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Preface

Many objects are obscure to us not because our perceptions are
poor, but simply because these objects are outside of the realm of
our conceptions.

Kosma Prutkov

Confession Of The Author My first acquaintance with calculus (or
mathematical analysis) dates back to nearly a quarter of a century. This
happened in the Moscow Engineering Physics Institute during splendid
lectures given at that time by Professor D. A. Vasilkov. Even now I re-
member that feeling of delight and almost happiness. In the discussions
with my classmates I rather heatedly insisted on a simile of higher math-
ematics to literature, which at that time was to me the most admired
subject. Sure enough, these comparisons of mine lacked in objectivity.
Nevertheless, my arguments were to a certain extent justified. The pres-
ence of an inner logic, coherence, dynamics, as well as the use of the most
precise words to express a way of thinking, these were the characteristics
of the prominent pieces of literature. They were present, in a different
form of course, in higher mathematics as well. I remember that all of
a sudden elementary mathematics which until that moment had seemed
to me very dull and stagnant, turned to be brimming with life and inner
motion governed by an impeccable logic.
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Years have passed. The elapsed period of time has inevitably erased that
highly emotional perception of calculus which has become aworking tool
for me. However, my memory keeps intact that unusual happy feeling
which I experienced at the time of my initiation to this extraordinarily
beautiful world of ideas which we call higher mathematics.

ConfessionOf The ReaderRecently our professor of mathematics told
us that we begin to study a new subject which he called calculus. He said
that this subject is a foundation of higher mathematics and that it is going
to be very difficult. We have already studied real numbers, the real line,
infinite numerical sequences, and limits of sequences. The professor was
indeed right saying that com.. prehension of the subject would present
difficulties. I listen very carefully to his explanations and during the same
day study the relevant pages of my textbook. I seem to understand every-
thing, but at the same time have a feeling of a certain dissatisfaction. It is
difficult forme to construct a consistent picture out of the pieces obtained
in the classroom. It is equally difficult to remember exact wordings and
definitions, for example, the definition of the limit of sequence. In other
words, I fail to grasp something very important. Perhaps, all things will
become clearer in the future, but so far calculus has not become an open
book for me. Moreover, I do not see any substantial difference between
calculus and algebra. It seems that everything has become rather difficult
to perceive and even more difficult to keep in my memory.

Comments Of The Author These two confessions provide an opportu-
nity to get acquainted with the two interlocutors in this book. In fact, the
whole book is presented as a relatively free-flowing dialogue between the
AUTHOR and the READER. From one discussion to another the AU-
THOR will lead the inquisitive and receptive READER to different no-
tions, ideas, and theorems of calculus, emphasizing especially complicated
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or delicate aspects, stressing the inner logic of proofs, and attracting the
reader’s attention to special points. I hope that this form of presentation
will help a reader of the book in learning new definitions such as those
of derivative, antiderivative, definite integral, differential equation, etc. I
also expect that it will lead the reader to better understanding of such
concepts as numerical sequence, limit of sequence, and function. Briefly,
these discussions are intended to assist pupils entering a novel world of
calculus.And if in the long run the reader of the book gets a feeling of the
intrinsic beauty and integrity of higher mathematics or even is appealed
to it the author will consider his mission as successfully completed.

Working on this book, the author consulted the existing manuals and
textbooks such as Algebra and Elements of Analysis edited by A. N. Kol-
mogorov, as well as the specialized textbook by N. Ya. Vilenkin and S.
I. Shvartsburd Calculus. Appreciable help was given to the author in the
form of comments and recommendations byN.Ya. Vilenkin, B.M. Ivlev,
A. M. Kisin, S. N. Krachkovsky, and N. Ch. Krutitskaya, who read the
first version of the manuscript. I wish to express gratitude for their advice
and interest in my work. I am especially grateful to A. N. Tarasova for
her help in preparing the manuscript.
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Dialogue 1

INFINITE NUMERICAL
SEQUENCE

Author: Let us start our discussions of calculus by considering the defi-
nition of an infinite numerical sequence or simply a sequence.

We shall consider the following examples of sequences:

1, 2, 4, 8, 16, 32, 64, 128, . . . (1)

5, 7, 9, 11, 13, 15, 17, 19, . . . (2)

1, 4, 9, 16, 25, 36, 49, 64, . . . (3)

1,
p

2,
p

3, 2,
p

5,
p

6,
p

7, 2
p

2, . . . (4)
1
2

,
2
3

,
3
4

,
4
5

,
5
6

,
6
7

,
7
8

,
8
9

, . . . (5)

2, 0, −2, −4, −6, −8, −10, −12, . . . (6)

1,
1
2

,
1
3

,
1
4

,
1
5

,
1
6

,
1
7

,
1
8

, . . . (7)

1,
1
2

, 3,
1
4

, 5,
1
6

, 7,
1
8

, . . . (8)
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1, −1,
1
3

, −1
3

,
1
5

, −1
5

,
1
7

, −1
7

, . . . (9)

1,
2
3

,
1
3

,
1
4

,
1
5

,
6
7

,
1
7

,
8
9

, . . . (10)

Have a closer look at these examples. What do they have in common?

Reader: It is assumed that in each example there must be an infinite
number of terms in a sequence. But in general, they are all different.

Author: In each example we have eight terms of a sequence. Could you
write, say, the ninth term?

Reader: Sure, in the first example the ninth term must be 256, while in
the second example it must be 21.

Author: Correct. It means that in all the examples there is a certain law,
which makes it possible to write down the ninth, tenth, and other terms
of the sequences. Note, though, that if there is a finite number of terms
in a sequence, one may fail to discover the law which governs the infinite
sequence.

Reader: Yes, but in our case these laws are easily recognizable. In ex-
ample (1) we have the terms of an infinite geometric progression with
common ratio 2. In example (2) we notice a sequence of odd numbers
starting from 5. In example (3) we recognize a sequence of squares of
natural numbers.

Author: Now let us look at the situation more rigorously. Let us enu-
merate all the terms of the sequence in sequential order, i.e. 1, 2, 3, . . . , n, . . .
There is a certain law (a rule) by which each of these natural numbers is
assigned to a certain number (the corresponding term of the sequence).
In example (1) this arrangement is as follows:
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1 2 4 8 16 32 . . . 2n−1 . . . (terms of the sequence)
↑ ↑ ↑ ↑ ↑ ↑ ↑
1 2 3 4 5 6 . . . n . . . (position numbers of the terms)

In order to describe a sequence it is sufficient to indicate the term of the
sequence corresponding to the number n, i.e. to write down the term
of the sequence occupying the nth position. Thus, we can formulate the
following definition of a sequence.

Definition

We say that there is an infinite numerical sequence if every natural
number (position numbers is unambiguously placed in correspon-
dence with a definite number (term of the sequence) by a specific
rule.

This relationship may be presented in the following general form:

y1 y2 y3 y4 y5 . . . yn . . .
↑ ↑ ↑ ↑ ↑ ↑
1 2 3 4 5 . . . n . . .

’The number yn is the nth term of the sequence, and the whole sequence
is sometimes denoted by a symbol (yn ).

Reader: We have been given a somewhat different definition of a se-
quence: a sequence is a function defined on a set of natural numbers (in-
tegers).

Author: Well, actually the two definitions are equivalent. However, I
am not inclined to use the term “function” too early. First, because the
discussion of a function will come later. Second, you will normally deal
with somewhat different functions, namely those defined not on a set of
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integers but on the real line or within its segment. Anyway, the above
definition of a sequence is quite correct.

Getting back to our examples of sequences, let us look in each case for an
analytical expression (formula) for the nth term. Go ahead.

Reader: Oh, this is not difficult. In example (1) it is yn = 2n. In (2)
it is yn = 2n + 3. In (3) it is yn = n2. In (4) it is yn =

p
n. In (5) it is

yn = 1− 1
n+ 1

=
n

n+ 1
. In (6) it is yn = 4− 2n. In (7) it is yn =

1
n
.

In the remaining three examples I just do not know.

Author: Let us look at example (8). One can easily see that if n is an

even integer, then yn =
1
n
, but if n is odd, then yn = n, It means that

yn =


1
n
if n = 2k

n if n = 2k − 1

Reader: Can I, in this particular case, find a single analytical expression
for yn?

Author: Yes, you can. Though I think you needn’t. Let us present yn

in a different form:
yn = an n+ bn

1
n

and demand that the coefficient an be equal to unity if n is odd, and to
zero if n is even; the coefficient bn should behave in quite an opposite
manner. In this particular case these coefficients can be determined as
follows:

an =
1
2
[1− (−1)n] , bn =

1
2
[1+(−1)n]

Consequently

yn =
n
2
[1− (−1)n]+

1
2n
[1+(−1)n]
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Do in the same manner in the other two examples.

Reader: For sequence (9) I can write

yn =
1

2n
[1− (−1)n]+

1
2(n− 1)

[1+(−1)n]

and for sequence (10)

yn =
1

2n
[1− (−1)n]+

n
2(n+ 1)

[1+(−1)n]

Author: It is important to note that an analytical expression for the nth
term of a given sequence is not necessarily a unique method of defining
a sequence. A sequence can be defined, for example, by recursion (or
the recurrence method) (Latin word recurrere means to run back). In this
case, in order to define a sequence one should describe the first term (or
the first several terms) of the sequence and a recurrence (or a recursion)
relation, which is an expression for the nth term of the sequence via the
preceding one (or several preceding terms).

Using the recurrence method, let us present sequence (1), as follows

y1 = 1, yn = 2yn−1

Reader: It’s clear. Sequence (2) can be apparently represented by formu-
las

y1 = 5, yn = yn−1+ 2

Author: That’s right. Using recursion, let us try to determine one in-
teresting sequence

y1 = 1, y2 = 1, yn = yn−2+ yn−1
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1, 1, 2, 3, 5, 8, 13, 21, . . . (11)

This sequence is known as the Fibonacci sequence (or numbers).

Reader: I understand, I have heard something about. the problem of
Fibonacci rabbits.

Author: Yes, it was this problem, formulated by Fibonacci, the 13th
century Italian mathematician, that gave the name to this sequence (11).
The problem reads as follows. A man places a pair of newly born rabbits
into a warren and wants to know how many rabbits he would have over
a certain period of time. A pair of rabbits will start producing offspring
two months after they were born and every following month one new
pair of rabbits will appear. At the beginning (during the first month) the
man will have in his warren only one pair of rabbits (y1 = 1); during the
second month he will have the same pair of rabbits (y2 = 1); during the
third month the offspring will appear, and therefore the number of the
pairs of rabbits in the warren will grow to two (y3 = 3); during the fourth
month there will be one more reproduction of the first pair (y4 = 3);
during the fifth month there will be offspring both from the first and
second couples of rabbits (y5 = 5), etc. An increase of the number of
pairs in the warren frommonth to month is plotted in Figure 1. One can
see that the numbers of pairs of rabbits counted at the end of each month
form sequence (11), i.e. the Fibonacci, sequence.

Reader: But in reality the rabbits do not multiply in accordance with
such an idealized pattern. Furthermore, as time goes on, the first pairs of
rabbits should obviously stop proliferating.

Author: The Fibonacci sequence is interesting not because it describes
a simplified growth pattern of rabbits’ population. It so happens that
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Figure 1: Visualising Fibonacci rabbits.

this sequence appears, as if by magic, in quite unexpected situations. For
example, the Fibonacci numbers are used to process information by com-
puters and to optimize programming for computers. However, this is a
digression from our main topic.

Getting back to the ways of describing sequences, I would like to point
out that the very method chosen to describe a sequence is not of principal
importance. One sequence may be described, for the sake of convenience,
by a formula for the nth term, and another (as, for example, the Fibonacci
sequence), by the recurrence method. What is important, however, is the
method used to describe the law of correspondence, i.e. the law by which
any natural number is placed in correspondence with a certain term of
the sequence. In a number of cases such a law can be formulated only by
words. The examples of such cases are shown below:

2, 3, 5, 7, 11, 13, 17, 19, 23, . . . (12)

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . (13)
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In both cases we cannot indicate either the formula for the- nth term or
the recurrence relation. Nevertheless, you can without great difficulties
identify specific laws of correspondence and put them in words.

Reader: Wait a minute. Sequence (12) is a sequence of prime numbers
arranged in an increasing order, while (13) is, apparently, a sequence com-
posed of decimal approximations, with deficit, for π.

Author: You are absolutely right.

Reader: It may seem that a numerical sequence differs from a random set
of numbers by a presence of an intrinsic degree of order that is reflected
either by the formula for tho nth term or by the recurrence relation.
However, the last two examples show that such a degree of order needn’t.
be present.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

yn

n

Figure 2: Graph of the series (4).

Author: Actually, a degree of order determined by a formula (an ana-
lytical expression) is not mandatory. It is important, however, to have
a law (a rule, a characteristic) of correspondence, which enables one to
relate any natural number to a certain term of a sequence. In examples
(12) and (13) such laws of correspondence are obvious. Therefore, (12)
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and (13) are not inferior (and not superior) to sequences (1)-(11) which
permit an analytical description. Later we shall talk about the geometric

1 2 3 4 5 6 7 8 9 10
0

1

yn

n

Figure 3: Image of the series (5).

image (ormap) of a numerical sequence. Let us take two coordinate axes,
x and y. We shall mark on the first axis integers 1, 2, 3, . . . , n, . . . and on
the second axis, the corresponding terms of a sequence, i.e. the num-
bers y1, y2, y3, . . . yn, . . .. Then the sequence can be represented by a set
of points M (n, yn) on the coordinate plane. For example Figure 2 images
sequence (4), Figure 3 images sequence (5), Figure 4 images sequence (9),
and Figure 5 images sequence (10).

As a matter of fact, there are other types of geometry images of a numer-
ical sequence. Let us retain, for example only one coordinate y-axis and
plot on it points y1, y2, y3, . . . yn, . . . which map the terms of a sequence.
In Figure 6 this method of mapping is illustrated for the sequences that
have been shown in Figure 2-Figure 5. One has to admit that the latter
method is less descriptive in comparison with the former method.

Reader: But in the case of sequences (4) and (5) the seond method looks
rather obvious.
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1 2 3 4 5 6 7 9

−1

0

1
yn

n108

Figure 4: Series in equation (9) visualised.

1 2 3 4 5 6 7 8 9 10
0

1

1
3

2
3

yn

n

Figure 5: Series in equation (10) visualised.

Author: It can be explained by specific features of those sequences. Look
at them closer.
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0 1 2 3 4 y

y4 y9y3y2y1
Sequence (4)

0 0.5 0.6 0.8 0.9 1 y

y4 y9y3y2y1Sequence (5)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

yy4 y9y3y2 y1

Sequence (9)
y5y6

0 1 n

y1y2

2
3

1
3

y3 y4y5 y6y7

Sequence (10)

Figure 6: Mapping the sequences along a line.

Reader: The terms of sequences (4) and (5) possess the following prop-
erty: each term is greater than the preceding term

y1 < y2 < y3, . . .< yn < . . .

It means that all the terms are arranged on the y-axis according to their
serial numbers. As far as I know, such sequence, are called increasing.

Author: A more general case is that of non-decreasing sequences pro-
vided we add the equality sign to the above series of inequalities.

Definition

A sequence (yn ) is called nondecreasing if

y1 ⩽ y2 ⩽ y3, . . .⩽ yn ⩽ . . .
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A sequence (yn ) is called non-increasing if

y1 ⩾ y2 ⩾ y3, . . .⩾ yn ⩾ . . .

Non-decreasing and non-increasing sequences come under the
name of monotonic sequences.

Please, identify monotonic sequences among examples (1) -(13).

Reader: Sequences (1), (2), (3), (4), (5), (11), (12), and (13) are nonde-
creasing, while (6) and (7) are non-increasing. Sequences (8), (9), and (10)
are not monotonic.

Author: Let us formulate one more definition.

Definition

A sequence (yn ) is bounded if there are two numbers A and B la-
belling the range which encloses all the terms of a sequence

A⩽ yn ⩽ B (n = 1, 2, 3, . . .)

If it is impossible to identify such two numbers (or, in particular, one can
find only one of the two such numbers, either the least or the greatest),
such a sequence is unbounded. Do you find bounded sequences among
our examples?

Reader: Apparently, (5) is bounded.

Author: Find the numbers A and B for it.

Reader: A= 1/2, B = 1.

Author: Of course, but if there exists even one pair of A and B , one
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may find any number of such pairs. You could say, for example, that
A= 0, B = 2, or A=−100, B = 100, etc., and be equally right.

Reader: Yes, but my numbers are more accurate.

Author: From the viewpoint of the bounded sequence definition, my
numbersAand B are not Letter and notworse than yours. However, your
last sentence is peculiar. What do you mean by saying “more accurate?”

Reader: My A is apparently the greatest of all possible lower bounds,
while my B is the least of all possible upper hounds.

Author: The first part of your statement is doubtlessly correct, while
the second part of it, concerning B , is not so self-explanatory. It needs
proof.

Reader: But it seemed rather obvious. Because all the terms of (5) in-
crease gradually, and evidently tend to unity, always remaining less than
unity.

Author: Well, it is right. But it is not yet evident that B = 1 is the least
number for which yn ⩽ B is valid for all n: I stress the point again: your
statement is not self-evident, it needs proof.

I shall note also that “self-evidence” of your statement about B = 1 is
nothing but your subjective impression; it is not a mathematically sub-
stantiated corollary.

Reader: But how to prove that B = 1 is, in this particular case, the least
of all possible upper bounds?

Author: Yes, it can be proved. But let us not move too fast and by all
means beware of excessive reliance on so-called self-evident impressions.
The warning becomes even more important in the light of the fact that
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the bounded- ness of a sequence does not imply at all that the greatest A

or the least B must be known explicitly.

Now, let us get back to our sequences and find other examples of bounded
sequences. .

Reader: Sequence (7) is also bounded (one can easily find A= 0, B = 1).
Finally, bounded sequences are (9) (e.g. A= −1, B = 1), (10) (e.g. A=
0, B = 1), and (13) (e.g. A = 3, B = 4). The remaining’ sequences are
un-bounded.

Author: You are quite right. Sequences (5), (7), (9), (10), and (13) are
bounded. Note that (5), (7), and (13) are bounded and at the same time
monotonic. Don’t you feel that this fact is somewhat puzzling?

Reader: What’s puzzling about it?

Author: Consider, for example, sequence (5). Note that each subse-
quent term is greater than the preceding one. I repeat, each term! But the
sequence contains an infinite number of terms. Hence, if we follow the
sequence far enough, we shall see as many terms with increased magni-
tude (compared to the preceding term) as we wish. Nevertheless, these
values will never go beyond a certain “boundary”, which in this case is
unity. Doesn’t it puzzle you?

Reader: Well, generally speaking, it does. But I notice that we add to
each preceding term an increment which gradually becomes less and less.

Author: Yes, it is true. But this condition is obviously insufficient to
make such a sequence bounded. Take, for example, sequence (4). Here
again the “increments” added to each term of the sequence gradually de-
crease; nevertheless, the sequence is not bounded.
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Reader: We must conclude, therefore, that in (5) these “increments” di-
minish faster than in (4).

Author: All the same, you have to agree that it is not immediately clear
that these “increments” may decrease at a rate resulting in the bounded-
ness of a sequence.

Reader: Of course, I agree with that.

Author: The possibility of infinite but bounded sets was not known, for
example, to ancient Greeks. Suffice it to recall the famous paradox about
Achilles chasing a turtle.

Let us assume that Achilles and the turtle are initially separated by a dis-
tance of 1 km, Achilles moves to times faster than the turtle. Ancient
Greeks reasoned like this: during the time Achilles covers 1 km the turtle
covers 100 m. By the timeAchilles has covered these 100 m, the turtle will
have made another 10 m, and before Achilles has covered these 10 m, the
turtle will have made 1 m more, and so on. Out of these considerations
a paradoxical conclusion was derived that Achilles could never catch up
with the turtle.

This “paradox” shows that ancient Greeks failed to grasp the fact that a
monotonic sequence may be bounded.

Reader: One has to agree that the presence of both the monotonicity
and boundedness is something not so simple to understand.

Author: Indeed, this is not so simple. It brings us close to a discussion on
the limit of sequence. The point is that if a sequence is both monotonic
and bounded, it should necessarily have a limit.

Actually, this point can be considered as the “beginning” of calculus.
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Dialogue 2

LIMIT OF SEQUENCE

Author: What mathematical operations do you know?

Reader: Addition, subtraction, multiplication, division, involution (rais-
ing to a power), evolution (extracting n root), and taking a logarithm or
a modulus.

Author: In order to pass from elementary mathematics to higher math-
ematics, this “list” should be supplemented with one more mathematical
operation, namely, that of finding the limit of sequence; this operation
is called sometimes the limit transition (or passage to the limit). By the
way, we shall clarify below the meaning of the last phrase of the previ-
ous dialogue, stating that calculus “begins” where the limit of sequence is
introduced.

Reader: I heard that higher mathematics uses the operations of differen-
tiation and integration.

Author: These operations, as we shall see, are in essence nothing but the
variations of the limit transition.

17



Now, let us get down to the concept of the limit of sequence. Do you
know what it is?

Reader: I learned the definition of the limit of sequence. However, I
doubt that I can reproduce it from memory.

Author: But you seem to “feel” this notion somehow? Probably, you
can indicate which of the sequences discussed above have limits and what
the value of the limit is in each case.

Reader: I think I can do this, The limit is 1 for sequence (5), zero for (7)
and (9), and π for (13).

Author: That’s right. The remaining sequences have no limits.

Reader: By the way, sequence (9) is not monotonic . . .

Author: Apparently, you have just remembered the end of our previous
dialogue where it was stated that if a sequence is both monotonic and
bounded, it has a limit.

Reader: That’s correct. But isn’t this a contradiction?

Author: Where do you find the contradiction? Do you think that from
the statement “If a sequence is both monotonic and bounded, it has a
limit” one should necessarily draw a reverse statement like “If a sequence
has a limit, it must be monotonic and bounded?” Later we shall see that a
necessary condition for a limit is only the boundedness of a sequence. The
monotonicity is notmandatory at all; consider, for example, sequence (9).

Let us get back to the concept of the limit of sequence. Since you have
correctly indicated the sequences that have limits, you obviously have
some understanding of this concept. Could you formulate it?

18



Reader: A limit is a number to which a given sequence tends (converges).

Author: What do you mean by saying “converges to a number”?

Reader: I mean that with an increase of the serial number, the terms of
a sequence converge very closely to a certain value.

Author: What do you mean by saying “very closely”?

Reader: Well, the “difference” between the values of the terms and the
given number will become infinitely small. Do you think any additional
explanation is needed?

Author: The definition of the limit of sequence which you have sug-
gested can at best be classified as a subjective impression. We have already
discussed a similar situation in the previous dialogue.

Let us see what is hidden behind the statement made above. For this
purpose, let us look at a rigorous definition of the limit of sequence which
we are going to examine in detail.

Definition

The number a is said to be the limit of sequence (yn ) if for any
positive number ϵ there is a real number N such that for all n >N

the following inequality holds:

| yn − a |< ϵ (14)

Reader: I am afraid, it is beyond me to remember such a definition.

Author: Don’t hasten to remember. Try to comprehend this definition,
to realize its structure and its inner logic. You will see that every word
in this phrase carries a definite and necessary content and that no other
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definition of the limit of sequence could be more succinct (more delicate,
even).

First of all, let us note the logic of the sentence. A certain number is the
limit provided that for any ϵ > 0 there is a number N such that for all
n > N inequality (14) holds. In short, it is necessary that for any ϵ a
certain number N should exist.

Further, note two “delicate” aspects in this sentence. First, the number
N should exist for any positive number ϵ. Obviously, there is an infinite
set of such ϵ. Second, inequality (14) should hold always (i.e. for each ϵ)
for all n >N . But there is an equally infinite set of numbers n!

Reader: Now, the definition of the limit has become more obscure.

Author: Well, it is natural. So far we have been examining the definition
“piece by piece”. It is very important that the “delicate” features, the
“cream”, so to say, are spotted from the very outset. Once you understand
them, everything will fall into place.

In Figure 7(a) there is a graphic image of a sequence. Strictly speaking, the
first 40 terms have been plotted on the graph. Let us assume that if any
regularity is noted in these 40 terms, we shall conclude that the regularity
does exist for n > 40.

Can we say that this sequence converges to the number a (in other words,
the number a is the limit of the sequence)?

Reader: It seems plausible.

Author: Let us however, act not on the basis of our impressions but on
the basis of the definition of the limit of sequence. So, we want to verify
whether the number a is the limit of the given sequence. What does our

20



0 10 20 30 40

yn

a

n(a)

0 10 20 30 40

2ϵ

a+ ϵ

a− ϵ

yn

a

n(b)

0 10 20 30 40

yn

a

n

2ϵ12ϵ22ϵ3

(c)

Figure 7: Finding limit of a sequence.

definition of the limit prescribe us to do?

Reader: We should take a positive number ϵ.

Author: Which number?

Reader: Probably. it must be small enough,

Author: The words “small enough” are neither here nor there. The
number ϵ must be arbitrary.

Thus, we take an arbitrary positive ϵ. Let us have a look at Figure 7and
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layoff on the y-axis an interval of length ϵ, both upward and downward
from the same point a. Now, let us draw through the points y = a+ϵ and
y = a − ϵ the horizontal straight lines that mark an “allowed” band for
our sequence. If for any term of the sequence inequality (14) holds, the
points on the graph corresponding to these terms fall inside the “allowed”
band. We see in Figure 7(b) that starting from number ϵ, all the terms
of the sequence stay within the limits of the “allowed” band, proving the
validity of (14) for these terms. We, of course, assume that this situation
will realize for all n > 40, i.e. for the whole infinite “tail” of the sequence
not shown in the diagram.

Thus, for the selected ϵ the number N does exist. In this particular case
we found it to be 7.

Reader: Hence, we can regard a as the limit of the sequence.

Author: Don’t you hurry. The definition clearly emphasizes: “for any
positive ϵ”. So far we have analyzed only one value of ϵ. We should take
another value of ϵ and find N not for a larger but for a smaller ϵ. If for
the second ϵ the search of N is a success, we should take a third, even
smaller ϵ, and then a fourth, still smaller ϵ, etc., repeating each time the
operation of finding N .

In Figure 7(c) three situations are drawn up for ϵ1,ϵ2and ϵ3 (in this case
ϵ1 > ϵ2 > ϵ3). Correspondingly, three “allowed” bands are plotted on the
graph. For a greater clarity, each of these bands has its own starting N .
We have chosen N1 = 7, N2 = 15, and N3 = 27.

Note that for each selected ϵwe observe the same situation in Figure 7(c):
up to a certain n, the sequence, speaking figuratively, may be “indisci-
plined” (in other words, some terms may fallout of the limits of the cor-
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responding “allowed” band). However, after a certain n is reached, a very
rigid law sets in, namely, all the remaining terms of the sequence (their num-
ber is infinite) do stay within the band.

Reader: Do we really have to check it for an infinite number of ϵ values?

Author: Certainly not. Besides, it is impossible. We must be sure that
whichever value of ϵ > 0 we take, there is such N after which the whole
infinite “tail” of the sequence will get “locked up” within the limits of the
corresponding “allowed” band.

Reader: And what if we are not so sure?

Author: If we are not and if one can find a value of ϵ1 such that it is
impossible to “lock up” the infinite “tail” of the sequencewithin the limits
of its “allowed” hand, then a is not the limit of our sequence.

Reader: And when do we reach the certainty?

Author: We shall talk this matter over at a later stage because it has
nothing to do with the essence of the definition of the limit of sequence.
I suggest that you formulate this definition anew. Don’t try to reconstruct
the wording given earlier, just try to put it in your own words.

Reader: I’ll try. The number a is the limit of a given sequence if for
any positive ϵ there is (one can find) a serial number n such that for all
subsequent numbers (i.e. for the whole infinite “tail” of the sequence)
the following inequality holds: | yn − a |< ϵ.
Author: Excellent. You have almost repeated word by word the defini-
tion that seemed to you impossible to remember.

Reader: Yes, in reality it all has turned out to be quite logical and rather
easy.
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Author: It is worthwhile to note that the dialectics of thinking was
clearly at work in this case: a concept becomes “not difficult” because the
“complexities” built into it were clarified. First, we break up the concept
into fragments, expose the “complexities”, then examine the “delicate”
points, thus trying to reach the “core” of the problem. Then we recom-
pose the concept to make it integral, and, as a result, this reintegrated
concept becomes sufficiently simple and comprehensible. In the future
we shall try first to find the internal structure and internal logic of the
concepts and theorems.

I believe we can consider the concept of the limit of sequence as thor-
oughly analyzed. I should like to add that, as a result, the meaning of
the sentence “the sequence converges to a” has been explained. I remind
you that initially this sentence seemed to you as requiring no additional
explanations.

Reader: At the moment it does not seem so self-evident any more. True,
I see now quite clearly the idea behind it.

Author: Let us get back to examples (5), (7), and (9). Those are the
sequences that we discussed at the beginning of our talk. To begin with,
we note that the fact that a sequence (yn ) converges to a certain number
a is conventionally written as

lim
n→∞ yn = a

(it reads like this: “The limit of yn for n tending to infinity is a.”)

Using the definition of the limit, let us prove that

lim
n→∞

n
n+ 1

= 1; lim
n→∞

1
n
= 0;

lim
n→∞

�
1

2n
[1− (−1)n]− 1

2(n− 1)
[1+(−1)n]
�
= 0
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You will begin with the first of the above problems.

