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INTRODUCTION

This volume, as originally planned, was intended to conclude the
whole work with a review, chiefly in differential equations, of such
standard theory of the caleculus as could be exhibited without a
detailed study of analysis. I soon found, however, that analytical
requirements kept penetrating and could not be kept out without
loss of intellectual honesty. The volume is therefore much longer
than I intended, and includes, substantially, a whole freshman’s
course of analysis, and more in addition. Nevertheless, my aim
remained to keep the exposition as simple as possible within clearly
stated limitations.

The theme of the volume is the differential equation and its
solution; and it is hoped that the treatment shows how the processes
of solution demand extended definitions of functions (for example,
series and integrals) together with a technique (analysis) for
studying and controlling their behaviour. The aim is not so much
to elaborate the detailed properties of such fresh functions, as to
instil methods which the student can apply or, better, adapt
himself when faced later with the need for extending his mathe-
matical vocabulary.

The work is, in essence, familiar, but it ought perhaps to be
remarked that there are a number of points where the details vary
from standard practice.



SECTION 1
ORDINARY DIFFERENTIAL EQUATIONS

There is a large field of mathematics, especially in its application to
physical problems, in which the aim, ultimate or intermediate, is
to express one variable y as a function of another variable 2. In
simple cases the restatement of a given problem in mathematical
language may give the relationship quickly; in others, the solution
may come only after a strenuous struggle with algebraic or trigo-
nometrical equations.

What we have to consider now is the possibility that the language
may, in the first instance, involve not only the variables themselves,
but also differential coefficients, ordinary or partial. In this section
we confine our attention to the ordinary differential coefficients
dy|dx, d*y|dx?, and so on.

For example, a curve may be known to have the property that,
referred to a given system of rectangular Cartesian coordinates, the
rate of change of the gradient at any point P(z,y) is equal to the
square of the distance of P from the y-axis. The problem of identify-
ing the curve begins in mathematical language with the equation

d (dy\ ,
)=

d*y

or —= =g2,
da?

In this simple case we can go further at once and ‘solve’ the
equation. By integration,

dy

o x®+ A,
where A may have any arbitrary constant value; and a further
integration gives the ‘solution’

where B is a second arbitrary constant. Thus there is a family of
curves with the given property, and individual members of the
I MIV



2 ORDINARY DIFFERENTIAL EQUATIONS

family are picked out by the particular values of 4, B; for instance,
if we know that the curve passes through the two points (0, 0) and
(1, 0), then substitution of these values in the solution gives the

relations Bupy ds ik
so that the curve is Y =5t — 2.

It is worthy of note that this general solution for the relation with
the second differential coefficient contains two arbitrary constants.

A relation like y” = 2?2, involving differential coefficients, is called
a DIFFERENTIAL EQUATION; an equation is ORDINARY Or PARTIAL
according as the differential coefficients are ordinary (as throughout
this section) or partial. The orDER of the equation is the order of the
highest differential coefficient contained in it. The process of
expressing y as a function of z is called soLviNg the differential

-equation, and, for order n, the solution may be expected to contain
n arbitrary constants whose evaluation, when required, depends on
‘conditions’ beyond the equation itself. Whether any particular
equation can be solved at all is a big problem on which we do not
enter; our attention is directed towards examples which experience
has proved to be soluble.

We are dealing with a subject which is one of the largest in mathe-
matics, and for a fully detailed account the reader must pass to the
text-books specially devoted to it. The aim of this section is to
explain the principles which underlie the processes of solution,
with sufficient detail to enable the general student to tackle the
problems which he is most likely to encounter at the present stage
of his work.

CHAPTER XIX
EQUATIONS OF THE FORM y'=f(z, )

The solution of a differential equation necessarily begins with a
recognition of its form. The present chapter deals with equations
in which 3’ is expressed as a single-valued function f(z,y) of
and y. The treatment varies according to the form of the function,
and the work which follows is designed to exhibit a number of
typical cases.

1. Geometrical interpretation. If the two variables z, y are
regarded as the rectangular Cartesian coordinates of a point P, the
equation

g_y =f(x,y)

serves to specify a definite gradient at P. A solution appears as a
relation (with an arbitrary constant) connecting z, y, and may be
interpreted as the equation of a curve, which is the locus of a point
P moving so that its direction at P has given gradient f(z,y).
The presence of the arbitrary constant is reflected in the arbitrari-
ness in the choice of a starting-point which, once selected, deter-
mines the particular curve of the system.

Fig. 147

-2




4 EQUATIONS OF THE FORM ¥ =f(x, y)

2. The equation when f(x, y) is a function (i) of x only,
(ii) of y only.
(i) If f(z,y)=F(z), the equation is

dy
%_ F(:.E},

and the solution is Y= IF (x)dx+0C,
where C is an arbitrary constant.

(ii) If f(=,y) =G(y), the equation is

dy

and the solution is e jl
Gy)

where C is an arbitrary constant.

+0C,

3. Variables separable. If
fla, y) =uz) v(y),
the product of a function of z only with a function of y only, the
equation is

d
= u(z)v(y),

and the solution is fﬂ = fu(x) dz+C,
v(y)
where C is an arbitrary constant. The equation has been separated

into a part involving x only and a part involving ¥ only.

EXAMPLES I
Solve the following differential equations:

dy_ 2 d‘y_ 2
1. Ia =1+a2 2. da:_1+y'
dy _ dy _
3. (—i;:—cot:cta.ny. 4, a-—1+x+y+xy.

B L e s

HOMOGENEOUS EQUATION 5

Solve the following differential equations under the conditions
stated:

5. %g= (1+z)?, given that y=0 when 2=0.

ﬁ.d

d_?;= cosy cot y, given that y=0 when 2=3.

7. exj—i= xy®, given that y=1 when z=1.

8. (1 +z)j—‘:+ 1+y=0, given that y=8 when 2=2.

4. Homogeneous equation. If

f(x,y)Eg(y),

€T

a function of the quotient y/z, the equation is

dy _ (Y
da:_'g(;:)'
Such an equation is called HoMocENEOUS. It can be solved by

reducing it first to the ‘variables separable’ type:
Make the substitution

y=22,
dy dz
so that | - Akt
. dz
The equation is b e 9(2),
do__de_
z g(z)—2’
dz
so that loga =f +0,
84 9 —2

where C is an arbitrary constant.

IurusrraTION 1. 70 solve the equation

-
de  a?+y*

k'* It is customary, and convenient, to use differentials freely in work of this
<ind.,



6 EQUATIONS OF THE FORM ¥ =f(z,¥)

Write Y=z,
so that g—i=z+xg:—z.
The equation is z+:c‘«if—-z—
q de 1422
. e n
de 1+2°
g
142
Hence Eii:+—~(1'i'?;,:)dz=0,
@ z
de dz dz
or ;+§+;= y
1
so that logz— ot log z=constant,
1
or logzz= ot constant,
mz
or logy=2fy2+consta.nt.

The solution may therefore be expressed in the form
y = Ae* 2,
where 4 is an arbitrary constant.

TnustrATION 2. To solve the equation

dy  3w—18y-15_
dz” 22x—4y+18

We include an example which is not, in the first instance, of homogenecus
type in order to show the kind of treatment which some equations require

to bring them to standard form.

Make the substitution
r=u+a, Yy=v+b,

HOMOGENEOUS EQUATION

where u, v are the new variables and a, b constants. Then

dv _dy 3x—18y—15

__3u—18v+(3a—18b—15)

T T 22u—4v+ (22a—4b+18)°

Choose a, b so that 3a—18b—15=0,
22a—4b+18=0,

or a=-1, b=-L
Henoce d_v_ _3u—180
= du~ ~ 22u—4v
3—18(v/u)

= T2 4(vfu)’

The equation is now of homogeneous form, and we make the sub-

stitution
v=2u,
dz 3—-182
so that z+ua;= '—m,
o ud_z_4z3—4z—3_(2z—3)(2z+l)
du 22—-42 = 22-4 '
du (22—4z)dz
or

% (22—3)(22+1)

4dz il 6dz
2—-8 2+l
Integrating, we have

log w=2log (22— 3) — 3log (22 + 1) + constant,

oF o Glls =30
(22+1)*°
where C is an arbitrary constant. Hence
w(2z+ 12 =0C(22z-3)%,
or (20 + u)® = C(2v — 3u)?,
or, since u=x+1, v=y+1,
(2y+z+3)8=C(2y—3z—1)>



8 EQUATIONS OF THE FORM ¥ =f(z, y)

EXAMPLES 11
Solve the differential equations:

., W_zty g Wy_zty+2
“dx z—y “dx z-y
5. W__ ¥ Py P15 L
“dz z+y’ " & ]
dy z+y? S s ..
5. 2ya—x_ zT g’ by the substitution 3*=wvaz.
6 d—y+ﬂ-—0 by appropriate substitution
- da: yg(yaux)_ ’ y pp P "
dy wxcosy+2siny ; i
e A dhatd i o .
7. secly b Tosyiiy by appropriate substitution
8 dy e*v—2

da 2+e”—=‘=0'

5. Orthogonal trajectories. The solution, with arbitrary
constant, of the equation

ﬁ—:: =f(z,y)

defines, for differing values of the constant, the curves of a family
F, with the property that the gradient of the member through a
point P(z, y) has the value f(z,y). It may happen that there exists
a second family F, of curves, having the property that, at every
point P in the plane, the tangent to the curve of F, through P is
perpendicular to the tangent to the curve of F, through P. The
curves of the family F, are then called the ORTHOGONAL TRAJEC-
TORIES of the curves of F,.

Since the gradient of the curve of F, through P is — 1/f(x,y), the
differential equation for the curves of F, is

dy -1

dz f(z,y)’
Nore. Orthogonal trajectories in polar coordinates. A differential
equation i

TB=F(T’6)

ORTHOGONAL TRAJECTORIES 9

defines a system of curves referred to polar coordinates r, 6. It is
easy to deduce, from the results given in Volume 1, pp. 109-10,
that the differential equation for the orthogonal trajectories is

1dr r

IrnustrATION 3. T'o find the orthogonal trajectories of the rect-
lar hyperbolas
angular hyperoo 2 —y=0,

where C 18 a parameter varying from hyperbola to hyperbola.
The curves of the system satisfy the differential equation

d
z—y£=ol

dy_x

or dxy

Hence their orthogonal trajectories satisfy the equation

dy_ _y
da z’

or xj—z+y=0.

Integrating, we have the equation
wy=4,

which, for varying A4, defines a second family of rectangular
hyperbolas.

EXAMPLES III
Find the orthogonal trajectories of the families of curves:
1. a®—4y2=A. 2. *—yt+2x=A.
3. sinz coshy=A4.

5. at— 62yt +yt=A.

4. zcosy—ysiny=Ae=,

6. 23 +2%—3xyt—yi=A.
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EQUATIONS OF TiuE FORM ¥ =f(z, y)

REVISION EXAMPLES XV

Solve the differential equations:

1.

11,

12.

13.

14.

16.

Ll

18.

19.

20.

22,

dy_ .2 ldy z+y _
2(1 xy)dx—y. 2. ﬁd—é+—0.
dy ax+hy+g g W_14+3y°—1
de  hx+by+f’ “de 2y3xz+4yt+1°
dy _l1-—a?—y 6 dy 3xz—b5y—9
dz 1+z+yt’ “dx 2x—4y-—8°
dy dy 243y
(x+y l)dw-—-w-l-y-l-l. 8. d—x+§x—z+—ya—0.
e dy\*_ dy
o —a) D1, 10. () =@-ng+a.
(@)2+(sinz+cosz)yd—y+§y2sin2x=0
da dz y
d—y+ ?=1, wh =0 when z=
iyl ere y=0 when z=0.
dv S
v——=g—kv?, given that v=0 when z=0.

da

d d
x’d—i”_: 2 4 2xy. 15. xd—g;-y2=xy”.
(w”—2wy)g-%=y’—2ry-

dy
(ﬁx—y+l)d—z+x—5y+5=0.

dy =xtanhy

F soag: i given that y=1 when 2=0.

zﬂg_i=y(x+y), given that y= —1 when z=1.

dy : dy ax+y+1
oSz~ ysinz=1, 21. F e
dy ind dy_y 9
E-’r-ycot.:c_sm z. 23. 2d_z=5+5§

REVISION EXAMPLES XV 11

24, e“cosxj—:—ye-”sinx=x, given that y=0 when z=0.

25. ¥+ (wy+a:2)g:—z=0, given that y=3 when z=1.

26. Obtain the differential equation satisfied by the family of

e y=Cx+zlogz,

where C is a variable parameter.
Find the differential equation of the orthogonal family and

integrate it.
27. Obtain a differential equation satisfied by the family of
curves o — Sty =a?,

where a is a variable parameter.
Find the differential equation of the orthogonal family, and

integrate it.
28. A family of curves is given by
V= =A(y +2),

where A is a variable parameter. Find the differential equation
satisfied by this family and show that there is an orthogonal family,
and that it consists of parabolas.

29. Find the differential equation of the first order satisfied by
the family of curves 23— b

2
Y 3z’

where a is a variable parameter.
Find the equation to the family of curves that is orthogonal to
the above family.

30. Find the orthogonal trajectories of the families of curves
(i) y(2*—y*)=Cl*+y°),
(ii) r=0C(1 +cosB).
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CHAPTER XX

LINEAR DIFFERENTIAL EQUATIONS;
GENERAL PROPERTIES

[The beginner is advised to read this chapter fairly quickly to gain
familiarity with the outline and the terminology. Too much stress should
not be put at first on the more abstract ideas; but they will appear later
as important to a real understanding of the manipulations.]

1. The linear operator. We turn now to the LINEAR DIFFER-
ENTIAL EQUATION

BT+ B@) Tl ..t Po@) 2+ B2)y = Q)

in which y and its differential coefficients occur linearly. The corre-
sponding equation when () is replaced by zero is called the
COMPLEMENTARY EQUATION.

The left-hand side may be expressed more concisely by using a
symbol D to denote the operation of differentiation with respect to
the current variable z. Thus

Dy"dy, Dz?=322, Dsinz=cosz,

and so on. It is important to observe that the operator D acts on
a term that comes after it; for example,

22 Da® = 22(5at) = 525,
but 23Dt = 5 (2e ) =228,

By an obvious process of induction, we write

D@ED(Dy)=p(g_g)=%,

d d
Diy=D(0%)=D(74) - 7%
and so on; then the given equation appears in the form

{Po(x) D"+ Py(2) D" + ...+ F, 3 (x) D+ F (%)} y = Q(2)

THE LINEAR OPERATOR 13

The expression in brackets { } is called a LINEAR OPERATOR acting

on y.
The prRODUCT of two linear operators

(By(®) D"+ ... + By (@)}
and {Qo(@) D™+ ... + P, (x)}
is defined by the chain
{Po(a) D+ ... + P ()} {Qo(x) D™ + ... + @, ()} ¥
={Py(x) D" +...+ B (2)}v,
where v={Qo(x) D™ + ... + @, ()} y.

The product of more than two operators is defined similarly by
induetion.

The order of the factors in a product is very important; the two
expressions

{Po() D + ... + Py ()} {Qo(x) D™ + ... + @, (2)} ¥
and {Qo(®) D™ + .. + Q,(@)} {Po() D" + ... + ()} y
are usually quite distinct. For example

(D +1)(@*D+1)y=(xD+1) (2% +y)
—ot @y +y)+ @Y +y)

=2(2%" + 22y’ +y') + (@ +y)

=2%"+ (32 +2)y’ +y,
whereas

(@*D+1) (@D +1)y= (2D +1) (zy’ +¥)
=2ty )+ @y +9)
=2¥zy" +2y') + (xy' +y)
=2%"+ (222 +2)y' +y.

An operator like  Fy(x) D™+ ...+ P, (x)
is often abbreviated to the symbol
L(D).
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If L(D) and M (D) are the two operators just mentioned, the two
products are L(D) M(D) and M(D) L(D); when acting on y they
will yield the two expressions

L(D) M(D)y, M(D)L(D)y.

EXAMPLES I

Evaluate the following expressions:

1. (D*-3D+2)e*, 2. (D*—5D+6)e%,

3. (D*+4D?+4)xsin 2. 4, (sinz.D + cosz)cos?ax.
5. (sinz.D cosx)—(cosz.Dsingz). 6. (22D%3)—(2*D%?).

7. (D?—2D+1)ye*. 8. (D*—3D*+3D—1)ye".
9. (eD+2)(xD+3)y. 10. (D—1)(xD—2)e*.

11. (cosz.D +sinz)(sinz.D 4 cosx) cosz.

12. (e*D+e®)(e=D+e®)e™.

2. Linearly dependent functions. The » functions

(@), Up(®);  ees Un(®)
are called LINEARLY DEPENDENT if there exists a linear identity
Ajuy(x) + Agug(®) + .o + A, %, (2) =0
with constants 4,, 4,, ..., 4, not all zero.
For example, the functions
z, x% x+2°
are linearly dependent, whereas the functions

o, 2
are not.
To prove that, if the functions uy, us, ..., %, are linearly dependent,
then the determinant W (x) defined by the relation

% Ug Uy
W(I) = 'tb;_ u; un
wD - J

is tdentically zero.

LINEARLY DEPENDENT FUNCTIONS 15
(For the three functions «, 22, z + 22, the identical relation is
la+l.22+(—1).(x+2%)=0,
and the determinant W(z) is

z 2 z4+22
1 22 1+2z |,
0 2 2

which is zero for all values of z.)
If the functions are linearly dependent, there must exist con-
stants 4, 4,, ..., 4,, not all zero, such that

Alul +Agug + ... +Anu“ EO.

On the assumption that the differential coefficients exist, successive
differentiation gives the relations

A uV+ A udV+ .+ A, UV =0.
Since the constants 4,, 4,, ..., 4, are not all zero, the determinant
obtained by eliminating them from these » relations must be zero;
that is, W (%) =0.
The determinant W(z) is called the WroNsk1aN of the given

functions.

IrrusTrATION 1. The n funclions

eME,  giaZ ¢In®

are linearly independent if ay, a,, ..., a, are all different.
The Wronskian is
ehs ehT e
a, eM® aes* ... a,ew®

---------------------------------------

aii—l Pt ag-—l el an—1 et
1 1 1
= gl@1+agt...tap)z ay Qg a,
a;l—l ag—l anr—1

= t entiahtanz (g, —a,) (@, —ag) ... (@, —ay).
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Since this is not zero if a,, a,, ..., a, are all different, the n functions
are linearly independent.

(Note that we are concerned with LiNEAR independence. For
example, the functions %, €2, ¢3%, ¢¥* gatisfy the quadratic identity

e%ed = e2%e32,)
IrrusTrRATION 2. The n functions
€%, gpet®, glet®, . ghle®®

are linearly independend.
Since an identity

Aje 4 Ayze® ...+ A, 2" =0
implies an identity
A+ Apz+...+ A, 2" 1=0,

it will suffice to prove that 1,z, ...,2"! are linearly independent.
The Wronskian is

1 z 2 EO o zn-1

0 1 2 322 (n—1)zn-2

0 0 2.1 3.2 (n—1) (n—2) 2" |=1.21.31.....(n—1)\.
00 0 0 (n—1)!

Since this is not zero, the n functions are linearly independent.

3. The complementary function. Consider the linear
differential equation

L(D)y={Pyx) D"+ ...+ F,(x)} y = Q(x),
with complementary equation
L(D)y=0.

Suppose that we have been able, in any manner, to obtain solutions
9 =u,(x), y =uy(), ... of the complementary equation, so that

L(D)uy(2) =0, L(D)uy(x)=0,
Then, by direct substitution in the complementary equation, we
find that the function

y=A;u,(x)+ Ayus(x) + ...

THE COMPLEMENTARY FUNCTION 17

satisfies the equation L(D)y=0

for all sets of values of the constants A,, 4,, ....
In particular, if
(@), upl(®), oy U (2)
are precisely n linearly independent solutions of the complementary
equation, then the solution

y=A,u,(2) + Ayus(x) + ... + 4, u,(2)

is called the comPLEMENTARY FUNCTION of the given equation. It
contains the n arbitrary constants that might be expected. (Com-
pare p. 2.)
For example, it is easy to verify that each of the functions
¢®, e** satisfies the equation
ady _,dy

ﬁ_ad”;-" 2y=0,

and so the complementary function of the equation

d¥y _dy ;
is Ae® + Be®=.,

We assume without proof the theorem that EvErY solution
of the complementary equation can be expressed in this way, as a
linear combination of any n linearly independent solutions.

4. Solution by complementary function and particular
integral. Suppose that we have been able, in any manner, to find
one solution

y="Ul()

L(D) y =Q(=).

Such a solution is called a PARTICULAR INTEGRAL.

To prove that, if y=wu,(2), ¥ =uy(z), ... are solutions of the com-
P?Smentary equation and if y=U(z) is a particular integral (of the
Jiven equation), then the function

of the given equation

y=A,u,(x)+ dyuy(@)+ ... + Ux)

is a solution of the given equation.

2 MIV
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With this value of y,

L(D)y={L(D) A, u,} + {L(D) Agus} + ... + {L(D) U}
= A,{L(D)u,} + Ao {L(D) ug} + ... +{L(D) U},
since 4,, 4,, ... are constants. Thus
L(D)y=A4,.0+4,.0+...+Q,
by definition of u,, u, ..., U. Hence
L(D)y=Q.

In particular, if u,(x), us(%),...,u,(x) are precisely n linearly
independent functions satisfying the complementary equation,
then a solution, with »n arbitrary constants, of the given equation is

y=A,u () + Agus(x) +... + 4, u,(x) + Ulz).

We assume without proof that every solution of the given equation
can be expressed in this way, as the sum of the complementary
function and any one particular integral.

(For different choices of particular integral we should require
different sets of values of the arbitrary constants 4,, 4,,...,4,.)

IrnrustrATION 3. To solve the equation
dly_,dy
b

a+2y=4.

The complementary function (compare p. 17) is
Ae® + Be?=,
Algo it is obvious that a particular solution of the given equation is

y=2.
Hence the general solution is

y=Ae* + Be>* 42,
5. The equation of first order. The linear differential equa-
tion of the first order is
d;
Py) 22+ P(2)y=Q@),

EQUATION OF FIRST ORDER 19
but it is more convenient to divide first by Py(x) to obtain the form

W | Pe)y=Qw)

(for a fresh value of @(x) on the right-hand side).

This equation can always be solved, subject only to the evalua-
tion in practice of the integrals which appear. We give two methods,
of which the first has been foreshadowed in Volume 11 (p. 54).

First MmETHOD. Integrating factor.
Evaluate first the integral

[P(x)dx
and then the exponential e[P®@dz written sometimes /P,
The latter expression is an integrating factor of the given

equation which, on multiplying by that factor, becomes

eJP"*j—i'+P(x) JPdzy =Q(z) P,

or gx {ye/P 3z} = Q(x) eI Pz,

Thus yeI Pz =C + [Q(2) /P % de,
where C is an arbitrary constant. The equation is therefore solved,
in the form y=Ce-IP@ds | o~[P)dz IQ(“’) el P@ydz gg.

SEcoND METHOD. Variation of parameters.

This method can be applied widely and is of general importance.
We begin with the complementary equation

dy 0
d_x+P(x)y_0’

or %+P(:c) b,

and obtain at once its solution
y = a’e—fP(w)dﬁ’

where a is an arbitrary constant.
The method consists in taking this solution of the complemen-
tary equation as a kind of approximation to the solution of the
2-2
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original equation, but replacing the constant a by a variable z;
that is, we make in the given equation the substitution

y= ze—'fm) dz
Thus yelP@dz =5

dy dz
Plx)de _J Plx)ds op —
so that EJ ] +P(x)ef Y= Iz’

and the given equation therefore appears in the form

%_Z =Q(x) eJPlz)dz

Hence 2= [Q(z) JP@2dz 1O,
where C is an arbitrary constant, so that
y= ze—P@)dx

= (e IP@dz | o—[P@)dz IQ(‘”) eJP@)dz o

In the language of the preceding paragraphs, the complementary
function is Ce-IP@az
€ ’

and a particular integral is
e~ P@)dx J'Q(x) el P@dz o
IrvusTtrATION 4. To solve the equation
(1 +z)j—:::+my= (14x)2e=,

We use the method of variation of parameters, which is more in

' line with some of the work that follows.

The complementary equation is

dy
(1+x)d—x+wy_o,

dy wxdx
= PR
dy 1
or ‘;‘*‘(l—m)dﬁ-—o,

and its solution is
logy +x—log (1 +2) = constant,

EQUATION OF SECOND ORDER 21
or y=a(l+z)e?,

where a is an arbitrary constant. We therefore subject the given
equation to the substitution

y=2(1+z)e,
so that g—g=g—£(l+w)e"‘-zxe—“,

and the equation becomes

(1 +x)3e"“gf-:= (1+2)%e*,

=82
or —— =52,
dx

Hence z=13e*+C,
and the solution of the given equation is
y=C(1+2)e2+}(1+x)e=

See Revision Examples XVI, nos. 1-20, pp. 26-7.

6. The equation of second order. The linear differential
equation of the second order is

) 7Y+ Py@) 2 4 Pye)y= Q).

It is not possible to derive a general solution in the straightforward
way that we have just done for the equation of the first order. There
are, however, a number of occasions when one solution of the
complementary equation can be ‘spotted’, and it is then possible
to solve the given equation completely. We prove that, if oNe
solution of the complementary equation is known, then the given
equation may be solved completely, subject only to the evaluation
of the integrals involved.
Suppose that y=u(x)

is a known solution of the complementary equation, so that (in
abbreviated notation)

Pyu" + Pyw' + Fu=0.
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Remembering that y =au is also a solution for constant a, we use
the method of Variation of Parameters, and make the substitution

y=2u
in the given equation; then

Yy =z'u+tzu,
y" =z"u+22'u’ +zu".
The given equation becomes
Py(z"u+22'w +2u") + Py(2'u +2u’) + Pyzu=Q,
or Pyuz"+ (2Pyu’ + Pou) 2’ + (Pyu” + ' + Pu)z=Q,
or uz" +2u'z’ + (P Pp)uz' = Q| P,
on dividing by P, and remembering that the coefficient of z is zero.
Multiply* by ». Then
& (1) + (B[P (2= (Qu| ).
This equation is linear in the variable %', and so (p. 19)
w2 = Ae-JPYPYaz 4 o~[(Py/Py)dz f %‘f J@YPYdz Jg
0

where A is an arbitrary constant.
Divide by u? and integrate; then multiply by . We obtain the
solution of the given equation in the form

—[(Py/Pg)dz —[(Py/Pydz
y=Bu+Auf?;—dx+uJ.?_q&?_ {f%dwlan)kdx] dz,
0

2

where B is a second arbitrary constant.
As with much of this work, it is the method and not the formula
that should be remembered.

IrnusTrATION 5. T'o solve the equation
(a®—22)y" — (22 —2)y +2(z— 1)y = (22— 4z + 2) €.
The complementary equation is
(a2 —22)y" — (22— 2)y' + 2(x—1)y=0.
* The expression uz”+ 2u’z’ becomes, after multiplication by u, the differential

d
coefficient: T (u%’). The student must learn to ‘focus his eyes’ to observe such

possibilities.

EQUATION OF SECOND ORDER 23

We observe that
(22 —22)— (22 —2)+2(x—1)=0,

and so y = ae®

is a solution of the complementary equation (since then we have
y=y'=y"). We therefore make the substitution

Y=z,
so that y' =2'e® 4 ze?,
y"=2"e*+ 22'e® + ze®,
and the given equation becomes

(22 —2x) €® (2" + 22" +2) — (2 —2) €* (2" +2) + 2(x— 1) e”2

=($2—4$+2)93,
or (22— 22) 2" + {2(2® — 22) — (22— 2)} 2’ =a® — 42 + 2,
or (22 —2x)2" + (22— 42+ 2) 2" =2® — 42+ 2.
Thus (22 —2x)2" + (2 — 4+ 2) (' — 1) =0,
’ 2_

so that OF) JEoAE

Z—-1" -2z

d(z’) 22—-2),
or z'—1+[1_m3—2x}dx_0'
Integrating,

log (2" — 1) + 2 —log (2® — 2x) = constant,

or 2 —1=A(z*—2z)e=,
Hence z—z=4 [(2*—22)e*de+B

= — Az? =+ B,
where 4, B are arbitrary constants.
Thus
z=B—- Az +2,
and so the solution of the given equation is

y = Be®— Aa® + xe®.
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7. Solution by factorization of the operator. Suppose the
second-order linear differential equation to be divided throughout
by the coefficient of y” and then expressed in the form

L(D)y={D?+ Py(z) D+ Py(x)} y = Q).
A solution is obtained if the left-hand side can be factorized in the
fsa {D+u(z)} {D+v(x)}y;
for, writing {D+o(x)y==2,
the first-order linear equation

dz

d:z+ u(z)z=Q(z)

gives z, and then the first-order linear equation

% +o(@)y==2
gives y. The problem is to find u(x) and v(z).
Since
{D+u(@)}H{D +v(@)}y=Dfy +v() y} +u(2) {y’ +2(z) 9}
={y" +o(@)y +v'(@) y} + {u(@) ¥ + @) v(@) y}
=y" +{u(@) +v(2)}y +{v' (@) + w(@)v(z)} y,
we have the relations u(x) + v(x) = Py(x),
v'(x) + u(z) v(z) = Py(x)
to determine u(x), »(x). Eliminating u(z), we obtain an equation
for v(z) in the form
v'(2) +{Py(2) - v(@)} v(z) = Fy(2),

or, writing v(z)=v,

j—:+ P\(z)v—v2=Py(z).
This equation, known as a RICCATI EQUATION, is discussed in text-
books devoted to differential equations. The immediate need is
any one solution, and the success of our attempts to factorize the
operator will depend on our ability to find such a solution for the
particular functions P,(x), Fy(x) of the given equation.

FACTORIZATION OF THE OPERATOR 25

In some problems the differential equation for u(z) is more
amenable, and it should be obtained if a value for v(x) remains

elusive. Since v(z) = Py(x) — u(x),
the equation is

Pi(z) —w'(2) +u(@) {Py(x) — u(@)} = Py(),
or, writing u(x) =u,
u' — Py(z) u+u? =Py (2) — Fy),

another Ricecati equation.

It should be remembered carefully that the order of the two
factors D+ u(z), D+ v(x) must be preserved; they are Nor inter-
changeable.

IuustrATION 6. T'0 solve the equation
y" + (cot z—2) y' — (cosec®z + 2 cot ) y =2,
Suppose that the left-hand side is
(D +u) (D+v)y=D(y +vy) +uly’ +vy)
=y"+oy' +v'y+uy’ +uvy
=y +(w+0)y + @ +uw)y.
Then u+v=cotz—2,
v' +uv= —cosec?x —2cot z,
so that v'+v(cota— 2 —v)= —cosec*z— 2 cot z,
or v’ +v(cotx —2) — 02+ (cosec®z + 2 cot ) = 0.
By inspection (and this is a point of real difficulty for this method),
a solution is s
and it follows at once that wu= —2.
Hence the equation is

(D—2)(D+cotx)y=e®.

Writing (D +cotx)y=z,
we have fl—i —2z=¢",
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and so, solving this first-order linear equation, : zg_z SR e,

z=Ae?* —e%, dy
. {1 14+ 2x)=+y=(1 2(3+ 2x).
where A is an arbitrary constant. Hence ( +x); ¥ )dx+y {ira) (B2 3
y' +ycotw=Ae** —e2, . xloga:£+y=logx. 8. a—g+yaotx=sin:n.
or* y'sinz+ycosa=A4e**sinzx —e*sina, dy
. . (x+1)5=—3y=(2+1)% where y=% when 2=0.
so that ysinz=Afe”sinzdz+B—Ie¢smmdx, da

dy

where B is an arbitrary constant. Thus . cotx Y= cot 2 sint z.

ysinz=1A4e* (2sinz — cosz) + B — §e* (sin x — cos x).

The difficulty in ‘spotting’ »(x) suggests that we might have tried
instead the equation for u(xz):
Since

) [ (m2+3x+2)g—z+my=x(x+ 1).

12, (4—coszx):—?;+4ysinz=ainx(2+ cos ).
v=cotx—2—wu,

the equation is 13. 2:::—1— (14 2z cotw)y=atsinz.

{—cosec?z —u'} +ufcot z — 2 — u} = —cosec?z— 2 cot z, o T d
y, r—= Y
4, —4——y=a(xz—1). 15. —=+ysecx=tanz.
or u' —u(cotx — 2) +u?=2cotx. dzt z-1 ¢ ( ) dz Y
A glance at the coefficients of cot  suggests that we might consider dy dy
16. (22—1)==-+2 2)y=2 1), 17. 2=—y=ua.
the solution e o )dx+ ket Apewdekl) Tag— Y%
L dy y_ - ol
and this is seen to be satisfactory. Then 18 o TR, WSS g (i w2,
g ook, 19. cosmi—?;+(cosa:+sinx)y=2+sin2x.
and the solution proceeds as before. i
20. m(x—1)£+(x—2)y=xﬂ. 21, (1—2%)y’ —2y'=2.

REVISION EXAMPLES XVI 22, zy'+y'+1==2.

Solve the differential equations: 23. Solve the equation

e ’ "
1. :—:+2ytanz=cos5z. (2z+2%)y" —2(1+2)y" +2y=0,

5 given that y =22 is a solution.
2. a(@+1)Zh— (@+2)y=2%(—3).

24. Solve the equation

2\2 0¥ CE A TR o
3. (:c“—l)%+y=(a:’—l)i. 4. g_z+ylogx=e—ﬂ=lncz. (12 iuli= et E i o 0 it nally w20 50 acew,

* The equation is a linear equation of the type discussed on p. 19. The
integrating factor is sin z.

given that one solution of the complementary equation is

(1+22%) sina.




28 LINEAR EQUATIONS: GENERAL PROPERTIES

25. Show that the general solution of the equation

2ty —2xy' +2y=0
is a polynomial, and solve the equation
z%y" — 2zy’ + 2y =2a® cos .
26. Solve completely the equation
2z(1 —a;)a+1§‘.x {23(1 —z)‘“%] ={1—(1+2a)x}y,

given that there is a particular integral of the form y=a".

Examine the case a= — 1.

27. Solve the equation

(222 —1)y" — (42 + 42— 2) y' + Sy = 4z,

given that the complementary equation has a solution of the form
y=e%%,

28. Solve the differential equation
2y +(x—2)y —2y=2a3.
29. Solve, in assimple a form as you can, thedifferential equation
Y+ (@ — 227y — oy =2,

given that the complementary equation has a solution which is
a power of z.

30. Solve the differential equation
Y +(1+2z1cotz—22?)y=xcosz,

given that z—'sin z is a solution of the complementary equation.
Prove also that, if y=1 and y’=1 when 2=0, then y=7 when
x=1r.

31. Solve the differential equation
(xsina + cos z) y" —zy’ cosz + y cos x =sin z(zsin z + cos r)?,
given that z and cos z are solutions of the complementary equation.
32. Use the substitution z=zy to solve the equation
xy" + 2y’ +a’xy =0,

where y=0 and ¥’ = —a when z=7/a.

REVISION EXAMPLES XVI 29

33. Explain what is meant by an integrating factor of the equa-

Hon Pdz+Qdy=0.
Show that, if P/Q is a function of y/x, then
(@P +yQ)~*

is an integrating factor, giving the solution

d(y[z) »
ylz+P[Q 187 =C:

Solve the equation
(2 +y?) dx —zydy =0.

34. Show that the equation
231 +2%)y" — 2y =204
possesses certain solutions of the form
y=Axz"'+ Bz +na?,

where A is an arbitrary constant, B a definite function of 4, and
n a definite number.
Find the general solution.

35. By putting y=zcosecz, or otherwise, solve the differential

equation
ay"sinz + 2y’ (sinx + x cos ) + (2 cosz —zsinx) y = 3x.
36. Solve the differential equation
2%y +ay’ — 9y =Tad, ‘

of which 2* and 2* + 2® are particular solutions.

37. Find the relation between P and @ if the equation

y"+Py' +Qy=0

has two non-zero solutions one of which is the square of the other.
Show that this condition is satisfied for the equation

xy" —(3a%+ 1)y’ +22%y =0,
and hence obtain the complete solution.

38. By factorizing the operator, or otherwise, solve the dif-
ferential equation
y" —dzy' + (42% — 2) y = 22° — 3.
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39. By factorizing the operator, or otherwise, solve the dif-
ferential equation

y'—2(n—axt)y' + (n®—2nax1)y =€,

where n, @ are constants.
Examine the solution in the special cases a= + }.

40. By factorizing the operator in the form

(xd%+P) (:cd—d;-i- Q) ;

or otherwise, solve the differential equation

ay" + (2% + 42) Y’ + 2(x + 1) y = 4a*(z + 3).

41. If y"+Q(x)y +R(x)y= (—g; —u(ac)) (d%—v(x)) Y,

find a first-order differential equation, not involving v, satisfied
by .
Apply this to the equation

y" —y' tanax —2y/(1 +sinz) =0,

and, using the substitution « cos z =z, or otherwise, find a solution
for » and hence solve completely the given equation.

42, The equation

gz‘z—i- P(x)dx+ Qx)y=0

has solutions cosz and tanz. Find the general solution of the

equation d i
T+ POIZH00y=

43. Show that a necessary and sufficient condition for the
i P@@)y"+Q@)y' +R(a)y
to be expressible in the form
d '
7z L@y + M)y}

is that P"(z)—Q'(x)+ R(x)=0.
Solve completely the differential equation
a(l+a)y" —{n+(n—2)z}y —ny =2,

31

CHAPTER XXI

THE LINEAR DIFFERENTIAL EQUATION
WITH CONSTANT COEFFICIENTS

The differential equations which we shall discuss, now and in
Chapter xx1, are important in many branches of mathematics
and physics. The form of the equations is obtained from the general
linear equation (p. 12) by giving Py(z), P,(z), ... constant values.
The treatment adopted varies in some respects from current
teaching practice, especially in the details of the two methods
recommended for calculating ‘particular integrals’.

When equations occur as often as these, their solution should
conform to at least two principles: (i) it should follow a standard
drill, (ii) that drill should rest on a simple logical foundation from
which it arises naturally. The methods to be given seek to dispel
the uncertainty which many beginners seem to feel about solutions
by ‘guessing the form of the answer’, and also to avoid mechanical
calculations involving operators like (1 — D)~ which are often used
without any appreciation of the underlying theory.

There is nothing essentially new in what follows, but the com-
bination of ‘guessing’ with ‘operation by polynomials only in D’
gives a simple drill in which each step almost carries its own
justification; and the later method based on integrals of the form

& f Q(x) e* dx

leads to a ‘calculus’ which enables all particular integrals to be
found in theory and all the usual ones in practice.
But first we must deal with the complementary function.

1. The linear operator for constant coefficients. The given
equation is
d d
aod;g+alhn1?{+ +“n—1d%+any=Q($),
i L(D)y=(ayD"+a, D" +... +a, ;D +a,) y=Q(z),

where the coefficients a,, a,, ..., a,_;,a, are constants.
The algebraic equation

L(P) Ea'opn'i'a’lp”_l'*' LA +a"u—-1p +an=0
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is called the AUXILIARY EQUATION of the given equation and its

roots
pls PBD aeegy .'p-m

not necessarily all different, the AUXILIARY ROOTS; thus
L(p)=ay(p—p1) (P —P2) ... (D —Pn)-
For example, the auxiliary equation of
dy_dy dy+ 12y =5sin Tz

da®” da®  dx
is p*—p*—8p+12=0,
or (p+3)(p—2)*=0,

and the auxiliary roots are —3, 2, 2.

It is familiar from the theory of equations that the auxiliary
roots are connected with the coefficients in the auxiliary equation
by means of the formulae

Pr+Pat+ Pyt = —a,ay,
P1Pat+P1Pgt+ .-+ PaPyt o0 = ayla,
P1PaPy+P1 PPyt o +P1P3 Pyt = —ag/ay,

and so on. Now, by continued operations,
(D—py) (D—py) =D*—(py+py) D+ 17y,
(D —py) (D —py) (D —pg)
=D8— (py + Py +Ps) D*+ (P12 + P1P3+ Do Ps) D —P1 P2

and so on. From the ‘product’ of n such operators, we obtain,
with the help of the algebraic identities just quoted, the relation

(D =py) (D=p5) ... (D —pn)
= D" — (—ayag) D" + (agfag) D2 — (—ayfag) D"+ ...

Eal{%D"-f‘axD"'l'*‘%D"_s'!'a’aDn_s*’---}-
)

Thus the operator may be expressed in the ‘factorized’ form
L(D)y=ay(D—py) (D—p,) ... (D—Pn)¥s
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where it is important to observe that, in this particular case, the
factors D —p,, D—p,, ...,D—p, may be taken in any order without
affecting the operator.

For example,

(D’ —D*—8D+12)y=(D+3)(D—-2)%y
=(D-22(D+3)y
=(D-2)(D+3)(D-2)y.

2. The complementary function.* In accordance with the
work of the preceding paragraph, the complementary equation is

‘:'"o(D =P1) (D=py) ... (D=p,)y=0.

Suppose that any one root of the auxiliary equation is denoted by
the letter p, and that it is a k-fold root. Factorizing the operator in
such a way that the factors corresponding to p appear last, we
obtain the equation in the form

(D =p1) ... (D=Pyi) (D —p)*y=0.
If we are able to obtain a function y satisfying the relation
(D-p)*y=0,
we shall also have as a consequence the relation
(D =py) ... (D =Py ) {(D—p)y} =0,

and such a function y will thus be a solution of the complementary
equation. We therefore begin by considering the equation

(D-p)ey=0.
When k=1, this is an ordinary linear equation
D-p)y=0

whose solution is y = ae??, This suggests the method of variation of
parameters, using the substitution

Y =2zeP®,
* This paragraph should be read quickly at first in order to reach the sub-

Sequent Illustrations as soon as possible. These should be studied very carefully
50 as to absorb the ‘drill",

3 MIV
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Observe, as a Lemma, that, if  is any function of z, then
(D — p) (ue?®) = D(ue?®) — puer?
= {w'eP* + puer=} — puer*
=u'eP?,
so that (D — p) (ueP®) =u'eP=

If, therefore, we give to u the values z,2’,2”, ... in succession, we
obtain the formulae

(D —p) (2¢7%) =2'e?=,
(D —p)? (ze7) = (D —p) (2'eP?) =2"eP=
(D —p)? (2¢#%) = (D — p) (2"eP?) = 2"eP=
and so on. Hence (D —p)* (zeP®) =2Wep=,

The equation (D—pfym=0,
or (D -p )k (ze?*) =0,
is therefore 2Wepz = (),
or 2k =

since eP® is not zero. Hence z is an arbitrary polynomial in x of
degree k— 1, and the corresponding contribution to the complementary

Jfunction is y=(A,+Ayz+ ...+ A, 2% 1) €97,

where 4,, 4,, ..., 4, are arbitrary constants.

Repeating this process for the other auxiliary roots, we reach the
following RULE FOR THE FORMATION OF THE COMPLEMENTARY
FUNCTION :

If the auxiliary equation has roots p (repeated o times), q (repeated
B times), r (repeated y times), ..., where

a+B+y+...=n
then the complementary function, with its n arbitrary constants, is
(Ay+Agz+ ...+ A, 257 1) ep®
+(By+ Byz + ...+ Byaf1) e®®
+(Ci+Coz+... +Cyar)e=
+ cone
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We have proved (pp. 15-16) that the n functions of the type
z'e?i® occurring in this expression are linearly independent in the
two cases (i) a=f=y=...=1, (ii) a=n, f=y=...=0. The other
cases are more difficult, and we propose to accept the fact of their
independence without further proof.

IrLustRATION 1. To find the complementary function of the

equation
’y Y
e +4da: by =1+a3
The auxiliary equation is
P +4p—5=0,
or (p=1)(p+5)=0.
Hence p=1, -5,

and the complementary function is
Ae*+ Be5=,

IivustraTION 2. To find the complementary function of the
equation
d% oy

E.:EE+9

+ 20y =e’2,
The auxiliary equation is
_ P*+9p+20=0,
or (2+4) (p+5)=0.
Hence p=—4, -5,
and the complementary function is
Ae= 4 Be—5=,

IuLustrATION 3. To find the complementary function of the

e TY_eY % 2
7 T s

The auxiliary equation is
pP—6p+11p—6=0,
= (p—1)(p—-2)(p—-3)=0.

3-2
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Hence p=1,2,3,

and the complementary function is

Ae* + Be** + Ce®e,
ILLusTRATION 4. To find the complementary function of the
WER j;y 24%4-64‘1-" 48y = 5sin 3z.
The auxiliary equation is
—24p%+ 64p —48=0,
or (p+6)(p—2)32¢=0.
Hence p=-6,2,22,

and the complementary function is
Ae %%+ (B+ Cx+ Da?) .
ILrusTRATION 5. To find the complementary function of the
equation diy dgy
dat

F 16y = z%?=.
The auxiliary equation is
—8p?+16=0,
or (p—2p(p+2)*=0.
Hence p=2) 2; _2! _2l

and the complementary function is
(4 + Bz) e** + (C + Dx) e~?2,

3. The complementary function; complex roots. The
preceding work is true whether the roots p,, p,, ..., p, are real or
complex, but alternative forms of expression prove more con-
venient for the latter.

