+1)F(x-1),

the ambiguities being so taken that both x+1 and -1 shall be positive ;
if then @ > 1, y=2, part of an e straight line; soif 2 < -1, y=-2; and if
2 lie between 1 and — 1, y=2z, a straight line connecting the other two.

35. Ifsinzsiny=sind,

) BTES
u= f / sin 2 sin~Y(sin 2 sin y)dady = / f dzd0®f g
aJo o

0 cosy

f { dz dﬁigs-f)-s_m _xuﬁa, or changing the order of integration,
o Jo sin%g — sin®

f{d@dx 0Wco§‘ﬂs1ux =~fd6.0cosesin'19§f§/
0.6 Neos?0 — cos’x 0 cos b/ p

35- wfmr
jdﬂ fcosd. ~2--2(051110—1 cos.(})/D §<§_1),

. © . e . z=w0
36. 1ere (1) | e~wsin awde = —( -~y sinaz—a co3 ax)
0 a+y . .

asin Art. 12, and .. ___a_-_‘,

s doar=
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[/e—“ﬂsm axdydz = tan‘ﬂ/
0

e~w(® 1
—XYy = - — ==
/;e i z / z

0
w0
-wdedy sin ax = [ S Q% - +7 as i it
ﬁ {0 e~ Haray sm " T @ 18 positive op
negative, by Art. 285, which is therefore corroborated by (1),

B . .
53 @8 @ 18 positive or negy.
2 g

tive : and (2)

z2+°n,
37. By Art. 286, [ ““)dm‘—\hr -2 puttinggfor z,

x? ) ase”

f‘“e‘(;z*;?)d_ng
0

- . 4 .
— =5t e, o if ca=b,

(ELP %
/m (;"+;:T~’)d — r\/ﬂ' "‘E
e e =N"ae <,

o 2

0 "IL( ‘:"l‘ ‘f) [
Hence / e M Flde=N—. —e K
0 L NK
-, differentiating with respect to «,
(e
_ / <x'+ )3 (a- zl)dx (7,\,7" “’I\.( 2_ —_1’_)’
Jo \a? " 2? 2 V& o
2 42
2 ]
imen, [0 E e e
© = E.:'z"l"x—fz [/ -
Also de (“'K ”‘) =:\./-—a\/lce‘2
0 3 ’

-, differentiating with respect to «,

22 _I_Ifa'l) o
o —(E+E2 .
oo ) xt a® T =% i
fodxe wk e (E‘*‘aﬂ__“T) =14\1/E‘~7“K ,and . when k=1,

e
- ‘ 2 2
fdxe : f(f.g_w_o)_w.

a2 4e*

38. Changing to polar co-ordinates, the given integral

_ 1-7* »
_” 1+‘,'rd00l1—_/d =

T 2 ™ S Ry
== S IITIITL e TRILT = fsin-1s DY) ¥ B e
4ﬁ dz{»Jl—z‘-’ A/l*zﬂ} 45in 241 z}/o- 4<2 1).
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39, Puttinor z, Y % ... for a% g% 2% .., the given integral » becomes

j‘ f f 12 -y b3 d”d'/d" ~, and therefore, by Art. 277,
2)2 »\/1 z—y—-5

{ \-TL 1 2 n )L 1 ki
1 1P 2/ R ot r 2 r 2/ 77'—?-;1
Y N VIi=h cmr( > (n+1) T on (n
1(2) A 5) T\g=) 27
40, Flu)= A+ 4260V =14 Az2e20V=11
I

v)= Ay +Aj2e-0V 14 A2V,
w =4+ A% cos 0+ Ayxcos 20 + ...,

+

1.)'

[O|

and so ﬂ@.’*’f.(”) = g+ ;% cos 0 +a2%c0s 20+ ...,

- HFu)+ F)} flu) +-/(v)
=a,d,+ (a0A1+a1A(,)x cos @
+aay A1c08™0 + a4,y + ay 4 |cos 28)
+23{( 0y A5+ ay d y)cos 30 +(a; 4y + and, )cos 6 cos 26}
+at(agdy+ agd)eos 40 + (a4 3+ az 41)cos 6 cos 30 + a, 44005228} +...,
and this involves three types of functions of cosines, viz., (1) cosnf, n
being any integer ; (2) cos 20 cos s8, r and s being integers ; and (3) cos™nf ;

and (1) ﬁ cos ndf = 5_"_331:@{9/ =0,

5 (cosr 7+ 80 +cos7 —s6), and -, asin (1), =
[ -

(2) f "cos 70 cos s = f
0

(8) f"cosﬂn@cw :1) f 11 +cos2nb)db =
0 &

0

w.l '3

Hence 1 f () + P f(0) +(0)}d6
=mayd,+ % (0L1A1L‘+C(n W2+ .}

d o oagdy oAt +and 2t
= [ (Fw) + PO 0)+f ()0 - ay Ay

41, If ay+ayx + ayz® + ... =f(x), then by Ex. 40,
Al el + afat4 .. = - g+ _—f{fu )+f (v)Pdb

==ttt oy ﬁ dB{ f(2e™ 1) + f (e VL)
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2'2

Hence if (1+z)"=/(2), putting =1, the sum of the squares of the coeffici-
ents of the terms of the expansion of (1+%)", whennisa positive integer,

T s p—
=_1+%r [0 AO{(1+e8V Ty (L4~ Tpa2

_1+1-['d B{(1+€0V T 4 (147 2V Ty
“0
=14 /.dgxeno«/'“(eev“i_,_e-w’l)
4oV 1(69‘f_+e'94/_1) mj2

7:;
==1+ 1 f A6 cos2nf cos¥g . 221,
mje

Tt follows from Algebra that when n is a positive integer

ar ‘)
208718 cos?nfd0 = o =
o CcOS COS~ N = geﬂ-;, U

42, From Art. 290, the given mteorral— o ‘ oe R or = 5 8 ¢ is positive,

negative, or zero, and 2{1 0- —+ 1+ T30 reduces to one of these forms ac-

- _:

cordmg to the \a,lue of ¢ ; for suppose ¢ positive, then 0‘°.—.(—1)=ao, therefore

T 0 .=0, and O 2 =¢g-c; similarly if ¢ be negative and if ¢ =0,
e e 1,1 |
Tro e 2ty o

43, Ifu= / $(sin 2z)cos zdz, putting x for 2z,

[

u_-fcp sinz)cos = dw- 5 ¢(s1n z) cosZ d: + qus(sin x)cos gdx
z

[

_1f:
-if

¢(sin ) <cos +sin )d'c- — [ @(sin z)sin ( 4 0>dx

N2h
1;‘_
-1 “$(cos z) cosZdez, and if cos @ = cos’: = 1 - 25
== ¢(cosac cos5 2z, an cosz=cosz=]-2sm 5
. X 1 "
sinz= '\—/—sm,., therefore cos ; dm N2 cos zdz, and
-

u=L f “B(cos%) . /2 cos 2dz = / b(cos?x)cos zde.
\/2 0
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44 f.’cos(a: sin y)dy = -dy(l i sm~y+.)c‘*~m4 - +.. )
o 2 &
_r{l aggl zt 3.1 x“'5 1+_ }
272 L 2.2 L_ 6.4.2 "
2 1 6
=g(1h;.+22m_4“ o Z_ 6" - ), and .. ete.

45. If ,7/" =%,
[t pomray= [t & L[
Jo

0 n=1

n

nz "

e-mmds= r(l—”_‘) it "< 1.
n
0 2]
Hence /. am=le=2" g ﬁ e~ yn=m-1(y in the same way
Jo
-3 -2
2 n) " n n n? n/ \n

=—. , by Art. 262.
" sin ’.’L

n
46. By Art. 986, i

© - 2+C'i L 0+w K -4, /KK
/ dxz.e <x x') =nfre=2e, / dae \/— I\/
- -w
and putting k=008 26+~ —1sin 29
and &' =5 204+ 8/ =1 cos 20,
as in Art. 303, the given integrals are given respectively by the real pare

and the coefficient of ~o/—1 in the imaginary part of u =—77:re‘“" %K but

Jh—coso+~/— 1 sin 6 and U——:cos@—/\/'——lsin ,

T —_—, T :l
Ji'= {cos o= 204+~ 1sin - 29}:’
2 2

-cos(l-@)-bx/ lsma—ﬁ

Ak = cos 0 cos I—« 0 —sin 05111£~ 0

—)w/fl(sinﬁcos£—0+cosasin£—0)

1 N

LAl
NCREIND)
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y s Jvr(cose < 1sin g)e-ed+v=1
. —~/7r cos @ —a/ — 1 sin f)e~%(cos a—n — 1sin a)
aTe afcos(+a) -~ —Lsin(0+a)), -

} In thé"gi}én integrals neither cos2f nor sin 20 must be nega,tive, and

therefore the result holds if 8 lies between 0 and

INE]

J e Hu:I‘(x)I"( 1) r(x+" 1) = T(n)(2r) T 0 ™™
logu= zlogr ) (whenn=) =1t of log{Tinz)2n)'T nd

~nx
b

and .. putting dz for © >

n=1 1_
p }-

[Tog T@ide=1t. of Ltog{rine)2e) s n?
JEX

48. By Art. 282, when n is infinite,
T(n)= é-"nn(m)% -, Dinz) = e~mo{nzy=(2r) 2 (ne)3,
1 e
f log T(z)dx =1t. of log{e"“ n) ""(21r) {(nz)( 21r)Tn2 "
1 1
=n{—na:+logn+nwlogx+§1og 21r+-2-loga:}

:—x+xlogx+‘1-)log21r.