Reader: I have to prove that

lim
n→∞

n
n+ 1

= 1

I choose an arbitrary value of ϵ, for example, ϵ= 0.1.

Author: I advise you to begin with finding the modulus of |yn − a|.
Reader: In this case, the-modulus is���� n

n+ 1
− 1
����= 1

n+ 1

Author: Apparently ϵ needn’t be specified, at least at the beginning.

Reader: O.K. Therefore. for an arbitrary positive value of ϵ, I have to
find N such that for all n >N the following inequality holds

1
n+ 1

< ϵ

Author: Quite correct. Go on.

Reader: The inequality can be rewritten in the form t

n >
1
ϵ
− 1

It follows that the unknown N may be identified as an integral part of
1
ϵ
− 1. Apparently, for all n >N the inequality in question will hold.

Author: That’s right. Let, for example, ϵ= 0.01.

Reader: Then N =
1
ϵ
− 1= 100− 1= 99.

Author: Let ϵ= 0.001.
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Reader: Then N =
1
ϵ
− 1= 1000− 1= 999.

Author: Let ϵ= 0.00015.

Reader: Then N =
1
ϵ
− 1= 6665.

Author: It is quite evident that for any ϵ (no matter how small) we can
find a corresponding N .

As to proving that the limits of sequences (7) and (9) are zero, we shall
leave it to the reader as an exercise.

Reader: But couldn’t the proof of the equality lim
n→∞

n
n+ 1

= 1 be simpli-

fied?

Author: Have a try.

Reader: Well, first I rewrite the expression in the following way:

lim
n→∞

n
n+ 1

= lim
n→∞

1
1

n+ 1

Then I take into consideration that with an increase in n, fraction
1
n
will

tend to zero, and, consequently, can be neglected against unity. Hence,

we may reject
1
n
and have: lim

n→∞
1
1
= 1.

Author: In practice this is the method generally used. However one

should note that in this case we have assumed, first, that lim
n→∞

1
n
= 0, and,

second, the validity of the following rules

lim
n→∞

xn

yn

=
lim

n→∞ xn

lim
n→∞ yn

(15)

lim
n→∞(xn + zn) = lim

n→∞ xn + lim
n→∞ zn (16)
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where xn = 1, yn = 1+
1
n

and zn =
1
n
. Later on we shall discuss these

rules, but at this juncture I suggest that we simply use them to compute
several limits. Let us discuss two examples.

Example 1 Find lim
n→∞

3n− 1
5n− 6

.

Reader: It will be convenient to present the computation in the form:

lim
n→∞

3n− 1
5n− 6

= lim
n→∞

3− 1
n

5− 6
n

=
lim

n→∞

�
3− 1

n

�
lim

n→∞

�
5− 6

n

� = 3
5

Author: Ok. Example 2 Compute

lim
n→∞

6n2− 1
5n2+ 2n− 1

Reader: We write

lim
n→∞

6n2− 1
5n2+ 2n− 1

= lim
n→∞

6n− 1
n

5n+ 2− 1
n

.

Author: Wait a moment! Did you think about the reason for dividing
both the numerator and denominator of the fraction in the previous ex-
ample by n? We did this because sequences (3n−1) and (5n−6) obviously
have no limits, and therefore rule (15) fails. However, each of sequences�

3− 1
n

�
and
�

5− 6
n

�
has a limit.

Reader: I have got your point. It means that in Example 2 I have to di-
vide both the numerator and denominator by n2 to obtain the sequences
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with limits in both. Accordingly we obtain

lim
n→∞

6n2− 1
5n2+ 2n− 1

= lim
n→∞

6− 1
n2

5+
2
n
− 1

n2

=
lim

n→∞

�
6− 1

n2

�
lim

n→∞

�
5+

2
n
− 1

n2

�
Author: Well, we have examined the concept of the limit of sequence.
Moreover, we have learned a little how to calculate limits. Now it is time
to discuss some properties of sequences with limits. Such sequences are
called convergent.
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Dialogue 3

CONVERGENT SEQUENCE

Author: Let us prove the following theorem:

Theorem

If a sequence has a limit, it is bounded.

We assume that a is the limit of a sequence (yn ). Now take an arbitrary
value of ϵ greater than 0. According to the definition of the limit, the
selected ϵ can always be related to N such that for all n >N , I yn−a|< ϵ
starting with n =N + 1, all the subsequent terms of the sequence satisfy
the following inequalities

a− ϵ < yn < a+ ϵ

As to the terms with serial numbers from 1 to N , it is alway possible to
select both the greatest (denoted by B1 ) and the least (denoted by A1)
terms since the number of these term is finite.

Now we have to select the least value from a− ϵ and A1 (denoted by A)
and the greatest value from a + ϵ and B1 (denoted by B ). It is obvious
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that A⩽ yn ⩽ B for all the terms of our sequence, which proves that the
sequence yn is bounded.

Reader: I see.

Author: Not toowell, it seems. Let us have a look at the logical structure
of the proof. We must verify that if the sequence has a limit, there exist
two numbers A and B such that A⩽ yn ⩽ B for each term of the sequence.
Should the sequence contain a finite number of terms, the existence of
such two numbers would be evident. However, the sequence contains an
infinite number of terms, the fact that complicates the situation.

Reader: Now it is clear! The point is that if a sequence has a limit a, one
concludes that in the interval from a− ϵ to a+ ϵ we have an infinite set
of yn starting from n =N + 1 so that outside of this interval we shall find
only a finite number of terms (not larger than N ).

Author: Quite correct. As you see, the limit “takes care of” all the
complications associated with the behaviour of the infinite “tail” of a se-
quence. Indeed, |yn−a|< ϵ for all n >N , and this is the main “delicate”
point of this theorem. As to the first N terms of a sequence, it is essential
that their set is finite.

Reader: Now it is all quite lucid. But what about ϵ Its value is not preset,
we have to select it.

Author: A selection of a value for ϵ affects only N . If you take a smaller
ϵ, you will get, generally speaking, a larger N . However, the number
of the terms of a sequence which do not satisfy |yn − a| < ϵ will remain
finite.

And now try to answer the question about the validity of t.he converse
theorem: If a sequence is bounded, does it imply it is convergent as well?
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Reader: The converse theorem is not true. For example, sequence (10)
which was discussed in the first dialogue is bounded. However, it has no
limit.

Author: Right you are. We thus come to a corollary:

Corollary

The boundedness of a sequence is a necessary condition for its con-
vergence; however, it is not a sufficient condition. If a sequence is
convergent, it is bounded. If a sequence is unbounded, it is defi-
nitely non-convergent,

Reader: I wonder whether there is a sufficient condition for the conver-
gence of a sequence?

Author: We have already mentioned this condition in the previous dia-
logue, namely, simultaneous validity of both the boundedness and mono-
tonicity of a sequence. The Weierstrass Theorem states:

Weierstrass Theorem

If a sequence is both bounded and monotonic, it has a limit.

Unfortunately, the proof of the theorem is beyond the scope of this book;
we shall not give it. I shall simply ask you to look again at sequences
(5), (7), and (13) (see Dialogue One), which satisfy the conditions of the
Weierstrass theorem.

Reader: As far as I understand, again the converse theorem is not true.
Indeed, sequence (9) (from Dialogue One) has a limit but is not mono-
tonic.

Author: That is correct. We thus come to the following conclusion.
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Conclusion

If a sequence is both monotonic and bounded, it is a sufficient (but
not necessary) condition for its convergence.

Reader: Well, one can easily get confused.

Bounded Sequences

Monotonic Sequences

Convergent SequencesConvergent Sequences
A

B

C

D

E

Figure 8: Bounded, monotonic and convergent sequences.

Author: In order to avoid confusion, let us have a look at another il-
lustration (Figure 8). Let us assume that all bounded sequences are “col-
lected” (as if we were picking marbles scattered on the floor) in an area
shaded by horizontal lines, all monotonic sequences are collected in an
area shaded by tilted lines, and, finally, all convergent sequences are col-
lected in an area shaded by vertical lines. Figure 8 shows how all these
areas overlap, in accordance with the theorems discussed above (the ac-
tual shape of all the areas is, of course, absolutely arbitrary). As follows
from the figure, the area shaded vertically is completely included into the
area shaded horizontally. It means that any convergent sequence must be
also bounded. The overlapping of the areas shaded horizontally and by
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tilted lines occurs inside the area shaded vertically. It means that any se-
quence that is both bounded and monotonic must be convergent as well. It is
easy to deduce that only five types of sequences are possible. In the fig-
ure the points designated by A, B , C , D , and E identify five sequences of
different types. Try to name these sequences and find the corresponding
examples among the sequences discussed in Dialogue One.

Reader: Point A falls within the intersection of all the three areas. It
represents a sequence which is at the same time bounded, monotonic, and
convergent. Sequences (5), (7), and (13) are examples of such sequences.

Author: Continue, please.

Reader: Point B represents a bounded, convergent hut non-monotonic
sequence. One example is sequence (9).

Point C represents a bounded but neither convergent nor monotonic se-
quence. One example of such a sequence is sequence (10).

Point D represents a monotonic but neither convergent nor bounded se-
quence. Examples of such sequences are (1), (2), (3), (4), (6), (11), and
(12).

Point E is outside of the shaded areas and thus represents it sequence nei-
ther monotonic nor convergent nor bounded. One example is sequence
(8).

Author: What type of sequence is impossible then?

Reader: There can be no bounded, monotonic, and non-convergent se-
quence. Moreover, it is impossible to have both unboundedness and con-
vergence in one sequence.

Author: As you see, Figure 8 helps much to understand t.he relationship
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between such properties of sequences as boundedness, monotonicity, and
convergence.

In what follows, we shall discuss only convergent sequences. We shall
prove the following theorem:

Theorem

A convergent sequence has only one limit.

This is the theorem of the uniqueness of the limit. It means that a conver-
gent sequence cannot have two or more limits. Suppose the situation is
contrary to the above statement.

Consider a convergent sequence with two limits a1 and a2 and select a

value for ϵ <
|a1− a2|

2
. Now assume, for example, that ϵ =

|a1− a2|
2

.
Since a1 is a limit, then for the selected value of ϵ there is N1 such that for
all n > N1 the terms of the sequence (its infinite “tail”) must fall inside
the interval 1 (Figure 9). It means that we must have |yn − a1| < ϵ. On
the other hand, since at is a2 limit there is N2 such that for all n >N2 the
terms of the sequence (again its infinite “tail”) must fall inside the interval
2. It means that we must have|yn− a2|< ϵ. Hence, we obtain that for all
N greater than the largest among N1 and N2 the impossible must hold,
namely, the terms of the sequence must simultaneously belong to the
intervals 1 and 2. This contradiction proves the theorem. This proof
contains at least two rather “delicate” points. Can you identify them?

Reader: I certainly notice one of them. If a1 and a2 are limits, no mat-
ter how the sequence behaves at the beginning, its terms in the long run
have to concentrate simultaneously around a1 and a2 which is, of course,
impossible
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Figure 9: Proving the uniqueness of the limit.

Author: Correct. But there is one more “delicate” point, namely, no
matter how close a1 and a2 are, the; should inevitably be spaced by a
segment (a gap) of a small but definitely nonzero length.

Reader: But it is self-evident.

Author: I agree. However, this “self-evidence” is connected to one more
very fine aspect without which the very calculus could not be developed.
As you probably noted, one cannot identify on the real line two neigh-
bouring points. If one point is chosen, it is impossible, in principle, to
point out its “neighbouring” point. In other words, no matter how care-
fully you select a pair of points on the real line, it is always possible to
find any number of points between the two.

Take, for example, the interval [0,1]. Now, exclude the point 1. You will
have a half-open interval [0,1|. Can you identify the largest number over
this interval?

Reader: No, it is impossible.

35



Author: That’s right. However, if there were a point neighbouring 1,
after the removal of the latter this “neighbour” would have become the
largest number. I would like to note here that many “delicate” points and
many “secrets” in the calculus theorems are ultimately associated with the
impossibility of identifying two neighbouring points on the real line, or
of specifying the greatest or least number on an open interval of the real
line.

But let us get back to the properties of convergent sequences and prove
the following theorem:

Theorem

1f sequences (yn ) and ( zn ) are convergent (we denote their limits
by a and b , respectively), a sequence (yn + zn ) is convergent too,
its limit being a+ b .

Reader: This theorem is none other than rule (16) discussed in the pre-
vious dialogue.

Author: Thats right. Nevertheless, I suggest you try to prove it.

Reader: If we select an arbitrary ϵ > 0, then there is a number N1 such
that for all the terms of the first sequence with n > N1 we shall have
|yn − a| < ϵ. In addition, for the same ϵ there is N2 such that for all the
terms of the second sequence with n > N2 we shall have |zn − a| < ϵ.
Now we select the greatest among N1 and N2 (we denote it by N ), then
for all n >N both |yn−a|< ϵ and |zn−a|< ϵ. Well, this is as far as I can
go.

Author: Thus, you have established that for an arbitrary ϵ there is N

such that for all n >N both |yn− a|< ϵ and |zn− a|< ϵ simultaneously.
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And what can you say about the modulus |(yn+ zn)− (a+ b )| (for all n )?
I remind you that |A+B |⩽ |A|+ |B |.
Reader: Let us look at

|(yn + zn)− (a+ b )|= |(yn − a)+ (zn − b )|
⩽ [|yn − a|+ |zn − b |]
< (ϵ+ ϵ) = 2ϵ

Author: You have proved the theorem, haven’t you?

Reader: But we have only established that there is N such that for all
n >N we have |(yn + zn)− (a+ b )|< 2ϵ. But we need to prove that

|(yn + zn)− (a+ b )|< ϵ
Author: Ah, that’s peanuts, if you forgive the expression. In the case of
the sequence (yn + zn) you select a value of ϵ, but for the sequences (yn )
and ( zn ) you must select a e value of

ϵ

2
and namely for this value find N1

and N2.

Thus, we have proved that if the sequences (yn ) and ( zn ) are convergent,
the sequence (yn + zn ) is convergent too. We have even found a limit of
the sum. And do you think that the converse is equally valid?

Reader: I believe it should be.

Author: You are wrong. Here is a simple illustration:

(yn) =
1
2

,
2
3

,
1
4

,
4
5

,
1
6

,
6
7

,
1
8

, . . .

(zn) =
1
2

,
1
3

,
3
4

,
1
5

,
5
6

,
1
7

,
7
8

, . . .

(yn + zn) = 1, 1, 1, 1, 1, 1, 1, . . .
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As you see, the sequences (yn) and (zn) are not convergent, while the
sequence (yn + zn) is convergent, its limit being equal to unity.

Thus, if a sequence (yn + zn) is convergent, two alternatives are possible:

▶ sequences (yn) and (zn) are convergent as well, or

▶ sequences (yn) and (zn) are divergent.

Reader: But can it be that the sequence (yn) is convergent, while the
sequence (zn) is divergent?

Author: It may be easily shown that this is Impossible.

To begin with, let us note that if the sequence (yn) has a limit a, the
sequence −(yn) is also convergent and its limit is −a. This follows from
an easily proved equality

lim
n→∞(c yn) = c lim

n→∞ yn

where c is a constant. Assume now that a sequence (yn+zn) is convergent
to A, and that (yn) is also convergent and its limit is a. Let us apply the
theorem on the sum of convergent sequences to the sequences (yn + zn)
and −(yn). As a result, we obtain that the sequence (yn + zn)− (yn), i.e.
(zn), is also convergent, with the limit A− a.

Reader: Indeed (zn) cannot be divergent in this case.

Author: Very well. Let us discuss now one important particular case
of convergent sequences, namely, the so-called infinitesimal sequence, or
simply, infinitesimal. This is the name which is given to a convergent
sequence with a limit equal to zero. Sequences (7) and (9) from Dialogue
One are examples of infinitesimals.
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Note that to any convergent sequence (yn) with a limit a there corre-
sponds an infinitesimal sequence (αn ), where αn = yn − a. That is why
mathematical analysis is also called calculus of infinitesimals.

Now I invite you to prove the following theorem:

Theorem

If (yn) is a bounded sequence and (αn ) is infinitesimal, then (ynαn )
is infinitesimal as well.

Reader: Let us select an arbitrary ϵ > 0. We must prove that there is
N such that for all n > N the terms of the sequence (ynαn ) satisfy the
inequality |yn αn|< ϵ).
Author: Do you mind a hint? As the sequence (yn) is bounded, one can
find M such that |yn|⩽M for any n.

Reader: Now all becomes very simple. We know that the sequence (αn )
is infinitesimal. It means that for any ϵ′ > 0 we can find N such that for
all n >N |αn|< ϵ′. For ϵ′, I select ϵM Then, for n >N we have

|yn αn|= |yn| |αn|⩽M |αn|<M
ϵ

M
= ϵ

This completes the proof.

Author: Excellent. Now, making use of this theorem, it is very easy to
prove another theorem:

Theorem

A sequence (yn zn ) is convergent to ab if sequences (yn ) and ( zn )
are convergent to a and b , respectively.

Suppose yn = a + αn and zn = b +βn. Suppose also that the sequences
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(αn ) and (βn ) are infinitesimal. Then we can write:

yn zn = ab + γn where γn = bαn + aβn +αnβn

Making use of the theorem we have just proved, we conclude that the
sequences (bαn), (aβn) and (αnβn) are infinitesimal.

Reader: But what justifies your conclusion about the sequence (αnβn)?

Author: Because any convergent sequence (regardless of whether it is
infinitesimal or not) is bounded. From the theorem on the sum of con-
vergent sequences we infer that the sequence (yn) is infinitesimal, which
immediately yields

lim
n→∞(yn zn) = ab

This completes the proof.

Reader: Perhaps we should also analyze inverse variants in which the
sequence (yn zn) is convergent. What can be said in this case about the
sequences (yn) and (zn)?

Author: Nothing definite. in the general case. Obviously, one possibil-
ity is that (yn) and (zn) are convergent. However, it is also possible, for
example, for the sequence (yn) to be convergent, while the sequence (zn)
is divergent. Here is a simple illustration:

(yn) = 1,
1
4

,
1
9

,
1
16

,
1
25

, . . .
1
n2

, . . .

(zn) = 1, 2, 3, 4, 5, . . . , n, . . .

(yn zn) = 1,
1
2

,
1
3

,
1
4

,
1
5

, . . .
1
n

, . . .

By the way, note that here we obtain an infinitesimal sequence by multi-
plying an infinitesimal sequence by an unbounded sequence. In the gen-
eral case, however, such multiplication needn’t produce an infinitesimal.
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Finally, there is a possibility when the sequence (yn zn) is convergent, and
the sequences (yn) and (zn) are divergent. Here is one example:

(yn) = 1,
1
4

, 3,
1
16

, 5, . . .
1
36

, 7, . . .

(zn) = 1, 2,
1
9

, 4,
1
25

, 6,
1
49

, . . .

(yn zn) = 1,
1
2

,
1
3

,
1
4

,
1
5

,
1
6

,
1
7

, . . .

Now, let us formulate one more theorem:

Theorem

If (yn) and (zn) are sequences convergent to a and b when b ̸= 0,

then a sequence
�

yn

zn

�
is also convergent, its its limit being

a
b
.

We shall omit the proof of this theorem,

Reader: And what if the sequence (zn) contains zero terms?

Author: Such terms are possible. Nevertheless, the number of such
terms can be only finite. Do you know why?

Reader: I think, I can guess. The sequence (zn) has a non-zero limit b .

Author: Let us specify b > 0.

Reader: Well, I select ϵ =
b
2
. There must be an integer N such that

|zn − b | < b
2
for all n > N . Obviously all zn (the whole infinite “tail”

of the sequence) will be positive. Consequently, the zero terms of the
sequence (zn) may only be encountered among a finite number of the
first N terms.

Author: Excellent. Thus, the number of zeros among the terms of (zn)
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can only be finite. If such is the case, one can surely drop these terms.
Indeed, an elimination of any finite number of terms of a sequence does not
affect its properties. For example, a convergent sequence still remains con-
vergent, with its limit unaltered. An elimination of a finite number of
terms may only change N (for a given ϵ), which is certainly unimpor-
tant.

Reader: It is quite evident to me that by eliminating a finite number of
terms one does not affect the convergence of a sequence. But could an
addition of a finite number of terms affect the convergence of a sequence?

Author: A finite number of new terms does not affect the convergence
of a sequence either. Nomatter howmany new terms are added and what
their new serial numbers are, one can always find the greatest number N

after which the whole infinite “tail” of the sequence is unchanged. No
matter how large the number of new terms may be and where you insert
them, the finite set of new terms cannot change the infinite “tail” of the se-
quence. And it is the “tail” that determines the convergence (divergence)
of a sequence.

Thus, we have arrived at the following:

Conclusion

Elimination, addition, and any other change of a finite number of
terms of a sequence do not affect either its convergence or its limit
(if the sequence is convergent).

Reader: I guess that an elimination of an infinite number of terms (for
example, every other term) must not affect the convergence of a sequence
either.
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Author: Here you must be very careful. If an initial sequence is con-
vergent, an elimination of an infinite number of its terms (provided that
the number of the remaining terms is also infinite) does not affect either
convergence or the limit of the sequence. If, however, an initial sequence
is divergent, an elimination of an infinite number of its terms may, in
certain cases, convert the sequence into a convergent one. For example,
if you eliminate from divergent sequence (10) (see Dialogue One) all the
terms with even serial numbers, you will get the convergent sequence.

1,
1
3

,
1
5

,
1
7

,
1
9

,
1
11

,
1
13

, . . .

Suppose we form from a given convergent sequence two new convergent
sequences. The first new sequence will consist of the terms of the initial
sequence with odd serial numbers, while the second will consists of the
terms with even serial numbers. What do you think are the limits of these
new sequences?

Reader: It is easy to prove that the new sequences will have the same
limit as the initial sequence.

Author: You are right.

Note that from a given convergent sequence we can form not only two
but a finite number m of new sequences converging to the same limit.
One way to do it is as follows. The first new sequence will consist of the
1st, (m+ 1)st, (2m+ 1)st, (3m+ 1)st, etc., terms of the initial sequence.
The second sequence will consist of the 2nd, (m + 2)nd, (2m + 2)nd,
(3m+ 2)nd, etc., terms of the initial sequence.

Similarly we can form the third, the fourth, and other sequences.

In conclusion, let us see how one can “spoil” a convergent sequence by
turning it into divergent. Clearly, different “spoiling” approaches are pos-
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sible. Try to suggest something simple.

Reader: For example, we can replace all the terms with even serial num-
bers by a constant that is not equal to the limit of the initial sequence.
For example, convergent sequence (5) (see Dialogue One) can be “spoilt”
in the following manner:

1
2

, 2,
3
4

, 2,
5
6

, 2,
7
8

, 2, . . .

Author: I see that you havemastered verywell the essence of the concept
of a convergent sequence. Now we are ready for another substantial step,
namely, consider one of the most important concepts in calculus: the
definition of a function.
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Dialogue 4

FUNCTION

Reader: Functions are widely used in elementary mathematics.

Author: Yes, of course. You are familiar with numerical functions. More-
over, you have worked already with different numerical functions. Nev-
ertheless, it will be worthwhile to dwell on the concept of the function.
To begin with, what is your idea of a function?

Reader: As I understand it, a function is a certain correspondence be-
tween two variables, for example, between x and y. Or rather, it is a
dependence of a variable y on a variable x.

Author: What do you mean by a “variable”?

Reader: It is a quantity which may assume different values.

Author: Can you explain what your understanding of the expression
“a quantity assumes a value” is? What does it mean? And what are the
reasons, in particular, that make a quantity to assume this or that value?
Don’t you feel that the very concept of a variable quantity (if you are
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going to use this concept) needs a definition?

Reader: O.K., what if I say: a function y = f (x) symbolizes a depen-
dence of y on x, where x and y are numbers.

Author: I see that you decided to avoid referring to the concept of a
variable quantity. Assume that x is a number and y is also a number. But
then explain, please, the meaning of the phrase “a dependence between
two numbers”.

Reader: But look, the words “an independent variable” and “a dependent
variable” can be found in any textbook on mathematics.

Author: The concept of a variable is given in textbooks on mathematics
after the definition of a function has been introduced.

Reader: It seems I have lost my way.

Author: Actually it is not all that difficult “to construct” an image of a
numerical function. I mean image, notmathematical definition which we
shall discuss later.

In fact, a numerical function may be pictured as a “black box” that gen-
erates a number at the output in response to a number at the input. You put
into this “black box” a number (shown by x in Figure 10) and the "black
box" outputs a new number (y in Figure 10). Consider, for example, the
following function:

y = 4x2− 1

If the input is x = 2, the output is y = 15; if the input is x = 3, the output
is y = 35; if the input is x = 10, the output is y = 399, etc.

Reader: What does this “black box” look like? You have stressed that
Figure 10 is only symbolic.
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“Black Box”
Working as a
Function

x

y

Figure 10: A numerical function as a black box.

Author: In this particular case it makes no difference. It does not influ-
ence the essence of the concept of a function. But a function can also be
“pictured” like this:

422− 1

The square in this picture is a “window” where you input the numbers.
Note that there may be more than one “window”. For example,

422− 1
|2|+ 1

Reader: Obviously, the function you have in mind is

4x2− 1
|x|+ 1

Author: Sure. In this case each specific value should be input into both
“windows” simultaneously. “Black box” working as a function Figure 10.

By the way, it is always important to see such a “window” (or “windows”)
in a formula describing the function. Assume, for example, that one needs
to pass from a function y = f (x) to a function y = f (x − 1) (on a graph
of a function this transition corresponds to a displacement of the curve
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in the positive direction of the x-axis by 1). If you clearly understand
the role of such a “window” (“windows”), you will simply replace in this
“window” (these “windows”) x by x−1. Such an operation is Illustrated
by Figure 11 which represents the following function

y =
4x2− 1
|x|+ 1

Obviously, as a result of substitution of x − 1 for x we arrive at a new

4x2− 1
|x|+ 1

422− 1
|2|+ 1

4(x − 1)2− 1
|x − 1|+ 1

|x − 1|

|x − 1|

Figure 11: Change in a function from f (x)→ f (x − 1).

function (new “black box”)

4(2− 1)2− 1
|2− 1|+ 1

, y =
4(x − 1)2− 1
|x − 1|+ 1

Reader: I see. If, for example, we wanted to pass from y = f (x) to
y = f
�

1
x

�
, the function pictured in Figure 11 would be transformed as

follows:

y =

4
x2
− 1

1
|x| + 1
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Author: Correct. Now. try to find y = f (x) if

2 f
�

1
x

�
− f (x) = 3x

Reader: I am at a loss.

Author: As a hint, I suggest replacing x by
1
x
.

Reader: This yields

2 f (x)− f
�

1
x

�
=

3
x

Now it is clear. Together with the initial equation, the new equation

forms a system of two equations for f (x) and f
�

1
x

�
:

2 f
�

1
x

�
− f (x) = 3x

2 f (x)− f
�

1
x

�
=

3
x


By multiplying all the terms of the second equation by 2 and then adding
them to the first equation, we obtain

f (x) = x +
2
x

Author: Perfectly true.

Reader: In connection with your comment about the numerical func-
tion as a “black box” generating a numerical output in response to a nu-
merical input, I would like to ask whether other types of “black boxes”
are possible in calculus.

Author: Yes, they are. In addition to the numerical function, we shall
discuss the concepts of an operator and a functional.
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number numerical
function

numerical
function

numerical
function

operator functional

number numerical
function number

Figure 12: Understanding place and role of the numerical function as a mathe-
matical tool.

Reader: I must confess I have never heard of such concepts.

Author: I can imagine. I think, however, that Figure 12 will be helpful.
Besides, it will elucidate the place and role of the numerical function as a
mathematical tool. Figure 12 shows that:

▶ a numerical function is a “black box” that generates a number at the
output in response to a number at the input;

▶ an operator is a “black box” that generates a numerical function at the
output in response to a numerical function at the input; it is said that
all operator applied to a function generates a new function;

▶ a functional is a “black box” that generates a number at the output in
response to a numerical junction at the input, i.e. a concrete number
is obtained “in response” to a concrete function.

Reader: Could you give examples of operators and functionals?

Author: Wait a minute. In the next dialogues we shall analyze both
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the concepts of an operator and a functional. So far, we shall confine
ourselves to a general analysis of both concepts. Now we get back to our
main object, the numerical function.

The question is: How to construct a “black box” that generates a numer-
ical function.

Reader: Well, obviously, we should find a relationship, or a law, accord-
ing to which the number at the “output” of the “black box” could be
forecast for each specific number introduced at the “input”.

Author: You have put it quite clearly. Note that such a law could be
naturally referred to as the law of numerical correspondence. However,
the law of numerical correspondence would not be a sufficient definition
of a numerical function.

Reader: What else do we need?

Author: Do you think that any number could be fed into a specific
“black box” (function)?

Reader: I see. I have to define a set of numbers acceptable as inputs of
the given function.

Author: That’s right. This set is said to be the domain of a function.

Thus, the definition of a numerical function is based on two “corner-
stones”;

the domain of a function (a certain set of numbers), and the law of nu-
merical correspondence.

According to this law, every number from the domain of a function is placed
in correspondence with a certain number, which is called the value of the
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function; the values form the range of the function.

Reader: Thus, we actually have to deal with two numerical sets. On the
one hand, we have a set called the domain of a function and, on the other,
we have a set called the range of a function.