It is assumed that the coefficients a,, a, ..., @, in the differential
equation are all real; then complex roots of the auxiliary equation
oceur in conjugate pairs. Suppose that p,, p, constitute such a pair,
of the form a +if, & —1if respectively, repeated k times. The corre-
sponding contribution to the complementary function is

(4, + 432+ ... + A 2*2) e+iPZ 4 (B, + By + ... + Bya*-1) A=,
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Consider the terms in a typical power of z, say 2/-1. These are
Ajai-1e+iDz 4 B ai-1ea—iA)z,
or 2i-1e*2 {4, e%02 4 Be—P7},
or (Volume 11, p. 179)
xi—1e2 (A ,(cos fz + i sin fix) + By(cos fx —isin fx)},
or xi-1e*® {(4; + B;) cos fz + (i4;—1B;) sin fz}.

The constants 4;, B; are complex, and may be replaced by the
complex numbers F}, @; defined by the relations

4;+B;=F,

Since the constants 4, B; can, in the first instance, have any values,
s0 also can P, Q.
The contribution from the terms in 27/-! then assumes the form

2i-1¢2% { P, cos fx + @, sin fzx},
and so the total contribution involving p,=a + i and p,=a—if is
(P + Pz + ...+ Ba%1) e** cos fz
+(Q1+ @z + ... + Q2% 1) e*%sin fz.
When k=1 (which the reader is most likely to need in practice),
the contribution is ¢ (4 008 P+ Bsin fx).

When k=1 and =0, we have the familiar case of ‘harmonic
motion’, with solution
A cos fz + Bsin fz.

The ‘harmonic equation’ itself is of the form
d’-y = +nly=0,

and the solution y=A cos nx + Bsin nx

may thus be written down at once.
It can be verified easily that the general solution of the equation

dﬁy —miy=0
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may likewise be expressed in the form
y = A cosh ma + Bsinh ma.
ILLusTRATION 6. T0 solve the equation

dy 2%

The auxiliary equation is

P4 6p2+9=0,
or (p*+3)*=0,
so that P=143,443, —14/3, —1,/3.

The solution is therefore
y= (A + Bx)cosz 3+ (C+ Dx)sinz /3.

ILLUSTRATION 7. To solve the equation

d¥y  dy s
Aol +13y=0.

dxﬂ
The auxiliary equation is
P +4p+13=0,
o that p=—2+3, —2-3.

The solution is therefore

y=¢"2% (A cos 3z + Bsin 3z).

EXAMPLES I
Solve the following linear differential equations:
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Further examples, if required, may be obtained by equating
to zero the left-hand sides of nos. 1-19 and 21-49 of Revision
Examples XVII, pp. 55-57.

4. A particular integral; rule for ‘normal’ cases. To find
a particular integral of the equation

L(D)y=(agD"+a, D" +... +a,)y=Q(),

we must give closer attention than hitherto to the form of the
function Q(z). It is found by experience that, in most of the ex-
amples likely to be met at present, @(x) is a sum of terms consisting
of the product of one or more of the functions: polynomial, sine
or cosine, exponential. Remembering that sines and cosines are
essentially exponential, we may take @(x) as a sum of terms like

flx) e,

where f(z) is a polynomial and b a complex number, possibly zero.
It is a simple matter, too, to prove that a particular integral
corresponding to a sum of lerms may be found by adding particular
integrals corresponding to the individual components of the sum.

Suppose, then, that f(z) is a polynomial of degree m, and that
b is a k-fold root of the auxiliary equation L(p)=0. We begin with
a lemma designed to remove the exponential ¢** from the cal-
culations.

Lemma. To prove that, if u is any function of z, then
L(D) {ueb*} = b= L(D +b) u,

where L(D+b), found by replacing D by D+b in L(D), is given by
the relation

L(D+b)=ayo(D+b)*+a,(D+b)*1+...+a,
=ay(D+b—p)(D+b—py) ... D+b—p,).

' " 3y’ + 2y =0. 2. 2" '+ 2y=0.

I 1 y" =3y +2y=0 Y +6y +2y The proof is by induction; for
3. y"+9y=0. 4. Yy +2y" +y=0. D(ueh=) = w’'¢b® + ubeb®
5. y"+8y +25y=0. 6. y"+y' —y=0. du

l " ” ’ =e"”(—+bu)
7. 4" —2y +17y=0. 8. y"—3y"+3y —y=0. dz
9. y"+6y"+12y +8y=0.  10. y"+10y’+26y=0. =eniivhle
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Hence D?(ueb®) = D{e>= [(D + b) ul}
== (D+b)[(D+b)u]
=t (D +b)%u,
D3(ueb*) = D{ev* [(D + b)* u]}
=eb (D +b) [(D+b)*u]
=eb (D +b)%u,

and so on; and the result follows by simple substitution in the
polynomial operator L(D).

Note. To evaluate L(D +b), in practice, either of the forms
ag(D+b)"+ay(D+b)* 1 +... +a,
or ay(D+b—p) (D+b—py)... (D+b—p,)
may be used. The latter has advantages if the auxiliary equation
has been factorized previously.

We now proceed to the first step in the calculation of a particular
integral:
To prove that if, in the equation

L(D)y=f(x)e*,
the function y is written in the form
y =2,
then z satisfies the differential equation
L(D +b)z=f(x).
The proof follows from the Lemma; for, by it,
L(D)zeb* =¢* L(D + 1)z,
so that the equation becomes
ez L(D +b) z=f(x) e**,
or L(D +b) z=f(x).
InLusTrATION 8. To reduce the equation

Py oY o0 2) i
E—de+20y—(l+:c)e .
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The equation is
(D—4)(D—5)y=(1+a?) ez,

If y=ze%,
then, by the Lemma,

e (D—4+4)(D—5+4)z=(1+22) e,
go that D(D—-1)z=1+28,

d?z dz
or Ezn—d—x=1+x’.

IuLusTrATION 9. To reduce the equation

d¥y  dx
Ea-l- 4a§+4y=7e-“.

The equation is (D+2)2y="Te 2,

If Y=z,
then, by the Lemma,

€2 (D+2—2)2z="Te 2,

so that =T,
d*z
or a? =1,

In this simplg case, we can find a particular function z at once,

namely
’ z=3Fa2

Thus a particular solution of the given equation is

y=3ga% 22,

The next step is to devise a technique f ini i
: que for obtaining a particular
Integral of the simplified equation ¥

L(D+b)z=f(x)

Wwhen f(z) is a given polynomial. To do this, we enunciate, without
Proof, a general rule, but emphasize that, as we have already
Temarked, the actual process of calculation from that rule will of
ltself form the justification in any particular example. We give
& number of illustrations to show how the rule may be applied in
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such a way as to keep the working as economical as possible. (There
is danger of floundering among linear algebraic equations unless
the treatment is kept systematic.)

THE RULE* TO DETERMINE 2. If z satisfies the differential equation
LD +b)z=f(),

where f(x) is a polynomial of degree m and b is a k-fold root of the
auziliary equation L(p)=0, then there exists a particular solution

z=2¥(U+ Tz +... 4+ U, ;,2™)

for suitable values of the constants Uy, U, ..., Uy, 4.

The values of U, U,, ..., U, are to be found by substituting this
expression in the function L(D+b)z and identifying the result
with the given polynomial f(x).

The Illustrations which follow are of the standard of difficulty
which the student may expect at this stage, and show how the
coefficients U,, U, ..., U, , are obtained in practice.

ILLusTRATION 10. To find a particular integral of the equalion
Y _ s oy -2
d_x2_5dx+ﬁy_(7x+ 9)e22,

If y=ze"%,

the equation for z, namely,
L(D +b)z={(z),
gives {(D-2)2-5(D—2)+6}z=Tx+9,
or (D2—9D+20)z="Ta+9.
The polynomial 72+ 9 is of degree 1, and — 2 is a ‘0-ple’ root of

the auxiliary equation p®—5p+6=0. Hence we seek a particular
solution (with m=1, k=0) .

z=x°{U1+ ng)
= Ul+ ng.

* When k=m=0, corresponding to the eguation
L(D) y=ae*® (a constant),
aeb®
Y=L
can be written down at once. See the Corollary on pp. 43—4.

a particular solution (L(b)+0)
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Since then =0,

2"=0,
we require the identity

— 90U, + 20(U,; + Upz) =Tz +9,

or 20U0,=1,

200, — 97, =9.
Thus G=3 Ui=343.
Hence a particular integral is

y= (343 +ow) 2.

IrvustraTION 11. T'0 find @ particular integral of the equation
y . dy

If y=ze",
then the equation L(D +b) z=f(z) gives
{(D+0)*—3(D+b)+2}z=1,
or {D?+(26—3) D+ (b®*—3b+2)}z="1.

In order to apply the rule, we have to find the value of k; we know
that m =0, since 7 is a pure constant.
(i) Ifb1, b+ 2, then k=0, and so z is of the form

z=0,
and substitution gives at once the relation
(b*—3b+2)U, =1,
7

or LN SWEr S e
G b2-3b+2°

thl.ls y:-T_euz_._
b2—-3b42°

Cororrary. Identical treatment leads in the general case to the
SUBSIDIARY RULE, which is convenient in practice:
A particular solution of the equation

L(D)y =ae=,
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where b i8 NOT a root of the auziliary equation, 18
aeb®
Y=oy
This rule is very special, but worth remembering because of its
simplicity.
(ii) (2) If b=1, then k=1, and so z is of the form
g=al,

and substitution in the equation

(D2=D)alUy =1

gives the relation =U,=1,

so that z=—"Tz

and y= —Tze®.

(B) Ifb=2, then k=1, and so zis of the form
z=2U,

(for fresh Uj;), and substitution in the equation
(D*+ D)zU, =

gives the relation U,=1,

so that z=ly

and y=Txe™,

IuustrATION 12. To find a particular integral of the equation
Py _ o 2
b g a‘,m +2y=22%+4x+13.

(There is no exponential on the right-hand side, so the pre-
liminary step of removing it does not arise. Also the polynomial
222+ 4x+13 may, for the moment, be regarded in the form
(222 + 4 + 13) €+, with b interpreted as zero. But 0 is not a root
of the auxiliary equation, so that k=0 in the rule.)

Assume the existence of a particular integral in the form

y=U+Vz+ Wat,
Then y'=V+2Wz,
y'=2W.
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This value of y is a solution if (tabulating the summation in a form
which explains itself)
2y 2U +2Vzx +2Wa?
-3y’ | -3V —6Wx
y" 2W
=f)| 13 +4x +22° .

Equate coefficients of 22,  and the constant in turn. Hence
2W=2, or W=1;
—6W+2V=4, or V=5;
2W -8V +2U=13, or U=13.
Hence a particular integral is
13 + b + 22
IrcustraTION 13. T'0 find a particular integral of the equation

Y32 | oy=saten,

If Y=z,
then the equation L(D +b)z=f(xz) gives
{(D+2)2—-3(D+2)+2}z=3a?,
or (D?*+ D)z=322

(This equation may be integrated one stage at once, or the rule
may be applied directly. We choose the latter alternative, which
will be found to have definite advantages.)

Assume the existence of a particular integral in the form (with

E=D) z2=2(U+ Vx+ Wa?)

=Uz+ Va?+ Was.

Then 2'=U+2Va+3Wa?,
2"=2V +6Wa.
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This value of 2 is therefore a solution if
z | U+2Vz +3Wa?
{z"' 2V +6Wz
=f(x) 82,
Equating coefficients of 22, z, and the constant in turn, we have the
equalicos 3W=3, or W= 1;
2V+6W=0, or V=-3;
U+2V=0, or U= 6.
Hence a particular integral of the given equation is
(6 — 3z + %) €2,

ILLusTRATION 14, To find a particular integral of the equation

d¥y  dy LB ot
T d—£+13y_12a:e sin 3z.

The solution of this equation is the imaginary part of the solution
of the corresponding equation in which sin 3z is replaced by €%
We thus consider the equation

%— 4;—2-5- 13y = 12z¢3+302,
The auxiliary equation is
PP-4p+13=0,
or (p—2-3i)(p—2+3i)=0,
so that 2+ 3¢ is a simple root, and k=1.
If y =2e®4303,
then the equation L(D +b) =f(x) gives
{(D-2-3i)+(2+3)}{(D—2+3i)+(2 +3i)}z=12z,
or (D® + 6iD)z=12z.
Assume the existence of a particular integral in the form
z=z(U+ Vx)
=Uz+ Va2
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Then 2 =U+2Vz,
2" =2V,
This value of z is therefore a solution if
6iz' | 6iU +12iVx
{ A P
=f(z) | 122

Equating coefficients of « and constant, we have

12V =12, or V=-—3;

6U+2V=0, or U=4%.
Hence a particular integral of the given equation is
Fa(} —ix) €230z}
= JF{x(} —iz) € (cos 3z +isin 3x)}

=ze®® (4 sin 3z — x cos 3z).

TrLusTRATION 15. T'o solve the equation

oy d% Ay o _
Tt g O T =96 +1)e".

(This Mlustration is included to show how the full solution may
be set out in practice.)

The auxiliary equation is
PP+p?—-bp+3=0,
§r (p+3)(p—1)*=0,
5o that p=-311,
and the complementary function is
Ae32 4 (B +Cx) €.
For the particular integral, write
Yy =ze®.

Then (using the factorized form of the operator)

D+3+1)(D=1+1)2z2=96(x+1),
or (D3+4D?)z=96(z+1).
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Assume the existence of a particular integral in the form

=23(U+ V)
=Ux?+ Va?.
Then 2 =2Ux+3Va?,
2"'=2U +6Vz,
F=8YV.
This value of z is therefore a solution if
42" | 8U+24Va
fer] or
=f(x) | 96 + 96

Equating coefficients of z, constant, in turn, we have the equations
24V =96, or V=4;
8U +24=96, or U=0.
Hence the solution of the given equation is
y=Ae 3+ (B + Cx) e +x%* (9 + 4x).

For Examples on the work of §4, see Revision Examples XVII,
nos. 1-49 (pp. 556-57). Where particular conditions are given, work
out the general solution first.

5. Simultaneous differential equations. Without going into
great detail, we give illustrations to indicate the process of solving
two given linear differential equations with constant coefficients.
The first method is of limited application, but we begin with it in
order to emphasize the advantages of not turning blindly to the
more routine procedure of the second until alternatives have been
considered.

IrLusTRATION 16. To solve the simultaneous linear equations

d’:c
b + 4z +48y=10¢,

‘;y+8x —dy=5t.
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(The method which follows is applicable when the two equations
involve only oNE of the operators d/dt, d?/d?, d®[dE, ....)
Multiply the second equation by A and add to the first. Then

5dt3+5adsy+(4+s/1)x+(4s —4)) y=10¢' + 5L,

Choose A so that the coefficients of d%x/d¢® and dy/dt* are propor-
tional to those of x and y; thus

5 _4+8A

5A 48—4A°
. 1 _1+2A
3 Yk | 7
Hence 224+ A=12—-A,
or A2+ A—6=0,
so that A=2 or -3.

(i) Take A=2; then

5(dt= +2day) + 20(z + 2y) = 10¢! + 10¢.

dts
Writing z+2y=u,
we have %4. 4 =2et + 2t.

Using methods with which the reader is now familiar, we have
u=A cos 2t + Bsin 2t + §e' + }i.
(ii) Take A= —3; then

ﬁ(diz 3d’y) —20(z — 3y) = 10e! — 15t.

ar " di
Writing z—3y=v,
we have %;: —4v=2¢ -3,
8o that v="Pe¥+Qe¥—2e'+ 3.

(Note, as a trivial point, that we have avoided the letters C, D
for arbitrary constants so that no confusion may arise with the use
of D as an operator.)

4 MIV
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We have therefore reached the equations
Z+2y=A cos 2t + Bsin 2t + §¢/ + §t,
2—3y=Pe¥ + Qe ¥ -3¢+ 34,
which, when solved for z, y, give the result
x =34 cos 2t + § Bsin 2t + §Pe¥ + £Qe ¥ — Aol + 3,
y=%A cos 2t + 1 Bsin 2t — } Pe¥ — 1Qe~% + }fe! — .
IrnustraTION 17. T'0 solve the simultaneous linear equations

d?x
Bd?+4x+48y=103‘,

d
5%+8&:-— 4y =5t,

(These are the equations solved in the preceding Illustration.
The procedure is more general, and can be applied to most of the
equations likely to be met.)

In terms of the operator D, the equations are

(6D2 + 4) x + 48y = 10¢,
8z + (5D%—4) y =bt.
The method is very similar to that used for solving ordinary alge-
braic equations, save that we eliminate by operators and not by
multiplication:
Eliminate y by operating on the first equation by 5D® — 4 and the

second by 48 (in this particular case a numerical multiplier only)
and subtracting. Thus

{(5D*—4) (5D* + 4) — 48.8} 2= 10(5D% — 4) ¢ — 48 5t,

or (25.D% — 400) = 10¢! — 2408,
or (DA —16) =2t —28¢,

Following the normal rules, we have the solution
o= A cos 2t + Bsin 2t + Pe¥ 4+ Qe — el + 1.

Two courses are now possible, and we illustrate each in turn:
(i) Eliminate z by operating on the second equation by (5D + 4)
and the first by 8 and subtracting. Thus

{(5D*+4) (5D*—4)—8.48} y = (5D%+ 4) 5t — 8. 10¢!,
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or ' (25D% — 400) y = 20t — 80¢,
or (D‘—IG)y:%’-t—l‘B—é.

Hence y=A"cos2t+ B'sin2t+ P'e¥+Q'e~%— Lt 4184,

This solution involves eight arbitrary constants, and we cannot
be sure without further investigation that they are independent.
It is mecessary when using this method to check the proposed values
in one of the given equations:

Substituting in the first of the given equations, we obtain the
relation

5(—44 cos2t—4B sin 2t + 4Pe? + 4Qe~2% — 2 ¢f)
+4( A cos2t+ Bsin2+4 Pe?4 Qe¥— 2+ 3t)
+48( A'cos2t+ B'sin2i+Ple¥+ Q'e¥418e!—Lit)=10¢.

Equating the coefficients of cos 2¢, sin 2¢, ¥, e~ in turn (and
checking that the other terms cancel automatically) we have

—164 +484’ =0,
—16B+48B' =0,
24P +48P'=0,
24Q +48Q"' =0,
sothat A'=314, B'=}B, P'=-}P, Q'=-1Q.
The solution is thus
z= Acos2l+ Bsin2t+ Pe¥+ Qe%—.2e 43,
y =134 cos 2t + § Bsin 2t — § Pe¥ — JQe~¥ + 1 8ef — L.

(ii) The value of y may be obtained directly from the first of the
given equations. (But this method, again, is limited in scope to
equations for which such a solution is possible.) Thus, from the
first of the given equations,

48y = — 5( — 44 cos 2t — 4B sin 2t + 4Pe¥ 4+ 4Qe~% — 2el)
—4( Acos2t+ Bsin2+ Pe¥+ Qe~¥—Zef+3)

+ 10¢,
80 that
y=14 0082+ }Bsin 24— }Pe¥ — Qe+ 1 — Jot.
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Nore. We might have anticipated that the number of arbitrary
constants would be four, as the two second-order differential
coefficients d2x/dt?, d%y/dt® had to be ‘integrated’ in the process of
solution. We managed to reduce the number from the initial eight
to four by substitution in the first of the given equations; we might
equally well have used the second, or, if necessary, both.

For Examples on the work of § 5, see Revision Examples XVII,

nos. 50-65 (pp. 57-59).

6. The Euler linear equation. Closely allied to the linear
differential equation with constant coefficients is the equation

"y L9y
dxn—1

dx™
where ag, a4, ..., a,_,, @, are constants.

One or two methods of solution are available, but reduction to the
‘constant coefficients’ type will probably be found as useful as

any. For this we make the substitution
z=¢,

dy 2dﬁy : dy dzy
and then seek‘boexpressmdm,x e TR .. as functions Ofdt P g

By direct differentiation, we have the relation

dy
#ee +“n—1xdx+“ny Q(-’ﬂ),

Q2" ——+ay ™

dy dydx dyet
dt dx di
S RICPAEEY
=a:2:::;+m——

For equations of the second order, such as are most common at
this stage, this analysis suffices, and we have the identities

dy _dy
T d’
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reducing the given equation

d d
052 Y+ a2 W 4 0y = Q)

dy

d
to the form % gzt (“1-°o)d—?:+a'ay=Q(e’),

with which we have already learned to deal.
For equations of higher order, we may establish the more
general formula:
1f D is written for the operation d|dt, then
dr
deT‘Z=D(D 1)(D—2)...(D—p+1)y.
This is easily verified by induction. For

d( dPy) ( i PR di-"y)dx

ai\? dap) =\ g1 dz>) di
drily dry
= G TP g

since dx[dt =e!=2. Hence
+1
xp'!'l é_p_% = D(xp d....p_.!_.;) - P(zp d_.p_y)

=(D—p)(mpd?).

1Y _ (D) D(D-1)...(D-p+1)y
=DD-1)... D—p+1)(D-p)y,

and so it is true for p + 1. But we have proved it for p =1; hence it
holds for p=2, 3, 4, ..., and so generally.

IrrusTrATION 18. T'0 solve the equation
x:-= ey 2xdy

aa b +2y=2logz.
Substitute z=¢.
Th - _%
en dx dt’
2%y __dy
2 di2 dt’
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and the equation becomes

Py _qdy
- dt+2y—2t

The solution of the equation in ¢ is
y=Aé'+ Be? +t +3,

where A, B are arbitrary constants. Hence the solution of the
given equation is y=Az+ B +logz+3.

Auirer. The following alternative solution gives another
example of the method of Variation of Parameters.

The equation > a2y - dy

dx

may be expected to have a solution of the form

+2y=0

y=ax",
y"=n(n—1)ax"2,
and substitution gives the relation
n(n— 1) az" — 2naz™ + 2ax™ = 0,
or (n?—3n+2)ax™=0.

This is satisfied when n=1 or n=2.
Taking n = 1, consider the solution y =az. Make the substitution
y=zx
in the given equation. Then
y'=z':t+z, yl=zﬂx+2z!’

for then ¢’ =naz™1,

and the equation becomes
(2"2® + 22'2%) — 2(z'2® + 22) + 222 = 2log =,

or £ =2z"%log .

Hence z'=-—z%logx+ _[a:—ﬂ .z 'dx + constant
=—atlogz—3a2+ 4,

so that z=a2"'logz— [¢~!.27dx + }a~! + Az + constant
=z llogz+3x'+ Az +B.

Thus y=z2x=logz+3+ Ax*+ Bx.

For Examples on the work of § 6, see Revision Examples XVII,

nos. 66-72 (p. 59).
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REVISION EXAMPLES XVII
Solve the differential equations:

L d2y+4d—x+13y sin 3z, where =0 when =0 and }=.
d*y
2, dxz+3d~z+2y—a:e-¢.
d¥y _d d;
3. d—;;+5d—i+6y=ez’,wherey=0,d—z=lwhen:r=0.
d
4. d%——n‘y=e"”. d“y + by =e~%2,
d;
6. % d5;+y sinz, where y = O,j =1 when z=0.
d
7. ;‘z-ﬁy 2 cos?z, where y = O,fl——Owhenz 0.
d
8. d—;—%+4dy + By =sin 2. 9. dﬂy +4y 2cos?z.
d;
10. g+5 y+6y e® (z+ 1), where y= l,g—x=0whenx 0.
11. g-%— d:"+10y 20— e,
d
12, PV %, _dy _
2 d:c*+6 + 9y =27z, where y ;7 0 when z=0.

By dy d d
18 =% 2%{ ) -2y=12sin2— 4z, where y=2, Z=s,

d
d%'—' —4 when z=0.

dy _dy
14. 475—8" —by="0ae".

d d 2
185. sy+2 y+2y=55mx, where y= 0,d—z=0whenx 0.
d . d
16. —ig—y=a:amh:r. 17, ay dly+4y=€”81n=&'
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18 dﬁy_]_ed + 9y =sinz, where y=1 d—y—OWhena: 0.

T dat T dx Tdx
19 d*y +2y ¢<, where y=0 ——Owhenx 0.
g da: " dx
2
20. d—x=-—n’(x—§ft3),wherex a,d—x—ﬂwhent 0.
dt? dt
21. i;+2kdm+n2z 0 (n> k), where 2= a,%=0whent 0.
22. %-%=e‘*,wherey=0when =0, and wherey is positive
for all other values of = (positive or negative).
d¥y _dy g
23. @+2£+y=e"‘sm’z.
PY_ W o
24, T dz+5y—:n + cos 2z.
&y —0.%_ =
25. F dx+y sinz, where y = ,d—z—Owhenx—O.
d*y dy _
26. dx’+y sinz, where y = OE—Owhena:-O
dy _,dy dy _ i
21. Tai dx+2y %, where y = 3’d—:c 3 when 2=0.
d’y
28. —y=1, where y=0 when =0 and where y tends to a

finite hmlt. as x—>—00.

29. @-@+%—y 0. 30. %+2?§+17x=5sin4t.

31 23;‘2 3dy+y-—e‘, given that y=1 when z=0, and that
y=0 when z=1.

32. g+6i+9y =z. 33. tg_y +3y sinz.

34. d’y +8y=1+sinz cos z.

REVISION EXAMPLES XVII b7

dy 1,9

36. Y1 9% | 8y 0083, 36. 474127

d " % d
37. @_5@

= zel=,
+6y 5(sin 2 — cos z).
d d
38. d::!: +2y 22212, 39, d;z+3§‘:—x+x’
40. diy +4y o,

d
41, dg dx+25y 104¢%*, given that y=2 when =0, and
that y =0 when z=4m.
d
42, d:g+y COs . 43. §Z+5 + 6y =e~2%gin 22,
dly o9
44, dx‘ d 5+ y=xsinz+ cos?x.
d
45, d::+2 —+y=x+e" 46. %+a’%=4¢cosm
Py _ 8% _ oW
47, T 23— dx+20y =ge®+ 2e~sin g,
48, dzy+4y=8xooszx+2am2a:
dy ooy dy. .,
49, e E—d—z+2y_l2(m+eoshx).

Solve the simultaneous differential equations:

dx  dy
50. S5 - +4-24+3x=
0 ] +4 ] 3x=3t+3,

dz dy
E——+&y 6f—3,

where =0, y =0 when {=0. Show that z=2¢-1—1 when t=1 and
find the corresponding value of y.

dx dy -
. d! —--32? e -d—t—a—2y=e“
where 2 =0, y =0 when ¢ =0.

51
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dz dy N o Ly dheodly o0 oy
52, — +y—z=cost, & +z—x=t, 61. b7 —y=e%, 2F___.§._3_4e :
dor d% dy
d —_——— = R = =
% z—y=0, where z=—=—5=0, 6 when ¢ =0.

d*x d”y d*x
where 2=1, y=4%, 2=1 when =0. 62. et — 3z + y=sinht, == =sin (£.,/3).
dx dy -2 dz dy .,
53. dt+z+2dt+y 6te dt+df, 4y =0, 63. % ?g —2y+3x=0, ‘%+%_ez+4y=_

where y=—12, =17 91'—=0whent 0.

where =1, d—f= —8 when¢=0.
dt ¥

| iz i &z dy d‘y dz
| 54. ?;:"’“"’i +y=t, 3;+3m+2ay+y=3t- Nt ek g =,
d% _d dy _de
dz _d 4 =
85. 2%4—3%—3::—23/:4, 4dt+3cg dz— 3y =e¥, 85. o +27i— —x+sint=0, g2 — 2 Y —cost=0.

where =1, y=0 when {=0. Solve the differential equations:

. i W | ar= 66. 222 4 2% Y o youa
56. E-ay=sma£ (a=0), j&“'kaﬂ?—cosatn - dxs"'x +y z. 87. 3’ 2xda:+2y 28

where 2=z, y =y, when { =0, 68. ﬁ@—ndy+@y )

da?

d*x dy dz
67, b= + 2z =4 cost, 3— +y=_8tcost,
et at St 69. 323:+8a:d +12y=2-%logz + 252,
dx
where =1, — =0 when {=0. d% dy
P — =
dt 70. 25— %o +y=at.

dx _dz dy ro— dz __ dy i
58. F+3-&-—2z+§-*3y—2c : 2dt w+d,t 2y=0, 71 xg@_%d_y
. dzz dﬂ:

d*y
dxz?

+2y=xseosx.

where z=0, j—a;=0, y=4 when ¢=0.

dy d
59. 231%—-5—@ 22,

72. xsd’y

+ 222 = +3m —3y="Ta2%

d

dy
dx+4£—32 0,

Solve the simultaneous differential equations:

dy £ d*x dx dy dy  dx
where y= I,dx_g z=—7 when z=0. 73. tEt atz =1, t-&-i—~4t5+7a:+2y=t.
d’y dx d’y dx  dy d¥y dx
00 G +2 0 =2y—%0-1, Pl A ol e 5 o i et
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75. Show that, provided p? > 4¢, the differential equation

d2y+(p+l)z—+qy 0

has, for > 0, two distinct solutions of the form y=a¢, where ¢ is
real. Hence write down the general solution.
Find the solution of the equation

dzy 6
PP e

where y=1 when =1, and where y — 0 as x —+o0.

76. Transform the equation
dzy —(1-3)% +y=0

by putting z=1/t, y =ute™.
Hence, or otherwise, find a solution which remains finite when
z tends to infinity

i di £ flz)=¢(z) cosz + () sinz,
9(@)=Y() cosz— $(z)sinz,

where ¢(z), Y(z) are differentiable functions, express ¢'(z), ¥'(z)

in terms of f(2), f'(2), 9(=), ¢'(2)-
Deduce that every function satisfying the relation

I"(@)= —f(@)
throughout a range a <z <b is (in that range) of the form
Lcosz+ M sinz,

where L, M are constants.
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CHAPTER XXII

THE LINEAR DIFFERENTIAL EQUATION
WITH CONSTANT COEFFICIENTS;
ALTERNATIVE METHOD

1. The linear equation of the first order. We begin by
retracing the argument to consider the equation

ji’ —-py=0Q(x),

where p is constant and () is a function of # only. Multiplying
by e?* as an integrating factor, we obtain the equation in the form

672 perey=Qa) v,

or ye) = Q(a) 7=,

7'
If we integrate from an arbitrary lower limit @, and denote the

current variable of integration by the letter £, we obtain a solution
of the equation in the form (compare Volume 1, p. 85)

[v0e=] - [ ey era,

or | y(x)eP*—y(a)ePi= f: Q(t) e~ dt.

Hence y(x)=yla) el’(“"‘“)+J‘:‘c Q(t) er=-dt,

where, it will be remembered,  is constant for the purposes of the
integration on the right-hand side.

Since the constant a is arbitrary, this solution is exhibited in
standard form with y(a) e¥e—

as complementary function and

J' ® Q(t) eveat

as particular integral. We have found on the way the special solu-
tion which arises if y has a given value y(a) when z=a.
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In particular, the solution which satisfies the condition

y=0 when z=a
18 yr=-"z Q(t) erE dt.
The usefulness of this form of solution depends on our ability

to produce a ‘calculus’ for the function rQ(t) ere-dt as con-

venient to manipulate as the alternatives given in the preceding
chapter. This will appear later, but we first extend the result to
equations of higher order.

IrLustrATION 1. To solve the equation

%~2y=e"’sinm,

given that y =3 when x=}m.
The equation is
7 (ye—2%) =sinz.

Integrate from 3= to z, and denote the current variable of integra-
tion by the letter {. Then

[see=], [ -]

or y(x)e 2 —3e "= —cosz,

so that y =327 — % cos .

2. The linear equation of the second order; auxiliary
roots unequal. If p, ¢ are the roots of the auxiliary equation,
then the given equation can be expressed in the form

%—(p+q)z—z+m=<&(x)-

We assume that p, ¢ are unequal. It is also supposed that the values
of y, ¥’ are known when 2 has the value a; say
Y=y, ¥ =y when =z=a.
The given equation is equivalent to
(D-p) (D-9)y=0Q(),

and, if we write (PD—q)y=wu,

AUXILIARY ROOTS UNEQUAL

then the function u(x) satisfies the linear equation
du
o —pu=Q(@).

Hence, by the preceding paragraph,

u(x) = u(a) ePE—a) +fz Q(t) ere-Hdt
on taking as the lower limit of integration the value a, for which
y, ¥’ are known. Since

u(a)=y'(a) —qy(a),
this solution is
x
i) = 03— qu) =0+ [ QO eve-oae
a
Thus, by definition of u(z),

x
Y —qy=(y1—qy,) &9 +J‘ Q(t) ereNdt.
a

The whole argument may be repeated with the roles of p, ¢
interchanged, and this leads to the relation

Y —py=(y1—pY) em-"’+f: Q(t) ea=—0dt,

The value of y is obtained at once by subtracting these two
equations and then dividing by p — ¢, which is not zero.
In particular, the solution which satisfies the conditions

y=0, y'=0 when z=a
1

4 l 2 -
VLS T —,
. p—qLQ(t)W )qu—pLQ(t)mﬁod‘

=1ﬁ f :{ep‘z—‘)-—e“'“”}Q(t) dt.

CororrLary. Since we know in any case that the complementary

fun . .
ction is Aeve 4 Bew,

the general solution of the given equation may be expressed in the
form (with lower limit zero for the particular integral)

y =AeP® + Bew® +p%gf: {epe—) — gua—01 Q(t) di.
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ILLustrATION 2. To solve the differential equation

&y _d
T 5% 1 oy=azee,

given that y=1, y' =2 when =0.

We follow the details of the solution given in the text. A more
condensed treatment will be given in the next illustration.

The auxiliary equation is

p*—bp+6=0,
with roots 2 and 3, and the given equation is
(D—=2)(D-3)y=uwe".

Write (D-3)y=u;
then the given equation is
(D—2)u=xze?,

z
and the solution is u=wuye*+ J‘ tef X0t
0

£
=1, e“+e*‘J. tetdt
0

=uoe*‘+e’-"[—(l+t)e4]z.
0
Hence Y —3y=(yo—3yo) ¥ +e**{—(1+2)e*+1}
=(2-3)e*—(1+x)e*+e*
in virtue of the given conditions, It follows that
Yy —3y=—(1+z)e*

(This equation may now be integrated by the same method; but,

to illustrate the text, we make a fresh start.)

Next write (D-2)y=wv;

then the given equation is
(D-3)v=ze,
and the solution is

T
v=0,e% +J. tef 3= di
0

T
=voe3‘"+ea‘"f te=%dt
0

£d
=voe”=+es-"|:——i(l+2t) e—”] :
0
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Hence  y'—2y=(yo—2y,)e*+e*{—}(1+22)e>+}}

=(2-2)e® - }(1+20) e + e

=}e— }(1+22)e®. -

Subtracting the equation for y’'—3y from the equation for
¥’ — 2y, we obtain the required solution

y=1e—}(1+22)e*+ (1 +x)e®
=}e% 4+ }(3 + 2x) €2,
ILLusTRATION 3. To solve the differential equation

da‘" d’-"+2y 3a%e,

This equation was solved on p. 45, and the two methods should
be compared.

Taking p=2, g=1 in the formula
e R et L
we obtain the particular integral
y= J' RGeS L

-=e==rst=dt—e=r3t=efdc
0 0

=e% [ﬁ]: ol [(3t’— 6t + 6) e':l:

=3¢ — (32% — 6z + 6) e2* + Ge*
= (2% — 322 + 62 — 6) ¢2* + 6=

The general solution, on absorbing the terms —6e2* and + 6e*
into the arbitrary constants of the complementary function, is

y=Ae** + Be® + (2° — 322 + 6x) e22,
InrusTraTION 4. To solve the differential equation

d¥y _dy ‘3 when z<l1,

——3dz+2y_ 7 when z>1,

under the conditions
y=y'=0 when z=-1.

5 MIV
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This is the usual form of wording for such problems. It is implicit
that y and y’ are to be regarded as continuous functions, but note
that y” does not then exist at the actual ‘break’ since its values are
different for approach along 2 <1 and > 1.

Taking p=2, ¢=1, we have the solution

y=J" (e — 0} Q(t) e,
3

3 when z<l,
7 when z>1.

where Qt)= {
When z < 1, the solution is

ol f zl 362~ — g} dt,

since @(f) =3 in that range. Hence

Y11= “'Eeu[ i ] 1+3e1’[r ]

= —3e% (e —¢?) + 3e" (¢ “ —e)
=_§ea(a:+1)_ e‘”’”‘l‘i-

When z > 1, we must split up the interval of integration; thus

1 z
Yz1= J-—l 3{3%"‘_0 = e(:c-!)} dt+17 J; {G%‘—n - e@—"} di

P T L ot I:_]z z
B bt P4 £ 1 g R

= —Jer(e2—e?) + 3% (e —e) — ¥ (e —e %) + Te* (e —e7))
=2 (2672 +3¢?) — e (d¢71 + 3€) + §.

Nore. The method which we are elaborating is particularly
useful when Q(x) has the form exhibited in this illustration. It
may be helpful to give a solution by the earlier method also.

When z < 1, the solution assumes the form

y=Ae* + Be* +§,

where, from the condition ‘y=y'=0 when z= —-1’,
0=Ae 2+ Be'+3,
0=24e¢2+ Be ™,

AUXILIARY ROOTS COMPLEX
Hence Ae?=%, Bel=-—

so that y=3ee*—3ee”+ %
= §e2@+D) — 3o+ 4 §,
When 2 > 1, the solution is
y=Pe*+Qe*+1,

where the arbitrary constants may be expected to be different
from those for the case z < 1.

In order to find P and @, observe that, since (p. 66) the functions
y and y’ are to be taken as continuous,

Pe®+Qe+F=3et—3e2+3,
2Pe?+ Qe  =3e¢*— 3¢l
Subtracting, we have
Pe—j=je-4,
or P=3e?+2¢2,
Hence Q= —(3e+4e).
The solution for > 1 is therefore
y=(3¢*+2¢%) e — (3e+de ) e+ 1.

3. The linear equation of the second order; auxiliary
roots complex. If the given equation is

d
wo%+ald~g+a=y=0(x).

the auxiliary equation is
@yp*+a,p+a,=0,

and we suppose that the auxiliary roots are the complex numbers
o +¢f, where

200= —a,/a,,
al+fi=  ayla,
A particular solution, namely, that for which

y=0, y¥'=0 when z=a,
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is, by the preceding paragraph,

1 f
y= %7 J‘ . {elatiPa—d _ ga—if@—} Q(t) dt

COROLLARY.

=%,J‘:e“‘”-°sinﬂ(x— 1) Q(t) dt.
The solution of the equation

29 +nty=Q)

which satisfies the conditions

4. The linear equation of the second order; auxiliary roots
equal. When the roots of the auxiliary equation are equal, the

y=0, y'=0 when z=a,

y=ﬂ:sinn(z-:m(z)d¢.

given equation can be expressed in the form

We suppose, as before, that a particular solution is sought for

which

Writing

Y 2% 4 py=Qeo).

y=0, y'=0 when z=a.

D-ply=u,

we have the equation (D—p)u=0Q(x),

so that

. f ® Q(t) v s,

The equation for y is therefore

where

and so

(D-p)y=R(),
R(z)= f “Qyeo,

§o f * R(t) epedt

—epe f “R(t) e dt.

AUXILIARY ROOTS EQUAL

In order to obtain a more convenient form, not involving

repeated integration, we integrate by parts the expression
Jzﬂ(t) e dt,
a

giving [tR(t) e-ﬂ]z— f "R (t) e-2 — pR(t) P dt.
But R(t)= '[ “0(6) -0 a6

—ent f ‘06) e do,

so that
(i) B(a)=0,
t
(ii) R'(t)=pe” J' Q(0) 2 0 + ¥ Q(t) et
a
=pR(t) + Q).
x z
Hence '[ R(t)e P dt=xR(x)e P —J tQ(t) e~ Pt dt
a a
= e J' *Q(t) eredt — f *1Q(t) e-mtdt
a a
=J"' (z—1) Q(t) e dt.
a
We therefore have the particular integral in the simple form
y=L (2 —1t) Q(t) er=—hdt.
IrrusTRATION 5. To solve the differential equation
&y _ W 2
T 4, =120,
The particular solution such that
y=0, y'=0 when z=0

Y =f: 12(z —t) t2e¥ 2=t
=e3=f: 12(at® — %) dt
=e¥ [4xt' - 3:‘]’
=g, E

Hence the general solution is
y=(4 + Bzx) ¢** + xte?2,
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5. The evaluation of .r Q(r) e?*—0 dt. If the method indi-

cated in this chapter is to be helpful, means must be found for the
ready evaluation of the expression

J “Q) e,

a

The integral is capable of any degree of complexity according to
the form of Q(z) and, in the last resort, its evaluation must follow
the customary processes for definite integration. In normal cases,
however, when Q(¢) is of the type studied in the preceding chapter,
the work is relatively easy.

If Q(¢) is an exponential, or reducible to exponential form (as for
sines and cosines), the integration is immediate. There is also a
simple rule which is convenient when Q(t) is a polynomial, possibly
residual to an exponential function; say

Q(t)=e*f(t),
where f(t) is a polynomial of degree m. We have then to evaluate
J.a= ek f(t) er=dt,
a
or evz f *f(t) c-»tds,
a
Consider, then, the expression

[roea o=i-p.

By continued integration by parts, we have
zﬁd l—r“'z lz’gﬁdt

e Eal o

) i o | | ¥

sl fet ] —=ZPpatl 2] et
e -alre [+ a e

LAl s

INTEGRATION OF Q(f)er&—9 71

and so on. The process ultimately stops, since f™+? vanishes
identically, so that

J‘:feﬁﬂ:;em{f(m)_-@ +f;r(;“)'—...+(—)""'f(::£x)}

—rolr@-TRLL o ),

Hence the expressionj Q(t) er=0dt may be found from the formula
a

J.z Q(t) er=dt Er ekt f(t) er@ dt
=%ekz[f(”)_ﬂ?")*'%?')—..ﬁ(—)“ﬂ—ﬁx)]

1 % Gi m
_;epzﬂk-p)a{f(a) _f+a) +-@_ ek (=)m -ﬂ_r:j“_)},
where r=Fk—p.

ILLUSTRATION 6. To solve the equation

d¥y _d.
d;’; 5dz+@y=x4eh,

given that y=0, y'=0 when x2=0.
The solution is fz {e¥20) — 20} t4e¥ g,
0

For fo em-’)t‘e“dt, we have p=3, k=2, so that its value is
493 " 1222 24w + 24
(=1) (—1)3 (=1) (-1)“}

12 02 24,0 24
(- 1) (-1 (—1)’+(—1)‘}’
or — 2% (af + da® + 1222 + 24z + 24) + 24652,

—l.e%{x‘—

syl 1)esz{

The value of L e*=iie? dt may be obtained directly, namely,

z
e"'-‘f t4dt = Lale2=,
0
In all, then,
y= —e¥ (la® + 28 + 40 + 1222 + 242+ 24) + 2477,
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Nore. We have confined ourselves to equations of the second
order, but the work can be extended if desired. The algebraic
manipulations have to be varied at some points in the extensions.

EXAMPLES I

Any of the second-order equations given in the preceding chapter
may be solved by these methods. The examples which follow are
directed more specifically towards this form of solution.

1. Prove that the solution of the differential equation

j—z +ay=f(x) (a constant),

which vanishes at =0, is
Y =r' e~a—0f(t)dt.
0

Tllustrate this result by considering the case in which a=2 and

0 (x<1),
fle)=1z-1 (1<2<2),
1 (2<z).

2. Verify by substitution, or otherwise, that
y= ._._l._ {e-a(z—f)_e—b(z—i)} ft)at
is the solution of

&y W\ aby=
s (a+Db) dx+aby =f(z) (a, b unequal constants),

for which y= Od—-Owhena: 0.

*da
Deduce that the solution of
Py W30y,
1 (0<=z< 135
where flx)= {0 (otharwise),

EXAMPLES I

d.
that satisfies y =0, dZ- 0 when z=0 is given by

-1

— —52
ye——d

for values of z greater than 1.
3. Solve the differential equation

3y+2ady+a’-y 1 (a constant, a+0),

d;
where y=£=0 when ¢=0. Show that the maximum value ofg—f

occurs when ¢=1/a.
Two functions f(t), ¢(t) are connected by the equation

2+ 23 arp—g.
0 (t<0),
$0O)={1 (0<t<ty),
0 (t>1t),
and f and :—g are zero for £<0 and are continuous at the discon-
tinuities of ¢, show that, for ¢ > ¢,,

e—at
1O =S5 (e (1+at—aty) (1 +at)).
4. Verify that, if the function f(x) is continuous for > 0, then

T
v=["@-0éti0@ @>0)
is the solution of the equation

d
’y dm+y_f(x):

for which y =0, %=0 when z=1.
Find the solution of the equation
d’y d
o= Mg U=,

valid for z > 0, for which y=0, g—i-——o when z=1.




74 CONSTANT COEFFICIENTS: ALTERNATIVE METHOD
1= %
6. If y=ifof(t)mn(x—t)dt,

where n is constant, verify that

jz_;ﬂy s nzy =f($)v

and that y=g—z=0whenx=0.

