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PREFACE.

THE present volume is deveted mainly to an investiga-
tion of the properties of the remarkable expressions which
were first introduced to the notice of mathematicians by
Legendre, and are now known as Laplace’s Coefficients and
Functions. Some account ef these expressions is given in
various works, but their importance in modern researches
suggests the advantage of a more cemplete and systematic
development of them than has hitherto appeared in England.
The work new published will it is hoped be found suffi-
ciently elementary for those who are commencing the
subject, and at the same time adequate in extent to the
wants of the advanced student.

The beok is composed of four parts. The first part
consists of twelve Chapters, in which the expressions are con-

" sidered as fanctions of only a single variable; in this form

they were first introduced by Legendre, and it is cenvenient
to denete them, thus restrieted, by his name. The second
part eonsists of eight Chapters, in which the expressions are
considered as functions of two variables; this is the form in
which they present themselves in the writings of Laplace.
The third part consists of nine Chapters which treat of
‘Lamé’s Functions; these may be regarded as an extension
of Laplace’s Functions. The fourth part consists of seven
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Chapters which treat of Bessel's Functions; these are not
connected with the main subject of the book, but as they
are becoming very prominent in the applications of mathe-
matics to physics it may be convenient to find an exposition
of them here.

The demonstrations which are adopted have been care-
fully chosen so as to bring under the attention of students
some of the most instructive processes of modern analysis.
Thus the work may be regarded both as an account of the
Functions to which it is specially devoted, and also as a
continuation of the two volumes already published on the
Differential and Integral Calculus respectively; the three
together form a connected treatise on the higher department
of pure mathematics. '

In conducting the work through the press, I have had
the valuable assistance of the Rev. J. Sephton, M.A., Head
Master of the Liverpool Institute, formerly Fellow of St
John’s College, Cambridge. :

I. TODHUNTER.

St JoEN'8s COLLEGE,
November, 1875.
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CHAPTER 1.

INTRODUCTION.

1. THE mathematical expressions to which the present
volume is mainly devoted were first introduced by Legendre
in some researches relating to the Figure of the Earth, and
were much cultivated by himself and by Laplace in their in-
vestigations of this important problem of Physical Astronomy.
In the History of the Mathematical Theories of Attraction
and of the Figure of the Earth will be found an account of
the origin and early progress of the branch of analysis which
we are now about to expound.

2. Suppose that the expression (1—2az +a")} is ex-
pa.nded in a series-of ascending powers of a; the coefficient
of a* will be a function of « which we shall denot.e by P, (),
and shall call Legendre's Coefficient of the n* order. The
term Laplace’s Coefficient is generally used when for z we
substitute the value cos@ cos 6, + sin @ sin 6, cos (¢ — ¢,),
where we regard § and ¢ as varlables and 6, and ¢, as con-
stants; so that Laplace’s Coefficient is a function of two
mdependent variables. But the term Laplace’s Coefficient
is sometimes employed even for what we propose to call
Legendre’s Coefficient.

3. Other names have also been suggested for the cele-
brated expressions which we are about to discuss: thus the
Germans call them Kugelfunctionen, and in France the
corresponding name fonctions sphériques has been used ; Sir
William Thomson and Professor Tait call them sphmcal
harmonics. The name Laplace's Functions appears to have
been first introduced by the late Dr Whewell, and has been
generally adopted in England. In analogy with this, other

T. . _ 1



2 INTRODUCTION.

functions which we shall hereafter notice are associated with
the names of eminent mathematicians, as Lamé’s Functions,
and Bessel's Functions.

The relation between Laplace’s Coefficients and Laplace’s
Functions will be explained hereafter.

4. The researches of Legendre and Laplace were ori-
ginally published in the volumes of the Paris Academy of
Sciences; those of Legendre are reproduced with extended
generality in his Exercices de Calcul Intégral, and those of

Laplace are reproduced in his Mécanique Céleste. In more .

recent times other mathematicians have in various memoirs
contributed improvements and extensions; and moreover
the following separate works on the subject have agpea.red:

Recherches sur les Fonctions de Legendre par N. C. Schmit.
...Bruxelles, 1858. This consists of 80 octavo pages, besides
the Title and Preface ; on pages 72...75 4s a list of memoirs
on the subject. :

Die Theorie der Kugelfunktionen. Von D~ Georg Sidler.
Bern, 1861. This consists of 71 quarto pages, and forms a
good elementary treatise on the subject ; it contains several
references to the original memoirs.

Handbuch der Kugelfunctionen von D", E. Heine,... Berlin,
1861. This consists of 382 large octavo pages, besides the
Title and Preface ; it is a very elaborate work with abundant
references to the original memoirs, and should be studied by
those who wish to devote special attention to this branch of
analysis. It discusses very fully the results which follow
from the substitution of imaginary values for the variables
in the expressions; but this development is somewhat
abstruse, and belongs rather to the pure analyst, than to the
cultivator of mathematical physics, for whom the subject in
its simpler form is specially valuable.

5. Although I do not profess to have made that close
investigation into the history of this subject, beyond its
earlier stages, which I have prosecuted with respect to some
other parts of mathematical science, yet I have incidentally
paid some attention to it. Omne important memoir has been
overlooked by the three writers mentioned in Art. 4; it is
that by Rodrigues to which 1 drew attention in the History
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of the Mathematical Theories of Attraction, Arts. 1176...1193.
Three expansions which I shall give in Arts. 19, 21, and 23
are ascribed by Heine in his pages 8 and 15 to Dirichlet;
they had however previously appeared in Murphy’s Treatise
on Electricity, Cambridge, 1833, in the more general forms
from which I have deduced them.

6. As we have said in Art. 2, if (1 — 2ax + a”)™} be ex-
panded in a series of ascending powers of a, the coefficient of
a” is a function of z which is called Legendre's Coecﬁckut of
the n® order : we may call it briefly Legendre's n* Coefficient.
We shall denote it by P, (z), but for the sake of simplicity
we shall often omit the x, and thus use merely P, I!Prench
writers very commonly use X, for the same thing. We pro-
ceed to develope P, explicitly.

7. Wehave (1 —2ax+a’)}={1—a(2r—a)}};
expand by the Binomial Theorem ; thus we obtain
1 1.3 1.3.5
1 +§ a(2:v— d) +ﬂ o (% - a). + 2T6 a® (2&7—&)' +...

1.3..(2n—1) , .
——2—'—1('—“W—)a (2&?—“) +....

Suppose the various powers of 2z — a to be expanded ; and
then pick out of each term the part which involves a", he-
ginning with the last term which is here expressed. Thus
we obtain

P = 1. 3.5...(2n—1)w,_1.3.5...(2n—3) s

» | 2|n—2 z i
1.3.5...2n=5) ..,
+_———2-4|_?_¢:j " -

If n be even, the last term is (— 1)2442'25%——;(";;1—)-, and if n

. 2t . 8.5.m
— * . T
be odd it is (—1) 2.4".(”’_1):1:.

Thus P, (z) is a rational integral function of  of the
- degree n, and it involves only even powers of «, or only odd
. powers of z, according as n is even or odd.

We see that P,(—z)=(—1)" P, (z).
' 1—2
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8. We may also put P, in the form

1.3.5...2n—1) {a:"— n(n—1) -
n

n(n—1)(n-2) (n—38) .,
2.4.2n—1) (2n—3) }

9. If we remove, by cancelling, the odd integers which
occur in the denominators of the numerical factors we
obtain the following results, in which we take first examples
of Legendre’s Coefficients of ‘even orders, and next examples
of those of odd orders :

P =1,

P,=gw’-%,
e L = 5 e Y
and generally

P,_=E(—1)""(2s+1) (232-+:;3) 2(33+2n 1) x(n,9) a,"

where 3 denotes a summation with respect to 8 from 0 to »,
nn—1)...n—8+1)

both inclusive ; and  (n, 8) stands for s
P =z, '
P,=§w’—gw,
IR
b T N ST e ST,
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and generally
wy(28+3) (284 5)...(28+2n+1
P, =3 (-1 2.4)...2(1; )

where 3 and y (n,8) have the same meaning as before.

x (n, 8) 2",

It will be observed that y (n, ) is an integer, being in fact
equa.l to the number of the combinations of % things taken &
at a time.

10. The numerical factors which occur in the preceding -
Article admit in some cases of further reduction; and they"
can be put in such forms that the denominators of the
fractions consist entirely of powers of 2. Thus for example

231 315 , 100
=t 16"+16 7"
It is easily seen that this must be the case. For in
the first expansion which we have given in Art. 7, we
1.3...2m—1) o™ (2x —a)", that
2.4...2m ?

_ 2m Bm ay* (e
T 2 2z —a)™, that i () (:c——) . Now

is 5 [m 2°[m o™ (22 —a)", is [ \2 5

17‘:1[ is an integer, and hence the coefficient of a* will not

have any number in the denominator except 2. We may

, 2m _, 2m—1
go a step further; for m l_ l_lm 1’ and is therefore

obtain as the general term

necessarily an even integer; and thus the numerical factors
of P,(x) wﬂl not involve in the denominators any power of 2
higher than 2*7,

11 The expression for P,(z) may be put in a very
compact form first given by Rodngues, namely
p= 1 d*(@*-1)"
» 20 l’_" d,cn .
For let (2*—1)" be expanded by the Binomial Theorem,

and let the result be differentiated n times with respect to =,
then it will be found that the term which involves &*™
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_ (=1)2**n(n—1)..(n—s+1) .
= the product of T n into
(2n—2s) (2n—2s—1)...(n—28+1)
_ (=102 (2n—25) 2n—28—1)......n—2s+1)
2" |n—ss :

Again, in the formula obtained for P,(z) in Art. 7 we see
that the term which involves an—2¢ .

_(=1)yanr-21.8.5...(2n —2s—1) _(—1)*a"~%|2n—2s

- 2.4...28|n—2s T 2 |n—s[s|n—2s

_(=1)y2*-2(2n—25)(2n—28—1)...(n— 25+ 1)

- 2% [n—s|s :

This agrees with the former result, and thus the identity
of the two forms of expression for P, () is established.

12. Another mode of investigating the expression of the
preceding Article for P,(x) may be noticed.
Assume NAl-2ax+0")=1-ay;
dy_ 1
dz N(1—2azx+a’)’ _
Hence we require the coefficient of ¢* in the expansion of

therefore

d—% in a series proceeding according to ascending powers of a.

Now 1-2az+a’'=(1-ay)'=1-2ay+a’y’;

therefore y=x+ ay’; 1 .
The general term of the expansion of y in powers of «
may now be obtained by the aid of Lagrange’s Theorem:

o et @ @ 1)
see .D'Lﬁe'"e'nt'lal Caerlus, page 117, It 18 2‘—'!2 ——%-T— H

and therefore the general term in the expansion of % is
a d*(*-1)
2*n  da*

e —————  —— —— —— —_—

. SR R . A S AR | — . ————E——
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CHAPTER II.

OTHER FORMS OF LEGENDRE'S COEFFICIENTS.

13. IN the preceding Chapter we have given the most
important expressions for Legendre’s Coefficients; in the
-present Chapter we shall investigate some other forms which
are frequently useful.

In applications of the theory « is very often equal to the
cosine of an angle; wé shall denote it by cos 6, and shall
proceed to develope P,(cos ) in cosines of multiples of 6.

14 We have, putting ¢ for / — 1,
(1 —2a cos 0+d)t={1-a(@+e )+t
= (1 —ae*)# (1 — ae-) .’
Expand each factor by the Binomial Theorem; thus we
obtain .
1.3

1' 1'31 1 ) * 9 9,-%0
{1+2ae"+mae“+...}{1+2ae +3 g% +}

Multiply the two series together, and pick out the term
which involves a*; it will be found that the coefficient of this
term is ‘
1.3...(2n-1) 1 1.3...020—38) \ a0

54..20 C 334,32

1.3 1.3...(2n—5) 1.8...@n-1) _,

—t o e tTeee N YT -4)0 —_— N
te a2 d. @k et 3
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Now put for each exponential its value derived from the
formula e = cos 78 + ¢ sin70; then the imaginary part dis-
appears, and we have the followmg result :

1.3.n(n-1)
1. 2@i—1) @n—39 * (n—4)0+...}.

The series within the brackets is to continue until it
terminates of itself by the occurrence of zero as a factor; so
that there are # + 1 terms in the series, and the last of them
i8 cos (n — 2n) 6, which is equal to cos nb.

15. We may state the result with respect to the series
within the brackets of the preceding Article in another form,

terms, and

thus: if n be odd continue the series to n;— 1
double every term; if » be even continue the series to

g+ 1 terms, and double every term except the last.

16. The formula of Art. 14 leads to the important result
that P, (cos 0) has its greatest value when §=0. The value
in this case may be found most mmply by recurring to the
definition; P, (1) is the coefficient of &" in the expansion of
- 2at+az’)"!I that is in the expansion of (1-—a) ‘, and so
the value is unity.

17. In Art. 14 we put cos @ for the general symbol z, 80
that we assumed 2 to be not greater than unity; but a
formula analogous to that obtained in Art. 14 will hold when
x is greater than unity.

For assume 2z=§+ £, and 24/ ("= 1) =§E— 7,
sothat E=xz+4/(2"—1), and F'=z—/(2*-1).

: _1.3...(2n-1) .y 1.2 -

Then Pu (a’) = 2511‘ {E 1. (21’& 1) E

1.3.n(n—1) -

2. @n-D@m-9° T }

B
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The series within the brackets is to continue until it
terminates of itself by the occurrence of zero as a factor; so
that there are n+1 terms in the series, and the last of them
s £

To demonstrate this formula we observe that the right-
hand member when developed will become a rational integral
function of z, and the left-hand member is always such by
Art. 7. Moreover, we know by Art. 14 that the two members
are identically equivalent when & has any value less than
unity. Hence they are always identically equivalent.

18. By Art. 11 we have

P(z)_z—}lzd'—(%,ﬂ_ﬁ—(z 1) (2 +1)°
1 &

T de (z=1"2+=z-1)~
Let (24 x—1)" be expanded in ascending powers of z—1;
thus

P, (@)= 271[ ‘%{2- (e= 1) +n2" (@ — 1)
+"(]".l-1)2n-!(w_1)n+l+."}
NEDLES WCEDICES B [
1? 2 1.2 2
(n+3)(n+2)(n+1)n(n 1) (n— 2)(:1:-—1\'
17,2, 8 2!