Author: At this juncture we have come closest to a mathematical defini-
tion of a function which will enable us to avoid the somewhat mysterious
word “black box”.

Look at Figure 13. It shows the function y =
p

1− x2. Figure 13 pictures
two numerical sets, namely, D (represented by the interval [−1,1]) and
E (the interval [0,1]). For your convenience these sets are shown on two
different real lines.

0

D

-1 1

0

E

1

Figure 13: Range and domain of a function.
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The set D is the domain of the function, and E is its range. Each number
in D corresponds to one number in E (every input value is placed in
correspondence with one output value). This correspondence is shown
in Figure 13 by arrows pointing from D to E .

Reader: But Figure 13 shows that two different numbers in D correspond
to one number in E .

Author: It does not contradict the statement “each number in D cor-
responds to one number in E .” I never said that different numbers in D

must correspond to different numbers in E . Your remark (which actually
stems from specific characteristics of the chosen function) is of no princi-
pal significance. Several numbers in D may correspond to one number in
E . An inverse situation, however, is forbidden. It is not allowed for one
number in D to correspond to more than one number in E . I emphasize
that each number in D must correspond to only one (not more!) number
in E .

Now we can formulate a mathematical definition of the numerical func-
tion.

Definition

Take two numerical sets D and E in which each element x of D

(this is denoted by x ∈ D ) is placed in one-to-one correspondence
with one element y of E . Then we say that a function y = f (x) is
set in the domain D , the range of the function being E . It is said
that the argument x of the function y passes through D and the
values of y belong to E .

Sometimes it is mentioned (but more often omitted altogether) that both
D and E are subsets of the set of real numbers R (by definition, R is the
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real line).

On the other hand, the definition of the function can be reformulated
using the term “mapping”. Let us return again to Figure 13. Assume that
the number of arrows from the points of D to the points of E is infinite
(just imagine that such arrows have been drawn from each point of D ).
Would you agree that such a picture brings about an idea that D ismapped
onto E?

Reader: Really, it looks like mapping.

Author: Indeed, this mapping can be used to define the function.

Definition

A numerical function is a mapping of a numerical set D (which
is the domain of the function) onto another numerical set E (the
range of this function).

Thus, the numerical function is a mapping of one numerical set onto an-
other numerical set. The term “mapping” should be understood as a kind
of numerical correspondence discussed above. In the notation y = f (x),
symbol f means the function itself (i.e. the mapping), with x ∈ D and
y ∈ E .

Reader: If the numerical function is a mapping of one numerical set onto
another numerical set, then the operator can be considered as a mapping
of a set of numerical function onto another set of functions, and the func-
tional as a mapping of a set of functions onto a numerical set.

Author: You are quite right.

Reader: I have noticed that you persistently use the term “numerical
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function” (and I follow suit), but usually one simply says “function”. Just
how necessary is the word “numerical”?

Author: You have touched upon a very important aspect. The point
is that in modern mathematics the concept of a function is substantially
broader than the concept of a numerical function. As a matter of fact, the
concept of a function includes, as particular cases, a numerical function
as well as an operator and a functional, because the essence in all the three
is a mapping of one set onto another independently of the nature of the
sets. You have noticed that both operators and functionals are mappings
of certain sets onto certain sets. In a particular case of mapping of a
numerical set onto a numerical set we come to a numerical function. In a
more general case, however, sets to be mapped can be arbitrary. Consider
a few examples.

Example 1 Let D be a set of working days in an academic year, and E a
set of students in a class. Using these sets, we can define a function real-
izing a schedule for the students on duty in the classroom. In compiling
the schedule, each element of D (every working day in the year) is placed
in one-to-one correspondence with a certain element of E (a certain stu-
dent). This function is a mapping of the set of working days onto the set
of students. We may add that the domain of the function consists of the
working days and the range is defined by the set of the students.

Reader: It sounds a bit strange. Moreover, these sets have finite numbers
of elements.

Author: This last feature is not principal.

Reader: The phrase “the values assumed on the set of students” sounds
somewhat awkward.
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Author: Because you are used to interpret “value” as “numerical value”.
Let us consider some other examples.

Example 2 Let D be a set of all triangles, and E a set of positive real
numbers. Using these sets, we can define two functions, namely, the area
of a triangle and the perimeter of a triangle. Both functions are mappings
(certainly, of different nature) of the set of the triangles onto the set of the
positive real numbers. It is said that the set of all the triangles is the domain
of these functions and the set of the positive real numbers is the range of
these functions.

Example 3 Let D be a set of all triangles, and E a set of all circles. The
mapping of D onto E can be either a circle inscribed in a triangle, or a
circle circumscribed around a triangle. Both have the set of all the trian-
gles as the domain of the function and the set of all the circles as the range
of the function.

By the way, do you think that it is possible to “construct” an inverse
function in a similar way, namely, to define a function with all the circles
as its domain and all the triangles as its range?

Reader: I see no objections.

Author: No, it is impossible. Because any number of different triangles
can be inscribed in or circumscribed around a circle. In other words, each
element of E (each circle) corresponds to an Infinite number of different
elements of D (i.e, an infinite number of triangles). It means that there
is no function since no mapping can be realized.

However, the situation can be improved if we restrict the set of triangles.

Reader: I guess I know how to do it. We must choose the set of all
the equilateral triangles as the set D . Then it becomes possible to realize
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both a mapping of D onto E (onto the set of all the circles) and an inverse
mapping, i.e. themapping of E onto D , since only one equilateral triangle
could be inscribed in or circumscribed around a given circle.

Author: Very good. I see that, you have grasped the essence of the con-
cept of functional relationship. I should emphasize that from the broadest
point of view this concept is based on the idea of mapping one set of ob-
jects onto another set of objects. It means that a function can be realized as
a numerical function, an operator, or a functional. As we have established
above, a function may be represented by an area or perimeter of a geometri-
cal figure, such, as a circle inscribed in a triangle or circumscribed around it,
or it may take the form of a schedule of students on duty in a classroom, etc.
It is obvious that a list of different functions may be unlimited.

Reader: I must admit that such a broad interpretation of the concept of
a function is very new to me.

Author: As a matter of fact, in a very diverse set of possible functions
(mappings), we shall use only numerical functions, operators, and func-
tionals. Consequently, we shall refer to numerical functions as simply
functions, while operators and functionals will be pointed out specifically.

And now we shall examine the already familiar concept of a numerical
sequence as an example of mapping.

Reader: A numerical sequence is, apparently, a mapping of a set of natu-
ral numbers onto a different numerical set. The elements of the second set
are the terms of the sequence. Hence, a numerical sequence is a particular
case of a numerical function. The domain of a function is represented by
a set of natural numbers.

Author: This is correct. But you should bear in mind that later on we
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shall deal with numerical functions whose domain is represented by the
real line, or by its interval (or intervals), and whenever we mention a
function, we shall imply a numerical function.

In this connection it is worthwhile to remind you of the classification of
intervals. In the previous dialogue we have already used this classification,
if only partially.

First of all we should distinguish between the intervals of finite length:

▶ a closed interval that begins at a and ends at b is denoted by [a, b ];
the numbers x composing this interval meet the inequalities a ⩽
x ⩽ b ;

▶ an open interval that begins at a and ends at b is denoted by ]a, b [;
the numbers x composing this interval meet the inequalities a <

x < b ;

▶ a half-open interval is denoted either by ]a, b ] or [a, b [, the former
implies that a < x ⩽ b , and the latter that a ⩽ x < b .

The intervals may also be infinite:

] −∞,∞ [ (−∞< x <∞) the real line
]a,∞ ] (a < x <∞)
[a,∞ [ (a ⩽ x <∞)
] −∞, b [ (−∞< x < b )
]−∞, b ] (−∞< x ⩽ b )

Let us consider several specific examples of numerical functions. Judging
by the appearance of the formulas given below, point out the intervals
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constituting the domains of the following functions:

y =
p

1− x2 (17)

y =
p

x − 1 (18)

y =
p

2− x (19)

y =
1p

x − 1
(20)

y =
1p

2− x
(21)

y =
p

x − 1+
p

2− x (22)

y =
1p

x − 1
+

1p
2− x

(23)

y =
p

2− x +
1p

x − 1
(24)

y =
p

x − 1+
1p

2− x
(25)

Reader: It is not difficult. The domain of function (17) is the interval
(−1, 1]; that of (18) is [1,∞[; that of (19) is ]−∞, 2]; that of (20) is
]1,∞[; that of (21) is ]∞, 2[; that of (22) is [1,2], etc.

Author: Yes, quite right, but may I interrupt you to emphasize that
if a function is a sum (a difference, or a product) of two functions, its
domain is represented by the intersection of the sets which are the domains
of the constituent functions. It is well illustrated by function (22). As
a matter of fact, the same rule must be applied to functions (23)-(25).
Please, continue.

Reader: The domains of the remaining functions are (23) ]1,2[; (24)
]1,2]; (25) [1,2[.

Author: And what can you say about the domain of the function y =p
x − 2+

p
1− x?
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Reader: The domain of y =
p

x − 2 is [2,∞[, while that of y =
p

1− xis
]−∞, 1]. These intervals do not intersect.

Author: It means that the formula y =
p

x − 2+
p

1− x does not define
any function.
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Dialogue 5

MORE ON FUNCTION

Author: Let us discuss the methods of defining functions. One of them
has already been employed quite extensively. I mean the analytical de-
scription of a function by some formula, that is, an analytical expression
(for example, expressions (17) through (25) examined at the end of the
preceding dialogue).

Reader: As a matter of fact, my concept of a function was practically
reduced to its representation by a’ formula. It was a formula that I had in
mind whenever I spoke about a dependence of a variable y on a variable
x.

Author: Unfortunately, the concept of a function as a formula relating
x and y has long been rooted in the minds of students. This is, of course,
quite wrong. A function and its formula are very different entities. It
is one thing to define a function as a mapping of one set (in our case it
is a numerical set) onto another, in other words, as a “black box” that
generates a number at the output in response to a number at the input.
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It is quite another thing to have just a formula, which represents only
one of the ways of defining a function. It is wrong to identify a function
with a formula giving its analytical description (unfortunately, it happens
sometimes).

Reader: It seems that after the discussion in the previous dialogue about
the function, such identification in a general case is automatically invali-
dated. However, if we confine ourselves only to numerical functions and
if we bear in mind that working with a function we always use a formula
to describe it, a question arises: Why is it erroneous to identify these two
notions? Why should we always emphasize the difference between the
function and its formula?

Author: I’ll tell you why. First, not every formula defines a function.
Actually, at the end of the previous dialogue we already had such an ex-
ample. I shall give you some more:

y =
1p
x
+

1p−x

y = log x + log (−x),

y =
p

sin x − 2,

y = log (sin x − 2), etc.

These formulas do not represent any functions.

Second (and this is more important), not all functions can be written as
formulas. One example is the so-calledDirichlet functionwhich is defined
on the real line:

y =

1 if x is a rational number

0 if x is an irrational number

Reader: You call this a function?
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Author: It is certainly an unusual function, but still a function. It is a
mapping of a set of rational numbers to unity and a set of irrational num-
bers to zero. The fact that you cannot suggest any analytical expression
for this function is of no consequence (unless you invent a special symbol
for the purpose and look at it as a formula).

However, there is one more, third and probably the most important,
reason why functions should not be identified with their formulas. Let
us look at the following expression:

y =


cos x x < 0

1+ x2 0⩽ x ⩽ 2

log (x − 1) x > 2

How many functions have I defined here?

Reader: Three functions: a cosine, a quadratic function, and a logarith-
mic function.

Author: You are wrong. The three formulas (y = cos x, y = 1+ x2, and
y = log(x − 1)) define in this case a single function. It is defined on the
real line, with the law of numerical correspondence given as y = cos x

over the interval ]−∞, 0 [, as y = 1+ x2 over the interval [0,2], and as
y = log(x − 1) over the interval ]2,∞ [.
Reader: I’ve made a mistake because I did not think enough about the
question.

Author: No, you have made the mistake because subconsciously you
identified a function with its analytical expression, i.e. its formula. Later
on, operating with functions, we shall use formulas rather extensively.
However, you should never forget that a formula is not all a function is,
It is only one way of defining it.
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The example above illustrates, by the way, that one should not identify
such notions as the domain of a function and the range of x on which
an analytical expression is defined (i.e. the domain of an analytical ex-
pression). For example, the expression 1+ x2 is defined on the real line.
However, in the example above this expression was used to define the
function only over the interval [0,2].

It should be emphasized that the question about the domain of a function
is of principal significance. It goes without saying that the domain of a
function cannot be wider than the domain of an analytical expression
used to define this function. But it can be narrower.

Reader: Does it mean that a cosine defined, for example, over the inter-
val [0,π] and a cosine defined over the interval [π, 3π] are two different
functions?

Author: Strictly speaking, it does. A cosine defined, for example, on the
real line is yet another function. In other words, using cosine we may, if
we wish, define any number of different functions by varying the domain
of these functions.

In the most frequent case, when the domain of a function coincides with
the domain of an analytical expression for the function, we speak about a
natural domain of the function. Note that in the examples in the previous
dialogue we dealt with the natural domains of the functions. A natural
domain is always meant if the domain of a function in question is not
specified (strictly speaking, the domain of a function should be specified
in every case).

Reader: It turns out that one and the same function can be described by
different formulas and, vice versa, one and the same formula can be used
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to “construct” different functions.

Author: In the history ofmathematics the realization of this factmarked
the final break between the concept of a function and that of its analyt-
ical expression. This actually happened early in the 19th century when
Fourier, t.he French mathematician, very convincingly showed t.hat it is
quite irrelevant whether one or many analytical expressions are used to
describe a function. Thereby an end was put to the very long discussion
among mathematicians about. Identifying a function with its analytical
expression.

It should be noted that similarly to other basic mathematical concepts,
the concept of a function went through a long history of evolution. The
term “function” was introduced by the German mathematician Leibnitz
late in the 17th century. At that time this term had a rather narrowmean-
ing and expressed a relationship between geometrical objects. The defi-
nition of a functional relationship, freed from geometrical objects, was
first formulated early in the 18th century by Bernoulli. The evolution
of the concept of a function can be conventionally broken up into three
main stages. During the first stage (the 18th century) a function was prac-
tically identified with its analytical expression. During the second stage
(the 19th century) the modern concept of a function started to develop as
a mapping of one numerical set onto another. With the development of
the general theory of sets, the third stage began (the 20th century) when
the concept of a function formerly defined only for numerical sets was
generalized over the sets of an arbitrary nature.

Reader: It appears that by overestimating the role of a formula we in-
evitably slip back to the concepts of the 18th century.

Author: Let us discuss nowonemoreway of defining a function, namely,
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the graphical method. The graph of a function y = f (x) is a set of points
on the plane (x, y) whose abscissas are equal to the values of the indepen-
dent variable (x), and whose ordinates are the corresponding values of the
dependent variable (y). The idea of the graphical method of defining a
function is easily visualized. Figure 14(a ) plots the graph of the function

y =


cos x x < 0

1+ x2 0⩽ x ⩽ 2

log (x − 1) x > 2

discussed earlier. For a comparison, the graphs of the functions y =
cos x, y = 1+ x2, and y = log (x − 1) within their natural domains of
definition in tho same figure (cases (b ), (c ), and (d )).

Reader: In Figure 14(a ) I notice an open circle. What does it mean?

Author: This circle graphically represents a point excluded from the
graph. In this particular case the point (2,0) does not belong to the graph
of the function. Figure 15 plots the graphs of the functions that were
discussed at the end of the previous dialogue. Let us have a close look at
them.

Reader: Obviously, in all the cases shown in Figure 15 the domain of the
function is supposed coinciding with the domain of the corresponding
analytical expression.

Author: Yes, you are right. In cases (b ), ( c ), (d ), and (e ) these domains
are infinite intervals. Consequently, only a part of each graph could be
shown.

Reader: In other cases, however, such as ( g ), (h ), and ( i ), the domains
of the functions are intervals of finite length. But here as well the figure
has space for only a part of each graph.
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Figure 14: The graphs of the functions y = cos x, y = 1+ x2, and y = log (x−1).

Author: That is right. The graph is presented in its complete form only
in cases (a ) and ( f ). Nevertheless, the behaviour of the graphs is quite
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Figure 15: A variety of functions and their domains.
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clear for all the functions in Figure 15.

The cases which you noted, i.e. ( g ), (h ), and ( i ), are very interesting.
Here we deal with the unbounded function defined over the finite in-
terval. The notion of boundedness (unboundedness) has already been
discussed with respect to numerical sequences (see Dialogue One). Now
we have to extrapolate this notion to functions defined over intervals.

Definition

A function y = f (x) is called bounded over an interval D if one can
indicate two numbers A and B such that

A⩽ f (x)⩽ B for all x ∈D .

If not, the function is called unbounded.

Note that within infinite intervals you may define both bounded and
unbounded functions. You are familiar with examples of bounded func-
tions: y = sin x and y = cos x. Examples of unbounded functions are in
Figure 15 (cases (b ), ( c ), (d ), and ( e )).

Reader: Over the intervals of finite length both bounded and unbounded
functions may also be defined. Several illustrations of such functions are
also shown in Figure 15: the functions in cases (a ) and ( f ) are bounded;
the functions in cases ( g ), (h ), and ( i ) are unbounded.

Author: You are right.

Reader: I note that in the cases that I have indicated the bounded func-
tions are defined over the closed intervals ([−1,1] for (a ) and [1,2] for
( f )), while the unbounded functions are defined both over the open and
half-open intervals (]1,2[ for ( g ), ]1,2] for (h ), and [1,2[ for ( i )).

69



Author: This is very much to the point. However, you should bear
in mind that it is possible to construct bounded functions defined over
open (half-open) intervals, and unbounded functions defined over closed
intervals. Here are two simple illustrations:

Example 1: y = x2 0⩽ x < 2

Example 2:

y =


1
x

0⩽ x < 2

1 x = 0

The graphs of these functions are shown in Figure 16.

Figure 16: Examples of bounded functions defined over open (half-open) inter-
vals, and unbounded functions defined over closed intervals.
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Reader: It seems that the boundedness (unboundedness) of a function
and the finiteness of the interval over which it is defined are not interre-
lated, Am I right?

Author: Not completely. There is, for example, the following theorem.

Theorem

If a function is defined over a closed interval and if it is monotonic,
the function is bounded.

Reader: Obviously, the monotonicity of a function is determined simi-
larly to the monotonicity of a numerical sequence.

Author: Yes, it is. Monotonic functions can be classified, as sequences,
into non-decreasing and non-increasing:

Definition

A function y = f (x) is said to be non-decreasing over an interval D

it for any x1 and x2 from this interval f (x1)⩽ f (x2) if (x1 ⩽ x2. If,
however, f (x1)⩾ f (x2), the function is said to be non-increasing.

Can you prove the theorem formulated above?

Reader: Let the function y = f (x) be defined over the closed interval
[a, b ]. We denote f (a) = ya and f (b ) = yb . To make the case more
specific, let us assume that the function is non-decreasing. It means that
ya ⩽ yb . I don’t know how to proceed.

Author: Select an arbitrary point x over the interval [a, b ].

Reader: Since a ⩽ x and x ⩽ b , then, according to the condition of the
above theorem, ya ⩽ f (x) and f (x)⩽ yb . Thus, we get that ya ⩽ f (x)⩽
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yb for all x in the domain of the function. This completes the proof.

Author: Correct. So, if a monotonic function is defined over a closed
interval, it is bounded. As to a non-monotonic function defined over a
closed interval, it may be either bounded (Figure 15(a ) and ( f )) or un-
bounded (Figure 15(b )).

And now answer the following question: Is the function y = sin x mono-
tonic?

Reader: No, it isn’t.

Author: Well, your answer is as vague as my question. First we should
determine the domain of the function. If we consider the function y =
sin x as defined on the natural domain (on the real line), then you are quite
right. If, however, the domain of the function is limited to the intervalh
−π

2
,
π

2

i
the function becomes monotonic (non-decreasing).

Reader: I see that the question of the boundedness or monotonicity of
any function should be settled by taking into account both the type of
the analytical expression for the function and the interval over which the
function is defined.

Author: This observation is valid not only for the boundedness ormono-
tonicity but also for other properties of functions. For example, is the
function y = 1− x2 an even function?

Reader: Evidently the answer depends on the domain of the function.

Author: Yes, of course. If the function is defined over an interval sym-
metric about the origin of coordinates (for example, on the real line or
over the interval [−1,1]), the graph of the function will be symmetric
about the straight line x = 0. In this case y = 1− x2 is an even func-
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tion. If, however, we assume that the domain of the function is [−1,2],
the symmetry we have discussed above is lost (Figure 17) and, as a result,
y = 1− x2 is not even.

Figure 17: Is the function y = 1− x2 even?

Reader: It is obvious that your remark covers the case of odd functions
as well.

Author: Yes, it does. Here is a rigorous definition of an even function.

Definition

A function y = f (x) is said to be even if it is defined on a set D

symmetric about the origin and if f (−x) = f (x) for all x ∈D .

By substituting f (−x) =− f (x) for f (−x) = f (x), we obtain the defini-
tion of an odd function.

But let us return to monotonic functions. If we drop the equality sign
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in the definition of a monotonic function (see p. 71) (in f (x1) ⩽ f (x2)
or f (x1) ⩽ f (x2)), we obtain a so-called strictly monotonic function. In
this case a non-decreasing function becomes an increasing function (i.e.
f (x1)< f (x2)) . Similarly, a non-increasing function becomes a decreasing
function (i.e. f (x1) > f (x2) ). In all the previous illustrations of mono-
tonic functions we actually dealt with strictly monotonic functions (ei-
ther increasing or decreasing). Strictly monotonic functions possess an

Figure 18: Concept of an inverse function.

interesting property: each has an inverse function.

Reader: The concept of an inverse function has already been used in the
previous dialogue in conjunction with the possibility of mapping a set of
equilateral triangles onto a set of circles. We saw that the inverse mapping,
i.e. the mapping of the set of circles onto the set of equilateral triangles,
was possible.

Author: That’s right. Here we shall examine the concept of an inverse
function in greater detail (but for numerical functions). Consider Fig-
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ure 18. Similarly to the graphs presented in Figure 13, it shows three
functions:

(a) y =
p

1− x2 −1⩽ x ⩽ 1

(b) y = sin x −π
2
⩽ x ⩽ π

2
(c) y = cos x 0 ⩽ x ⩽π
Here we have three mappings of one numerical set onto another. In other
words, we have three mappings of an interval onto another interval. In
case (a) the interval [−1,1] is mapped onto the interval [0,1]; in (b) the
interval
h
−π

2
,
π

2

i
is mapped onto the interval [−1,1]; and in (c) the in-

terval [0,π] is mapped onto the interval [−1,1]. What is the difference
between mappings (b) and (c), on the one hand, and mapping (a), on the
other?

Reader: In cases (b) and (c) we have a one-to-one correspondence, i.e.
each point of the set D corresponds to a single point of the set E and vice
versa, i.e. each point of E corresponds to only one point of D . In case
(a), however, there is no one-to-one correspondence.

Author: Yes, you are right. Assume now that the directions of all the ar-
rows in the figure are reversed. Now, will the mappings define a function
in all the three cases?

Reader: Obviously, in case (a) we will not have a function since then the
reversal of the directions of the arrows produces a forbidden situation,
namely, one number corresponds to two numbers. In cases (b) and (c)
no forbidden situation occurs so that in these cases we shall have some
new functions.

Author: That is correct. In case (b) we shall arrive at the function y =
arcsin x, which is the inverse function with respect to y = sin x defined

75



over the interval
h
−π

2
,
π

2

i
.

In case (c) we arrive at the function y = arccos x, which is the inverse
function with respect to y = cos x defined over [0,π].

I would like to place more emphasis on the fact that in order to obtain
an inverse function from an initial function, it is necessary to have a one-
to-one correspondence between the elements of the sets D and E . That
is why the functions y = sin x and y = cos x were defined not on their
natural domains but over such intervals where these functions are either
increasing or decreasing. In other words, the initial functions in cases (b)
and (c) in Figure 18 were defined as strictly monotonic. A strict mono-
tonicity is a sufficient condition for the above-mentioned one-to-one cor-
respondence between the elements of D and E . No doubt you can prove
without my help the following theorem.

Theorem

If a function y = f (x) is strictly monotonic, different x are mapped
onto different y.

Reader: Thus, a sufficient condition for the existence of the inverse
function- is the strict monotonicity of the initial function. Is this right?

Author: Yes, it is.

Reader: But isn’t the strict monotonicity of the initial function also a
necessary condition for the existence of the inverse function?

Author: No, it is not. A one-to-one correspondence may also take place
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in the case of a non-monotonic function. For example,

y =

1− x 0< x < 1

x 1⩽ x ⩽ 2

Have a look at the graph of this function shown in Figure 19. If a function
is strictly monotonic, it has the inverse function. However, the converse
is not true.

Figure 19: A non-monotonic function.

Reader: As I understand it, in order to obtain an inverse function (when
it exists), one should simply reverse the roles of x and y in the equation
y = f (x) defining the initial function. The inverse function will then
be ’given by the equation x = F (y). As a result the range of the initial
function becomes the domain of the inverse function.

Author: That is correct. In practice a conversion of the initial function
to the inverse function can be easily performed on a graph. The graph
of the inverse function is always symmetric to the graph of the initial
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function about a straight line y = x. It is illustrated in Figure 20, which
shows several pairs of graphs of the initial and inverse functions. A list
of some pairs of functions with their domains is given below:

Initial Domain Inverse Domain

(a) x3 −∞< x <∞ 3
p

x −∞< x <∞
(b ) x2 0⩽ x <∞ p

x 0⩽ x <∞
(c) 10x −∞< x <∞ log x 0< x <∞
(d ) sin x −π

2
⩽ x ⩽ π

2
arcsin x −1⩽ x ⩽ 1

(e) cos x 0⩽ x ⩽π arccos x −1⩽ x ⩽ 1

( f ) tan x −π
2
< x <

π

2
arctan x −∞< x <∞

(g ) cot x 0< x <∞ arccot x −∞< x <∞

All the domains of the inverse functions shown in the list case of are
the natural domains of the functions (however, in the case of y = 3

p
x

the natural domain is sometimes assumed to be restricted to the interval
[0,∞[ instead of the whole real line). As to the initial functions, only
two of them (y = x3 and y = 10x ) are considered in this case as defined on
their natural domains. The remaining functions are defined over shorter
intervals to ensure the strict monotonicity of the functions.

Now we shall discuss the concept of a composite function.

Let us take as an example the function h(x) =
p

1+ cos2 x. Consider also
the functions f (x) = cos x and g (y) =

p
1+ y2.

Reader: This f (x) notation is something new. So far we used to write
y = f (x),
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Figure 20: Functions and their inverses showing symmetry along the line y = x.
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Author: You are right. However, it is expedient to simplify the notation.

Consider the three functions: h(x), f (x), and g (y). The function h(x) is
a composite function composed of f (x) and g (y):

h(x) = g [ f (x)]

Reader: I understand. Here, the values of f (x) are used as the values of
the independent variable (argument) for g (x).

Figure 21: Understanding the composite function.

Author: Let us have a look at Figure 21, which pictures the mappings
of sets in the case of our composite function, h(x) =

p
1+ cos2 x, with

f (x) = cos x defined over the interval [0,π].

We see that the function f is a mapping of D (the interval [0,π]) onto
G (the interval [−1,1]), that is, the mapping f . The function g (the
function
p

1+ y2) is a mapping of G onto E (the interval [1,
p

2]), that is,
the mapping g . Finally, the function h (the function

p
1+ cos2 x defined

over the interval [0,π]) is a mapping of D onto E , that is, the mapping
h.
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The mapping h is a result of the consecutive mappings f and g , and is
said to be the composition of mappings; the following notation is used

h = g ◦ f

(the right-hand side of the equation should be read from right to left: the
mapping f is used first and then the mapping g ).

Reader: Obviously, for a composite function one can also draw a dia-
gram shown in Figure 22.

Figure 22: Understanding the composite function.

Author: I have no objections. Although I feel that. we better proceed
from the concept of a mapping of one set onto another, as in Figure 21.

Reader: Probably, certain “difficulties” may arise because the range of f

is at the. same time the domain of g ?

Author: In any case, this observation must always be kept in mind.
One should not forget that the natural domain of a composite function
g [ f (x)] is a portion (subset) of the natural domain of f (x) for which the
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values of f belong to the natural domain of g . This aspect was unim-
portant in the example concerning g [ f (x)] =

p
1+ cos2 x because all the

values of f (even if cos x is defined on the whole real line) fall into the
natural domain of g (y) =

p
1+ y2. I can give you, however, a different

example:

h(x) =
Æp

x − 1− 2, f (x) =
p

x − 1, g (y) =
p

y − 2

The natural domain of f (x) is [1,∞[Not any point in this interval, how-
ever, belongs to the domain of the composite function h(x), Since the ex-
pression
p

y − 2 is meaningful only if y ⩾ 2, and for y = 2 we have x = 5,
the natural domain of this composite function is represented by [5,∞],
i.e. a subset smaller than the natural domain of f (x).

Let us examine one more example of a composite function. Consider the
function y = sin (arcsin x), You know that arcsin x can be regarded as an
angle the sine of which is equal to x. In other words, sin(arcsin x) = x,
Can you point out the difference between the composite function y =
sin (arcsin x) and the function y = x?