Hence, or otherwise, find the solution of the differential equation
d*y

E,+y=seex,

such that y=a, %—i= b when z=0.
6. The electron-density N in a certain ionized gas varies with
time ¢ in accordance with the equation

dN
E"}“G’.N—I,

where a=A/t for ¢ > 0, and where

o t>T,
A, s, T being real positive constants. If N =0 when {=0, evaluate
N for t=1T, and show that when ¢ > T the electron-density is

pTA+8-A
A+2)(A+3)

7. The electric current I through a coil of resistance R and
inductance L satisfies the differential equation

dI
RI+Lo =7V,

where V is the potential difference between the two ends of the
coil. A potential difference ¥V =asin wt is applied to the coil from the
time ¢ =0 to the time ¢ =7/w, where a and w are positive constants.
The current is zero at ¢=0, and ¥ is zero after {=7/w. Calculate
the current at any time, both before and after { =7/w.

SECTION 2

THE DEFINITION OF FUNCTIONS BY
INFINITE SERIES AND INTEGRALS

The functions which we have already met may be summarized
briefly. They are the powers of z and combinations of them such
as polynomials and rational functions, the trigonometric functions,
the logarithmic and exponential functions, and the hyperbolic
functions.

The list is substantial, but it forms only a beginning, and many
other functions remain for our attention. The work of this section
is directed towards the setting-up of certain basic techniques which
enable necessary extensions to be made. The question that we pose
is less “What particular functions are there at my disposal?’ than
‘How can I set about to find such functions when I need them?’
The results are all well established, and it is hoped that the pre-
sentation will enable the student to see some ways of extending
his mathematical vocabulary while at the same time absorbing
standard information.

The plan of these four volumes has been to present Calculus in
the spirit of Analysis, but without detailed examination of the
properties which belong essentially to the latter. It is natural that
analytical ideas should become increasingly pressing as we approach
the later stages, and it seems wise to insert a section now on
convergence and similar topics lest the processes which form our
main theme later should be treated on a purely mechanical basis.
As in the book as a whole, however, so here also we shall try to
clarify the guiding principles rather than to establish the wealth
of detail which the serious student of Analysis must always require.




CHAPTER XXIII
THE CONVERGENCE OF SERIES

1. Sequences and series. By a SEQUENCE we mean an array
‘1, 8,, 3',

of given numbers, real or complex, written in an assigned order;
the rth term is denoted by s,. The terms of the sequence are often
formed according to some definite algebraic rule, like the sequence

G A g ]
2. st 6n 28 T
whose rth term is (r3+1)~1. If the sequence terminates, say after

n terms, we close the enunciation by inserting the last term; for

example
P &5 095 By eeay A

When there is any room for doubt about the pattern, a ‘general
term’ is written:
bedecdsd !
SR R TN Rl Y T L s
A SERIES is a sum of terms, often, in work at the present level,
formed according to a definite algebraic rule. Familiar examples
are the arithmetic series
a+(a+d)+(a+2d)+...,
whose rth term is @ + (r— 1)d, and the geometric series
a+at+at®+...,
whose rth term is at™1,
We usually adopt the notation

Uy + Uy + Uy F ..
for a series, and denote the sum of the first # terms by the symbol

8,
e 90 S5 =ty + Uy + ...+,

The PARTIAL SUMS  8;, 8, S5 ...

formthesequenoe
Uy, u’1+u23 ﬂ1+ug+u3, sane
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2. Limits and convergence. It mayhappen that, asr increases,
the terms of a sequence

81, 8y B35 ey 8ps

approach some definite LiMiT s. This idea has been considered in
Volume 1, but is repeated for convenience: the sequence s;, 8g, 83, ---
approaches a number s as a limit if, given a positive number €, however
small,* a number N (depending on €) can be foundt so that

|s,—s|<e

whenever r> N. We write  lim s,=¢

row
or 8,8 as r-»>o.
If, in particular, the sequence
B 8 B o & e
of partial sums of the series
Uy +Ug+ U+ .o+ U A

tends to a limit S, we say that the series CONVERGES TO THE SUM S,

and we write ©
g=F.
1
A series which does not converge is said to DIVERGE.
If a series Uy +Ug+Ug+ oon

is convergent, so also is the series found by omitting any given
finite number of terms from the beginning. When the number
omitted is n, the resulting series is called THE REMAINDER SERIES
AFTER 7 TERMS and (in the case of convergence) is denoted by the
symbol R,, so that

B, =tUpyyt+ Upia+ Upygtooes
Thus 8= (uy+ g+ ... +U,) + (Uppq + Up o+ )
=8,+R,.

* We shall contract this phrase to ‘given &',
+ We shall denote this dependence by the notation
N=N(e),
with similar alternatives.
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The sum of the first p terms of the remainder series
Up i1t Uppgt+ Uizt oo
(whether convergent or not), is denoted by the symbol B, ,, so that
Ry = Uiy Ugg+ oo+ Uy

Consideration of the values assumed by R, for varying values
of n leads to the important result that, if the given series is convergent,

e lim R, =0.

For, given e, we can find a number N(e) such that
|8—-8,|<e

for all » exceeding N. Hence
| R, | <e.

3. The addition of convergent series. When two series
U+ Uyt Uzt ey
Vy+ Vot Vgt .

are given, we often wish to add them or to perform other similar
processes, such as, say, subtraction, which is merely addition with
the sign changed. The theorem which follows justifies the process
of term-by-term addition:
If the two sequences U,, V, converge to values U, V respectively,
then the sequence U, +V,, converges, and its sum is U + V.
Given ¢, there is a number M (¢) such that
| = Un I < 4}6
whenever n> M; and a number N(e) such that
REARS

whenever n>N. If K is a number greater than both 3 and N,
then, whenever n > K, we have the inequality

[(U+ V)= (U, +V,) | <|U=T, | +| V-V,]
<éE.

Hence, by definition of convergence, the sequence (U, +7,) con-
verges, and its sum is U+ V.
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In particular, the theorem is true when U,, ¥, are the partial

ums of the series
3 Uy Ug+ g+ oeny

vy + Vg F Vgt ...

That is, if the two series converge, to sums U and V respectively,

then the series (% +0y) + (Ug + ) + (ug +vg) + ..

also converges, to sum U+ V.
As a direct corollary of the last result we prove the theorem:
If a series 4ty b Vg s

8 convergent, then u, -0 as n—> 0.
Since the series converges, then, denoting the partial sums by
U,, U, Us, ... and their limit by U, we have the relation
U,-U.
It is equally true that u,,-»U.
But the limit of the difference U, —U,_, is the difference of the
limits U — U, so that
U, —> 0.

It may be helpful to add the warning that the convergence of a
sum does not imply the convergence of its constituents. For ex-

ample, the series 1=1)4+(1=1)+(1=1)+...
is convergent, but neither of the series
14+141...,; —-1-1-1-—...

converges. Again, the series

g T Ayl e | g, il

B} (B2 )+ (BB
is convergent, so the series
(6+) G-} {G )+ G {E)+ (o)

is convergent also. But neither of the series
1 1 1
(E'l" 1) + (2—2+ 1) s (@4’ 1) Fianny
1 1 1
(E— l) 4 (ﬁ— 1) 5 (:9'5-— 1) e

converges,
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4, The general principle of convergence. The test
| B, | <e

just enunciated is very useful in theoretical applications, but it
suffers in practice from the difficulty that we often cannot foresee
what the limit § is likely to be, so that the expression | S—8, |
cannot be written down explicitly. There is, however, a principle
of very wide application which provides a similar technique with,
in many cases, greater ease. This is the GENERAL PRINCIPLE OF
CONVERGENCE, which asserts that a NECESSARY AND SUFFICIENT
condition for the convergence of the sequence

B0, B B ks B
is that, given €, there exist a number N (e) such that
| 8p4p—5n| <€

for ALL positive integers p and all n> N.

The proof of sufficiency involves ideas with which we do not deal.
For necessity, we proceed as follows:

We are told that the sequence has a limit s. Hence, given ¢, we
can find a number N(e) sufficiently large to ensure that

[$nip—8| <6, |8,—8|<}e
whenever n + p, n exceed N. Hence

. lan-l-p_'sn]=| (8”+’,—8)—(8“—8)|

<|8pip—2|+|8,—5|

<,
as required.
When the sequence {s,} is composed of the partial sums {8}
of a series
Uy + Uy + U+ ..oy

the condition appearing in the general principle may be expressed
in the alternative forms:

(i) |Spip—8nl<e
or (i) |R,,|<s
or (i) | %psy+Upsgt e Uy | <€

where 2, n+ p are, in each case, numbers both exceeding N.

6 MIV
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Note as a Corollary the result established earlier by a more direct
method, that it is NECESSARY for the convergence of the series

Uy +Ug+ oo+ Uyt oee
that lim %, =0.

n—>»xK
The condition u,—0 is ¥or sufficient to ensure convergence.
For example, the series
1 gl | i
+J§ +U§+ +%+--o

diverges although lim (1/,/n)— 0; for the sum of the first n terms
f—>0

exceeds n times the least of them, so that

8,>nx (-Jl;z)=4n (n>1).

Hence 8, = 00.

We now give a short discussion of some of the simpler properties
of real series whose terms are all positive. They play an important
part in the more general theory, to which we return later.

5. Real series with positive terms. We require first a basic
property whose detailed proof is beyond the scope of this Volume,
but the reader will have little difficulty in convincing himself
intuitively of its truth. Informally stated, it is that a sequence
which increases steadily must either tend to infinity or to a finite
limit—the point being that the alternative of osCILLATION is
prohibited by the steady increase. We therefore assume the truth
of the following theorem:

TEE ‘BoUNDING TEST. If the elements

Bpotia Mg s
of a sequence increase steadily, so that
8,58, €8% ... €6, K ony

and if, further, the numbers 8,8, 83, ...,y ... are all bounded (that
is, all less than some finite number K) then the sequence tends to @
(finite) limat.
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In particular, if the sequence consists of the partial sums
8y, 8,8, ... of a series
Uy + Ug + Uy + .o
of POSITIVE terms, then either 8, increases without bound or S,
tends to a limit; it cannot oscillate. Thus a series of POSITIVE terms
converges if the partial sums 8, are bounded for all values of n, and
diverges to + oo if the swms S, are not bounded.

For example, in the geometric series

L olie J

§+'2—2+§§+ oS
the sum §, is given by the formula
1
Sn= 1 ‘—‘:‘?‘;,
so that <l

Hence the sequence S;,8;,8;, ..., being increasing and bounded,
tends to a limit which is the sum of the series; this is, of course,
otherwise familiar in this simple case.

The ‘bounding test’ leads immediately to a ‘comparison test’
for convergence which is important both in itself and also because
it enables us to formulate other specific tests which are easy to apply.

THE COMPARISON TEST. If each term of the series of POSITIVE terms

Uy +Ug+Ug+ ..+ U A ...

is less than, or equal to, the corresponding term of a series of positive
terms
by+by+bg+...+b.+...
known to be convergent, then the given series is also convergent. (The
result is not affected if a finite number of corresponding terms is
omitted from each series before the test is applied.)
The proof is immediate; for

Sp=uy+uy+...+u,
<by+by+...+ 0,

and, since the series b, + by + by + ... isconvergent, its sumis bounded.
Hence 8, is increasing and bounded, and therefore convergent.

Note the equivalent TEST FOR DIVERGENCE: If each term of the
series of positive terms

g+ Ug+UgF oee + Ut ne
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is greater than, or equal to, the corresponding term of a series of positive

et by b B s b s

known to be divergent, then the given series is also divergent.

6. Some detailed tests for series of positive terms. The
following well-known tests will be found useful. e
(i) D’ALEMBERT’S TEST. If the ratio w,[uyy tends to a limit 1,

and if I51,

then the series Uy +Ug+UgF o F Ut e
s convergent.

Given any positive number ¢, we can find a number N such that

Uy

-l <e

U1

for all n greater than N. Since w,, is positive, we may multiply
i hat

b ik I Uy — Vil | <€Upi15

that is, (=€) Upyy <Upy < (I+€)Upyy.

In particular, we may take e to be the number }(l— 1), which is
positive since !> 1, and then write

k=l—e=l-3(1-1)=%01+1),
so that k>'1;

then the left-hand inequality, (I —€)%,4; <%,, shows that (for the
N corresponding to this value of ¢)

Uy >kt .y (n>N).
Thus Uypo < Uy /ks
g < Uyyal ko < U2 /K2
Upsq < Ui/l < U 41 [RP,

and so on. Hence each term of the given series after the Nth is
less than the corresponding term of the geometric series

gy NS
uya |14+ttt

in which the ratio k! is less than 1, as we have seen. Hence the
series converges.
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Note that the test gives no information if |=1; we cannot then take
the step of identifying the number ¢ (> 0) with §(I—1).

The corresponding TEST FOR DIVERGENCE is:

If w,|u, ., tends to a limit 1, and if

i<1,

then the series is divergent.

Nore. It is actually sufficient for convergence that u,/u, ., >1
for all sufficiently large n. The existence of the limit lim u,,/u,,,, is

n—>0

convenient for calculation, but not essential. The proof is easily
constructed.
(ii) CavcrY’s TEST. To prove that, if ul™ tends to a limit 1, and if

<1,

then the series
18 convergent.
Given any number ¢, we can find a number N such that

Uy + Uy + Ug+ .o

|ulr—1| <e
for all » greater than N. Thus
l—e<ullr<l+e.

If, in particular, we take e=}(1 —1I), which is positive since I <1,

and write E=l+e=3(1+1),

so that kil

then the right-hand inequality gives (for the N corresponding to
this value of ¢) wn<k (n>N),

or u, < k™.

The series therefore converges by comparison with the geometric
series.

We again have no information if =1, since the step e=}(1—10)
is then excluded.

The corresponding TEST FOR DIVERGENCE is:

If ull tends to a limit 1, and if

=1,

then the series
is divergend.

u1+u2+u3+ sns
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Nore. The simpler form, that the series converges if

ullr<l (I<1),

for all sufficiently large n, is very easily obtained; for the term w, is
then less than the corresponding term I* of the convergent geo-
el sy I+ BB,

and the result follows from the Comparison Test.

(iii) There are many tests, not considered here, which can be
applied to serieswhere the limits ,, [, ., and %}/ have the excluded
value 1. It is, however, useful to have a test which often establishes
at once the negative result that a series of positive terms is not

convergent:
If Uy + Uy +Ug ...
is a series of positive decreasing terms, and if the series does converge,
P lim nw, = 0.
n—rwo

If the series converges, we can, given any positive number e,
however small, find a number N (depending on €) such that the
remainder after N terms (p. 78) is less than }e; that is, such that

1v i R =uy+uypt...<le
Then, a fortiori,

Uysy+Uyia+ .-t U, <36 (n>N);

and, since the terms are decreasing, each of the n — N terms on the
left exceeds u,, so that the last inequality gives

(n—N)u, < e,
or nu, < e+ Nu,.
Moreover, it is necessary (p. 80) that in a convergent series
U, —> 0,

and so n may be taken sufficiently large to ensure the inequality

U, <3e/N,
or Nu, < 3e.
Then nu, < e+ Nu,
<€,
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so that lim nu, =0.
n—0

For example, the harmonic series

1+3+3+...
has decreasing terms, and

nu,=n(1/n)=1+40.

Hence this series does not converge.

Note that the simple requirement ‘u,—0 for a convergent
series’ will of itself sometimes settle that a series cannot converge.
For example, in the series

1+3+2+23+4+...,

n—1

we have [ =T—>l,

so that the series does not converge.
(iv) Raapr’s TEsT. We conclude with one illustrative test
for certain series in which u,, /%, ., —>1:

If the limit %
lim {n( OB 1)}
n>o | \Uyqy
exists and has value I, where 1>1,

then the series

converges.
Given any positive number ¢, we can find a number N, depending

on ¢, such that

Uy g+ g+ oo Ut

I—e<n( n ~—1)<l+e

Upsa
whenever > N. If we multiply by u,,,, which is positive, the left-
hand inequality gives
(I—€) up g <M, — N2, 4,

or (I—1—€)u,y<nu,—(n+1)u,.,.
Giving to n the values N +1, N +2, N + 3, ... in succession, we have
the inequalities

(I—1—€)uyp < (N+1)uy,— (N +2) uy,,,

(l-1-e)uy,s<(N+2)uy.o—(N+3)uy,g

...................................................

(—1—¢)uy <(M-—1)uy ,—Muy
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for any number M greater than N. Adding, and writing

S, =u;+ug+ ...+,
for the nth partial sum, we reach the formula
(E—1—¢€) (Sp—Sys1) < (N + 1) upyyy — Muy,
or, since Mu,, is positive,
(I—1—€) (8 —8By4a) <(V+ 1)y,

Now we are given that /> 1, and so we can choose € so that

[—1—€e>0. Then (N_"'l)ﬁ&!.

SM<SN+1+ ==z

For any given ¢, the right-hand side is determinate, since ¢ deter-
mines N. Hence the sequence of which §,, is a typical element
(M >N) is (i) increasing, since u,,u,, %, ... are all positive, and
(ii) bounded, by what we have just proved. Hence §;, has a limit
8 to which the given series converges.

We have also the fest for divergence:

If the limit .
tim (n,2--1))
n—>o Unt1

exists and has value I, where l<1,
then the series diverges.

EXAMPLES I
Test for convergence the series with the following nth terms:

1. n/2n, 2. n¥3n, 3. ()
4. (3/n). 5. (2n+1)2%. 6. mlnd.
7. m+2)%@E2n)l. 8. () 9. (; 124)5“
10, 242, RS 12, 2242
13. ::;;:1 14, (:—fi)s 15. %’r

7. More general series; absolute convergence. Experience
shows that the mere convergence of a series does not always
suffice for the manipulations required of it. For example, it is
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fairly easy to prove that a convergent series of positive terms has
a definite sum independently of the order in which its terms are
taken. But this is not necessarily true when some of the terms are
positive and some negative; thus the two series

1-3+3-+5-3+i-%+..
1+ +3-4+3+3+5—-%+...

(with three positives before each negative in the second) have quite
different sums.

It is found necessary to consider, as a sub-class of the convergent
series, those for which the series of the moduli of the terms are also
convergent. We therefore make the definition:

The series

Uy + Uy +Ug+ oun

is said to CONVERGE ABSOLUTELY if the series of moduli

: [+ | ug| +]ug | +...
18 convergent.

The concept of absolute convergence enables us to make use of
the tests already found for series of positive terms.

8. The convergence of an absolutely convergent series.
It is possible for a series to be convergent although not absolutely;
for example, the two series quoted in §7 are convergent, but the
series of their moduli (absolute values) are not. On the other hand,
we prove almost immediately that a series which is ‘absolutely
convergent’ does actually converge.

Let it be given that the series

Ut Uyt Uz +...y
whose terms we suppose to be real, converges absolutely, so that
the series of moduli
ot | +] g | +] g | +-..

converges to a value 7'. We prove that the series formed by taking the
positive terms (in order, as they come) converges to a value P, that
the series formed by taking the negative terms converges to a (negative)
value — @, and that the given series converges to the value P — Q.

e =4 | +),
0= i(l Up I _un)'
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Then p, =u, when u, is positive, and p, =0 when «, is negative;
also ¢, = —u, when u, is negative, and g, =0 when u,, is positive.
Thus the terms of the two series
D1+ PetPst ey
¢+ g+ gs+...

are all positive, and equal to or less than the corresponding terms
of the convergent series

|u1|+|ug[+|u3|+....

Hence, by the Comparison Test, the two series converge, say to
values P and Q.

Moreover, we have established (p. 80) that the series whose terms
are the difference of corresponding terms of two series of positive
terms is itself convergent, to the difference of the sums. Hence the
T (P1=01) +(Pa—q2) + (P —s) + -

converges to the value P —@.

But )
Prn—0n=1Uy

for all values of n, so that the series
Uy +Ug+ Uz + ...

converges to the value P —@.
Nore. We have confined our attention to real series, but it is
also true for a series of complex terms

Uy + U+ Ug+ ...

that, if it is absolutely convergent, it is also convergent. This
follows easily from the general principle of convergence. For, if
TR 8, p=tnp1FUniat oo+ Upyps
T =| Unsa | + | Unsa |+ oo | 2ngp |,
then | 8pp | =] Upsa +Upqat oo+t |
< | i |+ | tnre |+ o+ | Ungp |
ST\

For absolute convergence, 7}, , 0, so that | S, , |0 also. Hence
the series is convergent.
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9. Alternating series. Among the series which may con-
verge, though not necessarily absolutely, an important class con-
sists of the ALTERNATING SERIES whose terms are real and
alternatively positive and negative in sign; say

Uy — U+ Ug—Ug+ ...  (u.>0).
We prove that, if the terms of an alternating series decrease steadily

in magnitude, so that
Uy > Uy > Ug > Wy > 0o

and tend to zero with n, so that
lim , =0,

. = n—>w
then the series is convergent.

Consider first the sum of an even number of terms,
Ban = (g — %p) + (Uy—Ug) + ... + (U g — Ugy,).

Each difference (uy,_, —u,,) is positive, and so 8,, is (with terms so
grouped) an increasing sequence. Also

Sop =1y — (U — ) — (Ug — Ug) — +0. — (Ugp—g — Ugp_1) — Ugy,
so that Sy, < Uy,

Hence the sequence S,,,, being (as grouped) increasing and bounded,
tends to a limit S.

Moreover, Bons1= 8oy + Uop 11,
so0 that lim 8,, ;= lim 8,, + lim u,, .4
I ] n—>+o n—>o
=48,
Thus lim 8, =8
n—>o

whether r is odd or even, and so the series converges.
Nore. The condition lim , =0, requisite (p. 80) for all series,

n—>wn

is essential to the argument. For example, the terms of the series
1-2+3-%+5—5+...

alternate in sign and decrease steadily in magnitude; but the series
does not converge since 2 1
Iim ——=-.
e =1 3
For large values of n the series oscillates by the alternate addition
and subtraction of an amount approximately equal to 3.
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10. The effect of changing the order of terms. In general
it is not possible to alter the order in which the terms of an infinite
series appear without at the same time altering its value. For
example, if order were irrelevant, we should be able to use the

argument
log,2=1-3}+3-31+3-%+--

=1-}-3+3-}-d+i -+
=(1-P-1+G-H-F+G—to) 15+
=-i+i-d+do—yt.n
=$1-}+3-i+i--)

= % loge 2,
so that log,2=0,

or 2=1.

We prove, however, that, if a series converges ABSOLUTELY,
then its swm is unaltered by any change in the order of its terms.
Take first a convergent series of positive terms

SEul+us+ua+---,

and suppose that it is rearranged so that the terms appear in a
different order, forming a series which we write in the form

Vy+Vy+ Vgt ...

Let 7!, be the sum of the first m terms of the rearranged series,
and suppose that n terms of the given series must be taken before
all the terms of 7}, have been included. Then

T.e8. <N,
so that the sequence 7T, being increasing and bounded, converges
to a limit 7', where T<8

Now that we know the rearranged series to be convergent, we may
interchange the parts played by § and 7' in the argument just used,

so that S<T.
Hence 8=
as we wished to prove.
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Suppose next that the series S contains both positive and nega-
tive terms, but that it is given to converge absolutely. Then
(p. 89) its positive terms converge to a sum P and its negative
terms to a (negative) sum — @), where

8=P-Q.

Any change in the order of terms does not change the value of the
sum P of all the positive terms or (by similar argument) the sum — @
of all the negative terms. Hence the rearranged series converges
absolutely, and its sum is still P—@.

EXAMPLES II

Test for convergence the series with the following nth terms:

1. (=1)»n2 2, (—1)"n ™

3. (=1)mad. 4. ('ﬂl,)".

5. (—1)*logn. 6. %l_og_n‘

Znt2 o =5

7. (-1) e 8. (—1) o
(_l)ﬂnz .

9. —(—n—_'_T)(. 10. (—-1) .

11 (—1)*/Jn. 12. (-

13. (—=1)"e"logn. 14, (—1)"n2en,
—1)revn - n_(fﬂ+_l)

15. (—1)=evn, 16. (—1) 1)’

1-1. The integral test. There is a useful theorem for com-
paring the convergence of an infinite series with that of a closely

f(x)

be a function, positive and decreasing for all positive values of x; write

8,=f(1)+£(2)+... +f(r),
U=| 1.

related infinite integral. Let
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Then the difference g.=8,-U,
tends to a (finite) limit as n tends to infinity:

Since f(x) decreases as & increases, we have, for r=2,3,4,...,

the inequalities
fr=1)zf@)=2flr) (r—1<z<7)

so that, on integrating with respect to 2 between the limits »—1,7,

fe=13>[_f@dz>0.
From the left-hand inequality, it follows that

)41+ ... +f— l)?f:f(a:) d,

or S,—f(n)=U,,

or g(n) = f(n).

But we are given that f(x) is always positive, so that
g(n) = 0.

Moreover, the right-hand inequality

[ p@rz10

may be written in the form
U-U,_.28-84

or 0% frens

Thus G12G22GsZ -

The function g, therefore decreases with n, but is always positive.
Hence it tends to a finite limit, so that

lim (8, — Uy)
n—o
exists and is finite.
CoroLLARY. If either the sum
F)+f2)+£3)+... +f(n)
or the integral Jm J(x)dz
1

converges (or diverges), when f(x) is a positive decreasing function
of x, so also does the other.
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12. Euler’s constant y. The integral test leads immediately
to an important result:
To prove that the function

1

Tedads +1 logn
3 At g

3

tends to a limit y as n tends to infinity.
In the integral test, take

f@=; @>0).

Then the conditions (i) positive, (ii) decreasing are both satisfied,
so that the limit of the function

1 [ndx
1 ) ke
-|-2+3+ = L =

exists and is finite; that is, the limit

lim l+1+1+ +~—logn)
n—>wo 2°3

exists, having a value which we may call .
The constant y is known as EULER’S CONSTANT.

ILLusTRATION 1. To find the sum of the series
1+i—f+i+i-t+itd—d+.
where two pos'itivle terms from the series
1+3+3+3+...
are followed by one negative term from the series
—}-1-}-
The sum S, of the first 3n terms may be written in the form

Pl SRRyl +1 YRy
2 = S g Tigl

4 1 1
Write 4= +-—+...+;-logrsy+s,.,

1

2 3

where lime,=0.
r—rw
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Then
8;={(y +log 4n+¢€,,) — 3(y +log 2n +¢,,)} — 3(y +logn+e,)
=log 4n —Llog 2n— Llog n + €, — 36, — 1€,
= H1og () + et = deam— e
Hence lim 8;, =%log 8.
n—reo
Since also the individual terms of the series all tend to zero, it

follows that S;,.,, Ss,.p both tend to the same sum, so that the
series converges, to the value }log8.

13. Theseries Zn—*. A very useful test for comparison purposes

is afforded by the series
11 e
1+§;+§+$+... (8 1'8&].).

We prove that the series converges when s > 1 and diverges when s < 1.
The work of the preceding paragraph (and also of p. 87)

establishes divergence for =1, since it is well known (Volume 11,

Pl logn—c0.

This carries with it divergence for s < 1, since then

| g |
won
so that, for any value of N,
" el T i |
b et

n=1 n® n=17
For s > 1 we apply the integral test (p. 93). The integral

™ d
[i=
(g n 1 1
has the value [(s—-l)x’“]l=8-—1—(8—1)‘ﬂ“1'
dx 1
SOth&t,fOI'8>1, I:;+B——l.

Since the function 2—* is positive and decreasing for positive z, the
conditions of the integral test are satisfied, so that the series
converges with the integral for s> 1.

THE SEQUENCE (l+a/n)" 97

14. The sequence (1 + ;)" Another particular result which
is found useful in applications is that the sequence

n
S,,E(l'bz)

tends, for real values of z, to the limit

e’
as n tends to infinity.
Taking logarithms, we have the relation

log, S, =nlog, (l +;€) A
If we write y=1/n,
the relation becomes
loge Sn = I—Oge (;-'- xy) s

and so lim log, S, = lim log, (1 +2y)
n—rw >0 Yy

for given 2. But it is easy to prove that
lim log, (1+2y) _ &

y—0 y
so that » limlog, S, ==.
n—rwx
Since, then, log, S, >z,

it follows, from the continuity of the function e*, that
8, =el08Sn_; gz,

TvnusTtrATION 2. To express log(l+z) in a series of ascending
powers of z, where z 18 COMPLEX.
Suppose that z is expressed in modulus-argument form,

z2=re®,
Taking the hint from the definition for real values of z, we consider

the integral v off gt
o f L (& real),
ol+te
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and express it first in terms of its real and imaginary parts; thus
r el (14te)

o (1 +te®) (1 +te—0)
_J"'(cos0+t)+iainﬂ
“Jo 1+2tcosO+¢2

- oo _of rsinf )
=3}log (1+ 2rcos @ +72)+itan (——1+roosﬂ

for appropriate choice of the inverse tangent.
Alternatively, we have by expansion the identity

et +1)i0
I=Jr{ew_tem_,_gﬂew____+(_)m—1tm—13md8+ M}
0

I= dt

1+ et
] 1
=,.ew_i,rsem+ - +(_)m—1_rmemi0+Rm

=z—3224 . 4+ (— )m—llz»‘+R

r( )m tmelm+1)i8
where R, f s o dt,
so that | B, | < LA o)

0

Now the real and imaginary parts of the denominator are
1+tcosf, tsind,

and they cannot both vanish except when
0=2k+1)m, t=1

(remembering that ¢ is positive, since r is). Thus |1+£e?| is
definitely positive (not zero) except for = (2k + 1) 7; say

|1+t |>8 (0 (2k+1)7).
1
|Rm|<(—m-?_+m.
If, therefore, we make the restriction
rgl,;
then | R, | 0.
'Henee,ifr|z|=sl,z=|=—l,then :
z—322+ 42— ... =}log (1 + 2rcos 0 +7%) + 1 tan~? (&00) :

1+rcos
where z=re®,

Hence
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Finally, suppose that
log (1 +2)=u+1v,
so that 1+rcosf+irsin@=e*(cosv+isinw).
Then 1+rcosf=e*cosv,
rsinf =e*sinwv,

and so 1+ 2rcosf+4r2=e,

rsin @

1+rcoc30=tan”’

or u=73log (1 +2rcosf+r3),

v=tm—1(ﬂ)
1+4+rcosf@)’

for appropriate choice of the inverse tangent. Thus

z—§2+3P— .. =utiv (|z|<1,2$-1)

=log(1+2).

The ambiguity in the interpretation of the inverse tangents is
resolved by noting that, when z=0, the sum of the series is zero,
so that that value of the logarithm must be taken whose argument
lies between —# and 7. The value of @ may be restricted to the
interval (—,7), and the inverse tangents are taken to vanish
with 6.

Nore. This seems at first sight a long way round for a formula
which is identical in form to that obtained for real z; but the
treatment for real variable does not apply for complex. The
ambiguity in the value of log (1 + z) for complex numbers (reflected
in the arrival of the inverse tangent in our proof) is in itself a warning
that complications might be expected.

REVISION EXAMPLES XVIIL
1. Find the sum to » terms of each of the series
P+i+E+S+
124224324424+

Deduce which of these series converges, and the value of its sum
to infinity.,
72
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2. Find the sum of the first n terms of the series
-3 45—t — e
Determine whether the series is convergent and, if so, find its
sum to infinity.
3. Sum to n terms each of the series
14+24+3+4+...,
iy (ol
(T T R
Deduce which of these series converges, and the value of its
sum to infinity.
4. Show that the sum of the first n terms of the series

Aok gnlva ol 1
1.3'8.6 5.7 7.9

is 1 ] e
2 2n+1)"
Hence show that the infinite series converges, and find its sum.

5. Find the sum to n terms of each of the series

1 1 1

Tateat e @+t

1.242.34+...4r(r+1)+....
Deduce which of these series converges, and the value of its
sum to infinity.
6. Examine whether the series

1'2° 3
AT T — 1\n-1
A

converges or not.
7. Find numbers A, B such that

Do do sl A B
x2—4 -2 z+2°

Hence, or otherwise, find (i) the sum to n terms, (ii) the sum to
infinity of the series

1 1 1

32_4+42_4+52_4+....

2n+l+"'
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8. Prove that the sum to n terms of the series

1 1 1

23434872586 "

b ¥, Bl a b
12 2(n+2)(n+3)’

and deduce that the sum to infinity is .
9. Find the sum of the first #» terms of each of the series

(i) _1_.+l+i+
1.87 208 3.

is

(i) 1.2.5+2.3.6+3.4.7+....
Examine the convergence as n tends to infinity.
10. Sum to infinity the series
sin 4+ }sin 24 + 1sin 34 +}sin44 +....
11. Sum to infinity each of the series

C'=cosf cos 6§+ cos®H cos 26 + cos® @ cos 30 + cost 0 cos 460 + ...
and
8=cos8 sin f + cos? O sin 260 + cos? O sin 30 + cos*H sindf+ ...,

and state the values of 8, if any, for which the series do not converge.
12. Find the sum of n terms of the series whose rth term is
2r—1
Hr+1)(r+2)’
and find whether the sum to infinity exists.
13. Prove that, if n>1,

1 1 1 (n—1)(n+2)
133t 2s.at "t Damsl) mn+l)

Show that this series has a sum to infinity, and find roughly how
many terms of the series must be taken to give a sum differing from
the sum to infinity by not more than one part in a million.

14. Show that the series

1 s 1 . 1 2 1
l1+a 14a® 1+a® 1+a*

+ ooy

where a > 0, is convergent if @ > 1 and divergent if a < 1.
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15. Expose any fallacy in the argument:

For the series Tu,, where u,=1/n, the ratio u,/u,, ., always
exceeds 1, and so the series converges.

Would the argument have held for the series with u, =1/n??

16. Two numbers a,, b, are given, where @, > b, > 0. The pair of
numbers a,, b, are defined for n > 2 as the arithmetic and harmonic
means respectively of the pair a,,_,, b,_,. Prove that

(i) @,b,=a,b,,
(ii) the sequence a,, decreases and the sequence b increases,

(m)asntendatomﬁmt.y,a and b, botht.endtothehmxt

'J(“lbﬂ-
17. Prove that, if

" 1.3.5.....(2n—1)
3B T Tl

then nu® is an increasing sequence and (n+3})u} a decreasing
sequence.

Deduce that nu? tends to a finite positive limit as n - oo, stating
without proof any general theorem on sequences to which you

appeal.

18. Two infinite sequences {a,}, {b,} are defined in terms of two
given numbers a, b (@ >b> 0) as follows:
(i) ap=a, by=b;
(ii) @, is the arithmetic mean, and b, is the geometric mean, of
a, ,andb, ; (n=1).
Prove that a, and b, tend to a common limit as % —>oc0.

19. Prove that, if || <1, then

lim 27 =0.
n—+o0
Prove that, if lim ""’1-I,
n—>wo a’n
and if 0l <1, then lima,=0.
n—>w

Deduce the limit as » tends to infinity of

md 10" 3.5.7...(2n+1)
' al’ 1.4.7....3n-2)
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20. The terms of a series Zu,, are all positive. State which of the
following conditions is, or are, sufficient for the convergence of
the series:

(i) w,.q1/u, <1 for all n;
(ii) there exists a number N, and a nu.mber k< 1, such tha.t
Up 41/, <k for all n > N;

(iii) there exists a number N, and a number k<1, such that

Upr1/U, Sk for all n>N;

(w') lim (un+ll un) < 1;
(v) 1im (s/) < 1.

For each of the conditions which you state are sufficient for
convergence, explain whether it is also necessary, and if not, give
an example to illustrate that it is not.

Show, by illustrative examples or otherwise, that the other con-
ditions are not correct as sufficient conditions for the convergence
of the series.

21. Prove that, if a,—1 as n->oo,
and if I<y, <z,
for all n, then Y,~>l as mn—>o0.
Prove that, if & > 0, then

 \» il 1 2
(1+n1_+¢) <I+n (1—%)

for all positive integral n. Hence show that

1 n
(1+n—1+“) -1 as n—>co.

22. Prove that the series z —
1n?

converges if s> 1 and diverges if s< 1.
Writing ¢, =n—¢, prove that

Iim n(—ci‘-— - 1) =
n—+w
Discuss the convergence of the (real) series whose nth term is

(@a+1)(a+2)...(a+n)
n! 7
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23. If Cpy1 =Py + §%y 1,

where p, g are positive, and if «, £ are the positive and negative
roots respectively of the equation

P=pr+q,
prove that, if Uy = [OE™,
then Unp1— Un = (U — Up_y) (Bla),

and deduce that the sequence (u,) converges to the value

ay—fay
afa—p)
24. Prove that, if the sequence (u,) decreases steadily as n
tends to infinity, and if -
X Uy
n=1
converges, then lim nu,, =0.
n—rw
Prove also that E (% — Uy 11)
n=1
converges.
25. Prove that the series
3 3.4 3.4.5

1=t s+l e+ @+ T
converges for real values of z only if z > 3.
26. Examine, by means of the limit

the convergence of the series

e (2n)!
0 2 S+ 1)l e DV’

o [1.83.5.....(2n—1)*
(&) { 2.4.6.....2n) |
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27. Tl.le numbers of a sequence wu, %;, %y, ... are connected by
Wb e Ny s,
Prove that u, is of the form
u, = Ak*+ Bk,
where 4, B are constants.

Prove that, if > 1 and if u,=1, then the only value of u, for
which u,, tends to a finite limit as n tends to infinity is 1/k.

28. Positive numbers z,, z,, z;, ... are defined by the relations
z,=1,
Tpp1=(@,+6)} (n=1,2,3,...).
Prove that, for all values of n,
X, <Tpy<2.
Hence prove that z,, tends to a limit, and find this limit.
29. A sequence u,, uy, U, ... is defined by the recurrence relation
5,1 =5 +6.

Prove that u, - o0 if u, > 3.

Prove that u, tends to a finite limit if %, has any value in the
range 0<u, <3, and find the values of the limit for these values
of u,.

30. The terms S, of a bounded sequence of real numbers satisfy

the inequality B € bt s

Prove that lim (8,,,, —8,)=0.
n—>x0

31. Prove that, if f(z) is a continuous steadily decreasing func-
tion for 2> 0, then

% i< j " f@)de<"S fir).
r=]l 0 r=0

S |
P ¢

u, —%log,n
tends to a finite limit as n— o0,
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32. Use the integral test to find the values of & for which the

series ol 1
s n(log n)
is convergent.
33. Show that the series
1-3+3-1+...,
$+30-H) -G -H+G-D—-
both converge and have the same sum.
34. Show that the series
1 1 1 1

BrEityeat izt
is convergent.
35. The terms of the series
© ( i l)n-l
agl n

are rearranged so that p positive terms are followed by ¢ negative
terms and so on alternately. Prove that the sum of the resulting

sarme log 2+ }log (p/g).
36. Find the sum of the series
5 8n—3
n1n(4n—3) (dn—1)°
37. Evaluate the limit, as n tends to infinity, of

hoage 2 1p I8 0g v i 2.
n+l n+2 n+3 7 3"

38. Test for convergence the series

A+ -2+F+H-3+G+D-2+....
39. Show that, as n—>o0,

1+ + +.o.+=———}logn->log2+3y,

1
2n—1
where 7y is Euler’s constant.

REVISION EXAMPLES XVIII
40. The series
(@) Uy — U Uy — U+ ..
is rearranged as
©®) Uy — U — Uy + Uy — Ug — Ug + U — Ugg—Upa + euvy

and the nth partial sums of the series (a) and (b) are denoted by
4, and B, respectively. Prove that, for any positive integer m,

2m
App—Byp= 3 Uy
r=m+1
Show that, if «, =n-*, the series (a) is convergent but the series
(b) is divergent to — oo,
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CHAPTER XXIV
THE DEFINITION OF FUNCTIONS BY SERIES

The need for the work which follows arises, among other things,
from the fact that, though the sum of a finite number of terms

Uy () + Ug() + ... +u,(2)

of continuous functions is continuous, and can be integrated or
differentiated term by term, this is not necessarily true for infinite
series. We are seeking conditions under which these processes can
then be carried out.

1. The functions defined. The primary concern of this chapter
is the use of an infinite series as the definition of a function. The
Sk VPRGNS Uy (2) + ug(2) + ug(x) + ...
are functions of a variable z, and the nth partial sum is S, (z), where

B (@) = uy () + ug(2) + ... +u, ().

It may happen that, for a given value of z, of z, the sum S, (z,)
tends to a limit S(x,) as n tends to infinity; the series then converges,
for z =z, to the value S(z,). The fact of convergence at a particular
value z,, however, does not by any means ensure convergence at
another value 2,; this is familiar in the case of the geometric series

l+z+224284...,

which converges when |z | <1 but not when |z | > 1.
‘When the series converges for a range of values of z, say for values
in the interval
a<z<b,
its sum S(z) is a function defined for the various values of 2 in that
interval, so that

S(x) = u, (x) + uy(x) + ug(x) +... (a<z<b).

We are now to examine some properties of S(z).

The work of the preceding chapter may be applied to any series
in which « has a given value z,, but care must be taken once z is
allowed to vary; difficulties then arise which we shall meet almost
immediately.
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Nore. Though the notation = for the independent variable
implies that we are thinking mainly of real variables, the ideas
developed in this chapter apply equally well to complex variables,
EXCEPT that the discussion of integration and differentiation in
§§4, 5 necessarily presupposes real variables only. We do not con-
sider in these volumes the more general theory of complex variables.

2. The problem of continuity. Some typical difficulties in
the theory of functions defined by means of infinite series may be
illustrated through an examination of the conditions for con-
tinuity. We give first an example to show that, even when each of
the functions u,(z), uy(x), ug(2), ... 18 continuous in the interval and
when the sum to infinity S(x) exists at each point of the interval, if is
nevertheless possible for 8(x) to be a DISCONTINUOUS function of x:

Consider the series

%t x* ot .
g Ry R e

This is a geometric progression with first term z?/(1 + %) and ratio
1/(1+2?), so that the sum of its first n terms is

Since 1+ 2%% 0, we may multiply numerator and denominator by

it; thus o Bl (1)
5h-(ea))

For all values of z other than zero we may cancel 22 from numerator

and denominator, giving
1 n
S,,(a:) =]1- (_1_-;;3) (x* 0)-

Since 22> 0, the term (1 +2)~" tends to zero, so that we have the
formula S@)=1 (@+0).

On the ot_;her hand, direct substitution in the given series leads
to the relation 8,(0)=0,
so that 8(0)=0.

x? a? x?

The function S(z)= 1+x2+(1+xﬂ)3+ (1+$2)3+
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thus has the value S(x)=1 . (z=0);

{S(O) =0.
It is therefore discontinuous at the origin.

3. Uniformity of convergence. The concept of uniformity;
at which we have arrived, may be exhibited from several points
of view; in particular, the problem of continuity raised in the
preceding paragraph gives an excellent example of just how it is
forced upon us. Consider, more generally, the series

(%) + ug(%) + ug(2) +
with nth partial sum S, (z,) at a particular value z =2x,, where

8, (20) =y (%) + ug(Tg) + ... + Uy, (%p)-

If 8,(x,) approaches the limit S(x,) as » tends to infinity, then,
given ¢, there exists a number N such that

whenever n> N.
Suppose now that the series is also convergent for a value z;
fairly near to z,. Then, given ¢, there exists a number M such that

| S(wy) — 8, (xy) | <€
whenever n> M.
We assume that u,(x), uy(x), ... are continuous functions of z in
a certain interval a <z <b containing z,, z,. It is easy to prove
directly from the definition of continuity that the sum of the finite
number of terms
8, () = uy (@) + uy(@) + ... +u, ()

is also continuous. Thus, given 7, there exists a number  such that
I Su(xl) o Sn(zo) I <7
whenever |2, —,| <
(At first sight we seem all set for the argument, expressed
informally:
“8(ay) = 8,(xy) =

(convergence) " (continuity)

Sn(xﬂ) - 8 (%);

(convergence)
so that, regarding x, as given and z, as approaching it,

8(zy) = 8(z,);
hence 8(x) is continuous.’
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But there is a flaw in the argument, as we must now explain by
expanding it in detail.)

We regard w, as given and z, as varying to approach it. The
inniioby: | 8(z0) — S,(z0) | <€

whenever n > N, is already established, but the next step requires
care. It is true, as stated, that

| 8(1) = 8y(@1) | <€

whenever n> M, but that value of M depends, in general, not only
on € BUT ALSO ON z,, and this dependence may cause trouble. For
the admittedly finite number M cannot be regarded as given; it
may be forced to increase as z, varies approaching z, and, in
awkward cases, that increase may carry it above any preassigned
number, however large.

We may follow this process for the series

o 20 22
T+ (0+2p (d+2p

already quoted. Write z,=0 and let z, be a number close to zero.
For given ¢, there exists indeed a number M such that

| S(z,) — 8, () | <€’
whenever » > I ; for, since (as proved)

8, (z)=1— (ﬁlxé)"

and 8(z,) =1,
: 1

t 0 0 ’

he inequality is axay <€,

so that (1+a2)»>1/e
log (1/¢)

d

- "> Jog (1+22) log (1+23)°

We therefore take M sufficiently large to ensure that
log (1/e")
log (1+23)

But as x, approaches zero, the value of log (1 + %) also approaches
zero; and so the value required for M increases without limit,
carrying n with it.
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To enable us to avoid such problems, where M increases without
bound, we introduce the concept of uniformity, with the definition:

The function S, (z) i8 said {o CONVERGE UNIFORMLY fo S(z) in a
given inferval a<z<b if, given e, a number N(c) can be found
INDEPENDENT OF x such that, whenever n 18 greater than N, the
ey | S(@)—8,(z) | <e

holds for all x satisfying the relation a<x <b.
It is now easy to establish a condition for the continuity of the
sum S(x), which raised difficulties in the preceding paragraph:

! 8,() =ty () + Usf@) oo 1y (),

where u,(x), uy(x), ... are continuous functions of z, and if 8,(z)
converges UNIFORMLY fo the function S(z) in the interval a<z<b,
then S(x) is a continuous function of x in the interval.