19. For a particular case of the preceding Article put

x =cos 0, then £ —1=—2sgin’ 55 thus

Ot i
(n+2) (n+1)n(n— 1)
17.2*
This may also be obtained in the following way :

P, (cosf)=1-
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. o0 -1
1=2a cos€+a.')‘i={1-—2a (1—2s1n’§)+a,’}

= {(1 — o)’ + 4asin’ g} -

Expand by the Bmomlal Theorem ; thus we obtain for
the general term

1.3...(2m— 1)(2”“‘6) thatis 1)"‘I2m(“mg)
|m (=T mm (I—ay-

Expand (1 —-a)™ in a,scendmg powers of a, and pick

out the term which involves «"; in this way we obtain finally
as before

="

P (cosf)=1- (n+ 1) nsin 5

('n+2) (n+1n(n— 1)
‘ 1*.2¢

20. Again we have
P.@)=g; ——d'(Z’Jl"=<—1>'9—»1“%(”'1)'(14“)”
= (1) g g 1 (- 1

Let (2—2—1)" be expanded in ascending powers of (z+1);
thus

R =57 gl et

| +”——(”“1) 2""(a:+1)""-...}

" n+1)n 1 n+2(n+)n(r-1)(x+1
=(=1) {1 ( = ‘”'; ( )(nl’ 2)’"'( ) 2’)

_(n+3)(n+2)(n+1)n(n—1) (n—2) (z+1)' }

1*,2. 3 2!
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21. For a particular case of the préoeding Article put
x=cos b, then 2+ 1=2cos’ 0- thus

P, _((3080)=(— 1)'{1_(n+1)“cm:_

1 2
(n+2) m+1)n(n- 1) _ }
T g 2 ceef e

This may also be obtained by putting (1 —2a cosd +a%) "}
-3
in the form{(1 +a)'~4a cos’—g} and proceeding asin Art. 19;

or it may be deduced from the result of that Article by
changing 6 into 7 — 6, and a into —a.

22. By the theorem of Leibnitz, given in the Differential
Calculus, Art. 80, we have

& w+1y @-1r= @1y @I

40 d(z+1)"d"" (z—-1)"
1 dx da™

n(n—=1)d" (x+1)*d** (.1:—1)'
1.2 dz* da*?

1 d
Hence P, = P o (z+1)*(z—-1)"

=2—];[(m+ )+ (’-1‘)' (@+ 1) @—1)

+{ n(n— 1)}(w+1)"’(:c 1)+ ]

23. For a particular case of the preceding Article put
z=cosf; then z+1=2cos';, and a:—1=—2sin’§; thus

P, (cos 6) =cos"'g[l—{¥tang}’+ {n (ln'-;l) tan® g}’— ]

+




12 OTHER FORMS OF LEGENDRE'S COEFFICIENTS.
24, We have (1 —2az+a") ¥ ={(1 — az)* +a* (1 — ")} "1,

Expand by the Binomial Theorem ; thus we obtain for
the general term ' :

1y 1:3:@m=1) fo' (1~ a7}
= 2*m (I—az)™’

that ia (1) fom o™ (1—a
Qsm lﬂ Iﬂ (]_ _u)

Expand (1-—az)™ in ascending powers of az, and pick
out the term which involves a"; we find after reduction that

.. (1) pet Q-2 . 1-2*
this is S m = gm Hence, putting ¢ for pal
we obtain finally
P.(@)= m‘{l 2 lpnb-Din-Dm-, } :

25. For a par't;iscula.r case of the preceding Article put

2 =cos 0, thenlw,_ =tan'6d; thus
P,,(cosa)=cos"0{1—'Ln2:—1—)tan’0
nn-1)—-2)(n—3)  ,, }
+ o 4 tan* @ —...... .

26. In all these expansions we may if we please suppose
a to be so small as to ensure the convergence of the series.
We know, by Art. 16, that P, (cos ) cannot exceed unity ;
and thus the series of which the general term is P, (cos6) a™
is convergent if z is less than unity.

e — . — e« e — e e ¥

. -
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CHAPTER IIL
PROPERTIES OF LEGENDRE'S COEFFICIENTS.

27. WE have from Art. 7,

1=P,

=P,

.z’=§P,:+-},;,
-x‘=§P,+§x=-52—P,-‘!-§P‘,

Proceeding in this way we see that any positive integral
power of = may be expressed in terms of Legendre’s- Coeffi-
cients. The expression for 2" will be of the form

aP,+a, P, +a, P, +...,

-2 -2
where a,, a,_,, @, ,, ... are certain numerical coefficients.
The expression terminates with a,P,, or with a, P,, according
as n is even or odd. The practical determination of the
values of a,, a,_,,...1s facilitated by some propositions in
the Integral Calculus to which we now proceed.

1
28. To shew that f P P, dx=0,if m and n are un-
-1

1
2
equal, and that -IP.P,d:c =ontl
Consider the integral f T b:f/ o that is

f dz
V{iad' — (ab’+a'b) x+ bb'a"}"
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We shall find by the Integral Calculus, Art. 14, that

Jie=t va=r= vt s | @A - VT e} .

Thus
dz
N1 =2x+0o* V1-2Bx+8°

- V:al?/@ log {V2a (1_23‘,”_'_3:) - V213(1—2am+a’)} .

Then, by taking the integral between the limits — 1
and 1, we have

f i 1 Io 1+¥aB
V-2t NI—28z+ P WNaB S1-WaB
a’B | o'p°

—2{1+3+——+—+ }

Now the expression under the integral sign in the left-
band member of this equation is, by Art. 6, equal to

(1+aP,+a’P+...4a"Py+...) 1+BP,+ 5P +.. +/3"P +...).
Hence, by equating the coefficients of like terms, we see that

f P, P.dz=0,

if m and n are unequal; and that

f_llP,,P,,dw= 2

2n+1"
29. ‘We have shewn in Art. 27 that
«=a,P,+a, P, +a_ P, +..
Let a,, denote any one of the numerical factors; multiply
by P,, and integrate between the limits —1 and 1: thus, by
the aid of Art, 28, we have

fP“"d‘”"2 1
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therefore a,= 2m2+ 1 f P, x"dz.
-1

Thus the numerical factors can be expressed as definite
integrals.

80. It follows from Arts. 28 and 29 that if m and n are, -
positive integers, and m greater than n, then

f P, a"dx = 0.
-1

This is one of the most important properties of Legendre’s

\ Coefficients. It will be convenient to change the notation
“and express the result thus: if m and n are positive integers,
and m less than n, then

f P.a"dz=0.
-1

31. The result of the preceding Article may also be
obtained in another way.

Let y be any function of . By integration by parts we
have

d;
[Pyao=t.y-[£% az,
where £, stands for f Pdx.

at

By Art. 11, we have ¢, = 2“1| ey (z+1)*(z—1)*; and

this vanishes both when 2 =—1 and when £=1. Thus
f P,,yda:——f £ g,
In the same way we find that

[ten s

n—2

where E, stands for f £ dz, that is for 5, 3 gx"" (x+1)" (@-1)"
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Proceeding in this way, we have finally

[ Pyte= 19| g5k
where E= Q_—l@ (@ +1)"(z— 1)~

Hence if y be a rational integral function of « of a lower
dimension than the n'®, we have

1
Pydx=0.

32. We shall now shew that no other rational integral
function of « of the n™ degree except the product of a con-
stant into P, (x) has the important property noticed in
Art. 30; that is if ¢ (x) be a rational integral function of =

1

of the n™ degree, such that f ¢ (z) x"dx =0, when m is any

positive integer less than =, then ¢(«) must be of the form
CP,(x), where C is some constant.

Let ¢,(2), by(@), ¢y(),... denote a series of functions of
a formed 1n succession according to these laws;

t@=[ s@ds
H@=] ¢.@ds,
@)= g0

and so on.
By integration by parts, we have

[ $@)amde=4,@) s~ mp @) & + mm - 1) $(@) -
-1
oo (1) (M (@)
Now if m have any positive integral value between 0 and
n—1, both inclusive, f' ¢(z) a™dz is by supposition zero when

xz=1. Putfor m in sut;cession the values 0, 1,...n —1 in the
preceding equation ; thus we see that ¢,(2), ¢,(2),...¢,(2) all

DUy S —
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vanish when #=1: that is, ¢, (=) and its successive differential
coefficients down to the (n—1)* all vanish when z=1.
Moreover by the laws of formation ¢,(z) and its successive
differential coefficients down to the (n — 1)* all vanish when
xz=-—1. And ¢,(2) is of the degree 2n in terms of 2. Hence,
by the Theory of Equations, Art. 75, it follows that ¢ («) is
of the form A(z+1)" (¢ —1)", where 4 is a constant.
Therefore

$@=A 0 @+ 1 @1

Thus, by Art. 11, it follows that ¢(z) = CP,(z), where C is
some constant.

33. If m is a positive integer less than n, and n—m is
an even number, then

f :a:"P.da: =0.

For by Art. 7, we have (— 2)"P,(—z) = (—1)™"z"P,(z)
=g"P,(x) when n—m is even.
Therefore in this case

f :a-P,dw - % f : &P do=0,

1
34. Weshall now determine the value of f o'P dx, where
k is any positive number, whole or fractional. ’

‘We know that
P =az" + B + g™ + ...,
where a, 8, v,... are certain numerical factors,

Hence
', _ a B ‘ Y
fowP“dw—k+n+1+k+n—1+k+n—3+"‘

I. Suppose n even. Then the number of the fractions
T. 2
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in the expression just given will be g+1. If we bring the

fractions to a common denominator, we obtain for the result
‘ K
k+n+1)k+n—-1)k+n-38)...(k+1)’

where K is some rational integral function of % of the degree

g. Now we know by Art. 33 that K will vanish when % has
any of the following values,n — 2, n —4,... 2, 0 : hence K must
be of the form Me(b—-2)(k—4)...(k—mn + 2) where A is inde-

pendent of k since K is of the degree 5 Moreover by the

way in which K was obtained, since A is the coefficient of the
highest power of k, we must have

A=a+B+q+.;
that is, A=P, (1) =1, by Art. 16.

Therefore when n is even :
k(k—2)k—4)...k—n+2)
(k+n+1)(k+n—1)...(k+1)°

It will be seen that the investigation and the result will

also hold in this case when % is negatlve, provided that it be
numerically less than unity.

fﬁﬂh=

II. * Suppose n odd.

By proceeding as in the former case we find that the sum
of the fractions is’

K
GErntDltn—L)k+n—238)...k+2)’

where K is some rational integral function of % of the degrec
=1 Thek must be of the form

2
AME—1)(k—3)(k—5)...(k—n+2),
and as before we find that A =1.

e

el e e —
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- Therefore when n is odd

(k—1)(k—3)(k—5)...(k—n+2)
k+n+1)k+n-1)...(k+2) °
It will be seen that the investigation and the result will

also hold in this casé when % is negative, provided that it be
numerically less than 2.

/ ' Pode =
.

. .
Hence f «'Pdx can be immediately found ; supposing

that if & be a fraction the denominator is an odd number
when the fraction is in its lowest terms, so that the expression
may be real throughout the range of integration. For if
a*P, changes sign with z the definite integral is zero, and if
«*P_ does not change sign with # the value of the definite
integral is fwice the,value corresponding to the limits 0
and 1.

35. For a particular case of the preceding Article let &
be a positive integer not less than n, and let k¥ —n be even.

First suppose. k even, and therefore » even. Take the
result in I; multiply both numerator and denominator by
1.8...(k—1), and also by 2.4...(k —n) : thus we obtain

2. 4...(k—n)1.3.5...(k+n+1)"
Next suppose % odd, and therefore n odd. Take the result

in II; multiply both numerator and denominator by 1, 3...%,
and also by 2.4...(k—n): thus we again obtain

%
2 4..k—m1.3.5...(k+n+1)

As an-example we have

f : P dx=

L ~2n|n
1.3.5...2n+1) [2n+41°

36. We can now definitely express 2* in terms of Le-
gendre’s coefficients, n being a positive integer.
2—2
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By Art. 29 we have
«*=aP,+a, P _ +a P _,+..,
where any numerical factor a,, is determined by the equation

1
Qg = 2m2+ lf_lm'P,.d-'&

Therefore, as in this case n—m is even, we have, by
the method of Art. 33,

1
= (2m+1) fo «"P,dx;

and therefore, by Art. 85,
- 2Em+1)[n
2.4. . n-m)1.8.5...n+m+1)
Hence, finally,
In

" = 2n+1
’”‘1.3.5...(2n+1){(2“+1)P-+(%-3) g~ Fus

O

+(2n-7)£2—”~i—12)'(421:919,“+...}.

87. Asan example we will express the function

by the aid of Legendre’s coefficients, under two conditions
which will appear in the course of the process.

The first condition is that y be greater than ; then we
have

where the infinite series is convergent.

Now ex%ress each power of 2 in a series of Legendre’s
coefficients by Art. 36, and then collect all the terms which
involve the same coefficient. Thus P, (2) will arise from
z ™ ™ . .

7 7 .'/W’ .. ; and for the multiplier of it,

N s —— e

e tent St —— — . st ' { —— . - c—
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from_—‘f.— we get _ @n+1) 1

¥ 1.3.5...2n41) &'
™ @2r+1)n+2 1

from 2 we get . >
Ty e T s ane g

e 2n+1)|n+4 1
from f—,we get ( —— =
¥ 2.4.1.3...20+5) ¥

and so on.
Thus let (2n+1) Q, (y) =

In (e () (n4+D) oy
1.3...(21.-1){-'/ +n2(2n:-3)

(n+1) (n+2) (n+3) (n+4) .
+ 2.4?(2n+3)(2_n+’;>) "’.-ﬂ”"'}’

then y—l_w =3 (20 +1) Q. (5) Pu(®),
where % denotes summation with respect to n from 0 to
infinity.

As the second condition we require that y should be
greater than unity, in order that the series denoted by
Q,(y) may be convergent. See Algebra, Art, 775.

38, To express %’Z“ in terms of Legendre’s coefficients.

The powers of = which %‘% involves are the following,

™, &7, 2™, ... ; we may therefore assume that

dP,
-E=aﬂPH+aHPH+aHPH+ ey

wherea_,,a,,, @, ... are numerical factors to be determined.
Let a,, denote any one of them ; then, by Axt, 28,

_om+1[t , dP,
= Tf_lP,.%dx........ .......... ).
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Now, by Art. 30, we see that for all the values of m with
which we are here concerned A

1 qP. 4
0= LP,,% B eeeeererereeseseennenes @).
Multiply (2) by 2% and add to (1) ; thus
_2m+1f‘ dP, | dP.
w="g—] (RE+RG) e
dP, dP,\ , .
Bu  [(P. G2+ PG do=P.R:;
and as n—m is here an odd number we have P, P,=1 when
z=1,and =—1whenz=—1.
~ Therefore a =2m+1.
dP, : :
Thus T @m-1)P,_,+(2n—-5)P,_+(2n—9) P, ,+...;

the last term is 3P, if n is even, and P, if n is odd.