Reader: Yes, I can. The natural domain of the function y = x is repre-
sented by thewhole real line. As to the composite function y = sin(arcsin x),
its natural domain coincides with the natural domain of the function
arcsin x, i.e. with [−1,1]. The graph of the function y = sin(arcsin x)
is shown in Figure 23.

Author: Very good. In conclusion, let us get back to the problem of the
graphical definition of a function. Note that there are functions whose
graphs cannot be plotted in principle, the whole curve or a part of it. For

example, it is impossible to plot the graph of the function y = sin
1
x
in

the vicinity of x = 0 (Figure 24). It is also impossible to have the graph
of the Dirichlet function mentioned above.

82



Figure 23: The graph of the function y = sin(arcsin x).

Figure 24: The graph of the function y = sin
1
x
.

Reader: It seemed to me that the Dirichlet function had no graph at all.

Author: No, this is not the case. Apparently, your idea of a graph of a
function is always a curve.

Reader: But all the graphs that we have analyzed so far were curves, and
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rather smooth curves, at that.

Author: In the general case, such an image is not obligatory. But it
should be stressed that every function has its graph, this graph being unique.

Reader: Does this statement hold for functions that are not numerical

Author: Yes, it does. In the most general case we can give the following
definition.

Definition

The graph of a function f defined on a set D with a range on a set
E is a set of all pairs (x, y) such that the first element of the pair x

belongs to D , while the second element of the pair y belongs to E ,
y being a function of x (y = f (x)).

Reader: So it turns out that the graph of a function such as the area of
a circle is actually a set of pairs each consisting of a circle (an element
x ) and a positive number (an element y ) representing the area of a given
circle.

Author: Precisely so. Similarly, the graph of a function representing a
schedule of students on duty in a classroom is a set of pairs each containing
a date (an element x ) and the name of a student (an element y ) who is on
duty on this date. Note also that in practice this function indeed takes a
graphic form.

If in a particular case both elements of the pair (both x and y ) are num-
bers, we arrive at the graph of the function represented by a set of points
on the coordinate plane. This is the familiar graph of a numerical func-
tion.
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Dialogue 6

LIMIT OF FUNCTION

Author: Consider now the concept of the limit of function.

Reader: But we have already covered rather extensively the concept of
the limit of a numerical sequence. But a sequence is nothing else but a
function defined on a set of natural numbers. Thus, having discussed the
limit of sequence, we become acquainted with the limit of function as
well. I wonder whether there is any point in a special discussion of the
concept of the limit of function.

Author: Undoubtedly, a further discussion will be very much to the
point. The functions we are concerned with substantially differ from
sequences (I have already emphasized this fact) because they are defined
over intervals and not on sets of natural numbers. This fact makes the
concept of the limit of function specific. Note, for example, that every
specific convergent sequence has only one limit. It means that the words
“the limit of a given sequence” are self-explanatory. As for a function
defined over an interval, one can speak of an infinite number of “limits”
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because the limit of function is found for each specific point x = a (or, as
we say, for x tending to a ). Thus the phrase “the limit of a given function”
is meaningless because “the limit of a given function must be considered
only at each given point a”. Besides, this point a should either belong
to the domain of the function or coincide with one of the ends of the
domain.

Reader: In this case the definition of the limit of function should be very
different from that of the limit of sequence.

Author: Certainly, there is a difference.

Note, first of all, that we analyze a function y = f (x), which is defined
over a segment, and a point a in this segment (which may coincide with
one of its ends when the function is defined over an open or half-open
interval).

Reader: Do you mean to say that at the point x = a the function f (x)
may not be defined at all?

Author: That is quite correct. Now let us formulate the definition of
the limit of function.

Definition

A number b is said to be the limit of a function f (x) at x tending
to a (the limit at point a ) if for any positive value of ϵ there is a
positive value of δ such that for all x satisfying the conditions x

belongs to the domain of the function; x ̸= a and

|x − a|<δ (26)

we have
| f (x)− b |< ϵ (27)
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The standard notation is

lim
x→a

f (x) = b

Reader: The definition of the limit of function is noticeably longer and
more complicated than that of the limit of sequence.

Author: Note, first of all, that according to (26), point x should belong
to the interval ]a − δ,a + δ[. Point x = a should be eliminated from
this interval. The interval ]a−δ,a+δ[ without point x = a is called a
punctured δ -neighbourhood of point a.

We select an arbitrary positive number ϵ. For ϵ we want to find another
positive number δ such that the value of the function at any point x from
the punctured δ-neighbourhood of point a must be inside the interval
]b −ϵ, b +ϵ[ (speaking about any point x we imply only the points x in
the domain of the function). If there is such b for any ϵ > 0, b is said to
be the limit of the function at point a. Otherwise, b is not the limit of
the function at point a.

Reader: And what does your “otherwise” mean in practice?

Author: Assume that the search forδ has been successful for n diminish-
ing numbers ϵ1, ϵ2, . . . , ϵn. But then you notice that for a certain number
ϵ′ it is impossible to find the required number δ, i.e. for any value of δ
no matter how small) there is always at least one point x from the punc-
tured δ-neighbourhood of point a at which the value of the function lies
outside the interval ]b − ϵ b + ϵ′[.

Reader: But can it happen that we reduce the δ-neighbourhood of point
a so much that not a single point x, belonging to the domain of the func-
tion, remains in the δ-neighbourhood?
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Author: Obviously this is impossible. Because the function is defined
over an interval, and point a is taken either from this interval or coincides
with its end point.

Reader: Everything seems clear. Apparently, in order to root all this
firmly in my mind we should discuss the graph of a function.

Author: It is a good idea. Let us analyze, for the sake of convenience,
the graph of the function y =

p
x (Figure 25). This figure illustrates only

two situations. One of them represents the selection of ϵ1 (see the figure).
It is easy to infer that δ1 is the value that we look for: the values of the
function at all points x from the δ1-neighbourhood of point a are inside
the interval ]b−ϵ1 b+ϵ1[ These values are represented by the portion of
the graph between points A and B . The second situation represents the
selection of ϵ2.

Figure 25: Understanding limit of the function y =
p

x.
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In this case the number that we seek for is δ1: the values of the function
at points x from the δ2-neighbourhood of point a are represented by the
portion of the graph between points A′ and B ′.

Reader: Everything you have just described looks so obvious that I see
no “cream”, to use your own words.

Author: “The cream” consists in the following. No matter how small
]b − ϵ b + ϵ[ is, one may always select a δ-neighbourhood for point a

such that for all points x in this δ-neighbourhood (all points, with the
exception of point a itself and those at which the function is not defined)
the values of the function should by all means lie within the indicated
interval.

Reader: Could you give an example of a function violating this rule?

Author: For instance, the function y = sin
1
x
in the vicinity of point

x = 0. The graph of the function is plotted in Figure 24. Obviously,
the smaller is |x| the greater is the frequency with which the graph of
the function oscillates about the x-axis. For an infinitely small |x| the
frequency of the oscillations tends to infinity. It is easy to prove that the

function y = sin
1
x
has no limit at x = 0.

Reader: But this function is not defined at zero.

Author: You are right. However, this fact is irrelevant from the view-
point of the existence (or absence) of the limit of the function at x = 0.
This function is defined over ]−∞, 0[ and ]0,∞[. Point x = 0 is a com-

mon boundary between the intervals over which the function sin
1
x
is

defined.

But let us return to the concept of the limit. Can we, for example, state
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that b = 0 is the limit of the function sin
1
x
at point x = 0?

Reader: It seems that I get the point. As long as we select ϵ > 1, ev-
erything is O.K. But for any ϵ < 1 it becomes impossible to find a δ-
neighbourhood of point x = 0 such that at all points x ̸= 0 in this δ-

neighbourhood the values of the function sin
1
x

are inside the interval
]-8, e]. No matter how small the δ-neighbourhood of point x = 0 is, it
is the segment of finite length, so that the graph of our function will os-
cillate infinitely many times and thus will infinitely many times go beyond
]− ϵ, ϵ[.
Author: That’s right. Note also that in order to be convinced that a func-
tion has no limit, it is sufficient to find a violation even more “modest”.
Namely, it is sufficient that the graph of the function leave the interval
]− ϵ, ϵ[ at least once for any δ-neighbourhood.
Reader: Apparently, not only b = 0 but no other b ̸= 0 can be the limit

of the function y = sin
1
x
at x = 0. Because for any b ̸= 0 we can use the

same arguments as for b = 0.

Author: Hence, we have proved that the function y = sin
1
x
has no limit

at point x = 0.

Reader: The reason for the absence of the limit at x = 0 lies in oscilla-
tions of the graph of the function. These oscillations become more and
more frequent while approaching x = 0.

Author: But the reason is not confined only to the infinitely increasing
frequency of oscillations of the graph. Another reason is the constancy
of the amplitude of oscillations. Let us “slightly correct” our function by

multiplying sin
1
x
by x, The graph of the function y = x sin

1
x
is shown in
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Figure 26. Do you think that b = 0 is the limit of this function at x = 0?

Figure 26: Finding the limit of the function y = x sin
1
x
.

Reader: I am at a loss.

Author: I’ll answer this question myself. Yes, it is. The proof is within
your reach if you use the definition of the limit of function. You are
welcome.

Reader: We select an arbitrary ϵ > 0. We should find δ > 0such that����x sin
1
x
− 0
����< ϵ for all x (excluding x = 0) satisfying the condition |x −

0|<δ. It seems to me that δ we look for is δ = ϵ.

Author: You are quite right. Because if |x|<δ = ϵ, it becomes evident

that
����x sin

1
x

����= |x| ����sin 1
x

����< ϵ. (since ����sin 1
x

����⩽ 1).
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Reader: Really, the existence of the limit is proved without considerable
difficulties.

Author: But, certainly, not always. Consider, for example, a well-known
function y =

p
x and prove (using the definition of the limit of function)

that b = 1 is the limit of the function at point x = 1. To begin with,
consider the following inequality:���px − 1

���< ϵ
Try to find a function g (ϵ) such that |x − 1| < g (ϵ) for any x satisfying
the condition
��px − 1
��< ϵ

Reader: I understand that g (ϵ) is actually the desired δ 6 corresponding
to an arbitrary ϵ.

Author: Yes, of course. We begin with some transformations. We shall
proceed from the inequality: ���px − 1

���< ϵ (28)

which can be rewritten in the form:

(1− ϵ)<px < (1+ ϵ)

Since
p

x ⩾ 0, the selection of ϵ < 1 a fortiori (which, of course, does not
impair the generality of our proof) allows us to square the last inequalities

(1− ϵ)2 < x < (1+ ϵ)2

On removing the parentheses, we obtain

(−2ϵ− ϵ2)< (x − 1)< (2ϵ+ ϵ2) (29)
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Note that inequalities (29) are equivalent to (28) (provided that 0 < ϵ <

1). Now let us proceed from (29) to a more exacting inequality:

|x − 1|< (2ϵ− ϵ2) (30)

(since 0 < ϵ < 1, we have (2ϵ − ϵ2) > 0). It is easy to conclude that
if (30) holds, inequalities (29) and, consequently (28) will hold all the
more. Thus, for an arbitrary ϵ within 0 < ϵ < 1, it is sufficient to take
δ = 2ϵ− ϵ2

Reader: What happens if ϵ≫ 1?

Author: Then δ determined for any ϵ < 1 will be adequate a fortiori.

Reader: Apparently, we may state that

lim
x→2

p
x =
p

2, lim
x→3

p
x =
p

3

and, in general, lim
x→a

p
x =
p

a.

Author: Yes, that’s right.

Reader: But could we generalize it to

lim
x→a

f (x) = f (a)

Author: Yes, it is often the case. But not always. Because the func-
tion f (x) may be undefined at point a. Remember that the limit of the

function y = x sin
1
x
at point x = 0 is zero, but the function itself is not

defined at point x = 0.

Reader: But perhaps the equality lim f (x) = f (a) x a can be considered
as valid in all the cases when f (x) is defined at point a?

Author: This may not be correct either. Consider, for example, a func-
tion which is called the “fractional part of x”. The standard notation for
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this function is {x}. The function is defined on the whole real line. We
shall divide the real line into half-intervals [n, n+ 1[. For x in [n, n+ 1[
we have {x} = x − n. The graph of the function y = {x} is shown in
Figure 27.

Figure 27: Graph of the function y = {x}.

Take, for example, x = 1. It is obvious that {x} is defined at point x =
1({x}= 0). But does the function have the limit at x = 1?

Reader: It clearly has no limit. In any δ-neighbourhood of point x = 1

there may exist concurrently both the points at which {x} assumes values

greater than, for example,
2
3
, and the points at which {x} assumes values

less than
1
3
.

It means that neither b = 1 nor b = 0 can be the limit of the function
at point x = 1, if only because it is impossible to find an adequate δ for

ϵ=
1
3
.

Author: I see that you have come to be rather fluent in operating with
limits of functions. My compliments.

By the way, you have just proved the theorem on the uniqueness of the
limit of function at a given point.
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Theorem

A function cannot have two (or more) limits at a given point.

Now let us return to the equality

lim
x→a

f (x) = f (a) (31)

You already know that there are situations when lim
x→a

f (x) exists but f (a)
does not exist and, vice versa, when f (a) exists but lim

x→a
f (x) does not

exist. Finally, a situation is possible when both lim
x→a

f (x) and f (a) exist,
but their values are not equal. I’ll give you an example:

f (x) =

x2 if x ̸= 0

1 if x = 0

The graph of this function is shown in Figure 28. It is easy to see that
f (0) = 1, while lim

x→a
f (x) = 0.

Figure 28: Graph of the function y = f (x), such that f (x) = x2 for x ̸= 0 and
f (x) = 1 for x = 0.
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You must be convinced by now that equality (31) is not always valid.

Reader: But presumably, it is often true, isn’t it?

Author: Yes, and if it is, the function f (x) is said to be continuous at
x = a.

Thus, we have arrived at a new important concept, namely, that of the
continuity of a function at a point. Let us give the following definition.

Definition

A function f (x) is said to be continuous at a point x = a if

1 it is defined at x = a,

2 there is the limit of the function at x = a,

3 this limit equals the value of the function at x = a;

or, in other words, the function f (x) is called continuous at a point
a if

lim
x→a

f (x) = f (a)

I believe that the preceding discussion has brought us so closely to this
definition that it needs no additional explanation. I would only like to
emphasize that the concept of the continuity of a function is essentially
local. Similarly to the concept of the limit of function, it is related to a
particular point x. A function may be either continuous at all points of
an interval over which it is defined, or discontinuous at some of its points.

Taking the examples given above, can you single out those functions that
are discontinuous at particular points?
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Reader: To beginwith, Imay refer to the functionwhose graph is plotted
in Figure 28. This function is discontinuous at x = 0.

Author: Why?

Reader: Because at this point the function assumes the value y = 1,
though the limit of the function at this point is apparently zero.

Author: Very good. Can you give other examples?

Reader: The function y = {x} (see Figure 27) is discontinuous at points
x = 0, ±1, ±2, ±3, . . . The function y = sin

1
x
(see Figure 24) is discon-

tinuous at x = 0 where it is undefined and, moreover, has no limit. The
function whose graph is shown in Figure 14(a ) (see the previous, dia-
logue) is discontinuous at x = 2. The function y = tan x is discontinuous
at points

x =±π
2

, ±3π
2

, ±5π
2

, ±7π
2

Author: That will do. Note that the points at which the continuity of
a function is violated are called discontinuity points. We say that at these
points a function has a discontinuity. In passing through a discontinu-
ity point a graph of a function manifests a singularity. This fact is well
illustrated by the examples you have just indicated,

Reader: The discontinuity points in all these examples result in an inter-
ruption of the curve plotting the function. One exception is the function

y = sin
1
x
since it is simply impossible to trace a graph of the function at

x = 0.

Author: I may add that neither could you plot the function y = tan x at
its discontinuity points (since you cannot draw a line which “goes into
infinity”).
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Reader: In any case, if a function is continuous everywhere in the do-
main (has no discontinuity points), its graph is a continuous line: it can
be drawn without lifting the pencil from the paper.

Author: I agree. I would like to emphasize that the continuity of a func-
tion at a point x guarantees that a very small displacement from this point
will result in a very small change in the value of the function.

Let us turn to Figure 27 which is the graph of the function y = {x}.
Consider, for instance, x = 0.5. The function is continuous at this point.
It is quite evident that at a very small displacement from the point (either
to the left or to the right) the value of the function will also change only
a little. Quite a different situation is observed if x = 1 (at one of the
discontinuity points). At x = 1 the function assumes the value y = 0. But
an infinitesimal shift to the left from the point x = 1 (take, for example,
x = 0.999, or x = 0.9999, or any other point no matter how close to
x = 1) will bring a sharp change in the value of the function, from y = 0

to y ≈ 1.

Reader: Quite clear. I must admit, however, that the local nature of the
concept of a continuous function (i.e. the fact that the continuity of a
function is always related to a specific point x ) does not quite conform to
the conventional idea of continuity. Because continuity typically implies
a process and, consequently, a sort of an interval. It seems that continuity
should be related not to a specific moment of time, but to an interval of
time.

Author: It is an interesting observation. This local character is a man-
ifestation of one of the specific features of calculus. When analyzing a
function at a given point x, you used to speak about its value only at this
specific point; but calculus operates not only with the value of a function

98



at a point but also with the limit of the function (or its absence) at this
point, with the continuity of the function at the point. It means that on
the basis of the information about a function at a given point we may
construct an image of the behaviour of the function in the vicinity of this
point. Thus we can predict the behaviour of the function if the point is
slightly shifted from x.

So far we have made only the first step in this direction. The next step
will be the introduction of the concept of a derivative. This will be the
subject of discussion in Dialogues Eight and Nine.

Reader: Nevertheless, I would like to note that in the above examples a
function was found to be either continuous everywhere over any interval
of finite length or discontinuous at a finite number of points. In this sense
the local nature of the concept of a discontinuity point is evident. The
continuity of the function, however, is always observed over a certain
interval.

Author: First, the continuity of a function within an interval does not
interfere with the local nature of continuity. A function is continuous over
an interval if it is continuous at all points of this interval.

Second, it is not difficult to construct an example in which the number
of discontinuity points over an interval of finite length is infinitely large.
Let us look, for example, at the following function:

y =

2 for x =±1, ±1
2

, ±1
4

, ±1
8

, ± 1
16

. . .

x2 for all the remaining points of the real line, including x = 0

The graph of this function is illustrated in Figure 29. It is easy to conclude
that in any δ-neighbourhood of point x = 0 the function has an infinite
number of discontinuity points.
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Figure 29: Graph of the function y = f (x), such that f (x) = 2 for x =

±1, ±1
2

, ±1
4

, ±1
8

, ± 1
16

. . . and f (x) = x2 for all the remaining points of the real
line, including x = 0.

Finally, I can give an example of a function which is discontinuous at
all points of an infinite interval. This is a function you already know,
the Dirichlet function (see the previous dialogue). Being defined on the
whole real line, the function has no limit at any point of the real line;
consequently, it is discontinuous at each point.

Reader: This is the reason why we in principle cannot plot the Dirichlet
function by a graph.

Author: As to the most frequent functions, such as power, exponential,
logarithmic, trigonometric, and inverse trigonometric, they are continuous
at all points of the natural domains of the corresponding analytical expres-
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sions. The same can be said about composite functions obtained from
the above elementary functions. The continuity of all these functions is
proved in the more advanced courses of calculus. We limit ourselves to a
mere stating of the fact.
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Dialogue 7

MORE ON THE LIMIT OF
FUNCTION

Reader: Comparing the definition of the limit of a function at a point
with the definition of the limit of a numerical sequence, I come to the
conclusion that these two limits are of different nature.

Author: And I understand why. In fact, I did emphasize the difference
myself in the previous dialogue, pointing out, as you probably remem-
ber, that a sequence is a function defined on a set of integers, while the
functions we are discussing at the moment are defined over intervals. I
doubt, however, that you are justified in speaking about the difference in
the nature of the limit of function and that of sequence. In the final anal-
ysis (and this is essential) the limit of a function at a point may be defined
on the basis of the limit of a numerical sequence.

Reader: This is very interesting.

Author: Let us forget, for the time being, about the definition of the

103



limit of function given in the previous dialogue. Consider a new def-
inition. We shall consider, as before, a function, f (x) defined over an
interval, and a point x = a either taken within the interval or coinciding
with its end.

Author: The two are equivalent.

Reader: But in form they are quite different.

Author: We can prove their equivalence. To begin with, let the defini-
tion using a δ-neighbourhood of point a be called “definition 1”, and the
definition using numerical sequences, “definition 2”.

Now, what two theorems must be proved to demonstrate the equivalence
of definitions 1 and 2? Can you formulate these theorems?

Reader: We have to prove two theorems, one direct and the other con-
verse. We want to prove that definition 2 follows from definition 1 and
vice versa (i.e. definition 1 follows from definition 2).

Author: Correct. First, I shall prove the following theorem.

Theorem

If a number b is the limit of a function f (x) at a point a, in terms
of definition 1, it is the limit of the function f (x) at a in terms of
definition 2 as well.

Since b is the limit of the function f (x) at point a in terms of definition
1 (this is given), consequently, for any ϵ > 0 there is δ > 0 such that
| f (x)−b |< ϵ for all x ̸= a from a δ-neighbourhood of point a. Then we
“construct” an arbitrary sequence (xn ) , requiring that it be convergent
to point a (any xn belong to the domain of the function and xn ̸= a for
any n ). As a result we obtain a sequence of the corresponding values of
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the function (the sequence [ f (xn)]) . We want to prove that the sequence
[ f (xn)] is convergent to b .

First, I select an arbitrary ϵ > 0. I should find a number N such that
| f (xn)− b |< ϵ for all n >N .

I cannot immediately find such N for an arbitrary ϵ. However, I can
indicate for an arbitrary ϵ such δ that | f (x)− b |< ϵ if |x−a|< ϵ. Then
I take this δ and find a sequence (xn) convergent to a. Evidently, since
(xn) is convergent to a, ϵ(as any other positive real number) can be placed
in correspondence with a number N such that |xn−a|<δ for all n >N .
And, consequently, we also have that | f (xn)−b |< ϵ for all n >N . Hence
we find that the thus found number N is actually the desired number. It
proves the convergence of the sequence [ f (xn)] to b . Since the sequence
(xn), which is convergent to a was chosen (“constructed”) arbitrarily, we
conclude that the theorem’s proof is completed.

If the line of reasoning is clear to you, try briefly to recapitulate the logical
structure of the proof.

Reader: I shall try to present the structure of the proof as a diagram
(Figure 30).

Author: Your diagram is correct. Will you expand on it.

Reader: The first step of the proof: we find for an arbitrary ϵ > 0 a
number δ > 0 such that | f (x)− b |< ϵ if |x − a|<δ.
The second step of the proof: we take δ selected at the first step; choose a
sequence (xn) convergent to a, and find a number N such that |x−a|<δ
for all n > N . Having in mind the arguments used at the first step, we
conclude that | f (x)− b |< ϵ.
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Figure 30: Schematic diagram of the proof that two definitions of the limit of a
function are equal.

We have thus found for an arbitrary ϵ > 0 a number N such that | f (xn)−
b |< ϵ for all n >N . This completes the proof.

Author: Correct. In conclusion I want to emphasize several essential
points on which the proof hinges. We know that | f (x)− b |< ϵ for any
x from the δ-neighbourood of a. Since a sequence (xn) is convergent
to a, all xn (the whole infinite “tail” of the sequence (xn) starting from
a certain number N + 1) are contained inside the δ-neighbourhood of
point a. It then follows that all f (xn) (the whole infinite “tail” of the
sequence [ f (xn)] starting from the same number N + 1.) are contained
inside the interval ]b − ϵ, b + ϵ[, This proves that the sequence [ f (xn)]
converges to b .

Reader: I understand.

Author: Now I am going to prove the following converse theorem.
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Theorem

If a number b is the limit of a function f (x) at a point a in terms
of definition 2, it is also the limit of the function f (x) at a in terms
of definition 1.

In this case I shall use the proof by contradiction. Assume the contrary
to what is to be proved, namely, assume that b , the limit of f (x) in terms
of definition 2, is not, however, the limit of f (x) in terms of definition 1.
Can you formulate the last proposition (more exactly, the assumption)?

Reader: As far as I remember, a similar formulation has already been
discussed in the previous dialogue. If b is not the limit of the function
f (x) at point a (in terms of definition 1), it means that there is ϵ′ > 0

such that it is impossible to find a necessary δ > 0. Namely, no matter
what δ we select, each time the function f (x)assumes a value outside of
]b − ϵ′, b + ϵ′[ for at least one point x from the δ-neighbourhood of
point a, i.e. the inequality | f (x)− b |< ϵ′ is violated.
Author: Correct. Assume that we have selected precisely this ϵ′ > 0.
Next take an arbitrary δ > 0, for instance, δ1 = 1. As you have said, in
any δ-neighbourhood of point a and, hence, in the δ-neighbourhood of
this point there is at least one point x (denoted by x1) such that | f (x1−
b |⩾ ϵ′.
Reader: What happens if theδ-neighbourhood containsmany such points
x?

Author: It makes no difference. The important fact is that there is at
least one such point. If there are several such points, take anyone of them
and denote it by x1.
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Now we take a new δ, for instance, δ2 =
1
2
. According to our assump-

tion, the δ2-neighbourhood of point a will contain at least one point x

(denoted by x2) such that | f (x2− b |⩾ ϵ′.
Further we take δ3 =

1
3
.The δ3-neighbourhood of point a will also con-

tain at least one point x (point x3) such that | f (x3− b |⩾ ϵ′.
We can continue this process for a sequence of the δ-neighbourhoods of
point a

δ1 = 1, δ2 =
1
2

, δ3 =
1
3

, . . .δn =
1
n

, . . .

Note that the δ-neighbourhoods are selected in such a way that the se-
quence (δn ) converges to zero (is infinitesimal).

If each time we select from each δ-neighbourhood one point x in which
f (x) assumes a value outside of the interval ]b − ϵ′, b + ϵ′[, we obtain a
sequence composed of points

x1, x3, x3, . . . xn, . . .

Since the sequence (δn ) converges to zero, the sequence (xn) inevitably
converges to a. A sequence composed of the corresponding values of the
function (the sequence [ f (xn)] is not convergent to b because for all n we
have | f (xn−b |⩾ ϵ′. It means that we obtained a sequence (xn) convergent
to a for which the sequence [ f (xn)] is divergent.

This contradicts the condition of the theorem which states that b is the
limit of the function at a in terms of definition 2. It means that for any
sequence (xn) convergent to a the corresponding sequence [ f (xn)must be
convergent to b . And the sequence (xn) that we have found contradicts
this condition.

Hence, the assumption that b , being the limit of the function in terms of
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definition 2, is not at the same time the limit of the function in terms of
definition 1, is invalidated. This completes the proof of the theorem.

Reader: I must admit of being wrong when I spoke about different na-
tures, of the limit of numerical sequence and the limit of function at a
point.

Author: These limits differ but their nature is the same. The concept of
the limit of function at a point is based, as we have seen, on the concept of
the limit of numerical sequence.

That is why basic theorems about the limits of functions are analogous
to those about the limits of sequences.

Reader: We have already noted one of such theorems: the theorem on the
uniqueness of the limit of function at a point.

Author: This theorem is analogous to that about the uniqueness of the
limit of numerical sequence.

I shall also give (without proof) the theorems on the limit of the sum; the
product, and the ratio of functions.

Theorems

If functions f (x) and g (x) have limits at a point a, then functions

[ f (x)+ g (x)] , [ f (x)g (x)] ,
�

f (x)
g (x)

�
also have limits at this point. These limits equal the sum, product,
and ratio, respectively, of the limits of the constituent functions (in
the last case it is necessary that the limit of the function g (x) at a
be different from zero).
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Thus,

lim
x→a
[ f (x)+ g (x)] = lim

x→a
f (x)+ lim

x→a
g (x)

lim
x→a
[ f (x) g (x)] = lim

x→a
f (x) lim

x→a
g (x)

lim
x→a

�
f (x)
g (x)

�
=

lim
x→a

f (x)

lim
x→a

g (x)

under an additional condition lim
x→a

g (x) ̸= 0

Reader: We have already discussed the similar theorems for numerical
sequences.

Author: Next I wish to make two remarks, using for the purpose spe-
cially selected examples.

Note 1. It is illustrated by the following example. Obviously

lim
x→a

p
1− x2 = 0 and lim

x→a

p
x − 1= 0.

Does it mean that lim
x→a
(
p

1− x2+
p

x − 1) = 0?

Reader: The limit of the function
p

1− x2 at x = 1 exists and is equal
to zero. The limit of the function

p
x − 1 at x = 1 also exists and is also

equal to zero. According to the theorem on the limit of the sum, the limit
of f (x) =

p
1− x2 +

p
x − 1 must exist and be equal to the sum of the

two preceding limits, i.e. to zero.

Author: Nevertheless, f (x) =
p

1− x2 +
p

x − 1 no limit at x = 1 for
a simple reason that the expression

p
1− x2+

p
x − 1 has meaning only

at a single point (point x = 1). Applying the theorem on the limit of
the sum, you have not taken into account the domains of the functionsp

1− x2 and
p

x − 1. The former has the natural domain over [−1, 1],
while the latter over [1,∞[.
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Reader: Apparently your note also covers the cases when the theorems
on the limit of the product and the limit of the ratio of functions are used.