CHAPTER XIIL
ExAMPLES IN THE TEXT.

Art. 314, In formula (4) of Art. 309, putting i=, (x) =%, and

f " i o . el = ol sinnw - ncosnv) (Art, 12)=
0 ' a?+n?
0

),

and . == 29 (1 - e?"cos nr)sin n.

w1 a,~+n2
This holds from =0 to , but obviously not when =0 or =, therefore the
limits are excluded. The series would be unmanageable if the limit / were

retained.
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Art. 315, In formula (3) of Art. 309, putti \

f "$(v)dv = f iy =1,
[} [ a

1 -
@ cosnv+nsinne) = e
et nm)/0 = aee™ v
lem-1
™ 721 a’+n?
This holds from =0 to z =, both inclusive, by the text.

kg
also f cos m . eargly = &
0 o

and .. = ~{e"cos nar - 1)cos nz.

Art. 316. Here ¢(z) is sinaw, and in formula (4) of Art. 309, putting i=m,

f “sin nvsin avdy =% f T{cos(n ~a)v—cos(n+a)vdy
0

/0

_ [sin(n—a)_sin(n+ a)v}/ m_1[sin(n—a)r _sin(n +a.)1r}
U2n-a) 2An+a) S, 2\ na n+a

sinamrcosnr.22 _ asinar . .
=—— s cosn, a being a fraction,
- 2

1
2 #n— ¢ n*

. -2q®, ina
and . sinaz=—I3 simpe 22 T OO
T 1 n

. m sinaz_ sinz _2sin2 ‘351113:2: —r }
t B sher Pod Pe@ ¥ _a?

* This formula in general holds from =0 to 2=r both exclusive, but here

hoth sides vanish when 2=0, but only the right-hand side when z=1;
therefore the limit z =0 is included.

Art. 317, Here ¢(2) is cosaz, and putting /== in formula (3) of Axt, 309,
/ o(v)dv =f cos avdy= —1~sin cw/ " sinar ;
0 0 &

o a
also f ”cos(nv)cos avde =‘-1 / 7rclv{cosf.(n +a)v+cos(n - a)v}
0

sm(w +a)r sm(n —-a)r__sinarcosar.a

2w+ a) 2n~a) w-a®
1 sinar 2 asin
and .- cosazx= ", " AL E cos ngp, LSO COS BT
a7 - a?

T COS K _ 1 acosz_acoslz
A e et St

sinar 26 -df ZFoof
This may also Le obtained from Art. 316 by integration.

+
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Art, 825. In the second example, putting I=7 in Art. 309 (4),

pT o =0 ™ :
}0 sin nvg(v)dv becomes ﬁ sin(n) . vdv + f sin(nv)ady + f sin(nv)(m - v)dv
a

-
a T-a T
. o m /
= ( v cos +}q sin m:)/ ——CO8 m/ - - Ccos N/
n n 0 n o n [T—0

1 . T
—(—?cosm;+—,,s1nm;
n n" HT-a

a, + L ¢ G cos na} T osn
—— —5 &1 —=lcosnr—a -~ —— T
n Cos na 2 s ne n{c S 7
+ Cos nr— a.+ COS N~ — €08 117r a + ,sm 1z1r - Q@

=% sin na(l - cos nr),

sin na

o(x)= 23 sinnz. (1= cos nr)
T 1 2
2/2 2 sin 3z sin 3o
=Sl 51nmsma+——-—§,-——-—+...}.

In the third example, using Art. 309 (3), and putting {=a, when z is

positive, [qs z\dv-fdz, a-v -%, and

ﬁ B(v)cos ﬁ@d f T 1y

]

na (@— 'v)smq_l—zf/o (7;:_) osn:"/ ( )(cosmr 1),

1 a2 2 ( ) nr
a-z=-, —— cos nr — 1) cos —=
) az ) a

s = cos3——m
0, 4a [ a >
—‘2+7l-2 l) +—‘73§'-' +---
cos’s= cos®5— Sz
’a 20y > 4a(1 )
—_—t ...
5 1,+3.‘+
=q+8_azw{°°s(“n+1)§c;}_4a o oto
2 I +1 =g

If 2 be negative this clearly = ¢+ 2.



CHAPTER XIII 101

In the fourth example, for values of # between - and by Art. 310,
z=20sinz~3sin2+3sindz-..},

22

cos2x cos 3z

o by integr&tion 4 =(C-cosz+ 5~ ._.32._.;._._’
= = 1_ _7,.'3 T g2 2 .
and when z=0, C= T‘:’ +§§ S (6 S) o ete.

In the fifth example, putting /=7 in Art. 309 (4),

/'.zinm;_qs(v)dvv becomes / sin(nv) sm__dv-l- f (0)dw
o
12 T, _ T i
=§,/; {cos(n—a>v cos(n+z>v}dv j
. T - T ;
uljsm(n E)a_ Sln<n+'&)n1=_l{sinm_sinna] __omsinna

9 T T P
‘ n=" - J 2 p-T n+IJ‘ ot~

[+ [+ an o

¢ sin na sin nz sinxgina sin ‘7x sin 20
¢(9:) == »%EUJT 98 ) = Qa 9 = Y ) b A
7 720 - T~ g ~ 222

In the sixth and last example, putting 7 == in Art. 309 (3),

K e PAVREE LoD B =
.L ¢(v)clv—‘/; (-4- v )dv--g- 3 g 00 andﬁcos nve(v)dy

2 ™ nr v 2 .
= [ cos(nv)(—*v-')dv smw - _sin m;/ +< / v sin nody
JO n nJjo

4 4n 2
"n'
_2 / wr_ T nw, 2
= = —_— = + sm--
n 1 COS 7Y \ 1-1, sin B) n,cos b} 5’
082, 8l T cos 3 . sin 3m
3 cosz.sin g 3. sin —-
(,L)_,l. T 4< , 2, - 2—!-...)
r 12 7 18 3
cosz ., m cos2  Or
— _____.cs oy ——
2( 2+ 5 cos2+ )
7 4rcosx _cos 3w ofcos 2z _ cos dx
= )*‘('w T )
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MISCELLANEOUS EXAMPLES.

1. The limiting curves for y are the circle 2 +3°=a?, and the parabola
2r=- 2a<y -3 ) therefore the aren of indegration, which is
bounded by the two curves and the axis of y, on changing ‘\
the order must be separated into two parts, and when y
Ties between 0 and %, z ot from NaZ—2ay to NoP—g2; and | ; |

g and @, z « from 0 to Va?—y* Hence the given

when y lies between

2. V2R
m‘ueora.l becomes f a¢ (%, y)dyda+ j ] & é, y)dydx.
a

a?- 2a.,/

9. The limiting curves for y are the circle 2*+y?=2az and the para-
bola 72=4az, and to change the order of integration, the
area of integration, which is bounded by the two curves

and x =2, must be separated into three parts, thus:

o

; fromy=0toy=a, (1) o from;i—;; to a-~a® -y, and

@) z « from a+Na=yF to 2a; and from y=a to

y= 2an/2, 2 « from Z—: to 2a. Hence the given integral becomes

“""’ 2 /2 e
) '/ (z, y)dyde+ f oz, y)clydx+ f Jqus(x, y)dydz.
o @ :l_-

0% Vel -y I

3. Changing from y to v, and therefore eliminating v,

v _ T dy T 9
SIspTice P dw (1-—1;)2’ v“;.;f,/
therefore the limits of v, corresponding to those of y, are ___1 and b_é_ , 50
a+ +1

that the given integral U becomes f ”+1¢ (%, 'v)olxdv

—v)g: next, chang-
tl«+1

ing the order of the integration, since the limits are all constant,

5
U= f :Tﬂ(w, PRy

(1-2)
a+l
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now changing from 2 to u, and therefore eliminating ¥,

z=u(l-v), .. %: =1-v, and the limits of % are 0 and -i-c—,

-
U= f H’/ ~%,(u, vyudvdu,

afl
where ¢(u, ) is equivalent to ¢ju(l —v), uv}

4, Changing from y to v, and therefore eliminating u,

T _ ez Ldy_ ez dv

= y -

= - 2 =_Y
Y l - 1- U dv (I—U)L"’a’n y-{-cx’

therefore the limits of » are 0 and

b
0= [Pt it
o @'(z, v)dx 1:(1_1;)2

therefore the area of infegration, regarding v as an ordinate, is bounded by
v=0, =0, the hyperbola v= , and z=a, and the hyperbola meets

3 —fcx’ and the given integral

b+cx
z=0 and z=0 where v=1 and
b+ca

order of integration, the area must be divided into two parts, and from

respectively : thus to change the

v=0to- , 2 « from 0 to @; fromv= b ~tol, 2 o from 0 o 2L=?)

b+ea b+ w
Hence / s ) dulx / / -0 &'z, v)dvdz x ) dvolx
TS i

now changing from z to u, and therefore ehrnmatmg Y,
wrter =1, 42 _1-% 204 the limits of w are (1) 0 and °%, and
du ¢ 1-v
(1- 'u) _1-v

(2) 0 and I_’, hence, since *——. I,
cx cu

b
b ee L2
U= _/;ij/-l'v%(u, vyudvdu + f ) /; " (11, v)udvdu.
' b¥ea
If ¢=1, this agrees with the result of Art. 240,