To prove this, let € be a given positive number. By the uniformity
of convergence of S, (x) to S(z), there exists a number N(g), in-
dependent of z, such that

] S(m)_“s’u(z) | < §€

whenever n> N and a <z <b. Take, say, n=N+1.
Now Sy.,,(x) is the sum of a finite number of continuous terms,
and is therefore itself continuous. Hence there exists a number {

h that
= | Sws2(21) — Syaa(@o) | < 3

whenever |z, —z,| <. The uniformity inequality then gives, for
the given z, and for such a value of z,, the two relations

l 8(2o) — Sy41(%0) | <1e,

| S(zy) = Sy4a(2y) l <ie.
Thus

| 8(1) = S(x,) |
=| {8(z,) = Sy11(2)} + {Sy+1(1) — Sy 1 ()} + {Sys1 (o) — S()} |
< | 8(#1) = Byia (@) |+ | Sysa(@1) — Sysa(®@o) | + | Sy4a(o) — S(o) |
<je+le+ie=e

The function S(x) is therefore continuous at each point of the given
interval a <z <b.
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It is important to observe that a function S(x) defined as the limit
of a sequence {S,,(x)} may be continuous even though the convergence is
Nort uniform. We exhibit this phenomenon by an illustration.

IrrusTrATION 1. T'0 verify that the function

S(z) = lim S, (x),
n—>rwn
where 8, (x) = nxen",
18 continuous at the origin although S,(z) is NoT uniformly convergent
in any interval including .
When z is not zero,
S(z) = lim s
Laant™
2 ne
= AT
= 0,
Also we have, for all values of n, the equality
Sﬂ.(o) =0,
so that S(0) = 0.

Hence S(z) is continuous at the origin.

On the other hand, we require, for uniformity of convergence in
an interval including the origin, the condition that, given e, there
exists N(e), independent of x, such that

|8(x)—8,(2)| <€
whenever n > N. Since S(z) = 0, this condition is
|nze==| < e.
Now if, tor any N proposed, we were to take the values, say,n = 2N,
@ = 1/2N this would involve the inequality
(2N)(1/2N)e V2N < ¢,

or ¢ &g,
Butif N > 1, then e-¥2 > ¢~%; and so the inequality e~12¥ < ¢ can-
not be satisfied for small e. Hence the convergence is not uniform.

Nore. The moral of this illustration is that the condition of
uniformity of convergence is quite a severe restriction on a sequence.

A series may very well have a continuous sum without satisfying
8 MIV
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the condition of uniform convergence. Conversely, however,
uniformity does imply continuity.

IuLusTRATION 2. The function ™. The way in which the concept
of uniformity enters into apparently simple problems may be

illustrated by means of the sequence 8;, S;, S, ... defined by the
relation

S, (x)=a"
in the interval (0, 1). When 0 <z < 1, the limit of z” is 0, so that

Sz)=0 (0<z<l1).

y
On the other hand, 8,(1)=1 always, KLk
0D . il (asi) ”
The diagram (Fig. 148)illustrates the 1
curves
g g Q,
for n=1,2,3,4,..., and it is seen that, ¢
as n becomes larger and larger, the '
curves tend to ‘settle into the corner ~ 0] P MR
OMA’; for very large n the curve lies
Fig. 148

close to the z-axis from O till very near
to M, after which it climbs steeply
towards A(1, 1) as « approaches the value 1.

Take any particular value of z, say =p, close to x=1. Let P
be the point (p, 0); suppose that the straight line = meets the
curve y =z in the point @, and the straight line y=1 in R. For
any given value of n, the value of p* is represented by PQ,,, and the
‘rise’ which the function has to make in order to reach the value 1
at x=1 is represented by @, R.

Now the point about the non-uniformity of the convergence of
a™ to its limit is this, that, as n increases, @, ‘falls’ towards P,
leaving an ever-increasing ‘rise’ required to reach the level of A4;
and this difficulty is not avoided by moving P closer to M. So long as
P is not actually at M, the point @,, will move down and the ‘gap’
lengthen as » increases.

As n tends to infinity, 2 tends to the function f(z) defined by the

relations {f(x)=o when 0<gz<1,
f(1)=1.
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The uniform convergence of z* in the interval 0 < z < 1 would
require that, given ¢, a number N(¢) could be found such that

jan—f(@)] < e
for all x such that 0 < # < 1 and for all » > N. In particular, it

would require b < g

for all x such that 0 < 2 < 1 and for all » > N. This inequality

requires nlogz < loge,

or, since log # and log ¢ are both negative,
- loge _
log
But logz->0 as #->1 and so this inequality cannot hold for all 2 in

the interval 0 < 2 < 1 when n exceeds any stated N whatsoever.
The convergence is therefore not uniform in the interval 0 < x < 1.

EXAMPLE
Consider similarly the sequence for which
8, (x) =27(1 —a™)

in the interval (0,1). Show that 8,(x)—0 for all values of z, in-
cluding the end-points =0 and =1, but that the convergence
is not uniform. Draw the graph

y=a"(1—a");

show that y has a maximum value of } when z=1/3%2, and indicate
how this illustrates the non-uniformity.

4. Integration* of a function defined as an infinite series.
Our dealings with a function S(x) defined by means of the infinite
o 8() = Uy () + Us () + () + ...
will be concerned, not only with continuity, but also with differ-
entiability and integrability. It turns out to be more convenient to
begin with the latter:

To prove that, if u,(x), uy(), ... are continuous, and if the infinite

sevics Uy () + uy() + ug(x) + ...

* See the note on p. 109.
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converges UNIFORMLY to S(x) in a certain (finite) interval, then

J-: S(z)dx =J‘;l u,(x) dz +f:uz(:c) dx +J.: Ug() daz + ...

for a range of integration (p,q) lying within the given inferval of
uniform convergence.
We say that the series is then integrated term by term; briefly,

[ nefie-3 e

Suppose that ¢ is a given positive number. By the definition of
uniform convergence, a number N can be found, independent of =,
such that | 9(0) 1y (2) — g(@) = ... ~ () | <€
for all n> N. Thus we may write S(x) in the form

S(@) =uy(2) + ...+ (2) +7(2),

where | 7,() | <€ whenever n > N. Hence
q a q 2
j S(x)dx=f uy(x)dz + ... +J 'u,,(x)dz+-’. N (2) dz,
P» r B P
where, since | 7,(x) | is less than e for all z in the interval simul-

taneously, 2
‘L%(m)dz

Since € may be chosen arbitrarily small, and the value of » then
selected to exceed the consequent value of N, however large, it
follows that

[

CoroOLLARY. The series

<e(g—p).

j:ul(t)dt+f:us(t)dt+...

converges uniformly to zS(t) dt.
- This is essentially the step

f:%(z)dz <e(g—p)

of the above proof.
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Since Uy () + ug(®) + ...
converges uniformly, the sum S(z) is a continuous function of «,
and so (Volume 1, p. 87) the function

Flz)= f: S(¢) dt

has differential coefficient F'(z)=S(z).

5. Differentiation* of a function defined as an infinite
series. To prove that, if wuy(x), uy(2), ... are continuous functions
of x, and if the infinite series

uy () + o) + ...
converges to S(z) in a certain interval, then
8 () = uy(x) + ug(x) +ug(e) + ...
whenever the series on the right converges uniformly.
The series is then said to be differentiated term by term; briefly,
gz ® g
T ? uy(@) = ? 7z )
We are given that, for a certain interval,
uy (%) + ug(@) + us(x) + ...
converges uniformly, say to a sum g(z). Thus, by the preceding

theorem, since u;(t), uy(t), ... are continuous,

[[owa=[woas [ uoar..

= {1y () — Uy ()} + {ug(2) — us(P)} + ...
Now we have, by definition of the partial sums, the relation
{uy(x) — uy(P)} + {wa() = ug(P)} + ... + {1, (%) — 0, (p)}
=8, () —8,(p);

and we know that the limit of the difference S,(z) — 8, (p) is equal
to the difference S(z)—S(p) of the limits. Hence, for the infinite

series, {ua(%) — uy (D)} + {ug(@) — ug( D)} + ... = S(x) — 8(p).

* See the note on p. 109.
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Thus %
j g(t) dt = S(2) — S(p).
»

Since g(x), being the sum of a uniformly convergent series of
continuous functions, is continuous, it follows, by the remark at
the end of the preceding paragraph, that

g(z)=8"(x),
so that 8’ (x) = uy(x) + us() + ug() + ...

6. Tests for uniform convergence. It is often a matter of
some difficulty to decide whether or not a given sequence or series
converges uniformly. Sometimes the negative answer can be
obtained directly by a contradiction of the definition itself, and this
possibility should always be kept in mind. We give, more positively,
a brief account of one well-known method for establishing uni-
formity of convergence.

The tests available for a sequence may be expected to be
simpler than those for a series, since an explicit formulation for
the sum of a series may not be obtainable. We therefore begin with
a test for a sequence, remembering that it can always be used for
a series in which the sum to n terms is known.

THE ‘MAXIMUM VALUE’ TEST FOR A SEQUENCE. Suppose that
a sequence S, Sy, S, ... is such that

8, ()~ 8(x)

for each value of z in an interval a<z<b. Denote by U, the
greatest value for given n of | §(x) — 8,(2) | in the interval. We prove
that the sequence is uniformly convergent to S(x) if, and only if,

U,»0
as n—>00.
(i) Suppose that the convergence is uniform. Then, given ¢, we
can find N(¢), independent of z, such that

| S(z) - 8,(x) | <e,

for all z satisfying the relation a <z <b, whenever n>N. But U, is
a value (the greatest, in fact) of | 8(z)— 8, (x)| in the interval, so
that, in particular, Hili

for n> N. Thus U,—0.
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(ii) Suppose that U, 0. Then, given ¢, we can find N(¢) such
that
U,<e

whenever n>N. But, by definition of U,,
| S(x)—8,(x)| <T,
for all values of z in the interval. Hence
| 8(z)—8,(x) | <€
independently of z, so that the convergence is uniform,
TLLUsTRATION 3. The sequence nxe—=", If

8, (x) = nwe—r=",

then (p. 113) S(z)=0.
Thus | 8(z) — 8, () | =nwe—na"
for 2> 0.
Write Y = nxe~—"",
so that Y’ =ne =" — 2nle—nat
= ne—"=*(1 — 2na).

Hence y has a turning value when z=,/(1/2n), and it is easy to
verify that y is then a maximum. Thus, if U, is the greatest value of
| 8(z) - 8,(x) | for given z, then

U,=n,/(1/2n) e}
=e1,/(n/2).

Thus U, does not tend to zero, and so the convergence is not
uniform.

A similar argument holds when z is negative.

A useful test to decide that a series is uniformly convergent, is
provided by WEIERSTRASS’S * M-TEST :
The series
Uy () + up(®) + ug(2) + ...
is uniformly convergent in a given interval if there exists a series of
POSITIVE CONSTANTS
T M+ My M+ ...

with the properties that (i) the series My + M, + M,+ ... is convergent;
(ii) | w,(2) | < M, for all values of n (save, poaszbly, a finite number at
the beginning) and for all values of = in the interval.
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Given a positive number ¢, we can find a number N (¢) such that,
for all values of n greater than N,

My +Myyp+ Mg+ ... <6
Thus | U2 (2) + Ui p() + ... |
< | yin(®) |+ | Upsa(@) | + ...
SMyppy+ Mg+

<€

independently of z. Thus the given series is uniformly convergent.

REVISION EXAMPLES XIX
1. The function F(z)is defined for real values of z by the equation

Prove from the definition that F(m) is a continuous, odd function,
strictly increasing as x increases,
By expressing the integrand in the form

!
TeE= 1t (=8 + R,0),
prove that, for —1<2<1,
F(z)—E( 1)“2n+1
2. Show that the series
1
1—t”+¢‘—t'+...=-—-l+‘,

is not uniformly convergent in the range 0<t< 1, but that it can
nevertheless be integrated term by term over this range.
Evaluate 1 g
0o 1482
and deduce that
1-3+3—&+...={n+3tlog2}/3k
3. Prove that the sequence
n — gntl
142
is uniformly convergent when 0<z<2.
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Is a?
142
uniformly convergent in the same interval?
4. Show that 1—2%m> 2pan(1 —x)
when 0 <z < 1, and hence that the series

@ av(l—=)
n§1 n(l —ax®n)

is uniformly convergent in the interval 0<z <1.

5. Given that the series ¥’ a, is convergent, prove that the series
T 2 @xr
=0 7!
is uniformly convergent in every interval 0 <z < X.
6. Show that the infinite series

@ ginng
u§1 n?

converges uniformly for all real values of z if p> 1.
7. Investigate the uniformity of convergence of the series

E {e_.nl,,,a = e—(n—l)'z'}
for 021, s
8. If S, (x) =nPz™(1 —x)?,

determine the values of p for which, as n—> 0, S,(x) tends to zero
uniformly for 0 <z <1,

9. Discuss the uniformity of convergence in the interval
0<a <1 of the series E (1 —2)
n=1 'J‘” I

nPx
(1+nax?)?’
find the range of values of p for which s,(z) tends to a limit as n
tends to infinity, uniformly in 0 <2< 1.

10. If 8, ()=
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11. Prove that, if
0<a  <1lviin=1,23,...)
and ay+ag+ag+...
is convergent, then aj+az+aj+...

converges uniformly with respect to r for > 1, and that its sum
tends to zero as r -+ co.
Prove that, if » is an integer,

lim Esm" =1,

r—>+on=1 2n
12. State and prove sufficient conditions that

e TR

Ifa=0,b=1,and s,(x)=nP(l—2x)a",

find for what values of p (real) (i) the conditions are satusﬁsd,
(ii) the above equation holds.

13. Show that the series
El(l--z){(n— 1) 2% — ngntt)

is uniformly convergent in the interval
0gsx<1l-d (0<d<l)

but not in the interval 0 <2 < 1.
If S, () is the nth partial sum of this series, show that, for every
n =1, a value of z such that 0 <2< 1 can be found for which

| 8p@) | = -

14. Discuss the convergence and uniform convergence of the

series & o
1+ z™x—1) i
n=1(1+2") (1+2"H)
in the interval 0<z < 1.
n
15. If f”(x)Em,
prove that limf,(z)=0
n—>+w
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uniformly for all real z, but that

m | f,(@)dz+0.

na
If g“(ﬂ:) = 1+n2%22’
1
prove that '11_131; fo gn(x)dz=0,
and that limg,(z)=0
]

for 0 <z < 1, but not uniformly.
16. Prove that the infinite series

’El 5, sin (72)

converges uniformly in the interval 0<z<1-é<1.
17. If 8,(z) is the sum to n terms of the series

z(z—1) % z(2z—1)
DE+1)(2z+1) (x+1)(2x+1)(3xz+1)
+ z(3z—1) +
(2z+1)(3z+1)(4x+1) 7
show that, forz>0, 8, (z)—>8(x)= ﬂa:-—l)

as n—o0, but that S(l) —S,,(l) =—l—.
n, n) 4

What is the significance of the last result?

e 50
n®+ (x—n)?’

prove that S,(x) converges to its limit §(z) uniformly for all values
of z, but that

18. Given that 8, (z)=

tim [ 8,()de .[ ° Slw)da.
0 0

n—>w

19. Prove that, if
"
8,(x)= pra U t (@) =(x—1)8,(x),

—
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then (i) the sequence s, (x) converges uniformly for 2 > 1 + & for any
positive &, but not for 2> 1; (ii) the sequence £,(x) converges uni-
formly for z>1.

20. Show that if § | ,(%)| is uniformly convergent in an
n=1
interval [a, b], then so also is 3 u, (z).
1
By taking u,(x) = (—1)" (1 —2?) 2" and [0, 1] for [a, b], show that
it may happen that E u,(x) is uniformly convergent in [a, b] and
1
§ | #,(2) | is convergent for all z in [a,b], but 21: | u,(x) | not
1
uniformly convergent in [a, b].

® x
21. Prove that ? nz+ )T 251}

in > ¢ for all § > 0, but is not uniformly convergent in z > 0.

is uniformly convergent
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CHAPTER XXV
POWER SERIES

1. Introductory. A series in the form
Qo+ a2+ a22 +ayz8 + ...,
where the coefficients a,, a,, a,, ... are constants, is called a POWER
SERIES, and, when convergent, defines a function S(z). The coeffi-
cients and the variable z are, in general, complex; for real series
we shall often denote the variable by the letter z.
It is possible to have power series which converge
(i) for no value of z except z=0; i
(ii) for a limited range of values of z;
(iii) for all values of z.
Typical (real) series are:
(1) 14(22)2+ (42) +... + (2rz)r + ...
For a given non-zero value of z we have
up/™ = (2nx)? = 4n2a8,
so that uL/™ - 0.

Hence, by Cauchy’s test (p. 85), the series is not convergent
except for x=0.

(i) l+z+2®+..+2"+...,
which, as we know, converges for all values of z in the range

-l<z<l,
but not otherwise.
ot ¥
(iii) l+xa+2—l+§-!+...+;r+....
For a given (non-zero) value of 2 we have
Uy _T+1
Upyy a*°
80 that h—>co.
U1

Hence, by D’Alembert’s test (p. 84), the series converges for all
values of .
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2. The radius of convergence. Suppose that the power series
Ao+ a2+ a2 + ...
is known to converge for a certain value Z, so that the series
o+ Z+a,Z%+ ...
is convergent. We prove that the series converges absolutely for every
value of z such that 2] <| Z|.

If the series converges, the terms are necessarily bounded; let
M be a number which exceeds the greatest of the (positive) numbers

laol, [aZ], |axZ?], ...,
so that, for all n, la, || Z|*<M.
We therefore have the inequality
|a,“z“|=|a.”||z|"

n

sMg

Lo s

zZ|'\Z]

is convergent, and so, by the Comparison Test, the series
|G| +]arz] +| ap2® | + ...

also converges, so that the given series

Now the series M { =1

Qg+ a2+ a,2% + ...
converges absolutely.

We can prove, by easy extension, that, if the series is known to
diverge for a certain value Z, then it diverges for every value of z
such that

|z]>]Z].

For if the series converged for the value z, it would, by the
preceding theorem, converge also for the value Z, since

1Z] <|z].

But this contradicts the datum of divergence for the value Z.

We are now in a position to define the radius of convergence of
RO TP fa Qg+ 0,2+ Ay 2%+ a32% + ...,
If we exclude for the moment the two cases in which the series
(i) converges for no value of z except zero, (ii) converges for all
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values of z, then we have a series which is known to converge
for certain values of z but not for others. Further, we have just
established that the moduli of the values for convergence cannot
exceed the moduli for non-convergence. It follows (but the proof
requires deeper theory than we have at our disposal, and will only
be sketched informally) that there exists a number R such that the
series converges whenever |z| <R

and diverges whenever |z|>R.

The behaviour for | z | = R requires particular examination for each
individual series.

To indicate the method of proof, let us suppose that the series
converges inside the circle | z| =p and diverges outside the circle
|z| =g. Then, necessarily, Ht

If p<g, consider a point z={ on the circle |z|=3(p+gq). If the
series converges for {, it converges for |z | < }(p+¢); if the series
diverges for §, it diverges for | z| > §(p +¢). The ‘gap’ ¢ — p between
the radii for convergence and divergence has, in either case, been
cut by half. Proceeding in this way, we can steadily diminish
the ‘gap’, halving it at each step. It thus shrinks to zero, so that
the regions for convergence and divergence are separated by the
circle which we have called |z | =R.

The number R is called the RADIUS OF CONVERGENCE of the
given series. The word ‘radius’ is, of course, drawn from the
representation of the complex variable z in an Argand diagram,
The series converges for all values of z within the circle |z | = R and
diverges for all values outside, with the possibility of either con-
vergence or divergence on the circumference. The circle |z | =R is
called the CIRCLE OF CONVERGENCE of the series.

It is convenient to say that a series which diverges everywhere,
except for =0, has zero radius of convergence, and that a series
which converges everywhere has infinite radius.

Analogous definitions may be given for a series

Ao+ a4y (2 — 29) + ag(2 — 2o + ag(z — 2o)° + ...,

centred, as it were, upon the fixed point z, rather than the origin.
The substitution gl
—zy=

brings it to the earlier type.




128 POWER SERIES

3. Two formulae for the radius of convergence. The con-
vergence tests of D’Alembert and Cauchy for series of positive
terms serve to derive two formulae for the evaluation of the radius
of convergence R of the series

ay+a.2+ 2% + 528 +....
The series of moduli is
|ag|+|a1] 2] +]as]| | 2|2+ | as] | 2|3+ ceee

(i) Use or D’ALEMBERT’S TEST. Since

CoNm L 3
Ungy | Opaa|[2]"H
=| % ||
T 2]’
the series of moduli converges if
lim | 2 L =1,
| @y
or |z] < lim |-2n|,
n—ro |Fpiq
provided that the limit exists.

The given series converges for all values of z for which this
inequality holds, and so, by definition, the radius of convergence
is given by the formula

R= lim
A—ro
provided that the limit exists.

If this limit is zero, the series converges for z=0 only; if it is
‘infinite’, the series converges for all values of z.

(ii) Use or CavucHY’s TEST. Since

An

]
Qi1

ult=|a, [V"]2],
the series of moduli converges if

lim|a, |V |z]| <1,
n—+wo

or |z] <lim | a,, | 4=,
n—>co
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provided that the limit exists. Hence, as for D’ Alembert’s test,
R=lim |a, |-Yn,

n—>+w
provided that the limit exists.
If this limit is zero, the series converges for z=0 only; if it is
‘infinite’, the series converges for all values of z.

4. Uniformity of convergence. Suppose that the series
Qo+ a2+ ay2% + ...
has radius of convergence R, so that it defines a function
S(z)=ay+a,2+ay2% + ...

for all values of z for which |z| <R. The series may or may not
converge for | z| =R.

Let us, to avoid uncertainty at the value R itself, fix a positive
number r of value definitely less than R though possibly close to it.
b r<R

and S(z) is defined whenever
| 2| <.

We prove first that the power series converges UNTFORMLY for all
values of z such that |z|<r. This is, in fact, an immediate con-
sequence* of Weierstrass’s M-test (p. 119); for the modulus
|a,z*| of the term @, 2" is less than or equal to the corresponding
term | a,, | 7 of the convergent series

|ao| +|ay| r+|ag| 2 +...,
and so the uniformity of convergence is established.

CoroLLARY. The function 8(z) is a continuous function of z when
|z]| <.

This is merely a particular case of the more general result proved
on p. 112.

5. Integration and differentiation. We restrict the work of
this paragraph to series in which the variable z is real and therefore
denoted by the letter z. The theory on which we shall lean (pp. 115-8)

* It is easy to confirm that the proof given for this theorem holds whether z is
real or complex.

9 MIV
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was established for real variable only. Similar results do, indeed,
hold for complex z, but they involve the ideas of differentiation
and integration with respect to a complex variable, which are not
considered in this book.

(i) THE INTEGRATION OF THE (REAL) POWER SERIES

S(x)=ay+a, @+ a2 +....

If R is the radius of convergence, and » any number such that
r<R, then (p. 129) the series is uniformly convergent for |z|<r
and therefore (p. 115) integrable term by term. Hence

f:S(t)dt=aox+ia1x’+§asﬁ+... (2| <R).

(i) THE DIFFERENTIATION OF THE (REAL) POWER SERIES
S(x)=ay+a,2 +a,2®+....

In order to show that the power series may be differentiated
term by term, it is necessary (p. 117) to establish the uniform con-
vergence of the differentiated series. By Weierstrass's M-test, this
would follow from the convergence of the series

|ay|+2]|ag|r+3]|ag|r2+....
Since r < R, we canﬁnda. number s such that
r<s<R.
The inequality s < R gives the convergence of the series
|ao|+|ay |8+ |ag|s+....
Hence the terms of this series are bounded, and so there exists a
number £ such that

|a, | 8" <k
for all values of n. Hence

nk (r\"
nla,,]r"—1<7(;) .
so that the terms of the series
|ay|+2|ay|r+8|as|r2+...
are less than the corresponding terms of the series

oo -)
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But this series converges by D’Alembert’s test (p. 84), since

lim %% = %im L(§)=£
W'MMI ,,..,mn+1 { i r
>1 (8>r)
The series a4+ 2a,x 4 3az 2%+ ...

thus converges uniformly to §8'(x) for |z| <, so long as r < R.
Hence the series
@, + 20,2+ 3ag2% + ...

converges uniformly to S'(z), with the radius of convergence R of the
given series.

This result may be applied inductively any number of times to
obtain the successive differential coefficients §”(z), 8"(x),... by
term-by-term differentiations of the corresponding series.

6. The sum of two series. Let
S(z)=ay+a,2+ a2+ ...,
T(z)=bo+byz+by22+...

be two given series with radii of convergence 4, B respectively.
Then each series converges for values of z such that

|z] <,

provided that r< 4, r< B. Thus (p. 80) the two series can be added
term by term for values of z within the SMALLER of the two circles of
convergence, so that, in that region,

8(2) +T'(2) = (@ +by) + (g +by) 2+ (ag +by) 22 + ...

7. ‘Equating coefficients.” Suppose that a function S(z) is
represented by two distinet power series

S@)=ayt+az+a2®+...,
S(x)=by+ b,z +bya® + ...

with (non-zero) radii of convergence 4, B. To prove that corre-
sponding coefficients are equal, so that

@y=by, @,=b;, ay=b,,
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By the result proved in §6 we have, for |x| <4, |z|<B, the

relation (@9 —bg) + (@ — by) 2+ (g — bg) 22 + ...
=8(2) +{-S()}
=0;

say Co+C T+ 2 +...=0.

Differentiating term by term, and so restricting this proof to real
values of z (compare p. 129), we obtain successively the relations,
all true for |z | < 4, |z|<B,

6+ 2¢q7 + 3ey2?+...=0,
25+ 3.2¢32z+ 4.3¢,2%+...=0,
3.2c,+4.3.20,2+5.4.3c,2%+... =0,

and so on. Putting =0 in these identities, we obtain the relations
=0, ¢,=0, ¢=0, ¢3=0, ...,

or @y=by, @;=by, ag=b;, ag=b; ....

8. The multiplication of power series. Let
Gy+ayz+a,28 + ...,
b°+ blz+ bgzg'i“ ses
be two power series each convergent within the circle |z|=p, so
that the radius of convergence for each is not less then p. We
prove* that, if 4, B are the sums of the series for a given value of z
(|z| <p), then the series

Co+C1z+c2%+ ...,

wkere crEa'llbr""a’Ibr-l'l"" +a’rbm

also converges, to a sum C = AB.

o= |@nl = [bal = |2]=r.

Since r < p, each given series converges absolutely, so that the series
P=ag+or+asri+...,
Q=fo+hir+hur+...

both converge.

Consider now the product P, @,, of the partial sums of P, @, where
FoQn=(o+ay7+...+a,™) (Bo+ frr +...+ f,1™).

* The final step of the proof will be seen to have the limitation that z is real;
but the result is true generally.

MULTIPLICATION OF TWO SERIES

Then P00, € PQ.

Write Yr = %Sty fr g+ i+, fy;
then  F,Q, = Yo+ 717+ ... + ¥, + (termsinsn+l pns2 2y,
If we put R, =y+yr+...+7,m™,
then (see also the note at the end of this section)

R, < P,Q,,
so that, since P, Q, < PQ, we have
R, < PQ.

Since, then, {R,} is a bounded increasing sequence of positive
terms, the limit Rmliind
Y L

n—>rwo
exists. Hence the series

C = cB+clz+c=zs+ e
= gDy + (aghy + @, b) 2+ (@ by + a, b, + ayby) 22 + ...,
converges absolutely, since the moduli of its terms are equal to or

less than the terms of the series yy+y,7+ 7,72 +....
Moreover, since the series of positive terms

%ofo+ (AP + o fo) T+ (o By + o fy + o) 2 + ...
converges (to R), the sum of positive terms

oo+t yr+ 0ty for + o far®+ o fr1?+ oty for® + ...
with brackets removed also converges, so that the series

aobo+agbyz+a,byz+ayby2? +ay by 22 + aghyz® + ...

converges absolutely. But we proved (p. 92) FOR A SERIES OF REAL
TERMS that, if it converges absolutely, then the terms can be
rearranged while not affecting the sum. Hence, for REAL z,

C=cy+ 12+ 022 + 528 + ...
=agby + (b, +a,bg) 2+ (agby + a1 by + aybg) 22 + ..
=ayby+ (agbyz +a,byz+a, b,2?)
+(@gba2® + agbyz® + ay by 28 + agb 23+ ayby2t) + ...,

where terms bracketed are added to malke up the successive pro-
ducts ayb, (ag+a,2) (by+by2), (@ +ay2+ay22) (by+byz +by22), ...
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Hence

C=lim (sum of first n + 1 terms as arranged)

n—>w

=lim (ag+0;2+... +a,2") (by+b;z2+... +b,2")
n—=>rwo

=AB.

The theorem as stated is true for complex terms, but the final
step, as given here, has depended on an earlier theorem whose proof
involved real terms only. The general case of that theorem is,
however, easily established from the consideration that a complex
series converges if, and only if, its real and imaginary parts con-
verge. The present result then follows.

NotE. The relationship between R,, P,Q, may be exhibited
diagrammatically. We choose in illustration the case n = 3. The
sixteen terms in the product P;Q; may be written in the form of a
square:

aﬁﬁo “’;;/gn?' “gﬂo"s “Isﬂe”s

’,
d

’I II ’1
:' .-’ ,’
4 'd
@hir @ firt apfirt agfyrt
/
4 ,"
# v

i 2
@Whir g fir afyrt ayfyrd

s,
s
/

aoﬁf;“ o far® ogflr® oty fyr®

The terms g, y,7, y27%, ¥37° are precisely the members of the four
dotted ‘diagonals’. Hence

R, = sum of terms on dotted lines
< sum of all the terms
< P,0Q,.
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REVISION EXAMPLES XX
Find the radii of convergence (possibly zero or ‘infinite’) of the
following series:

2 B A
et ey EpEt

1. 1+2+

2. 1-322+ 30— 120+ 28—,
8. 2242204 3284-428+....

5. z+(%)‘+21(§)'+31(2)'+...+(n-1)1(i)'+....

6. 24+3234-5254T2"+....

4, 24324422452+ ...,

7. 24+(1+2)z4(1+2)22+...+(1+ 22 14....

Z\2 3 4 S P
8. 1+z+(5) +(3) +(5) B i L

2) T\3) T\a 5T "e
2 23 4
10. z+;—,+3—,+1—,+.... 11, 242884358 4 4484 ...
2 3 4
R T LN . P

21 3! 4!
13. Prove that the series
1424224284,
does not converge for any value of z such that |z| = 1.

14, Prove that the two series
Sann, 3 (3—2)
1 1

cannot both be convergent for the same value of z.
Find the values of z for which neither series is convergent.
15. State whether the condition

%, >0 as n-—>o0
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is (@) necessary, (b) sufficient for the convergence of the series

POWER SERIES

(1) ?u,,, (ii) ?u,,z" (-1<2<1)
Prove the truth of each of your four statements.

16. Prove that
1+zcosf+2a%cos20+...+a"1cos(n—1)0

= 1—xzcos@ zcos(n—1)0—cosnd
1—2zcosf +a® 1-2xcosf+a® °

and examine the convergence of the series as n — c0.
17. Prove that,if —1 < z < 1, then

+a"

lim nz® = 0,
Prove that .
L 1—2™) (a+b—az) — nbx™1(1 —
£ @+m)w =20=7NE e iog),

Obtain the values of 2 for which the infinite series
(@+b)z+(a+2b)2®+(a+3b)ad+...
converges, and find its sum.

18. Prove that, if Za,2™ converges when z = a, it converges
when |z| < |«|.
Determine the real values of z for which the series

@

? nS(x_ l)ul

a+at4 ¥4 2184 ...
converge.

19. Determine the real values of 2 for which the series

® 1.3.....(2n+1)
P 2.4.....2n (=

n=1
converges.

20. Find for what real values of z the series
2(1-2)2—-2)(3—2)...(n—2)
Z 2np!

n=1

converges.
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21. Prove that, if E u,, is a series such that
n=1

n( . 1 l) >k>1
Up+1
for all values of n sufficiently large, then the series is absolutely

convergent,
Consider the convergence of the series

1-a (1-a)(1-2a)  (1—a)(1—24)(1—3a)
TR T T 2.3.4.

when a is positive.
22. Prove that, if the real power series
B+ T+ a2+ ag 2 + ...

4.,

is convergent when z = k, where £ is positive, then it is uniformly
convergent when s B sl i Ly

Prove in this case that, if f(z) is its sum, then
T
fuf(t)dt = ayz+ $ay20 + JagzS + ...

(i) Find the sum of the series

u§1 n(n+1)(2n+3)
when 2% < 1.
(ii) Prove that
5 b= Jﬂuvs . BmJ3—9
.§1(2n—1){2n+1)3n'" V3 " ztan'zdz = .




138

CHAPTER XXVI

THE DEFINITION OF FUNCTIONS
BY INTEGRALS

The subject of this chapter is the definition of a function by means
of an integral. We have already (Volume 11, p. 1) met an elementary
example in the logarithm =t

F (x) EJ‘I T.

It will be noticed that, in the early stages, we lean heavily on
intuition, quoting without proof results which require a much
deeper study of analysis than we have at our disposal. It is hoped
that, on the one hand, the existence of the gaps in the argument has
been made clear, and that, on the other, the underlying principles
have been made sufficiently intelligible for the reader to accept the
omissions as reasonable.

We begin with a preliminary theorem which is important in its
own right.

1. The first mean-value theorem for integrals. Let f(z) be
a function of z, continuous in an interval a <z <b. Suppose, too,
that u(x) is a function, also continuous, which is POSITIVE through-
out the interval. To prove that there exists a number £, where
a<§<b, such that

) b
L flx)u(z)dz=f(£) j y u(z) dz.

Since f(x) is continuous in the interval (a,b), it can be proved
(but we regard it as obvious intuitively, for example, from a graph)
that f(z) is bounded; so that numbers m, M exist such that

m<f(z)< M.

Divide the interval into n parts, not necessarily equal, at points
where 2 assumes in turn (and increasingly) the values

A=y, Ty, Ty, ooy Ty, Tp=b.

Since u(x) is positive everywhere,

n—1 n—1 n—1
m 21: (@) (@40 —2;) < 51.: Sflag) wlzy) (@ —2) < M 21: (@) (X401 —2y),
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and, in the limit,

mJ‘bu(x)dx < J.bf(a:) w(x)da < MJ‘b u(z) de.

Hence there exists a number % between m and M such that

f:f(x) w2)de =k f " (i) &,

Now it can be proved, and we shall again regard it as sufficiently
clear from graphical considerations, that a continuous function
assumes in a given interval every value between its least and its
greatest. If, then, we take m, M to be actually the least and
greatest values of f(z) in (a, b), there will exist a number £ between
a and b such that PO =k

b b
Hence J; f(z)u(z)dz= f(g)L u(x) dz.

CororrARY. By setting u(z)= 1, we have the relation

[ECEIY

for some number £ such that e <£ <b.

(The serious student will require to fill in the steps which we
have treated intuitively, and a text-book on analysis should be
consulted.)

2. Functions defined by finite integrals with fixed limits.

If
fla,t)
is a given function of two variables, z, ¢, then the integral
b
[(rana,
a

where a, b are constant, defines a certain function of z, say

F(z)= f : fla, t)dt,

for some range of values a <z <.

The properties with which we are most concerned are those of
differentiability (with implications of continuity) and integrability.
We consider them in turn,
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(i) DiFFERENTIABILITY OF F(2). Writing

b
F(m+k)=f F+h,0)dt,
we have the relation .

F(z+h)—F(x) =jb {f@+h,t)—f(x,t)}dt.

Suppose now that the function f(,t) is such that the partial
differential coefficient % Sz, t) exists.* By the mean-value theorem

of the differential calculus, a number # can be found, where 0 <@ < 1,
such that

f@+h,t)—fz,f)=h a% Fl+ 0, 1),

a b
w=faa%f(¢+ﬁh,t)d‘-

Unfortunately, the number @ is not a pure constant, but its value
depends on that of the parameter ¢£. Hence difficulties about
uniformity arise as we integrate from a to b on the right-hand side
and let & tend to zero. We propose to omit the deeper analysis
required for a detailed study, but to regard as plausible what is in
fact true, that, letting % tend to zero in the last equation, the
differential coefficient of the function

b
F(x) Efa flz,t)db
18, in normal cases, given by the formula

so that

F’(m)sf:a%f(w, t)dt.

This result will be used whenever required, and quoted freely.

(ii) INTEGRABILITY OF F(2). The function f(z, ¢) being given, as
before, as a continuous function of z, ¢ throughout the region of
values to be considered, we have seen (Volume 1, pp. 109-15)
how to define the double integral

[[fle,t)dzdt

* In this chapter, we shall confine our attention to the simplest cases only,
and assume the existence (and, where necessary, the continuity) of all functions
and their differential coefficients.
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and also how to express it in the alternative forms of repeated

g [d [f,t)dt, [t [f(z,t)da

between suitable limits. In particular, if ¢ ranges from a to b, and
if the integration of F(z) is from p to ¢, then the region of values is
the rectangle a <t <b, p <z <g¢, and we have the formulae

fif e o[

- J' ety dadb.
(rectangle)

Thus, if F(z) is the function defined by the integral

F(z)= J‘ :f(m, t)dt,
hin I:F(x)dz= j :dt J':f(z, ) de

. J' f f(z,t)dzds.
(rectangle)

3. Functions defined by finite integrals with variable
limits. Consider next the function

F(x) EJ‘: flz, t)dt,

where a is constant and u=wu(z) is a function of z. We shall not
require a formula for integration, but the formula for differentia-
tion is important.
We have
u(z+h)
F(x+h)=f f+h,t)de

a

u(x) u(z+h)
=J' f(:r:+h,t)dt+f Fa+h, B,
a u(z)
80 that

F(z+h)—F(z) =J:‘m {fx+h,t)—f(z,t)}dt +J.::+M

flx+h,t)dt.
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The first of these integrals can be dealt with exactly as indicated
in §2(i), so we proceed directly to the second. The first mean-value
theorem for integrals (Corollary, p. 139), gives the relation

J‘:((::“)f(x+ h, t)dt = {u(z + k) —u(x)} f(z +h, £),

where £ lies between u(z) and u(z +%). Hence, in all,

F(x+h)—F(x) (%2 f(z+h,t)—f(z,t)
h - h

and, as & tends to zero, we obtain the formula of differentiation

a4 BNV i 1 ),

F(z)= f :‘z)a‘f—%’-‘—) it + ' (z) f(z, u).

CororLarY. Similar reasoning may be used to prove that,
if F(x) is defined by the relation

v(z)
Fa)= [ e,
then the differential coefficient F'(z) is given by the formula
Fla)= f T af(a—“") dt+9'(@) f(z, v) — ' () f &, ).
u(x) OF

IvvustraTION 1. T'0 find the differential coefficient with respect
to x of the function o
F(a:)Ef (1 + 32%2) dt.

=

By the above formula
4
F'(z)=f Bat2di + 32%(1 + 32 .28) — 2(1 + 30 .a4)
o
= 2o(2® — %) + 3a?(1 + 328) — 22(1 + 3a?)
=112 — 827 4 32%—

In this simple case, we can check by direct calculation; for

F@)=[ ] +a o]

=% —2? + 11 — a8,
so that F'(z) =322 — 22+ 11210 — 827,
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4. Functions defined by infinite integrals. The real work
of this chapter is directed to integrals, now to be studied, in which
the limits may be infinite. There is close analogy with the work for
infinite series, and steps will often be set out in a similar way.

Let f(x,t) be a continuous function of z, ¢, and suppose that,

when z has a given value z,, the value of the mtegra.lf flzo t)dtis
denoted by Sp(x,), so that
T
Suta)= [ fantiat

where @, T' are constants. It may happen that 8, (z,) tends to a limit
S(z,) as T tends to infinity; we say

8(a) = lim 87(a)

EJ': F(@o,t) e

The existence of S(x,) requires that, if ¢ is any given positive
number, however small, then there exists a number N(¢) such that

| S() = Sp(,) | <&

whenever T is greater than N.

THE ‘BOUNDING’ TEST for infegrals. A test very similar to that
given earlier (p. 82) for series may be established for integrals.
Suppose that the function f(z,f) is always posrrive. Then the
integral ¥

Sueo)= [ flaotyat
is an increasing function of 7', so that, if S,(z,) is bounded for all

values of 7', the sequence {S;(z,)} converges as T->co. Hence,
if f(x,t) is positive, and if the integral

T
[ rewna
is bounded for all values of T, then the integral

f : F@ot)dt
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5. Uniformity of convergence for infinite integrals. Sup-
pose that the integral

Sp(z)= f " fana

converges for each value of z in a given interval. We say that
the integral CONVERGES UNIFORMLY fo a value S() for all values of a
in the interval if, given e, there exists a number N(€¢) INDEPENDENT

OF z such that
| 8(z)—Sp(x) | <e
whenever T > N.
It is sometimes convenient to write this inequality in the form

f : flatydt

<E€.

To prove that, if f(z,?) is a function, continuous in the region of
values considered, and if Sp(x) converges UNIFORMLY to S(z) in a
given interval, then S(x) is a continuous function of x in the interval.

Consider the two values z,, 2,+ A lying in the given interval, and

the corresponding integrals
f T +h, z)dtaf f@o+h, t)dt+f:f(x,,+h, 1) dt
wd  [“fanaes | [ reana

Since the integral converges uniformly, we can, given a positive
number ¢, take 7' sufficiently large to ensure that

[Crapsna
T

<le,

<ie.

[ tana

Keeping this value of 7' (which, by uniformity, does not depend
on k), we can now choose k sufficiently small to ensure, by the
continuity of f(z, ), that

| f(xo+h, t) = f(w,, 1) | <3(Te_&‘j-

so that U: {f(@o+h, t) — flay, 1)} dt | < 3e.
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Hence
| S(g+h)—S(,) |

- [ e n-peotyar [ e hoae- [ e e

<|[ e h ot + | [ by + | [~ i na

<le+le+ie
<e.

The function is therefore continuous.

6. The (finite) integration of a function defined as an
infinite integral. To prove that, if f(x,t) is continuous for values
considered, and if the integral

f: Sl t)dt

converges UNIFORMLY fo S(z) in a certain interval, then

R
T N

Jfor a range of integration (p,q) lying within the given interval.
Suppose that € is a given positive number. By the definition of
uniform convergence, a number N can be found, independent of ,
such that
<e

: (, ) dt
for all T > N. Thus
T
8= fadt+n.00),

where | 9,(z) | <€ whenever 7'> N. Hence

ES(::)dx:J‘:dx{ J‘ :f(m, t) dt} + f: 1) da,

where ‘ f i () da
»

<ée(g—p).
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But, for constant p, g and a, T', we have (p. 140)

| [ s

Hence j:S(x)dz= J' jdt{ I:f(x, t)da:]+ f:q,(x) d,

Since € may be chosen arbitrarily small, and the value of 7' then
selected to exceed the consequent value of N, however large, it

follows that J-: S(z) dz= f :dtU‘:f(”’ i d"}'

CororrLary. The integral

[re{freo)

8 uniformly convergent (within the interval of uniform convergence
of the given integral, assumed finite), and defines a function

z
J' S(0)d8
»
whose differential coefficient is S(x).

7. Differentiation under the sign of integration. To prove
that, if f(x,t) is continuous for values considered, and if the infinite
integral &

[ rena
a

converges to S(x) in a certain interval, then
8'(x) =f g—;f dt
whenever the integral on the right converges uniformly.
It is given that
[[2e
- o

converges uniformly, say to a value g(z).
By the theorem of §6, with &f/éx in place of f(x,#), we have the

relation f:g(ﬁ)dﬁ‘—‘f:d‘f:%ﬂa’”dﬁ
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for any value of z in the interval (p, ¢) of convergence. Thus

[[aorao=[" w0 -rwpa
=8(x) —8(p)-
Hence (remembering that g(2) must be continuous)
8'(z) =g(x)
L] af
w2 @dt.

8. A test for uniform convergence. The test which follows
is closely analogous to Weierstrass’s M-test given earlier (p. 119)
for series:

If a function g(t) can be found such that

[ atrae

exists and that | fl, ) | <gl(t)
for all x (within a certain interval) whenever t > a, then the integral
[Crana
a
is uniformly convergent.
For we can, given ¢, find a number 7 independent of z, such that,
for T>T,, =
f g(t)dt <e,
4
o that Urf(m,t)dt]gfr | fla 1) | dt
< J. § g(t)dt
T
<e.