Author: It goes without saying. Working with functions, you must
always consider their domains. The natural domains of functions may
intersect (or even coincide), but sometimes they may not. This aspect
must never be over-looked. Why do you think we never have such com-
plications when working with sequences?

Reader: Obviously because all numerical sequences have one and the
same domain, i.e. a set of natural numbers.

Author: Correct. Now we come to

Note 2. Do you think the limit

lim
x→0

sin x
x

exists?

Reader: In any case the theorem on the limit of the ratio is not valid here
because lim

x→0
x = 0.

Author: In fact, if lim
x→0

f (x) = 0 and lim
x→0

g (x) = 0, the limit of their ratio

i.e., the limit of the function
f (x)
g (x)

may exist.

Reader: What is this limit?

Author: It depends on the functions f (x) and g (x). Let us show, for
example, that

lim
x→0

sin x
x
= 1

Note that the function
sin x

x
is not defined at x = 0. This fact, however,

does not interfere with searching for the limit of the function at x = 0.
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We shall start with well-known inequalities:

sin x < x < tan x
�
0< x <

π

2

�
An assumption that

�
0< x < π

2

�
will not affect the generality of our re-

sults. Dividing sin x by each term of these inequalities, we obtain

1>
sin x

x
> cos x

hence

0<
�

1− sin x
x

�
< (1− cos x)

Next we take into account that

1− cos x = 2sin2 x
2
< 2sin

x
2
< 2

x
2
= x

Thus we have

0<
�

1− sin x
x

�
< x

or

−x <−
�

1− sin x
x

�
< 0

whence ����1− sin x
x

����< |x|
We thus arrive at the following inequality valid for |x|< π

2����sin x
x
− 1
����< |x| (32)

By using this inequality, we can easily prove that the function
sin x

x
has

the limit at x = 0, and this limit is unity. It will be convenient to use
definition 1 for the limit of function at a point.
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Select an arbitrary ϵ > 0, demanding for the sake of simplicity that ϵ <
π

2
.

For δ, it is sufficient to take δ = ϵ since, according to (32), the condition
|x − 0|<δ immediately leads to����sin x

x
− 1
����<δ = ϵ

Thus, unity is indeed the limit of the function
sin x

x
at x = 0.

Reader: Do we really have to resort to a similar line of reasoning, based
on the definition of the limit of function at a point, each time we have to

find the limit of
f (x)
g (x)

when both lim
x→0

f (x) = 0 and lim
x→0

g (x) = 0.

Author: No, of course not. The situation we are speaking about is

known as an indeterminate form of the type
0
0
. There are rules which

enable one to analyze such a situation in a relatively straightforward man-
ner and, so to say, “resolve the indeterminacy”. In practice it is usually
not difficult to solve the problem of existence of the limit of a function
f (x)
g (x)

at a specific point and find its value (if it exists). A few rules of

evaluation of indeterminate forms of the type
0
0
(and other types as well)

will be discussed later. A systematic analysis of such rules, however, goes
beyond the scope of our dialogues.

It is important to stress here the following principle (which is significant
for further considerations): although the theorem on the limit of the ratio

is not valid in the cases when lim
x→0

g (x) = 0, the limit of a function
f (x)
g (x)

at a point a may exist if lim
x→0

f (x) = 0. The example of the limit of the

function
sin x

x
at x = 0 is a convincing illustration of this principle.

Reader: Presumably, a similar situation may take place for numerical
sequences as well?
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Author: It certainly may. Here is a simple example:

(xn) = 1,
1
8

,
1
27

,
1
64

, . . .
1
n3

, . . . ( lim
n→∞ xn = 0)

(yn) = 1,
1
2

,
1
3

,
1
4

, . . .
1
n

, . . . ( lim
n→∞ yn = 0)

It is readily apparent that the limit of the sequence
�

xn

yn

�
is the limit of

the sequence
�

1
n2

�
. This limit does exist and is equal to zero.

Reader: Youmentioned that the existence of the limit of a function
f (x)
g (x)

at a, when both lim
x→0

f (x) = 0 and lim
x→0

g (x) = 0 the existence of the limit

of the type
0
0
, is very important for further considerations. Why?

Author: The point is that one of the most important concepts in calcu-

lus, namely, that of derivative, is based on the limit of the type
0
0
. This

will be clear in the subsequent dialogues.
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Dialogue 8

VELOCITY

Author: We are practically ready to tackle the concept of a derivative.
This concept, alongside with the concepts of the limit of numerical se-
quence and the limit of function, is one of the most important special con-
cepts in calculus.

Wemay approach the concept of a derivative by considering, for instance,
a quantity widely used in physics: the instantaneous velocity of nonuni-
form motion of a body.

Reader: We have been familiarized with this notion when studying kine-
matics in the course of physics, or, to be precise, the kinematics of nonuni-
form motion in a straight line.

Author: Exactly. What is your idea of the instantaneous velocity?

Reader: The instantaneous velocity of a body is defined as the velocity
of a body at a given moment of time (at a given point of its trajectory).

Author: And what is your idea of the velocity at a given moment of time?
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Reader: Well, I see it as . . . If a body moves uniformly, at different mo-
ments of time its velocity remains the same. If a bodymoves non-uniformly
(accelerating or decelerating), its velocity will, in the general case, vary
from moment to moment.

Author: Don’t you feel that the phrase “velocity at a given moment of
time” is merely a paraphraze of the “instantaneous velocity”? Six of one
and half a dozen of the other, eh? The term “velocity at a given moment
of time” calls for an explanation as much as the term “instantaneous ve-
locity”.

Tomeasure the velocity of a body, one should obviouslymeasure a certain
distance (path) covered by the body, and the time interval during which
the distance is covered. But, what path and period of time are meant
when we refer to the velocity at a given moment of time?

Reader: Yes, in order to measure velocity, one must actually know a
certain path and time interval during which the path is covered. But
our subject is not the measurement, it is a definition of the instantaneous
velocity.

Author: For the time being we shall not bother about a formal defini-
tion. It is more important to realize its essential meaning. In order to do
this, we cannot avoid the aspect of measurements. Now, how would you
find away to measure the velocity of a body at a given moment of time?

Reader: I can take a short time interval ∆t , that is, the period from the
given moment of time t to the moment t+∆t . During this time interval

the body covers a distance ∆s . If ∆t is sufficiently small, the ratio
∆s
∆t

will give the velocity of the body at the moment t .

Author: What do you mean by a sufficiently short time interval? What
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do you compare it with? Is this interval sufficiently small in comparison
with a year, a month, an hour, a minute, a second, or a millisecond?

Reader: Perhaps, neither a year, a month, an hour nor a minute will
do in this case. I see now that the instantaneous velocity can only be
measured with a certain degree of accuracy. The smaller is the smaller is
the error with which, the instantaneous velocity is measured.

Author: In principle, the concept of the instantaneous velocity (or, in
other words, “velocity at a given moment of time”) must be independent
of the measurement accuracy.

The velocity you are talking about, that is, the ratio
∆s
∆t

is nothing more
than the average velocity during ∆t . It is not the instantaneous velocity
at all. Of course, you are right when you say that the smaller is ∆t the
closer is the value of the average. velocity to the value of the instantaneous

velocity. However, no matter how small is ∆t ; the ratio
∆s
∆t

is always
only the average velocity during lit.

Reader: Then a better definition of the instantaneous velocity is beyond
me.

Author: Consider a graph of distance covered by a body plotted as a
function of time, that is, the graph of the function s = s(t ). This graph is
shown in Figure 31 by a solid line. Note that in physics one typically uses
the same symbol to denote both a function and its values (in this case we
use the symbol s ).

Reader: The figure also shows several thin lines.

Author: The thin lines (parabolas: and straight lines) are shown only
to indicate how the graph of s = s(t ) was plotted. This graph is thus
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Figure 31: Analysing the concept of instantaneous velocity.

composed of “pieces” of parabolas and straight lines. For instance, for
the time interval from 0 to t1 the graph is represented by a “piece” of the
extreme left-hand parabola (portion 0-1 of the graph). Please recall the
formula for the distance covered in a uniformly accelerated motion with
zero initial velocity.

Reader: This formula is

s(t ) =
at 2

2
(33)

where a is acceleration.

Author: And the extreme left-hand parabola is the graph of the function
represented by your formula.

Reader: So for the time interval from 0 to t1 the bodymoves at a constant
acceleration.
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Author: Exactly.

Reader: I see. For the time interval from t1 to t2 the body moves uni-
formly (portion 1-2 of the graph is a straight line); from t2 to t3 the body
moves at a constant deceleration (the graph is an inverse parabola); from
t3 to t4 the body is not moving at all; from t4 to t5 it moves at a constant
acceleration, and from t5 to t6 it moves at a constant deceleration.

Author: Precisely so. Now let us consider the graph of the function
s(t ) shown in Figure 31 from a purely mathematical standpoint. Let us
pose the following question: How strongly do the values of the function
change in response to the value of its argument t in different portions of
the graph?

Reader: In portion 3-4 the values of the function s(t ) do not change
at all, while in other portions they do. A slower rate of change of the
function is observed in the vicinity of points 0, 3, 4, and 6; a faster rate
of change is observed in the vicinity of points 1, 2, and 5. As a matter of
fact, the rate of change is equally fast throughout portion 1-2.

Author: You are a keen observer. And where do you think the rate of
change is faster, at point 2 or at point 5?

Reader: Of course, at point 2. Here the graph of the function has a much
steeper slope than at point 5.

Author: Let us turn to Figure 32. Here in column A two portions of
the graph of the function s(t ) are shown separately, namely, those in the
vicinity of points 2 and 5 (in Figure 31 these portions are identified by
dash circles). In column B the portions of the graph close to points 2 and
5 are shown again, but this time with a two-fold increase in scale. Column
C shows the result of another two-fold scale increase. Obviously, as the
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Figure 32: Analysing the concept of instantaneous velocity mathematically.

scale increases, the curvature of the graph s(t ) becomes less noticeable.
We may say that the graph has a property of “linearity on a small scale”,
which enables us to consider the slope of the graph at a specific point. In
Figure 32 (in column C ) it is shown that the slope of the graph at point
2 is (α1 (the slope is measured relative to the t -axis), while the slope at
point 5 is α2, and clearly α2 <α1.

Denote the slope of the curve s(t ) at themoment t by α(t ). Then tanα(t )
is said to be the rate of change of the function s(t ) at the moment t , or
simply the instantaneous velocity.

Reader: But why tangent?

Author: You immediately come to it by considering portion 1-2 of the
graph in Figure 31. This portion represents a uniform motion of the
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body, the rate of change of s(t ) being identical at all points. Obviously,
it equals the average velocity during the time interval t2− t1 , which is

s2− s1

t2− t1

= tanα

Reader: In Figure 32 you have demonstrated a “straightening” of the
graph by increasing its scale. But this straightening is only approximate.
Why have you stopped at a mere four-fold scale increase?

Author: We can get rid of this approximation and formulate a more
rigorous definition of a slope at a point. To be more specific, we consider
a segment of the graph s(t ) close to point 5. In this segment we select an
arbitrary point B and draw a secant through points 5 and B (Figure 33).
Next, on the same graph between points 5 and B we select an arbitrary
point C and draw a new secant 5C . Further, we select an arbitrary point
D in the segment between 5 and C and draw a new secant 5D . We may
continue this process infinitely long and, as a result, we obtain a sequence
of secants which converges to a certain straight line (line 5A in Figure 33).
This straight line is said to be tangent to the curve at point 5. The slope of
the tangent is said to be the slope of the graph at a given point.

Reader: If I understand you correctly we are now in a position to formu-
late strictly the answer to the question about the instantaneous velocity.

Author: Try to do it, then.

Reader: The instantaneous velocity of a body at a moment of time t is
the rate of change of s(t ) at the moment t . Numerically it is equal to the
tangent of the slope of the tangent line to the graph of the function s(t ) at the
moment t .

Author: Very good. But you should have mentioned that s(t ) expresses
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Figure 33: Analysing the concept of instantaneous velocity mathematically.

the distance covered by the body as a function of time.

Reader: This is true, my definition of the instantaneous velocity is tied
to the graph of s(t ). What if the function s(t ) is not defined graphically?

Author: Anyway, a graph for s(t ) always exists. The only “inconve-
nience” in your definition is that it is necessary to take into account the
scale of units on the coordinate axes. If the unit of time (on the t -axis) and
the unit of length (on the s -axis) are represented by segments of identical
length, the instantaneous velocity at time t is

tanα(t )
unit of length
unit of time

If, however, the segment representing one unit of length is n times greater
than the segment representing one unit of time, the instantaneous veloc-
ity is

1
n

tanα(t )
unit of length
unit of time

This “inconvenience”, however, has no principal significance. But it is
also possible to formulate a definition of the instantaneous velocity in a
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form free of graphic images.

Look at Figure 34 which carries Figure 33 one step further.

Figure 34: Analysing the concept of instantaneous velocity mathematically.

Figure 34 shows that the slope of the secant 5B is a ratio
∆s1

∆t1

. In other

words, this is the average velocity for the time interval from t5 to t5+∆t1.

The slope of the secant 5C is
∆s2

∆t2

that is, the average velocity for the

time interval from t5 to t5 +∆t2 (∆t2 < ∆t1). The slope of the secant

5D is
∆s3

∆t3

that is, the average velocity for the time interval from t5 to

t5 +∆t3 (∆t3 < ∆t2) , etc. Thus, a sequence of the secants converging
to the tangent line (drawn at point 5 of the graph s(t )) corresponds to a
sequence of the average velocities converging to the slope α2 of the tangent
line, that is, to the value of the instantaneous velocity at the timemoment
t5.

Reader: It comes out that the instantaneous velocity is the limit of a se-
quence of average velocities.
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Author: Precisely. The instantaneous velocity is in fact the limit of a
sequence of average velocities, provided that the time interval over which
the averaging is made tends to zero converging to the moment of time t

(viz., t5 in Figure 34).

Now let us formulate the definition in a more rigorous manner. What we
want to define is the instantaneous velocity of a body at a moment of time
t . Consider an arbitrary time interval from t to t +∆t1. The distance
covered by the body during this interval is ∆s1. The average velocity of
the body during this time interval is

vav(t ,∆t1) =
∆s1

∆t1

Next we select a shorter time interval δ t2, from t to t +∆t2, (∆t2 <

∆t1), during which a distance ∆s2 is covered. Consequently, the average
velocity over ∆t2 is

vav(t ,∆t2) =
∆s2

∆t2

We continue this process of selecting shorter and shorter time intervals
starting at the moment of time t . As a result, we obtain a sequence of the
average velocities

vav(t ,∆t1), vav(t ,∆t2), vav(t ,∆t3), . . .

The limit of this sequence for∆t → 0 is the instantaneous velocity at the
moment of time t :

v(t ) = lim
∆t→0

vav(t ,∆t ) (34)

Taking into account that

vav(t ,∆t ) =
s(t +∆t )− s(t )

∆t
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we rewrite expression (35) in the following form

v(t ) = lim
∆t→0

s(t +∆t )− s(t )
∆t

(35)

As a result, we can formulate the following definition of the instantaneous
velocity.

Definition

The instantaneous velocity at a moment of time t is the limit of a
sequence of average velocities over time intervals from t to t +∆t

for ∆t → 0.

Reader: Now I realize that instead of talking about a sufficiently small

time interval ∆t (I am referring to our talk about the ratio
∆s
∆t

at the
beginning of the dialogue), the argument should have been based on the
limit transition for ∆t → 0. In other words, the instantaneous velocity

is not
∆s
∆t

at a sufficiently small ∆t but lim
∆t→0

∆s
∆t

Author: Exactly. The definition formulated above for the instantaneous
velocity not only exposes the gist of the concept but gives a rule for its
calculation, provided that an analytical expression for s(t ) is known. Let
us make such a calculation assuming that s(t ) is given by expression (33).

Reader: We should substitute (33) for (35). This gives

v(t ) = lim
∆t→0

a(t +∆t )2

2
− at 2

2
∆t

Author: Go ahead. Remove the parentheses.
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Reader: This will give

v(t ) = lim
∆t→0

a(t 2+ 2t∆t +∆t 2− t 2)
2∆t

= lim
∆t→0

�
at +

∆t
2

�
= at

We have arrived at a familiar formula for the velocity of uniformly accel-
erated motion with zero initial velocity:

v(t ) = at (36)

Author: You are absolutely right. I must congratulate you: for the first
time in your life you have carried the so-called operation of differentia-
tion. In other words, you have determined for a given function s(t ) its
derivative, that is, the function v(t ).

Reader: Does it mean that the instantaneous velocity is a derivative?

Author: Note that a derivative exists onlywith respect to a known initial
function. If the initial function is s(t ) (path as a function of time), the
derivative is the instantaneous velocity.

Let us return now to the graph s(t ) shown in Figure 31. Our previous ar-
guments and, in particular, relation (36), allow us to transform the graph
s(t ) into a graph of the derivative, that is, the function v(t ). A com-
parison of the two graphs is given in Figure 35. I recommend that you
carefully analyze Figure 35, interpreting it as a comparison of the graph
of a function s(t ) and the graph of its rate of change.
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Figure 35: Comparing the graph of a function s(t ) and the graph of its rate of
change.
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Dialogue 9

DERIVATIVE

Author: The previous dialogue gave us an opportunity to introduce
the concept of a derivative for a specific example from physics (the in-
stantaneous velocity of a body moving non-uniformly along a straight
line). Now let us examine this concept from a purely mathematical view-
point without assigning any physical meaning to the mathematical sym-
bols used.

Figure 36: Examining concept of a derivative on an arbitrary function.
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Figure 36 shows a graph of an arbitrary function y = f (x). Let us se-
lect an arbitrary point x = x0 from the domain of the function. In the
subsequent argument this point is considered as fixed. Now consider an-
other point x from the domain of the function and introduce a notation
∆x = x − x0. The value ∆x is called the increment of the independent
variable. The increment is considered with respect to the fixed point x0.
Depending on the point x, the value of ∆x may. be larger or smaller,
positive or negative.

Now let us examine a difference between the values of the function at
points x = x0+∆x and x = x0:

∆ f (x0) = f (x0+∆x)− f (x0)

The difference∆ f (x0) is said to be the increment of a function f at a point
x0. Since x0 is fixed, ∆ f (x0) should be considered as a function of a vari-
able increment ∆x of the independent variable.

Reader: Then it is probably more logical to denote this function by
∆ f (∆x), and not by ∆ f (x0), isn’t it?

Author: Probably, you are right. However, the accepted notation is
∆ f (x0). Such a notation emphasized the fact that the increment of f (in
other words, the given function of ∆x is referred to point x0.

With the concepts of the increment introduced, it is not difficult to eval-
uate the rate of change of f close to x0.

Reader: This rate should be described by the ratio
∆ f (x0)
∆x

. For instance,
if we compare ∆ f (x0) with an increment of t at another point from the
domain of the function (say, point x = x1), we may obtain an inequality

∆ f (x1)
∆x

>
∆ f (x0)
∆x
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and therefore conclude that the rate of change of f close to point x1 is
greater than that close to x0.

Author: Please, be careful. You have not said anything about the vague
increment∆x. If∆x is too large, the inequality you have just mentioned
may lead to a wrong conclusion. I shall make myself clearer by referring
to Figure 37. As you see,

∆ f (x1)
∆x

>
∆ f (x0)
∆x

You must agree, however, that close to point x0 the function changes
much faster (the graph of the function has a steeper slope) than in the
vicinity of x1.

Figure 37: Examining concept of a derivative on an arbitrary function.

Reader: It is necessary that the value of the increment∆x be sufficiently
small. The smaller is ∆x the more accurate is the information about the
rate of change of the function close to the point under consideration.

Author: Well, we can do even better than this. We may, for example,

consider the limit of the ratio
∆ f (x0)
∆x

for ∆x→ 0 (remember the previ-
ous dialogue).
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Reader: This limit will characterize the rate of change of the function f

directly at x = x0.

Author: Exactly. Let us calculate the limit in detail:

lim
∆x→0

∆ f (x0)
∆x

= lim
∆x→0

∆ f (x + x0)− f (x0)
∆x

(37)

and examine first of all the mathematical nature of this limit.

Reader: Since point x0 is fixed, it is evidently the limit of the ratio of
two functions of ∆x for ∆x→ 0 .

Author: Let us denote these functions by F and G:

F (∆x) = f (x0+∆x)− f (x0), G(∆x) =∆x

Reader: Limit (37) is then

lim
∆x→0

F (∆x)
G(∆x)

where lim
∆x→0

F (∆x) = 0 and lim
∆x→0

G(∆x) = 0. Hence, we have here a limit
similar to that discussed at the end of Dialogue Seven, namely, a limit of
the type

∞
∞ .

Author: Right. This limit, that is, the limit of the type
∞
∞ the main

subject of this dialogue.

The primary requirement in this case is the existence of the limit. It means
that the function f should be such that

lim
∆x→0

F (∆x) = 0

The necessary condition for satisfying this equality is the continuity of f

at x = x0 But we shall discuss this problem later.
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If the limit of the type
∞
∞ (in other words, limit (37)) does exist, it is

called “the derivative of the function f at point x = x0 and usually de-
noted by f ′(x0).”

Definition

The derivative of a function f at a point x0 (denoted by f ′(x0))
is the limit of the ratio of an increment of the function f at the
point x0 (denoted by∆ f (x0)) to an increment∆x the independent
variable for ∆x→ 0:

f ′(x0) = lim
∆x→0

∆ f (x0)
∆x

or, in a more detailed notation,

f ′(x0) = lim
∆x→0

∆ f (x0)
∆x

(38)

Note that you are already familiar with the right-hand side of equation
(38) (cf. expression (35) from the previous dialogue).

Reader: Actually the derivative of the function f at point 0 is the limit
of the function

F
G
=

f (x0+∆x)− f (x0)
∆x

at ∆x = 0. The independent variable of the function
F
G

is the increment
∆x.

Author: You are quite right. However, in what follows you must use
the definition of the derivative as formulated above. This definition does
not involve the function

F
G

of ∆x since this function plays, as you un-
derstand, only an auxiliary role. We should simply bear in mind that the
phrase “the limit of the ratio of an increment∆ f (x0) to an increment∆x
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for∆x→ 0” describes the limit of a function of∆x, i.e. the function
F
G
,

which is considered at ∆x = 0.

The derivative can be also interpreted in terms of geometry.

Reader: Shall we do it by using again the tangent to the graph of a func-
tion?

Author: Yes, of course. Let us take the graph y = f (x) (Figure 38),
fixing a point x = x0. Consider an increment ∆x1 of the argument; the
corresponding increment of the function at point x0 is ∆ f1(x0). Denote
the slope of the chord AB1 by α1 it is readily apparent that

∆ f1(x0)
∆x1

= tanα1

Figure 38: Examining concept of a derivative geometrically.

Next take an increment ∆x1 (so that ∆x2 <∆x1). This increment corre-
sponds to the increment f2(x0) of the function f at point x0. Denote the
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slope of the chord AB2 by α2; it is similarly quite apparent that

∆ f2(x0)
∆x2

= tanα2

Further, take an increment ∆x3 (so that ∆x3 < ∆x2), and so on. As a
result, we obtain an infinitesimal sequence of increments of the indepen-
dent variable:

∆x1,∆x2,∆x3,∆x4, . . .∆xn, . . .

and the corresponding infinitesimal sequence of increments of the func-
tion at point x0:

∆ f1(x0),∆ f2(x0),∆ f3(x0),∆ f4(x0), . . .∆ fn(x0), . . .

This leads to a new sequence of the values of the tangent of the slopes of
the chords AB1,AB2,AB3, . . .ABn, . . .. obtained as a sequence of the ratios
of the two sequences given above

tanα1, tanα2, tanα3, tanα4, . . . tanαn, . . . (39)

Both sequences∆xn and∆ fn(x0) converge to zero. And what can be said
about the convergence of the sequence (tanαn ) or, in other words, the

sequence
∆ fn(x0)
∆xn

?

Reader: Obviously, the sequence
∆ fn(x0)
∆xn

converges to f ′(x0). In other

words, the limit of
∆ fn(x0)
∆xn

is the derivative of f at x0.

Author: What are the grounds for this conclusion?

Reader: Why, isn’t it self-evident?

Author: Let me help you. Your conclusion is based on Definition 2 of
the limit of function at a point. Don’t you think so?
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Reader: Yes, I agree. Indeed, a certain number (in this case f ′(x0 is the

limit of a function Φ(∆x) (in this case Φ =
F
G
) at ∆x = 0 if for any

sequence ∆xn convergent to zero the corresponding sequence (Φ(∆xn))
converges to this number. Sequence (39) is precisely the sequence (Φ(∆xn))
in our case.

Author: Correct. We have thus found that lim
n→∞ tanαn = f ′(x0). Now

look at Figure 38 and tell me which direction is the limit for the sequence
composed of the chords AB1, AB2, AB3, . . .ABn, . . .?

Reader: It is the direction of the tangent to the graph f (x) at point x =
x0.

Author: Correct. Denote the slope of the tangent line by α0. Thus

lim
n→∞ tanαn = tanα0

Consequently,

f ′(x0) = tanα0

We thus obtain the following geometrical interpretation of the derivative:

The derivative of a function f at a point x0 is defined by the slope
of the tangent to the graph of the function f at the point x = x0.

Note that the slope of the tangent is measured relative to the positive
direction of the abscissa axis, so that the derivative of f at point x0 in Fig-
ure 39 is positive (at this point tanα0 > 0), while at point x0 the derivative
of f is negative tanα0 < 0).

But the geometrical interpretation of the derivative must not upstage the
basic idea that
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Figure 39: Examining concept of a derivative geometrically.

The derivative of a function f at a point x0 is the rate of change of
f at this point.

In the previous dialogue we analyzed the function s(t ) describing the
dependence of the distance covered by a body during the time t . In this
case the derivative of s(t ) at a point t = t0 is the velocity of the body at the
moment of time t = t0. If, however, we take v(t ) as the initial function
(the instantaneous velocity of a body as a function of time), the derivative
at t = t0 will have the meaning of the acceleration of the body at t = t0.
Indeed, acceleration is the rate of change of the velocity of a body.

Reader: Relation (38) seems to allow a very descriptive (if somewhat
simplified) interpretation of the derivative. We may say that
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The derivative of a function y = f (x) at a point x = x0 shows how
much steeper the change in y is in comparison with the change in
x in the neighbourhood of x = x0.

Author: This interpretation of the derivative is quite justified, and it
may be useful at times.

Getting back to the geometrical interpretation of the derivative, we should
note that it immediately leads to the following rather important

Conclusions:

§ The derivative of a function f = const (the derivative of a
constant) is zero at all the points.

§ The derivative of a junction f = ax + b (where a and b are
constants) is constant at all the points and equals a.

§ The derivative of a function f = sin x is zero at the points
x = +πn (at these points the tangent to the graph of the
function is horizontal).

This “list” could, of course, be expanded.

Next I would like to attract your attention to the following: from the
viewpoint of mathematics a derivative of a function must also be consid-
ered as a certain function.

Reader: But the derivative is a limit and, consequently, a number!

Author: Let us clarify this. We have fixed a point x = x0 and obtained
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for a function f (x) at this point the number

lim
∆x→0

∆ f (x0)
∆x

For each point x (from the domain of f ) we have, in the general case, its
own number

lim
∆x→0

∆ f (x)
∆x

This gives a mapping of a certain set of numbers x onto a differ-

ent set of numbers lim
∆x→0

∆ f (x)
∆x

. The function which represents
this mapping of one numerical set onto another is said to be the
derivative and is denoted by f ′(x).

Reader: I see. So far we have considered only one value of the function
f (x), namely, its value at the point x = x0.

Author: I would like to remind you that in the previous dialogue we
analyzed v(t ) which was the derivative of s(t ). The graphs of the two
functions (i.e. the initial function s(t ) and its derivative v(t )) were even
compared in Figure 35.

Reader: Now it is clear.

Author: I would like to make two remarks with regard to f ′(x).

Note 1. A function f ′(x) is obtained only by using a function f (x).
Indeed,

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)
∆x

(40)

It is as if there is a certain operator (recall Dialogue Four) which generates
f ′(x) at the output in response to f (x) at the input. In other words, this
operator, applied to the function f (x), “generates” f ′(x). This operator
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is usually denoted by
d

d x
. This notation should be interpreted as a single

entity and not as a ratio (it reads: “d over d x”).

Consider an “image”
d

d x
1 = 2 .

The squares in this expression symbolize the familiar “windows”. “Win-
dow” 1 is to input f (x), while “window” 2 outputs f ′(x). Thus,

d
d x

f (x) = f ′(x) (41)

Definition:

The operation of obtaining f ′(x) from f (x) is said to be the differ-
entiation of f (x).

The operator
d

d x
performs this operation over f (x) and is said to be the

operator of differentiation.

Reader: But what exactly is
d

d x
doing with f (x)?

Author: It is exactly the operation prescribed by (40). We may say that
d

d x
“constructs” the ratio

(x +∆x)− f (x)
∆x

from f (x) and determines the limit of this ratio (regarded as a function
of ∆x ) at d x = 0.

Reader: In other words, the operator d x performs a certain limit tran-
sition operation, doesn’t it?
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Author: Certainly. The whole differential calculus (and with it, integral
calculus) can be formulated in terms of certain limit transitions.

Reader: Why should we introduce an operator
d

d x
if it represents noth-

ing else but the limit transition operation described by (40)?