5. To change from # to %, eliminating v and w,
dz _3u?,
dap
to change from ¥ to v, eliminating z and w,

v=lan)
S =ty e
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S () ELAS S
dv v \y* Rayz-2y%) vz(z-y)
and to change from z to w, y and z must be eliminated. Now the first and
second given equations give
(y+2)z= w"(;l] - ;1), and the first and third given equations

08 uf
give (y+eP=ut-g2 2 7; (v —2)% consequently ; therefore,

3 6 Qub(p — )2
! w UNv
wdzg=a: ? ~(’D—03)-d ( —-—x),

d & v v’
and - ( ¥z —1):— @y +z)
Y2+ 22+ 2y yat+ezx+zy
0oty o yre 3 gy
dz 2 0R ety x-‘ e
=m+9.'.z+(~/” wway)y+z) _ Ay +z)?
x? z
_I_{x3+xJ~ +(y +2)(zr+ oy +yz - 2oy - %)}
x-
.1_2 - a0y — ayz+ Y - anf + et}
=2 Ve ylo—yz g} = U@y +2)
22 @
[ffx-—y —2)(z - 2)dzdydz
=U= / / / z-y)(y —2).%%0 .Y gy watd
ay  vaz-y) (z-y)e-a)zty+a)
32¢5wcludvdw 2u3
a L
ff iyt , and (z+y+z)P=w?+ >
U= f f 3u5wdudvdw
21

w-

6. Here 7=¢*=2, therefore

gz:%x‘-‘"'l, and fwe"'dx= /'“g::d:-__r 4:"1_ I =
Uz 0 Jo 2n 2n \2n

Sxm:larlyf -z = Ty (1);

and /’ dz f

1+ x"’”)"

*dr. 1'-"
1° 1’
n Onr T

dr
(1+7) - (1+7)n
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ifl-:_—7=y, and .. 1—%:1—3/ and 7=_"_,

1 2
B e | {P('QT;)}

- 1 on o
R R
()
... the required result follows.
7. Iftanf =2, f *tan 6 log cot 6d6

=— j‘a,logmd_x [dx zloga(l-a?+at-4..)
0

1+2?

=—ﬁdxlogx(x-x3+9:5—+---)
=-loga (% - Z‘“a'+"'>/:+(§‘§+§:"+;">/:
o3 Lihe o lbeh ) e T2

8. Transforming to polar co-ordinates the given integral

m
5o
U= ] / e- 1'4(cos49+2 cos Gcos2p sin26+ xin49)7-d0d7.’

f_4pz¢d0d7 -// '“‘tlﬁdu f o NT

where P?=cos*d +sind +2 cos®d sin®d cos o

=1-4cos?dsin% . s1n~§ =1~ s1n2 sin?24,
N

v= ./ 4/\/ (1 sin?% smg"ﬂ)—m—'/ v\/ 1- sm- sintg

= &{]:IF(sin %)

L]
9. f dze—nPeot2B sin(na? + a)
0
= f ? dx sl PO Aot 2~/ =T)+-a4/ =T _ 6—nzzcoh"[3+«/ Slean/ =1 1,
o 2J-1

o
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and, therefore, by Art. 272,
NT f eaVTI e~oV=T

-N—n\ Jeot 28 - w1 Jcot"ﬁ+~/ 1J

i.\/’r mZﬁf (cosa+~/ = Lsina)(cos B+v/—1sin §)
~(cosa—~— lsma)(cos‘B—N/':Tsin/S)}

= ‘l)xv/"f—s%l—‘ﬁ .sin(a+B).

10. If the given integral be denoted by %,

du _ j‘ T a1 —tant _ /' T drcosanGosdz
) Je

dn Jo T+n(l=tan%) Jo T+7°= (1 +2ndsite

- dx
therefore if o/Z sinz =sinz, and therefore A/2 cos T =008

T T
du_ [coszds cos 2 —n /D / T cos%dz
“Jo (

dn Jo Taj2 lamto 1+.,n Lr2n ;o o (1+2n¥)cos% +1

V2 / j (1 "———1—)——-)-')
l +2n° 1+ (l+2n~)cos~z

ST A2 24/2 dz
2 T+%e 1497/, 3+‘)n2 +(1+2n%cos %

&4

l\';l E

/2 i dz d - by A
“TH2E 1+2/l'o3+2112+(1+2n”)0082’ and by Art. 14,

™
Ex. 14 du_z A/2 /2 2. 2
2

s =T(P-Q)
dn "3 TR 1+2n2 " Jg+rdmp 2 7

where P=_V2 s and Q= ! 5 and
1+2n (L+2n2W/1+n2

/ Pdn = d n\/2 =tan~Yn~/2)+ a constant, and if n = cot ®,

= cosec?¢d¢ clqs_slﬂ b _ -
f @ (1+2 cotp)cosec ¢ 1+cos?p tan™(cos ¢) +a constant,
and . u=3tan‘1(n\/2) ~Ttan-1 2 -+¢,

2 2 A1 +n?

and when n=0, =0, therefore ¢ = 0.
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11, If £ be a function of 6, the definite integral gives the functional
equation f{£) = some constant independent of § and therefore of £ =¢ say,
therefore y = cx, a straight line, and f(£) does not really involve & If £ be
independent of 4, the evaluation of the definite integral gives f(£)=some
quantity involving £ in general, and therefore the form or value of the

function is determined. In this case, putting tang =z,
[ sin(&)2dz _ [“sin(é)dz

1= | 5= )y e,

o 8in 0 sec’=
2

and therefore by Art 285, f £)= 0 or 2, as £ is positive, zero, or nega-
tive. Hence y= x, 0, or— 2:2:, as sin 2 is positive, zero, or negative ; thus

from z=0tom, y=- x, and so0 on, and therefore the equation y=zf(sin x)

. Y|
geometrically represents an oo series of equal finite straight lines termi-
nated at one end by the axis of #, and alternately on either side of that axis.

12, If an element As of the curve connect the poi.nts Pz, y, z) and
Qx+ Az, y+ Ay, 2+ Az), and y2+22=+2; and if the curve revolve round the
axis of # through a small angle A¢, so that 2 and @ take the positions 7/,
Q', then PP'=rA¢p, QQ'=(r+Ar)A¢. The corresponding element of sur-
face generated is the area of the skew quadrilateral PQQ'P’, which can be
divided into the two plane triangles PQP’, P'Q'Q. Since PQ=As=P'¢)’, and
PP’ = Q@ ultimately, these triangles are equal. Let 4 be the area of each,
and 4,, 4y, 4z be the projections of 4 on the co-ordinate planes ; then the
co-ordinates of I’ are respectively z, g/+'rA¢.; or y+2A¢, and z-rAg. Y
or s -yAg¢; therefore "

+24, =the projection, on the plane of yz, of the area PP'Q)
=2A¢(22 - yAP) + (Ay ~ 2A9)(28+ Az — yAg) — Ay(2z + Az)
=—y2(A¢) + AyAz — yAyAg — 24246 +yz(Ag) - AyAz
=—(yAy+202)A¢ ;
+24, =-yAp(2x) + (Az + yAg)(2x + Az) ~ Az(2x + Az) = yAzAg,
and +2
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Hence the area of the skew quadrilateral
= {lyAy +sdeP + (AP + A g,
and therefore the surface generated in a complete revolution

= f () f (ydy +2dz) + (y+ ) (d)?}

= 27‘1‘[&/ (ydy +2dz)?+ (y* + 5%) (dz)2}.

13. If the roots of z*+dz2+a?=0 be all imaginary, the two values of
%* in (2*)°+ba®+a*=0 are either both imaginary or both negative, there-
fore either 1?<4u? or *>4a? and b is positive. In the latter case, if

0 —~da?=4¢% 2+ bzt +al= (x2+ g>,_ ¢,

* dx 1 1 1
and / s dz - =
e L mgﬂ)z

: =2l72r< ; > 4:<bl '+b'1—_§>%
,\/ ! 5t¢
T b 2w NI - T
. 4V @ o 2T o/l 1o
This still helds if ¢ be imaginary, if b+2a be positive, and therefore a be

taken as the positive root of o  If x:l,
k4

/.w e’ _/m dzs 1 dx
o FH R o TRy T
0 +o'z o 0%_}_'&:‘;_‘_#

* o a?

and therefore by the preceding, or in the same way, the result is

1 T T
" 9 b 5 2Jb1
CL'\ a- @
- Alster :
T A S W SR W
Jo a*kbattat o 2<x2+g—c x2+g+c 2 x‘~’+g—c % x2+g+c>

and s0 on as in the first case. The integrals are both clearly essentially
Positive if x*+ bz?+ a?= 0 have no real roots ; therefore even if 52> 4a? and
b positive o must be positive.
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14, Tn Art. 309 (4) putting I=r, as in Art. 324, /;gin(azw)¢(v)dv becomes

T
T 5
f sin(nv) . 'vdv——- cos nv +—1 sin nv / == cos%f-l l sin "—?,
o 20 2
.
sin 27 7 cos 2T
Do
and br) =2 sin m‘( 2 2 )
T 1 il 2n
_2fsinz_sindc sindz_
AT TE w7
sin 2z - sin 4z , sin 6z
A - + 1, ete.

e Ty T T

CHAPTER XIV.