Hence the integral converges uniformly.
Note as a CoroLLARY which is sometimes useful that, if a positive
constant M and a number k> 1 can be found such that

| fla,8) | < Mt*

for £ a, thex the indegral J' ® e, b dt
a

8 uniformly convergent.
10-2
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ILLustrATION 2. T'0 prove that

ne
Bl iy
o

This well-known integral illustrates several features of the
theory, and the steps are given in detail. We begin with two
Lemmas:

(i) The integral J‘“’ e~ gint

0

7 dt

is uniformly convergent for x> 0.
Denote by M a large positive integer, and consider the integral

Mn gzl o3
RTEJ' e :mtdt.
7

If N is the least positive integer exceeding 7'/, then
N7 gk gj M g—at g
; f Te*gint it TeHgint

¢ g

dt

Nmg—ztgin ¢ M—1 Mr+1) 7 p—at o}
2 J‘ e~*gin gy J‘ e~gint i,
- i t r=NJrr ¢
(See the Note below for a point of detail.)
Write
t=rm+u;
g J‘('+U"e-=‘sint P j'e-ﬁ"*'“’sin(m+u) d
o ¢ 0 T
e~ gin u
= 1) ——
I 0 €57 (rm+w) i
Since 1/{e™ (rm+u)} decreases as r increases (z being positive),
M—1
the integrals under the sign of summation 3, have the properties:
r=N

(@) they alternate in sign;
(b) they decrease steadily in magnitude for 2 > 0;

(¢) they tend to zero as r tends to infinity for 2> 0.
M-1
If we denote the terms in the summation ¥, by the notation
N

Uy — Uyt Uyig—Unig oy
then, by these three conditions,

| uy—uyia+Uyia—... | <| uy |,
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Nm g -'dgmt (N+1)m g—zlgin ¢
[ [,
T

sothat |R;|< :

For each integral, since >0, 7> 0, t > T, we have
Li<1T, e™Mgl,

1 [N= | 1 [W+D7
Hence |R,|<TL |mc|d:+ﬂm | sint | de,
and so we obtain, as an outside estimate, the inequality, indepen-
dap b, | By | <277 >0,

The integral therefore converges uniformly. We denote its sum by
S(z), so that T
8(z) = f ’ :‘“‘ dt.
0

Note. The working

M"e—"’sintdt ”-II('+1)'e—dsmt
r=N

= 7 dt

Nnm i

carries the implication that the upper limit of the given integral is
an exact multiple of 7. But no essential limitation is involved; for

the integral (r+1) 7 p—t gip ¢
f a
3
X e~Tiginy
in the form i_" em(nr+u)du (t=rm+u),
tends to zero as r tends to infinity. The integrand
e~ ginu
e (1 +u)

is positive throughout the interval, so that the numerical value of
the integral is decreased if the upper limit 7 is replaced by any
smaller positive number. Thus the integral still tends to zero, and
the main theorem remains undisturbed.

(ii) The integral *
J
i8 uniformly convergent for x > & > 0, where & is any positive number.
Consider the remainder

R; EJW e~ gintdt.
r |

e~gintdt
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We have |R}-]sjme'”|sint|dt
T

éjme“”‘dt
T

e—ﬁT
<

x

3T
se—_-z»o.

é
Since this inequality is independent of z, the integral converges
uniformly.

We first apply these Lemmas to the interval > &> 0 in which
both integrals are uniformly convergent. The conditions (p. 146)
for differentiation under the sign of integration are all satisfied,
and so, differentiating the relation

© o=zl o3
S(z)sf g,
0

we obtain the equality
8'(@)=— J.:e““"sintdt
—a ——1-—-
1422
after an easy calculation.
Hence S(x)=C—tan'z

for z> &> 0. Also we have, for large values of z, the inequality

IS(x)IsJ‘:e-“’dt

since |sint| <t; so thet | S(z)| <.

It follows that lim S(z)=0,
>

or C—-in=0,

so that C=3m.

We therefore have the formula

0 o—xf o
S(x)Efo e fmtdt=§w-—-ta.n‘1x,

established for 2> 4> 0.
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Finally, we have proved that the integral S(z) itself (though not
the integral giving its differential coefficient) is uniformly con-
vergent for >0, so that S(x) is continuous at z=0; moreover,
tan—lz is also continuous at =0, tending to the value zero.

Hence 8(0) =43

that is, I"““-;—‘aqﬂ.
0

9. The gamma (factorial) and beta functions. The camma
ruNcTiox I'(z + 1), known alternatively as the FACTORIAL FUNCTION
z!, is defined by the integral

T+ 1)Extsrt¢e~*dt.
0

(Both names are in use; the gamma notation is probably still

the more usual.)
(i) Convergence. We must establish the convergence of the
integral both at zero and at infinity. To do this, we split it into the

two parts 1 s
f tzre—tdt, J‘ tre—t dt,
0 1

and examine each in turn.

We begin with

with 0<d<1.
Now the integral is not convergent for < —1. For when ¢ lies

in the interval (8, 1), it is subject to the inequality

akyd
"

1
J- txe—tdt,
)

et

1 1
so that J- txe~tdi >J- e 1dt
& &

e [ i ]:(a:=|= =

z+1
1
e
Ifz+1 < 0,say @ + 1 = —9, where 7 is positive, then the relation is

1 : " 1 §
£ A1 Ll
Lﬂe dt>e1]{8v 1},

§=+1},
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and the right-hand side becomes indefinitely large as -0, so that
the integral does not exist for # < — 1. The case 2 = — 1 is similar,
but simpler.

If, however, > —1, we use the inequality

e_‘EeE‘<l (t>0),

e 1#‘B g 1th (241 1
S L ¢ <fa o :v+1:|a

1
= (z_+l_) {1- §2+1},

where the exponent x + 1 is now positive. Hence

retds < L
t < —r.
fa 5 <fn‘=+l

The integral therefore remains bounded as & — 0; moreover, the
integrand #%¢~ is always positive for £ > 0. Thus (p. 143) the gamma,
function is convergent at the lower (zero) limit,
Consider next T
fl *e~'dt,

with 7' > 1. :
Denote by £ the (fixed) integer which is the first to be greater than
both 1 and z. Then, when ¢ > 1,
re<th
5 1
¢ I+i+..+({02Ek+2)] +...
g 1 _ (k+2)!
{2 (k+2)} e e

and

Hence tret < ‘(-’%2)!

T 7 g
so that f t“’e"dt<(k+2)!f =
1 1 b

< (k+2)!{1—%]
< (k+2)L.

The integral therefore remains bounded as T' — 00; also the integrand
t*e~! is positive in the interval. Thus (p. 143) the gamma function
is convergent at the upper (infinite) limit.
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Hence the function
I+ l)Ex!EJ. tcetdt
has a value for each value of x, provided that x> — 1.

(ii) The ‘factorial’ property. The basic property, to which the
name ‘factorial function’ is due, is expressed by the relation

Fz+2)=(@x+1)I(z+1),
or (what is equivalent) (> —1).

(@+1)!=(z+1)zl
For (x+1)! =J‘: te+le—t di
= [_Fﬂe—-'T +f: (z+1)t*edt
=0+(x+l)ﬁt¢e-'d¢

=(z+1)al.

Note also that I‘(I)EO!sfue‘*'dt
0

=],

Hence if x is a positive integer,
Pez+1l)=zl=z(z—-1)(z—-2)...3.2.1.

The BETA FUNCTION B(2,y) is defined by the integral
1
B(z,y) =f =11 —t)v—1dt.
(]

By reasoning similar to that just given for the factorial function,
we may prove that convergence for t=0 requires >0 and that
convergence for f = 1 requires y > 0. Thus we assume that z > 0, > 0.

Writing {=1—# and then suppressing dashes, we have the
relation 1
Ba)= [ (-t

so that B(z,y)=B(y, ).
Writing ¢ =sin?#, we also have the relation
i
Blz,y)=2 f sin®-10 costv-1 g,
0
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We prove now that the beta and factorial functions are connected
the relation

by ()T

B(x: ?I)— P($+y)

or (in factorial notation)

(x,y>0),

Iyl
Bz+1,y+ 1)=($ zly!

m (::+1,y+1>0).

Consider the product

@ @
z!y! =j t’e“dtf wve du
0 0

- J' 3 f " truve—+0 di du,
0oJo
Write t =£2, u=92. Then
a:lyl=4fm.rn Eretip2utle—E4 dE dy,
0oJo

In terms of polar coordinates (§=rcosf, p=rsinf) in the
(£,7) plane, we have, subject to convergence (see below),

zlyl= 4‘[: J':“ r22+2+8g—r" 0og22+1 @ sin2w+1 §drdl
—4 f ” pataniogt gy J' " coste+19 sin®+ 9p,

The first integral, on writing r2=1, i:
s T iyt @10,

and the second, by the above, is

$B(z+1,y+1).

Hence 2lyl=(z+y+1)! Blz+1,y+1),
Ly!
or Bz+1l,y+1)=—2Y
F+Lyh )~

To justify the transformation from (£, %) to the polar form (r, 6),
observe that the double integral is the limit of the integral

i -+l 2+ ,—(E2 47
+ Ty
[, ], =ramneemagay
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over the square of vertices (0,0), (N,0), (¥,N), (0,N), whereas

the integral .. ...

f f PR3 GogeH1 P in®+1 0 dr B
0oJo

is over the positive quadrant of the circle » = N. The limiting values
will be the same provided that

lm | [£2=+Hlgv+le—E ) dEidy =0
N—ow
over the area of the square not covered by the circle.
Now the value of the integrand throughout this area is less than
(2N)2*+1 (2N)+1/eN*| and the area itself is equal to N?—}aN2.
Hence the value of the integral is less than

(2N )=+242 (1 — ) N®
e_Nl 2

or 2m=+2ﬂ'+2(1 L &ﬂ) N2z+2u+4 /eN',

which tends to zero as N tends to infinity.
The transformation is therefore justified.

CoroLLARY. If = —}, y= —14, then
(= _
=2 = B, b

i
=2f sin®6 cos® 8d8

0

i
=2| db

0
=7.

Hence (being positive) TI'(})=(—4%)!=4m.

InLustraTION 3. Dirichlet integrals. The use of the gamma
functions enables us to evaluate a class of integrals of which we
give a particular example:

To evaluate the integral

- [[f@+y+2)ar Yyl dedydz  (p,g,r>0)

over the volume of the tetrahedron bounded by the planes x=0, y=0,
2=0,x+y+z=1.
Write
Z+Y+z=u, y+z=uvy, 2=uvw,
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so that z=u(l-v), y=w(l-w), z=wuvw

L AR
T+y+z Y+z
The Jacobian of the transformation is

and Uu=xr+y+z, v=

1—w —u 0
oz, y,2) _ - &
o v(l—w) w(l-w) —uv |=u.
vw wy uv

Moreover u, v, w are all positive and, for varying values of z, y, z
within the tetrahedron, take independently all sets of values
between 0 and 1; hence the new volume of integration is the cube
O0<u<1,0<v<1, 0<w< 1. The integral is thus

If ff(u) {u(1—v)PP-1 fuv(1 —w)}e-! fuvw) ! uodudvdw,

=f1f('u) uPﬂ#—ldufl pIH-1(] — g)p-1 d”flwf_l(l —w)t-1dw
0 0 0 )

=J. ol J(w)upterr=1dy B(q +r, p) B(r,q)
_T(g+r)T(p) I'(r)(g)
Plg+r+p) "T(r+q)

_L(p)I'(g)I(r)
F(p+gq+r)

[‘wressas

f : ) uperr-1dy,

REVISION EXAMPLES XXI

1. Prove, by differentiation with respect to the parameter ,
that

"log (1 + cos a cos f)
L = db =n(}m — ).
2. Show, by differentiation with respect to a, that, if o > ay >0,
then ® g—az gin 2
L 0% 4= K —tan-la,

where K is a constant.
Find the value of K by considering the value of the integral
when a—co.
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3. Prove that L e-‘l"smxdz=w,
and evaluate J‘“e‘wmzdz’
0 Zz
stating in each case the values of y for which the result holds.
Justify your statements.
Deduce that hs
M2 o=y,
0o T
With the aid of the last result, verify (and justify your method)
b < i z)—J"" sin (at)
¢( o 0 z(a”+ .‘Es) 5
then @"(t) — a®¢(t) = constant.

Deduce that, if ¢ > 0,
¢(‘)=-2%a(1 — g-at),

4. Prove that,ifa>0,2>0,

® cos ux T
U= e,
o a®+u? 2a

5. Evaluate the integral

@ dx
I.. (1+a%?) (1 + 6%%)

and show that it is uniformly convergent for all @ >0 if b is fixed
and positive.
Deduce by integration the values of

© tan—!zdx J‘ i (ta,n—1 m)’ ™
J. o (1+0%2)" [, z i
6. Prove thst, f w= J' ® e~*o08 20y da,

tuhﬁn TR e |1

and, assuming that u =} ./m when y =0, deduce that
u=},/me "




158 DEFINITION OF FUNCTIONS BY INTEGRALS
7. Apply the formula

c%f:f(x,a)dw=f:%ﬂx,a)dm
to show that

i
f cosztan™ (sinh « sin z) dr = tan—? (sinh a) — cosech & log cosh cz.
0

8. Prove that f’log(l—2aoosz+a3)da:
0

has the same value for all valuesof ¢ in —1<a<1.
9. Prove that, if —1<a<1,

f cosecﬁlg[%g}dﬂ mein~le,

the principal value of the inverse sine being taken.
10. Show that the integral

:nsma:y
I f 32 +a3
is uniformly convergent in any range 0 <a < y<p.
If
® cos DB 1

prove that, when a > 0 and y > 0,

I——%= -9(%+§).

11. Prove that,if 4>0, 4 + B> 0,

* p I

o (A+Bcos?z)"™*1~ 2.al 24\/(4%+AB)|
Deduce that, when a and b are positive,

J'ir de _m(a+b)
o (asinz+bcos?z)®  4(ab)t

12. If $(z)= f: (1-e~¢'~’)§%,

show that ¢(x)/ is constant for z > 0,
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Calculate ¢'(x) and hence evaluate
J' (-,
¥

13. Prove that, if the integral

J‘ ¢ fl=)da

0 (x—a)t
is independent of &, then z}f() is a constant.

14. Evaluate the integral

J‘"log(l —:a’sin’m)dx
0 smx

’
where —1<ea<1.
15. Prove that, if « and £ are numerically less than 1,

f : logl(-tl-:i:i; :o:o: ?) dy = 2 sec ff log {sec 38 cos }(e + )}

16. Prove that, if —1<a<]1,
i
f log (1 + cos z cos amr) sec xdx ={n%(1 — 4a?).

17. Prove by means of the formula (under appropriate con-

ditions) LdyL ¢(x,y)d='=fo dxfagS(x,y)dy,

@ e~Z gin bz

that (i) L
(i) J': ez si:h bx

dx=tan=1b,

dz=}1lo G*g)

18. If w(y) EI e~2"gin 2zyda,

prove that 3;’ +2yu=

u(y)=e¥" fv e dx.

|6]<1.

and deduce that

19. Prove that, if f(z)= J' 5 t,)

then @)+ (@) +f(z) =0.
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20. Prove that, if f(z) is a decreasing function of x, then
1 (b
e RCL
is decreased when a or b or both are increased.
21. Change the order of integration in the integral

J it

and hence evaluate the integral.
22. Prove that, if
(i) f(=,y) is a continuous function of (z,y) forz>0, y >0,

o R o

(i) [ " [ fto,v)dy exists,

then [ “ay[ s e ["a[ sy
0 0 0 0
Prove that the three conditions are satisfied by

_[et@—-yityt (0<y<a),
)= [0 (otherwise),

and, by dealing with both sides of the deduced relation, prove that

I: e=atde=13.m.

1 de 81
23. Prove that ,"0(1——3?})*_;3.
lgpz—a2t,
24. PI'OVB that G—de—ﬁ;wJZ

25. Prove that J: ﬁfé J(;) P

26. Show that B(z,z)=2"22B(z, }),
and deduce that miD'(2z) =22-1T'(z) I'(z + }).
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Prove also that
I'(3) I'(2z) =22=1T'(x) I'(z + 1.

27. D is the area in the zy plane defined by the inequalities
2>0, y>0, 22 +y? <1, where m, n are positive but not neces-
sarily integers. Prove that

1 TmY) T
” oYW= Gon t) Tm 07

(Write z=uVm, y=v"n.)
28. If p>0,¢>0,b>a>0, evaluate

J' * p1(q — )it (b— ) P-1da.
0

29. By substituting z+y=wu, y=uv, or otherwise, prove that
s 554 [y~ 2—y)}tdady,

taken over the area of the triangle bounded by the lines =0, y=0,
z+y=1,is 27[105.

b3 M
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CHAPTER XXVII

THE SOLUTION OF DIFFERENTIAL EQUATIONS
IN TERMS OF INFINITE SERIES

It is familiar that the solution of the differential equation
d
7 gm0

can be written in the form

2
y=A(1—‘2i!+§—- ...)+B(x-§-?+;—’?— )

where A and B are arbitrary constants. In this simple case, the
solution has been expressed in terms of two infinite series, which
represent the known functions cosz and sinz respectively; but
often—and this is the purpose of the chapter—equations which
cannot be solved in finite terms (at least, by functions already
studied) may be solved instead by means of ascertainable infinite
series, whose properties can then be examined as required.

There are thus three problems:

(i) How can such infinite series be determined?
(ii) When determined, under what conditions (for example, of
convergence) are they really solutions?

(iii) What properties do they possess?

We confine ourselves mainly to the first of these tasks, the
finding of such series in actual practice, and we restrict attention
to the linear differential equation of the second order

o+ P@) W 1 )y =o0.

It is found convenient to extend the scope of inquiry at once,

and to search for more general solutions of the form

yEaﬂf.f'a’le'i'asws'l' s
@
EE“A‘”"“:
0

where the constant exponent ¢ is to be determined, and where the
first coefficient a, is not zero.
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The method consists in differentiating the proposed series
formally, substituting formally in the given equation, and then
equating to zero the coefficients of the various powers of . In
favourable cases, this determines a set of coefficients and therefore
an infinite series; the work of Chapter xxv then shows that the
steps are justified for values of « lying within the radius of con-

vergence of that series. ' '
It may be helpful to remark (without proof) that if the given
equation is written in the form

d2y dy e
z’@wp(x)dxﬂ(w)y 0,

and if the two functions p(z), ¢(z) can be expanded in series of
ascending powers of z, then the solutions to be determined are
convergent with radius of convergence equal to the lesser of t_he
radii for p(z) and g(z). The reader will probably decide on brief
reflection that it would be unlikely to be greater.

1. The method illustrated. Consider the equation (of so-
called ‘hypergeometric’ type)

: -2y’ + (G- )y -2y =0,
or 2z—2a%)y"+(1—8x)y'—4y=0.

We seek solutions of the form
y=% a,l'x*‘“ (@ % 0; summation with respect to A),
for which y = %:_‘, (c+A) ayactr-1,
Y= %} (c+A)(c+A—1)a,zet2-2,
Substitute in the given equation; then
[2 % (c+2) (c+A— l)aaz°+"‘1—2% (c+A) (c+A—1) anM]
+ {% (c+A) ayaeti-1—_g i;: (c+A) a,\a;‘*""} ¥ i:; 0,27 =0,

or, grouping like summations,

¥ (c+A) (24 24— 1)aAwA—1-2§(o+A+2) (c+A+1)aya==0.
0

II-2
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The lowest power of « present, namely, %1, occurs in the first
summation only, when A=0; for the vanishing of this term, we

require
¢(2c—1)ay=0.

Hence, since @, 0, ¢ has one or other of the values
c=0 or c=4}.

A general power, say 2°t", occurs when A=n+1 in the first
summation and when A== in the second; for the vanishing of this
term, we require

(e+n+1)(2c+2n+1)a, ,=2(c+n+2)(c+n+1)a,.

[We must not yet cancel the factor ¢+n+ 1 from each side, lest
it has significance.]
Taking ¢=0, } in turn, we obtain the respective relations

(i) (r+1)(2n+1)a,,;=2(n+2)(n+1)a,,
({) (n+3)(Cn+2)a,,=2n+3)(n+])a,.

Now # > 0 for all terms of the series, a.ndsothefa.ctorsn-i— L,n+§
are never zero. Hence the relations are

: 2(n+2)
@) Gua=7 7

) RS
n+l 2(ﬂ E 1) »*
We are therefore able to proceed to the evaluation of the two series

corresponding to ¢ =0, ¢ =} respectively.
(i) When ¢=0, 2.9

0 ="1"dq
2.3 2023
1.3 %o

2.4 _29.23.4
5 #=1.3.5 W

21.2.3.4.5
1.3.5.7 W

2
=7 %

S
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and so on. Hence the series is

2.3.4 2.3.4.5
a.,{1+ (20)+ 73 (20)*+ 75 5(2z)=+1.3_5_.,(2x>‘+...}.
(ii) When c=3%, a,=3a,,
q <
%=3 34" 3%
_9  _87.9
%=5 3% 5 3%

and so on. Hence the series is

b/x\ 5.7(x\* 5.7.9(x\* 5.7.9.11 (z\*
“-"*{1+i(§)+ﬁ(§)+ 31 (5)* 4 (§)+]

If we denote the two series within brackets { } by the letters
u, v respectively, then the general solution of the given equation,
with two arbitrary constants, is

y=Au+ Bat,

The radius of convergence is easily obtained, since, for each
series,
lim

n—>rw

RN
Apia

8o that R=1.

Hence each series converges uniformly in any interval
|z|<1-8 (8>0),
and the operations which we have performed are thus justified
within that limitation.
Note. The equation, when expressed in the form

2" +ap(x)y’ +q(x)y=0,

: 1-8x 4z
is z2y+:c(2 2w)y +(2 2m)y 0,
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and the (ordinary binomial) expansions for

1-82  —4z
2(l—2)’ 2(1-2)

both converge for |2 |<1. Compare this result with the remark
on p. 163.

The equation to determine ¢ (p. 164) is called the INDICIAL EQUA-
TION of the given equation, and its roots provide, in general, two
starting-points for series to solve the given equation. There are,
however, certain difficulties in particular problems, and we must
now examine how they can arise.

2. Indicial equation with two equal roots. We illustrate
the treatment of the equation when two roots of the indicial equa-
tion are equal by considering another equation of hypergeometric

type, . -
e (-2 y"+ (1 —4x)y’ — 2y =0,
Write Y=F 0,2 (a,40),
0
so that y'=§} (e+A) @y actr-1,
0

Y' =3 (c+A)(c+A—1)a,as-2
0
Substitute in the given equation; then

{i:: (e+A)(c+A- l)aaa‘“—‘—%:(cwl) (c+A— l)am’f"}

HE Dz aS e ngan] -2 S aenia,
0 : 0 0
or, grouping like summations,
% (c+/1)3a,\::c+"—1—§(c+l+ 1)(e+A+2)a,z2+2 =0,

The lowest power of # present, namely, 2°-1, occurs in the first
summation only, when A = 0; thus

Fag=0 (ay+0).
The two roots of this equation for ¢ are equal, namely,
¢c=0,0.
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A general power, say z°t* (for »>0), occurs when A=n+1 in
the first summation and when A== in the second; thus

(c+n+1)Pa,  =(+n+1)(c+n+2)a,
Since we have proved that ¢= 0, the factor ¢+ + 1 cannot be zero
for n> 0, and may therefore be cancelled. Hence
ct+n+2

n+1 = crn+l L
Apy1= :‘TI% e
Thus a, =1ay,

ay=3a, = 3ay,

@y =0, = 40,

a,=3a,=5a,,
and so on. Hence the series is

a{l+2x+ 32+ 4% +.. .},
valid for |z | <1.

[In this particular case, we recognize the solution in finite terms
as ay(1—z)~2]

The new feature of this discussion, as compared with that in §1,
is that, because of the repeated root ¢=0, we have (so far) been
able to obtain only oNE solution of the given differential equation.
We must therefore undertake further investigations for a second
solution.

We begin by forming the solution in series as before, but ignoring
the fact that ¢=0. Then 642

a1=c+1a°’

" _c+3
2—c+2a1!

Lotd
%=

and so on. These coefficients satisfy the relation
(c+n+1)a, =(c+n+1)(c+n+2)a,
for all values of n such that # > 0, and so it follows that, when this
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series is substituted in the given equation, all terms vanish except Moreover 2 /Pu\ 2 ldu
that in 2°-1, which gives (as before) c?a,. Hence, if we write 3 (W) =3 (E
- 642 o1, 043 siayote o4 } d (o
u-—anlxc+c+l$°+ +O+lze+ +O+lzc Tosety =d_x(¥)
then, identically, d(d (ou
(@—2?)u” + (1 — 42) v’ — 2u=a,c%cL, "E{Tx(ﬁ)]

This relation holds, subject to convergence, for any value of ¢. L (3;“) :

Now repeated roots are associated, almost by tradition, with the dx®\de

vanishing of a differential coefficient, and we observe here that the
differential coefficient, with respect to ¢, of the right-hand side
vanishes when ¢=0. Hence the differential coefficient of the left-
hand side also vanishes, so that

The formulae of commutability are therefore established.
Returning to the relation

%{(m—x’) u” + (1 —4x) u' — 2u}, =0,

0 . '
a{(z—x“)u TS M, we are now able to express it in the form

) 00t ) () -

so that there exists a second solution of the given equation, in the form

@)

But a typical term of the series for u is

where ¢ is equated to zero affer the differentiation.
Finally, we establish two ‘commutability’ relations

L W)

oc\dz) dz\2c)’ Bc(dm’ “dat\oc)”
To prove them, consider each term a,z"+ separately. We have, by
logarithmic differentiation, the formula

a%(anmﬂﬂ)=xﬂ+0§g?”+anzﬂ+clogz’ c+n_{_1w,
so that c+
e fc+n+1 ﬂ)_c+‘n+1 P S 10 Wl Jacl g
1%:[%(%::"“)]=(n+c)a=”*"_l%+a,.x"+"l andt ‘3_6( e+1 S e e
+o-1 .
d b i i o Henoe 3("*"+1m=+n) = (n+1)alogz —na™,
also  o-(a, @) = (n+c)a,zrtet, de\ e+1 0
so that The corresponding solution is therefore
@ (142z+322+4a® +...)logz— (+ 222+ 323+ ...).

d oa
+ey| — +e-1%n +o-1
{l (a,z )} (n+c)ar % +a,x"
+(n+c)a, 2" 1log .

Hence the first relation holds for each individual term, and so for
the whole series, within its radius of convergence. But see the Note
at the end of this section,

de The complete solution of the given equation is thus
y:A(l +2ﬂ?+ 3$2+ ...)
+B{(1+2x+32%+...)logz— (x+22% + 323 +...)},

where A, B are arbitrary constants.
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Each of the infinite series is convergent for |z | < 1, though, of
course, log x is meaningless when =0,
Nore. We have glossed over the difficulty that the statement

2 Sano)zre=32 fa,0)amey

requires proof. This is hard, and cannot be attempted here. On
the other hand, we may use the argument that the above analysis
indicates what a solution of the equation might be; and, for the
particular numbers, substitution of the proposed solution into the
given equation verifies that the supposition is correct.

3. Indicial equation with roots differing by an integer
(leading to ‘infinite coefficients ’). We turn to another equation

of hypergeometric type,
(v —2?)y" — 4oy’ — 2y=0.

Writing Y= § @,z
0

and proceeding exactly as in the two preceding sections, we reach
the equations olc—1)a=0 (ag=0),
(c+n+1)(c+n)a, ,=(+n+1)(c+n+2)a,.
Thus c=0 or e=l;
also, since c+n+1+0 for n>0,
(C+7) Gpyy = (470 +2)a

The new feature of this example is that the two roots ¢=0, ¢=1
differ by an integer.

The successive coefficients are calculated according to the

sequence 42

= —
a4 F

—c+3a _(e+2)(c+3)
Te+1t ele+])
—G+4a _(e+3)(c+4)
Te+2"  ¢le+1)
_c+5 _(c+4)(c+5)
c+3B= elc+1)

4

and so on.
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The solution ¢=1 is straightforward, and gives the series

. 4.5
ao{z+3x”+3T4m"+—2—x"+...},

which, in fact, we recognize as a,z(1 —z)-3.

The solution ¢=0 seems at first sight to be useless, since the
equation ca, = (¢ + 2) a, cannot be satisfied for any value of @, when
ay+0. We find, however, that a solution may be obtained in the
following way:

Beginning with the general form
e+2 ., (6+2)(c+3) ., (c+3)(c+4) .4 }
a,,{:c"+ 5 a4 G+1) a2t e+]) et LY,

we can get rid of the factor ¢ from the denominators by writing a,
in the form ke (with k< 0). This device introduces a value of a,
which vanishes with ¢, but we shall see that this disadvantage does
not prove fatal.

Putting ay=ke (k+0),
we write

st B S

usk[cw"+(c+ 2)aett 4 CF2) (°+3)xc+=+("+c3:_(‘;+4)

c+1
Substituting this expression in the given equation, we find the
reSsita (x—2?)u" — dau' — 2u=ke2(c—1)acL,

Since - 3% {ket(c—1)a*1},_,=0,

it follows, exactly as in the preceding section, that
e ) ),
so that a second solution of the given equation is
ow
prd ).
In order to evaluate this expression, note that

8% (@*t") =z**"log,

so that a-%(m‘-‘*'ﬂ)o =a"log .
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Also, since, for small values of ¢,

(c+n)(c+n+1)

oy =(c+n)(c+n+1)(l—c+c-...)

=nn+1)—(RP—n—1)c+...,

Jesmtatl) |y
0

cc c+1
We therefore have the solution
u=k{(2x+2.322+3.42% +...)logz
+(1+2—2%—b2%—11at—...)}.
The general solution of the given equation is thus
y=A[1.22+2.32°+3.42%+ ... +n(n+1)a"+...]
+B[{l1.22+2.322+... +n(n+1)2" +...} loga
+{l1+zx—2?—b2%—...—(n:—n—1)a"—.. }].

There is one final point to be cleared. Not only does (2u/2¢),
satisfy the given equation, but so also, and more obviously, does
u, itself. But this merely gives

k{2x42.32%+3.42%+...},
and so provides nothing new.

4. Indicial equation with roots differing by an integer
(leading to indeterminate coefficients). Still keeping to the
hypergeometric type, consider the equation

(—2")y" = (1+22)y" +2y=0.
Writing y=3 a2
0
and proceeding as before, we obtain the equations
c(c—2)ay=0 (a,+0),
(c+n+1)(c+n—1)a, =(c+n+2)(c+n—1)a,.
Thus c=0 or ¢=2

The new feature in this example is the possibility that the factor
¢+n—1 can vanish on each side when ¢ =0 (for the value n=1).
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The solution for ¢ =2 is straightforward, since then

n+4
Oni1= g%

so that “’1'—"%“0!
a,=%a,=%ay

i o Thaid * K ST
agfa® +§a® + §at + ...},
which, in fact, we recognize as
3a,{(1 —2)~2—(1+22)}
When ¢ =0, the relation connecting successive terms is
(n+1)(n—1)a,,,=(n+2)(n—1)a,.

For n=0, we have —a,= —2ay,

or a,=2a,.

For n=1 we have no information, since each side of the relation
vanishes identically, being satisfied whatever a, may be.
For n> 2, we can cancel the factor n— 1, thereby obtaining the

relation (m+1) Ay =(m+2)a, (0>2).

The coefficient @, may be given an arbitrary value, and then we
have
ay=4a,,

a,=3as,
and so on.
‘We therefore obtain for ¢ =0 the series
ao(1 + 22) + ag(2? + §2° + 524 + ...),

and we observe that the coefficient of a, is just the series already
obtained for ¢=2.
Hence we have in all the general solution

y=A(1+22) + B(3a® + 423+ 52% + ...).

See also another example of indeterminate coefficients in con-
nection with the solution of Legendre’s equation on p. 174.
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5. The hypergeometric series. We shall not be dealing
directly with the important series known as the HYPERGEOMETRIC
SERIES, but, as we have used a number of particular examples in
illustration, we give the general definition of the series:

B ala+1)AB+1)
S T
+a(as+ 1) (e+2)f(A+1)(F+2)
1.2.3.9(y+1)(y+2)
convergent if |z|<1. It is a solution of the HYPERGEOMETRIC
EQUATION ” ,
9 2(l—2)y"+{y—(a+p+1)a}y —afy=0.
The series is often denoted by the notation

F(a,p,7,2).

It is easy to verify that the indicial equation for solutions in the
form

4.,

[==]
y=Ea,)‘z0+A
0
has roots ¢=0, c=1—v,

so that, if y is not an integer (or zero), a second series satisfying the
hypergeometric equation is

2 7Fa—y+1,f-y+1,2—v,2).
6. Legendre’s equation. Another important equation soluble
in series is LEGENDRE'S EQUATION
(1-2%)y"— 22y’ +n(n+1)y=0,

about which we shall have more to say later. In the meantime we
try, as usual, the series

-]
0
-]
so that y'=3 (c+A)a,actr-1
0

¥ =3 (c+2) [+ A—1) @ a1-s,
0
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Substitute in the given equation; then

3 (6 +A) (c4+A— 1) ayaeti-?

0
— S {(e+A) (e+A—1)+2(c+A) = n(n + 1)} a,a=r=0.
]

The lowest power of & present, namely, 2°~%, occurs in the first

summation only, when A=0; thus
clc—1)ay,=0.

The next power, that of 21, again occurs in the first summation

only, when A=1; thus (63 1 dast,

A general power, say 2°** (for r > 0), occurs when A=r+2 in the
first summation and when A =r in the second; thus

(c+r+2)(c+r+1)a ,=(c+r+n+1)(c+r—n)a,.
From the indicial equation we obtain the two possibilities
¢c=0 or c¢=1,

which we consider in turn. ]

(i) The solution ¢c=0. When ¢=0 the equation (c+1)ca,=0 is
satisfied automatically, and so the coefficient g, is indeterminate.
For the succeeding coefficients the relation is

(r+2)(r+1)a, ,=(+n+1)(r—n)a, (r=0),

_(r+n+1)(r—n)
% Cr3= T 2) (P +1)

The ‘even’ coefficients may now be calculated in succession:

o BTN

(n+3) (2—n)a ___(n+3) (n+1)(2—n)(—n)

i Ptbon sl 4l i
(n+5)(4—mn) _(”+5)(ﬂ+3)(“+1)(4-ﬂ)(2‘-ﬂ)(—ﬂ)a
. GURTTRE T G 6! v

and so on.
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Similarly for the ‘odd’ coefficients,

_(n+2)(1—mn)
AL |

2 (n+45).&’o—n)aa= (n+4)(n+ 2)553—7&) (1 —n)al’

_(n+6) (5—n)a _(n+6)(n+4)(n+2)(5—n)(3—n)(1—n)
o 7.6 = 7! -

and so on.
The general solution of Legendre’s equation is therefore obtained
in the form

o EHER G DO, )
+a1[a:+(n+2)351—”):1:’-#(”4”4)(n+2ég3-n)(lﬁn)xﬁ+...}.

It is easy to verify that each of the two series in this expression
converges for |z | <1.

(ii) The solution ¢ = 1. This condition gives us nothing essentially
new. The relation (¢c+ 1)ca, =0 gives a, =0, so that, by the recur-
rence relation,

=03 =A5= es. =gy = .n- =0.
Further (r+3)(r+2)a, a=(r+n+2)(r+1-n)a,

so that
%=(n+2)(1—n)

3!
a‘=(n+45)'&3—n)az=(n+4) (n+2)5§3—n)(l —'n)am

and so on. Thus the series is

a,,{a:+ (n+2)(1 —“)xa+(”+4) (n+2) (3—n)(l—n)x5+m},

3! 5!

a series identical with the coefficient of @, in the general solution
obtained previously.

Cororrary. When 7 is an even integer, there is a solution (the
coefficient of a, in the general solution) which is a polynomial of
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order n whose terms are even powers of z; when n is an odd integer,
there is a solution (the coefficient of @, in the general solution)
which is a polynomial of order n whose terms are odd powers of z.
These sets of solutions will be unified and assume importance later.

7. Bessel’s equation. The equation
22" + 2y’ + (22 —n?)y=0,
known as BESSEL’S EQUATION, will also arise in the subsequent
work. To solve it, we begin with the series

y=§a.ﬂ"’”‘,
0

from which we obtain, by substitution in the given equation, the
relation

S {(e+A) (+ A= 1)+ (e+A) —n¥} a,2°H 4 3 a,ae++2 = 0,
0 0
-] @
or S (e+A+n)(c+A—n)aat + ¥ a2t 42 =0,
0 0
The lowest power of & present, namely, ¢, occurs in the first
summation, when A=0; thus
(c+n)(c—n)a,=0.

The next power, that of 2°+, again oceurs in the first summation
only, when A=1; thus

(c+1+4+n)(c+1—n)a,=0.

A general power, say a°t" (for r > 2), occurs when A =r in the first
summation and when A =7 — 2 in the second; thus

(c+r+n)(c+r—n)a,+a,_,=0,
or, replacing r by r+2,
(c+r+2+n)(c+r+2—n)a,.,=—a, (r=0).
From the indicial equation we obtain the two possibilities
¢=mn Or ¢=-—n,

though these give the same value when n=0.

12 MIv
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The coefficient of @, in the relation found above is
(c+1+4+n)(c+1—n).
For ¢=mn, that is 2n+41,
and for ¢= —n, it is 1-2n.

Hence a, is indeterminate (since the product of factors vanishes) for
n= + %, but is otherwise zero.

Suppose that n=+ + §, so that a,=0. Then, by the recurrence
relation, we have the relations

a1=afs=a5=...=0,

and so the series contains only the ‘even’ terms. Writing r = 2s, we
obtain the relation between successive coefficients in the form

o — g
T2 (03 D5y 2t m) (c+ 25+ 2 —m)

(s=0),

where c=n or c= —n.
Consider the solution for ¢ ==. The relation is

Gassp= lt
B4+ 1+8)(s+1)"

If we exclude the case when n is a negative integer, we obtain the
coefficients in the form

Pl
2 w3131

B =i @y
T in+2).2 Ln+1)(nt+2).20

—ay — @

= 4n+3).3 Ba+1)(n+2) (m+3).30°

and so on. Hence we obtain the series

g e e i

_ 1 z\¢
m+1)#n+2)(n+3).3! (E) = }
Consider next the solution for ¢ = —n. The argument is exactly
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the same as that just given for ¢=n, save that now » must not be
a positive integer, and we obtain the series

s"—J"[l”'(—nl+ 1)(g)z+(—n+ 1)(1~n+2).2!(g)‘l

-(—n+])(—ni2)(—n+3).3!(§)s+'"}'

Hence, when n is not zero, +4, or an integer, a general solution
of Bessel’s equation is obtained in the form

vt B a6 -

+B’""'{1‘("-nl—+1) (‘.’—2‘)24-(“”“)(l_n”m!(’—;’)‘—..-].

The two series converge for all values of 2.

When = is a negative integer, 4 must be taken as zero; when n
is a positive integer, B must be taken as zero. When = is zero, the
two series are identical. In each of these eases, a further solution is
required and may be obtained if required by the methods indicated
for the equations of hypergeometric type earlier in this chapter.
We do not make any detailed study here.

The anomaly which we mentioned for n= + } is apparent rather
than real, for then the series arising from a, and the series arising
from a, turn out to be just the two series which we have already
obtained.

EXAMPLES I
Find the general solution, in series of ascending powers of z,
of the equations: 1. &% +ay + (@ —2)y=0.
2. zy"+y +xy=0.
3. 2% " +ay +(22-1)y=0.
4. 2% " +ay' +(@*—}y=0.

8. Solution in descending powers of x; Legendre’s equa-
tion. Sometimes a solution is required which expresses y in a
series of descending powers of x. We take as an example Legendre’s
equation, for which this approach turns out to be particularly
convenient.

12-2
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The equation is
(1—22)y"—22y +n(n+1)y=0,

and we assume the existence of a solution in the form

= i bec_Aa
0
so that y' = % (c—A) byae—2-1,
0
Y =S (=N (e=A=1)ba-%

Substitute in the given equation; then
{20 (e=A)(e—A=1)ba*22—-F (c—A)(c—A—1) b,\a:"‘*}
0

~25 (- Nba +aln+1) Sha =0,
0
or
Te=A)(c—A—1)bac-2-2
0
—% {le=A)(c—A+1)—n(n+1)}bz"2=0.
The highest power of « present, namely, z°, occurs in the second
summation only, when A=0; thus
{e(c+1)—n(n+1)}b,=0,
or (c—n)(c+n+1)=0.

The next power, that of 2°-!, again occurs in the second summa-
tion only, when A =1; thus

(c+n)(c—n—1)b;=0.

A general power, say 2° (for r > 2), oceurs when A =7—2 in the
first summation and when A =r in the second; thus

(e—r+2)(ce—r+1)b_y={(c—7) (c—r+1)—n(n+1)}b,
=(c—r—n)(c—r+n+1)b,.
The indicial equation gives the two possibilities
c=n, c=—(n+l),

which we must consider in turn.
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(i) The solution ¢=n. When ¢=n, the second equation just
obtained is — 2mb, =0, .
and so (assuming n = 0) b =0.

The general equation is

m=r+2)(n—r+1)b_s=—-r(2n—-r+1)b,
_(n—r+2)(n—r+ ”b
r@n—r+1) ¥

Since b, = 0, it follows that

bs=bs=b’=.-.=0-

or b,. =

n(n—1)

A].BO, ba=_2—(2‘n—l)bm
b __(n—2)(n—3)b _n(n—l)(n—2)(n—3)b
T 4(2m-3) * 2.4.2n-1)(2n-3) ”

and so on. Hence the series is

e ) S 2

The case ‘2n=odd integer’ requires further consideration,
which we do not give here. On the other hand, we shall have
occasion later to refer to the case

n=7positive integer,

for which the series terminates, giving a solution which is a poly-
nomial in z of degree n. This is, in fact, the same solution that we
obtained earlier (p. 176) in a form that appeared different according
as n was odd or even.

(ii) The solution ¢= —(n+1). When ¢= —(n+1), the equation

involving b, is 9(n+1)b, =0,
and so (assuming n=+ —1) b,=0.
The general equation is
(ma—r+1)(—n—1)b_y=(—2n—r—1)(—1)b,

_(n4r)(n+r—1)
sy o r@n+r+1) ¥
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Since b, =0, it follows that
ba=bﬁ=b7="'=0'

_(n+2)(n+1)
Also, ba——2(2n+3) by,

=(n+4)(n+3)b =(n+4)(n+3)(n+2)(n+l)
¢ 41 B) 1 2.4(2n+5) (2n+ 3)

and so on. Hence the series is

by [1+(n+1)(n+2)(§13)

by,

gl 2n+3

L+ (n+2)(n+38)(n+4)( 1)2
T 21(2n+3)(2n+5) (ﬁ) ‘*’}

The general solution of Legendre’s equation is obtained by adding
constant multiples of these two series, with possible examination
of special cases.

For future reference, we repeat the result that, if m is a positive
integer, there is a solution which is a polynomial of order n in z, namely,

v=dle iy (7))

n(n—1)(n—2)(n—3)
T oI@n—1)(2n—3) (2)“’““‘ }
_ @ s (=1 (2n— !

@) Tl =) (n= 2r)l

REVISION EXAMPLES XXII
1. Prove that the equation
32%y" + (322 —2)y' + (1 = 92) y =0
has a solution of the form
y=Axy, + Baly,,
where y, is a quadratic function of z, and y, is a power series
Yo=1+8x+ 622 +....
Find the general term in y,,
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2. Obtain a solution of the equation
22" +ay + (@2 —n)y=0

in the form of a power series y,, where = is a positive integer.
Show, by putting y =y, z, that the general solution is

yonfasof )

3. Find the general solution in series of the equation

dy dy
T de

Determine the range of values of 2 for which the solution is valid.
4. Show that the equation
2xy" +(1—2x)y" —y=0
has a solution of the form
y=Af(@)+ Bokg(x),

where A, B are arbitrary constants and f(z), g(z) are series each
of the form (to be found)

1+a,z+a,2%+....

22(1 —2?) +122y=0.

By putting y =ve? in the given equation, show that
d
gt} = heearh

5. Obtain the solution

N ]
AY a,2"+Bat 3 b, 2"

n=0 n=0
of the differential equation
2z(l—2)y"+(1—2)y +y=0.
Show that the radius of convergence of b, 2" is 1.

6. By solving in series, or otherwise, show that every solution
of the differential equation

2z +3)y” —3a(@+2)y" + 6@+ 1)y —6y=0

is a polynomial in z.
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7. Find the complete solution in series of the equation
2(1+22%) y" + 2y' — 122y =0,
and give the range of values of z for which it is valid.
8. Find a solution as a power series of the equation
2(@—1)y"+3zy +y=0,

and state where the series converges.

Identify the rational function of x represented by the series,
and derive a second independent solution of the differential
equation.

9. Integrate the equation
2y’ +ky' —y=0

by the method of solution in series (i) when the constant % is not
an integer, (ii) when k=1.
Express the general solution in finite form when %= 3.

10. Obtain in the form of an infinite series the general solution
of the differential equation

zy"+(k—z)y' —y=0.

Show that, if & is an integer greater than 1, the equation is
satisfied by a polynomial of degree k— 1 in z—1.,

11. By putting y =a°(a,+a,2 4 a,2® +...), solve the equation
a}(2?—1)y" + (62 — 4z) y' + (322 — 2) y = 0.

Show that one solution takes a very simple finite form.
12. Show that the equation

vy’ —(@+4)y'+2y=0

has solutions (to be found) of which one is a quadratic expression |

and another a power series convergent for all values of z.