Author: You have posed a very important question. The problem is
that if we had formulated differential calculus in terms of limits, using the
relations of type (40), all books on calculus should have been increased
in their volume several-fold and become hardly readable. The use of the
relations of type (41), instead of (40), makes it possible to avoid this.

Reader: But how can we use the relations of type (41) without implicitly
applying the relations of type (40)?

Author: What is done is this.

First, using (40), we find the result of applying the operator
d

d x
to a sum,

product, and ratio of functions, and to composite or inverse functions
provided that the result of applying the operator to the initial function
(or functions) is known. In other words, the first step is to establish the
rules for the differentiation of functions.

Second, using (40), we find out the result of applying
d

d x
to some basic

elementary functions (for instance, y = xn, y = sin x, and y = log x ).

After these two steps are completed you can practically forget about the
relations of type (40). In order to differentiate a function, it is sufficient to
express the function via basic elementary functions (the derivatives of which
were obtained earlier) and apply the rules for differentiation.

Reader: Does it mean that the relations of type (40) could be put aside
after they have been used, first, for compiling a set of differentiation rules
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and, second, for making a table of derivatives for basic elementary func-
tions?

Author: Yes, this is the procedure. Using the differentiation rules and
the table of derivatives for some basic elementary functions you are in a
position to forget about the relations of type (40) and are free to proceed
further by using the “language” of the relations of type (41). A formal
course of differential calculus could skip the analysis of limit transition
operations, that is, the relations of type (40). It is quite sufficient for a
student to learn a set of differentiation rules and a table of derivatives of
some functions.

Reader: I certainly prefer to be given the foundation.

Author: Our next dialogue will be devoted to a discussion of the pro-
gramme of actions as outlined above. At the first step of the programme,
the main rules for differentiation will be established on the basis of the
relations of (40) and, in addition, the derivatives of three functions y =
x2, y = sin x, and y = loga x will be obtained. At the second step, we shall
obtain (without reference to the relations of type (40)) the derivatives of
the following functions:

y = xn, y = x−n, y =
p

x, y = cos x, y = tan x, y = cot x, y = arcsin x, y =
arccos x, y = arctan x, y = arccot x, and y = ax .

Reader: I’ll be looking forward to the next dialogue. By the way, you
wanted to make one more remark about the derivative f ′(x).

Author: Note 2 concerns the natural domain of a derivative. Let a set
D be the domain of f (x). The question is whether D is also the domain
of f ′(x).

Reader: In any case, the domain of f ′(x) cannot be wider than the do-
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main of f (x) because in order to find f ′(x) we use f (x).

Author: A carefully balanced answer, to be sure. The domain of f ′(x)
is in the general case a subset of D . It is obtained from D as a result of

elimination of those points x for which lim
∆x→0

∆ f (x)
∆x

does not exist. By
the way, this subset is called the domain of differentiability of f (x).

Reader: What are the conditions of differentiability of f (x) at any specific
point x?

Author: Obviously, these conditions are identical to those of the exis-

tence of lim
∆x→0

∆ f (x)
∆x

at point x. We have already observed that it is the

limit of the type ∞∞ , which necessitates that both the numerator and de-
nominator tend to zero. It means that f (x)must be continuous at x. The
following theorem could be proved rigorously.

Theorem:

The continuity of a function f (x) at a point x is a necessary con-
dition for the existence of f ′(x) at x.

However, we shall not give the proof of this theorem here. The simple
qualitative arguments given above will suffice.

Reader: I wonder whether the continuity of a function is also a sufficient
condition for its differentiability.

Author: No, it is not. Consider, for example, the function y = | log x|. It
is sufficient only to look at its graph (Figure 40) to conclude that at x = 1

the tangent to the graph of the function is, strictly speaking, nonexistent
(on approaching x = 1 from the left we have one tangent, viz., the straight
line AA, while on approaching x = 1 from the right we have another
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tangent, viz., the straight line BB ). It means that y = | log x| does not
have a derivative at x = 1, although the function is continuous at this
point.

Figure 40: Examining the derivative of the function y = | log x|.

In conclusion, let us turn to one interesting property of differentiable
functions.

Let f (x) be a differentiable function, and its increment∆ f at x be related
to the increment ∆x of the argument as follows:

∆ f = f ′(x)d x +η(∆x)∆x (42)

where η(∆x)is a function of ∆x.

By dividing both parts of (42) by ∆x, we obtain

∆ f
∆x
= f ′(x)+η(∆x)

Passing to a limit in both sides of the last equation for∆x gives lim
∆x→0

η(∆x) =
0.

144



Consequently, η(∆x) is an infinitesimal (we use the same terminology as
for numerical sequences, see Dialogue Three).

Conclusion:

An increment ∆ f of at a point x of a function f (x) differentiable
at this point can be represented by two summands, namely, a sum-
mand proportional to the increment ∆x of the argument (this
summand is f ′(x)∆x ) and a summand negligible in comparison
with the first for sufficiently small∆x (this summand is η(∆x)∆x,
where η(∆x) is infinitesimal).

Reader: It seems that this is a formulation of the property of “linear-
ity on a small scale” that you mentioned in the previous dialogue (see
Figure 32).

Author: Quite true. The main part of the increment of a differentiable
function (a summand linear with respect to ∆x ) is called the differential
of the function.
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Dialogue 10

DIFFERENTIATION

Author: Now our aim is a practical realization of the programme out-
lined in the previous dialogue. This dialogue could be considered as a
drill on the calculation of derivatives. We shall divide the talk into three
parts.

1. Differentiation rules.

2. Differentiation of elementary functions y = x2, y = sin x, and y =
loga x.

3. Application of differentiation rules to different functions.

Before the start I would like to remind you that the differentiation of a
function f (x) is defined as the operation of obtaining f ′(x) from f (x).

This operation is performed by using the operator of differentiation
d

d x

d
d x

f (x) = f ′(x)
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The Differentiation Rules

Author: Rule One. We shall prove the following theorem:

Theorem

The derivative of the sum of two functions equals the sum of their
derivatives provided that they exist, i.e.

d
d x
[ f (x)+ g (x)] =

d
d x

f (x)+
d

d x
g (x) (43)

Denote f (x)+ g (x) = u(x). Then the theorem can be written as follows:
u ′(x) = f ′(x)+ g ′(x). Try to prove this theorem.

Reader: First I write

f ′(x) = lim
∆x→0

f (x +∆x)− f (x)
∆x

g ′(x) = lim
∆x→0

g (x +∆x)− g (x)
∆x

u ′(x) = lim
∆x→0

u(x +∆x)− u(x)
∆x

= lim
∆x→0

f (x +∆x)+ g (x +∆x)− f (x)− g (x)
∆x

But I don’t know what to do next.

Author: We shall repeat your writing but drop the limit signs:
∆u(x)
∆x

=
f (x +∆x)+ g (x +∆x)− f (x)− g (x)

∆x

=
f (x +∆x)− f (x)

∆x
+

g (x +∆x)− g (x)
∆x

=
∆ f (x)
∆x

+
∆g (x)
∆x
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This gives
∆u(x)
∆x

=
∆ f (x)
∆x

+
∆g (x)
∆x

Reader: I see. Next we use the well-known theorem on the limit of the
sum of functions, and the proof is complete.

Author: Quite correct. Rule Two. Let us prove the next theorem:

Theorem

A constant multiplier is factored out of the derivative, that is

d
d x
[a f (x)] = a

d
d x

f (x) (44)

The theorem is immediately proved if we use the following obvious equal-
ity

∆ [a f (x)]
∆x

= a
∆ f (x)
∆x

Rule Three. Now we shall consider the theorem on the derivative of the
product of two functions.

Theorem

The derivative of a function u(x) = f (x) g (x) is calculated by using
the following formula:

u ′(x) = f ′(x) g (x)+ f (x) g ′(x) (45)

provided that the derivatives f ′(x) and g ′(x) exist.

Formula (45) is called the Leibnitz formula. Another expression for the
same formula is:

d
d x
( f g ) = g

d
d x

f + f
d

d x
g
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Reader: Apparently, as in the proof of the first theorem, wemust express
∆u(x)
∆x

through
∆ f (x)
∆x

and
∆g (x)
∆x

. But how to do it?

Author: The simplest way is

u +∆u = ( f +∆ f )(g +∆g )

= f g + g∆ f + f ∆g +∆ f ∆g

Hence,
∆u = g∆ f + f ∆g +∆ f ∆g

consequently,

∆u(x)
∆x

= g (x)
∆ f (x)
∆x

+ f (x)
∆g (x)
∆x

+
∆ f (x)
∆x

∆g (x)

Now we find the limit for ∆x → 0. Notice that neither g (x) nor f (x)
depends on ∆x, and ∆g (x) tends to zero. As a result,

lim
∆x→0

∆u(x)
∆x

= lim
∆x→0

g (x)
∆ f (x)
∆x

+ lim
∆x→0

f (x)
∆g (x)
∆x

The theorem is thus proved.

Rule Four. The next theorem is related to the derivative of the ratio of
two functions.

Theorem

The derivative of a function u(x) =
f (x
g (x)

is:

u ′(x) =
f ′(x)g (x)− f (x)g ′(x)

g 2(x)
(46)

provided that the derivatives f ′(x) and g ′(x) exist, and that g (x) ̸=
0.
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It can be written in a different form:

d
d x

�
f
g

�
=

g
d

d x
f − f

d
d x

g

g 2

Try to prove this theorem.

Reader: I shall proceed by analogy with the preceding proof. I can write
Hence,

∆u =
f +∆ f
g +∆g

− f
g

=
g
∆ f
∆x
− f
∆g
∆x

g 2+ g∆g

This yields,

∆u
∆x
=

g
∆ f
∆x
− f
∆g
∆x

g 2+ g∆g

Passing then to the limit for ∆x → 0, I take into account that neither g

nor f depend on ∆x, and that ∆g also tends to zero. Using the known
theorems on the limit of the product and the sum of functions, we obtain

lim
∆x→0

∆u
∆x
= lim
∆x→0

�
1

g 2+ g∆g

�
lim
∆x→0

�
g
∆ f
∆x
− f
∆g
∆x

�
=

1
g 2

�
g lim
∆x→0

∆ f
∆x
− f lim

∆x→0

∆g
∆x

�
This completes the proof.

Author: Very good. Now we shall discuss the, problem of the differ-
entiation of a composite function (for composite functions, see Dialogue
Five. Let w = h(x) be a composite function, and h(x) = g [ f (x)]. This
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composite function is the composition of two functions w = g (y) and
y = f (x).

I remind you that the derivative f ′(x) indicates how faster y charges
compared to x and the derivative g ′(y) indicates how faster w changes
compared to y. Consequently, the product g ′(y) f ′(x)must indicate how
faster w changes compared to x, i.e. it equals the derivative h ′(x).

Rule Five. Thus we arrive at the differentiation rule for composite func-
tions.

Theorem

The derivative of a composite function h(x) = g [ f (x)] is:

h ′(x) = g ′(y) f ′(x) (47)

Reader: We have arrived at this rule using very simple arguments. I
wonder whether they can be regarded as a proof of the rule.

Author: No, of course not. Therefore I am going to give the proof of
the differentiation rule for composite functions.

Let the independent variable x have an increment ∆x such that x +∆x

belongs to the domain of f (x). Then the variable y will have an incre-
ment∆y = f (x+∆x)− f (x), while the variable w will have an increment
∆w = g (y+∆y)− g (y). Since the derivative g ′(y) exists. the increment
∆w can be expressed as follows

∆w = g ′(y)∆y +η∆y

where η→ 0 for∆y→ 0 (see expression (6) from the previous dialogue).
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Dividing both sides of the equation by ∆x, we obtain

∆w
∆x
= g ′(y)

∆y
∆x
+η
∆y
∆x

Next we pass to the limit for ∆x→ 0

lim
∆x→0

∆w
∆x
= g ′(y) lim

∆x→0

∆y
∆x
+ lim
∆x→0

�
η
∆y
∆x

�
Since lim

∆x→0

∆w
∆x = h ′(x) and lim

∆x→0

∆y
∆x = f ′(x), we have

h ′(x) = g ′(y) f ′(x)+ f ′(x) lim
∆x→0

η

And since ∆y→ 0 for ∆x→ 0,

lim
∆x→0

η= lim
∆y→0

η= 0

Hence we arrive at (48), namely, at the rule for the differentiation of
composite functions.

Rule Six. Finally, I shall give (without proof) the rule for the differenti-
ation of inverse functions.

Theorem

If a derivative y ′(x) of an initial monotonic function y(x) exists and
is not equal to zero, the derivative of the inverse junction x(y) is
calculated by the formula:

x ′(y) = 1
y ′(x)

(48)

Reader: It seems that this formula can be easily obtained if we make use
of the geometrical interpretation of the derivative. Really, consider the
graph of a monotonic function y(x) (Figure 41); its derivative at point
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x0 is tanα. The same curve can, obviously, be regarded as the graph of
the inverse function x(y), with y considered as the independent variable
instead of x, and x considered as the dependent variable instead of y. But
the derivative of the inverse function at point y0 is tanβ (see the figure).
Since α+β=

π

2
we have

Figure 41: Derivative of a function and its inverse.

tanβ=
1

tanα

This gives the above-cited differentiation rule for inverse functions.

Author: I must admit that although your line of reasoning is not a rig-
orous mathematical proof, it is an example of an effective application of
geometrical concepts.
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The Differentiation of Functions

y = x2, y = sin x, and y = loga x

Author: Using (40) from the previous dialogue, calculate the derivatives
of the three indicated functions. Start with y = x2. Go ahead.

Reader: I write

y +∆y = (x +∆x)2 = x2+ 2x∆x +∆x2

Hence,

∆y = 2x∆x +∆x2

Consequently,
∆y
∆x
= 2x +∆x

Further we pass to the limit for ∆x→ 0

lim
∆x→0

∆y(x)
∆x

= 2x

Therefore,

y ′(x) = 2x

Author: You have thus obtained the result of applying the operator
d

d x
to the function y = x2:

d
d x

x2 = 2x (49)

We observe that for a quadratic function y = x2 at the input of the oper-

ator
d

d x
we obtain a linear function y = 2x at the output.

Now try to differentiate the function y = sin x.
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Reader: I shall write

y +∆y = sin(x +∆x)2 = sin x cos∆x + cos x sin∆x

Hence,
∆y = sin x cos∆x + cos x sin∆x − sin x

Author: You had better use here the formula for the difference between
two sines, not the formula for the sine of the sum. Represent ∆y in the
form

∆y = sin(x +∆x)− sin x = 2sin
∆x
2

cos
�

x +
∆x
2

�
Next we obtain

∆x
∆y
=

sin ∆x
2

∆x
2

cos
�

x +
∆x
2

�
In taking the limit for∆x→ 0, recall a result obtained in Dialogue Seven:

lim
∆x→0

sin∆x
∆x

= 1

Reader: Yes, I see. Therefore,

lim
∆x→0

∆x
∆y
= lim
∆x→0

sin ∆x
2

∆x
2

lim
∆x→0

cos
�

x +
∆x
2

�
= lim
∆x→0

cos
�

x +
∆x
2

�
= cos x

Author: The operator
d

d x
applied to the function y = sin x thus gener-

ates the function y = cos x:

d
d x

sin x = cos x (50)

156



Now we have to differentiate the function y = loga x. This time, how-
ever, we should start with a discussion of the transcendental number e

(which is usually called the “base of natural or Napierian logarithms”).
The number e may be defined as the limit of a numerical sequence

e = lim
n→∞

�
1+

1
n

�n
(51)

The approximate value of e is: e = 2.7182818284590 . . . Using (51), we

can show that e is also the limit of y = (1+ x)
1
x for x tending to zero

e = lim
x→0
(1+ x)

1
x (52)

We shall omit the proof of (52).

Reader: It seems that (52) follows logically from (51).

Author: Far from it. Don’t forget that in (51) we deal with the limit
of a numerical sequence, while in (52) with the limit of a function at a
point. While n are integers, x belongs to the real line (with the exception
of x = 0). Therefore, the transition from (51) to (52) requires a good deal
of time and space.

Now turn to the differentiation of y = loga x. Follow the line adopted
above.

Start.

Reader: Obviously,

y +∆y = o ga(x +∆x)

Hence,

∆y = loga(x +∆x)− loga x
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= loga
x +∆x
∆x

and, consequently,
∆x
∆y
=

1
∆x

loga
x +∆x

x

At this point I would have to find the limit for ∆x→ 0.

Author: I shall give you a hand here. We can rewrite

∆x
∆y
= loga

� x +∆x
x

� 1
∆x

= loga

�
1+
∆x
x

� x
∆x
· 1
x

=
1
x

loga

�
1+
∆x
x

� x
∆x

Reader: I see. This gives

∆x
∆y
=

1
x

loga

�
1+
∆x
x

� x
∆x

To find the limit for ∆x→ 0, we use (52). As a result

lim
∆x→0

∆x
∆y
=

1
x

lim
∆x→0

loga

� x +∆x
x

� x
∆x

=
1
x

loga e

=
1
x
· 1
lna

(symbol ln is the standard notation for the natural logarithm).
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Author: We have thus found that the operator
d

d x
applied to the func-

tion y = loga x gives y =
1
x
· 1
lna

:

d
d x

loga x =
1
x
· 1
lna

(53)

Notice that the natural domain of the function y =
1
x
· 1
lna

in (53) ]0,∞[.
We can sum up our conclusions now.

Using relation (40) from Dialogue Nine, first, we have established the
six differentiation rules and, second, we have differentiated three func-
tions. The results are summarized in Table on the next page, and Fig-

ure 42 graphically represents the result of the action of the operator
d

d x
on the three selected functions. The left-hand column in the figure lists
the graphs of the three functions f (x), and the right-hand column shows
the graphs of the corresponding derivatives f ′(x).

In what follows we shall not use formulas of type (40) from Dialogue
Nine, that is, we shall not operate in terms of limit transitions. Using
the results obtained above, we shall find the derivatives for a number of
elementary functions without calculating the relevant limits.
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The Differentiation Rules

Rule 1: the differentiation of
the sum of functions

d
d x
( f + g ) =

d
d x

f +
d

d x
g

Rule 2: the differentiation
of the function with constant
term

d
d x
(a f ) = a

d
d x

f (a = constant)

Rule 3: the differentiation of
the product of functions

d
d x
( f g ) = f

d
d x

g + g
d

d x
f

Rule 4: the differentiation of
the ratio of functions

d
d x

f
g
=

g
d

d x
f − f

d
d x

g

g 2

Rule 5: the differentiation of
composite functions

d
d x

g [ f (x)] =
�

d
d f

g ( f )
�

d
d x

f (x)

Rule 6: the differentiation of
inverse functions

d
d y

x(y) =
1

d
d x

y(x)
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Figure 42: Graphs of some basic functions and their derivatives.
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The Application of the Differentiation Rules to

Different Functions

Author: As a first example, consider the function y = xn. Prove that
differentiation gives y = nxn−1 , that is,

d
d x

xn = nxn−1 (54)

Prove this proposition by using the method of mathematical induction.

Reader: For n = 2 formula (54) holds and yields (49). Assume now that
(54) holds for n = m. We have to prove that it is also true for n = m+1.
We write x m+1 = x m x and use the Leibnitz formula (Rule Three):

d
d x
(x m x) = x

d
d x

x m + x m d
d x

x

Since
d

d x
x = 1 and according to the assumption

d
d x

x m = mx m−1, we
obtain

d
d x

x m+1 = mx x m−1+ x m = (m+ 1)x m

The proof is completed.

Author: The next example is the function y = x−n. Differentiate this
function using Rule Four and (54).

Reader: This is simple. Applying Rule Four, we obtain

d
d x

�
1
xn

�
=
− d

d x
xn

x2n

By virtue of (54),
d

d x
x−n =−nx−(n+1) (55)
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Author: One particular result that follows from (57) is

d
d x

�
1
x

�
=− 1

x2 (56)

The next example is the function y =
p

x.

Reader: Here I shall use Rule Six (the differentiation rule for inverse
functions). The inverse function involved is x = y2. Its derivative is
given by (49). As a result,

d
d x
p

x =
1

d
d x

y2

=
1

2y
=

1
2
p

x

Thus
d

d x
p

x =
1

2
p

x (57)

Author: Now we can pass to the trigonometric functions. Consider the
function y = cos x.

Reader: I propose to use (58) and the identity sin2 x + cos2 = 1. By
differentiating both sides of the identity and using Rule One, we obtain

d
d x

sin2 x +
d

d x
cos2 x = 0

Next, by applyingRule Five (the differentiation rule for composite func-
tions) in conjunction with (49), we find

2sin x
d

d x
sin x + 2cos x

d
d x

cos x = 0

From (58),
d

d x
sin x = cos x so that

d
d x

cos x =− sin x
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Author: That is correct, although the result can be obtained in a simpler
way. Better use the identity cos x = sin

�π
2
− x
�
. Further, applying Rule

Five, we obtain

d
d x

sin
�π

2
− x
�
=
�

d
d y

sin y
�

d
d x

�π
2
− x
�

(here y =
π

2
− x )

Making use of (58), we find

d
d x

sin
�π

2
− x
�
=− d

d y
sin y =−cos y =− sin x

Using now the suggested identity, we arrive at the final result:

d
d x

sin x =−cos x (58)

Reader: The operation of differentiation thus “turns” the sine into the
cosine and, vice versa, that is, the cosine in to the sine.

Figure 43: Graphs of the sine and cosine functions.

Author: . Yes, it does. But in the last case the sign changes too, that is,
the cosine is transformed into the sine with a negative sign. If you plot the
graphs of sin x and cos x in the same system of coordinates (Figure 43),
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you will find that at points x where one of the functions reaches maxi-
mum or minimum (takes the value 1 or -1) the other function vanishes.
It is readily apparent that this fact has direct relation to your remark. If,
for example, at a certain point x the function sin x assumes its maximum
value, the tangent to its graph at the same point will, obviously, be hori-
zontal.

Consequently, the derivative of the function (i.e, cos x ) must vanish at
this point. I recommend that you carefully analyze Figure 43. In par-
ticular, follow the correspondence between the slope of the tangent to
the graph of the function drawn at different points and the sign of the
derivative at the same points.

Now turn to the next example, the function y = tan x. Difierentiate
this function using the results of the differentiation of sin x and cos x and
applying Rule Four.

Reader: This will be easy:

d
d x

�
sin x
cos x

�
=

cos x
d

d x
sin x − sin x

d
d x

cos x

cos2 x

=
cos2 x + sin2 x

cos2 x

=
1

cos2 x
Finally,

d
d x

tan x =
1

cos2 x
(59)

Author: The result for y = cot x can be obtained similarly:

d
d x

cot x =− 1
sin2 x

(60)
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In order to differentiate y = arcsin x, we use Rule Six

d
d x

arcsin x =
1

d
d y

sin y

=
1

cos y

=
1

cos (arcsin x)

Since
cos (arcsin x) =
p

1− x2

we obtain
d

d x
arcsin x =

1p
1− x2 (61)

In order to differentiate y = arccos x, it is sufficient to use (60) and the
identity

arcsin x + arccos x =
π

2
Therefore,

d
d x

arccos x =− 1p
1− x2 (62)

Using Rule Six, we differentiate the function y = arctan x

d
d x

arctan x =
1

d
d y

tan y

= cos2 y

= [cos (arctan x)]2

Since
cos (arccos x) =

1p
1+ x2
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we obtain
d

d x
arctan x =

1p
1+ x2 (63)

And, finally, the differentiation of y = arccot x is carried out by using the
identity

arctan x + arccot x =
π

2
and yields

d
d x

arccot x =− 1p
1+ x2 (64)

We have thus performed the differentiation of all elementary trigonomet-
ric and inverse trigonometric functions,

In conclusion, let us examine the exponential function y = ax . Using
(53) and Rule Six, we obtain

This gives

d
d x

ax = ax lna (65)

Result (65) is very interesting. We see that the differentiation of the ex-
ponential function y = ax again yields the exponential function ax mul-
tiplied by the constant term lna. In a particular case of a = e , we have
ln e = 1,and therefore

d
d x

e x = e x (66)

The exponential function y = e x is simply called the exponential curve.
From (66) it follows that differentiation transforms this function into it-
self.
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Dialogue 11

ANTIDERIVATIVE

Reader: Differentiation is an operation of finding a function f ′(x) for a
given function f (x). Presumably, an inverse operation is possible as well,
isn’t it?

Author: An inverse operation indeed exists. It is called integration. In-
tegration of a function f (x) is an operation by which the so-called anti-
derivative is found for the given function f (x).

Definition

An antiderivative is defined as a function F (x) whose derivative
equals an initial function f (x):

f (x) =
d

d x
F (x) (67)

Reader: Quite clear. In the preceding dialogue we were seeking a deriva-
tive f ′(x) for a given function f (x), and now we deal with a situation in
which the given function f (x) is the derivative of a yet unknown function
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F (x).

Author: Absolutely right. Take, for example, a function f (x) = 2x2−
3x. The differentiation of this function gives its derivative

f ′(x) = 4x − 3

and its integration gives the antiderivative

F (x) =
2
3

x3− 3
2

x2

Reader: But how did you find this antiderivative?

Author: This was simple. I resorted to the well-known rules of differ-
entiation but in a reverse order. In other words, I mentally searched for a
function that would yield our function f (x) = 2x2− 3x after differentia-
tion. You can easily verify that

F ′(x) = 2
3

3x2− 3
2

2x = 2x2− 3x

Reader: But then why not take as this antiderivative, for example, a

function F (x) =
2
3

x3− 3
2

x2+ 2. It will again yield F ′(x) = 2x2− 3x.

Author: You noticed a very important feature. Indeed, an antideriva-
tive found for a given function is not unique. If F (x) is an antiderivative
(for a function f ), then any function F (x) +C , where C is an arbitrary
constant, is also an antiderivative for the initial function because

d
d x
[F (x)+C ] =

d
d x

F (x)+
d

d x
C =

d
d x

F (x)

Reader: This means, therefore, that each given function f (x) corre-
sponds to a family of antiderivatives, F (x)+C doesn’t it?
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Author: Precisely. Take a graph of one of the anti-derivatives. By trans-
lating it along the y-axis, you will obtain a family of the curves of an-
tiderivatives for a given function f . For example, let f (x) = sin x, The
curves of antiderivatives for this function are plotted in Figure 44. These
curves plot functions

F (x) =−cos x +C

(the dash curve is the graph of the function f (x) = sin x ) . The constants
C were taken with an increment of 0.5. By reducing this increment, one
can obviously obtain a pattern of arbitrarily high density of F (x) curves.

Figure 44: Graphs of the anti-derivatives of the function f (x) = sin x.

The figure clearly shows that all the antiderivatives belong to one family
(in other words, correspond to the same initial function f ). This may
not always be as clear if the function is represented in an analytical form.
Take, for example, functions F1 =−cos x and F2 = 3−2cos2 x

2
. It would

be difficult to say at the first glance that these two functions are the an-
tiderivatives of one and the same function (namely, f = sin x ). However,
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since 2cos2 x
2
= 1+ cos x, we find

F2(x) = 3− 1− cos x =−cos x + 2

Reader: I guess it would be possible to find directly that F ′1(x) = F ′2(x),
wouldn’t it?

Author: Of course, it would:

d
d x

F2(x) =−2
d

d x
cos2 x

2
= 4cos

x
2

sin
x
2
· 1

2
= sin x

d
d x

F1(x) =
d

d x
(−cos x) = sin x

But the easiest way is to notice that F2− F1 =C .

We could find numerous such examples. For instance, it is not difficult
to check that the following pairs of functions belong to the same family
of antiderivatives (each pair to its own family):

(a) F1 = x2− 2x + 3, F2 = (x − 1)2

(b) F1 = arcsin x, F2 = 1− arccos x

(c) F1 = tan x sin x + cos x, F2 = (2cos x + 1)
1

cos x

Thus, in case (a) we find F2− F1 =−2; both functions are the antideriva-
tives of the function f = 2x − 2.

Please, check cases (b) and (c) yourself.

Reader: In case (b) F2 − F1 = (1− arccos x ++arcsin x) = 1− π
2

both

functions are the antiderivatives of the function f =
1

1− x2
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Case (c) ismore intricate. Some preliminarymanipulations are necessary:

F1(x) = tan x sin x + cos x =
sin2 x + cos2 x

cos x
=

1
cos x

F2(x) =
2cos x + 1

cos x
= 2+

1
cos x

Therefore, F2− F1 = 2. Both functions (F1 and F2) are the antiderivatives

of f =
sin x
cos2 x

Author: Correct. Now, taking into account the results obtained in the
previous dialogue, we can compile a table (see Table 2) which gives vari-
ous functions f (x) in the first column the corresponding derivatives f ′(x)
in the second column, and the antiderivatives F (x) +C , corresponding
to the functions f (x), in the third column. I want to stress once more:
the transformation f (x)→ f ′(x) is the operation of differentiation of the
function f (x), and the transformation f (x)→ [F (x)+C ] is the operation
of integration of the function f (x).
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A List of Derivatives and Antiderivatives for Selected Functions

Function Derivative Antiderivative
f (x) f ′(x) F(x)

1 a 0 ax +C

2 xn nxn−1 1
n+ 1

xn+1+C

3 e x e x e x +C

4
1
x

− 1
x2

ln x +C

5
p

x
1

2
p

x
2
3

x
p

x +C

6 sin x cos x −cos x +C

7 cos x − sin x sin x +C

8
1

cos2
x 2

sin x
cos3 x

−cot x +C

9
1

sin2 x
−2

cos x
sin3 x

tan x +C

10
1

1+ x2
− 2x
(1+ x2)2

arctan x +C
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Reader: Examples 8 , 9 , and 10 in Table 2 give an impression that
the transformation f (x)→ f ′(x) is more complicated than the transfor-
mation f (x)→ [F (x)+C ].