10y @By
L A= " ge, and M / ryide + f dx (Art. 333), therefore if #=af,

8 aby 161

M=7r/ Bl f(0)+ {6y - by) = 02’”‘;.

2. If ¢ be the greatest range, then when 6 is the a,nvle of elevation

the range is @ sin 26, therefore if the ball reach more th’m —, 6 must lie be-

tween _lsm'l(—l— and ——lsm'l(—l). Hence by the method of the latter
2 7 2 2 m
part of Art. 335 the chance required
2%~ dsin 1(7::') T~ 3sin ](;b)
= J a cos Bd¢ ,adf+2ra’=sin 0
“0

-1(1 [ 1gin=1(1
wsin (m) i (:T:)

=cos B-sinp, if sin2B= %, and therefore

2sinfBeos B = l and (cos B-sinB)*=1- 9}? therefore

the chance = / 1-
iy w

3. If the diameter =, and with the point of projection as pole the
circle be 7=acos ¢, then with a given value of ¢ between —g and g, for
favourable cases a sin 20 must not > @ cos ¢, 6 being the angle of elevation.
Thus the limits of ¢ are (1) 0 and %(g - ¢), and (2) g—- %(g— ¢> and g, and
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by the method of Art. 335, the required chance

-

'_75 m ™
=2’ A J dLos 6do+ / cos eda}—%
o 0 ¢
Tt+3

=%f§d¢ sm(g %)+1 s1n(4+'§)}=%—;f72-£§d¢sin?
—.‘ ; 242(\/2 1)=é+§(1—.~/'2)

Roughly this may be taken as equal o 3.

4. The centre of the face of the cube on the table must lie on some
line joining two consecutive lines
of the system and perpendicular
to both. If z be the distance of
this centre from one of the two
lines, and § the angle between one
of the diagonals of the face and
the system of straight lines, then
if the cube do not rest on a line of

E the system for a given value of 6,

 must lie between — ~5 cos 0 and ¢~ —5 cos 8, and all varieties of cases will

oceur by varying 4 from 0 to Z' Hence the required chance

_[E - do..
qu <c ':‘zcose N_ﬁcosﬁ) do—«-/owc -~ tn/2 €0 6)

= i(“ ) =1-4
me\ 4 e’
In the limit 0 of 6, it is assumed that a\2 <e.

! .
rry— the mean value is

] s .o _1[* d8_ _1 &
ol+ecosf’ ™ moltecosf T T2

5. If the ellipse be given by r= -

=b, (cf, Art. 14, Ex. 14).

It the abscissa, say =, of the extremity increase uniformly, the factor by

which the numerator and denominator of the fraction - must be multiplied
n

is not A0 but Az=A(rcos 8) = lA( cosd \__ IsingAg
( ) 1.,.ecosg> T (1 ¥ecosd)? and therefore
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n value= f " Bsin6df , (7 Usin 6d6
the mea o (T+ecosd) ™ Jo (T+ecos 6)°

o/ :(1+ecos€)‘1/”
Ty "0 Iq
iy 1 }_ _L-_l_)=.J_=
5{ e (T4ep '(l—e ite) 1™ "

6. The rod (P@Q) can fall at most on m of the straight lines where m
is the greatest integer in », or is »~1 if  be integral, therefore n<»: and
one end P of the rod may be supposed to lie on a fixed perpendicnlar to two
fixed consecutive lines 4, B, as it must fall between some such pair. If @
be the distance between 4 and B, z the distance of P from 4, then P is at
a distance from the nth line on the same side of B as A=n+(2—1)a.
Hence the chance that the rod will fall on n lines at least is u, where

~

=-(1+ecosf)~2

i

@,
U= de . i}ip, and x + (n - L)@ =ra cos ¢,
0o a 2r
°°“_1"‘1 cog—12071
and .. Qu= __[ o . rasin ¢pdep = ( ¢ cos ¢ +sin ¢) r
Veos -1" cor"lg

2f

n n=1 R ————
- ) 1 (g =1)eos 1 —— 4 a) P (e 1R S T b
= Ln cost (n—1)cos paat X0 (= 1) = Al =) I

If n=r=1, this reduces to %, which agrees with Art, 336, when a =¢.

If the chance be required that the rod should fall on exactly n of the
lines, denoting such chance by u,, and the result above by uy, », clearly
U, 9= Uy + Uy q oo+ Uy
Lo Ungl, e = Upgy o Uy,

~m—1

and Uy = Uy = Upry, r= g{"_’n cos~ 1 - (n~ 1)cos = (n+ 1)cos‘1”;"'_1
T r '

+alr— (-1 r\/'r~ (n+1)* —‘R/r-—n—},

so long as n <, but if n=m, 4, ,=u,.

7. If the arrows are at the points 4, B on the target (of radins a),
and 4 Dbe at a distance « from the centre, the number of cases in which 4
lies between the distances z and 2+Az on a fixed diameter may be
measured by zAz, which is equivalent to dividing the circle into a large
number of very thin equal sectors, on any fixed one of which 4 may be
supposed to lie. Also, when 4 is at the distance « from the centre, the
number of cases in which 4B <@, may be measured by the area X included
between the given circle and an equal circle with centre 4 3 and the whole
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number of cases may be measured by wo®. Hence,if u be the required chance,

1-u= f wdeX + ( xdz . wa?, and by geometry

1X o7 x)a, sin 6, where 2 =a cos 0, and therefore

9
(l—u)é— f’ in 20d6(20 - sin 26),
-’Ml 000s76+1sm26){:r v/;gl-%osclodo
=g '% f-—f+i<sm“’1r ;11145),
w=1- ‘.*(z;_ 3_15(/)_?_) 3;/,3

8. With the notation of Art. 335, the number of orbits making an
angle 6 to 6+Af with the ecliptic, may be measured by sin §A¢Af, there-
fore the mean inclination in the first octant

] [ 8 sin B0+ / / sin 0dgdd = (-0 cos § +sin e)/ 1
Jo| 0
=the angle subtended by an arc of a circle equal to the radius.

S1m11ar1y for a.ny other octant, the inclination being always taken as a

! posmve angle < If a normal to the plane of the ecliptic meet a celestial
sphere in the zemth, and a normal to the orbit of a comet through the
centre of the sphere meet it in C, then § and ¢ are C’s zenith distance and
azimuth.

9. The parallels of latitude being circles parallel to the equator, when
the territory lies between latitude 6° and (6+1)°, its avea, if R be the
radius of the earth (supposed spherical), is zl7. 2w . R{sin(6+1) - sin g},
and therefore if \;, N, be the limits of the latitude, the mean area

1I'Rq 0—1 >\2—1
(sin(6+1)-sing)do+ | dp
liO A
o= {eos(Ay = 1) — cos Ay - oS Ag + cos(Ay + 1)} (Ag— Ay = 1),

160
the angles being measured in degrees.

10. If AB, PQ, RS be the lines a, b, ¥, and A P=g, the whole num-
ber of different positions of P may be 5 P Q B
measured by a -0, and so the number for R S
RS=a-V, therefore the whole number of different and equally likely
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positions of b and ' concurrently =(a - b)(a~b'): also, if = be great enough,
and not too great, RS may take the position in the figure where PS=¢,
and the conditions for this are x+¢>¥ ,»nd z<a-0, and therefore
a-b>b -¢, which latter and c<b<?d' limit ¢. Now R may take any
position up to 4, and therefore the number of different equally likely posi-
tions of RS, subject to PQ and RS not having a common part > ¢, when R
lies between. 4 and P, is measured by AR =x+c¢—1', and therefore as the
whole number of different positions of PQ and RS must be the same when
S is between B and (, the required probability

2 “-b n (a=b+c~b)?
“Eha< b')Lflf(”*c = aTheo)

11. If the point be taken as pole, and »=the length of any one of the

straight lines, then the area of the curve= j J%@-, and therefore the mean
0

. o 1
value of the squares, which = f 7%d0+2m = - -area.
0

12. Here o is measured in miles, and if M tak«as ¢ hours he gets ?

shillings, and the shower begins not more than = hours after I starts.

Then (1) if he is not caught in the shower he takes - hours and gets R

shillings, and for the probability of this hypothesis, 1f the shower begms
after a time ¢ hours, ¢ may o« from 0 to i‘ and z from 0 to v¢, therefore

the chance= / f didz-= f dtd~—~ m‘cl =;1)

therefore the value of M’y expectatxou so far = 2_“ ® Shillings.
But (2) if the shower begins ¢ hours after he started, ¢ as before may o

from 0 to -, but ¢ must o from vt to @, and M stops for % —T— hours, and

therefore gets slnllmgs Thus the value of his expectation is then

v W

i3

U""(Zﬁ(lz.n _ dl (a 8 vt) /”'

) vo_b_l_z-—n ot U Mt
v U

L
mw/d”g v _u

w
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(l,ul)_”_t% o
UV o) w| T U dgpg
...—-- tl g—-————-— az 'u —— e
o @ 0a<-l- 1) vt
v 0 u v/ u
nuY d a(zlo-l-i)
== dt{ =14+
& o a(1+l)—?_t
U v (73

=2l p-a(leDog o 141) ]}/

_mi’f_ﬁ'..“(“"'”)log(ﬂT Ly 1)}
v

2\ v A )