39, In Art. 14 we have expressed P, (cos ) in terms of
cosines of multiples of 6. Now if f(f) denote any function
of @ we can expand f(¢) in a series of the form

@, sin 0 + a,sin 26 + a,8in 30 + ...,

where a,, a,, a, ... are numerical factors : see Integral Calcu-
lus, Chapter x111. The expansion will hold for values of 6
between 0 and 7, excluding however these limiting values
unless f(6) vanishes when 6=0 and when §=m. All the
numerical factors are determined by the general formula

a,,,=7—2J'f(0) sin m8 d.

We shall now apply this process to the case in which
f(0) =P, (cos 9).

" 'We shall first shew that a,, is zero if m is less than n + 1.

-
S e e ——



PROPERTIES OF LEGENDRE'S COEFFICIENTS. 23

" 'We know that sinmf =M x sin 8, where M denotes a
rational integral function of cos §, of the degree m —1: see
Plane Trigonometry, Art. 288. Thus

f " P, (cos 6) sin m df = ] " P, (cos 6) Msin0 df

—f P, (2) Mds,

where M is now supposed to be expressed as a function of z,
by putting  for cos 6.

Hence by Art. 30 it follows that a,, is zero if m is Ie&s
than n+ 1.

We shall next shew that a,, is zero if m —n is equal to
any even number.

For M being expressed as a function of = as before, the
product P,(x) M will involve only odd powers of x, and there-
fore the integral of it between the limits —1 and 1 will
vanish.

Thus we have to find a,, only for the cases in which m
has the following va.lueg, n+1,n+3, n+5,...

Now, by Art. 15, we may put P,(cos ) in the form
2b, cos nf + 2b,_, cos (n—2) 0 + 2b,_,cos (n—4) 0+ ..

observing that if n is odd the last term will be 2b, cos 6, and
if n is even the last term will be &,.

Hence F,(cos §) sin md = b, {sin (m+ n)0 + sin (m — n)6}
‘ +b, ,{sin(m+ n—2)0+sin(m—n+ 2)0}
+b,_,{sin (m+n —4)0+sin(m—n+4)6} +

Integrate between the limits 0 and 7 for 6 ; thus since
m—n is odd we obtain c.

1 1 1 1
X 2, (’m+ﬂ+ - )+2b""(m+n—2+m—n+2)

1 1. )
+2b,_‘(m+n_4+m_n+4 +on
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the last term being 25, ( 1 + )1fn is odd, and —* 26
m+1 m-—1

if » is even.

Let m=n4 2k +1; then the expression becomes

1 1 1 1
2, (2n+2k+1+2lc+ 1)+2b""(2n+2k-1+2k+3)

by ) o

Bring all these fractions to a common denominator; thus
we obtain

K
@+ 1)k +3)...2k+2n+1)’

where K denotes a rational integral function of % of the
degree n. Now K must vanish when & has any of the values
—1,—-2,...—mn; for in all these cases sin mf becomes nu-
mericall equal to sin uf, where u has some positive integral
value Wth is less than n+1, and therefore, by what has

been already shewn, f P (cosf) sin mf df vanishes. Hence K

must be of the form h(lc+ 1)(k+2)... (k +n), where A is
independent of .

Also from the way in which K was obtained we see that,
a.ccording as n is odd or even,

=2""%(2b,+ 20, .+ ... +2b),
or =2"(2b, +2b,_,+ ... +2b,+b,) ;
so that in both cases A= 2""P (1) =2"",

Hence f:P,(cos 6) sin (n+ 2k +1)0 df

2+ 1)k +2) ... (k+1)
= @E+1)2k+3) ... h+2m+1)’

and @,,,,, i8 equal to the product of this into 7—2;

e s et — e ) — .
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Thus finally P, (cos 6)
4 2.4.20 (. 1.(a41) .
=7 13.@n+D) {Sm(“”)o*1.(_2n+3)°“‘("+3)”

1.3.(n+1)(n+2)
+12.20+3)2n+5)

1.3.5(n+1)(n+2)(n+3)
1.2.3(2n+3)(2n+5)(2n+7)

sin (n+ 5)0

sin (n+7)8+...} .

The value of f' P, (cos 6) sin (n + 2k+1)0 d8 can be put in
’ 0
the form

.(1+%)(1 +%) (1+’_’;) |
(v +%)(1 + 5,;)(1 + 2%) (1 +2"2_21)

thus we see that it is less than —ii , and is therefore
. k+§

indefinitely small when k is indefinitely large. -

40. In the general formula of the preceding Article for
P, (cos 6) put n=0; thus ‘

1=2fsn 0+ n30+ Leins0+....
™ | 3 5
Again, in the same formula put n=1; thus
2 (4 . 8 . 12 .
cos0=;r{§sm20+ﬁsxn40+3~5sm69+...}.

These results are well known: see Integral Calculus,
Arts, 311 and 312.

41. We shall now shew that the roots of the equation
P (x)=0 are all real and unequal, and comprised between
the limits —1 and + 1,
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l .
I. Suppose n even. By Art. 30 we have f P dx =0.

Hence P, must cha.nge swn once at least between z =— 1
and z=1.

Let a denote a value of # at which a change of sign
takes place. Then since P,(— z) =P, (x) it follows that
P (@)=("-a")Y,_,, where Y,_, is a rational integral func-
tion of x of the degree n—2.

Again, by Art. 30, we have f (a*—a") P dz=0; there-

fore f (@'—a’)'Y,_,dr=0. Hence Y, , must change sign

once at least between z=—1 and = 1 Then, as before,
we see that Y, .= (2"—-¥)Z, _, where Z _, is a rational
integral function of  of the degree n— 4.

Proceeding in this way we obtain finally
P,=A(' - a*)(a®— ) (a*—~ ).
where the number of the factors z* —- a*, «* — b’ z'~c..
g, and 4 is some numerical coefficient, since P, is of the
degree n.

Thus we see that the equation F,(z) =0 has « roots lying
between — 1 and +1.

We have still to shew that the factors of P, are all dif-
ferent. If possible suppose that two of them are alike, so

that P —(x’—a J*Z._. By Art. 30 we have f P7,_dw=0,
so that f @= ,),dz: =0; but this is obviously impossible.
Hence the factors of P, must be all different. '

II. Suppose nodd. In this case P, (0) =0. By Art. 80
1 .
we have f «P,dz=0; and since P, (—x) =—P,(x) it follows

that wP,(w-)‘ must change sign once at least between 2=~—1
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and z=1. Let a denote a value of z at which a change

of sign takes place. Then since I:”a(:i) involves only even
powers of x, it follows that P,(2)=z(2"—-a")Y,_,, where

Y__, is a rational integral function of # of the degree n—3.
Aga,in by Art. 30, we have f @ (2'—a®) P,dz=0; there-

-1
fore f a:'(:c —a’)'Y,_,dx=0. Hence Y, must change sign

once at least between #=—1 and z=1. Then, as before,
we see that ¥, =(a'=b") Z ,, where Z,, is a ratlona.l in-

n-57

tegral function "of  of the degree n — 5.

Proceeding in this way we obtain finally
P,= Az (2*—a) (&8 = ) ("= ) ...
where the number of the factors a* —a’, o — b’ 2*—c' ... 18
n—1
2
degree .

Thus we see that the equation P, () = 0 has n roots lymg
between —1 and + 1.

,’and 4 is some numerical coefficient, since P, is of the

In the same manner as in I we may shew that the factors
of P, are all different.

42. Since the roots of the equation F, () = 0 are all com-
prised between —1 and + 1, it is obvious that P, (x) can never
vanish when 2 is numerically greater than unity. This can
also be readily inferred from some of the expressions pre-
viously gwen for P, ().

Thus in Art. 17 if £ be expressed in terms of «, and re-
ductions effected, we obtain only powers and products of
and 2 —1 with positive numerical factors ; so that the whole
is necessarily positive when z is }Posmve and greater than
unity. And as P, (-a)=(-1)*P, () it follows that P, (x)
will not vanish when & is negative and numenca,lly grea.ter
than unity,

The same conclusion may also be deduced- from Art. 24.
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43, Take the equation a"P,= (1 — 2uz+a")3, where
3 denotes a summation with respect to n from 0 to 0 ; put

b . .
T+ P for @, and suppose p numerically less than umfy,
80 as {0 ensure a convergent series, Thus

L+ VA+FS)  1+E Y
x . _ 9
Assume V(1+k’m')_y’ thena:’————l__k,y,,
1
and l—k"'/"‘]Tk,—z-,-
* P,
Hence 3 —L 2% (1 - 9py4p' (1-E M)
LRy {1-2py p(k )
TR p
and dy=—4‘lx—,
1+t
therefore
p"Pude  _ kdy
A+E2)T {1+ +p K~ (L+pky))
By integration we have

of  Pudw 1.4 1+pky é

— = 8T g Y = L say.

P vy s P VIaF ) pk™
Take the integral with respect to 2 between the limits
=1 and 1; the corresponding limits with respect to y are

: 1 1
VY5 VI +5)"

In order to simplify the expression on the right-hand side

of the equation let tan 4 =, and tan B= «—/ﬁ% There-
NA+F)
VI+P+ e

, and

fore

1
COSA_:T/(T+—I(:’)’ and cos B =

i A . —  _co—s | S— e ettt ]

—_— e e — et Ve
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therefore
i*

p
1t Ta R
VI+E+pF)
Thus the value of ¢ at the upper limit is 1—;—.4 + B,

=cos 4 cos B (1 + tan 4 tan B) = cos (4 T B).

and at the lower limit -;!-— A—-B. Hence
1
Sp %=ﬁ{§-4+3-(§-;¢-3)}
Tl+E )
2B 2 Pk
=-—=—t&n.1—-——— .
Pk pk J(1+FE)
+_pk__. _pk
Expand tan T+ 5 in powers of TP’ thus
1 o0
1 +KaY " @n+1) A +k)°
where both summations extend from z=0 to 2 =00.

p"

Hence equating the coefficients of the powers of p we
' Pd=x
see that

LR T
2CDTH — if n be even.
n+1) A+ )T

is zero if » be odd, and is equal to
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CHAPTER 1IV.
THE COEFFICIENTS EXPRESSED BY DEFINITE m'mqms.

44. LET a and b denote real quantities of which a is
positive and greater than b ; then will

d¢ T
f'a,+bc()s¢ '\/(a _bg) ............... (1).

For we may assume — = y——, where ¢ is less than umty,

1+

thus f'————-— __'Z‘é__
a+bcos¢ Ji+ 2¢ cos b

1+¢

_1+c’j’“‘ de 14+ 7
T 1+c*+2ccosp a "1—¢"

by Integral Calculus, Art. 296.
T w14+

And ‘\/(a:r“b’)-—_fa«/.(l_._%:)—a(l—c’)'

Thus (1) is established.

Now in (1) put a=1—az, and b=as/(2'=1). We may
suppose z positive and greater than umty, and « negative, so
that a and & are both real and a is positive ; moreover
a'—b*=1—2xx + a*, which is positive,.

e | —

- A
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Therefore from (1) we get

1
'n-f'l ax+ad(w’ 1) cos¢ a- 2az+a“)*
Hence expanding both sides in ascending powers of a, and
equating the coefficients of ", we have, by the definition of

)

P.@)=1 : oW —1) cos ¢} dp.........(2).

Thus P,(z) is expressed as a definite integral. This formula
is due to Laplace, Mécanique Céleste, Livre x1, Chapitre II

45. In obtaining equation (2) of the preceding Article
we found it convenient to suppose z positive and greater
than unity; but it is obvious from the nature of the result
that it is true for all values of z. For if {# — /(' — 1) cos ¢}"
is expanded, and the terms integrated between the limits
0 and 7, then all the terms which involve odd powers of

V(@ — 1) will vanish. Hence we obtain finally a rational
integral function of », and as this is identical with P, (z) when
« i positive and greater than unity, it must be identical with
P (z) for all values of .

46. The definite integral in Art. 44 can easily be made
to reproduce some of our former expansions.

For example 1 f fe—v (-’0’ —1) cos ¢}" d¢p

fj nx** \/(@* — 1) cos ¢

+'”~—(',°2 L) (@~ 1) cosig— .. } ds.

As we have said in Art. 45 the odd powers of 4/(a*—1)
will disappear from this expressxon, so that it reduces to

'n_f{ n(n 1) ""(a" 1) cos’¢

<n 1><n 2)(n—3)
14

Z** (2" —1)" cos'¢p + ...}dqﬁ.
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Thus by the Integral Calculus, Art. 35, we obtain

B=ar4 202D gra )
n(n—1)(n—2
+ 2. 4
This coincides with Art. 24,

J2=8) i 21y,

47. It is obvious from the preceding Article that we
may also take

.=%f'{z+ V(@ = 1) cos " de,

for this is really identical with equation (2) of Art. 44 when
the expansion and integration are effected.

48. 'We will now give another example of the use of the
definite integral. We have @ +4/(«"— 1) cos ¢

_ z+1 z—1 . ~/w+1 z—1
W VIV E T
where ¢ is put for / =1. Thus if =4/ %;—i we have

{z+ (="~ 1) cos ¢} = (w—;—l)"(l +7eh)" (1 + e )",

By expanding and multiplying out we can arrange the
product (14 7¢#)*(1+7¢"#)"1n the form
a,+a,cos ¢ + a, cos 24 + ...,

and thus when we integrate with respect to ¢ from O to =
every term vanishes except the first; therefore

Pm (B4 s
n(n—1))*

and a°= 1 + ‘n"l" + {——iT} T‘ F eeee

This coincides with Art. 22,

(-——————-—d

e P —
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'49. We will now shew that the definite integral obtained
in Art. 44 may be transformed when 2 is positive and greater
than unity so as to give the formula

p L[ ar
*w), [+ (@ — 1) cos g}

For assume a new variable connected with ¢ by the

relation =)
xcos Y+ 4/(z" —
c°s¢=w+4(x’—l)cosxp’
which leads to i
. sin
sln‘l’=a:+;\/(:¢:"—1)cos1[4-’
. . _ 1
2@ 1) e = e Ty s
dyr

d¢=a:+ §(@ —1)cosy’

Since @ is supposed greater than unity z+4/(2* —1) cos ¥
can never vanish, and it is always positive, as z is supposed
positive: thus as 4» continually increases from 0 to = we
have ¢ also continually increasing from 0 to =. Hence

f {z '\/(w "1) COS¢} d‘ﬁ" {a:+~/(a,"d‘,;.|) 0081[1'}"1

50. Suppose z=cos §; then by equation (2) of Art. 44
we have

P, (cos ) =%_f'(cos€—¢ sin @ cos )" do ;
[}
this expression for P, (cos 6) involves the imaginary symbol «.