13. Find two distinet solutions in ascending powers of z of the
equation 2" — 2’ + 92y =0,

14. Obtain the solution in series of the differential equation

(@2+1)y" —3zy’ +Ay=0.
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Find all the values of A for which the equation has a polynomial
solution; and find all such solutions.

15. Find the general solution of the differential equation
zy"+(@+1)y +3y=0
in a form involving power series in z.
Find also the particular solution of the form

y=1 +:2:‘.lan£",
and express this in finite terms.
16. Obtain the complete solution of the differential equation
z(l—2)y"+(1—-32)y'—y=0
in the form of a series convergent for small values of .
17. By means of infinite series, solve the differential equation
(22— 22) " + 6y’ — 6y =0.
18. Prove that the differential equation
(1—a®)y"— 22y +72y=0

has a solution which is a polynomial in z, and find a second solution
in series of powers of z.

19. Show that the differential equation
2% + (22 +2%) y' + {x—k(k+ 1)}y =0,
where k is constant and 2k is not an integer, has the two formal

solutions . (k+1)(k+2)...(k+n) antk
%("1) (2k+2) (2k+3)... k+n+1) n!’

©  h(k—1)...(k—n+1) zni-t
> k=) . @k —nt 1) al

20. Obtain two independent solutions in series of the equation
2 (l—2)y"—2(1+32)y" +(1—2)y=0.

Find the radii of convergence of the series.
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CHAPTER XXVII
FOURIER SERIES

1. Introductory example; vibrating string. Suppose that
an elastic string, stretched between two fixed points O, 4 at a
distance ! apart, makes small vibrations in a plane containing
those points in such a way that the elements of the string move
at right angles to its length. It is known that the displacement y
at time ¢ of the point distant « from O satisfies the partial differential
equation oy oo %y

ot? o0z?’
where a is a constant depending on the nature of the string.

Solutions of this equation may be obtained in many ways. Our
immediate problem is to investigate those solutions which assume
the form y=TX,

where T is a function of f only and X a function of z only. Such
solutions are said to be SEPARATED into their - and {-parts.

Since ?f-'!._xdiT
o T dip’

oy ,d*X

. =
R dr_ ,,d°X

the equation is X JE= TW
1 @r_1eX
= a®T di ~ X da*°

As so displayed, the left-hand side is a function of ¢ only and the

right-hand side is a function of # only, where 2, t can vary inde-
pendently of each other. But it is not possible for a function of ¢,
varying with £, to be equal to a function of #, varying with z,
except when that function is a constant, varying with neither.
Hence there exists a constant & such that
2T
ar
d*X

'&;"a—=h.x.

=ha?T,
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When 4 is positive, T and X appear as hyperbolic sines or cosines
of ¢t and x; when h is negative, they are trigonometrical sines and
cosines. Having the stretched string of violin or piano in mind, we
select the latter alternative, to obtain periodic solutions.

erting h L na,
we get the equations
a*T d*X
F+RSGET=O, Eg+n”X=0,

with solutions T'=A cosant + Bsin ant,

X =C cosnz + Dsinnz,
where A, B, C, D are constants.
[If n=0, we have, exceptionally,
T=A+Bt, X=C+DL]
The values of the constants depend on certain BOUNDARY COX-
DITIONS, as they are called, which limit the solutions for any

particular problem. In the present example, the value of ¥ has to
vanish at the point 2 = 0 for all values of ¢, so that

0=0.
Moreover, y must also vanish at the point z=1 for all values of ¢,
50 e Dsinnl=0

Since D cannot vanish (or X, and consequently y, would be identic-
ally zero) the constant # is subject to the limitation

sinnl=0,
ferr
and so n assumes the form n= e
where k is some integer.

A solution of the given partial differential equation is thus

y=(A cos——k‘;m+Bain£al—m)sink—?f,
the arbitrary constant D having been absorbed into 4 and B.

A further simplification occurs if we take the motion as starting
from rest at time ¢#=0; this is equivalent to the imposition of the
further boundary condition

%Y_
% =0 when ¢=0,
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and requires the relation B=0.
Hence we have the solution
kant . knz
y=4 cos——sin——
l l
for which, let us repeat, y vanishes at z =0 and at 2 =1 for all values
of t, while 8y/ot vanishes at ¢ =0 for all values of z. The constant 4
is arbitrary, and the solution satisfies all the conditions hitherto
imposed so long as k is chosen to be an integer.
Having found a number of solutions of the special form X7, we
proceed to derive more general solutions, It is a matter of direct
substitution in the given equation

Cr J
at? ox?
to verify that the series
N
y= 3 A,vos kﬂTatsink—?z
k=1
is a solution for all sets of values of the arbitrary constants
4,, 4,,...,Ay; and, further, that the three boundary conditions
(y=0 for 2=0,l; oy/ot=0 for ¢{=0) remain satisfied. We
have therefore obtained a solution which promises considerable
generality.

It is at this point that the idea of a ‘Fourier series’ presents
itself. The motion of the string, released, as we have supposed, from
rest, depends on its initial shape at ¢=0, and the general value of
y just obtained provides a solution in a case when this initial
shape is given by the curve y=1(@)

N
where fl)=3% A,,sinkl—x.
k=1 l
If, further, k is envisaged as taking all integral values, solutions of a
still more general kind are obtained in the form of the infinite series
y=Y 4, cos et s:|n~k-7—rf .
1 l l

We naturally ask whether this is a form of solution that covers
all cases. The string may, in thenry, be held in an arbitrary shape
y=[(x) for a start; so, putting ¢ = 0 in the series, we are led to inquire
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whether every ‘reasonable’ function f(x) can be expressed in the

form @® ke
f(@) =3 Ay sin =~

by proper choice of the constants 4,. It will appear that this is
possible for a very wide variety of functions, including all the
functions likely to be regarded as giving possible initial shapes for
a string.

We shall call a series

% (Akain?+3k coskﬂTz)
1

an INFINITE TRIGONOMETRICAL SERIES.

2. Some elementary integrals for reference. There are a
few integrals whose values we shall be continually needing, and it
is convenient to have a list to which reference can be made.

The numbers m, n oceurring in these formulae are integers.

(1) To evaluate the integral

8 cosmx cosnedr (m+mn).
—

The integral is

" {cos (m+n)z+ cos (m —n) x} dz

3
=m[sin(m+n)z]:'+2(m+_m [Sin (m_"')x];

=0,
(i) 7'o evaluate the integral

w
cos®nxdz.

-7

The integral is %J.:'(l + 008 2nz) d
1 E | T 1S
s et
=.
Nore. The particular case n= 0 is exceptional, since

w
J. l.dx=21r.r
—-m
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(iii) T'o evaluate the integral
J"' sinmz sinnzdz  (m+n).

-

The integral is

. : {cos (m —n) z — cos (m +n) x} d

2
ey, [ . " 1 ::
g sin (m —n) a::l_'—é(m—_{_m sin (m +n) :t:]_“r
={)

(iv) To evaluate the integral

sin? nada.

-

The integral is %I' (1 —cos 2nx) dz
m

1 L 3 - 7
=3{=][, [ snme]
=Tr.

Norg. If n=0, the value of the integral is also 0.
(v) To evaluate the integral

" sinme cosnzdz  (m+n).
The integral is
% i {sin (m +n) 2 + sin (m —n) 2} dz
1 " 1 "
=~ gmam| =7, - g [oeimme]

=0,

(vi) To evaluate the integral

T
sin na cos nxdz.

The integral is % f " gin 2nzde
—m

1 9 "
- dfn].
=0.
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3. The period of a trigonometrical series. Before showing
how to obtain a trigonometrical series for a given function in a
given interval, we examine some properties of periodicity which
they all possess. But first we remark that, for purposes of exposi-
tion, it is convenient to take multiples of z (rather than of 7zl as
hitherto), and so we write

u(x) = }a,+ @, cos r +a, cos 2z +ay cos 3x + ...
+ by sin x + b, sin 2z + by sin 3z + ...,
the coefficient } being inserted before a, to conserve the uniformity
of a formula which will appear later. We assume that the series is
convergent.
The immediate and most striking property follows from the
identities, true for all values of the integer =,
cosn(x+27)=cosnx, sinn(zx+ 27)=sinne.

As a result of them, the sum of the series satisfies the periodic

relne e+ 2m) = (),

taking the same value for z + 27, 2+ 4m, 2+ 6, ... as it does for .
In other words, the sum is periodic in z, repeating itself at intervals
of 2m.

A diagram may help to show what is involved:

ufx)

_3/_1,. -7 0 Vz,.. i/i, [

Fig. 149

Suppose that the sum is found to have the value z for the interval
—m <x <. The diagram (Fig. 149) gives the graph

u(x)=2
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for that interval, and then shows it repeated at intervals of 2.
It appears that the series does NoT add up to the sum z for values
of z in, say, the interval m < # < 37, but to the sum o — 27. Similarly,
the sum of the series is @ —4a for values of z in the interval
3m < < bm, and x + 27 for values of 2 in the interval —3n <z < —m;
and so on. Putting it another way, we may say that the series

$ay+a,cosx+ayco82x + ... + by sinz + bysin 22+ ...

has the same numerical value (in magnitude and sign) for each of
the values z, ¥+ 2w, 2 +4m, ...; but that numerical value, when
expressed as a function of z, ‘looks’ different for different intervals.

It is therefore most important that, when we specify a function
f(z) whose trigonometrical series we require, we specify simul-
taneously the interval within which # must lie. The ‘natural’
length of such an interval, by what we have just said, is 27.

We shall take the interval

—T<ET<T

as the standard interval for exposition.

4. The calculation of the coefficients. Suppose that f(z)
is a given function of z defined in the interval —7 <z <. Suppose,
too, that it can be expanded as a trigonometrical series in that
interval in the form

f@)=3a,+a,cosz+a,cos 2z + ... +a, cosnx+...
+b, sin z+ b, sin 22+ ... + b, sin nx +....
To obtain the formulae

ar,,=:—]r "f(x)cosm:d:r. (n=0,1,2,..2),

b,‘=11r "t sinnzds | h=1,9,...)

The method of calculation depends basically on the formulae of
§2 (p. 189). Multiply both sides of the proposed identity by cosna
and integrate from — to 7. On the assumption that the integral
of the sum on the right-hand side is equal to the sum of the several
integrals, almost all of the terms disappear (§ 2, p. 189), and we are
left with the relation

' 'f(x)cosnxda:=7m,,.
-
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m
Similarly f(2)sin nedz=mb,,.
-

Hence if the expansion is possible, and if the processes of integration
used in the proof are legitimate, the coefficients are given by the formulae

a,,=}r a f(x) cos nadz,

z;,,=7—1r ;f(x)sinmudx.

5. The Fourier series of a function. The work up to the
present does not give any information about what kinds of functions
can be expanded in trigonometrical series of the type considered.
The equations for a,, b, do not provide the answer, since they were
calculated on the assumption that the expansion existed. They do,
however, give us a starting-point for such an inquiry.

Basing our ideas on the work of §4, we proceed as follows.
Suppose that f(x) is a function given in the interval (—m, 7). We
define numbers a,, b, by the relations

a,,=% f(x) cos nxdz,

m
b=z [ f@)sinnad,
m)—=
and then form the series
}a,+a, cosx+ayco8 2z + ... + by sinx + bysin 2z + ...

using these coefficients. We do not now assume that the series
converges to f(x), but we examine it on its merits to see whether
it does. This is our immediate problem.
DerivirioNn. When f(z) is a function defined in the interval

—m<x <, then, if

L | Ihe

a,=-| fl(x)cosnzdz, b,=-| flz)sinnzdz,

n) o w) oy

the series
3a,+a,cosx+ayco82x+... +a, COBNT+ ...

+b, sin &+ by sin 22+ ... + b, sin nx +...
18 called the FOURIER SERIES of f(x) in that interval.

13 MIV
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We shall have to prove (i) that the Fourier series of any ‘reason-
able’ function f(z) converges for all values of z, (ii) that it converges
(in general) to the value f(z). For the benefit of any reader who
finds the proof (given as an Appendix at the end of this chapter)
rather difficult, we quote here the fundamental result:

For any given point xy (—7<zy<m), if im f(2)=f(x,—) as

T,
tends to x, from values less than z, and if lim f(x) = f(zy+ ) as x tends to
T—>Zy
x, from values greater than z,, then, subject to conditions enunciated
wn the proof, the sum for x =z, of the Fourier series of f(x) is
Hf(@o— )+ (@o+ )}

If the function is continuous at x,, then f(x,— ) =f(x,+ ) and the
sum for x =1, is just f(x,).
The value at each of the end-points = —m, z=7 is

Hf(—7+)+f(m-)};

see the Corollary at the end of the Appendix of this chapter (p. 211).
IurusTrATION 1. T'0 find the Fourier series of the function x in the
interval —m<x <.
The coefficient a,, is given by the formula

k.3
wa,,=f x cos nadx
=g
e id } N i
=[-xmnm::| = sin nxdz
n -

=0,
as is easily verified: it should also be checked that, for the special
case n=0, -
J‘ zdz=0.
Thus a,=0.
Also b= J' ! Eassaits

1 b 1(~
=[—--xcosm:] +*J~ cos nxdx
n -

-

2
= —— T COS T
n

=(=)"*(27[n),
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(=12

so that b, = -

Hence the Fourier series of x is
2{sinz — }sin 22+ }sin 3z — }sindx +...}.

In this special case we can show, independently of the general
theorem mentioned in § 5, that the series really does converge to .
Consider first the series (p. 97)

log(l+2)=2—42>+§2—...,
valid for | 2| <1, 24 — 1. When z=¢¥ (-7 <@ <), this is
log (1 + €)= e — Je2 4 Jedi0 —
=(cos—}cos 26+ §cos30—...)
+i(sinf — §sin 20+ 1sin 36 —...).
Now we saw (p. 98) that

P PUTATONT O
log (1+rei) =} log (1 + 27 cos @ +72) + 4 tan (1—_'_”080)

for r<1, —7 <6 <7. Hence the imaginary part of log (1 +¢%) is

tan—! (%oiﬁ) =tan—! (tan }6)

=10,

for that determination of the inverse tangent which vanishes with
0; and this is the determination given by the series. It follows that

sin 6 — }sin 20+ } sin 36 — ... = 0.

This is essentially the result just established. The ambiguity in
the choice of the inverse tangent corresponds to the variations in
the expression for the sum of the series for different intervals of
definition.

REeMark. Observe how the apparently simple series

sinf — }sin 20 + }sin 36— ...

has a discontinuous sum. The graph (p. 191) illustrates the ‘break’at
each point where z is an odd multiple of 7. Such an example
emphasizes the need for a careful examination of uniformity of
convergence, such as we undertook in Chapter xx1v.

13-2
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6. Odd and even functions. We saw (p. 194) that the
Fourier series for the function z has zero coefficient for cosnx for
all values of n. This could have been predicted, and the point is
worthy of emphasis.

DrrintrioN. A function f(x) is said to be EVEN if it salisfies the

Ty H-)=f@)
and oDD if f(—=z)= —f(x).
Typical even functions are
22, cosz, oftanz;
typical odd functions are

23, sinz, tanz.

Any given function u(z) can be expressed as the sum of two
functions f(z), g(x) of which f(z) is even and g(x) is odd. Indeed,

i ncd (@)= Hul@) +u(—2)},
9() = Hu(z) — u( )}

Then u(x) = f(z) +g(z),

where f(—x)=f(z),

g(—z)= —g(x).
A characteristic feature of all odd functions is embodied in the

theorem:
1If f(x) s an odd function of x, then
4
f fl@)dz=0
-4
for any value of the constant A.
For 4 0 4
LS O e
—d -4 0
In the first integral on the right, write 2= —2’ and then drop

dashes. Thus 0 0
f f(x)dz=f f(~a') (—da)
e | A

- [(-wa
- - [ twaa,
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since f(z) is an odd function. Hence

[£ s@raa=-[ 115+ | fiaras
=0.

The results which follow are applications of this general property
to our particular problem:

A function f(x) which is EVEN throughout the interval —m<z<m
has a Fourier series involving cosine terms only ; and a function f(x)
which is opD throughout the interval has a Fourier series involving
sine terms only.

If f(x) is even, then fl—2)=f().

Also, in standard notation,

ab,= | f(z)sinnads

ol f(x)sinmdwrf(x)sinmdz.
-1 0
In the first integral, write 2= —2’' and then drop dashes; the
integral is :
| #t=wsin (- na)a(~2)

=f:f(-x)anmdz
= —j:f{—z)SMde
m —f:f(x)sinmdz.

Hence b,=0.
Similarly, if f(z) is odd

na, = f f(z) cos nxdz

= ’ f(z) cosnzdx +J.:f(w) cos nxdx.
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As before, the first integral is

[ -2 008(~na)a(~2)
= —J.Df(——z)eosmdz

=f:f(—x) cos nxdx

= — I:f(z) cos nxde.

Hence G, =0.

7. Functions defined in the ‘half-interval’ 0<x<x. It
sometimes happens that a function f(z), for which a Fourier
series is required, is given only for the half-interval 0 <z <7. We
may then ‘fill up’, as it were, the whole interval —7r<z<m by
assigning to f(x) values of our own choosing for the interval
—m<x<0. The series so obtained will be correct for the given
interval 0 <z <.

In practice, one or other of two alternatives is usually adopted:

(i) The function is ‘made up’ to an even function by means of
the definition

f(—z)=f(z).

The Fourier series of f(z) is then a coSINE series.
(ii) The function is ‘made up’ to an odd function by means of
the definition
J(=2)=—f().

The Fourier series of f(z) is then a sINE series.

Thus, if we are concerned only with the interval 0 <z <, we

can expand any ‘reasonable’ function f(z) in either a cosine series
or a sine series, whichever we prefer.

IvrustrATION 2. To find the Fourier cosine series for the function
defined to have the value z in the interval 0 <z <.

The interval can be extended to —7 < < by writing

@)=z (0<z<m),

fl@)=—2 (—m<z<O).
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Then f(x) is an even function of z (as may also be verified graphic-
ally); so that it can be expanded in the form

$a,+a, cosx +ayco8 2z +...,

where na,, =J" f(x) cos nwdz

- 2J"x cos nxdx,
0

since the function is even. Thus
- Rt LT
dna,=| ~zsinnz | —— | sinnzdz

n o Mo

1 :l'

=g COs nx

n 0

1

=’E§{cosn1r—1}

—2/n® nodd,
={ 0 neven.

Also nay=|" fz)da

”
=dea:
0

=7t
Hence, for the interval 0 <z <, the expansion of z as a cosine
series is

5
{w—%{cosx+?cos3x+...+ cos(2n+1)x+...}.

1
@n+1)?
TurusTrATION 3. To find the Fourier series of the function f(x)

st et fle)=0 (—-m<x<0),
f@)=1 (0<z<m),
and to deduce the formula
1-3+3—3+...=}m
The series is

$a,+a,cosz+a,co82x+... +b;sinw+bysin2x 4+ ...,
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where ma, = A fl(@) cos nadz,

mb,= | f)sinnede.
0 L4
Thus 1m,,=f 0.cosmdx+j l.cosnzdz (n=+0)
- 0

0 n
ﬂa,,:f O.dx+J. 1.de=m,
- 0
so that Go=1.
0 n
Also ﬂ'b,l=J‘ 0.sinnxdx+f 1.sin nadz
- 0

2]

1
2= A ’
n( CO8 N7T)

Hence the series is
| S ; :
§+;r{2sm:c+§sln3z+%mn5x+...}

2,. . .
=g+;r{mnz+§am 3x+4sinbr+...}

where

THE ‘HALF-INTERVAL’ O<z<mw

The series is
}a,+a,cosz+a,c08 2z +... +bysinz +bysin 2z + ...,

ma,, = v f(z) cos nxdz,

b= f@sinnada.
[1]
ma, = cosmdx+j zeoosnxzdr (n=0)

-

& i
=[—sinmc:| +[—=~oosm:+—smm:|
n - n n 0

1 1 1 1 .
=3 008N — 5= —;( —cosnm);

0
1m0=f dx+I:xdx=w+§w’.
-7

0 4
@b, = sinm:d:t:+f zsin nedz
- 0

=| ——cosn +| —sinnx — - cos nx
n — n n 0

= —l(l—eosmr)—zooamr.
n n

201

In particular, when z = }m, we have the relation Bemgeithe avvlion §i.{ Sliktie;mmiusbion)

§+§ﬂ——(coaa:+ 00533:+1cos5a:+ )

1=§+E(1-§+}-—...), 32
§ (-2, (-2
so that 1-3+3-%+...=3m { = sinz — § sin 2z + ~———* v sin 3z
Note, incidentally, that, at the point =0, the value of f(0—) —}si 4x+(ﬂ5; 2) gin bz

is 0 and the value of f(0+) is 1. Also the sum of the Fourier series
for =0 is }, thus verifying the formula }{f(0—)+7(0+)}.
IrLustrATION 4. To find the Fourier series of the function f(x)

In particular, the series when =0 is

Ak
}+i1r-—(1+3,+52+...),

et J@)=1 (-m<z<0),
df(0—)=1,f(0+)=0, so that th 15E
flx)=2 (O<z<m), and f(0—) f(O+) 8o tha elsumlmi ence
s e omos S b=i+in— (1+3,+52+ ),
|
1+32+5a+7s+ =37, so that f X 9 1 Lo

32
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APPENDIX TO CHAPTER XXVIO

THE CONVERGENCE TO f(z) OF ITS FOURIER SERIES

1. The form of f(x). The type of function with which we
shall be concerned is illustrated in the diagram (Fig. 150). The func-
tion f(z) is bounded in the interval —m <z < and is continuous*
save possibly at a finite number of points; its differential coefficient

Y

5

3

)

1

E

ole=
[ s

B e

Fig. 150

is also bounded and continuous save possibly at a finite number
of points. The interval —7 <2 <7 may therefore be divided into
a finite number of sub-intervals

—T<T<P, P<E<G, G<T<Tr, .., WTM,

in each of which f(z) and its differential coefficient f'(x) are both

continuous.

Consider a typical interval p <z < q. We assume that, as x—p in
this interval (that is, through values greater than p), the function
is of such a type that the limit

limf(z) (z>p)
—rp

* For ‘bounded and continuous’, compare the remark on p. 138.
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of the function exists; similarly we assume that, as ¢ in the
interval (that is through values less than ¢), the limit

limf(z) (z<gq)
—>rq
exists.

We now make the agreement that, for the purposes of a calculation
in the interval p < x < g, the function at each end-point is to be given
the value to which it tends from within that interval. (Informally:
the arcs in the diagram are to be given for each interval that value
at the end-point which would be expected from continuity.) Thus
we assume that the limits

tlif;f(x) (z>p),
z’_hg;f(x) (x<q)

exist, and we denote them by the values

fp+), fla-)
respectively.

This process may involve assigning one value f(g—) to f(x)
at g for the interval (p,q) and a different value f(g+) for the
interval (g,7). The actual value f(¢) may be different from either;
but fortunately it turns out that the value of f(x) at a single point
like ¢ does not affect the behaviour of the Fourier series, so that
the conventions just described can be adopted with safety.

For the differential coefficients at p, ¢ we shall use a natural
extension of ordinary ideas. We define the RiGHT-HAND DIF-
FERENTIAL COEFFICIENT at, say, p to be the limit, if it exists,

lim {2 +P) —f(2+)
h—>0 h

as h tends to zero through positive values; and the LEFT-HAND
DIFFERENTIAL COEFFICIENT at, say, ¢ to be the limit, if it exists,

h-mf(q+h)’:-f(q—)’
h—>0
as h tends to zero through negative values. When we talk about

differential coefficients at points such as p,q,r, ..., it is these limits
that are meant.
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We agree, then, that, with these conventions, the function f(x)

and its differential coefficient are uniquely defined, bounded, and
continuous throughout the whole of each interval

p<E<y.

2. Three lemmas. Before coming to the main theorem, we
prove three lemmas which we shall require on the way.
(i) The value of the integral

[Carao

of a bounded function g(0) is not affected if the value of g(0) is altered
at a finite number of points.

Suppose that g(f) is altered at the k points 6,,0,,...,0;, and
denote the new function by A(0). Suppose, too, that

|g(@) | <M, |h(b)| <M

throughout the interval a<6@<b. Surround each of the points
6,, 0y, ..., 0, by an interval of length 8, say. The contribution from
these intervals to the integral of g(f) is numerically less than kMd,
and this can be made less than a given positive number ¢ by choosing

Lo 8 < (/).

The contribution from these intervals to the integral of 2(6) is then
also less than e. Hence the difference between the integrals is
certainly less than 2¢; and since € may be chosen as small as we
please, the two integrals are equal in value.

This lemma will usually be incorporated into subsequent argu-
ments without explicit mention.

(ii) If the bounded function g(0) has a differential coefficient which
18 bounded and continuous throughout the interval a <z <b, then

b b
lim | ¢(f)sinkfdf=0, lim | g(@)coskfdl=0.
k—wJ a k—»wxJa
On integration by parts we have, for the first integral,
b b b
f g(0)sin k0 d6 = % I: —g(0) cos k@] -+ %J‘ g'(0) cos kO do,
a a a
so that

b
U ¢(0) sin k0O s%|g(b)eoskb|+%|g(a)eoskal+%(b—a)N,
a
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where N is the greatest value of | g'(f) | in the interval. Hence

b
lim | g(6)sinkfd6=0.
k»>xJa

b
Similarly lim f g(0) cos kBd6 = 0.
k—wJa
CoroLLARY. If @ 18 a constant, then
b
mf 9(6) sin k(6 — @) 40 =0,
k—»wJa
This follows at onee from the formula

sin k(6 — &) = cos ke sin k6 — sin ko cos k6.
(iii) If 0 <z < 2m, then the sum of the infinite series

: : L.
sinz+ §sin 22+ ... +, sinnz ...

is }(m—z). (The formula is not true for =0 or for z=27.)

The result can be derived from the expansion for log (1 —z); the
proof which follows* is from elementary principles.

The sum of the first n terms of the series is

U, (x)=sinz+ §sin 2z + ...+$sinm:
=.’.a(cosﬂ+00326+ ... +cosnd)df.
0

Multiply the cosine series by 2sin 4@, use the formula
2sin 30 cos A =sin (A +}) 6 —sin (1—})0

, _ [*—sin}f+sin(n+4)0
and sum: U, () —J.o 2sin 30 de
= zgin (n+4) 0
=—}r+ ¢ 2mnid de.
Moreover, from the series itself,
Un(”) =0,
so that, substituting z = in the expression for U,(z),
o 7sin (n+1)0
0= —i‘ﬂ+ A mg da.

* I am indebted for it to Dr J. C. Burkill.
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Subtract this equation from the formula for U, (z):

Uuto) =r—2)- [0 D0 0p

But 1/sin 40 is bounded and has a bounded and continuous differ-
ential coefficient in the interval of integration (where 0 <z < 27),
and so, by the second Lemma (p. 204),

. ["sin(n+4%)60
) S -

Hence U(z)=lim U,(z)
n—+wo

di=0.

=}(7—2).

3. The convergence of the Fourier series for f(x). Let
f(z) be a function subject to the conditions enumerated in §1
(p. 202). Its Fourier series is

$a,+a, cosx +a,co8 22+ ... + @, COSNE + .0

+ b, sin 2+ by 8in 22+ ... + b, sin nx + ...,

SR a,,=11r " $(6)cosnBdb, b,,=1—17 " §(6)sinnddo.

We prove that the Fourier series of f(x) converges and its sum is

Hf@+)+f@-)}
Denote by 8, the sum of the terms up to and including those in
a, and b,. Then
al, = o f(0){}+ cos @ cosz + cos 20 cos 2z + ...
+8in @ sin 2 + sin 20 sin 2z + ...} d@
- jf(e){;+cos(0-m)+eosz(a—m)+...+cosn(a-x)}¢w
_[" s [sin(n+3) (0—2)
-[-ro{ae |

(Compare the summation in §2, p. 205.)
Let &, 8’ be two positive numbers chosen sufficiently small to
ensure that (whether f(f) is continuous or discontinuous at the
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point z under consideration) there is no discontinuity of f(6) or of
£'(0) in either of the two intervals

z—8'<l<z, xz<l<z+6.
Divide the interval of integration into four parts:

B B % g O

It will be established that the pith of the integral lies in the

+2
two parts 'F , the contributions from the two ‘outer’ parts
z—38'

being negligible. We must now make this
Consider the integral

is statement more precise.

sm(n-!—l-) (0—=)
: f“”{ 25in }(0—2)

Write § —a2 =wu. The integral is

de.

J' e+ )ng:sﬁudu

We have so far placed one restriction on . This ensures that the
function f(6) has a differential coefficient throughout the interval
r<f<xz+48, as well as being itself continuous throughout
<0<z + 6. The conditions of the mean-value theorem* are there-
fore satisfied, and so there exists a number £, where x<§<z+6,

such that fe+u)=flz+)+uf'(&),

where f(z + ) is the value to which () tends as @ tends to  througl
positive values.
We are therefore led to the sum

f@+) f “‘"‘”**’“m f up(g) SRt g,

2sin u

and we begin by examining the numerical value of the second of
these integrals, restricting & further to make that value negligibly
small.

* See Volume 1, p. 61. A more precise statement may be obtained in books
ving detailed analytical treatments; for example, W. L. Ferrar, Differential
Calculus (1956), p. 94.
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¢ L sin(n+3)u
IRCE -2
g)m&x.;ﬁ—i—u‘.|max.f’(§)].]ma.x.sin(n+§)u|.6;

and we have at once the inequalities
| max.f(€) | <K,
say, since f’(f) is bounded, and
| max.sin (n+3)u|<1.
For the first maximum, we recall the inequality (Volume 1, p. 53)
sing>g—34° ($>0),
so that (with 1—}¢* taken to be positive)

4. C 1
sin ¢ 1-1%
$u 1
or, here, P fu o P
The right-hand side can be kept bounded; it is, for example, less
than 2 if e
1-gqu®> 4
or* ut<12,

In the nature of the case, u is less than &, the upper limit of integra-
tion, and so we can certainly make

$u
‘Enju <2
by taking d<y/12,

which is much larger than we shall ultimately want. Thus, so long
as § <4/12, we have the inequality

f uf'(g)““””—?)'“du"zzm

Suppose now that e is a given (small) positive number. We can
ensure that this numerical value is less than e by taking
2Ké <e,

* The value 12 is much higher than is necessary, but it arises naturally out of
the work, and is good enough.
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or &< (¢/2K).

This is a more stringent condition than we have yet imposed on &,
so all earlier consequences remain valid.
Having selected a definite value of 8, subject to this condition,
we turn next to the integral
¥
J‘ eamidie,

0o 2 sin &u

We proved (pp. 205-6) that, if (with a change of notation)
dsin(n+§u ,
L i du=Uy(0)+ 46

for given &, then, as n— 00,

U,(8)— ¥(m —9).

dsin(n+3)u

Hence L “Sanjy du— .

Finally, let us return to the ‘outside’ integral (p. 207)

oo Biio=a |

The interval z+ & < <7 may be divided into a number of sub-
intervals of the type described in §1 (p. 202), say

z+d8<0<q, g<O<r, .. w<O<m,

and we express the integral over (z + &, 77) as the sum of the integrals
over these subintervals. In dealing with each one, we can suppose
that the values of f(f) and its differential coefficient f'(¢) at the
end-points are defined so as to be continuous throughout it, as
described on p. 203; in virtue of Lemma 1, any changes required
for this purpose do not affect the values of the integrals.

A typical integral is

J‘ f(a){ﬂln(ﬂ+§)(‘9 r)} do,

2sin (0 —x)
& _Lg(e)sin{(nﬂ) (0—2)}d8,
where g(d)= i mnf«}(?g =%

14 MIV
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Now g(f) and its differential coefficient with respect to 6 are
bounded and continuous in each of the intervals

z+d<b<q, g¢<O<r, .., w<f<m,

il-l virtue of the conditions satisfied by f(6), f'(f) and the fact that
sin (0 —z) does not vanish anywhere in the interval z+48 <8 <.
Hence, by the corollary to Lemma (ii) of § 2 (p. 204),

lim [" g@)sin{(n +1) 0 -2)} a0 =0,
and so, adding for all such integrals,

ol R sin (n+ ) (0 —=2)
Jim 1 10\ agto—ay 0=

We are now in a position to give a résumé and completion of the

whole argument. We have expressed #8, (p. 207) as the sum of
four integrals, briefly written

z—3 x z+& L]
) W e

- z—8' x z+8
We have (p. 208) shown how to choose & so that the third integral
is the sum of two parts, of which one is less than e for all n. When
this has been done, the value of n is allowed to increase; the second
part of this integral then tends to 3zf(z+), and the fourth in-
tegral tends to zero. Hence, when n is large enough, the sum of the
third and fourth integrals will differ from }zf(x + ) by less than 2e.
Similarly the sum of the first and second can be made to differ
from 4zf(z—) by less than 2¢. Hence, since ¢ may be as small as
we please, we have the fundamental theorem:

The sum of the Fourier series is given by the expression

8=§{fz+)+flz-)}

In particular, the sum is f(x) at @ point where the function is con-
tinuous.

Note that, whatever value we may have assigned to f(z) at the
points p,g,r, ..., the sum of the Fourier series at those points is
/f(p+)+f(p—)} and so on. As we saw (Lemma (i) of §2), the
values assigned to the function at such isolated points do not affect
the calculations of the integrals on which the formula depends.
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CoroLLARY. Since the Fourier series of f(z) is periodic, with
period 27, it is easy to show in a similar way that the sum of the series
at each of the end-points x= —m, x= +7 of the interval (—m,m) 18

Hf(=m+)+flm—)}

REVISION EXAMPLES XXIIT

1. Find a Fourier series of period 27 which represents the func-
tion sinfz in the interval (—,7) when ¢ is not an integer.

What is the sum of the series when z= +7?

What function does the Fourier series represent in the range

(o, 3m) ?

2. Find the Fourier series of period 27 which gives a function
equal to 0 for —7 <2< 0 and equal to coshz for 0<z <.

By considering the values of this series at the points of dis-
continuity, deduce that

Si=ip 1f w - E 1 _l( m _1)
“1+n? 2\sinhz )’ $'1+n* 2\tanh7 )

3. Find a Fourier sine series for the function f(x) defined by the
relations (@) =2zfn ©0<z<m),
fle)y=2—(2xfm) (m<z<m).

What function does the series represent in the interval

< <3n?

4. Show that the Fourier expansion of |z| in the interval
—mw<z<mis
n 4
___( +

cos 3z cosdx

3 T

State what function is represented by this expansion in the
interval (n — 2) 7 < <, where n is an integer. Use the expansion
of |#| in —m <z < to obtain the following series for 7°:

; n? ; -
E_ Igstggto

Hence or otherwise show that the Fourier expansion for |z| in
—m<z<mw can be extended to the closed interval —m<z<wm.
What special property of |z | enables this extension to be made?

14-2
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5. Express xsinz as a Fourier series of the form

-]
da,+ Ex(a" cos nx + b, sin nx)
n=

in the range —w <z < 7.

What is the function represented by the series in the range
T<xr< 3wt

By taking a particular value of z, deduce that

L3 O it R _
1.3 3.5t 7 - =H7-2)

6. Express 22 as a Fourier sine series of the form
b, sinz + b, sin 2x + b, sin 3z + ...

in the range 0 <z <. Does the value of the series agree with that
of the function at the end-points?

What is the function represented by the series in the range
T<z<2m?

By considering the value of the series at 2=}, deduce that

I 1 m

TEtETTn
(It may be assumed that jz=1-3+1-...))

7. Obtain a series of the form

-~}
ta,+ Y a, cosnz
n=1

whose sum is 22 when —7 <z <7.

Sketch the graph of the function represented by the series in the
range (— 3, 37).

Deduce from your work that

0 e | 2

_2_2+3_2_§+0-. =l_2c

8. Express the function 77— 2z, in the range 0<z <, (i) as a
series of cosines of z, 2z, 3z, ...; (ii) as a series of sines and cosines of
2z, 4z, 8, ... '

State (without proof but with an indication how you obtain the
result) what will be the sums of the two series you obtain (a) at
z=0, (b) in the range —m <z <0.
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9. Obtain a series of the form

@
$a+ X a, cosnz,
n=

whose sum is 1 when 0 <z < 7, and 0 when 27 <z <#. State, with
reasons, the sum of the series when z=0 and when z=.
Obtain the sum of the series

I-d+i-d+d-drdo—dr+ o
What is the sum of the Fourier series when z=37? Sketch the
graph of the function represented by the series for all real values of z.
10. Show that the function a®—2? can be represented in the
range —a <z < a by the trigonometrical series
2+ L o= mrw]

6 ns? n? a

11. A square has two opposite vertices at the points ( +,0).
Find a Fourier cosine series which represents the ordinate of any
point of the perimeter on the positive side of the axis of z.

12. Calculate the coefficients c,, in the series

!

-]

20y cos 2%
=0 a

that represents the function z(a — ) in the range 0 <z <a.

@

Deduce the value of 3,

1
i

13. Prove that, if k is not an integer, the expansion of cos kz in
series of cosines of multiples of z in the range (0,7) of z is
2ksinkm (1  cosz +oos2x i
m 2k k2—1% k22
By sketching a graph or otherwise show what function is repre-
sented by the series in the ranges (—, 0) and (7, 27) of .
14, Given that 0 <a < 7, find a Fourier sine series for the function
f(z) defined by the conditions
(i) f@)=-=z if 0<z<a,
(i) f@)=tr—a if z=a,

(iii) f@)=7mr—2 if a<z<m

Tllustrate by a rough graph the function which the series repre-
sents in —7 < < 37.
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15. Find the Fourier series of the function which has period 27
and is equal to 2® when —7r <z <.
What function does the series represent when

(2k=1)m<z<(2k+1)7?

16. Find the Fourier series of the function which has period 27
and is equal to 72 —2® when —7 <z <m.
Deduce the sum of the series

s

l—§§+§§—§+ case

17. Expand the function 2? in the interval —7 <z < as the
sum of a series of cosines of multiples of z.
Prove that the locus given by

2=l
n—l n

is two systems of lines at right angles dividing the (z, %) plane into
squares of area 7%

18. Prove that, for all real values of z,

2 3““ cos 2nx

~———sinnz sinny =0

19. Prove that, if
sinh Az
/@)= soeh 2a et

R
(%)el)

then f(2)= Sa/lng}l yrry Eape

20. The spot of a cathode-ray tube moves uniformly from 4 to B
through a distance [ along a straight line and then flicks instan-
taneously back to A. If this cycle takes a time 7' and is repeated
continuously and indefinitely for all time, find the Fourier analysis
of the function that represents the dependence upon time of the
displacement of the spot from 4.

If all harmonics of frequency greater than 4/7' are suppressed,
sketch the resulting dependence of displacement upon time.

(@< <2a),
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21. A point moves in a straight line with initial velocity u. At
the end of each second during the motion its velocity receives a
sudden increment ». Prove that the velocity at any time ¢ after

the motion has begun is
t}u+ut+u E sm2nﬂt

T p=1
22. The function y(z) is defined in the range — 1<z <1 by
=3¢ (—e<z<e),

y=0 (-l<sx< -eand e<z<]1).

Show that the Fourier expansion of y in the range —1<z<1 is
given by 1 o e
y=3+ X ( 9

n=1

The function z(z) is defined in the range —1<x <1 by

=f:y(x) dz.

Draw a graph of z(z) and find its Fourier expansionin —1<x<1.
Discuss the behaviour of z(z) and of its Fourier expansion as e 0.

cos (nmz).
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LAPLACE’S EQUATION AND
RELATED EQUATIONS
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CHAPTER XXIX

THE TRANSFORMATION OF
LAPLACE’S EQUATION

1. The equations to be investigated. We use the notation
ViU
Ry
ox?’
?U 20
oY ' 9y’
02U 02U U
T T e

to denote the function
or

or

according as U is a function involving the one variable z, the
two variables z, ¥, or the three variables z, y, 2. The framework
of rectangular Cartesian coordinates is always understood. In
practice, U may also be a function of the further variable ¢, denoting
time.

The equations with which we shall be dealing are

ViU =0,
130
B i e
VU 2 5 (@ constant),
2
VU= % %t—'q (@ constant).
The equation V2U =0 is called LAPLACE’S EQUATION, and the
symbol
o ot o
Ve =4
oxd ' oy " o2*

is sometimes known as LAPLACE’S OPERATOR

Our first task is to transform these equations so as to express
them in terms of other systems of coordinates, such as cylindrical
or spherical polar coordinates.
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2. The geometry of a transformation. Suppose that z, y, 2
are transformed to new variables %, v, w by means of relations

z=z(u,v,w), y=y@u,v,w), z=z2(u,v,w),

where z(u, v, w), y(u,v,w), z(u, v, w) are single-valued functions of
U, U, W.

When u, v, w have fixed values u,, v, w,, there is determined a
point Py(x,, Yo, 25); When one of them, say u, is variable while the
others have fixed values v,, w,, the point so determined lies on a
certain curve; when two of them, say v, w, are variable while the
other has a fixed value u,, the point so determined lies on a certain
surface. We speak of THE SURFACE % = u,, and of THE CURVE v =1,
w=w, which is the intersection of the two surfaces v=1v,, w=1w,.

For example, we may identify u, v, w with the variables r, 0, ¢
of spherical polar coordinates, the three relations then being

z=rsinf cosp, y=rsinfsing, z=rcosd.

The surface r=a is a sphere, the surface f=a is a cone (a plane
when 6 = ), the surface ¢ =/ is a plane. The curve r=a, f=aisa
circle, the curve r=a, ¢ =4 is a circle, the curve f=a, ¢=Fis a
straight line.

It is assumed that the functions z(u,,w), y(u,v, w), z(u,v,w)
are of such a nature that they can be solved to give u, v, w as single-
valued functions of z, ¥, z, possibly for restricted ranges of values
of the variables. For example, the solution in spherical polars is

3.4 g2
r=./(2*+y*+2%), 6=ta.n-1“/("’%), ¢=tam—'1§,
and is unique for the region

r>0, 0<fO<m, -—-7w<¢<m

3 o2
(Note that sin6="/(x4), so that it is necessarily positive;

hence the greater restriction on 6 as compared with ¢.)
‘We write the solution for %, », w in the form

u=uw(z,¥,2), v=0(z,9,2), w=wx,y,z).

The position of a point P may therefore be indicated by either of
the alternative notations (z,y, z) or (u, v, w).
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It will usually be assumed without further mention that the
partial differential coefficients arising in the work are all continuous,
and themselves possessing such partial differential coefficients as
may be required.

Our immediate problem is to find an expression for the tangent
plane to the surface

w(z,y,z) =1

at the point Py(x,, Yo, 2,) 0N it.
Suppose that Pz, + &, ¥y +J, 2, + k) is a point on the surface, lying
close to P, so that

w(@o+h, Yo +J, 20+ k) =1y
= (g, Yo» Zo)-
By Taylor’s theorem (Volume 11, p. 57), there exists a number @
in the interval (0, 1) such that
) )
h= w(@o+ 6k, Yo+ 0j, 20+ OF)
+ja—3lu(wo+6k, Yo+ 0, 20+ OF)
+kaa—zu(a:o+0h,yo+9j,zo+8k) =0.
Now let Q(z, v, z) be an arbitrary point of the line P, P. Then the
increments %, j, k and x —x,, ¥ — y,, 2 — 2, are proportional, so that
5 wb w0 R
-2y Y—Yo 2—%

Hence the ‘Taylor’ relation becomes

d :

E (w— xo) a—xu(wn + ak, yo"‘ 6_’, Z°+ ak) =0,
.2

This relation is, so far, exact, and we now interpret it when the
point P of the surface moves to approach P, as a limiting position.
If the partial differential coefficients are continuous, then, as
h,j, k-0, the equation assumes the form

ou ou ou
(‘”‘%)a*‘(y—yo)"'(z—zo)a—zﬂ— 0,
where, for example, ng means a%u(a:, y,2) with z, y, z replaced by
0

%y, Yo» % after differentiation.
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This is the equation of a plane, having the property that it con-
tains each line through P, which is a tangent there to the surface.
It is called the TANGENT PLANE to the surface at F,. Thus the equation
of the tangent plane at P0 18

(x mﬂ)a +(y yl!)ay +(z zn)'—=0

Cororrary. The direction-cosines of the tangent plane are pro-
portional to du du Ou
(a_xo’ o’ Oz
Nore. A surface may have special points at which each of the
differential coefficients cu/ez,, ou/cy,, ou/cz, vanishes. Such is, for
instance, a cone, where they are zero at the vertex. We regard this
possibility as excluded in the subsequent work.

3. Some general formulae. By direct application of the
‘chain rule’ (Volume 111, pp. 25-7) we may establish three sets of
equations of which the set

0x du oxov Ox dw

wotowam wa

azau a:uav dx ow

tudy o ay oway

oxou oxdv ox dw

wntwatwe
is typical. We denote by J the Jacobian

=0,

0

_O@ ¥, 2)_
“o(u,v,w)

gIR e ¥

%
D
%
&
&
X

g® 2 ¥

and by X(u)! X(o), esay Z(w) the cofactors of Xy
minant, so that, for example,

Xy _WE

]

s ++2 2y iDL the deter-
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and so on. Then (Volume 111, p. 98) it is known that

du ou Ou

% oy o2
Jadwow) [ & 2 2
o, y,2) |ox oy oz |
w ow ow

oy oz

and we denote the cofactors of u,,u,, ...,w, by the letters U,
U(y), seny W(‘).