_nof u(u-%—v)l Al
—AEL‘{ ri e T &

and therefore the value of the whole expectation is

g fl_ u+u(u+v) %+ v\

shillings.
al\2 v

log

13, The two systems of lines form a series of equal rectangles, and the
centre of the rod must fall within one of these rectangles. If a be the dis-
tance of two consecutive lines of one system, b the
corresponding distance for the other system, § the
inclination of the rod to the lines of the first system,
¢ the length of the rod, then it will be seen that in i
order that the rod should fall on a line, its centre ) 7
may rest anywhere within the rectangle, except in an
area=(a—ccosf)(b~csinf): and all varieties of cases will be included by

supposing 8 o vary from 0 to g Henge the chance of crossing a line is

) %
] {ab~(&—ccos §)(b—csin 0)}d0+J abdf
0 o

= ob cla+d)+ 4(comr-cos0)}=gi(—ﬂl7l;—zg:—ci

The result of Art. 336 may be deduced by putting a=o0.
This assumes that c <@ and <b. If a>3, and ¢ < @ > b, the limits of
d are 0 and sin'lg in the expression for the arca above, while from 0=sin-12

to 7—;, the chance is unity. Thus in this case the probability is
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m-l_
f! c{asin 6+ cos 6) "'é sin 20}(1«9 +f abdd
0

sin-12
¢
3
f abdf

- b{ ( +bc (l—gb_—l)+ab(g—sin-1%>}

_— b
_—&3{2“‘ ~2aNT =G+ 12+ ab - 2ab sin—lz}-
If however ¢ > a, the limits of 6 in the original expression for the area are
°°s'1% and sin‘"lg, which holds so long as ¢®*~a? <l% Of course, if ¢ be

not <r\/a2 2 the chance is a certainty, but if ¢>a and <Na®+72, the

18
chance is f ¢(asin 6+ b cos ) - Csin 20} -clB o cg@ T@ ate.
o1 L P) mtb o P »©

-1

14. If @ and b have the same meanings as in Ex. 1R, and ¢ be the edge
of the cube, then as in Exs. 4 and 13 the centre of the face of the cube on

the table must lie within an area ab- (o - cv/2cos 6)(b - W2 cos §) in order

to fall across a line, and if eN2 < b, the limits of 6 are 0 and E, and there-
fore the chance required is

F{c (a+b) N/2 00s 8~ (1 +cos 20))df + / 0. ad
[

T, INY _4e{a+b)—c¥r+2)
cla+ D)~ ( } —

b
If e=b or > D, the cube must fall across a line, but if ¢ < b but cn/2> b, the

inferior limit of 4 in the above integral becomes cosrl-c%, and the chance
NZ

required is

c0s™ 1«/2
F (@B cos 0 1+ cos 26)}+ 4/d9°

4
Kt bcos’l—«—/2
L P DWET =T o2 = cos1-0s -~1 bw— 7
=—}Fd_b\c(a'+ ) - (@ +DN2¢ clg-¢ NG —-5A/2¢
+abcos-1— b}
9 2 b 2) +4(ad -1 b}
ab de(a+0) - 2(2a +b)\ 26— 5 — (r +2) + 4(ab + ¢2)cos ':/’o

This includes the case when ca/2>a but < by/2. By putting a=co in the
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above expression, the solution of Ex. 4 can be extended to the case in
which the diagonal of a face of the cube is greater than the distance bhe.
tween consecutive straight lines.

15. In order that the inferior limits in the integrations shall be al]
zexo, the ordinates may be represented—the first by z;, the second by #, +,,
the third by = +2;+2;, and so on, and therefore

s=their sum =z +(n - 1)z, +{(n -2z +... +2,;

and subject to all positive values of the variables consistent with this
equation, the mean value of the rth ordinate is

Mt zt o+ 2)dedz.. Az

///d:lc 2y .01 ’
since 2, is invariable when 2,%,...2,1 are given. If now ; be put for ng,
z, for (n—1)z, and so on, the mean value

xl Zr - dop
ff'/ -]-n_l pran + .+n—'———-—_') | >d11d®2¢..dx:z—1
- cla,lclx2 Ay ’
subject to x1+a:2+ ..t+@,=s: but by Dirichlet’s Theorem (Art. 276)
[ f f yf'lygﬁ“ys’r-l_‘,dyldygdys..., subject t0 ¥y + Yo+ Yz + ... < B, is

patBry+.. _L@TETG). .
T(a+B+y+...+1Y

therefore putting any one of the quantities a, 8, v, ... equal 0 2, and each
of the others equal to unity, if » be a whole number between 0 and n,
f f 1. 20z d%,...d%,-1 (subject to @y +@y+...+2s-1< s, and the quantities
all positive) =s"+T'(n+1), and putting a=1=g=y=..,,
‘/f‘/'...dxlda'g...dxn_l =g"1+T(n),

d .. f/f..xpclxldxg...dw,,_1+/ff...dxltlx.z...dxn_l=7Lz.

Hence putting p=1, 2, ..., 7, snccessively, the mean value of the rth ordi-
nate, if » < n, is EG L1 +... _1__>

n\n n-1 n-2 n—r-+1
The mean value of the nth ordinate =s-sum of mean values of the other

ordinates, and it is easily seen that if this follow the law for the other

ordinates, the sum of all the mean values =£(1 +14...+1 to n terms)=s,
therefore the mean value of the nth ordinate is

sf1 1 1
7_1(1—2+7L~-1+"'+§+1)'
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16. To prove / dw(w—sinyb):g—rﬂ, where, if the circle be r=a, its

centre being the pole, I=2mra, Q=ra? y=the angle between the tangents
from any point P, and dw=areal element at P, so that the integral
extends over the whole area of the plane of the circle external to it. If
P be (r, 8) the external area may be divided into elementary circular rings
concentric with 7=a, and such an element of area corresponding to

P=2nrdr; also sin Ié = g, therefore
)
f duly - sin ) =2r f dr{y—sin v,
@
and l cos "fdw,b = Eclr and the corresponding lts. of y are = and 0, ..

the proposed integral = 27 f coslﬁ i ——-(50 siny)
..466 Sm 2

=70 j; 7:131/(30 o8 _‘é cosec® % -2 cotglg)
= dra? -/:d\,’/ (%%%’b- —cosecy + 1)
' =47ra2{ﬁw _1 cot Y+ cot 1//+¢}%
=dro °{ +7r} +‘>1rob2{81 - cob ’!/}[‘ll 0]

of1 1 a2 2
20° + 27ra,-(— —-~) =Tit=
2"

%(271‘&;)2 ~ 7= 3" Q.

CHAPTER XV.

1. If the given straight lines be y=0 and y=ma, the chord is
y=m'z +¢, where m’ and ¢ are functions of the co-ordinates of the extremities
of the curve. Hence V=an1-- -y — (in's+c), where a is some constant

- av_d 4av d ap
Art. 378), therefore £=0=""-- 2. =1 -— —
( 378), therefore & " dp 1 7 l+p2’
dy 240
- ——x+b SopsLtE e
NI+ p2 P @ (zLb)
y+¢'=FNal~(x+0),

and therefore the curve is a circular arc. Now it may be easily shown by
the Differential Caleulus that the area contained by a cireular arc of given
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length and its chord is 2 maximum when the arc is a semicircle. Thus he
length of the chord is given, and any position of it connecting the two given
straight lines will suit the question so long as neither of the angles between
the chord and the given lines on the side of the chord opposite to the origin

{on which side the arc must clearly lie) is less than 1—;, for otherwise the
semicircle would cut the corresponding given line. If the area were 3
minimum the curve would be a straight line.

2. Taking the pole inside the curve,
the perimeter = / don/ r2+ (Z_ “ and the area= f T de,

V= ,\/ P+ (d;) +ar?, which involves only  and g’,

dr

o by Art. 357 V= ow-+\/7~+(d’" :

d0> db \/ ( )
F—l—_=¢, or, if ¢ be the angle between the tangent and
\/ 24 (flf))
de
radius vector, and p the perpendicular on the tangent from the pole,
art=c-rsing=c~p,
2cm-i.ll£ =-1, or p=radius of curvature = a constant,
P
and therefore the curve is a circle.
This must correspond to a maximum area, for if the curve were an
ellipse for instance, of eccentricity indefinitely near to unity, its area would
vanish. The same result follows, by considering the curve as the limit of

polygon with mdeﬁmtely small sides, from Todhunter’s Dif. Cal., Chap.
XVI., Ex. 2

3. If P, @ be the two fixed points, PM=h, QN=F, the ordinates,
when the arc is the greatest possible, and & >k, NQ is & =

tangent to the arc at @, and if r be the radius, § the @ b
angle of the arc, and ! its length,
rf = l, Q

(L —cos 0) = ~ %,

rsind=A-4k
and eliminating » and 6 from these equations, /is given N M
in terms of =z, z, b and %, and the difficulty avises when [ exceeds the
value thus given. It is clear that if P, @ were moved to some points P,
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¢ in MP, NQ produced, the area would be increased, the arc would still
lie between the ordinates, and the given length/ of the curve could be made
up of the arc P'¢)" and the straight lines PP’ and Q@'. Adopting this form
of solution, a maximum is now required of

Gl !
fi’/dx'i‘“{f Vl+p‘~’dx+y1-7z.+yo—/c},
%y %o

1, Yo being the ordinates of P, . Thus K =0 gives a circle as before for
the arc P'Q’, and 6U then reduces to

ap )ay—( DY sy, +ady, +ady
(~/1+p2 S T +2)“’>0 Yo T AOY1 + A0y,

and therefore equating to zero the coefficients of 8y, and 8y, respectively
P =-®, Py=w, ie., the arc P'Q)’ touches the ordinates at P, @', so that
P'Q is parallel to MY, and =y, ~h+y, - k+m(z, —2,), which gives the
positions of P, @'. If however I>arc PQ but <h—x+w(z, - xy), then P’
will be at P, and therefore dy; =0, and p,= o0 as before, so that @' is above
Q but Q’'N < PJ/, and the arc PQ’ touches Q'N at ¢’

N.B.—In the figure, P should be one extremity of the circular arc.