Dirichlet however has expressed F, (cos 6) by means of
definite integrals in which the imaginary symbol does not
occur ; and we now proceed to his investigation.

1 .
We have =2 cos5d) ~ Sa"P, (cos 6),

where S, denotes a summation from z=0ton=00.
T. 3
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Let a=cos ¢ +¢sin ¢ ; then Sa"P, (cos f) takes the form
H+ K, where
H=73 cosngP, (cosf), K=-73 sinndP, (cosb)......(1).
1
A (1 —2¢* cos 8 + e¢)
and imaginary parts. 'We have 1 — 2¢* cos 6 + ¢*¢
= ¢ (¢ + e~%) — 2¢*¢ cos 6 = 2¢* (cos ¢ — cos 6).
We suppose both 6 and ¢ to lie between 0 and 7.
If 6 is greater than ¢ then 4/(cos ¢ — cos ) is'real ; thus
¢ ¢

w ¥ o sint
1 P 0082 zsm2

V(1 — 2¢' cos 0+ ¢24) - N2 (cos ¢ — cos ) - J2(cos p—cos6)

If 6 is less than ¢ then 4/(cos 6 — cos ¢) is real; and if
we multiply the numerator and the denominator of the

We must new separate into its real

fraction already obtained by ¢, that is by e.;, we obtain
¢, ¢

Yr—¢) in & X
1 P s1n 2+ HJOS2

= = eemespsp——
¥/ (1 —2¢*# cos 6 + e*¢) VN2 (cos @ —cos¢) ~2(cos f—cos¢)
Hence we deduce that

con?

H-__‘\/2 (cos ¢ —cos 6)
¢

sin &

and = ST 0—2cos 5 when 0 is less than ¢;

s

K=- hen 6 i ter than ¢,
2(cos¢—cos€)w e-n is greater than ¢
¢ .

€08 -2-

‘=‘\’2(.6080—608 ®)

when 0 is greater than ¢,

and when @ is less than ¢.

I |

etk |

T U
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Now from the equation H =3, cos n¢ P, (cos 6) we obtain
P, (cos6) =2 [ H cosn dp,

for every positive integral value of », except when # is zero,
and then we have"

P=7 f:Hd¢.

Again, from the equation K =73, sinn¢ P, (cos ) we obtain in
like manner

P, (cos6) = ?J'Ksin nd dp

for every positive integral value of n, excluding zero.

Hence with the values which have been already obtained
for H and K we have

P, (cosf)= .

0 ¢ 1 4 . ¢
9 cos n¢ cos 5 9 cosmﬁs1n§ .
"T’L N2 (cos ¢ — cos ) d¢+‘; 0‘\/2(cos€—cos¢)d¢m(2)’

this holds for every positive integral value of =, except when
n =0, and then only half the expression ‘on the right-hand
side must be taken :

and P, (cos §) =

o . . ¢ . . ¢
9 sin n¢ sin ) 9 sin n¢g cos 3 .
_7_"]“/2(cos¢—cose)_d¢+;r oN2 (cosﬁ—cos¢)d¢'"(3)’ .

this holds for every positive integral value of n, excluding
zero.

The formule (2) and (8) are Dirichlet’s expressions for
P, (cos 0) by means of definite integrals.

51. Multiply the first of equations (1) of the pre-
ceding Article by sin ‘—21’ » and the second by cosg , and add,

using the values obtained for H and K: thus we get
. 3—2



36 THE COEFFICIENTS EXPRESSED BY DEFINITE INTEGRALS.

3 sin 222 ¢ P, (c0s6) = 0 when 6 is greater than 4,

and = ___1____
N2 (cos 6 — cos ¢)

when 6 is less than ¢.

Again, multiply the first of equations (1) by cosg, and the

second by — sing , and add, using the values obtained for H

and K: thus we get

3, cos 2”;14:1’“ (cos 6)

=0 when 8 is less than ¢,

and =

N2 (cos ¢ —cos 6)

52. From equations (2) and (3) of Art. 50 we have by
addition and subtraction respectively : :

P, (cos 0) =
9 2n+1 . . 2n41
1] cos—2—4) 1[ sin — ¢

when @ is greater than ¢.

o 2 (cos¢—cos€)d¢+'"’ 8 /2 (cos @ — cos ¢p)
2 '—1 L . 2 -

—jo cos n2 ¢ 2 sm‘"2 1¢ .

“J o /2 (cos ¢ — cos 6) 0 /2 (cos 8 — cos ) $;

these hold for all positive integral values of n, including
zero in the first formula, but excluding it in the second.

do,

T

0

53. The investigation of Art. 50 is not quite satisfactory
owing to the substitution of an imaginary symbol for a ; hence
it is advisable to verify the equations (2) and (3) of that
Article. We begin with equation (2).

Let the first integral which occurs in (2) be denoted by
A, and the second by B, ; we shall shew that 3a"(4,+B)
is equal to (1—2a cost9+a’)'*, which amounts to shewing
that 4, + B, = P, (cos 6).

SNV PR

-
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¢

In the first place 4, is finite ; for
cos n¢ cos &

9 o cosn¢cos— 5
" j ~2 (cos ¢ — cos 0) = f)\/sm——sm 4.

Now as cos%’ retains the same sign within the range of the

integration we know by the Integml Calgulus, Art. 40, that

_A '7] cos— d
«/(s ——sm b

where v is some valie assumed by cos n¢ mthin the range of
integration. Hence the value of A is less than

COS
] d¢’
/\// sin® = —sm

that is, less tha.n unity; so that 4, is ﬁmte

Since A4, is less than unity the series of which a*4, is
the general term is convergent if a is numerically less than
unity. This senes, putting for 4 its value, is

(o0 —

] Av/ sm {;-Hzcos¢+a'cos42-t.’cos3¢...}d¢.

~ Now the sum of the infinite series between the brackets
is known by Plane Trigonometry, Art. 333, to be

1 14
21~ 2acos¢+a o

Ccos —
d

Thus Za* ] .
,\/“m‘ sm 1—2acos¢+a.’
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Assume sin %’ =gin g sinyr ; then

cos %’ d¢

,\/ (sin’g — sin’ %’)

and 1—22co8 ¢ + a* = (1 — a)* + 4asin® g sin’ 4

=2dy,

= (1—a)’cos*y + {(l —a)* + 4asin’ g} sin’{r
= (1 —a)*cos® Y+ (1 — 2a cos 6 + a°) sin® Y.
vy 1—a'[i dyr |
Hence 2 a°4, = T _[, (1—a)’cos*yr+ (1—2acosf +a*) sin*yr
1-d 1 T _ l+a
T N(l—a) (1—22cosf+a’) 2 24(1—2acosf+a)
Next consider % a"B,. We have
‘ 2[' cosmbsing
B, ==
4 " mJe4/2(cos G —cos¢p)
by changing ¢ into 7 — ¢’ we obtain

de;

.B,=(-1) o md(ﬁ..

-0

Hence (—1)" B, is the same function of m— 8 as A4_ is of
0; and thus 2a"B, can be obtained from 32”4, by chang-
ing @ into 7 — @ and a into —a. Hence

p _ l—a
% B“_2V(1—210080+a’)'

Therefore 22*(4, + B,) = Ja= 24103 0 T
which was to be shewn, ‘

B
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‘We shall next verify the equation (3) of Art. 50.

Let the first integral which occurs in (3) be denoted by
C,, and the 'second by E,; then as the equation is asserted
to hold for all positive mtegra.l values of n except zero, and
that a’P,=1, we must shew that

Sa"(C,4+ E)=(1—2zcos0+a")t-1;
the summation extending fromn=1ton=o.

We can shew as before that the series of which the
general term is a"C, is convergent when q is less than unity.
This series, putting for C, its value, is

Bln S

f ,\/ sm ——sm
Now the sum of the infinite series between the brackets
is known by Plane Trigonometry, Art. 333, to be

asin ¢
1—2acos¢+a"

{a sin¢+a.’sin2¢+a’$in3¢+ ...}de

sin ¢ d¢

'.
f\/ m— sm 1—210084”'«

Thus 24" 0, =

" Assume sin%=singsin‘\}r; thus
3 gin' ?d\]r
300, =2 ——q
» T — 2acos¢p+a

But 4asin’%=1-—2acos¢+a’»—(1—a)’; so that

za~0,=}rf{-i +1-é1m”——T:IT&'} dy,
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and thus, by the aid of what has already been given, we have

l-a
Za*Cy=— § 2Y(A—2acosf+a’)°

We may deduce the value of 3a"E, from that of Za*C,
in the same way as we deduced the value of 2a"B, from that.

of Sa"4,, namely by changing 6 into 7 —6 and  into —
Thus

Sa* 1 l1+a

“=_§+2V(l—2acosﬁ+a') ’
1

N(1—2xcosf +4a)’

Therefore 3a*(C,+ E,)=-=1+
which was to be shewn.

" |
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CHAPTER V.

DIFFERENTIAL EQUATION WHICH 1S SATISFIED BY
LEGENDRE'S COEFFICIENTS,

1
j54!. LET V=m)’
dv a
th —_— - V!’
= 9" (1 _oazta)l
av -0
—_—=— = (p- V'.
da = gamyap O AV
aV_ AV _ o,
hence == 3aV‘(—l—z = 3a*V",

2
‘fh?=—V’+3(z—a)V’%g=—V‘+3(z—a)’V'.
Therefore ’

av  adv

. (l—z')w+a -ZF::V’{3a’(1—a:')V’—a’+3a.’(:p—a)’V’};

} 2
and 34'(1 -2') + 3a*(x —a)' = 82*(1 — 2az + o) = 3% :

3
thus a-a%74 a*‘%; 27,
v . dv_ .,
Also 23-&——2a 5—23 V‘.
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Therefore, by subtraction,
&V AV, BV AV

this may also be written thus:

éiz {(1 —a) %Z-} + %{a’ %}=0 ............ .

By definition we have V'=Za"P,; substitute the value of
Vin (1), and equate to zero the coefficient of a": thus

dim {(1 —a°) %%} +n(n+ l)P,“ =0.cceuvennes (2).

This shews that Legendre’s n® Coefficient must satisfy the
differential equation (2), which may also be written thus:

4P, dP,
(1—9;’)-(;;,’—‘—23: dx”+n(n+1)P”=0 ......... (3).

55. We have shewn in Art. 41 that the roots of the
equation P, (x) =0 are all real and unequal, and comprised
between the values —1 and +1. Part of this proposition
may be deduced immediately from the formula

v 1 d(E&-1)
F, " (.Z) - 2"'.{.‘ dz" .

For the roots of the equation (2®— 1)" = 0 are all real; namely,
n of them equal to —1, and n of them equal to +1: hence,
by the Theory of Equations, Art. 105, the roots of the equa-
tion P, (z) = 0 are all real, and comprised between the values
- 1 and + 1. -

Thus to complete the proposition we have only to shew .

that the roots of the equation P, (z) =0 are all unequal; and
this will follow from (3) of Art. 54. For we know by the
Theory of Equations, Art. 79, that if the equation P, (z) =0

has two roots equal to a, then P, () and fd——l;",c—(ac) both vanish

eV o

— e —— e —
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when z =a; hence from (3) it follows that ﬂg;,@i) will also

vanish when #=a. And proceeding in this way, and using
the results obtained by successive differentiation of (3), we
should find that all the differential coefficients of P, (x)
down to JL{)‘,—;@—) vanish when z=a. But this is impossible;
for we know by Art. 8 that d 5;.(:”)

and so it does not vanish,

=1.3.5...(2n—-1);

56. The following relation holds between three succes-
sive Coefficients of Legendre :

(n+1)P,,,—(2n+1)zP,+nP, _ =0.
For it appears from the process of Art. 54 that

(1 - 2ax+2°) g+ (@a—z)V=0.

Put for V its value Za"P,, and then equate to zero the co-
efficient of a*; thus we obtain

(n+1) P, —2n2P,+(n—1)P,_ +P,_,—xP, =0,
that is, (r+1) P, —(2n+1)xP, + 2P, _ =0...... (4).

57. From equation (4) by changing n into n—1 we
obtain
nP,—(2n—1) 2P,  + (n—-1) P, =0,
and then we may again change = into n— 1, and so on. |

From the equations thus obtained we see that P, P, ...
constitute a series of terms which possess the same essential
properties as Sturm’s Functions; see Theory of Equations,
Chapter X1v. These properties are that no two consecutive
terms of the series can simultaneously vanish, and that when
one term vanishes the preceding and succeeding terms have
contrary signs. Moreover when =1 all the terms are
positive, and when @=—1 the signs are determined by
P, (—1)=(—1)", so that they are alternatively positive and
negative. Hence by the application of Sturm’s method we ob-
tain another demonstration of the whole theorem of Art. 41.
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Also we see that between two consecutive roots of the
equation P, (z) = 0 there is one, and only one, root of the equa-
tion P, (m) =0. For let h and & denote two consecutive
roots of the equation P, (z) =0, and suppose h the less.
Then if there were no root of the equation P,_ (x) =0 be-
tween h and k the number of permanences of sign exhibited
by the series when « is a little greater than & would be the
same as the number when z is a little less than % : but this
is impossible, for the former number exceeds the latter by 2
Hence there must be one root of the equation P, (x) =
etween % and k. And there cannot be more than one for
otherwise the whole number of roots of the equation
P,_, (x)=0 would be greater than »—1; which is impossible.

58. From equation (3) of Art. 44 we have
zP,_ —-P,

= }J {z—(2'~1)cosd}" {2’ —z ¥/ (¢’ —1) cos ¢ — 1} d

=Z2 v - D eos g1 j‘;;"s"’ et Jag
_#o1d
T a—1 de"";
ths  (-1) @ —P) = -1 D= )

Again from Art. 49 we have
1~z {z+/(a’—1) cos p} —

oPu = F,= ml, {@+ v (a*—1)cos ] b
L4 &
=“”-1f 1+m)cos¢ &
™ fe+ /(@ —1) cos g
o@-1d
' ST & Poss
thus n(zP,_,—P)=~(2'— 1) ........... (6).

.—__-4__ —

[N S

e e ——— e —
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The formula in Art. 49 by the aid of which (6) has been
obtained was demonstrated only for the casé in which = is
positive and greater than unity; but as (6) expresses an
1dentity between certain rational integral functions of z, it is
manifest that since it holds when # is positive and greater
than unity it holds for all values of .