Author: This impression stems from a special selection of the functions
f (x). Thus, it is easier to differentiate the function tan x than the function

1
cos2 x

. Indeed, in the latter case we have to use the rules for differentia-
tion of a ratio of two functions or of a composite function.

In general, it should be noted that the operation of integration is substan-
tially more complicated than that of differentiation. The differentiation
of elementary functions invariably gives elementary functions. By em-
ploying the rules for differentiation discussed in the previous dialogue,
you will be able (and with no difficulties, as a rule) to differentiate practi-
cally any elementary function. But integration is quite a different propo-
sition. The rules for the integration of elementary functions comprise
numerous techniques, and wewould need several special dialogues to scan
them. But the main point is that not every elementary function has an el-
ementary function for its antiderivative. As one example, I shall mention

the antiderivatives of such elementary functions as
1

log x
or

1p
1+ x2

. As

a rule, in such cases one is forced to resort to the methods of the so-called
numerical integration.

Reader: I was very attentive andwant to pose two questions. First: What
is meant by the term elementary function?

Author: In Dialogue Nine I gave examples of the so-called fundamen-
tal elementary functions (xn, x−n, x1/n, sin x, cos x, tan x, cot x, arcsin x,

arccos x, arctan x, arccot x, ax , loga x ]. An elementary function is any func-
tion which can be formed of fundamental elementary functions by a finite
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number of the operations of addition, subtraction, multiplication, divi-
sion, involution, evolution, and taking a modulus, as well as by using the
rules for obtaining inverse and composite functions. All the functions
used in the previous dialogues are elementary (with an exception of the
Dirichlet function mentioned in Dialogue Five), and many of them are
fundamental elementary functions.

Reader: My second question concerns the rules for integration you refer
to. Could you give at least some examples?

Author: I shall quote three simplest rules.

Three Simple Rules for Integration

1 If F is an antiderivative for f . and G is an anti-derivative for
g , an antiderivative for the sum of the functions f + g is a
function F +G.

2 If F is an antiderivative for f an antiderivative for a function
a f , where a is a constant, is a function aF .

3 If F (x) is an antiderivative for f (x), and a and b are con-
stants, an antiderivative for a function f (ax+b ) is a function
1
a

F (ax + b ).

All the three rules are proved readily by using the rules for differentia-
tion (in the third rule one has to apply the rule for the differentiation of
composite functions). Indeed,

1
d

d x
(F +G) =

d
d x

F +
d

d x
G = f + g
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2
d

d x
(aF ) = a

d
d x

F = a f

3
d

d x

�
1
a

F (ax + b )
�
=

1
a

d
d x

F (ax + b ) =
1
a

d
d y

F (y)
d

d x
(ax + b )

=
1
a

f (y)a = f (y) = f (ax + b )

here: y = ax + b

Of course, the three rules cited above do not exhaust a rich collection of
integration rules available in calculus.

But here these three rules will be sufficient since our goal is quite modest:
to give the fundamental idea of an anti-derivative.

Reader: Our discussion of a derivative covered its geometrical interpre-
tation as well. Is there a geometrical interpretation of an antiderivative?

Author: Yes, there is. Let us find it (besides, we shall need it later).

Consider a function f (x). For the sake of simplicity, assume that this
function is monotonic (and even increasing). Later we shall drop the
monotonicity of a function. The most important is that the function
be continuous over the chosen interval (i.e. over the interval on which it
is defined). Figure 45 shows a shaded area (the so-called curvilinear trape-
zoid) bounded by the graph of the function f (x), the interval [a, x] of the
x-axis, and two perpendiculars erected from points a and x on the x-axis.
Let point a be fixed; as for point x (the right-hand end of the interval
[a, x]), it is not fixed and can assume values from a upward (within the
domain of definition of the function). Obviously, the area of the curvi-
linear trapezoid shaded in the figure is a function of x. We shall denote it
by S(x),

Now turn to Figure 46. Let us give an increment ∆x to the independent
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Figure 45: Examining the geometrical interpretation of the antiderivative.

variable x. The interval [a, x +∆x] corresponds to the area S(x +∆x).
Denote ∆S(x) = S(x +∆x)− S(x). The increment ∆S(x) is, obviously,
the area of the shaded curvilinear trapezoid. The figure shows that

area ADEF <∆S(x)< area ABC F

But the area ADEF is equal to f (x)∆x, and the area ABC F is equal to
f (x +∆x)∆x. Therefore,

area ADEF <∆S(x)< area ABC F

or
f (x)∆x <

∆S(x)
∆x

< f (x +∆x)

or
0<
�
∆S(x)
∆x
− f (x)
�
< [ f (x)+∆x)− f (x)] =∆ f (x)

Now we find the limiting values of these inequalities for ∆x tending to
zero. By virtue of the continuity of the function f (x) we conclude that
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Figure 46: Examining the geometrical interpretation of the antiderivative.

lim
∆x→0

∆ f (x) = 0. Consequently,

lim
∆x→0

�
∆S(x)
∆x
− f (x)
�
= 0

As the function f (x) is independent of ∆x, the last relation yields

lim
∆x→0

∆S(x)
∆x

= f (x) (68)

By the definition of derivative,

lim
∆x→0

∆S(x)
∆x

= S ′(x)

Consequently, relation (68) signifies that

f (x) = S ′(x) (69)

Thus, in terms of geometry, the antiderivative of the function f , taken
at point x , is the area of curvilinear trapezoid bounded by the graph of the
function f (x) over the interval [a, x] of the x -axis.
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Reader: Presumably, it is one of the possible anti-derivatives, isn’t it?

Author: Definitely.

Reader: But it is evident that the area S(x) also depends on the choice of
point a.

Author: Absolutely correct. By choosing different points a, we shall
have different areas of curvilinear trapezoids and, correspondingly, dif-
ferent antiderivatives. But all of them will be the antiderivatives of the
function f taken at point x. It is only important that in all cases a < x.

Reader: Then why is it that point a vanishes from the final results?

Author: Your bewilderment is understandable. Let us reformulate the
results obtained above. Let F (x) be an antiderivative of a function f (x)
taken at point x. According to (69), we can write

S(x) = F (x)+C

(here we have used the following theorem: if two functions have equal
derivatives, the functions will differ by a constant term). The constant C

is found readily since S(a) = 0. Therefore,

S(a) = F (a)+C = 0

Hence, C =−F (a). This gives

S(x) = F (x)− F (a) (70)

Conclusion

If F (x) is an antiderivative of a function f (x), then the area S(x) of
a curvilinear trapezoid bounded by the graph of the junction f (x)
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over the interval [a, x] is given by the difference F (x)− F (a).

You see now that point a is introduced explicitly.

Reader: Now everything is clear,

Author: Relation (69) (and from it, (70)) can be obtained for every
continuous function; the monotonicity of a function is not a necessary
condition. Consider a function f (x)whose graph is plotted in Figure 47.
We choose a point x and wish to prove that for any ϵ > 0 there is δ > 0

such that ����∆S(x)
∆x
− f (x)
����< ϵ (71)

for all ∆x satisfying the condition |∆x|<δ.

Figure 47: Examining the geometrical interpretation of the antiderivative.

Reader: Shall we consider point x as fixed?

Author: Yes. Increments ∆x and, correspondingly, ∆S(x), are always
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considered for a definite point x. So we take an arbitrary number ϵ > 0

(shown in the figure). As f (x) is a continuous function, there is a number
δ > 0 such that

| f (x)+∆x − f (x)|< ϵ (72)

for all ∆x satisfying the condition |∆x| < 0. This number δ is the one
we were to find.

Indeed, let us choose, for definiteness, that∆x > 0 but specify that∆x <

δ. The area of the curvilinear trapezoid shaded in Figure 47 will be de-
noted by ∆S(x) (this trapezoid is bounded by the graph of the function
f (x) over the interval [x, x+∆x]. Inequality (72) yields (see the figure):

[ f (x)− ϵ]∆x <∆S(x)< [ f (x)− ϵ]∆x

or
[ f (x)− ϵ]< ∆S(x)

∆x
< [ f (x)− ϵ]

or,

−ϵ <
�
∆S(x)
∆x
− f (x)
�
< ϵ

or, finally. ����∆S(x)
∆x
− f (x)
����< ϵ

which is what we wanted to prove.

You see that a function f needn’t be monotonic: relation (69) (and with
it, (70) is easily generalized to the case of an arbitrary continuous function
f .

Now let us turn again to Figure 44 that gives a family of graphs of the
antiderivative F (x) =−cos x +C for the function f (x) = sin x. Indicate
which of these graphs (which antiderivative) stands for S(x) in each of
the following three cases: (a) a = 0, (b) a =

π

2
, and (c) a =π.
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Reader: The question is clear. I denote the sought functions by S1(x), S2(x),
and S3(x), respectively. These functions are plotted in Figure 48.

Obviously, we can write

S1(x) = F (x)− F (0)

S2(x) = F (x)− F (
π

2
)

S3(x) = F (x)− F (π)

Author: Correct. It is important to underline that in each of the above
three equalities the function F (x) is a function chosen arbitrarily from
the family of antiderivatives of f , shown in Figure 44.

Figure 48: Particular graphs of the antiderivative for specific value of a.

Reader: It looks as if whatever the selected antiderivative of the function
f is, the difference between its values at two points depends only on the
choice of these points but not on the choice of a specific antiderivative.

Author: You have pointed out a property of principal significance. It is
so important that deserves a special dialogue.
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Dialogue 12

INTEGRAL

Author: We know already that the difference between the values of an
antiderivative at two arbitrary points depends only on the choice of these
points (and, evidently, on the type of the initial function f (x)). As these
two points we choose points a and b , that is, consider an increment of an
antiderivative, F (b )− F (a), This increment plays a very important role
among the tools of calculus; it is called the integral.

Definition

The increment of an anti-derivative F of a function f , i,e. F (b )−
F (a), is said to be the integral of f from a to b .

The notation of the integral is:∫ b
a

f (x)d x

(it reads: “integral of f of x, d x, from a to b”). The numbers a and b

are the lower and upper limits of integration. The function f is said to be
integrand, and x the integration variable.
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Consequently, if F is one of the antiderivatives of the function f , then
the definition of an integral states that∫ b

a
f (x)d x = F (b )− F (a) (73)

Formula (73) is known in the literature on mathematics as the Newton-
Leibnitz formula. Remember that F here is an arbitrary antiderivative of
the function f .

Figure 49: Examining the geometrical interpretation of the integral as area.

Reader: As far as I understand, the integral of the function f from a to
b is precisely the area of the curvilinear trapezoid bounded by the graph
of the function f (x) over the interval [a, b ]. Is that right?

Author: Absolutely. The expression∫ b
a

f (x)d x

is nothing less than the area of this geometrical figure. Figure 49 shows
three cases plotting different integrands: (a) f (x) = 2x, (b) f (x) = x2,
(c) f (x) =

p
x.
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The limits of integration are chosen identical in all the three cases: a =
1, b = 2. The corresponding areas of the curvilinear trapezoids are shaded
in the figure:

S1 =
∫ 2

1
2x d x

S2 =
∫ 2

1
x2 d x

S3 =
∫ 2

1

p
x d x

The numbers S1, S2, and S3 are different because the integrands f (x) are
different.

We thus find that the expression∫ b
a

f (x)d x

works as a functional (recall Dialogue Four). You “input” in it a function
f , and it “outputs” a number S.

By the way, you can easily find how this functional works. To achieve
this, use formula (73) and take into account that the antiderivative of the

function f (x) = 2x is F (x) = x2+C , that of f (x) = x2 is F (x) =
1
3

x3+C ,

and that of f (x) =
p

x is F (x) =
2
3

x
p

x +C .

The standard notation is: F (b )− F (a) = F (x)|ba . Therefore,∫ 2
1

2x d x = x2|21 = 4− 1= 3∫ 2
1

x2 d x =
1
3

x3|21 = 1
3
(8− 1) =

7
3∫ 2

1

p
x d x =

2
3

x
p

x|21 = 2
3
(2
p

2− 1)
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With the function 2x at the “input” of the functional
∫ 2

1
f (x)d x, we ob-

tain at the “output” the number 3; with x2 at the “input”, we obtain at

the “output” the number
7
3
; and with

p
x at the “input”, we obtain at the

“output” the number
2
3
(2
p

2− 1).

Reader: I see that we can rather easily find the areas of various curvilinear
trapezoids!

Author: More than only curvilinear trapezoids. For instance, try to
find the area of the figure shaded in Figure 50.

Figure 50: Curvilinear trapezoids as integral of a function.

Reader: This area is the difference between the areas of two curvilinear
trapezoids:

S =
∫ 1

0

p
x d x −
∫ 1

0
x2 d x

Therefore,

S =
2
3

x
p

x|10− 1
3

x3|10 = 2
3
− 1

3
=

1
3

Author: Correct. Consider another example. Find the area of the
shaded figure in Figure 51.
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Figure 51: Curvilinear trapezoid as the integral of a function.

Reader: The graphs of the functions sin x and cos x intersect at the point
x =

π

4
. Consequently, one has to use the antiderivative of the function

sin x over the interval
h
0,
π

4

i
and that of the function cos x over the in-

terval
hπ

4
,
π

2

i
. Hence,

S =
∫ π

4

0
sin x d x +
∫ π

2

π
4

cos x d x =−cos x|π40 + sin x|π2π
4

=−
�
cos
π

4
− cos0
�
+
�
sin
π

2
− sin

π

4

�
=−
�p

2
2
− 1

�
+
�

1−
p

2
2

�
= 2−p2

Author: Perfectly right. Now we shall discuss one “fine point”, return-
ing to formula (73) and rewriting it in the form∫ x

a
f (t )d t = F (x)− F (a) (74)

What has been changed by this rewriting?
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Reader: First, we have replaced the constant upper limit of integration
(the number b ) by the variable limit of integration (the variable x ). Sec-
ond, we have substituted the integration variable t for the integration
variable x.

Author: Only the first of these changes is significant. The second (the
substitution of the integration variable) is of no consequence. It is easy
to see that the formulas∫ b

a
f (x)d x
∫ b

a
f (t )d t
∫ b

a
f (y)d y
∫ b

a
f (z)d z

are equivalent since all the four give F (b )− F (a). So it does not matter
what symbol is used for the integration variable in each particular case.

Reader: Why, then, did you have to substitute the variable t for the
integration variable x in (74)?

Author: Only not to confuse the integration variable with the variable
upper limit. These are different variables and, of course, must be denoted
by different symbols. The expression∫ x

a
f (t ) d t

is called the integral with a variable upper limit. It is important that in
contrast to the expression ∫ b

a
f (t ) d t

this expression yields not a number but a function. According to (74),
this function is F (x)− F (a).

Reader: But if the
∫ b

a
2d t “black box” is a functional, then the

∫ x
a
2d t

“black box” is an operator? (I have used here our symbolic notation of
“windows” into which the function f must be input).
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Author: Correct. This is immediately clear in the following unusual
table.

An Unusual Table

f (x)
∫ 2

1
f (t ) d t
∫ x

1
f (t ) d t

2x 3 x2− 1

3x2 7 x3− 1

4x3 15 x4− 1

5x4 31 x5− 1

6x5 63 x6− 1

The second and third columns of this table show what the “output” of

the two “black boxes”,
∫ 2

1
f (t ) d t and
∫ x

1
f (t ) d t , is when the “input”

is a function f of the first column.

The integral
∫ x

a
(. . .) d t is thus indeed an operator. Note that its effect

on a function is opposite to that of the operator
d

d x
(we discussed this

operator in Dialogue Nine).

Indeed, take a function f and first apply to it the operator
∫ x

a
(. . .) d t and

then the operator
d

d x
:

d
d x

�∫ x
a
(. . .) d t
�
. This gives

d
d x

�∫ x
a
(. . .) d t
�
=

d
d x
[F (x)− F (a)] =

d
d x

F (x) = f (x)

i.e. we obtain the initial function f .
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Reader: We could apply these operators to the function in the reverse
order, couldn’t we?

Author: Yes, we could. This means that the expression∫ x
a

� d
d t

f (t )
�

d t

also gives the initial function f . At least, to within a constant term.

Reader: Can it be verified?

Author: Yes, and very easily. What function is the antiderivative for
f ′(x)?

Reader: Obviously, the function f (x)+ c .

Author: Therefore,∫ x
a

� d
d t

f (t )
�

d t =
∫ x

a
f ′(t ) d t = f (x)− f (a)

Reader: Will it be correct to say that while the operator
d

d x
performs

the operation of differentiation, the operator
∫ x

a
(. . .) d t performs the op-

eration of integration?

Author: Precisely. It might seem that the topic is exhausted, but the dis-
cussion would be incomplete without a clarification of one essential “sub-
tlety”. Throughout this dialogue we operated with something we called
“the area of a curvilinear trapezoid” and found that this is the meaning of
the integral. But what is the “area of a curvilinear trapezoid?”

Reader: But surely this is self-evident. One glance at the figures is enough.

Author: Look, for instance, at Figure 45. It shows a shaded geometrical
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figure called a curvilinear trapezoid. But it says nothing about the area of
the trapezoid.

Reader: The area is a standard concept in geometry.

Author: No objections. But do not forget that in geometry you nor-
mally apply this concept to a well-defined set of figures: triangles, trape-
zoids, etc. And you remember that difficulties arise when you try to
determine the area of a circle. By definition, the area of a circle is the
limit of the sequence of the areas of regular polygons inscribed in, or cir-
cumscribed around, the circle, for an infinitely increasing number of the
sides of the polygon.

Reader: Presumably, the area of a curvilinear trapezoid can also be de-
fined as the limit of a specific sequence of areas?

Author: Yes, this is the normal approach. Consider a curvilinear trape-
zoid bounded by the graph of a function f (x) over the interval [a, b ]
(Figure 52). Let us subdivide the interval [a, b ] into n subintervals of

identical length ∆x =
b − a

n
(in Figure 52 n = 10). The end points of

these n subintervals are denoted from left to right:

x0 = a, x1, x2, x3, . . . xn = b

On each ∆x-long interval, used as a base, we construct a rectangle of
altitude f (xk−1), where k is the subscript of the right-hand end of this
subinterval (this choice is arbitrary; the left-hand end would do equally
well). The area of this rectangle is

f (xk−1)∆x

Consider now a sum of the areas of all such rectangles (this total area is
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shaded in Figure 52):

Sn(a, b ) = f (x0)∆x + f (x1)∆x + . . .+ f (xn−1)∆x

= [ f (x0)+ f (x1)+ . . .+ f (xn−1)]
b − a

n
As the function f (x) is continuous, the ensemble of all these rectangles
for sufficiently large n (sufficiently small ∆x ) will be very close to the
curvilinear trapezoid in question, and, at any rate, the closer the larger
n is (the smaller ∆x ). It is, therefore, logical to assume the following
definition:

Figure 52: Curvilinear trapezoids as integral of a function.

Definition:

The sequence of sums (Sn(a, b )) with n tending to infinity has the
limit said to be the area of the given curvilinear trapezoid S(a, b ):

S(a, b ) = lim
n→∞ Sn(a, b ) (75)

Reader: The area S(a, b ) of a curvilinear trapezoid was shown earlier to

be the integral
∫ b

a
f (x) d x; consequently, definition (75) is a new defini-
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tion of the integral: ∫ b
a

f (x)d x = lim
n→∞ Sn(a, b ) (76)

Do you agree?

Author: Yes, certainly. And note that definition (76) is independent,
that is, it is not based on the concept of the antiderivative.

Historically, by the way, the integral appeared as (76), the fact that ex-
plains the origin of the standard notation. Indeed, if definition (76) is
rewritten in a slightly different form∫ b

a
f (x)d x = lim

n→∞

�
n∑

k=1

f (xk−1)∆x

�
(77)

you may notice a certain similarity in the form of the left- and right-hand
sides of this equality. The very symbol

∫
( the integral sign) originated

from the letter S which was often used to denote sums. The product
f (xk−1)d x evolved to f (x)d x. In the 17th century mathematicians did
not use the concept of the limit. They treated integrals as “sums of an
infinitely large number of infinitely small addends”, with f (x)d x being
these infinitesimal addends. In this sense, the area of a curvilinear trape-
zoid S was defined as the “sum of an infinitely large number of infinitely
small areas f (x)d x.”

You realize, I hope, that such concepts were obviously lacking mathemat-
ical rigorousness.

Reader: This illustrates what you termed on many occasions “subjective
impressions”.

Author: It must be clear to you by now that a strict mathematical in-
terpretation of the concept of the integral is possible only if the limit
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transition is used. I have already emphasized that the limit transition is
the foundation of calculus. If the concept of the limit is avoided (“limit
of sequence” or “limit of function”), neither the derivative nor integral
can he treated rigorously.

Reader: But the integral can be defined without resorting to (76). It
is quite sufficient to use the Newton-Leibnitz formula (73). And this
formula does not involve any limit transitions.

Author: But this formula involves the antiderivative. And the antideriva-
tive involves, in the long run, the concept of the derivative, that is, the
unavoidable limit transition.

By the way, your last remark makes me touch the aspects of introducing
the integral in the literature. Two methodically distinct approaches are
possible.

The first approach (the one used in those dialogues) assumes that the op-
eration of integration is directly introduced as an operation inverse to
differentiation. The Newton-Leibnitz formula (73) then serves, in fact,
as the definition of the integral: it is defined as an increment of the anti-
derivative.

The second approach assumes that the operation of integration is intro-
duced as an independent operation, the integral being defined as the limit
of a sequence formed of the appropriate sums (see formula (76)). This
approach corresponds to the historical progress in mathematics; indeed,
originally integral calculus was evolving independently of differential cal-
culus. The profound relationship between the two branches of mathe-
matics had been discovered only by the end of the 17th century when
the main problems of the two were understood as mutually inverse. The
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Newton-Leibnitz formula (73) was precisely a reflection of this relation-
ship: it was demonstrated that the integral is none other than an incre-
ment of the antiderivative.
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Dialogue 13

DIFFERENTIAL EQUATIONS

Author: You are, certainly, familiar with various types of equations: al-
gebraic, logarithmic, exponential, trigonometric. They have a common
feature: by solving these equations one arrives at numbers (these are the
so-called “roots” of equations). Now we are going to deal with a very dif-
ferent type of equations, namely, equations whose solutions are functions.
Among the equations subsumed into this class are the so-called differential
equations.

Consider a function f (x). We denote its first derivative (the first-order
derivative) by f ′(x), its second derivative by f ′′(x), its third derivative by
f ′′′(x), and so on.

Definition:

A differential equation is an equality relating x, f (x), f ′(x), f ′′(x),
etc. A solution of a differential equation is a junction f (x).

Reader: So far you have never mentioned the concepts of second deriva-
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tive or third derivative.

Author: True, and this is what we are going to do right now.

Reader: It is readily apparent that since a derivative f (x) is a function, it
can be differentiated, thus yielding a derivative of the derivative; I guess,
this must be the second derivative of the original function f (x).

Author: By differentiating the function f (x) n times o(of course, if this
can be done with the given function), we obtain a derivative of the nth
order (in other words, “the nth derivative”). Thus, the third derivative
of f (x) is obviously,

f ′′′(x) = d
d x

� d
d x

� d
d x

f (x)
��

Note that we are, in fact, familiar with the second derivative. As the func-
tion f (x) is the first derivative of an anti-derivative F (x)[ f (x) = F ′(x)],
the function f ′′(x) can be considered as the second derivative of the an-
tiderivative F (x):

f ′(x) = F ”(x)

Reader: We know that the derivative of f (x) (to be exact, its first deriva-
tive) is the rate of change of this function. Its magnitude is reflected in the
slope of the graph of the function f (x) at each point and is measured as
the tangent of the angle between the tangent line to the graph and the ab-
scissa axis. Could anything of this type be said about the second derivative
of f (x)?

Author: Evidently, the second derivative of f (x) characterizes the rate
at which the rate of change of the function changes with x, so that it is a finer
characteristic of the behaviour of the initial function. Look at Figure 53.
What is the difference between functions f1 and f2 at point x = x0?
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Figure 53: Examining behavior of functions and their derivatives at a point.

Reader: They have different first derivatives. I can write:

f1(x0) = f2(x0), f ′1 (x0) ̸= f ′2 (x0)

Author: To complete the picture, note that at the point in question
the derivatives differ both in magnitude (the figure clearly shows that
| f ′2 (x0| < | f ′1 (x0)| and in sign: f ′1 (x0) > 0, f ′2 (x0) < 0. We say, therefore,
that the function f1 increases (and rather rapidly) at point x = x0, while
the function f2 decreases (and comparatively slowly).

Now turn to Figure 54. We observe that not only the values of the func-
tions f1 and f2 but also the values of their first derivatives coincide at point
x = x0:

f1(x0) = f2(x0), f ′1 (x0) = f ′2 (x0)

However, the graph shows a difference in the behaviour of the functions
f1 and f2 in the vicinity of x0. Try to describe this difference.
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Figure 54: Examining behavior of functions and their derivatives at a point.

Reader: In the vicinity of x0 the graph of the function f1 is convex down-
ward, while that of the function f2 is convex upward. Besides, the curva-
ture is greater for the function f2 than for f1.

Author: These are precisely the finer features of the behaviour of f1 close
to x = x0, and they can be identified by finding the value of the second
derivative at x0 (by calculating the value of f ′′(x0)). In the case shown in
Figure 54 we have

f ′′1 (x0) ̸= f ′′2 (x0)

You will immediately see that f ′′1 (x0) > 0 and f ′′1 (x0) < 0. Indeed, the
slope of f1 at x0 steadily increases; hence, the slope of f ′1 is positive. On
the contrary, the slope of f2 at x0 steadily decreases; hence, the slope of
f ′2 is negative. It is quite obvious (see the figure) that

�� f ′′1 (x0)
��< �� f ′′2 (x0)
��
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Reader: In all likelihood, the third derivative of f (x), i.e, f ′′′(x0), is a
still finer characteristic of the behaviour of f (x) at x = x0. Am I right?

Author: Precisely. Unfortunately, it is virtually impossible to illustrate
this simply enough on a graph of the function f (x).

I think that it is enough for a discussion of derivatives of different orders;
let us move on to differential equations. Note, first of all, that an equation
of the type

f ′(x) = φ (x) (78)

where φ (x) is a given function, can be considered as the simplest particu-
lar case in the theory of differential equations; its solution is obtained by
a straightforward integration.

Two simple (and, incidentally, very frequently encountered) types of dif-
ferential equations are

f ′(x) = p f (x) (79)

′′(x) =−q f (x) (q > 0) (80)

where p and q are constants.

Equation (79) is called the differential equation of exponential growth (de-
cay), and equation (80) is the differential equation of harmonic oscilla-
tions.

Let us look at these equations more closely. We begin with the differential
equation of exponential growth (decay). What conclusions can be drawn
from the form of this equation?

Reader: The form of equation (79) shows that the rate of change of the
function f (x) coincides with the value of the function, to within a con-
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stant factor p; at each point x, In other words, the function f (x) and
its first derivative f ′(x) coincide, to within the mentioned factor, at each
point x.

Author: Please, recall Dialogue Ten and tell me what functions could
serve as solutions of this equation. What are the functions for which
the derivative coincides with the function itself? In other words, what
functions are transformed by differentiation into themselves?

Reader: This property is typical of the exponential function ax for a = e .
It is called the exponential curve and is often denoted by exp (x). We have
found in Dialogue Ten that

d
d x

exp(x) = exp(x)

Author: Correct. This means that the function f (x) = exp (p x) must
be taken as a solution of the equation f ′(x) = p f (x). Indeed,

d
d x

exp (p x) =
�

d
d y

exp (y)
�

d
d x
(p x)

= p exp (y) = p exp (p x)

For this reason equation (79) is called the differential equation of expo-
nential growth (decay). Obviously, we have growth if p > 0, and decay
if p < 0.

Reader: Apparently, any function

f (x) =C exp (p x)

where C is an arbitrary constant factor, is a solution of this equation,
because the constant C is factored out of the derivative.

Author: You are absolutely right.
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A solution of a differential equation f ′(x) = p f (x) is a family of
functions

f (x) =C exp (p x)

with an arbitrary constant factor C (usually referred to as the in-
tegration constant).

Some of functions C exp (p x) are plotted in Figure 55 (we have specified
p > 0).

Figure 55: Graphs of some of functions C exp (p x).

The formula f (x) = C exp (p x), describing the whole family of func-
tions, is called the general solution of a given differential equation. By
fixing (i.e. specifying) a value of C , one selects (singles out) a particular
solution from the general solution.

Reader: How can it be done?

Author: Oh, this is elementary. It is sufficient to prescribe a specific
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value to the function f (x) at a certain point. For example, let us prescribe

f (x0) = y0

In this case we are interested in a single curve among the curves of the
whole family (see Figure 55; the selected curve is shown by a thicker
solid line). This curve is a graph of the function C exp (p x) for which
C exp (p x0) = y0, and, therefore, C = y0 exp(−p x0). Consequently, the
particular solution we are seeking for has the form

f (x) = y0 exp [p(x − x0)] (81)

Reader: We thus obtain that in order to find a specific (particular) solu-
tion of the differential equation f ′(x) = p f (x), it is necessary to supple-
ment the equation with an additional condition: f (x0) = y0.