4. If 2a, 2b be the lengths of the sides of the dish, ¢ the given height,
APB a vertical section in the plane ABCD of the
roof of the cover (supposed cylindrical) parallel D d C
to the ends; 4D, BC vertical and each=¢, and
therefore P on CD ; and 45, ﬁ%D be taken as axes, P

the area of the roof =2a | M1 +p*d2,
0

)
and the area of the ends=2 [ ydx. A A B
0

Hence V may be written  an/ T+p2 4+,
V1.4 @ _ . 9
& G Tip Wi

and since y is positive and must increase with  for some range of values

from =0, » is positive for such values, and therefore & must be negative ;

=ac-—h,

z~h S

also N iy I Al N2 = (@~ L)Y,

- (z- k)e’
and the curve is circular but convex to 4B. Thus the solution must be
discontinuous, and may consist of two circular ares as 4P, BP. For both
arcs K =0, and therefore if the subscripts 1, 2 apply to the abscissa of P
considered as on the arcs AP, PB respectively, as 4, B are fixed and
y is invariable along DC, the terms at the limits reduce (Art. 368) to
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Vidz, - Vodas, but daz,=dz,, therefore V;=V, as dz; may change sign,
therefore &/1+pf =1+ 3, therefore it follows that p;=-—p,, so that the
arcs are equally inclined at P to CD, and therefore their radii being each
=a, P is the centre of 0D, which determines the arcs completely, subject
to each arc being throughout convex to 4B. Considering 4P this will be
the case if 7 be negative and k>¢. From the equation to 4P, k=A/a* I -k,
and ¢ -k =a/a#— (b - 1)’ therefore

c-Nat=12=Na* - (b~ h)?,

2+ B2 —2bh =2eNa? — 12,

AR B2+ %) - 4BR(D% + ¢?) + B(B° + ¢*) = 4aPP + DD+ ¢%) = (B34 ¢,

and h is negative if 2ac > b*+¢?% the other condition follows symmetrically;

2 2.0 o2 +¢
s +c and iy therefore if d>¢, a> Z)———, which > b,
2% 2b

therefore a>0; if b<c, a>zi-23— which then >0, therefore a>b in
any case, and therefore the ends of the cover fit the shorter sides of the

thus o

is diminished by dmumshmg b, but
b~+°d but >b;l; ‘, a discontin-

uous solution may be obtained by taking 4 at some point 4’ in 4 Band com-
- bining the circular arc A'P (touchmv AB a.t A"y with the straight line 44’,
A Similarly if ¢>b and a <—— b  but >2 % i 2 , if P be moved vertically down

to some point P’, a solutlon may be obtained by combining the straight

line PP’ with the circular are AP’ (touching PP’b ab J;”). There is no
2
%

Ife>banda< , a solution may be obtained by combining an are
A'P’ with straight lmes PP and 44",
Changing the independent variable from z to y, if

dish. Supposing now that b >¢, b;;

increased by diminishing ¢, therefore if ¢ <——

other case if 6>¢, because a>>b, and therefore a>
b? +c

El“/ =g, V becomes
V' =aN1+g*+yg, and as y does not vary, the terms of the second order in

a(dg)? C o .
——=—, which is positive, and therefore the result

2(1+q0)?

the variation of V'=
is a minimum,
5. If the centre of the sphere be taken as pole, and 6 be measured

from that vertical radius which is a.bove the horizontal great circle, the

time varies ag / o5 0\/ +s1n- ~ and taking 6 and ¢ as the inde-
b

pendent and dependent variables, V isa functmn of § and E? or p, therefore
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N=0, P—ﬂ, and K = 0__2@
dp a6’
do
sin26 - d@ qu __M__ .
cos 9\/ 1+sin® e " db " sin 6N5TG - cloost

therefore if sin § =n cosec,
de _ — cn cosec iy cob - —cos

ay” *)n2cosecy — ¢ : —
¥ n cosec Yw/(1 +¢)nicosecy — ¢ \/%‘é(l-x-&)—smzl//

¢>+a=cos‘1<%sin :,b) say, . . mcosec 0 =cos(¢+a)

or m =sin 6 cos ¢ +a = cos a 5in 6 cos ¢ — sin a sin O sin ¢,

or in rectangular co-ordinates if the axis of 2 be vertical y cosa ~zsin a=m,
or every point of the path lies in this plane, which is vertical. Of course
m and o will be determined by the co-ordinates of the limiting points. As
in Art. 386, a.ppw\imating to the second powers of small variations,

1 (8p)sin® . do .
= +f cos6{1+sm6 d¢)} ’

if the man walk upwards 6,<6,, but the time must be positive, therefore
the lower sign of the ambiguity must be taken, and vice versa. Hence 6T
is essentially positive, and therefore the result gives the least time.

6. Taking the plane to be that of yz, the surface may be supposed
given by #*=fy, 2); and, as in Art. 376, the condition for a line of minimum
i &y df _d%,df

length is v CZ/_d_S‘ dz
i d?/ clf dz_ de _ =0:
Here @ s dz kit 0 when z=0;
also clx d-x+(i_1/ Py d’. @%_ 0, and when z = 0, along the curve
" ds? db" cLs
of intersection, ez 0,
da
dy d% Py, dz -'z=0
G detmam
.- d-r/ . dz dr/__glj_"__df
.. in general R R A . ete.

(y +2 - sin z)?
sin z
% a value z, which makes neither p nor y=o0, nor sinz =0, it is clear that

7. V=p%inz+ , and by choosing for the upper limit of
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7= 0 if the lower limit approach in value to @y, therefore it must be under.
stood that the limits of z are fixed. Then the terms of the second order in

the variation of ¥ are (5p)%in x+ (61/ iy Py and therefore to ensure a minimum

sin 22 must be positive throughout the given integral U, and

. . d
8T = 8y, (2p sin x)y~ 8y/o(2p sin x)y+ / ( djf o;i: fl;) dyda.
Thus OCZZZ ;& O(ZZV) which gives
z+y-sinz_ d Py dy
— e e Z(psinz)= T sin 2+ cos ma , therefore
™y J d1/ 5 o, 1
da? d “cot -y cosec’x= ¥ COSECZ Pt therefore
sin z
dl+Jcotx—- zcotx - f(lml WST__peotz— [20% _2
sin 2 z
cos

&

o=—2 cot 2 +1og(1l+ cos z) — ¢/, therefore

% sinz+y cos z =-xz cos z+sin z log(l + cos x) —¢'sin z, therefore

ysinz =c-zsin 2-(1-c¢")cosz~(1+cosz)log(1+cosz) --./'sinxdoc
=c~zsinz+c'eos x — (1 + cos z)log(1l + cos z),
y =ccosecz —z +¢'cot # ~ (cosec 2 + cot 2)log(1 + cos z),
p=-cecoseczcotz—~1 —c'cosecr +1
+(cosec z cot  + cosec®x)log(1 + cos z)
= cosec®{ — ¢ cos # ~ ¢’ + (1 + cos 2)log(1 + cos z 1}
and the terms at the limits give p,=0=p, therefore ¢, ¢’ are given by
putting =2, and 2, successively in the equation
¢’ +¢cos z = (1+cos z)log(1 + cos x).
This is assuming, which seems most reasonable, that the limits of y are not
given. Thus
z-+y - sin 2 = cosec {c +c'cos x —sin’x ~ (1 + cos z)log(1 + cos )},
and V= cosec®z{c’ + ¢ cos  — (1 +cos &) log(1 + cos z)?
+ cosec®{c +¢'cosz ~ sin'z - (1 + cosz)log(1 + cosa)}2
= cosec®z{(c? -+ ¢?)(1 + cos’) + dec’cos 2 - 2 sin®z(c + ¢'cos z)
+sin%z + 2 sin®(1 + cos z)log(1 + cos z)
~2(c+¢')(1 +cosx)log(l +cosz) +2(1 + cosz)2log*(1 + cosz



cosec®zdz _
sin z
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U= /' e {(02 +¢?) 2cosec~w 1 ) phedeosz | 2 2'cosz
sinz sinz sin®z sinz  sinz

sinz sinz
LOS x

+sin w+2<— 208 x)log(l +cos2) - %ﬁg’i)loa(l +cos )

c+c)

4(c+c) loa(1+cos z)+ 1 2 log(1 +cos z)

2( 2 +2cosx 1

e >100-(1 +cos x)\, now
sin®z  sin’z  sinz

—cot z cosec x— f dz cot . cosec z cot 2

=~ cob z cosec x — f dz(cosec®x — cosec z),

therefore 2 f cosec’xdx — f sidex = cob 2 cosec z, therefore the indefinite in-

tegral

where

and

integral

U =- (c®+¢?)cot z cosec 2 — 2cc’cosec?z — 2¢ log tan 923 -2¢'logsin 2
—cos z+P+Q+ R say,