By adding (5) and (6) we obtain
—nP,+@2n~1)aP,  ~n-1)P,_,=0;
this agrees substantially with (4).

59. Other relations resembling those of the preceding
Article may be obtained. Thus, take the fundamental equa-
tion

1 ~ 2 3 .
"/—(1—_—2%—_':5 ==P0+Pla+P,a +P‘a. + ... H
differentiate with respect to 2, and then divide by a; we

obtain,
1 _am, dp, iR,
m—@"'ad{n +a-%+ ......... (7).

Also from the fundamental equation, by differentiating

with respect to a, we get

r—a
— =P +2 Pa+............ .
(1—2m+a’)* 1t P:a+3 2+ (8)
From (7) and (8) we get
(;v—a){%+ad71‘;—’+a’%%+ ...}=Pl+ 2Pa+3Pa*+...
Hence, by equating the coefficients of a"”, we get
dP, dP,,
w’—a;’— dml—nP” .................. (9).

Again from (7) we have
=(1 —2m+a"){%§+ad—P’+ a’%-l- . }

1
JA—2mTa) gt
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Substitute for the left-hand member its value from the
fundamental equation, and then equate the coefficients of a*;
thus

dP,, dP, dP,_
P="mogp e S @10).
From (9) and (10) we have
dP,. dP,_
=&~ dm b
s0 that P s (om 4 1) B, ... (1)

60. In equation (11) change m successively into n — 2,
n—4, ... and add the results; thus we have a new demon-
stration of the result obtained in Art. 38.

61. By integrating (11) we obtain
@n+1) [* Pdn=P,, =P e (12),
-1

for the right-hand member vanishes when 2 =— 1, so that no
constant term is required.

1
Similarly (2n +1) f Pdz=P,_ —~P,,eererrnen. (13).

62. The differential equation (2) of Art. 54 serves as
the foundation of an instructive demonstration of part of the
theorem of Art. 28.

For by virtue of the differential equation we have
d dP) , .
—n(w+1) [PuPdo= B0 a) Gofas;

integrate the right-hand member by parts, and take —1 and
+ 1 as the limits of the integration: thus we obtain

1
n@+1) [ !P,P,dzsfil(l-a’)%%dz.

—_— e




BY LEGENDRE'S COEFFICIENTS. 47

In precisely the same way we may shew that

m(m+1)f P.P.dz _f 1- a:’)dP dP"dz.

Therefore m (m +1) f P.Pdz=n(n+1) f P.Pdx.
-1 -1
Hence if m and n are different we must have
f ' P Pdz=0.

If we consider the indefinite integral we obtain by the
method of this Article

fmm+1)—n(n+ 1)}[P_(z)P.(z)dz

{p @ )dP(z) _p()?B) (w)}(l_x,):

this may be 1mmed1ately verified by differentiation.
From this formula we can find the value of f P, (x) P, (x)dz
between any assigned limits ; for example
1 .
(m(m+1)=n(+ D} || Pale)P.(o)do
— the value when @ =0 of {P (@258 _ p (L) (‘”)}

By Art. 7 the right-hand member vanishes if m and
n are both odd, or both even. Put 2m for m and 2n—1

for n; thus {2m (2m + 1) — (20— 1) 2n} f ' P,,,(a:) P, (2)dz

= the value when =0 of — {P (= ) (z)}

1.8.5...2m—1) 1.3.5...(2n—1)
2.4...2m ' 2.4..2n—32) °

As an example we may shew from this formula that

[} Pae) Pras(@)i = [ Prt) Prn(a) i

= (™
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. 63. The differential equation (2) of Art. 54 will be
modified in various ways by the transformation of the inde-
pendent variable : we will notice some of these.

I. Put x=cosf; then (2) becomes

d dP,
de(smﬁ d0)+'n(n+1)sm6P =0,

a'P, dP,
or i t0d0 +n(n+1)P,=0.
II. Let o*+p*=1; then (2) becomes

V@ -7 pue D5 -n @+ 1pP, =0,

2 PD.
o p(pt—1) "’dﬁw 2 —1) %_n (n+1)pP,=0.

IIT. Let 2z=E+&*; then (2) becomes

_ o d{{-“ 14P,
§'—1d§ df

o pE-DIE+E - nmaDE-1 R0

}+n(n+1)P 0,

64. The differential equation may be employed to deduce
various expansions of P, ; we will take one example and thus
verify the expression forP (cos 0) in a series of sines of multl-
ples of 8 which was obtained in Art. 39.

Assume then that
P, (cos ) =a, sin 6 + a, sin 20 + a, sin 30 +...;

and put this value in the differential equa.tlon I of Art. 63,
which may be expressed thus:

. o (d’P, ‘ dP,
sme{do. +n(n+1)P}+cos97i7—0

At
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The term a,, sin m@ gives rise to
a, [sino sinma{n (n+1)—m’}+mcoso cosma] ,
that is to .
";7"‘ {cos (m—1)0—cos(m+1) 0}{1; (n+1)- m’}

+m——;1‘{cos(m—1)0+cos(m+l) 0}.

The sum of all such expressions is zero by virtue of the
differential equation; hence multiplying by 2, and rearrang-
ing, the following sum is zero:

an(n+1)
+ a,{n(n+ -2+ 2} cos @

+ [aa{n(n+1)—3’+3}—al{n (n+1)—1'—1}] cos 26

As this must vanish for all values of 0, we find in suc-
cession @,=0, a,=0, @,=0, ... a,=0. Then when m=n+1,
we see that the coefficient of cos (n+ 1) @ vanishes, whatever
finite value a,,, may have. Also a,,,, a,,,, @,,,...=0. And
are connected by the law
m—n—2)(m+n-1) a

(m=n—-1)(m+n) ™
Thus we obtain P, (cos 6)
. 1.(n+1) .
=aﬁl{sm(n+1)0+1—.(2—n—+—§)-sm(n+3)9
1.3.(n+1)(n+2) . }
1.2.@n+3) @nt 5 t8)0+..p.
T. 4

Cpusy> am 4

Ay =
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This agrees with Art. 39 as to the terms between the
brackets, but leaves the value of a,,, as yet undetermined.
The differential equation will not enable us to determine
a,,,; for that equation will not be changed in form if instead

of P, we substitute the product of P; into any constant
factor. We may use the formula

0, == f P, (cos6) sin (n+1) 40 ;
and since a,,_l=0, we have '
0= ?;_f:P, (cos ) sin (n— 1) 6d6;
therefore, by subtraction,
a,,, = 4 f "P, (cos 6) cosné sin 6d6.

Now 2 cosnf = 2" cos™@ + terms involving lower powers of
cos 8 ; hence, by Art. 30,

== f -an (z) 2"2"dx
2 1
=2 f (1 —*)"dz, by Art. 32,
T

= -,2'.- f: sin™rdyr = 4 f zsin"‘”?d‘lf

_4 2 (2n—2)..
7 (2n+1)(2n - 1)

This agrees with Art. 39.
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CHAPTER VI

THE COEFFICIENTS OF THE SECOND KIND.

65. WE have seen in Art. 54 that P, (z) satisfies a certain
differential equation of the second order: according to the
known theory of differential equations we infer that there
must also be another solution, and this we proceed to in-
vestigate.

66. Take the differential equation

(1- w’)a?—2mgi+n(n+1)z=0,

and find a solution in the form of a series proceeding accord-
ing to ascending powers of z.
Assume z=a"+aaz™ +aa™ + ...,

substitute in the differential equaﬁon. and equate to zero
the coefficient of ™.  Thus we find that

Ggpyy (M + 27 + 2) (m + 21 + 1)
—aw{(m—+2r)‘(m+ 2r—1) + 2 (m +2r) —n(n+1)}=0,

(2r+m+n+1)(2r+m—n)
2r+m+2)2r+m+1)

This holds for every positive integral value of r.

therefore  a,,,=

. But in the differential equation there will still remain

the term m (m—1)2a™" and to make this vanish we must

have either m=0 or m=1, ‘
4+—2
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(3]
1o

Take m =0; then the series becomes
_n(n+1) St (n—2)n(n+1)(n+3) 2t .
E |4

Take m =1 then the series becomes

o (r—1) (n+2) &4 (r=3)(n—1) (n+2) (n+4) F e
3 |5

Now if n be even the first series consists of a finite

number of terms, and the second of an infinite number; if

n be odd the first series consists of an infinite number of
terms, and the second of a finite number.

The series are of the kind called hypergeometrical. The
general form of such series is

a.B a(a+1)B(,3+1)t,

Lty T e g+ 1)

1

a(z+1)(@+2)B(B+1)(8+2)
L VT 30/ ) ot A

and this is conveniently denoted by F(a, B, v, t).

Thus the first and second series are denoted respectively by
n n+l1 1 n—-1 n+2 3 ,)
F(-3 " g @) mdaF (<57, "5, 5, @)
In both series «, B, «y are such that 2+ 8~ =0.

The series which is infinite is convergent if « is less than
unity, but divergent if x is greater than unity or equal to
unity : see Algebra, Art. 775.

67. We infer that of the two series obtained in the pre-
ceding Article that which is finite = CP,(z), where C is
some constant. The other series furnishes, at least when
x is less than unity, a second solution of the differential
equation.

68. As another example we may proceed to find a
solution of the differential equation of Art. 66, in a series
proceeding according to descending powers of .

L A

-
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Assume z=a"+ax™ " +aa""+...,

substitute in the differential equation and equate to zero the
coefficient of 2™ Thus we find that

a, (m—2r)(m—2r—1)—"
aw,{(m—2r—2)(m—-2r-—3)+2(m—2r—2)—n(n+1)}=0.

This holds for every positive integral value of r.

But in the differential equation there will still remain
the term

w"‘{u(n+1)—m(m+ 1)} ,

and to make this vanish we must have
n(n+1)—m(m+1)=0,
80 that eitherm=norm=—n-—1.
Take m=mn; then the series becomes
o nn=1) n(n—l)(n-z)(n'-s)x,_,_m
2.(2n-1) 2.4.(2n—-1)(2n—-38) ’

8o that.it is finite, and of the form CP,(z), where C is a
constant.

4

Take m = —n—1; then the series becomes
1 (+D@r+2) 1
0T 2. (2m+3) "o
m+1)(n+2)(n+8)(n+4) 1 4o
2.4. 20 +3)(2n+5) @
and in the notation of Art. 66 this will be denoted by

+

1 n+1l n+2 2n+43
Zc,‘—ﬂF(2 ) 3 g 2 x"):

this is an infinite series, convergent if x is greater than 1,
but divergent in other cases. .

If @,(x) have the meaning assigned in Art. 37 this in-
finite series = CQ,(x), where C is a constant.
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69. We know from Art. 63 that by assuming’
—z+y/(a"=1)
the differential equation of Art. 66 may b_é transformed into

BB -2 T -+ (L £ =

Assume z=E"+af" " +afr i+
then, by the same method as before, we sha.ll find that

(n+1+42r- m)(n+m—2r)
(n+2+2r—m)(n+m— 2r—1)

Qor+2 =

and moreover that m(m 4 1) —n(n+ 1) = 0.

Thus either m=n or m=—n—1; and we obtain two
series which, expressed in the usual notation, are
1 2n—1
F‘F(QJ -n, _—2'_: Eﬂ)’ )
and ‘ é‘"“FG, n+1 2n‘+3, ‘g"")

The former series will be found to be the product of a
constant into P,(z), by comparing it with the formula given
in Art. 17. Hence we infer that the product of the latter
series into some constant will be equal to the Q,(z) of
Art. 68; or, which is the same thing, that

Q..(z)=>\f'"-lF(§’n+ 2n+3’ ) :

where A is some ¢onstant,

To determine this constant we observe that according to

Art. 37 we have a™Q, (z) = 1375 Lr‘b(.)n 1)

finite. But when x is infinite

when « is in-

g —
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g F (g, e, 23 ) -
2+ |n

therefore A=

1.3.5..Gn+1)"

70. Hence besides the solution of the differential equa<
tion of Art. 66, which is furnished by P, (z), we have always
another solution when = is either less than unity or greater
than unity : namely in the former case the solution found in
Art. 66; and in the latter case that found in Art. 68 or
Art. 69. The second solution is presented in the form of an
infinite series.

71. We may however express the second solution in a
finite form. Take the differential equation

a4z dz
We know that P,(z) is a solution, so that
d'P, dP,
1-2a% i 2z 2t n(n+1)P, = 0.

Let ¢ denote the other solution, so that
.(l—m’)f—ag—2x%+n(n+ 1)¢=0.

Multiply the former equation by ¢ and the latter by P,,

and subtract: thus ,
at ,d'P) d¢ .dP,
. ' d{,d¢ . d d¢ .dP }
2 - sl — b T n

that is (l—a:)_d—x{P,,dz ¢ dx} 29:{1’,# ol

Hence by integration we obtain

. d dP,
log {P. —g -¢ Z”—"} = constant — log (z* — 1),
or - = constant —log (1 — 2%),

according as « is greater than unity or less than unity.
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Hence, in both cases, €' being a constant, we have

¢ _,dP, _ C

Rt =71

d (1t C .

therefore e (P;) = PrE -0

therefore c = CP.{’(*I)")TJ(:‘j .

Thus we have the second solution expressed in a finite
form; and by properly determining the constant C, and keep-
ing to the former meaning of @, (z), we shall have

dx
Q. (.’L‘) = GP ® f(—PWx,TI—) .

72. The integration denoted in the formula of the pre-
ceding Article may be effected.

Let a, B, vy, ... denote the roots of the equation P, (x)=0,
which we know are all real and unequal. Then by the
theory of the decomposition of rational fractions explained
in the Integral Calculus, Chapter 11, we have

1 h ok
Py@—1) a-1"

4

A
z+1 t+3 w—-a)’+ Ex—a'

where 4, k, A, A’ are constants; and 3 denotes a summation
to be made by considering all the roots a, 8, v, ..., which will
give rise to other constants like 4 and 4’

We proceed to determine these constants.

We have h= when 2=1, so that A= ; R

N
L)' (x+1)’

=(1’—)"%M’ when =1, so that k=—

and k 3"

. S
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Also A= ( P(;: ( J;) )’ when x=a,
. (z—a) -
and . A =7z {(7)“),(—;‘_—1)} , when x=2.

‘We shall now shew that 4"= 0.
Let P, = (x—a) R, so that

A'=£ {—'—(;T‘}, @en zT=Q,

@ -1 re

=2 W when £ =42.