The set of equations may be solved for 8z/du, ox/ov, ox/ow by the
usual methods. Thus we find 8x/éw by multiplying by Uy, U,
U, and adding, so that

Similarly J-3 e Pl

Warnnag. Although X, might be written in Jacobian notation in the
form

_ Ay, 2)

- (v, w)

and Uy, in the form U= 2((’;' :’
it is not true that Xw=1/Ug.

The presence of the further variables z, « upsets the proof used for the case
when y, z, », w are the only variables involved. It is doubtful whether
such uses of the Jacobian notation are proper, and we have avoided them.

4. Mutually orthogonal systems. Two surfaces

wx,y,2) =1y, v(2,y,2) =%
are said to cut ORTHOGONALLY at a point P, if their tangent planes
there are perpendicular. By the Corollary at the end of §2, the
condition for this is

ou o &u v au (5] 2 6]

oy a5"0 Yo ayo Oz Ozg
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Three surfaces

w@, y,z)=uy v(x,y,2)= vy, w(x,Y,2)=w,

are said to be MUTUALLY ORTHOGONAL at a point P, if their tangent
planes taken in pairs are perpendicular. The conditions for ortho-
gonality at a general point are (dropping suffixes)
a_v a_w 4 a_v. a.lv + @ a_g =0
oxox Oyoy ozoz
O 0w 00 Oy .0 O%
Ox ox Oy oy Oz Oz
ou Bv ou av ou v
ot oy By oz 0z

One or two deductions may be made at once from these relations.

)

=0.

ou ou Ou
Sol th
olving the second and third equations for — Pt ay 3, Ve have
o 2% on
o oy oz

vow ovow ovow Ovow ovow oo ow

dyd Gzly Ozoaw Ox Oz Omoy Oyox
or, in the notation of §3,

If we write (for reference in the next paragraph)

(@
)+ @ G-

(0 2 (-

where h,, hy, h; may be taken to be positive, if required, and also
denote the three ratios given above by A, so that

w . 2w Pwi. Gy Ow %
e B B

ou ox Buay Ou oz
o Byau oz ou

shows that Ah§=1.
Hence we have the formulae

Ll e an e
oz hiow’ Oy houw oz 1%ou’
with similar results for v (with A3) and w (with A2).
Cororrary. It follows at once that (in this case of orthogonality)

CRCRER
)@

&) +G) ) -

The importance which attaches to the functions %y, h,, kg is
seen by the theorem that, FOR ORTHOGONAL RELATIONS, the
differentials dz, dy, dz are connected with du, dv, dw by means of the

Jermrka da® + Ay +de? = WP + W3dv® + Wi du®.
The proof follows by squaring and adding the three relations such as

cx ox ox
dw:a"du+% dv—i-%dw,

and noting that, for example,

then the relation =1

1
n2
L
s

o oy oy "2 %

15 MIV
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A useful formula is obtained by multiplying the two equivalent
determinants

‘!&x 'uy Uy ﬂc, ”z w,

1 1

75 Uy YUy Y |, jE Uy Uy Wy e
wa: wlf w& uﬂ ”E wl

By the standard (‘matrix’) rule of multiplication,

wi o+ U+ UR ww Uy WY, U W+ U W, U,
%= Uty + Oy Uy + VU,V + VY + U VW, + 0w, + 0,0,
Wtk + W, Uy + WU, WU+ W W+ WY, W+ Wy + WS \
kyd . 0 w0
= 0 h3® 0 |,
O 10, 4 B2
in virtue of the orthogonality relations. Hence

J = i hl hahs.

The sign of J may be taken as positive should we wish, since the
interchange of the names of two of the functions (u, v, w), y(u, v, w),
z(u, v, w) would interchange the values of two rows of J and so change
the sign if required. With the convention J positive (and hy, ks, hiq
positive) the formula is I Nk,

(The assumed constancy in sign requires that J is never zero here.
Compare Volume 111, pp. 90-5.)

5. The transformation of V2U. Suppose that z, y, z are’

transformed to new variables u, v, w by means of the transformation
z=z(u,v,w), y=ylu,v,w), z=z(u,v,w).

We restrict the discussion to the case when the three surfaces
w = const., ¥ = const., w=const. are MUTUALLY ORTHOGONAL.
By direct differentiation, we have the relation*

Uz [ Uuuz o Uv”z + waz’
so that, on differentiating again,
U:m: == Uuum + vavzz 2 wazz + X (Uuuua:'l' quv:c o Uuwwa:) Uge

U, v, w

U,E%g, and so on.
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It follows, in virtue of the orthogonality conditions of § 4, that
VAU =U,Vu+U,V+U,V2w+ ¥ U, ful+ud+ud.
u, v, w

Consider the part of this expression which involves differentia-
tions with respect to %, namely
A=U,Vu+ U, (vl +u +ul).
We wish to convert the differentiations of « with respect to z, y, z
into differentiations of z, y, z with respect to u, v, w, since this is
the more natural process when z, , z are given as functions of u, v, w.
We have already proved (p. 225) that

u§+u§,+u§=’%§,
1
so we pass to the evaluation of V2u. Since (p. 225)
LN
ox 1 ou’
: Pu 200z 1 8[
it follows that Fre T ﬁc-{-h_l’ . (ET&)'

But @ZJ(B‘an a”i”),

ou
so that
0 (@)zy(aﬁag_@ala)+J 0 (vow ovow
cx\ou/ o¢x\oy 2z 0zoy %(By 0z 0z By)'
Substituting and adding for z, ¥, z, we obtain the formula
9y, _ _ 2 (0hy 0x Oh 3y ohy 0z
b, hg(am mi oy & 8_u)
1 oS, v, w)
+ial o g0+ )
_ 2 13(J,,0)
ki ou " ki O(2,y,%)
T ohy 1 8(J,v,w) o(u, v, )
b ou " k3 o(u,v,w) 0(x,y,2)
20 1871
b ou " Rou J
1 O(hyhyhy)
au ]
whatever convention of sign is adopted for J (p. 226).
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Thus 2 20,00 1

2
4o 200 Bhyhohy) 3U 1 22U

" ou ou hi’.hha ou ou  hou?

182U 1 _hy B(hghy)| 2U
EVEETERNE au hohy  ou ]Bu

1 hh 8’U+a(h h,,)av}
Shohghy| by 0uE  Su\h, ) Ou

ey a[hh U
Zhahghy ou\ by ouf’

We therefore have the following rule:

If z, y, z are transformed to u, v, w by means of the ORTHOGONAL

relations
z=2(u, v, w),

y=y(u,v,w), z=z(u,v,w),
so that da? + dy? 4 d2® = hidu? + hidv® + hidw?,
then the transformation of V2U is given by the formula
1 0 [hohy @ (hyhy 0 (hyhy 20U

i e 20) "y 30) * 5By’ )

Nore. Mr F. Bowman has derived, in the Mathematical Gazette,
XXX (1941), p. 51, the more general formula

ViU =7——

o U 4,
: g1
2 __ e
Uiy B ] | A
gJi, e

where a, b, ¢ are written for our £}, 23, 23, and where

fE 2vxw +yvyw+' z‘ﬂz‘lﬂ’

with similar definitions for ¢ and k. Those familiar with matrix

technique will find a simpler exposition in Elementary Matrices,
by R. A. Frazer, W. J. Duncan and A. R. Collar, p. 51 (Cambridge
University Press, 1946).

The formula which we have given is often derived neatly from
a result known as Gauss’s theorem; but, of course, that has to be
proved first. It is also possible that the neatness of some derivations
arises from the neglect of detailed consideration of the volumes or
areas of curvilinear ‘boxes’. At any rate, the treatment here aims
at rigour founded on elementary principles. But knowledge of the

|

' ‘Gauss’ method is essential for those who desire physical insight
into what is involved in applications, and a text-book (say on
Vector Methods) should be consulted.

CoroLrarYy. The plane transformation of V2U. Suppose, as a
particular case of the work of this paragraph, that U is a function
! of z, y only, and that the transformation is
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r=x(u,?), y=ylu,v), z=w,
so that x, y are functions of u, v only. The surfaces u=const.,
v = const. are cylinders of which the sections by the planes z = const.,
or w=const., are the orthogonal sections, and the condition for
these cylinders to cut orthogonally is

ot A
oz 0z oy oy
Since u, v are expressible as functions of z, y only, it follows that

Buav ow ow

- =0; further % =0, 5?7=0. The three orthogonality con-

dmons of §4 (p. 224) are therefore all satisfied, and so the sub-
sequent analysis remains valid.
The functions A3, A3, k3 are given, from their definition, by the

()
-2 2

h=1.
Hence the formula of transformation is

2U 2U_ 1
0 " oy hyhy au( 31[4)) (hza }

EXAMPLES I

=0.

relations

1. Prove that, in terms of polar coordinates z =r cos 6, y =rsin 6,
BﬂU U _ 32U laU 12U
T Er ror TRwE
2. Prove that, in terms of cyhndnca.l coordinates z=p cos¢@,
Yy=psing, my L2U, P _BU 190 12U 2y
T By’ = p? e pip T P2 op? o
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3. Prove that, in terms of spherical polar coordinates

z=rsinf cos¢, y=rsinfsing, z=rcosh, . CHAPTER XXX

VEU:l E(rsij)+—-—l—-i(sm0@)+—l~——@ ¢ )
o\ or) " rsind 20 20) " *sin?0 og? LAPLACE’ EQUATIONS
LU 230 ¥@T L u 9T Y AT (i) SOLUTION BY SEPARATION OF VARIABLES
=t ram A0t Ao
The equations listed at the start of the preceding chapter (p. 219)
4. Determine the general form of a function ¥V which depends can be solved in a bewildering variety of ways. One basic method,
only on distance from a given line in space and which satisfies the which can be applied widely, is to find, in the first instance, solu-
equation V2V =0, tions in the form of products of funetions each involving only one

of the independent variables.
The work of this section shows how the method can be applied
in a number of typical instances.

-

1. The equation of heat conduction. The flow of heat in a
uniform body is governed by the equation

10V
gl
% V_hz at’

where ¥ is the temperature at time ¢ at the point (z,¥,z) and & is
a constant depending on the nature of the material. In particular,
the equation for a thin rod is

2v_1:v
oa A o’
We are to solve this equation by a method which separates V
into a part involving x only and a part involving ¢ only; that is,
we consider whether there are solutions of the form

V=XT,
where X is a function of 2 only and 7' a function of ¢ only. If so,
then the equation is . #X 1 . ar
| d® BT d’
| & 18X _ 1 ar
| X da* BT dt

Now the left-hand side is a function of  only, and the right-hand
side is a function of ¢ only; and they can be equal only by being

- e
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constant, a function of neither. Denote this constant by the
letter k. Thus

a:x

4 =
dT_ .
_dT—hkT

The nature of the solution depends on the sign of k. For instance,
solutions periodic in  may be obtained by giving & the negative

b
value —a?. Then i e P,

T = Ce—o"¥%,
so that (absorbing C into the arbitrary constants 4, B) a solution
of the given equation is exhibited in the form
V = (A cos az + Bsin ax) e~o"¥,

Suppose, for example, that the ends =0, 2=1 of the rod are

kept at zero temperature. Then there is a solution
V = Bsin ax e~"*,

where al=nm (n an integer).
Thus the constant a assumes the form n#/l, so that

V=B sm? i g

If it is known that, say, at time =0 the temperature is dis-
tributed along the rod in accordance with a given Fourier series

nnx
W= S‘acsml,

then the temperature at time ¢ is given by the relation

n=1
for this function satisfies the differential equation and also the
given initial condition.

2. The solution of Laplace’s equation in plane polar
coordinates. Laplace’s equation is

@+1.3_U'+l_a_2£_0
o "'ror 12002
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and we require, for the method of separation of variables, solutions
in the form U=R0O

where R is a function of  only and © a function of & only. Thus

o|#R 14B| RO _
B e drl TRGRA
r2 {d’R 1 dR} 1 d’@

or R —————

T ar
Since the left-hand side involves only r, and the right-hand side
only 6, each is constant. We may, for illustration, consider solutions
which are periodic in #, so that the constant is positive, say n?. Then

® =4 cosnf + Bsinnd.
The equation for R is

dR dR
A L
rdr3+ o n2R=0,

and the standard substitution (p. 52) r =e® gives the equation

f;—?—n’R 0

R=Pen® 4 Qe
=Prr 4 Qr—n,

with solution

where P, @ are arbitrary constants.
A solution of the given equation may thus be taken in the form

U =ar™ cos nf + br™ sin nd + er—" cos nl + dr—" sin né.

A more general solution is obtained by adding any number of
such solutions for different values of n; this is easily verified by
substituting in the given equation, when each contribution vanishes
separately. In particular, by giving n all positive integral powers,
we obtain solutions in the form of a series

U= E} (@, r™ cos nf + b, r*sin nb + ¢, r~" cos nf + d,, r~—" sin nd).
n=1
3. The wave equation in two dimensions. Consider next

the equation 3’U 2U 12U
R R
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for which we require solutions in the form

U=XYT,

where X, ¥, T are functions of z, y, f respectively. By substitution
in the given equation, we have

a*X #&Y 1 a7
148X . 1 &F "1 a4

< Xd2 VY =T aE

Each side must be constant, say (for solutions periodic in f) —n2.

b v T = A cos et + Bsin net;

also X, Y satisfy the relation
1d*X

e petcr L el i v LN
Y dy? o4

where, again, each side must be constant. If, for example, we search

for solutions periodic in X, we may take that constant as —m?; then

X = P cosmz + @ sin ma

d*y
a.nd d—¢+(n”—m2)17=0.

The solutions in ¥ are periodic if n? > m? and exponential if n? < m?2.
Suppose that we seek solutions which tend to zero as y tends to
infinity. Then we take n? <m? and obtain the solution

¥ =(Ce—vVmi-nty,

Thus for a solution which, say, is periodic in ¢ and is stationary
(8U [0t =0) at time ¢ = 0, which is periodic in z and vanishes at z=0,
and which tends to zero as y tends to infinity, we may adopt the
form U = A sin ma e=V™* =297 gos net,
where m, n are any constants such that m?> 2 If, for example,
conditions are such that the vibration at any point has a given
period 27 /¢, then we take n =1 and obtain the solution

U = A sin ma e~vY™'-1¥ gog et ;

and if, further, U is always zero along the line =1, then m must
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be of the form k7 [l. A solution under all these conditions can there-
fore be obtained in a general form

U=§Asin?exp[—ﬁ/(¥—l)y] cosct,

summed for values of & greater than /7 (for which the expression
under the square root sign is positive).

The solutions hitherto obtained have involved only functions
such as sines, cosines, exponentials and the like, with which we are
already familiar. But other choices of coordinates involve functions
essentially new, though we met them from a preliminary point of
view while solving differential equations in the form of infinite
series. The primary purpose of the next few paragraphs is to show
how fresh functions become necessary, though more detailed study
of their properties is reserved for later.

02U oaU @o:U
W-‘.W +—6?5 =0 in spherical polar

coordinates; Legendre’s equation. The equation in spherical
polar coordinates is (p. 230)
PU_ 200 120 10U 12U
ot Tror Treer T 50 T it 0g®
We seek solutions of the form
U=ROO,

where R is a function of r only, © of & only, and ® of ¢ only. On

multiplying by 7%, substituting, and dividing by RO®, we obtain

the equation

1 ( ,d°R dR) 1 (d”@ d@) 1 d*®
- +

) telaE 0 3) T Senraage

4. The equation

=0,

0.

R

By an argument now familiar, we have a relation of the form

2R dR
T2%+2ra+kR=0’

where k is a constant. If we make the substitution

r=e,
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then (compare p. 233) the equation becomes

d?R dR
m+d—'+kR=0.

This is a linear equation with constant coefficients, whose auxiliary
equation (p. 32) is Pt pi k=0,
The roots of this equation have sum — 1, so we may write them in
the form n, — (n + 1), noting incidentally that
k= —n(n+1).
Then B =Ae™ 4 Be~nthu
B

=dArt 425 gn+l’

‘We now have the relation

2 2
@(d@+ tﬁde) 1 Jd*0

P ) Damrg ags T+ 1=0,
20 do)\ . . 1820
or (d03+ tﬁdﬁ)sm39+n(n+l)sm20= ~ o

Now the geometrical meaning for ¢ suggests that there may be
useful solutions in which ® is a periodic function of ¢, and such
solutions can be found by setting each side of this equation equal
to m?, so that

L SRR
dqb’ +m?*® =0,
or ® =C cosme + Dsinmg.
The equation for @ is then
d2e de
d39+u°tod8 {n(n+1) 26}9 0.

The standard form in which this equation is usually given is
obtained by means of the substitution

p=cosf.
de do .
Then i Ei; sin @
d*® d*o . de
and 0 d 5 sin B—‘Ecosﬂ,
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d*e de® d20 . sin? doe
so that dﬂ”+ tadﬁ dp.’ 8- 2@%.0
d2@ de
= ' —
(A== gy
do
2
= e{a-mg).

Hence the equation is

3o-m2)

This equation is known as LEGENDRE’S ASSOCIATED EQUATION,
There are many problems in which solutions of the given equation

B’U 3’U BSU 5
39;3 By’
in the form U—R@Q

are required to be independent of the variable ¢, so that they are
‘symmetrical about the z-axis’. The constant m must then be zero,
and the equation for @ is

d 2,20 7
Eﬁ{(l — )‘E} +n(n+1)0=0.
This is called LEGENDRE’S EQUATION OF ORDER 7.

5 0=0,(x)

is any solution of this equation, then solutions of the equation
3’U 8“U BZU

| =0.

—— =0 symmetrical about the z-axis may be found as

2T aEt
sums of t,arms of the type

"e,, re.,
say U= z;(A e fﬂ)@

where 4, B, are constants.

U &U U
Wttt
ordinates; Bessel’s equation. The equation in cylindrical co-
ordinates is (p. 229)
#U 10U 13U U
W P @

5. The equation =0 in cylindrical co-

=0.
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We seek solutions of the form
U=80Z,

where 8 is a function of p only, @ of ¢ only, and Z of z only. Sub-
stitute and divide by S®Z; then

18, 143, 1 #0_ 102
S tspdpt O agr - "Z d2"
As before (p. 234), each side is constant. For solutions in which,

for example, Z assumes exponential form, that constant may be
put equal to —m?, so that &7

il I
p m*Z,
or Z = Ae™ + Be—™s,
148 148, 1 &0,
i Sip T Spdp o g = ™
1428 1 dS 1 d*®
g]t SR e T
so that P{Sdp’+8pdp } b dgt

Once again each side is constant. Solutions which are, say, periodic
in ¢ may be obtained by putting that constant equal to n?, so that

d*®

2 intd=
d¢§+n¢ 0,
or ® =C cosng + Dsinng.
The equation for § is then
ds dS
gt e 20,2 _ 2
pdpz-i-pdp-!-mSp n?S.

The standard form of this equation is obtained by making the
substitution

v=mp,
d*S dS
ivi e — (2 —=n?2) S =
giving vdv2+vdv+( n®)8=0.

This is a very famous equation, known as BESSEL'S EQUATION,
and its solutions are called BESSEL FUNCTIONS OF ORDER . These
functions have many important properties to which many authors
have devoted detailed study. Here we note that, if

8, (v)
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is a solution of Bessel’s equation of order n, then solutions of the
equation 2y 2U 22U

R R

are obtained as sums of expressions of the form

=0

exms S (mp) {g :ﬁ

(ii) OTHER METHODS OF SOLUTION

We do not consider in these volumes the detailed methods avail-
able for the solution of partial differential equations, but one or
two of them may be illustrated incidentally by reference to the
particular group of equations with which we are dealing. The
equations are, in fact, linear in the partial differential coefficients,
and we begin by indicating an extension for them of the method
used for ordinary differential equations with constant coefficients.

6. The equation of heat conduction. We return to the
equation (p. 231) 27 137
o
and consider (analogously to the case of ordinary differential
equations) whether there are solutions of the form

V =aerstd,
2
If so, then %;,Z =apleprte, %TV = aquz'l'ﬂf,
80 that Pa — ;_:.'_é q,
or q=p2.
Hence the function V = qepz+ph®

satisfies the equation for all values of p. Further, it is verified by
direct substitution that any sum of such solutions, for various
values of p, is also a solution. Thus there exist solutions in the

form V=x4, ePTP R
»

summed for any set of values of p.
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For example, p might take in turn the complex values 4, 2¢, 33,
<.y M, .... The corresponding solution would be
V= § Bn e(m—'n'hﬁ'
1

apy [Sin Nz

o«
or, in real form V=% B_ e
? & E{“ s cosnx’

assuming that B,, B,, B,, ... are real constants,

7. Laplace’s equation in three dimensions. For the equa-

e 2U BU 2U
R

we consider whether there are solutions of the form

0,

U = gepr+av+rs,
If so, then the constants p, ¢, r must satisfy the condition

P2 + qs + ra — 0’
and a form of solution is

U= E apwemmm
».aqQ,r

(P24 +12=0).

An obvious solution of the equation p®+4g%+72=0 is given by
p=icosa, g=isina, r= —1. Then

U= o bm gtl@ cos a+¥ sin z)—s’
(-

and the real and imaginary parts of this function are separate
solutions of Laplace’s equation. In real form we have, for example,

- solution U=3c,e*cos(zcosa+ysina).
-1

More generally, one at least of p, g, »r must be complex, and the
ranges of values to be selected depend, in any particular problem,
on the type of solution that it is desired to obtain.

The great generality, which these solutions by sums of expon-
entials lead us to expect, prompts the question whether the ex-
ponential eP#+av+r2 of the preceding paragraph may be replaced by
a more general function f(px+qy +rz) of the variable px + qy +7z.
We therefore try such an assumption as a method for solving the
wave equation in two dimensions.

d—

e e L

o -
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8. The wave equation in a plane. Consider the equation
U U 1380
R T
and solutions, if any, of the form
U=f(ax+by + At),
where a, b, A are constants. Writing

u=ax+by+At,
ou o
we have B fluw)
O
~dudx
daf
—ad—u’
St o LR
and, similarly, Fr =g* T
In the same way, we have
Ll Sl T

o du? o du
and so the given equation is satisfied if a, b, A are chosen so that
a’+ b2 =A%c?,
or : A= +c,/(a®+b?).
Hence the equation is satisfied by the function
U=flax+by +c./(a®+b) t} + Flaz + by —c./(a® + %) 8},
where f, F' are arbitrary functions, and where the constants a, b
are arbitrary.

An alternative generalization is to seek solutions which are

functions of some assigned function of the variables. This is
illustrated in the following section.

9. To examine solutions of Laplace’s equation in the
form of functions of ¥+ ./(s%+y%). The equation is
?U oU
% oy

6 . MV

0,
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and the solution proposed is

U=f(e+7),
where r=/(2%+%).

For such a solution we have
@-—f (@+7) (l+g’;)
= (145)r@+n,

so that %;g=(%—%f)f (x+r)+(1+ )f”(a:+r)
%f (m+r)+(1+ )f"(a:+r).
Also @“f’("’*'f)afy
=yf’($+f),
so that %Z=(;—’%g)f (:c+r)+ f (x+7)
=Zran+ L ).

The solution therefore satisfies the given equation if

;f'(:c+r)+{(1+E)a+%:]f”(x+f)=0-

2
or -f (x+r)+(l+ z+z it

)rr@en=o,

or fl@+r)+2x+7)f"(x+7r)=0.

If we write +r=wu, then the form of the function f is given by
the differential equation

1) + 2uf” (w) =0.

Hence ulf’(w)=34,
‘say, where 4 is an arbitrary constant; so that
f'w)=34ut
and flu)=Aut+B.
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Hence a solution of Laplace’s equation is obtained in the form
U=A{z+./(2®+y2)} + B,
where 4, B are arbitrary constants.

2 2 2 2
The equations % ?-1-%; 0, %— % BF‘TEI_ 0 may be solved by
a simple transformation which gives a very general form of the
result. But observe first that these two equations are identical in
form (with ¢ written for y) if the constant @ is given the particular

value ¢ =,/(—1). We therefore begin with the second equation.

U 1 U
10. To solve the equation YT =0. If we make the

u=zx+at, v=x—at,

U_2U U PU_BU @U@
. ow ' A o Coumm 9

substitution

then

g_aa_g_aau U _ ia232U 283U U
a %w Y W (au= v wr)
2 2
so that the equation %:g—- alz %3_.
U
becomes m:o,

Hence U assumes the form
U=f(u)+g(v),

where f, g are arbitrary functions of their arguments. The solution
of the given equation is therefore expressed by means of two
arbitrary functions in the form

U=f(x+at)+g(z—at).
Note that, in this case, all solutions of the equation can be

expressed in this form; in distinction from earlier cases, where
special forms of possible solutions were guessed.

aﬂU U
11. The solution of the equation — 32t ayB

conjugate functions. Putting a=1 (2= — 1) in the result of the
16-2

=0 by means of
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preceding paragraph, we obtain a solution of Laplace’s equation
in two dimensions in the form

U=f(@+1iy) +g(x—1y).
In particular, if we write
2f (@ +iy) = u(z, y) +iv(z, y)
and identify g with f, so that
29(x —iy) = u(®, y) - w(, y),
then we obtain solutions in the form
U=u(z,y).
Alternatively, if we identify g with —f, we obtain (after division
by i) solutions et
Hence soluiions of the equation
2U U
o

exist in the form of the real or imaginary part of the function f(x + iy) of
the complex variable x + iy.

12. The wave equation with spherical symmetry. The
result of § 10 may be applied to find solutions of the equation

U U U _ 13U
Wi TR w
having spherical symmetry, where U is a function of r, ¢ only, with
r=,/(2?+y%+22).
In terms of spherical polars, the equation (p. 230) is
13 TZ@)_F_I_E(Sj_nH?_ +—l @_1 ?fg
or\' or) " r*sind o0 06) " r?sin®0 3¢  a® @2’
and, since U is independent of § and ¢, this is

12(,30\ 13U
P\ o) 2w

U 20U 18U

% i
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Write Ur=V,
so that V is also a function of r, ¢ only. Then
U 2
70
U ou e
w2 e
and so the equation is

#V_1 #U_127

or? a"_r o a? o’

Hence (§10), V =f(r+at)+g(r—at),
or U=-:-{f(r+at)+g(r—at)},

where f, g are arbitrary functions of their arguments,

REVISION EXAMPLES XXIV

1. A string of length I is stretched between two points, one fixed
and the other vibrating transversely. The motion of the string is
determined by the equation

M 1%
gl
where z(z,?) is the transverse displacement at time ¢ at a point at
distance « from the fixed end, and ¢ is constant. The motion of the
end-points is given by
2(0,£)=0, 2z(l,t)=asinpt

for all ¢. Show that, in general, there is a solution in the form
z=f(z) sin pt, and determine f(x).
In what circumstances does this solution fail ?

2. For a transmission-line of uniform inductance L and capacit-
ance C per unit length, the voltage ¥ and current I satisfy the
equations E;V__La_I g__oﬂ

o T a oz ot °
Derive the partial differential equation satisfied by ¥ or I, and
show that there are solutions in the form of a function of z only,
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multiplied by e, where @ is a given constant. Prove that the

solutions are of the form
Aeioi—ka) 4. Beitwtka),

where k=w ,/(LC).
If B=0 for both ¥ and I, show that the ratio of V to I'is /(L/C).

3. Write down a general solution of the wave equation
e
or* o’

If the solution is subject to the boundary conditions that, for
all{, y = 0 when 2 = 0 and when 2 =1, show that a solution of the form
y =f(z) sin pt exists if, and only if, p has one of a series of discrete
values.

4. Find the solutions of the wave equation
2y Loy
ox? c? o2
for which y=0 at =0 and at 2 =1 for all values of .
Find the particular solution for which, in addition, at =0,
y=0 and %’ﬂﬁn(@).
5. Expand z(7 —z) in a Fourier sine series in the range (0, m).
Find the form and the coefficients of an infinite series of trigo-
nometrical terms which represents, in the range 0 <z <, a solution
of the equation 2y 13y
8z c® A
with the following boundary and initial conditions: (i) y=0 at
z=0 and at z=m for all ¢; (ii) 8y/ot =0 and y==z(m —z) when {=0
for all z in (0, 7).
6. The equation for the transverse vibrations of a stretched
oLz Ofp . LO% ; : ;
string is =5 =52 The ends of the string being fixed at the points

(0,0), (I, 0), the string is released from rest in the form of an arc of
the parabola ay = z(I —z), where I/a is small. Show that its form at
time ¢ is given by the relation

812 . pmx  pmct

ay=zﬂ3—ﬂ8mT COBT.

where p takes the odd values 1, 3, 5, ....
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7. Obtain a solution of the equation

oz _ 0%
T
in the form z=f(z) g(y).
Find the solution of this equation satisfying the conditions,
(i) zis finite as y tends to + oo,
(ii) for all values of g, the value of 9z/8z is zero when =0, and
z is zero when 2 =4,
(iii) for all values of z in the interval (0, §), the value of z is 1
when y=0.

(@>0),

8. A function ¥ of z, y satisfies the equation

o A

@t op

and vanishes for all values of y when 2 =0 and when z=1. Obtain
an expression for V in the form Zf, (y) sin narz satisfying the further
conditions
(i) V>0asy—>+oo,
(ii) when y=0, the value of ¥ is sin®mz for 0<a < 1.
9. Find all solutions of the differential equation
I
oa? Oy
which are of the form U =f(x)g(y).
Solve the equation subject to the conditions that

U=0, =cosh?y

£

when 2 =0, for all values of y.

10. Obtain a Fourier series, containing cosine terms only, for
the function f(#) defined by the relations

fO)=1  (0<O<im),
f(-}ﬂ')=0,
f0)=-1 (Fm<b<n).

At time £, the excess pressure p at distance z from the closed end
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of a pipe of length a, open at the other end, may be assumed to
satisfy the relations
% 193%

5235 338 (0<z<a; for all £),

4 H
a:6—0 at =0 (for all ¢),
p=0 at z=a (forall?>0).
If for £ <0, p has a constant value p, (the end of the tube at z=a
being closed, and then suddenly opened to the atmosphere at time

t=0), show that the Fourier series found above enables us to express
the subsequent variations of pressure in the tube by the formula

p=k§1A,‘ cos %eos k%t,
and find the coefficients 4,.
11. Find a Fourier sine series to represent the function
Y=z (0<z<a),
y=a (e <x<2a),

y=3a,—-£ (20-.<__$-.<.,3“)-

What does the series represent in the interval 9a <2< 12q?

Ry _ .0
ot? o
t=0, represents the foregoing function y, and also makes dy/ct=0
when ¢ =0,

Find a solution of the wave equation —% which, when

249

CHAPTER XXXI
SPHERICAL HARMONICS

The theory of spherical harmonics may be developed from several
points of view, and is too extensive for more than a brief survey here.
We seek to emphasize merely the properties to which they owe
their special importance, and to sketch different treatments to
which they may be subjected. The topics are selected chiefly for
their use in applied mathematics, especially in the theory of elec-
tricity, with which we shall later assume that the reader has some
acquaintance.

1. Laplace’s equation for axial symmetry. When the
potential U is symmetrical about an axis, taken to be the line
x=y=0, Laplace’s equation is (p. 230)

( aU) r=mneae( aU) lze%:g 0

with (for the symmetry) U independent of ¢; that is,

( al:) r’smﬁaﬁ( aaag) o

There exist (see p. 237) solutions of this equation in separable
form
: U=3 (4rm + Br-a+1)@,,
n

where @, satisfies Legendre’s differential equation
d N b o
P {(1 —u )@] +n(n+1)@=0 (z=cosh).

When = is a positive integer, Legendre’s equation has a solution
which is a polynomial of order » in x, and it will be convenient for
the calculations which follow to take the form (p. 182) in which the
polynomial is expressed in descending powers of u,

n(n—1)

n(n—1)(n—2)(n—3) B
2(2n 1}

3 e DiaeT)
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or, after reduction,*

(m)2Um (1R @2n—22)!
()] 2 (=) (n—2x)1 1%

2. The reciprocal of distance as a solution of Laplace’s
equation. The potential due to a single element (point charge in
electrostatics or particle in gravitation) is inversely proportional
to distance; thus the potential U at the point (z, y, z) distant s from
an element at the point (z,,¥;,2,) is, apart from a coefficient of
proportionality, given by the formula

Uats :
s @2+ -+ (—2)%
Since g=@—z+y-n)+E-=)
it follows that 8 il =2—2,,

ox
ou 1 0s z—2,

o s &
eU_ 1 3x—z,)
i L

so that

3 3
Thus VU= -5+5{E-2)"+@~5)"+(E-2))
=0,
This establishes the fundamentally important theorem:
The function s~ satisfies Laplace’s equation.

CororLrLARY. The function

_ gemin ]
V=m(;)-

where [, m, n are positive integers, also satisfies Laplace’s equation,
Sus s aﬂ) gremen (1)

V‘VE(
8

a2 ot o22) doym o

(G5B
=0.

* We write [$n] to denote #n if n is even and ¥(n—1) if n is odd.
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Consider now a choice of coordinates in which the element is
situated at the point A(0, 0, 1), and suppose that the potential U
is to be evaluated at the point P(z,y,z) whose coordinates, when
expressed in terms of spherical polars, are

z=rsinf cosgd, y=rsinfsing, z=rcosd.
Then 88=1—2rcosf+172,
so that U=(1-2rcosf+r2)t,

the positive determination of the square root being taken.
This is the function that we now investigate.

3. The expansion of (1-2pr+r2)~t. Writing x for cosf in
the formula at the end of the preceding section, we consider how

the function U=(1—2ur+r2)

may be expanded in a series of ascending powers of r. As a pre-
liminary step, we recall the binomial expansion, valid for [z | <1,
3.3, 483
(l-z)yt=1+je+2 202+ 22 2084 |
2! 3!
- L
=Y

Since these coefficients occur several times in the calculations, we

adopt the temporary notation
_ (2!
= k(g8

so that the expansion is
-]
(1-2)t= 3 a2t
k=0

for |z|<1.
Note, in particular, that the coefficients o, are all positive.
In virtue of the identity

1-2pr+1r2=(1—re?) (1 —re-®),
we have the relation
U=(1-re?)}(1 —re-it)-4

=(1+a,re? +oyr2e?? 4+ ,..) (1 + oy re~® + ayrie—20 4 ),
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valid if | re? | <1 and |re—# | < 1, that is, if
|| <1
Since each series is absolutely convergent for | r| <1, the product

when arranged in a series of ascending powers of r also converges
to the sum U (p. 132), so that, for |7 | <1,

U=1+ (a,e¥+ o, e ) r
+ (otg €2 + af + aty €720) 73

+ (ot €390 4 oty otp €10 + oty oty €10 + 01g 7 310) 3
3 Oy oy Oy g 3

=1+ (2, cos 0) r + (2c, cos 26 + ad) r2
+ (2015 cOs 30 + 20, 2t c08 0) 18 +- ...

The actual values of the coefficients are not important for our
present purpose (we shall find a more convenient expression later),
but this form shows at once that, since a,, a,, ... are all positive the
coefficients attain their greatest values when 0=0, that is, when p=1.
We now retrace our steps to establish an alternative version of
the expansion. The expression (1 — 2ur +72)~* may be expanded as
a series of ascending powers of the function (24r — %) in the form

(1—2pr +12)H =3 a (2ur —r2)*
0
for such values of 2ur — 2 as satisfy the inequality
| 2pr—r%| < 1.

This inequality does not necessarily extend for values of r up to
the limit | r | < 1 of the previous expansion; indeed, it is not satisfied
for u= — 1, r=4. But it certainly holds for values of r such that

|2r|+]7*] <1,

and this, again, holds if (taking a crude but obvious inequality as
adequate) Ir| <3

Under this condition the series of positive terms

el 2|+

EXPANSION OF (1—2ur+72)-% 253

converges absolutely. Hence, using binomial expansions for the
terms in brackets, the series

@ k
5 auf 330, 20[2 |2 1-7)
k=0 p=0

converges, and, because of the absolute convergence, continues to
converge when re-arranged as a series in ascending powers of 7.
But this is precisely the condition that the series

© k
5 ak{ 3. oy 2ur (~ 122},
k=0 p=0

when re-arranged as a series in ascending powers of r, should con-
verge absolutely for | r | < §. This result establishes the validity of
the expansion, for |r|<$,

© k
(=241 5 | 3 0, (r)e (—r2)
when written as a series in ascending powers of 7.

An explicit form for the series may be found by observing that,
for any given k, the term in #* arises when

P+2(k—p)=n,
so that p=2k—mn.
Hence the total coefficient of »* is
Zoty yOop—n(2p)* (= 1)"F,

summed for those values of & for which, » being given, the binomial
coefficient ,¢,;_, has a meaning; and, since

B k!
Koak—n = B ) T — k)1

those values are given by the inequalities
n<k<n.

Identification of this sum with the polynomial solution already
found for Legendre’s equation is more easily obtained if we arrange
it in descending powers of x, writing

2k—n=n—2A,

or k=n—A.
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Then the coefficient of r™ is

zau—:\ *n—ACn—g1 (2/"')"_2'\ ( ¥ ]-)A

summed for 0<A<in.
Inserting values for «,_, and ,_,c,_s:, We have the expression*
B (2p—21)! (n—2A)!

o - ) -yt (e

_[in] (_l)a (2?@_2/1}! L
S Pm—N) m—2)t”

agreeing, apart from a factor of proportionality (depending on =,
but not on A), with the polynomial solution of Legendre’s equation
given on p. 250.

We therefore summarize the present position as follows:

The expression (1—2ur+72)~% may be expanded in a series of
ascending powers of r, convergent for | r | < 1, in the form

(1= 2pr + 722 =14rP,(0) + 12 Py(p) + ... + 1P (1) +...;

and examination of the expression for the more restricted range
| 7| <} has sufficed to establish that the typical coefficient P,(x)
is a polynomial of degree » in p, given by the formula

_tm (1 (@m-22)!
BW=2 st =y

Further we have recognized this series as the polynomial solution
of Legendre’s equation; so that we know it to satisfy the relation

d P, -
Zla-m e} +amen im0,

It follows that, for arbitrary values of the constants 4, B, the
function (Ar™ + Br<oiV) P. (1)

is a solution of Laplace’s equation with symmetry about the z-axis;
more generally, a solution exists in the form of the infinite series

io(A,,ruBm"w) P, (u).
=

* For [§n] see p. 250.
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DerixrrioN. The function P,(u) is called the LEGENDRE POLY-
NOMIAL of order n. When the context makes the meaning clear, the
argument x is often omitted and the polynomial denoted by the
simple symbol B,.

It is easy to obtain explicit formulae for the first few polynomials:

B(p)=p,
Fy(p)=3(3p*-1),

Fy(p) = 3(5p* — 3p),

Fy(p) =3(35p* — 304 + 3).

The values P,(—1), P,(0), P,(1) are of importance, and can be
calculated directly from the expression (1 — 2ur +12)-3, as follows:
When g = —1, the relation is

(147)2=14rP(—1)+r2P(—1)+13F(— 1)+ ...y
so that B(-1)=(-1)~
When g = +1, the relation is
(1—r)t=14rP(1)+72F(1) +r3F(1) +...,

so that P (1)=1.
When =0, the relation is

(1 +72)~1=14rP,(0) +r2Py(0) + r3F,(0) + ...,
so that P,(0)=0 (n odd)
n! [(—1\i»
B,(0)= Tnle (—4—) (n even).
Nore. We proved earlier (p. 252) that the greatest value of P, (x)
oceurs when =1, so that
| F, n(ﬂ') | <L
This accords with the result that the series
1+ rP(p) +r2Py(p) + ...

is convergent for all values of 7 such that |r | <1.
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4. Rodrigue’s formula for P,(@). The polynomial expres-
sion given for F,(x) in the preceding paragraph may be written
more simply in the form (Rodrigue’s formula)

R
sz?m(@) (g2 =1)m

To prove this directly, write

n
(p2-1)= AZDn"A( =1P (ph)-a
and note that, for A < in,

A\ neay _(2R—20) o
so that*

Y i L e e
2! \dp. 20! S0 Al (r—A)! (n—2A)!

tm (— 1) (2n—2))!
=22 =) A (n—2)1 ¥
= n(ﬂ)'

n—2A

5. Laplace’s expressions for P,(p) as definite integrals.
The polynomial P,(x) may also be expressed in integral form. We
prove that the value of F, (1) is given by the relations

Fo(p)= ,l,f:{ﬂ-%i«/(l—#”) cos u}" du,

and B (p)= i—IJ‘W{M +144/(1 — p?) cos u}~+D du,
0

o

(The forms are only superficially complex. When A is odd,
j' cos*udu =0,
0
and so the terms involving ¢ as a factor in the binomial expansion

are all zero.)
We begin by proving the formula

L du Ea i ;
J.o 1+k%cos®u .J(1+K2)

* When A > }n, the differential coefficients are zero.

a
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The left-hand side is

9 in du _a i gecludu
o 1+k2cos®u ")y (tan®u+1)+i3

_2I°L
e B+(14+57)

2 Pa g Dgo e
=~/(1+k3)["’““ 14<1+ic2):|o
o

TO+E)

the justification of the ‘infinity’ in the transformation being
straightforward. Now

L4 du 1T du +l T du
ol+kcos®u 2)g1+tkcosu 2]y 1—ikcosu’

and, with = —v, the second integral on the right is

16 —dv 1(" dv
2)s1+ikcosy 2)y1+ikcosv’

The two integrals on the right are thus equal, and so

B J" _ du
NI +k) 7)o 1+ikcosu’
Note that each side is positive for all values of .

In particular, if Y

kEl—roosﬂ’

the formula is
A(l—rcosf) 1(7 (1—7cosf)du
J(1—2rcos@+7%) @)y 1—rcosl+irsinfcosu’

where A is + 1 or — 1 according as 1 —r cos @ is positive or negative.
Dividing by 1—rcos®, which is not zero for general values of 6,
we have

A _lj" du
NJ(1—2rcos@+r%) m )y 1—r(cos —isinfcosu)’

Now assume r positive and take » < 1. Since

[r(cos @ —isinfcosu)| < r,

17 M1V
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the integrand on the right-hand side, when expanded in a series of
ascending powers of r by the binomial theorem, is absolutely
convergent and also, by the ‘M ’-test (p. 119), uniformly conver-
gent; it is therefore integrable term by term. Moreover, with
r < 1, the sign of 1 —7 cos @ is positive, so that A = +1. Thus

1 1
JA=2rcos0+71%) 7

so that, from the coefficients of 7,

E}Jw r*(cos § —i sin 0 cos u)" du,
0Jo

By(u) =~ J' ﬂ (SoRD—F s D oom s 3k,

where y=cosf. Replacing —i by + ¢, which, by the parenthesis at
the start of this paragraph, does not affect the result,

P=1 J‘ iy (1 ) cosujn du.

Again, the relation
A 1 J’ » du

JA=2rcos0+r%) m), 1—r(cos ) —isin 0 cos u)

may be written in the form

A
ry(1—2r1cos0+r2)

=L - o
m Jo7(cos—isinlcosu)l—r—'(cosf—isinfcosu) !’

and we proceed to consider this identity for values of » such that
r > 1, so that »! < 1, and also such that, for given 8,

| 7~(cos @ —isinfoosu)? | < 1.

[This inequality requires 72cos®@+72sin26 cos?% > 1, which is
true for all  if, and only if,
r|cosf|> 1.]

;‘—E‘. rF,(u),
0

The left-hand side is

- AT 0P, (4);
0
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and the right-hand side, by argument similar to that used for the
caser < 1, is

13 (7 du 1 s —11n
1?%_1‘0 r(cose—isinﬂcosu){r (po 3 in Foosw)-J",

1-= = e
or e 5 r-(“+1)f (cos & — i sin O cos u) "+ dy,
0 0

Hence, equating coefficients of »—®+D, we obtain the formula

-1 (7 du
AP"(”)=?IQ (cos @ —isin 0 cos u)+1’

or (changing the irrelevant sign of 1)
e i du
AF, ()= T jo (cos @ +isinf cosu)ntl”
= "' E du -
o Jo{p+iJ(1—p?)cosujr”
In order to resolve the ambiguity of sign, consider the inequality

r|cosf| > 1.
If cos@ > 0, then 1—rcos@ < 0, so that (p. 257)
A= -1,
Ifcos @ < 0, then 147 cos 6 > 0, so that

A=+1.
Tosummarize,
+1 du
Pn(.u') _?J.ﬂ {;&+5J(1—}&2)008u}"+1 (lu’ > 0).-

-1 du
Pn(#)=—ﬂ"f° {ﬂ-}*i:lJ(l _ﬂz) 008‘!6}""'1 (Ju' < 0),

the integrals not being convergent for x=0.

6. The recurrence relations. There are a number of useful
formulae connecting successive Legendre polynomials and their
differential coefficients. They may be derived from a number of
starting points, of which we select Rodrigue’s formula.