P=2dz ——+93-S-§>log(1+cosw), or if cosz =2
smx n

P:--/dzl—'ff, log(1 +2),

Q== C+c’)fdxloa 1+c05x)( _2 ,2cosz_ 1 )

side  sin’z  sing
=2(¢+¢)log(l +cosz) . (cotz cosec x + cosec?z) +2(¢+¢') / %

_(_c +Ac”) log(1+cosz) .(1+cos ) +2(c+¢') log tan

sinz
2 ,2cosz 1
f dxlog?(1+ cos x)( e ;m_:_t)
) l1+cosz_, [dzlog(l+cos z)
inz sinz

=-2log¥1+cos

= 2(_1:—1:-13,55) log*(1 +cos ) +4 f Ezil%gi-i-,_,ﬂ), .. the indefinite

U=—(c+ ,,)cosm e’
sinfz  sin’z

- 2[.51:2_ log(1+z)+2(c+c’)

- 2¢log tan g -2¢'logsinz —cos 2
-~

1 + cos wlog(l +cosx)

+2(c+¢')log t'm (1 + 08 a:) log (1+cos z)+4 f ____d” log(1+2)
dz log(1 +=2)

and the two integrals in this expression reduce to 2 / s which

=log?(1 +2).
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Hence putting cosz=z, if 2, 2, be the corresponding limits of #, the minimum
value of  U=g(z) - plz), Where
$@)=—(F+ c’l)———— - 12%2—2 —2¢og(1+2) —2+1og(1+2)

+2(c+ c')i%.z log(1+2) - T—-_z log(1 +2) ; where

¢ +cz=(1+2)log(1+2) when for z are put 2 and z in succession.

8. Here V= pe+9-’i, where @ and y; are undetermined constants, and

since ¥ contains 3y, by "Art. 372,
1
the coefficient of 8y, =2p;+ ﬁ ola:(— ) 0
9y =, also K=0=%-2D,
e Y o dw
op=9%.p, o ~L=lib or b=-22,
% N h
and .. "y—E‘i —%H:, s €=2y,=2, and therefore
« 20 y1
1 9
dx(g‘ﬁ-ﬁgf+1)=— = ———+1 and %, =2 %19
ﬁ 4w “ 12J1 2y e
50 3a n+l_ B
== and 1=-2=, o Al =
% S e N 7
! 2 a_12 62 12
d .. =—2 and ===, Hence p=~-
= h=y no 7 ¢ p= 7T

6)223- 1_12

s 62
. th d val =_/ ~2pde=g 12
the required value 7 o(x Ydax 7) 3 7

Now to the second order of variations,
5V = —{2 op)? 'ay (o)t~ gty |,
yi

50 = {a 2 ﬁya 2 O }
ﬁ (o + 24 ey, - Ly

1 11
and f é Jdm:m&y/ - f xdpda = 8y — f lwapd:c,
0
U= f daf (op)? ;”’ oy,)* +—6p6y1} 2 oy, )?

f dx{6p+ax6y1} (Byl)2 “46% /. 2*dx
" yrt Jo

2y, 78
- [(aa{op+252) - L1+ 550 ),
4 - o ):2_4( _1_2._1_.’_7)
an a(1+12y12 91 713 8)
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therefore §U is positive to the second order, and therefore the result ob-
tained is a minimum,

9. 'With the notation of Arts. 352 and 353, no limits being specified,
the variation of [Fdz may be divided into two parts 53U, and 80, the
former arising supposing v constant, and the latter from the variation of v,

>
and thus 80U, = H+ /K&ydx, 8U,= f%:}—avdx,
and if N’ represents for V' what V represents for ¥, and so on,

e f (N'dy+ P'ép+...)dx, therefore if L=%—I§, and I= f Ldz,
50, = f Lovde=I50- f 190,

=I(H’+fK dyde) —fI (N'0y+P'op+...)dz

= I(Hl +_/'K’6yolx) - (Hi’ +fKi’8yclx),
where H, K denote what H’, K’ become when IN’, [P, ... are substi-
tuted for N, P/, .... Thus

srot=oy(P- 9L+ PE_ Yiop(Q-ly ).

f (3 -9B 28 Noyao s 1oy P - L2+ LK - )

“da? daﬁ
+16p(Q’-——+ Y- +If N .‘?f.'+‘§3' )i
~ay(1p- L +IIE_ ...)-ap(.rpf-%@+...)é
—f(IN’ ﬂlﬂ’_' 5’3?_@_' )clx.
&

10. V=p(s)+N1+77%
@ 1) % pép
6U=f¢’(s dsda+c | —L2P dz; and Bs—f PP _ e
0 ) o N1+77 ?

NI
8s=0 when ¢=0, and if [¢/(s)dz =1,
sU=c —-——a-P——dx+16a / "2,
N1+ o Joo NTF7 p“
therefore if the hm1ts of y as well as = be constants,

83U = f“f d “ pbpdz _ (%, Ipdp
(0¢(s) oa+c)o'ﬂ+292 RN

d »p f“ d Ip
= oy et 59 e tot
clfd yd ) + odx VT T o the first order,

2

R
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therefore for a maximum or minimum
d p _d Ip '(c—-)ﬂ p___p dl
T iap &N N i
T N1+p? 1+p

& i Niip &

o (o= P__=¢, therefore by division

N1+7
g 1 _ p dl dp 1 ds
dz" p+p7) INitp do & Cde’ BT P g =gy
__,,_C’ . (_Zg=___c_,___
=0 T T ey
dy_ _da ds

I=05) NI -l
Hence z and ¥ can be obtained in terms of s, and s be then eliminated; and
the four constants which will be involved are given by the facts that s=0
at the inferior limits of both z and y, and s=the given value at their
superior limits. So if ¢(s) =s,
- @ 235]7 a_/‘a xp&p
8U=c . Nﬂ_p_ﬂdw+xﬁs/o oclac_-_._l —

a € o,
= | dzjc+a -2z p,o,}?_.
J[" { }~/1+p‘~’

Hence the problem amounts to this : to find a curve of given length joining
given points 4, B, so that f(w— z)ds shall be a maximum or minimum, i.e.,
that the distance of its centre of gravity from the line z=a shall be a maxi-
mum’or minimum, This is known to be a catenary, having its directrix
parallel to the axis of y. Further, if 4 be (0, ;) and B be (a, &), and if
1>k, it is geometrically obvious that there will be a maximum or minimum
as the arc of the catenary is concave or convex to z=a; but if x;> k,, these
results will oceur in reverse order. In the former case the longest catenary
which can be drawn from B to 4 will touch the ordinate at 4, and there-
fore, if the given length be greater than is consistent with this, the arc being
supposed to be bounded by the ordinates at 4 and B, a discontinuous solu-
tion will be obtained, as in Ex. 3, by producing the ordinate at 4. If the
ordinate thus produced = s, the arc will degenerate into two straight lines
=ky—ky and o : but if the given length be still too great, the ordinate at 4
may be still further produced to (0, y,), and the arc made up of the part of
ovdinate above 4 =y, ~&; and an. are of a catenary from B to (0, y;) convea
to the axis of ; and touching that of y. This may be neatly illustrated
statically ; vide Researches, Chap. XI.

11. The question here is supposed to mean that as at any proposed
point of the required curve, the function u={y+ (m - z)p}y+(n~2)p} can
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only vary by variation of p, the conditions that » is a maximum or minimum
may be found by differentiating® with regard to p as the only variable.

Thus % =(m-2){y+ (n-z)p}+ (- x)y+ (m-2)p}, .. for a maximum

ini _(2z-m—n)y . 2_ 2w-m-n
orminmum P =50 e S e e
y2=c(m-)(n-z); also % = 2(m—2)n-2),

therefore % is a maximum or minimum according as (m—x)(n—) is nega-
tive or positive, and y? must be positive, therefore u iy a maximum or
minimum as y’=c¢(m-—-z)(n -x) represents an ellipse or hyperbola, and
clearly the proposed point may be any point on one or other of these
curves. By varying ¢ the corresponding value of » will vary, but will be
constant for the same value of ¢ : for

du=4y? — 4(2x — m ~ n)py +4(m - z)(n—2z)p?
=de(m ~z)(n - 2) — 26(22 — m —n)* + (22 ~ m ~n)%c =~ c(m - n)2

12, Here pdy+ydp=0, and <x—%y>dy+]y7;6p=0, therefore, eliminat-
ing dy and dp, plzp "a/) /~p therefore ap=3y, or g = and therefore

a2} =ay : thus T = a—, which « with .

13, If this point be not assumed, then, in Art. 363, it would be neces-

sary to put fl—f—( ) (dm) }%

ol B {20 - o

and therefore the curve lies in the vertical plane containing the two given
points.

14. If the axis of revolution be axis of 2, and extend from 2=0 to z=x,,

1
then /z "7ry~/1+p‘3.dx is constant, and the moment of inertia is
Zl d
dz . myP. 212—, and therefore if the solid be homogeneous ¥ may be
put =y¢+ayn'l+p* and therefore K =0 gives
ot ayw 1 -—--(ﬂ?-"-l- cor g+
Y Y Y N1+ Y

also the limits of y being unknown,

-P0=0=.P1, i-e., ﬂo.__:():__ﬁ?/l -

ay
/l+pd
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therefore y,=0 and consequently ¢=0 by (1), unless 35 = <, which, except
when y,=0, would not correspond to a continuous solid of revolution,
Thus the generating curve is terminated by the axis, and (1) gives

¥+ =0,
~/1 +p? \
therefore e is negative as ¥ is positive, and the normal
ds o
N1t = —
n-ydx-y-\1+p ==
and =L N/ 3,3,_7_72_9,
(L+p)r Y Q4 P
and .. n=3p.