Substitute (z— ) R for P, in the equation (8) of Art. 54;
thus

1-=" {(a:—a) Z;iz+2@} {(a: a) —+R}
' +n(n+1) (x—a)BR=0,

so that when #=a we have (1 — a:’) @—-Ra: 0; therefore
A’=0. Hence we have

S 1 1 A
Q..("’)=0P..("’)f{2 -1 2@+1) + 3% (“;—a)’}dl

Therefore if « is greater than unity we may write

0. =-CP.@ fjlog 2] + 3 w0} ),
and if @ is less than unity
0.®)=- 0P, ){ 1og1+""+2 }....(2),

where C, denotes a constant.



58 THE COEFFICIENTS OF THE SECOND KIND.

* We do not mean to assert that C and C, must have the
same values when & is less than unity as’ when 2 is greater
than unity; but only that C and C, do not change in (1)
so long as @ is greater than unity, and do not change in (2) so
long as  is less than unity, )

73. Let us suppose for example that « is greater than
unity; then the right-hand member of (1) is an expression
with fwo arbitrary constants, which satisfies the differential
equation of Art. 66; hence it is the complete solution of that
equation, and by giving suitable values to the constants will
coincide with any special solution which may have been
obtained. Take for example the series at the end of Art. 68.
This vanishes when « is infinite. But the part between the
brackets in (1) reduces to O, when « is infinite; hence the
whole expression will not vanish unless C,=0. Take C,=0;
then by properly determining C this expression (1) must
coincide with the series at the end of Art. 68.

74. Suppose for a particular case that n=1. Take
C =0; and put . :

1
1+-
w+1 1 1 1
log _1=10g-—?= 2(5+@+5—,+...).
1—=
x .

Also in this case a=0,and 4 =-1.
Thus we obtain from (1)

1
0.0 == Oo fyst g+
and this agrees with the result at the end of Art. 68.

75. In like manner if « is less than unity the formula
(2) of Art. 72, by giving suitable values to the two arbitrary
constants, will coincide with any special solution. For in-
stance, take n = 1; then we get

1+2 1
- Gofglog1tE- 2+ 0}

PR S —

e -
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This will coincide with the first series of Art. 66, if we put

C,=0and expand log m ascending powers of z.

1

76. We have seen that if (1) of Art. 72 is to coincide
with the result of Art. 68 we must have C,=0: it will be
convenient to determine the connection between C and other
constants which present themselves in our process,

Let  be a constant, and suppose that we put

. (n+1)(n+2) 1
Qu—h{ ntl 2 (2n+3) wn-n +'-"}:

so that @, reduces to hz™* when = is very great.
We know that P, = kz" + terms in 2%, 2*%, ...;

where k= M
=
Q. c
By Art. 71 we have P, ——Q,, dx ==3

so that when 2 is very great
_hk@2n+1) C
a T2 -1
and therefore C=—Fkk (2n+1).

* For instance, if we put C=—1, so as to give to (1) of
Art. 72 its enmplest form, we have hk (2n+1)=1; so that

= [ZESWa This value of h makes the @, of the present
Article exactly coincident with the @, of Art. 37.

77. Taking then for simplicity C,=0 and C=—1in (1)
of Art. 72, we have, when z is g'reater than unity,

Q@)= P(a:){ e+ 2—-—}

T—a
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this agrees with Art. 37, and we shall use this as the value
of @, (x) when x is greater than unity.

When 2 is less than unity we shall take
1. 142 A
0. =P f3los T2+ 2]

x—a)’

78. - We have then by the preceding Article, for the case
in which « is greater than unity,
z+1

Q@ =3P, () log 21—

where R denotes a certain rational integral function of @ of <
the degree n—1. We shall now express B in terms of
Legendre’s Coefficients.

Substitute this value of @, (x) in the differential equation
of Art. 66, which we know it satisfies; thus we obtain

R,

1, z+1 a'P, dP, ‘
'2’1°gx—_1{(1-“7730?‘2”%”("“)1’-} )
dP, d’R dR _

By Art. 54 this reduces to
o 'R dR _odP, .
and therefore, by Art. 38,
d’'R dR
(l—a:')W—Zx£+n(n+1)R

=2 {(2n ~1)P_+@n—5)P,_+@n-9)P,, +...}...(3). '

Assume now R=aP, + aaP,, ++aP,, +...; where
a,, a,, a,, ... are constants to be determined.,
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When P,., is put for B in the left-hand side of (3) it
reduces to {n(n+1)—(n—7r)(n—r+ 1)} P,_,, that is to

r(2n+1—7) P,,. Hence by comparison with the right-
hand side of (3) we see that if » be even a, vanishes, and
. 2(2n—2r+1)
that if » be odd QA= —r-(m . Thus ﬁna.lly
2n -1 2n-5 2n-9
R = 17 P._1+3 (n_ 1) PH+5—(n__2)PH+....(4).
The series in (4) ends with the term involving P, if n be
even, and with the term involving P, if n be odd.

79. In obtaining (4) we began by supposing z greater
than unity ; but it 18 obvious from the form of the result
that it is universally true ; for the rational integral function

-P, ()3 ;{—a , being equal to the rational integral function
which forms the right-hand member of (4) when « is greater
than unity, must always be equal to it.

In future we shall cease to distinguish between the forms
(1) and (2); that is, we shall use (1) and leave to the student
the task of examining if necessary how far the investigations
apply also to (2).

80. We may shew in another way that

1 +1
Q.(x)= 3 P, (z) log 2:1 -R,

where B denotes a rational integral function of the degree
n—1. For by Art. 37 we have

1 .
sy =T +1) Q) B );
therefore by Art. 28,
10 P.(ydy,
() =5 f L =y
this may be written

_1_ ! P-(“")"P-(.’l)

1 1 dy
Q-(a')=‘-2 N z—y dy+§P,(x)f_lE_—§.
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P-(-’”)"P-(I'/) :
w—

The expression is obviously a rational

Yy
integral function of = and y of the degree n—1, and after

integration with respect to y between the limits will be a

rational integral function of a of the degree n—1. Also
Y .7t
i -1

« Thus the required result is obtained.
2=y el

81, It is found convenient to use the symbol D to stand
for gfv’ for abbreviation ; thus %: is often denoted by D".
In like manner the symbol I may be used for integration;
so that f'vda; may be denoted by Iv; and if fvdx is to be

integrated again we may denote the operation by I'»: and
generally if the operation of integration is to be performed
n times in succession we may denote this by J™v.

These abbreviations will enable us to present some re-
sults in a compact form. _

In the next five Articles we shall use C' to denote a con-
stant without assuming that the same constant is always to
be understood: we shall also use C with various suffixes for
constants under the same liberty of interpretation.

82. We know that P,(z)=C gl_(gt_:ll , which we may
write thus, .
P,(x)=CD"(z"—1)"....ccevvuuueennn. (5).

Now we saw in Art. 68 that a series for Q,(z) can be
derived from one for P, (z) by changing n into —n—1; and
thus we are led to conjecture that an equation of the follow-
ing form will hold :
Qu(@) = CD™ (" =)™
But according to an interpretation of symbols suggested by
the fact that integration is the reverse of differentiation, we
may presume that D™ is equivalent to I™"; so that we
should have _
Q@)= CI" i (©,

(a;'—-l}.'“" TTTTTTN ceree

e
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or, which is the same thing,
n C :
D *'IQ.(x) = (wT_—l)Ti ------------------ (7).

We have then to establish (6), or its equivalent (7), to which
we have been led by analogy.

83, Take the expression for @, given at the beginning
of Art, 78, namely

1
Q.= 3 P, log

and differentiate n+ 1 times.

The (n+ 1)*® differential coefficient of B is zero. Apply
the theorem of Leibnitz with respect to the first term in Q,.
The (n+ 1)* differential coefficient of P, is zero. The first

differential coefficient of log:ii is —x"—2- i3 and every

w+1_

a1 B

succeeding differential coefficient will introduce another
power of 2'—1 into the denominator. Thus the (n+1)®
differential coefficient of @,, when all the terms are brought

to a common denominator, will be of the form (w,—_?'l‘)_“ﬁ .
Moreover T must be a constant. For if the highest powér

ntl

of z in T were a™, then when x is very large oy would
—in—2tm, )
)

be of the same order as z whereas we know from
Art. 68 that it must be of the same order as #™® Hence
T is constant, and thus (7) is established.

Or we might verify (7) by differentiating n 41 times the
expression found for ¢, in Art. 68.

84. We shall now obtain the result of the preceding
Article in another way.

Take the differential equation

d’z dz
(1_a’)ﬂ‘_2x%+n(n+l)z=0 ......... (8).

Differentiate; then after reduction we obtain

d®z d’z : dz
(l—z’) z;,-4'$d7c;+(ﬂ—1) (ﬂ+2)(T;_= 3
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Differentiate again; then after reduction we obtain
d'z d’z d'z
@ _x') d'a;‘—6zd.%;‘+ (n—2) (n+3) dit =
Proceeding in this way we find after m differentiations

(1- w’)d.:::" 2(m+1)xdwm+|+(n m)('”""'m"l'l)a?_o

| eeesisereniieienaneenn, 9).
Now the general solution of (8) is
2= 0P, @)+ CQ, (=),
and hence we see that the general value of gx"‘ in (9) is
d™P, (z) arQ, (.1:)
e T O
Let m=n; then (9) becomes
(l“wz) d‘znﬂ -2(n +1)wd w1 =0.
d l
This can be obviously solved; put = for ——+ ot : thus

(l—a:’)a%:=2(n+1)xu;

therefore — == - e

therefore  logu = — log (2* — 1)*" + a constant ;

c

therefore u= -1 H

d*u dx
thus -(ZT.” = Cfm .

R o S

-

e
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~ Hence it follows that by giving suitable values to C, and
C, we must have

d"P,
Cld't +OI '\ Cf( )lﬂ
But ﬁ: is a constant; and thus

du'l-lQ" _ c )
0: " = (.’l:’—- 1)u+l ’
this agrees with the result of Art. 83.

85. We may observe that equation (9) may be put in
the form -

(=) (ot m+ 1) (1= ok S - =0

this will be satisfied when for z we put P, (x). This equation
with respect to P,(z) has been called Jvory's Equation; it
was given by Ivory in the Philosophical Transactions for 1812,
page 50.

86. Again, suppose a quantity { to be determined by the
differential equation

'(l—a:’) +2(m— ])z +(n m+1) (n+m) ¢ =0...(10).

If we differentiate this » times in succession, we obtain

(1- w’) T 2 (m—r— 1)zd:£

+m—=m+r+1)(n+m-— r)d'c-

Thus if »=m we have

dnﬂc d""’é‘ dmc -0

(1-2" dxgﬂ_:zxdzwi'l'(n'*'l)nﬂ—

...... 11);

which is of the same form as (8).
T. b
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Now if m =n equation (10) becomes

a’ d
1-a" ¢E§+ 2 (n—l)wT£+ 2n¢=0;
one solution of this is &= O(a®— 1)*, as may be immediately
verified. Then, by the process of Art. 71, we can find the
other solution ; and thus the general solution will be found
to be

£= 0,6 -1 [ e,

where a second arbitrary constant may be supposed to be in-
volved in the integral. Or if we prefer to denote this con-
stant explicitly, we may take for the general solution

£= 0,61 [z T+ G -1

Hence the solution of (11) if m =n is obtained by taking
this value of { and differentiating n times. But we know that
the solution of (11) is of the form C, P, (z) + C,@,(z). Hence
by proper adjustments of the constants we must have

O,P(@)+ 0,0.0) = O, g (@ -1 [ T}
10, L @1

As we know that Q,(z) does not contain any positive
power of , at least when « is greater than unity, we infer
that

0u(0)= @~ " [ Zsem} o (19).

This gives another form for @,(%). By comparing it with
that furnished by equation (6), we infer that for some value
of the constant C we must have

o =g @ [ @ S5t
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The constant C may be determined by supposing  inde-
finitely great'; for then the equation becomes

1 _ & [ (e
O =g o [}

= 1 @ 1) .
2n + 1 da* (5 ’
this gives O=|2n.
87. Since the general solution of (li) is
a ' :
FL= 0,2, )+ C,0, ()

1t follows that the general solution of (10) is
{=C,I"P,(z) + CI™Q,(x),
and we may use for Q,(x) either of the forms (6) and (12).

5—2
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CHAPTER VIL

APPROXIMATE VALUES OF COEFFICIENTS OF
HIGH ORDERS,

88. SUPPOSE & positive and greater than unity. We
have by Art. 17, |

P,(w)=kf‘{1+1—:—(%1£T)E"

- 1.3.n(n—-1) ._,

H o @G-y @n-5° "'}
where k stands for 1—:1—2,,(@'&——1)

‘When 7 is indefinitely increased the series between the
brackets becomes ultimately

1,,,1.8,,.1.8.5,,
1+g8i+g 38 tg 468t
that is , 1-g91
Thus P (2)=kE{1-ENY4¢,

where e denotes a quantity which diminishes indefinitely as
n increases indefinitely.

Now k=éﬁ"&f@; and by applying the formula given in

the Integral Calculus, Art. 282, we see that when n is very
great we have approximately % = —l—__ .
Nnw
Thus finally when « is positive and greater than unity,
and n very large, we have approximately
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B S A
P @)= vy

We suppose « positive and greater than unity in order
that £ may be greater than unity, and so the series between
the brackets convergent when = is very large.

The case in which # is negative and numerically greater
than unity may be made to depend on that in which « is
positive by the relation P, (— ) = (—1)* P, (z).

89. Now suppose 2 numerically less than unity. Put
cos @ for z. In Art. 39 we have shewn that

4 1.(n+1)
P"(coso)-'rrk(2n+l){s 1.@2n+3)
1.3.(n+1)(n+2)
1.2(2n+3) (2n+35)

where k has the same value as in Art. 88.

If we suppose n to increase indefinitely the series between
the brackets takes ultimately the form

in(n+1)0+ sin (n + 3)0

+

sin (n;l- 5) 0+...},

sin (n+1) 0+ g sin (n4+3) 0+ 2 o sin (3 45) 0+ ...,
. . 1 1.3
that is sin nf {cos0+§cos30+2—4cos50+...}
. 1. 1.3.
~ +cos né sm0+§sm30+2—zsm50+...}.

We have then to find equivalents for the two infinite series
just indicated.

Let ¢ be a quantity less than unity;

put tcos@+%t’cos3€+%l%t"cos50+... =C,

and tsino+§t'sinsa+;;zt’sin5o+... =8

Thus both C and § denote convergent series.
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Then C+iS=ted+ S04l dppoy .
_ e te
TNA-t2e¥) Y1 —t'cos20—¢¢sin26)°

Assume 1—#'cos20=pcos¢p, and t'sin20=psin¢;

b= fsin20
T 1-fcos29°

so that p*=1—2¢'cos 20 +¢', and tan

Then C+¢8=
V;te:. "=~/L’—)e‘(‘+$)=7t;{cos (0+%)+tsin(8+%’)}=
so that C=~—/t~;cos(0+§), and S-_-_I;;sin(o_*_%).