17-2
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To prove the recurrence relations
Py—uP, ,=nP, ,,
4Py—Pj ,=nP,
(mn+1)F,;—(2n+ 1) uF,+nF, ;=0.
1

Write Wy = s (U 1),
d™w
so that B = d_ﬂf"? .
By direct differentiation,
dw, 1

T T (m=1)l (B=1)"1p

=HWy_4.

Differentiate this relation » times by Leibniz’s theorem; then

d"f“*w,, a‘,“wn__l dﬂ_lwﬂ-l

dﬂn"bl =ﬁ d#,ﬂ + n. 1 dﬂ',n_l »
df, dF,_,
so that E,u——‘u au +nF,_y,
or PL—uP, s=nF, ;.
Again, the relation %‘ =W, 4

. dw
is #E‘f={(ﬂs‘-1)+ 1}w,_q,

dw
or 7 d_}: = 21%0" +w, 35

so that, differentiating n times by Leibniz’s theorem,

v, dvw, | dmw, dmw

= n—1
] dH +n.1 aun =2n e aur
dp, [ 4 dP,_,
or pjd—’&—+nP,,—2nPn+ B!
or #Ps~P, =aP,

[ FC T T e
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Finally, if we solve for P}, P,_, the two equations

n
F 544 _FP::—I =nF, ,,
4P}~ Pj_ =nP,
we have (1—-u®) P, =nP, ,—nuP,,
(1) Py =P, ,—nbP,

R:epla.ce n—1 by n in the latter equation, and then equate the two
values of (1— u?) P, ; thus

nPn—1_n!‘Pn=(n+ 1) uP, —(n+ l)Pﬂ+1’
or (n+1)Fp—(2n+ 1) uP, +nP,_,=0.

7. The integral formulae. The two formulae which follow,
also called the orthogonality relations, are of great importance in
applications.

(i) To prove that, if m +n, then

1
f PP, du=0.
-1

The polynomials F,, P, satisfy Legendre’s equation in n, m
respectively, so that

7= Pi} + ntn +1) P, =0,

ci-"-}‘{(l-- %) P} +m(m+1) B, =0,

and so

d 2 d
Bngu =1 P} =By (1) P}
+(n—m)(n+m+1)P,P,=0.
Hence, using integration by parts,

1
(m—n)(n+m+1)f B, P,dy
-1
1 1
=[Pm(1~ﬂ’)P,’,] - f Pp(1—pu?) Pl du
Sl s

1 1
—[Pna—p*)P:.,] % f Py(1 %) Pdy
=3 =
=0,
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since 1 — x? vanishes both for #=1 and for y= —1. Also m+n and
(with m, » = 0) n+m+ 1+ 0, so that

(m—n)(n+m+1)+0.

1
Hence j B, P.du=0 (m=+n).
-1
" 1 2
(ii) To provethat f_l Pldy= il

Multiply the recurrence relation (p. 260)
0P, — (20— 1) By s+ (n—1) P, y=0
by F, and integrate, using the preceding result (i). Then

1 1
n f Prdp=(2n—1) f 1Py B dp.
-1 -1
Multiply similarly the relation
(n+ I)Pﬂ+l_(2n+ ) pP,+nF,_ ;=0
by P,_; and integrate. Then
1 1
(2n+ l)f J"”PﬂPn—ldﬂsz‘ lPi-ldﬂ'
-1 -
1 1
Hence (2n+ I)J. Pldp=(2n— l)f P .du
-1 =3

1
=(2n—3)f P2 ,dp (similarly)
=1

.......................................

1
= f Pidp  (similarly)
~1

=2 (since Fy=1),

1 2
and so f_lP?,dp=2n+l.

[ P, s P.du= e e

L T e e =)

Itis also easy to prove from the recurrence relation, or from the fact
that the integrand is an odd function of x, that

1
‘[ ﬂpid}b=0.
=1

COROLLARY. f

|
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8. Expansion in terms of Legendre polynomials. Com-
parison with Fourier series suggests the possibility that it may be
possible to express a given function f(x) as a series of Legendre
polynomials in the form

J(@) =ay Py(x) +a, Py(x) +ay Fy(x) + ...

We content ourselves with a proof of the formal theorem that,
if a funclion f(x) CAN be so expressed in a series which is uniformly
convergent in the interval —1 <x <1, then the coefficients a,, are given
by the formula

1
a=(t+3) [ f@) B

Since F() is bounded in the interval and the series is uniformly
convergent, so also is the series

J@) B(z) =ay Py(x) Fi(x) + a, Py(x) B(®) + ...,
which may therefore be integrated term by term from x= —1 to
z= + 1. Hence, from the orthogonality relations (p. 261),

1 1
f (@ B@ =0, [ B
S =y

-
S 2%k+1°
which is the required formula.
EXAMPLE

Prove that this formula is always valid when f(z) is a given
polynomial.

9. The application of Legendre polynomials; general
principles. We conclude by giving three illustrations to show how
Legendre polynomials are used in physical problems. But first we
enunciate, without proof, certain theorems which form the back-
ground against which the methods employed must be tested. We
adopt somewhat informal wording deliberately, to emphasize that
we have not the equipment necessary for precision.

(i) THE THEOREM OF UNIQUENESS. If a potential function U is
(by any method) found

(@) to satisfy Laplace’s equation;
(b) to have assigned values over certain boundaries;
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(¢) to have ‘assigned discontinuities’ (possibly zero) in 8U [on
over certain boundaries, where 3U/n denotes the rate of change of
U in the direction normal to the boundary;

(d) to vanish ‘sufficiently rapidly’ (if required) at infinity,
then that function is uniquely determined.

(ii) THE ‘Ax18’ THEOREM. If a potential function for a problem
with axial symmetry (axis z=y=0) is determined for points on
the axis, in the form «

2 (42" + B, z~nt1),

n=0

then the potential at the point (r, 8, ¢) is
ZO(A,,f" +B,r~®+0) P (1) (p=cosB).

It is unlikely that anyone reading the present work will not have
some knowledge of the elementary electrical principles involved,
but we shall give a brief note when any doubt seems likely to arise.

ILLusTRATION 1. To find the potential outside an earthed com-
ducting sphere of radius a in the presence of a point charge e at a
point A distant f from its centre (f> a).

r”
2

Fig. 151

The electrical principles are:

(i) the potential vanishes at all points on an earthed sphere;

(ii) the potential at a point P due to a point charge e at 4 is
(in free space from which conductors, other charges, and so on, are
absent) equal to e/4P;

(iii) the potentials at a point P due to two distinet effects may be
superposed.

In terms of spherical polar coordinates, take the origin O at
the centre of the sphere and the z-axis along OA, so that 4 is the
point on it for which z=f. Let P(r,0, ) be an arbitrary point
outside the sphere.

o
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We observe that, in the absence of the sphere, the potential at P is

Wk (p=cos0)
P-gfrurry AT
Bearing in mind that we shall have to be considering the influence
of the sphere » =a, where a < f, we form the expansion of this expres-
sion as a series of ascending powers of r, for values of 7 less than f.

The expression is 5[1 _2(;)”4_(;)2}_*
7 ’

The total potential U in space (outside the sphere) is the sum
obtained by superposing the two components:

so that the series is

2 - A
0 $5(5) 2w @orr<,
due to the point charge,
(ii) an expression, to be determined, due to the presence of the
sphere.

In deciding what form to consider for the second of these com-
ponents, we must bear in mind the facts that

(2) it satisfies Laplace’s equation and has axial symmetry, so
that it is the sum of terms of the type (4, 7"+ B,r-®+9) @, con-
sidered on p. 237;

(b) it tends to zero at infinity, far from the disturbing sphere;

(¢) when added to the potential due to e at 4, it gives zero
potential over the sphere »=a.

Recalling the theorem of uniqueness (briefly, that if we can find
A potential, then it is THE potential) we try the effect of choosing
0, of fact (a) to be the Legendre polynomial P,(ux), thereby re-
stricting n to the positive integers. Thus we try, in the first place,
a ‘disturbing’ potential of the form

3. (A, + B,r-+9) B,(4),
n=0

Having done this, we note that, by (b), the coefficients 4, must
all be taken to be zero, and so the total potential outside the
sphere is

=53 () Bw+ EBremr .
f n=0 n=0
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Finally, we apply the condition (¢), that U = 0 for all values of 4
when »=a. Thus

0=2 (f) P(u)+ EB a~"+D P, (p).

This is satisfied (and we need not worry at this stage about con-
vergence since only A solution is required; the convergence of any
solution so proposed can be tested later) by choosing the coefficients
B, so that

ea™
fr +B,a~ =0,
eq2n+l
or Bn P S ?&'ﬁ. .

The disturbing potential is therefore found. It is (subject to
convergence, which will be established almost immediately)

@© g2+l 1
V= eE o JA g F ()

> P=(-7) 2 (7) mnen

Since f> a, this series certainly converges when r > a.
We have therefore proved that the potential outside the sphere
assumes the form

o33 i 5 5 Ao

for r <f; and the alternative expansion of the first summation for
r>f gives the form

U=e3 Lnw-5 £ (5) i

forr>f.
Note that the disturbing potential is

SRl

—ealf
,\/{rz 2(a®/f)r cos 0+ (a?/f )2}’
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which is, in fact, the potential due to a charge — ea/f at the point B
(inside the sphere) on the z-axis between O and A such that
OB =a?|f. The relation OB.0A =a? identifies B as the inverse of A
with respect to the sphere.

Finally, we have obtained a potential which satisfies Laplace’s
equation, has the assigned value zero on the sphere, has a dis-
continuity of the same type as ¢/ 4P near the point 4, and vanishes
at infinity. It is therefore the unique potential which we sought.

IrrustrATION 2. T'o find the potential inside and outside a sphere,
of radius a, made of material of uniform dielectric constant K, when
introduced into a field which, in its absence, was uniform of strength F'.

The electrical principles are:

(i) the potential U remains continuous as it crosses the surface
of a dielectric;

(ii) the value of 4 Ka_[_f

(the negative sign being inserted merely to agree with the formula
—0U|[on for electric force in free space) remains continuous as it
crosses a boundary on which there is no fixed charge;

,P
P
rs
-~
a P
7
,70
. a2 L
\:JJ F
Fig. 152

(iii) the uniform strength F of the field in the absence of the
dielectric implies that the potential U is then of the form
U,= —Fz,

where the z-axis is taken in the direction of the field. (The value of
U, may be increased by a constant if desired, but that has no
essential effect on the problem.)

Thus, in the absence of the sphere the potential at P is

—Frcosf= — FrP(u).
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The total potential U in space will differ in algebraic form for points
P inside or outside the sphere. In either case, it must be the sum

of te f the t
rs 0TI TP 4,1 4 B r-040) B, ()

for integral values of n. But for points inside, terms B, r—n+1
cannot be present, for the value r =0 would give an ‘infinity’; and
for points outside, terms A, r™ cannot be present (except for the
given term — F'r) since the disturbance in potential due to the sphere
must vanish at infinity. If, then, we denote the potentials inside
and outside by the symbols U; and U, respectively, we have

U= 3 4,1°P, 1),
U= — FrB (i) + 3 B,V P, ).
Since the potential is continuous at r=a, we have the identity
5 4,0"P ()= ~ FaP () + 5 Bya-+V P, )
for all values of &; and, since — K ud is continuous (that is, since

on

—-K aa—f_] is continuous, the normal being the radius) at r=a,

K $n4,a"P,(u)= — FP(u)~ 3, (n+1) B,a~2+9 P, (1).
0 0

Equating coefficients of P,(x) in these identities, after multi-
plying the second throughout by a for convenience, we obtain the

equations A, ah= B, g~
End,a"= —(n+ 1)B,,a—<n+n} el
Aja= —Fa+ B,a?,
KA,a=—Fa—2B;a™
When n+ 1, the relations can be satisfied only when 4,=B, =0.
[With experience, this result may easily be foreseen and the formulae

taken at once in the form U; = Arcos 0, U,= — Frcos 0 + Br2cos6.]
When n=1, we have

ey M 3
4 _=3F o _(K-)aF

1=K+2l : e K+2
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Thus the potential assumes the form

3Frcos@
o K42 >
L= 3
U;“"—chosﬁ+(x 1)a®F cos 8

(K +2)r?

IurusTrATION 3. To find the potential due to a ring of radius a
charged with electricity to uniform density o. The electrical prin-
ciples have already been enunciated.

Fig. 153

We begin (in order to apply the ‘axis’ theorem enunciated on
p. 264) by determining the potential at a point on the axis distant
z from the centre of the ring. Since all points of the ring are distant
y/(¢*+22) from that point, the potential there is

2mao
J@+5)°
Thus Vica= 211‘0'(1 +§)_*
® (2k)! 22\
=200 8, s ~a)

k=0
_o (9 2 (2k)! a?\k
V”’““”’(z) et 2%(;01)2(“;%) ’
Hence, by the ‘axis’ theorem,

@ (2k)! r\ &
Vica=2m0 ’Eo ——2.‘5,,( k)l 7 ( - E) P, (cos ),

© (1) (2k) ] [a\ %+
V. a=21ra'k§o( 22,2 (k(!)”—) (g) Py (cos ).
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REVISION EXAMPLES XXV

1. Express Laplace’s equation V2U =0 in terms of spherical
polar coordinates. Show that, if U is of the form Ecos @, where R
is a function of r only, then

R=Ar+Br?,
where 4, B are constants.

2. Show that, in spherical polar coordinates, Laplace’s equation
V2U =0 has solutions U=rcosf and U=r—2cos@.

Fit these two solutions together to give a solution satisfying the
following conditions: (i) U0 as r—>o0; (ii) U is finite at r=0;
(iii) U is continuous for all values of r; (iv) 0Uor is continuous for
all values of r except r=a; (v) aU[or increases discontinuously by
an amount kcos@ as r increases through the value a, where k
is constant.

[Suggest, if you can, a physical interpretation of the solution.]

3. The density of charge o at the point (a,0, ¢) on a spherical
conductor of radius @ placed in a certain electric field is given to
be o=k, P,(1)+k, Py(p), where p=cosf. The force acting on the
conductor is known to be of magnitude 2702 per unit area, acting
outwardly along the radius. Prove that the resultant force is
32m2a®k, kyf15.

1 1
4. Evaluate (i) f " B@ds, (i J‘ | aP @)l

5. Prove that, if m, n are positive integers, both even or both odd,
d n=m, th
MERZIL BN 1 4B, (@) dP(x

- = dx)dx— m(m +1).

1
6. Evaluate J‘ 2(1 —a2) P, () Pp,(x) da.
-1

7. If P,(x) satisfies Legendre’s equation
(1—22) P —22P, +n(n+1) P, =

show that V= ﬁi”'

(1=2) V" =2(m+1)zV'+{n(®n+1)—m(m+1)} V=0,

satisfies the equation

REVISION EXAMPLES XXV

dmF,

and that W=(1 —a:z)l‘m dx’"ﬂ

satisfies m2

(1—=2?) W' =22 W' + [n(n-{— 1)—m} W=0.
. ,dP, (cosd)
gin § 2o\

H
ence show that d(cos0)

is a solution of
Ll
di?
8. Prove that

+d££9 (Weotl)+n(n+1) W=0.

f ; 2P, () d = 2+ ()% (2 + 1)L,

9. Prove that

xP, (@) =nF, () + (2n—3) P,_s(x) + (2n—T) B,_4() +....

10. Prove that
(2% —1) P, (x) =naF,(x) - nP,_;(z).
11. Evaluate fi . (2% —1) B, ,4(x) P, (x) da.
12. Prove that, if f(x) is a polynomial of degree n,
fe)=3 . er+ 0 2@ 020
r=0 e

Prove that, if » is a positive integer,
(i) Phis(@)—Py(@)=(2n+1) By(2),
(i) (n+1) B, p(2) +nb, 4(2) = (2n+ 1) 2P, (2),
i) (n+1) [ Pu@)do=Poy(0).
Prove that, if 0 <2 <1,

% (“5) Pusl® Prrca@) =1.

n=1
13. Evaluate
14. Calculate

[P [ B@)P@ B

1
J. 2P () da,
-1

271
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1
15. Assuming the formula J‘ P2dx=2/(2n+1), or otherwise,
=1

prove that dP
—2=2n-1)F,_;+(2n—5) P, 3+ ...,

dx
the series terminating with 3P, or P,
16. Prove that
1 dP, (x)\? 2n(n+1)
—z2) (Z2n2 -
f.1(1 ”)( dz )d‘” 2+l "

17. Show that the integral
1
J' 2P, (@) de
-1

is zero unless m > n and m — n is an even integer 2%, and that its value

i Wien 2(2k+n) (2k+n—1)... 2k+1)
@k+2n+ 1) (@k+2n—1)... @k+1)"

[The recurrence formula

flxak(l_zz)qu=L

1
[[eta-ayda @>,
0
may be assumed.]
18. The functions F, (z) are defined by
(i) F,(z) is a polynomial of degree n,
(i) F,(1)=1,
1 :
i) [ F) B@)da=0 (nn)
=1

Prove, by induction or otherwise, that F, (x)= P, ().
Hence, using only the properties (i), (ii), (iii), construct Py(x),
Pi(z), Py(x).

ANSWERS TO EXAMPLES

CHAPTER XIX

Ezxamples I:

l. y=z+328+A. 2. y=tan(z+A4).

3. siny=Asinz. 4, y=Aesti® 1,
5. 3y=(1+z)*-1 6. secy=x—2.

7. yl=(1+z)e®+1—2eL 8. (1+2)(l+y)=27.

Examples 11:
1. log(x®+y?) =2tan! (y/z)+ 4.

273

2. log{(+ 10+ (y+ 1)) =2tan {(y+1)/(z+ 1)} + 4.

3. logy=§+A. 4. logx=:/2§tan—1(2?jT+a:n)+A.

5. (z+2y?) (x—2y2)°=A.

6. Iog(y“+2xy’+3a:’)=2J2ba.n"(y—:—;;_;)+A.

7. a+tany=A(z—tany).

8. log(e?*+e%)+4tan—! (e¥—) = A.

Eaxamples I11:

1. oiy=A4A. 2. ay+y=A.

3. coszsinhy=A. 4. xsiny+ycosy=Ae=,

5. ay(a?—y?)=A. 6. 2xy+ 3%y —yP=A4.
REVISION EXAMPLES XV

1. ay?-2y=A4A. 2. 223+ 3y +yP=A4A.

3. az?®+ 2hay +by? + 292+ 2fy + A =0.

4 (z+y®)(z—y2—-2)"=A. b. @ +y2+3(xy—2z+y)=A4.

8. (x—y—12=A(3x—4y—6). 7. x+y=Aev=,

8. z+y=Ae 2evlatyr, 9. yi-z—2=Aeh",

10.

(y— a2 —A) (y— Ae=)=0.

18 MIV
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11. (y—Adec0s=z) (y— Ae—sinz) =0,

12. y=tanhuz. 13. kv=g(1 — e—2x),

14, y=2(4 —=). 15. y=1/(4 —z—logz).

16. ay(x—y)=A. 17, (y—x—12=A(z+y—1)>3

18. 2sinhy=(e—e),/(2®+1). 19. a=e @+,

20. x—ycosx=A.

21. 2 tan"l{(afié;—?ﬁ—‘/g] =log {(3z + 5)2+2(3y — 2)%} + 4.

22. ysinz+}sin2z—JLsindr—jxr=A.

23. (z—y):=Axy 24. ycosx=1+xeT—¢2,

25. Txy*=9(x+2y).

26. log/(2®+ 2y +y%)+ 3~ tan—1{(2y + »)/z,/3} = 4.

27, ®—38zy?=cd 28. (x+y)l=2x—y)+ 4.

29. 3 —3xy=c3.

30. (i) 2322 +9°) (2*—by®) =4, (ii) r=A4(1—cosb).

CHAPTER XX

Ezamples I:

I i 2. 0.

3. dasin2x—16cos 2. 4. 3cosz—2cosz.

5. -1 6. 4ad.

7. (y"+2y +y)e?= 8. y"e.

9. a%" +6ay’ + 6y. 10, e=.

11. —sin®z—3cos?xsinz. 12. 46574 Te3% 4 3o,
REVISION EXAMPLES XVI

1. y=cos’x(A+sinz—isindz). 2. 2(@+1)y=2at—6a2%+ 42>

3. y= (g)i{log (x+1)+4}. 4 y=—eTIBZ | Jer—wlogz,

5. 24a%ye*=3(1—2x+22%) e —4a®+ A4,

ANSWERS TO EXAMPLES

ANSWERS TO EXAMPLES 275
6. 2z+1)y=w(x+1)(x+3)+4A(1+2).
7. 2ylogz=(logx)*+A. 8. ysinz=4}r—1sin2z+ 4.
9. y=4=x+1)3(z2+22+3). 10. y=13sin*ztanz+ Csecz.
11, 2(z+2)y=(z+1){(x+1)*—2log (z+1)+4}.
12. y(2—cosz)=(2+cosx){A4 —log(2+cosx)}.
13. 2y=(x+A)atsinz. 14. y=2—1+A4(z—1)e "
15. y=1—(z+4)/(secz+tanz).
16. (x—1Py=(x+1){2*—6z+8log(z+1)+4}.
17. y=2z(logz+ 4). 18. ay=sinz—zcosz—7.
19. y=2sinz+ de*cosz.
20. 2%y =(x—1){}2?+2x+3log(z—1)—(x—1)"1+ 4}
21, y=(sinlz)®+ Asin-lz+B. 22. y=}a*—z+Alogz+B.
23. y=Ba?—A(1+2).
24, y=(142®) (A cosz+ Bsinz+zsinz).
25. y=Ax+ Bx®—zcosz.
26. yJr=A+B(1-2)*"; yJr=A4+Blog(l-z).
27. y=A(x*+2z)+Be*+3.
28, y=Ae=+ B(a®—2+2)+2%— 322+ 626,
29, y=1+xslogm+BxS+Ax8fx—«e—!r'dx.
30. ﬁxy=sina:[xs+B+A :n’coseo’a:da:}.
3l. y=Ax+ Bcosx+ }xcos’z—sinz cosz.
32. azy=msinaz. 33. y?=2a%logz+ A4).
34, B=A4,n=1. y=A(x+z)+C{(z+a)tan1z—1}+2?
35. 2zysinz=2%+ Az + B.
36. y=at+ Aa®+ Bxs,
87 gx—Q+3Q4(2Q)+2PQ=O; y=Aei=* 4 Be?',
38. y=4{z+(4dz+B)e*,

18-2

——
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39.

40.
41.
42,
43.

ANSWERS TO EXAMPLES
{A+Ba'-% 4 a2/(4a + 2)} en=; (4 + Blog = + }a?) ez,
when a=4, (4+B2®+}2?logz)en, when a= -
y=(4+Be=)[a? 422,
Y(1+sinz)=Afsinz + 2log (1 —sinz)} + B.
y=Acosz+ Btanz + }cosz tan®z,

(+1)y=A + Ba™+l 4 27+2(n 4 2),

CHAPTER XXI

Examples I:

1. y=Ae*+ Be?=,
. y=A cos 3z + Bsin 3x.
. Yy=(Az+ B)cosz+ (Cx + D)sin z.

S o oW

~J

10.

S R s

=

10.
11.
12,
13.

. y=(4 cos 4z + Bsin 42) ¢2.

2. y=4e ¥4 Bete,

Y= (4 cos 3z + Bsin 3z) e—4=,

. Y= (A oosh—xg—5+Bainth‘/5) e+

8. y=(4+Bz+Cx%e.
Y= (4 + Bx+ Ca?) e—2=,
y=(4 cosz + Bsinx)e-5=,

REVISION EXAMPLES XVII
40y = e~2%(3 cos 3x — e sin 3x) + sin 3z — 3 cos 3z.
y=Ae*+ Be 24 (Ja®—x)e=2,
20y =152 — 1632 4 g2z,
y=(Acosz+Bsinz+1)e2<,
y=e‘*"(oos%q+.\/38in%3) —cos z.
y=1—§cosx—}cos 2.

- y=(4 cosz + Bsinx)e—2* + L (sin 22— 8 cos 2z).

y=(4+ Bx)e 2 4 } 4 }sin 2.

144y =400e—2% — 261e3= 4+ (122 + 5) ez,
Y= (A4 cosz + Bsinz) e 4 2 — Je2=,
Y=(2+3z)e 34 32— 2.

y=sinx +sin 2z + cos 2z + 2z + 1.

4. y=Ae" + Be " xenz/(2n).

14,
15.
16.
17.
18.
19.
20.
21.
22,
24,

25.
27,
29,
30.
31.
33.
34.
35.
36.
38.
39.
40.
41,
42,
43.
44,
45.
46,
417,
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y=Ae¥* + Be¥r _ ez,
y=(sinz+ 2 cosz) e ® + (sinx — 2 cos ).
y= (A4 — }x)sinhz + (B + }a?) cosh .
y=(4 + Bz —sinx) 2%,
50y = 53e~3% + 1552~ + 4 sinx — 3 cos 2.
y=e X4 (xz—1)e =
z=(a+fn"?) cosnt+ }(1*—2n2)f.
z=ae M {cos /(n? —k2) ¢+ k(n®— k2)~¥sin /(n? — k) 8}
y=cosha—1, 23. y=e¢*(A +Bx+ }2®+ } cos 2z).

y=e2*(A4 cos z + Bsin z) + t35(252% + 40z + 22) ,
+ g5(cos 2z — 8 sin 2x).

26. y=13}(sinx—zcosz).
28. y=e*—1.

2y=(1+2)e*—cosx.
y=(2—x)e*+e*,
y=Ae* 4 Beosz+Csinz.
13z =(Ae*—8)cos4dt+ (Be*+1)sin 44,

y=(1—x)e2, 32. 27y=(A+Bx)e 34 32—2.
10y=Ae3*+ Be®+sinz— 2 cosz.

40y = (Ae~2*+ 1) sin 2z + (Be~2* — 2) cos 22 + 5.

4y =e*(A cosz,/2 + Bsinz,/2) + cos z +sin z.

24y =el*(dz+B+2%).  37. y=Ae¥+Be¥ +sinz.
y=(A4—2z)e 24 Be® 4 L%,

54y=A + Be™3% — 2z + 32 + 62°.

y=(4 + Bz) e 2= 4 e,

y = 2¢3% — 2¢¥ gin 4z, where k=3(}m —z).

y=(4 +3x)sinz+ Beosz.

10y = Ae~2®+ Be 3¢ — ¢~2%(cos 22 + 2 sin 2x).

y=(4 + Bz —32°) sinz + (M + Nz — }2?) cos x + {5 cos 2z + }.
y=(A+Bx+iz®)e®+z-2,

y=A + Bsin ax + C cos ax — x%a~2 cos ax + 3za~?sin az.

y=Ae* + Be® + Ce™* — gj5e%(102* + ) .
—sige~%%(22 cos z — Tsin z).
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48. y=Asin 2z + B cos 22 + 22sin 22. 72. y=Ax+ B cos (\/3logz +a)+a2.

49. y=Ae*+ (B—32)e* + (C+3) e+ 62 +3. 3. 2=A+Bt+Ct7"+}tlogt, y=—3A—Bt+70t""+ it —}tlogt.
50. (i) z=2e"+6—2, y=et+2%—1; (i) y(1)=e1+1. L s i Bl s i

51 08z=206¥— 206 1 251¥, y=Acos (o +logt) + Ct+ 22— itlogt.

98y = — 49e—2 — 11¢% 4 14fc% + 60¢-¥, Lo 0 S s
52. z=}cost\3+§/3sint3+5—}t+ 12,

Y= —Fcosty3—3/3sint,/3+1+12+}sint + 1 cost, CHATTRR X313

z={cost\3—3/3sinty/3+§+ 3t + }2+ L sint— § cost. E”‘””P‘“OI-'

53. x=e"(6—32—6t+1), y=e¥(—2°+32+2—1).
54. z=A4e¥+ Be?+t, y=—Ae¥+2Bet—1.
55. 13x=4e®+9e ¥, 13y=13¢e'—e¥—12¥,

L y={fo-f+jem,
b+l —et) e,

60, dfom g QAL gutinat o bein ok, 3. a’y=1—(1+at)e ", 4, y=e*{xlogz—2z+1}.
Y=Y, 08 at —xysin at + ¢ cos at. 5. y=acosz+bsinz+ xsin 2+ cos zlog (cos ).
57. x=(1—1)cost, y=3sint+ 14¢cost—3(2sin¢. 6. N=uT3/{(A+2)(A+3)}.
58. 2x=3i(c'—e), 2y=3(3+1)e'—(1—3t)e, - (32+w2L2)I/a={Lme—“fL+Rsinwt—Lwcoswt,
59. y=e*—fx, 2z2=-2¢*—1 ) oRnizw) RS,
60. z=44sin (t,/2+a)— Bsin (t,/5+ 8) -},
y=Bsin (£,/6 + f)— A sin (£/2 + @) + 3. CHAPTER XXIII
6l. x=2sinh¢{—2cosht, y= —2sinh{— 2t cosht— ¥, Ezxamples 1:
62. z=4 cosh (¢ +a)— Bsin (t/3+ B) — s sinh ¢ — } sint/3 B St 2. Yes. 3. No.
+ 3t cosht— /3t cos /3. 4. Yes. 5. Yes. 6. No.
y=Acosh(t+a)+3Bsin(t.‘/3+ﬂ)+%ginh¢_&sin¢‘/3 7. Yes. 8. Yes. 9. Yes,
+3tcosht+}y/3¢ costy3. 10. No. 1. Yes. 12. No.
63. z=4de'+11e"+2t—-8, y=de'—e"43t—15, 13. Yes. 14. No. 15. Yes.
64. :c=Acos.-§(\/5+l)(t+fz)+Bcos.§(\/5—1)(t+ﬂ)+§e‘, e
e it A Lk Yis. 2. Yes, 3. No.
65. x=(A+ Pt)cost—(B+Qt)sint— }#2sint,
y=(B-+Qt) cost + (4 + Pi)sint + }t2cost, . You 8. Mo, 6. Yes.
66. y=Asinlogz+ Beoslogz + }. 7. No. 8. No. 9. Yes.
67. y=Aa®+ Bx+}a®. 68. y=Aa2®+ Ba® 4 Ja. 10. No. 11. Yes. 12. Yes.
69. y=Az3+ Br+ja-?(logx)* - 2loga} + 21. 13. Yes. 14. Yes, 15. No.

70. y=(A2V®+ Ba—v3)2® 428, 71. y=Aa®+ Bx—zcosz. 16. Yes.
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REVISION EXAMPLES XVIII

(i) 1-27>1; (i) dn(n+1)(2n+1)->oo.

2. H{1-(-9"}~1

10.
1.

12,

13.

15,
20.

22,
26.
29.
32.
37.

(i) dn(n+1)—o00; (ii) 1—(n+1)1->1. 4. 3.
(i) 3_7:._1‘*%; (i) dn(n+1)(n+2)->c0.
Not. (u,— +3).

25" 1 1 1 1 25
E_Z(n+l+n+2+n+3+n+4)+4_8'

@) 1—(n+1)1>1; (i) fn(+1) (ot 2)(3n+17).

4sin A/(6—4cos 4).

C=0(0+km); S=cotf when O+km, S=0 when 0= kn.
3 1 b 3

it 2t T4

i""Sn<

1
1,000,000 when n>710 approx.

The argument never holds. 19. All -0.

(i), (ii), (iv) Not sufficient by 1/n; (iii), (v) sufficient, but not
necessary by 1/n?.

Converges ifa< —1.

(i) Diverges; (ii) converges if k> 2, 28. 2,

Limit 2ifu,<3; 3ifu,=3.
Converges ¢ > 0. 36. log,8.

log, 3. 38. Converges.
REVISION EXAMPLES XIX

No. (The limit is discontinuous at =1.)
Not uniform—sum discontinuous at origin.

8. p<2. 9. Uniform,

10.
14,

Uniform for p < . 12. (i) p<1, (i) p<?2.
8(0)=1, s()=(1+z)'in0<z<l, s(1)=1.
Uniform in 0<a<1.

14,
15.
16.
18.
20.
22,

12.
14.
28.

i
-8
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REVISION EXAMPLES XX

2. 2. 5.4 4 1.
8 7. & 8. oo.
10. 1. 11. 0. 12. 1e.
When both |z|>}and |[2—-3|>1.
(i) Necessary butnotsufficient; (i) not necessary, but sufficient.
Converges |z | < 1. 17. Converges |z|<1.
(i) 0<z<2, (i) |z|<1l. 19. 0<|z|<42.
All values, 21. Converges |z|<1/a.
3(2+3x—2a®)log (1 +2)— }(2— 3z +23)log (1 —z) — $= + 5a3.

REVISION EXAMPLES XXI
$m.
m(a+b)1; dmlog(1+d-1), =wlog2.
¢'(¢) = 'm; integral = .
— 2(sin—le)2.
a»+e-1 B(p, g)/{b1(b— a)?}.

21. {n{l1-logi(e+1)}

CHAPTER XXVII

Eaxamples I:

L
2.

3.

4,

General Bessel (p. 177) with n=3.

A{l— ('g)s+ (%)’— ...}+B{|:1 -'(g)’+ ] logz+ (;)2
—(2‘”—1)2(1+§)+(2 -"‘:_6)’(1 +§+§)-...}.

y = Au+ B(}ulogz+v), where
a* - o
321" (32-1)(5%°—1)

u=x—

.ery and

1 = '
s o iz + Ya,2*+1, with
1

“ (- AT
=BT (55 -1)... [@n+ 1P=1] {1+3=—1+52-1+”‘}'

3 __E el = | | i Nl )
Ax (1 1-{" ] ) +B:L‘ 1 !+ ok
EA.:E—'}BIDGE-{-B:E icosa:.
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REVISION EXAMPLES XXII

(= 1)n-180g"
" n!(3n—2)(3n—>5)(3n—8)"

. The two series are

xc{1+ (20 +

2. See p. 177.

(c—3)(c—1)
o)) (@t 2
(c—3)(c—1)(c+1)
(2c+1) (2c+5) (2c+9)
0, —1, convergent for | x| < 1//2.

( x3)3+...}

with ¢ =

. The two series are a

w‘{l+ 8 g . +]
c+1 (c+1)(c+2) (c+1)(c+2)(c+3)

with ¢=0, }.

. Za,xtis l—x;
: m ot o
T - —4—4+—
Zb,z"is 1 (1.3+3.5+5_7+...).

. The two series are

c—3
(R 47
:r:"[ c+3(2m )+

(e=1)(c—3)
(c+5)(c+3)
(e+1)(c—1)(c—3)
~reTalen ]
with ¢=0, —1, convergent for |z | <./2.

(22%)

. The series is 2(1+2zx+32%+...)=2(1—x)"2%, convergent for
|z| < 1.
The second solution is (zlogz +1)/(z—1)%

. (i) The two series are
a:"{l+ . + @t 43 }
(c+1)(c+k) (c+1)(c+2)(c+k)(c+k+1)
with ¢=0 or 1—£.

» y=Au+B{ulogm—2§:3 (Aﬁm(l+§+...+%)},
@ gz

where %= % W.
General solution when k= 1} is 4 cosh (2,/z) + Bsinh (2,/z).

10.

11.

12.

13.

ANSWERS TO EXAMPLES 283

For arbitrary k, y = 4w + By, where
2

L L
kT E(k+1)
22
v=a:1“"(1+a:+§~[+...)Ee’xl""-
- A, 1.3
y= (A/a:)+Bl 20— +1+}x+ 2638° L e
3.4 3.4.5
2
y=A( +6x+12)+B{"5+ 6"t 1267° T123.678° }

o S ot
- A( = .)+B(:c3 o )

=4 cos (ms) +Bsm (%)

14. The two series are

15,

16.

g

18.

(c+1)(c+2)
with ¢=0, 1.
For ¢=0, polynomial when A =4—(26)?; for ¢=1, polynomial
when A =4— (26 + 1), where, in each case, # is an integer.

(A—4)+(c—2)?
"’c{l_ T ) e +2) (c+3) o+ 4)

[(A—4)+(c—2)*][(A- 4)+c‘]z4 ]

2
Particular solution is u= (z®—4x+2)e* [E %2 (22 e“’)] . The
general solution is Au + Bv, where

vsulog,x+§(—)“anx",
0

givenby
_3.4...(n+2) Bural 1
a,‘_ (n))? {%+"'+n_+2 2(1+;+...+n)}.
y=l+z+a?+a®+....
[The complete solution is A(1—z)~1+ B(1-2z)"1logz.]
y=A(1+2+ 2 +§2°) + B(1 - §2)
L 10(=T) 4, 10.12(=T)(—
B e 1 5!

10.12.14(—-7)(—5)(— 3)

* 7

5)35
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20. y=Au+ B(ulogz+ 2xv), where
% =x+2224. . +nn+

n+1 1 1
o 2( n )(n+1”?z)$n

Radii of convergence 1.

REVISION EXAMPLES XXIII

2n sin 7t
n=-1_""" 1 -0 sl =
=) - ‘a)smm,o,smt(:c 2m).
sinh 7 (=)™ cos nx
R |:+21“ 1+n?
12 %
— s - 41 1
5 Zl+u2[1+( )"+ cosh 7] sin nz.
sm3a: sin 5z
3. —|sinz 5 |
fe)= 22221 2 (27 <z <)
=2—@ (Bz<m<3m).
(e

5. 1— écos:r+22

(=)127 n
6. ?[u+m{(—l) —

()“

cosnz. (x—2m)sinz.

1}] sinnx. —(27—2x)2,

: A «}fn’+4z CO8 N,
cos3x cosbx
8. (a) ,‘,{"0“'*'“5?‘"“5—2*‘"-}3 m; m+ 2.

(b) 2{sin2x+ 4sindx+ }sinbx+...}; 0; —7 —2a.
2 3
9. 5'!'?
x {cosz—} cos 22+ } cos 4w — } cos 52+ § cos Te — } cos Sz +...};
1, 0; sum #/3,/3; }.

11 4 cosz+0033z+eos5a:
. «}n‘—k" 32 5 ;
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0loe 208 o Lo x 1L .
12. }a®— (a/ﬂ)[ +35008——+55008——+... ; 32,
13. coskx; cosk (27 —x).
14. X (2/n)cosna sinnz.
156. (- )Ml(z%’—%g)smnx (z— 2km)3.

16, gt z‘ y

COB N, 17. $n%+ E:( i CO8 NZ.

20. gz_-f;-' i

22. 3 {S’:,:;e i e ):l

In limit, zis 4 for 0<z <1 and —} for —1 <2 <0, The series is

} sin nma.

2[ . sin 3z7x sin Smx }
—(sin7x + =,
T 3 b

CHAPTER XXIX
Ezxamples I:
4. V=Alogp+ B, where p is distance from the line.

REVISION EXAMPLES XXIV
1. f(x)=a cosec%z am%n (%’:t:integral multiple of ?) .

0% 0%
2. a—xzf-‘-LO‘aiu

ket kﬂ' . kmx Al . 3mct . 3mx
4‘. y E(POOB +Q8m SmT, y—3——msm—7—m l :

5 S(Sm +sm3a:+am52:
. ﬂ'l x 33 N
8(. gin 3z cos 3¢t sin 52 cos 5ct
- sinz cosct + 38 + 5 T (A
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: 1%‘t{e—‘“’cos:n—}e‘""”coa3:1:+§e"*'5""'c;osti:::—...}.
8. fe~sinmx— te~3"gin 37z,

9. U= «}x+‘/ smh(m,/2)e”"+"/8 sin (z/2) e~®,

10. ;{c050—§00330+§00850—...}.

_4p, . kmr
e e 5T
6a/3(. wx 1 sin @ 1. T2 1 . 1ime
11. sl = AR oL
P [smaa pa e RNt oy
where b, —ﬂsinn—"co o
"t g g
92—z in (9a, 10a); —a in (10a, 11a), x—12a in (1la, 12a).
. mmx  nmcek
y=Eb,,sm¥cos-3? (b, as before).

REVISION EXAMPLES XXV
2. U.,=—3}(ka®/r*) cos, U, ,=—3}krcosf.
[Sphere with surface density (—k/47) cos8.]
4. (i) 0 when n> 0, 2 when n=0;
(ii) 0 when n>1, £ when n=1, 0 when n=0.

6. I=0unless n=m—1 orm=n—1. For the former,

2m(m? — 1)
5 S ami-1
P 2n(n+1) 13 (n+2)!
" (2n+1)(2n+3)° " 1.3.5.....(2n+3)°
14, 2(n+1) 3n(n+1)

(2n+1)(2n+3)" (2n—1)(2n+1)(2n+3)
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INDEX

Alternating series, 91
Auxiliary equation and roots, 32
‘Axis’ theorem, 264

Bessel equation, 177, 237
Bessel functions, 238
Beta functions, 153
‘Bounding’ test, 82

Cauchy, 85, 128
Coefficients, equating, 131
Comparison test, 83
Complementary function, 16, 33
complex roots, 36, 67
equal roots, 34, 68
Conjugate functions for solutions of
Laplace, 243
Continuity, 109
Convergence, 78
absolute, 88
general principle, 81
power series, 129
radius and circle of, 126-7
tests, see Tosts for convergence
uniform, 110

D’Alembert, 84, 128

Dielectrie, 267

Differential equations; see separate
items

Dirichlet mtegralﬂ, 155

Electricity, applications to, 263

Euler constant y, 95

Euler linear differential equation,
52

Factorial function, 151
Fourier series, chapter xxviu, 186
coofficients, 192
convergence, 202
definition, 193
half interval, 198
period, 191
Functions, odd and even, 196
Funections as integrals
differentiation, 146
fixed limits, 139
infinite integrals, 143
integration, 145

uniformity, 144; test, 147
variable limits, 141
Functions as series
differentiation, 117, 129
integration, 115, 129
power, chapter xxv, 125

Gamma funection, 151
Geometrical interpretation of differ-
ential equation, 3

Homogeneous equation, 5
Hypergeometric serios, 174; see also
163, 166, 170, 172

Integrating factor, 19

Laplace equation, chapter xx1x, 219;
xxx, 231
axial symmetry, 249
eylindrical coordinates, 237
heat conduction, 231, 239
integral expressions for Legendre
functions, 256
plane polars, 232
spherical polars, 235
solution as function of x4, 241; by
conjugate functions, 243
transformation, 226
wave in plane, 233, 241
wave with spherical symmetry,
244
Legendre equation, 174, 179, 2356
applications, 263
associated equation, 237
expansion of 4/(1— 2ur+-r%), 251
expansion of funetions, 263
integral formulae, 261
Laplace integrals, 256
orthogonality relations, 261
polynomials, 255
recurrence formulae, 259
Limits, 78
Linear dependence, 14
Linear equation
first order, 18, 61
second order, 21, 62
with constant coefficients, chapters
xx1, 31 and xxu1, 61
Log (1+z), 97
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Mean value theorem for integrals, 138

Operator
factorization of, 24
Laplace’s, 219
linear, 12; for constant coefficients,
31
Orthogonality relations (Legendre func-
tions), 261
Orthogonal systems, 223
Orthogonal trajectories, 8

Particular integral, 17
rule for ‘normal’ cases, 39
Potential problems, 263-9

r-! as solution of Laplace’s equation,
250

Raabe, 87

Remainder series, 78

Riceati equation, 24

Rodrigues, 256

Separable variables, 4
Sequences and series
alternating, 91
change in order of terms, 92
descending powers, 179

INDEX

partial sums, 77
power sories, chapter xxv, 125; sum
of, 131; product of, 132
real positive terms, 82
Zn-s, 96
solution of equations, chapter xxvir,
162
Simultaneous differential equations, 48
Spherical harmonies, chapter xxx1, 249

Tests for convergence

Cauchy, 85

D’Alembert, 84

integral, 93

Raabe, 87

uniformity, 118, 147

Weierstrass's M test, 119
Transformation, geometry of, 220
Trigonometrical series, 189; period of,

191

Uniqueness, theorem of, 263

Variation of parameters, 19
Vibrating string, 186

Weierstrass, 119, 147
Wronskian, 15



SOME PRESS OPINIONS OF
THE EARLIER VOLUMES

These books can be wholeheartedly recommended for the
mathematically abler pupil. They are written in the attrac-
tively informal style which we have come to associate with
Dr Maxwell’s school text-books. The remaining volume will
be awaited with interest. The Mathematical Gazette

Volume 1

The present volume is the first in a series written by a
university teacher who clearly has in mind those who are
subsequently to become his own pupils. . .the book could
hardly be bettered. It is cast in the elegant and now tradi-
tional mould of mathematical text-books from the Cam-
bridge University Press. It gets to grips immediately and
clearly with fundamentals. It does not shirk difficulties, nor
does it profess rigour where such is beyond the scope of the
book at this stage. The Times Educational Supplement

Volume IT

Dr Maxwell, using his long experience of university teach-
ing. . .has embarked on the writing of a series to cover the
needs of the mathematical specialist from his last year at
school up to degree standard....No potential scholarship
winner will be wise to omit these first two volumes from his
reading; the treatment is lucid, challenging and invigorating
throughout. Journal of the A.M.A.

Volume III

The work is admirable both in conception and execution;
the rigour is never pedantic and the author has a practical
appreciation that early work cannot be treated with the
strictness appropriate to more mature judgment....This
third volume is particularly valuable, for it treats a subject
neglected by existing text-books—the theory of functions of
several variables. The whole work is to be highly com-
mended.. . . The series is attractively presented and we look
forward to the final volume.... Journal of Education
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