Here, changing the independent variable from « to y and putting g for — da

d 2
V becomes V=9 +ayNI+ o5
therefore the terms of the second order under the integral sign become
1B+ g o o= (3g)?
2 03
2 d(] R 2 (1 + q-) ]
which is of the same sign as @, that is, negative ; and therefore the curve

obtained gives a maximum. In effect, the length of the axis is determined
from the given area.

15. If the axes of z and y be those of figure and of revolution respec-

tively, a minimum is required of / ( -+ ax) Y2+ f yxdz, while f ydx
&
is constant, Hence, if u, v denote the first two integrals respectively,

du_ 6v+a afJ”Lll 0,

T,

j; (ly'“’ + 228y dz — ~ /1 2xydydz + av f 2ydyda =0,
0

To this order of variation g and v are constants, and therefore the required
curve, if ’g =land av=a’, is 93+ 2y — 2y +2a'y = 0,

or, ¥ =0 being inapplicable, 9+ 2% - 2z + 20/ =0,

which is an ellipse with its minor axis on the axis of 2, so that the solid is
a part of an oblate spheroid. This result is subject to the condition that
:—:: {, when the value of y above obtained in terms of { and o' is substituted
in % and v, and the integrations are effected. In the solution given in the
History . . . extending over pages 391 to 397, this condition is proved
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to hold ; it is also shown that the ellipse meets the axis of @ at the lowest
point, and that the solution gives a minimum, but «, is assumed to vanish,
i.e., the axis of revolution to be a diameter of the base of the solid segment.

16. If the axis of revolution be axis of 2, the radii of the ends y,, 3
-

and the corresponding limits of 2 be 0 and z; the volume is f :ry-cl:z ; and
for the pressure at any point inside the vessel (see Besant’s Hydromechanics,
Part 1) dp=pwydy, therefore p=P 9’ +a constant, but when y=0, p=0,

a9, 9 <

29,3

1)
therefore p = Pﬁ)y—, and therefore the pressure on the curved surface is

(%) ol
jo £ w2y L 2myN1+ pide,

and p, w being constants, the pressures on the ends are constant Hence if

the independent variable be changed from z to y, and ¢= d , V may be
written ay2q + y*~1+¢?, therefore K =0 gives

d fay-+ ve - =0, .. ap+ zfig_l_,=c;
dy Vitg? Nl+gt
and since the limit z; of z is variable

3
the coefficient of oz, = 0= ayf+ AL, - ¢=0
‘ M+t ’

therefore the generating curve is given by

. dx @
aNl+g*=-yq, or dy= _u/y~—a~

z+b=tulor p-ny Tupt

which gives two catenaries of which the axis of z is the directrix, but they
only amount to the same thing here, as corresponding to any abscissa the
ordinate in one is only minus that in the other; and then the conditions
that the point (0, y,) lies on the curve, and that the volume of revolution is
given, afford two equations for determining the two constants, and z; can
be found from the value #; of y in the equation to the catenary.

Also, to the second order of variations,
6V=i <

“(L+g7)7

which is positive, and therefore the result corresponds to a minimum.

(8g),

It may be observed that from the equation an/l +¢*=- yy, % is of con-
stant sign, and therefore the arc of the catenary lies entirely on one side of

its axis.
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17. Tf7 be the length of the canal, the surface S, O the capacity, and
A the normal hydrostatic pressure,

8= 7/ NT+ Rz,
if 2, y be horizontal and vertwal co ordinates of any point in the boundary

of a transverse section, (=1 ./ ydz, and N =] f goyNI+ Pd,

Hence V= a\/l + R+ by +yVIT 2, and V="Pp+te,
wp?
2 = + 0y
aw1+p +by +yVT 12 = ,1+p_ Tt 01"&,— by =
Hence
(1) the curve is w+ by =c¢, which represents a circle (Art. 379) ;
1+p?
(2) the curve is 2T¥ -=¢, a catenary (Art. 380)
NT+p P?
{3) the curve is by—l-l\/l‘/ =¢, but y is supposed zero at the lnmts of z,
+p?
therefore ¢ =0 heve, and either y =0, which is inapplicalle, or
Lhpteg -d” *,

which represents two straight lines equally inclined to the vertical, in
oppos1te senses.

18. If the axis of y be measured vertically downwards and the axis of
2 50 chosen that the velocity =#/2gy, the time of describing the curve be.

tween the limits @, and ; of « is /J N } +p dz, therefore ¥ may be written
z N (]1/

NI
ltp therefore the limits being constant, the variation of the time is
z/J

[ apr NI+p* d 1

8Vdz, where §V = (N—__.)a = {—__"".? .

j ’ @)Y 2yt dz NI (1.,.7; =Y

= ay{'\'/‘l + p‘ p“ + q . }
°y~ NTEp2 "1/75 '\/J1+p"
1 ¢\
=iy + ,
12y WIep gt

but y is positive, and so is g since the curve is convex to the axis of 2, and in
passing to a lower curve dy is positive therefore § I is negative, and therefore
the time is dimiuished. It follows that the time along any lower curve is
less than along an upper curve with the same extremities. Cf. Ar t. 363.
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19. 1f the wind blow parallel to the axis of @, the rate of sailing may
be expressed as a function of p% where p= :Jllé’ since the rate will be the

-same for the same numerical value of p, whether the wind be on the star-
T +2
board or larboard quarter or bow, as the case may be. Hence V=X ;("’__f‘)’
. P
and the variation in the time for a slight change of course, supposing the

direction and force of the wind constant throughout, is f aTdem taken

bl

between proper limits. If the limits be fixed, this gives

e 5==6 = t 60 Z—
dz dp =0, and dp ¢ or p=¢, subject to 7 p’-’ bemg positive,

i.e., the direct course. But if it be supposed that the course may be dis-

continuous, and therefore divisible into parts in which some at least of the
limits are not determined, then the variation in the time is

f cp—f"pﬂl) ((l; L,,y (6p) }dx to the second order,

dp

and therefore for a minimum, as before cllpl" is poaitive, but % =0, which
gives p=-+m suppose, for hoth of which values e is the same throughout.
This shows that the course may be made up of two straight lines, equally
inclined to the direction of the wind. There may be more than one admis-
sible real solution of —I{ =0, and of the corresponding courses and the direct
course, that is requ1red which is the least. With such a solution as
p=4m, a straight line must be drawn through one of the given positions
corresponding to p=*m, and another through the other position correspond-
ing to p=TFm: these two straight lines will meet in the point where the
tack must be made. It will be seen from a figure that tacking is only of
use when the wind is adverse. If the wind be favourable f(p? increases
as p diminishes, so that the quickest course is the direct one.

20. If the axis of revolution be axis of z, the vertex be at the origin,

and b =the radius of the base, the volume = f mydz, and the resistance, as

in Art. 366, = f it ndm, where ) is unknown. The limits of ¥ are 0 and
b, and therefore changing the independent variable from z to ¥, if ZZZ— =g,

V may be put = 2ay~q+ q"’ therefore, to the second order inclusive,

- a_ g } g 1+q -4¢?
5V =1 oy~
{“y Trges 1™ YT+
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(15{%))0, if 3¢%2>1 throughout,

i _f e and p < /3, and when y=0, p=0 or w, therefore the °

generating curve must touch the axis of 2 at the vertex, and be convex to-

Hence there will be a minimum when ay?=
3

or when ay =

that axis throughout, the inclination thereto of the tangent being < = 33t

(%, b). If now p =tan¢, ay=sin’pcos ¢, .

Ay _ s 94 3o
a(-l(ﬁ._bm 26(3 cos’¢p —~ sinZp),

“Z_;j = sin ¢ cos ¢(3 cos?p — sin%yp),

. if s=arc of the curve, a;l; = sin ¢(3 cos’¢p — sin%¢) = sin 3¢,
o as=-} cos’p+ constant,
or if s =0 when ¢ =0, 3as=1-cos 3¢.

This represents (Art. 111) a hypocycloid, in which the radii of the fixed
and moving circles are as 3: 1. If ¢; be the value of ¢ when y=b, bhe
constants ¢ and ¢, are given by the equations

b= sin’p,cos ¢,

N o P . . de
and the given volume = f Tyde = jo - sin®e cos®p. cos ¢ sin 3¢ . =F
0 2 o
— 7 Y= 9 1
51n9¢1cos3¢ f cos pde{3sin’¢-3sin’p-4 sin?p+4sinPe}

o w (3.7 i, ]
§in ¢ycosiy L8 10 sin’, 3 sin ¢1}
b3~/3

It may be shown that this has a minimum value 5 and therefore if this

minimum be > than the given volune, the solution is incorrect. As, how-
ever, by diminishing b this expression can be made as small as required, in
this case the generating curve may be supposed to be made up of the arc of |
a hypocyecloid as before from y=0 to y=10', where ¥’ is sufficiently small,
together with a straight line=6- ' from (x), b') to (zy, b). It is further
shown in the Researches, Chap. X., that the discontinuous solution only .
holds so long as the volume < }x0% and that between the two limiting' .
values of the volume the discontinuous solution gives a less resistance than
the continuous solution.