These results may be admitted to hold so long as ¢ is less
than unity. Assume them to hold even when ¢ is equal to
unity. We have then

p'=2(1—cos26), so that ¥p=+2sinb;

_ -sin20  cosf L T
tantﬁ.-m—m—t&n(§—0), so that ¢—§ 0.

Hence when n is very great we have approximately

sin né cos (0 + %’) + cos n6 sin (0 + 4’)

|8

P'(cosa)=;i'n_ ¥2sin 0 :
9 sin(n0+0+g) 0 sin(n0+g+;)

Twkn T w2sm@  wkn v2sind
and as k= 1 approximately we have finally as an approxi-
vnw :

mation when n is very great

V2 0 =«
P,(cos0)=mcos(n0+ E—I) ......... (1)

U,

et —— e ——
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90. The result obtained in the preceding Article is due
to Laplace ; it cannot be accepted with great confidence: it
does not lead in any obvious way to the value unity when
6 =0, which we know ought to hold for all values of n.

Laplace himself gave two investigations, both in the M¢-
canique Céleste, one in Livre XI § 3, and the other in the
Supplément au 5° Volume; they differ from that of Art. 89,
but do not seem more satisfactory. We will reproduce the
latter of them.

By Art. 63 we know that
4 P, dP, _
wr +cot97‘w +n(m+1) P,fO.
Assume that
P,=ucosafd+u'sinad, .................. (2),
where u and «' are functions of 6 to be determined, and
a=+~n(n+1). Substitute in the differential equation, and
equate to zero the coefficients of sinaf and cosad. Thus

du 1/dy  du
2d—0+ucot€=a<-cw;+d—ecot0) )
o v Ldw dw N[ .
2w+ucoto=—;(@;+d7cot0)

If we neglect the terms divided by @, which is large since
n is supposed large, these equations become
du

+ucotd=0, 2zw+u cot=0;

du

do

.and hence we obtain

u= _H u = —E_—
Vsin8’ Vsin @’

where H and H' are arbitrary constants.

2

These may be regarded as first approximations to the
true values of % and %'; we may then assume

H X , B X
Vet a “TVUsne'

u
a’.
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and substitute these values in the differential equations (3)
and proceed to find, at least approximately, X and X',

But we shall confine ourselves to the first approximation,
so that we have from (2)

P, = (H cos af + H’ sin af)

4/111

c
Y. 0+9),
A/sin @ cos (af +)

where C and ¢ denote certain constants.

[

And asa =./n(n+1) we have approximately a=n +% ,

C 0
so that P, = = Tonp cos (nﬂ +g+ 'y) .

To determine the constant ¢ we observe that if n be odd
P, =0 when 0=7§r; this leads to ¢ = —) , 80 that

c 0
=g °° (n0 +3 4)
To determine the constant C we observe that if » be eéven
and denoted by 2m we have by Art. 7, when 6=7—; ,

p__2m -
"= m[m (=17
[2m
therefore . C= 2,,,,_an .’
and by approximating as in Art. 88, we have
1 V2
0 =—" = —
Nmm  Nnw

Thus our result agrees with (1).
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91. Laplace’s other investigation of (1) starts with the
expression of P, (z) by means of a definite integral given in
Art. 44; we shall not reproduce this. It is however easy to
shew that when n is very large P, (z) is very small if z is
numerically less than unity.

For we have P, () =;rf’r {x— ¢ /(1 — &) cos ¢}* d¢p.
0
Assume z=p cosvy, and 4/(1 —a’)cosp=psiny;
thus P ()= % f 'p"‘{cos nyr + ¢ sin nyr} dp.
0
The imaginary part vanishes and we get
P (z)= lf* p" cos nyr dep.
o
Now when = is very large the value of this expression is
very small on two accounts; p" is very small except when
«=1; and cos ny{r fluctuates very rapidly in sign.
92. Another investigation of the value of P, (x) when n
is very large is given by M. Ossian Bonnet in Liouville's

Journal de Mathe’matzques, Vol XVIL pages 270...277.
d'P,
We have g + ot 0 0 *+n(n+1)P,=0.

Assume P, =u (sin 6)7}; thus we obtain
d'u + 1)’ %
a (“+ 3) "= "asin’ 8’

. 1 v, o ©
putting m for n+g we have et miy=— y ey R (4).

Multiply by sin mf and integrate ; thus

du u sin m0
sin mf 75 — Mucos ml = C, — 3 f s 0 ...... (5),

~ where O, is an arbitrary constant, and a a fixed quantity

which may however be as small as we please
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In precisely the same manner, by multiplying (4) by
cos mf and mtegra.tmg, we obtain

u cosm@ 0

cosme +musmm0 C,—- Qf o 0

Eliminate Z-Z between (5) and (6) ; thus
mu = C, sin mf — C, cos m@

—goinmd [T 30+ Lconme [ 25010 g

sin® 6

This may be expressed more concisely; for let ' denote
the same function of & that u denotes of 6: then

-—smmﬁf ucosmed0+cosm0f us.m,modo
sin® @

=—sinmf [ "2 a1 cosmo [ "L INTE 49
sin* & sin* ¢
f‘u’smm(@l ﬂ)de,
- sin® 6

Thus expressing the constants C, and C, in terms of two
new constants b and 3, we have

_ beos (mf + B) *w sinm(0—0) ,,
s m[ AL )

Denote this for abbreviation thus :
_ b cos (md + B)

m

yrl dOF

then, by substituting the correspondmg value of %’ in (7),
we get

_b coé (m0+ﬂ) f %cos (m@' + B) sinm (¢ — 6) do
4m

m sin* &

oy (6" sinm (¢ -9) ,,
16m f dg’.

sin* ¢

Y D,
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The last term on the right-hand side involves «', for %’
occurs in 4 (¢"). The process of substitution may then be
performed again if we please; and so on.

Finally it will be necessary to determine the values of b
and B: we observe that they are constant with respect to 6,
but M. Bonnet assumes that they are constant with respect
to n, and this appears to me a serious fault in the rest of
his process ; in fact, quantities are retained which are of the
same order as those which are neglected.

93. We will briefly advert to the value of Q, (z) when =
is very large, supposing « positive and greater than unity.

We have by Art. 69,
. I | 2n4+3
Q.(w)=7\<f' F(ﬁ: n+1, g E-’)-

this becomes approximately when = is very great
S T
0.0 = 7 g

2 . .
and x_(_2n+—1)_k’ where k is the same as in Art. 88 : thus

approximately



CHAPTER VIIL

ASSOCIATED FUNCTIONS.

94. THERE are certain functions analogous to P, ()

which present themselves naturally in the course of our
investigations, and we now propose to consider them. They
may be called Associated Functions of the First Kind.

95. We have seen ;m Art. 47 that

P.() = f" £+ V(@ =1) 08 $Jd -ovrtovenen ).

Now we may expand {x+4/(2"— 1) cos$]* in a series
proceeding according to powers of cos ¢, and then the powers
of cos ¢ may be transformed into cosines of multiples of ¢ ;
thus finally {z + 4/(2* — 1)cos ¢}" may be arranged in the form

a,+ a,cos ¢ + a, cos 2¢ + ... + a, cos ng,
where a,, a,, a,,... a, are functions of z, but do not contain ¢.

Hence it follows from (1) that
P (x)= f 'aod =qa,m;
o

R (2 "
therefore a,= :;P. (@)= ;;.—md—(z_;—l) .

We shall now determine the value of a,, where a,
denotes any one of the series a,, a,, ... @

—_— e

)

~
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96. We have

z+4/(2"—1) cos¢=x+v(xn_1)e“+e'4

2
_ 2aet4/(at—1) (24 +1) _2z4/(22—1) e + (22— 1) (e + 1)
- 2¢% = (@ 1)e?

=(a:+z)'-—1
2z ?

where z is put for 4/(z* —1)e*.
Thus 2" {z+ /(e — 1) cos ¢} = {M}

z
Now we may expand {(z+2)'—1]" in powers of 2, by
Taylor’s Theorem ; and thus if u stand for (z*— 1)* we get

2" {z + s/ (@ — 1) cos ¢}"
1 du 2 d' 2™ d™u
=?{u+zz—v+@- d—?+-..+@a—w‘."}.

The series ends with the last term which is here ex-
pressed, because u is of the degree 2n in .

Re-arranging the terms we obtain
2" {z + /(2" — 1) cos ¢}"
_1 d"u+ z d'“u+ 2* d""u_l_m + 2t d™u
L'zdw. |n+1 dz" |n_+2 e @ dat*
2t d"w 27 d"u

taoide Tp—gdgs T +e %

Now put e#4/(2* — 1) for z; then the series resolves itself
into two parts, a real and an imaginary part. From Art. 95
- we know that the result is entirely real, so that the imaginary

part must disappear. This imaginary part consists of n
terms, of which the m™ is .

@-1)3a"  (@P-1)"1d") .
a{ Tntm pr =m d:z:"""'_} sin m¢.



78 ASSOCIATED FUNCTIONS.

Hence we see that these terms must separately vanish ;
so that we obtain the formula

@ =1 1) (P—1)"Fd" " 1) );
[ntm -~ dx*™ |n—m dg*™ VD

this holds for positive integral values of m from 1 to # in-
clusive.

Hence finally we have
2" {z+ /(=" — 1) cos ¢}*
C1dE 1) o (@ 1)idE 1)
Tl d2* In+m dz*™
where 3, denotes a summation with respect to m from 1 to n

inclusive. Moreover by (2) we may if we please change m
to —m in (3).

+ 23,

cos me....(3);

97. Now the functions which we propose to consider are
the coefficients of the cosines in (3).

We see that the coefficient‘of cos m¢ is
@ —1) 4™ (P 1)
|n+m - da™™
It will be found that
drm@=1_ |2 (L emm-m-1) .,
™ p-m | T 2.@m-1) °
n—m)n—m—-1)n—m—-2)(n—m—8) , .,
2.4.2n—1) (2n—3) "’ ‘}
We shall denote the series between the brackets by
w (m, n); so that
|n—m grm (52— 1 |n—m g d"Pz)
|2—n hﬂ"‘- = @ I_n_ &- .
= n—m d"F, (z)
RS W e ) < R ).

+

@ (m,n) =

therefore & (m,

.~ —
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Thus we may express (3) iﬁ the form
2" {x + 4/ («® — 1) cos $}*
1 d*(2*—1)* 2n
=E (dx" ) + 23, n+|— (.1:’ 1) w (m, n) cos me.
We may if we please replace the first term
1d"@*-1)
[»  da*

by II_—LW 0,n);

so that % {w +#/(a*— 1) cos 4;}
_=0n) o (@ 13

pn T rmpm® (" csmd.

In cases where it is convenient to express the variable
we might use @ (m,n, z) instead of the shorter = (m, n).

23

98. It will be seen that we arrived indirectly at equation
(2) of Art. 96 ; but it may be established in a direct manner.
The result may be put in this slightly generalised form :

(z+a)" (+d)" d"™ (x+a)"(z+b)" 1 d"™(z+a)"(z+b)"
|n+m dz™™ Tjp=m dz"™ :
To demonstrate this, develop the two members by the

aid of the theorem of Leibnitz; use .D for ——

T’ for abbreviation.

Then in the development of ™™ (z + a)*(z + )", the first

term which does not vanish is |ntm D(z+a)" D™ (z+0)",
™

that is (®+0)"™; and in like manner the

I_ l— In m
r* term of the development, counting this as the first term,
w1ll be found to be

n+m
[n = r-{% [m+r=1 D+ o) DM @ 4 B
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that is

'n+ m ~1 n-m-rtl
[pn—r+1|m+r— 1|r (a:-l-a) [p=m—r+1 (‘”+b) :
we will denote this by 4.

Similarly we find that the ** term in the development
of D" (z+a)"(x+d)" is

|n—m

mom—rrir=12 @t D@,

that is
|n—m n
|[pn—m—r+1|r—1|m+r—1
we will denote this by B.
Then we see that
(:z:+a)"(w+b)"‘A 1 B-
[ﬁ +m |n -m

.and this establishes thé required result.

n
(z+ a mtr-1 ln g_'_l (KD+ b)u—rﬂ

99. The functions which we denote by (2" — l);w(m, n)
are called .Associated Functions of the First Kind: Heine
denotes them by P, (x).

100. We have seen that the differential equation (9) of
Art. 84 is satisfied when P, (x) is put for 2. "Hence from
equation (4) of Art. 97 it follows that

(1 = gty L= (M) d'a'(m, d'w(m,n) 2(m+l):vdwg:' n)
+(n-m) (m+m+1l)w(m,n)=0...... (5).

Now the expression which we have denoted by

(=*— 1)%w(m, n) is equivalent to (a'— l)-;'ur (—m, n), as
we see by Art. 96. Hence we have
o (m,n) = (" - 1)™ = (- m, n),
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and substituting in (5) we find that

(l_z,?d'wfl—#m,n)_l_z( b—l)xdw( -m, n)
+(n+m)(n—m+1)w(—mn)=0...... (6).

It will be seen that (6) differs from (5) only as to the
sign of m.

‘We have deduced (6) from (5) without assuming anything
relating to = (m, n) except that it satisfies (5). If then we
get the general solutions of (5) and (6) we may equate the
latter to the product of (z*—1)™ into the former.

Now we know from Art. 84 that the general solution of

(3) is
w(m,n) = C,D"P,(x) + C,D"Q,();

and we know from Art. 87 that the general solution of (6)
may be expressed thus:

w(—m,n) = C,D™P,(z) + C.D™Q,(z).
Hence by proper adjustment of the constants we shall
have
(.’D’— l)m {CLD“R (z) + Oaan(z)}
= C,D™P,(z)+C D™Q, (x).

By considering the integral and the fractional functions
of « which occur in this relation, we see that it must break
up into the two

(-1)"C,D"P,(x) = C,D™P,(x)......... (7),
and (@-1)"C,D*Q,(x) = C,D™Q,(2)......... 8):
these hold for positive integral values of m not exceeding n.
101. Equatién (7) coincides with a result already ob-
tained in Arts. 96 and 98,

Equation (8) takes various forms, according to the
expression we use for Q,(x): see equations (6) and (12) of

T. 6
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Chapter vI. Thus we have the following results, in which
C denotes some constant :
(x — l)m b bt 1 1

F_1™m= = CI"™" <,
(@*—1) (@'-1)
1

(“" - 1)”‘ I ( ] 1)..1-1

= oo -1 [ ol

2 m - wimt1 1
('7; _l) -Dm{(x’—l) (.'l:’ l)n-ﬂ} CI (a:" 1)n+1)

(= 1) D {(w'-—l)" W}

_CD"""{(.@’ 1 f T 1)'-*1}

The constant . may be determined by special examination
in each case, as in Art. 86.