Author: Precisely. This condition is called the initial condition.

Let us turn now to differential equation (80):

f ′′(x) =−q f (x) (q > 0)

Reader: In this case the value of the function f (x) coincides at each point
not with the rate of change of the function but with the rate of change of
its rate of change, with the sign reversed.

Author: In other words, the function f (x) is equal, to within a constant
factor, to its second derivative f ′′(x). Recall what functions have this
property.

Reader: I guess that the solutions of equation (80) are functions sin x or
cos x.

Author: To be precise: sin (pq x) or cos (pq x). Indeed,

d
d x

� d
d x

sin(
p

q x)
�
=
p

q
d

d x
cos(
p

q x) =−q sin(
p

q x)
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or

d
d x

� d
d x

cos(
p

q x)
�
=−pq

d
d x

sin(
p

q x) =−q cos(
p

q x)

This is why the equation in question is called the differential equation of
harmonic oscillations.

It is easily seen that the general solution of equation (80) can be written
in the form

f (x) =C1 sin(
p

q x)+C2 cos(
p

q x) (82)

where C1 and C2 are arbitrary constants (integration constants). Indeed,

f ′(x) =pq C1 cos(
p

q x)+−pq C2 sin(
p

q x)

f ′′(x) =−[q C1 sin(
p

q x)+ C2 sin(
p

q x)]

=−q f (x)

Reader: But this gives us two integration constants instead of one, as in
the preceding case.

Author: Yes, and the reason is that differential equation (80) contains
the second derivative. Hence, it is necessary to integrate twice in order
to obtain the function f (x). And we know that each integration leads
to a family of anti-derivatives, that is, generates an integration constant.
In the general case, the number of integration constants in the general
solution of a specific differential equation equals the maximum order of
derivative in this equation. The general solution of equation (79) has a
single integration constant because it contains only the first derivative of
the sought function and does not involve derivatives of higher order. The
general solution of equation (80) has two integration constants because
the equation contains the second-order derivative of the sought function
and no derivatives of higher order.

207



Reader: And how do we write the initial condition for equation (80)?

Author: One has to prescribe at a point x = x0 a value not only to
the sought function but also to its first derivative. In this case the initial
conditions are written as follows:

f (x0) = f0 f ′(x0) = f ′0 (83)

Reader: And if a differential equation involved the third derivative, and
the general solution contained, as a result, not two but three integration
constants?

Author: In this case the initial conditions would prescribe values to the
required function, its first derivative, and its second derivative at a point
x = x0:

f (x0) = f0 f ′(x0) = f ′0 f ′′(x0) = f ′′0

But let us return to the general solution of equation (80). It is usually
written not in form (82) but in a somewhat different form. Namely,
either

f (x) =A sin(
p

q x +α) (84)

or
f (x) =A cos(

p
q x +β) (84a)

Formula (86) is obtained from (84) if we set α=β+
π

2
.

In what follows we shall use notation (84). In this form the role of the
integration constants C1 and C2 in general solution (82) is played by con-
stants A and α. Formula (82) is easily transformed by trigonometry to
(84), by using the formula for the sine of a sum. Indeed,

Asin(
p

q x +α) =Asin(
p

q x)cosα+Acos(
p

q x) sinα
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so that
C1 =Acosα, C2 =Asinα

Now try to obtain from general solution (84) a particular solution satis-
fying initial conditions (83).

Reader: We shall obtain it by expressing the constants A and a via f0 and
f ′0 the first derivative of f (x):

Equality (84) yields an expression for

f ′(x) =A
p

q cos(
p

q x +α)

In this case initial conditions (83) take the form

sin(
p

q x0+α) =
f0

A

cos(
p

q x0+α) =
f ′0

Apq

(85)

System (85) must be solved for the unknown constants A and α. Squaring
both equations of the system and summing them up, we obtain (taking
into account that sin2 ν + cos2 ν = 1)�

f ′0
A

�2
+
�

f ′0
Apq

�2
= 1

This yields

A=

√√√
f 2
0 +
�

f 2
0 ′pq

�
(86)

Dividing the first equation of system (85) by the second, we obtain

tan(
p

q x0+α) =
f0

f0′
p

q (87)

From (87) we can find constant α.
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The constants A and α, expressed in terms of f0 and f0′ must be sub-
stituted into (84); the result is the particular solution satisfying initial
conditions (83).

Author: Assume that initial conditions (83) are

f (0) = 0, f ′(0) = f ′0 (88)

Reader: In this case formulas (86) and (87) yield

A=
f0′pq

(89)

If tanα= 0, then α=πn, where n = 0,±1,±2, And since, first,

sin(
p

q x +α) = sin(
p

q x)cosα+ cos(
p

q x) sinα

and, second, in this particular case sinα= 0 and cosα=±1, we conclude
that either

f (x) =
f0′pq

sin(
p

q x)

or
f (x) =− f0′pq

sin(
p

q x)

Author: The second variant is unacceptable because it violates the con-
dition f ′(0) = f ′0 .

Reader: Hence, the required particular solution is

f (x) =
f0′pq

sin(
p

q x) (90)

Author: Very good. Now consider the initial conditions in the form

f (0) = f0, f ′(0) = 0 (91)
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Reader: Formula (86) yields A= f0. However, formula (87) is no help
in this case since f ′0 = 0.

Author: I advise you to use the relation derived earlier, namely, the
second equation in system (85). In this case it takes the form cosα= 0.

Reader: We obtain then

A= f0, cosα= 0 (92)

This yields α=
π

2
+πn, and therefore

f (x) = f0 sin
�p

q x +
π

2
+πn
�
= f0 cos (

p
q x +πn)

Author: It can he readily found that the particular solution satisfying
initial conditions (92) is of the form

f (x) = f0 cos (
p

q x +πn) (93)

Pay attention to the periodicity of the functions representing solutions
(general or particular) of differential equation (80).

Reader: Relation (90) or (94) clearly shows that the period of these func-
tions is

x1 =
2πpq

(94)

Author: Right. Now I want to dwell on one feature of principal signifi-
cance. The point is that the differential equations discussed above describe
quite definite processes, and this is especially clear if we use time as the inde-
pendent variable. Denoting this variable by t , we can rewrite equations
(79) and (80) in the form

f ′(t )− p f (t ) = 0 (79a)
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f ′′(t )+ q f (t ) = 0 (q > 0) (80a)

Equation (79a) describes a process of exponential growth (p > 0) or ex-
ponential decay (p < 0). Equation (80a) describes a process of harmonic

oscillations with the period T
2πpq

.

Reader: Would it be correct to say that any differential equation de-
scribes a process? I assume that f is a function of time.

Author: Quite true. This is a point worthy of maximum attention. In
a sense, it reflects the principal essence of differential equations. Note: a
differential equation relates the values assumed by a function and some
of its derivatives at an arbitrary moment of time (at an arbitrary point in
space), so that a solution of the equation gives us a picture of the process
evolving in time (in space). In other words, a differential equation em-
bodies a local relation (a relation at a point x, at a moment t ) between
f , f ′, f ′′, . . ., thus yielding a certain picture as a whole, a certain process, an
evolution. This is the principal idea behind the differential equations.

Reader: And what is the role played by initial conditions?

Author: The role of initial (and boundary) conditions is obvious. A
differentia I equation per se can only describe the character of evolution,
of a given process. But a specific pattern of evolution in a process is de-
termined by concrete initial conditions (for example, the coordinates and
velocity of a body at the initial moment of time).

Reader: Can the character of the process “hidden” in a differential equa-
tion be deduced simply from the form of this equation?

Author: An experienced mathematician is normally able to do it. One
glance at equation (79a) is sufficient to conclude that the process is an
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exponential growth (decay).

Equation (80a) is a clear message that the process involves oscillations (to
be precise, harmonic oscillations). Assume, for example, that differential
equation has the following form

f ′′(t )− p f ′(t )+ q f (t ) = 0 (p < 0, q > 0) (95)

(compare it to equations (79a) and (80a)). We shall not analyze this equa-
tion in detail. We only note that what it “hides” is not a harmonic os-
cillatory process but a process of damped oscillations. It can be shown
(although we shall not do it) that in this process the amplitude of oscilla-
tions will steadily diminish with time by the exponential law exp (pt ).

Reader: Does it mean that equation (95) describes a process which com-
bines an oscillatory process and a process of exponential decay?

Author: Precisely. It describes an oscillatory process, but the amplitude
of these oscillations decays with time.
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Dialogue 14

MORE ON DIFFERENTIAL
EQUATIONS

Author: All the preceding dialogues (with an exception of Dialogue
Eight) left out, or very nearly so, any possible physical content of the
mathematical concepts and symbols we were discussing. I wish to use this
dialogue, which concludes the book, to “build a bridge” between higher
mathematics and physics, with differential equations as a “building ma-
terial”. We shall analyze differential equations of exponential decay and
those of harmonic oscillations filling them with a specific physical con-
tent.

Reader: In other words, you suggest discussing specific physical processes?

Author: Yes, I do. I emphasize that differential equations play an out-
standing role in physics. First, any more or less real physical process can-
not, as a rule, be described without resorting to differential equations.
Second, a typical situation is that in which different physical processes are
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described by one and the same differential equation. It is said then that the
physical processes are similar. Similar physical processes lead to identical
mathematical problems. Once we know a solution of a specific differen-
tial equation, we actually have the result for all similar physical processes
described by this particular differential equation.

Let us turn to the following specific problem in physics. Imagine an en-
semble of decaying radioactive atomic nuclei. Denote by N (t ) a function
describing the number of atomic nuclei per unit volume which have not
decayed by the moment of time t . We know that at the moment t = t0

the number of non-decayed nuclei (per unit volume) is N0, and that the
rate of decrease in the number of non-decayed nuclei at the moment t is
proportional to the number of non-decayed nuclei at the given moment:

−N ′(t ) = 1
τ

N (t ) (96)

Here
1
τ

is a proportionality factor; evidently, τ has the dimension of
time; its physical meaning will be clarified later.

We are to find the function N (t ).

This is our specific physical problem. Let us look at it from the mathe-
matical viewpoint.

Reader: Equation (96) is a differential equation of type (80a) from the

preceding dialogue, in whichp = − 1
τ
. The initial condition in this case

is N (t0) =N0. By using result (81) of the preceding dialogue, we immedi-
ately obtain

N (t ) =N0 exp
�
− 1
τ
(t − t0)
�

(97)

Author: Correct. The formula that you have written, i.e, (97), describes
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Figure 56: Graphically depicting radioactive decay of nuclei.

the law of radioactive decay; we find that this decay is exponential. The
number of non-decayed nuclei decreases with time exponentially (Fig-
ure 56).

By taking the logarithm of equality (97) (using natural logarithms), we
obtain

lnN (t ) = lnN0− t − t0

τ

This yields

τ =
t − t0

ln
N0

N (t )

The constant τ is, therefore, such a time interval during which the num-
ber of non-decayed nuclei diminishes by a factor of e (i.e. approximately

by a factor of 2.7); indeed, in this case ln
N0

N (t )
= ln e = 1.

Let us turn now to a different physical problem. Let a light wave with
intensity I0 be incident perpendicularly at a boundary (the so-called inter-
face) of a medium; the wave propagates through the medium with gradu-
ally attenuating intensity. We choose the x-axis as the wave propagation
direction and place the origin (point x = 0) on the interface (Figure 57).
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Figure 57: A light wave propagating through a interface medium.

Wewant to find I (x), that is, the light intensity as a function of the depth
of penetration into the medium (in other words, on the path traversed
within this medium). We also know that the rate of attenuation at a
given point x (i.e. the quantity −I ′(x) is proportional to the intensity at
this point:

−I ′(x) = η I (x) (98)

Here η is the proportionality factor whose dimension is, obviously, that
of inverse length; its physical meaning will be clear somewhat later.

This, therefore, is the formulation of the physical problem.

Reader: It is readily apparent that, as in the preceding case, we deal here
with a differential equation of exponential decay. The initial condition is
I (0) = I0. By using result (81) of the preceding dialogue, we obtain

I (x) = I0 exp(−ηx) (99)

Author: Formula (99) describes Bouguer’s law, well known in optics:
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as light penetrates the matter, its intensity decays exponentially (see Fig-
ure 57). We readily see that the constant η is a quantity inverse to the
length along which the light intensity diminishes by a factor of e . The
constant η is called the linear absorption coefficient.

Note that results (97) and (99) describe two different physical problems
from different fields of physics. We describe here two different physical
processes. Nevertheless, the mathematical nature of these physical pro-
cesses is the same: both are described by the same differential equation.

Let us consider a different physical problem. Assume that a ball with
mass m, attached to fixed walls by elastic springs, vibrates along the x-
axis (Figure 58). The origin x = 0 is chosen in the position in which the
ball is at equilibrium, that is, half-way between the walls. The motion of
the ball is governed by Newton’s second law:

ma = F (100)

where a is acceleration, and F is the restoring force. We assume that

F =−k x (101)

where k is the elasticity factor characterizing the elasticity of the spring.
We shall consider the displacement of the ball from the equilibrium posi-
tion (i.e. the quantity x ) as a function of time, x(t ). This is the function
we want to find.

We remind the reader that acceleration is the second derivative of a func-
tion which describes path as a function of time: a = x ′′(t ). Consequently,
we can rewrite (100), taking into account (101) in the form

mx ′′(t )+ k x(t ) = 0
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Figure 58: A mass attached between two elastic springs.

or

x ′′(t )+ k
m

x (t ) = 0 (102)

Reader: This is a differential equation of type (80a) of the preceding

dialogue provided that q =
k
m
.

Author: This means that the general solution must be of the form

x(t ) =Asin

√√√ k
m

t +α

 (103)

We thus find that the ball in the problem vibrates harmonically around its
equilibrium position x = 0. The parameter A is, obviously, the amplitude
of vibrations. The parameter α is called the initial phase of vibrations.
Recalling relation (94) of the previous dialogue, we conclude that the
period of vibrations is

T = 2π
È

m
k

(104)

Instead of the period T , the so-called angular frequency ω is often used:

ω =
2π
T

. Formula (104) yields

ω =

√√√ k
m

(105)
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By using (106), we rewrite general solution (103) in the form

x(t ) =Asin(ωt +α) (106)

Reader: And what about the initial conditions in this case?

Author: Assume that the ball is at rest at t < 0. By setting specific initial
conditions at t = 0, we choose a method by which vibrations are initiated
at the moment t = 0. For example, let the initial conditions be given by
relations (88) of the previous dialogue:

x(0) = 0, x ′(0) = v0 (107)

This means that at the moment t = 0 the ball which is at the equilibrium
position (x = 0) starts moving at a velocity v0. According to relation (90)
of the previous dialogue, we obtain the following particular solution:

x(t ) =
v0

ω
sin(ωt ) (108)

Now try to discern the physical meaning of the initial conditions of type
(92) of the previous dialogue.

Reader: These conditions have the form:

x(0) = x0, x ′(0) = 0 (109)

This means that at the initial moment t = 0 the ball was displaced from
the equilibrium position by x = x0 and let go. The corresponding partic-
ular solution, following from relation (94) of the previous dialogue, takes
the form

x(t ) = x0 cos (ωt ) (110)

Author: Author: In the first case we thus initiate vibrations by impart-
ing the initial velocity v0 to the ball at the equilibrium position (in this

221



case the amplitude A of vibrations is
v0

ω
, and the initial phase α, can be

set equal to zero, in 0) accordance with (110)). In the second case the vi-
brations are initiated by displacing the ball from the equilibrium position
by x0 and then letting it go (in this case A= x0, and the initial phase a can
be set equal to

π

2
, in accordance with (110).

Reader: Could we consider a case in which at t = 0 the ball is displaced
from the equilibrium position by x1 and simultaneously given an initial
velocity v1?

Author: Of course, this is one of the possible situations. Figure 59 shows
four vibration modes (four particular solutions) corresponding to four
different initial conditions

(four different methods of starting the vibrations of the ball):

1 x(0) = 0, x ′(0) = v0; in this case A=
v0

ω
, α= 0.

2 x(0) = x0, x ′(0) = 0; in this case A= x0, α=
π

2
.

3 x(0) = x1, x ′(0) = v1; (the initial velocity imparted to the ball has
the same direction as the initial displacement); in this case A =
A1, α= α1 (see the figure).

4 x(0) = x1, x ′(0) = −v1; (the initial velocity imparted to the ball
has the direction opposite to that of the initial displacement); in
this case A=A1, α=π−α1 (see the figure).

As follows from relation (86) of the preceding dialogue,

A1 =
s

x2
1 +
�v1

ω

�2
(111)
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and according to (106),

α1 = arctan
�

x1ω

v1

�
(112)

Reader: I notice that by fixing specific initial conditions (in other words,
by initiating the vibrations of the ball by a specific method), we predeter-
mine the amplitude and initial phase of the vibrations.

Figure 59: Four vibration modes (four particular solutions) corresponding to
four different initial conditions.

Author: Precisely. This is clearly shown in Figure 59. By the way, the
same figure shows that the period of vibrations (their frequency) remains
constant regardless of the initial conditions.

To summarize, we note that a harmonic oscillation is characterized by
three parameters (see (106)) the amplitude A, initial phase α, and fre-
quency ω, The first two parameters are determined by the choice of ini-
tial conditions, and the last parameter is independent of them.

The above-described process of vibrations is one of the mechanical pro-
cesses. Let us turn now to a process of an essentially different physical
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nature. We shall analyze the motion of electric charges in a circuit con-
sisting of a capacitor with capacitance C and a coil with inductance L

(Figure 60).

Figure 60: Analysing electrical oscillations in a circuit with a capacitor and an
inductor.

Let the capacitor plates have a charge Q(t ) at a moment t ; correspond-

ingly, the potential difference between the capacitor plates will be
Q(t )

C
.

If the current in the circuit at the moment t is i(t ), then the potential dif-
ference generated in the coil is−Li ′(t ). We know that it must be balanced
out by the potential difference across the capacitor plates:

−Li ′(t ) =
Q(t )

C
(113)

Let us differentiate relation (114). This gives

−Li ′′(t ) =
Q ′(t )

C
(114)

Now we shall take into account that

Q ′(t ) = i(t )

(current intensity, or simply current, is the rate of change of charge). As
a result, equation (114) can be rewritten in the form:

−Li ′′(t ) = 1
C

i(t )
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or

i ′′(t )+ 1
LC

i(t ) = 0 (115)

The resultant differential equation is quite familiar, isn’t it?

Reader: This is a differential equation of type (80a) of the preceding

dialogue provided that q =
1

LC
. We con- clude, therefore, that the process

in the circuit is harmonic.

Author: Note, however, that the process is not that of mechanical vi-
brations of a ball attached to springs but the process of electromagnetic
oscillations in an electric circuit.

Reader: As q =
1

LC
and using relation (94) of the previous dialogue,

we obtain a relation for the period of electromagnetic oscillations in the
circuit:

T = 2π
p

LC (116)

The general solution of equation (115) is then

i(t ) =Asin
�

1p
LC

t +α
�

(117)

Author: Absolutely correct. The two physical processes, namely, the
mechanical vibrations of a ball attached to springs and the electromagnetic
oscillations in a circuit, are mathematically similar. They are described
by the same differential equation. Otherwise you couldn’t write, nearly
automatically as you did, the period of oscillations (formula (116) and
the general solution (formula 117).

In our dialogues we have discussed only two (and rather simple) types
of differential equations: those of exponential growth (decay) and of har-
monic oscillations. And we have illustrated them with a number of phys-
ical processes of very different kind.
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Reader: I guess that the list of different differential equations, and cer-
tainly the list of physical processes described by these equations, could be
substantially enlarged.

Author: No doubt. This concludes our discussion of differential equa-
tions. I want to note in conclusion that differential equations are widely
applied not only in physics but in chemistry, biology, cybernetics, soci-
ology, and other fields of science as well.
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PROBLEMS

Problem 1 Find a formula for the nth term from the first several terms
of the sequence:

(a)
1
11

,
1
21

,
1
31

,
1
41

,
1
51

, . . .

(b) 1,
1
4

,
p

3
1
16

,
p

5,
1
36

,
p

7 . . .

(c) 1,−
�

1
2

�2
,
�

1
2 · 3
�3

, −
�

1
2 · 3 · 4
�4

, . . .

(d)
3
4

, −
�

6
7

�2
,
�

9
10

�3
, −
�

12
13

�4
,
�

15
16

�5
, . . .

Answer 1

(a) yn =
1

10n+ 1

(b) yn =
p

n
2
[1− (−1)n]+

1
2n2
[1+(−1)n]

(c) yn =
(−1)n+1

(n!)n

(d) yn = (−1)n+1
�

3n
3n+ 1

�n
Problem 2 Find the least term of each sequence:

(a) yn = n2− 5n+ 1
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(b) yn = n+
100
n

(c) yn = n+ 5sin
πn
2

Answer 2

(a) y2 = y3 =−5

(b) y10 = 20

(c) y3 =−2

Problem 3 Find the largest term of each sequence:

(a) yn =
90n

n2+ 9

(b) yn =
10n

n!

Answer 3

(a) y3 = 15

(b) y9 = y10 =
109

9!

Problem 4 Find which of the sequences given below are monotonic:

(a) yn = 3n2− n

(b) yn = n2− 3n

(c) yn = 7n− n2

(d) yn = log
�

3
4

�n
Answer 4 (a) Increasing, (b) nondecreasing; (c) non-monotonic; (d) de-

creasing.
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Problem 5 There are two sequences (yn ) and ( zn ) such that 0 ⩽ yn ⩽ zn

for all n. The sequence ( zn ) is convergent and its limit is zero.
Prove that the sequence (yn ) is convergent to zero.

Problem 6 Prove that

(a) lim
n→∞

n
2n
= 0;

(b) lim
n→∞(
p

n+ 1−pn− 1) = 0

Hint. In problem (a) transform

2n = (1+ 1)n =
h
1+ n+ + . . .
i
>
�

n+
n(n− 1)

2

�
>

n2

2

and use the theorem proved in problem 5.

In problem (b) transform

p
n+ 1−pn− 1=

2p
n+ 1+

p
n− 1

<
2p

n− 1

and use the theorem proved above.

Problem 7 Find the limits of the following sequencers:

(a) yn =
2n+

1
n
+ 3�p

n+
p

3
�2

(b) yn =
5n2
�

1+
1
n

�n
1
n
− 3n2

(c) yn =

�
1+

1
n

�n
+
�

1+
1

2n

�2n

2+
1
n
+

1p
n
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(d) yn =
2n + n

2n +
p

n
(
p

n+ 1−pn− 1)

Answer 7 (a) 2; (b) −5
3

e ; (c) e ; (d) 0.

Problem 8 Find the function f (x) if 3 f (x − 1)− f
�

1−x
x

�
= 2x.

Answer 8 f (x) =
3
4
(x + 1)+

1
4(x + 1)

.

Problem 9 Find analytical relations and the natural domains of the fol-
lowing functions:

(a) f (1− x);

(b) f
�

1
x

�
for f (x) = log(x2− 1),

Answer 9 (a) log(x2− 2x); x < 0, x > 2; (b) log
1− x2

x2
; 0< |x|< 1.

Problem 10 Analyze the continuity and differentiability of the function
f (x) = arcsin(s i nx) within the limits of the natural domain
of the function.

Answer 10 The natural domain of the function f (x) is ]−∞,∞[; the
function is continuous everywhere; it is differentiable at all
points with the exception of points

x =±π
2

, ±3π
2

, ±5π
2

, . . .

Problem 11 Prove that the function f (x) = 3
p

x2 has no derivative at point
x = 0.
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Problem 12 Prove that 3x6− 5x3− 30x < 40 if |x|⩽ 2.

Hint. Find first that the maximum value of the polynomial
f (x) = 3x6 − 5x3 − 30x: over the interval [−2, 2] is below
40. To do this, find the values of f (x) at the end points of the
interval [−2, 2] and at the points at which the derivative of
f (x) is zero (if these points belong to the indicated interval).

Problem 13 Find themaximum andminimumvalues of the function f (x) =
x − 2 ln x over the interval [1, e].

Answer 13 The minimum value is f (2) = 2− 2 ln2, the maximum value
is f (1) = 1.

Problem 14 Find a point x0 at which the tangent to the graph of the func-
tion f (x) = x2+ 1 is parallel to the straight line y = 3x.

Answer 14 x0 =
3
2
.

Problem 15 Write the equation of the tangent to the graph of the function
f (x) = x2− 4x + 5 at point x0 = 1.

Answer 15 y =−2x + 4.

Note. The equation of the tangent to the graph of the func-
tion f (x) at x = x0 is: y = f (x0)+ f ′(x0)(x−x0), where f ′(x0)
is the value of the derivative of the function at x0.

Problem 16 Find the derivatives of the following functions:

(a) f (x) = n
p

x;

(b) f (x) =
1

x2+ 3
;

(c) f (x) =
p

x2+ 5;
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(d) f (x) = tan2 x;

(e) f (x) = sin4 5x;

(f) f (x) = arcsin
p

x;

(g) f (x) = ln
x2− 1

10
;

(h) f (x) = ln
1+ xp
1+ x2

.

Answer 16

(a)
1

n n
p

xn−1
;

(b) − 2x
(x2+ 3)2

;

(c)
xp

x2+ 5
;

(d)
2sin x
cos2 x

;

(e) 20sin2 5x cos5x;

(f)
1

2
p

x(1− x)
;

(g)
2x

x2− 1
;

(h)
1− x

(1+ x)(1+ x2)
.

Problem 17 Verify that the functions

F1 = cos2 x + cos4 x

F2 = cos2x − 1
4

sin2 2x

F3 = cos4 x + 3cos2 x + sin2 x

are the antiderivatives of one and the same function. Find
F2− F1 and F3− F1.
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Answer 17 F2− F1 = 1; F3− F1 = 2.

Problem 18 Find the area of the curvilinear trapezoid described by the
graph of the function f (x) = x2+1 over the inter- val [−3,3].

Answer 18 24.

Problem 19 Find the difference in areas of the curvilinear trapezoids de-
fined by the graphs of the functions f1 = e x and f2 = e−x over
the interval [0,1].

Answer 19 e +
1
e
.

Problem 20 Find the value of a minimizing the area of the curvilinear
trapezoid defined by the graph of the function f (x) = (x −
a)2+ a2 over the interval [0,1].

Answer 20 a =
1
4
.

Problem 21 Find the area of a figure bounded by the graph of the function
f (x) = x2− 2x + 2 and two tangents to this graph, drawn at
points x1 = 0 and x2 = 2.

Answer 21
2
3
.

Problem 22 Find the numbers obtained by evaluating the integral
∫ 2

1
f (x)d x

of the following functions:

(a) f (x) =
1
x
;

(b) f (x) =
1
x2
;

(c) f (x) =
1
x3
;
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(d) f (x) =
1
x4
;

Answer 22 (a) ln2; (b)
1
2
; (c)

3
8
; (d)

17
24

.

Problem 23 Find the functions obtained by evaluating the integral
∫ x

1
f (t )d t

of the following functions:

(a) f (t ) =
1
t
;

(b) f (t ) =
1
t 2
;

(c) f (t ) =
1
t 3
;

(d) f (t ) =
1
t 4
;

Answer 23 (a) ln x; (b) − 1
x
+ 1; (c) − 2

x2
+

1
2
; (d) − 1

3x3
+

1
3
.

Problem 24 Verify that f (x) = (x + 1)e x satisfies the equation f ′(x) −
f (x) = e x .

Problem 25 Find a particular solution of the equation f ′(x) = f (x) such
that f (x) = 2 for x = 2.

Answer 25 f (x) = 2exp (x − 2).

Problem 26 Consider the equation f ′(x) = f (x). Find a particular solu-
tion for which the tangent to the graph at point x0 intersects
the ordinate axis at point y1.

Answer 26 f (x) =
y1

1− x0

exp(x − x0).

Hint. Make use of the equation of tangent (see Note to prob-
lem 15).
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Problem 27 Consider the graphs of different particular solutions of the
equation f ′(x) = f (x). Verify that at the same point x0 the
tangents to all these graphs intersect the abscissa axis at a com-
mon point x = x0− 1.

Problem 28 Find the nth derivative of the following functions:

(a) f (x) = sin x;

(b) f (x) = cos x.

Answer 28

(a) f (x) = sin
�

x +
nπ
2

�
;

(b) f (x) = cos
�

x +
nπ
2

�
.

Problem 29 Find the value of the fourth derivative of the function f (x) =
ln x for x = 2.

Answer 29 −3
8
.

Problem 30 Find the area of the curvilinear trapezoid defined by the graph
of the third derivative of the function f (x) = x5−2x2+ x−1

over the interval [0,1].

Answer 30 20.
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MIR PUBLISHERS MOSCOW

e book introduces basic concepts of calculus for high school 
students. e book is presented as a relatively free-flowing 
dialogue between the AUTHOR and the READER. From one 
discussion to another the AUTHOR will lead the inquisitive and 
receptive READER to different notions, ideas, and theorems of 
calculus, emphasizing especially complicated or delicate aspects, 
stressing the inner logic of proofs, and attracting the reader's 
attention to special points. I hope that this form of presentation 
will help a reader of the book in learning new definitions such 
as those of derivative, antiderivative, definite. integral, 
differential equation, etc. e author also expects that it will 
lead the reader to better understanding of such concepts as 
numerical sequence, limit of sequence, and function.
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