‘We shall find in the first and fourth cases

o2tm

_m’

n
n+m
in the second case C= 1

|z

n—m’

E
:

and in the third case C'=(2n .
n—m

Of the first and second cases one will follow from the
other by the aid of the result obtained in Art. 86, if we in-
tegrate that result m times; in like manner of the third and
fourth cases one will follow from the other.

102. We see by Art. 100 that = (m, n) satisfies the
differential equation (5), namely

(1- a;,)d‘w(m,n) —2m+1)w dw‘(ir:,n)
+(@m—m)(n+m+1) = (mn)=0,

IA




ASSOCIATED FUNCTIONS. 83

Put y = (2*—1)? @ (m, n), so that w (m, n)=y (&'~ 1) 2;
substitute in (5), and we thus obtain
A2 TY 2001 -a) ¥
+{n(n+1)—m'—n(n+1)aly=0.......... 9).
Conversely we may deduce (5) from (9) by putting

=(2"—1)? @ (m, n). As the general solution of (5) is
known we know that of (9), namely
L

= (o —1)2 {C,D"P, () + C,D"Q, ()}.
By Art. 100 this is equivalent to
= (@—1)78 [CD™P,(2) + CD™Q.(x).

103. Put o for w (m, m) for abbreviation ; thus we have
from (5)

(1—#)75—2(m{1)x%+(n—m) (R4+m+1)w=0.

We shall transform this by a substitution of which we have
already made use; namely 2z = £+ §7,

8o that 2@ -1)=E-F"
do _dwdf dw x E+E
Now d—x—EEd_x_d—E(1+V(a’ 1)) (”s r*)
—olm &
dff! 1)
&’ d (de E* df £ S’g’i_gle,
e 2€(d‘;‘§’ o) 2 =4(p0 )df" (GISVFTS

therefore (1 —2*) %‘; =_% (f_;;l_)'d’w _g Z’; 522_31 g% ’
dw 2(m+1) '+ D Edw
£-1 dE*

and 2(m+1l)z
6—2
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Hence by substitution and reduction we finally obtain
: Tz op d
EE-DZE+AEm+ i)
—(n—m) (n+m+1)(E -1 w=0.......... (10).

From this differential equation we shall obtain a series
for = proceeding according to descending powers of £.

Assume w=a,f'+a, " +a ..,

substitute in (10) and equate to zero the coefficient of £ ;
thus

Qyyyy (8—2r—2) (8—2r—38) —a,, (s—2r) (s—2r—1)
+2ma, (s—2r)+2 (m+1)a,,, (s—2r—2)
~ (1 —m) (14 m+1) (@4, — 8y =0. ... (11).

Moreover in order that the coefficient of £ may vanish,
we must have s(s—1)+2(m+1)s— (n—m)(n+m+1)=0,
that is, 8 (s+2m+1)— (n—m) (n+m+1)=0; so that
8§ =n—m is a solution.

From (11) we have by reduction

am,{(s_zr-2)(3—2r+2m-1)_(n-m)(n+m+1)}

=a’,{(s—2r)(s—2r—2m—1)-—(n—m) (n+m+1)}.

Substitute » — m for s, and we obtain finally

_(@2r4+2m+1)(n—m—1)
Cen= Ty 1) (2n—2r—1) O

Thus we get

- n—m ( _m)(2 +1) n-m-3
"‘"”°{E + nl.(2n?1) ¢

(n—m)(n—m—1)(2m +1) (2m +3)

+ 1.2.@n—1)(@n—3) E""""+...};
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the series between the brackets is to be continued until it
terminates of itself.

The value of e, may be found by comparing the first
term of this expansion with the first term of the expansion
of = in powers of z, which is given in Art. 97, and supposing
« indefinitely great: thus we get a, = 2™,

If we put cos @ for z we have £ = e®; then the imaginary
part must disappear from the expression for @, and we
obtain

a=2‘l+"'{003 (n—m) 0+(_”1;.T_2)1(‘2_"n—]jl?cos(n—m—2) e
(n—m)(n —m—1)(2m +1)(2m + 3)

Tl e @n—1)(20—8) COS(n—m—4)0+...} ;

the series between the brackets is to be continued until it
terminates of itself.

104. The last formula shews that if = is not greater
than unity then = is greatest when x is equal to unity. This
value of = may be found most readily in the following
manuer.

By (4) we have

[p—m a"P,(z)
1.83.5...2n-1) da™ °’

@ (n, n) =

and, by Art. 18, when =1 we have
d"P, () _ m+m)(n+m—1)...(n—m+1) im
C [m {m 2"
|n+m .
T2 mn—m’

s0 that when =1 we have

|n+m
) = m1.3.5.. @)
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105. 1If in the process of Art. 103 we change the sign of
m, we shall obtain an expansion for = (—m, n); and thus we
deduce another formula for w (m,n) by aid of the relation
w (m,n) = (2’ — 1)™w (— m, n) given in Art. 100.

106. We know from Art. 97 that = (m,n, cos 8)

n—ne_(n—m) (”_m_l)c

pa— n—m-—g
= cos 2.@n=1) 08 6

(n—m)...(n—m—3)
2.4.(2n—1)(2n—3)

It is obvious that by virtue of the relation

+ cos" ™0 ....

sin* @ + cos’ 0 =1,
this series may be put in the form
b, cos"™ @ + b, cos®™* @ sin® @ + b, cos" ™ sin* 0 + ...

It will be found that we shall thus obtain = (m, n, cos ).

_ o _(n—'m.)(n—m—l) -t ) .t 2
= (m, n, 1) {cos 0 i (mil) cos"™* @ sin’ 0

, (m—m)...(n —m—3)
T (m+ 1) (m + 2)

To establish this, let us suppose that the original series
is denoted by

cos"™*@sin* 0 — .. } ...... 12).

cos"™ 0 +a cos"™ " +a,co8"" 0 +...;
divide by cos"™ 6, and put £ for tan® @ : then we must have
1+a,1+¢)+a,(1+t)+a,A+8)°+...
=b,+bt+bt+b+...,
and from this identity we are to find &, 3,, 5, bys e
Equate the terms independent of ¢; thus we have
b,=1+a,+a,+a,+...,
that is b, = (m,n, 1).

50 . S
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Equate the coefficients of ¢"; thus we have

1
b' = ar + (7! + 1) a'+l +_(r-'-—2;2(1+_)arﬂ

(r+3)(r+2)(r+1)
+
3
(r+2)(r+1)a,,
[2 a,
(r+3) r+2)(r+1)aq Ten | }
3 il R
—al1— (n—m—2r) (n—m—2r—1)
o 2.(2n-2r—1)
(n—m=2r)...(n —m— 2r—3)_ )
2.4 2n—2r—1)(2n—2r=3)
=a@(m+r,n—r1). '
Similarly b, =aq, #m+r+1,n—r—1,1).
Therefore Besy =‘h.w(m+r+l’ n—r-11)
b a, a(m+r,n—r1)
(n —m—2ry(n—m — 2r—1) wm+r+1l,n—r—-1,1)
2(2n—2r—-1) w(m+r, n—r,1) J
by Art. 104 we find that this reduces to
b __(— m —2r) (n—m—2r—1)
b, 4(m+r+1)
and by this law we obtain the series given in (12).
107. According to Arts. 97 and 99 the associated func-

tions of the first kind are defined to be the product of a
*d P (ac)

@t ...

—a fL+ Dy

+

PR

certain constant into (x*—1)* . Inlike manner the

associated functions of the second kmd are defined to be the

d"'Q (w)

product of a certain constant into (2*— 1) — 2~
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Now

arQ,(x) {.,._,.._1 (n4m+1)(n+m+2) .,

N 2.0nt3  ° Tty
where A= (-Yrintm See Art. 37.

1.3.5...2n+1)"

Hence we may conveniently take for the associated
functions of the second kind the expression

1 (2= )—d"‘() ()
A da" °
108. The associated functions of the second kind may be
put in various forms by the use of the various expressions
which have been found for @, ().
For example, we have by Art. 37
1

J—z= % (2n+1) P,(2)Q,(y).

Differentiate m times with respect to y; thus

o m Qr(r/)
( 1) (y )mﬂ—z(2n+1)P() N

» and  therefore by Art. 28
d"Q,(y) _=D"im 1 P, (a)de
dy 2 -1 (y — a.)m-ﬂ M
Hence, changing the notation, we have

d"Q,(a) _(=1"|m P (t)de
=2 )l

109. We shall not find it necessary to discuss the asso-
ciated functions of the second kind beyond one more formula,
which we will now give. Put

y for C, (="~ 1)'&?) and z for C,(z— 1)'d~Q (a’.),




T

v

ASSOCIATED FUNCTIONS. 8)

where C, and C, are coustants; then we know that y and 2
both sa.tlsfy equatlon (9) of Art, 102, so that

(- Z—?y—%(l—-x’) - {n(n+1)—m’—n(n+1)z’}y o0,

1- )’ —2x(1 w’)di+{n(n+l)—m’—-n(n+1)a;’}z=0.

Multiply the former by z and the latter by y, and sub-
tract; thus

. d(dz dy dz dy)
-1z {ydx &}‘“2 ( Yde % da
Hence by integration

dz dy C
Yo Pde = am o e (13),

where C is a constant.

Then by integrating again, .
* dx
Y .
Ed (.’52 - 1) Y

No additional constant is now required, because each side
vanishes when z is infinite.

Now let C, and C, have such values that y and 2 repre- .
sent exactly the associated functions of the first and second

kind respectlvely Then when z is very great we have ulti-
mately y=2" and z=a™": see Arts. 99 and 107.

Hence by (13) we have 0'=— (2n + 1), and thus finally

2 o) [ 9
y (n+ ) z(xi_l)y’
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CHAPTER IX.
CONTINUED FRACTIONS.

110. It is shewn in the Algebra, Art. 801, that the quo-
tient obtained by d1v1d1ng a certain hypergeometncal series
Fa,B+1,y+12)

by another, namely, — F(a B, 7, 2)

, can be developed

into a continued fraction.

For a special case we may suppose 8=0; and then
. F(a, B, v, x) becomes unity, so that we obtain a continued
fraction equal to F(a, 1, y+1, ), that is equal to the
series
a a(a+1)
x +
TSR ES Vo)

1+ 2+...

As an example, suppose a=} and ry=%; and put

2)

;i for z: then we have a continued fraction for

1 1
1 +§yﬂ+ '5—_1/-‘4- ceey

L4y +1
that is for Z log—-g that is for ¢ loay — e
2 11 Cy—-1
y
Hence, dividing by y, we obtain a continued fraction for
%logg—i——%; and the form of it is
y—l
ay”
1 ,_a 7
1- @Y
l-...
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that is, 1
y=2
a’
-
Moreovera:l a=2L2 a=?'—3 a=ﬂ
=3 BTy BT W7y

All this can be easily verified from the Article in the
Algebra already cited.

111. But we now propose to find a continued fraction

for 1 log : +} without the use of the general theory, merely

by the aid of Legendre’s Coefficients; and this process we
give, not for the sake of the result whlch may be obtained in
the way already noticed, but for the exemplification of the
use of Lefrendre 8 Coeﬁiclents

112. Consider the continued fraction

r—-t—
z—...

Let U, denote the numerator and E, the denominator of
the n'® convergent to this continued fraction. Then

U=1 U-=gz, U,=a"—a, ... 1)
E=x E=2'-a, .E' a;—(a,+a)a: :

And we bave in the usual way

U=2U_—a, U, ;.ooevvvrinnnnnne. :
E =zE_—a, E . .cuiuucnn.... ).

Thus U, is of the degree n — 1 with respect to z, and E, is of

the degree n with respect to .
From (2) we obtain
UL _-EU_=a,

n-1

-U.LE,_);

( -1 I—S
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and from repeated applications of this formula we find with
the aid of (1) that

U,

n+l

From (3) we obtain

........................

Proceeding thus, adding the resuli;s, and denoting by A

the limit of % when r is infinite, on the assumption that
there is such a limit we get

U._ 1 a,.,
x —L—'.—ala’ - a“{E"El+l+Eu+l'Euﬂ+.'.}.

Thus we see that AE, — U, is such that if it be expanded in
descending powers of z there will be no term with an ex-
ponent, algebraically greater than — (n + 1),

113. We can now arrive at some results respecting the
forms of U, and E,. It will be found that

U, is of the form a**+b,2**+b,a""+...,
and £, is of the form z*+c¢,2* "+, 2" ' +...;

that is, U, contains only 2"™* and powers of z in which the
exponent 18 #—1 diminished by some even number, while
E, contains only z" and powers of z in which the exponent
is n diminished by some even number. These laws follow
immediately from (1) and (2).

114. 'We must now distinguish two cases.

I. Suppose n even; then E, is of the form
@+t +e ™+ ..., +Cp

II. Suppose n odd; then E, is of the form
z(@ e a" . +c,,).

B S S

AR
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In both cases the product AE, is to be free from the terrns
a7 ™,

Moreover we propose to take

1. x4+l 2 &
')»—210g¢—-_~1—a: +?+~5—+....

115. In case I. we find that no even power of z will
occur in the product AE,; and in order that =7, 2, ...z™"
may disappear,’ we must bave the following equations

satisfied : -

On  Cua 1 _

1+ gt +toii 0,

€ C, o 1

gt 5 e +tois™ 0,

C, Cny -
s Ry LSRRI +5,—7=0
Thus we have 3 equations to determine the g quantities
Cos Cogre-Cqe

Tnstead of solving these equations directly, we may pro-
ceed indirectly.

It is obvious that these g equations amount to the follow-
ingt

1 1 1
fE,dx=o, f B, #dz=0,...[ Ea"ds=0;
-1 -1

-1

and since £, involves only even powers of &, we know that
1 1 1
f E xdz=0, f E o&*dx =0, f E o 'dr=0.
-1 -1 -1.

Hence it follows, by Art. 32, that E, must be of the form
& d* (2 - 1) .
— g where £ is some constant.
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116. In case II, by proceeding in the same way as for
case I, we shall again arrive at the result that E, is of the

form km .
dx
117. Since we know that the first term of E, is 2" it
follows that &k = |:n . Thus
|2n ,
2"|n[n
T AC

118. We have next to find U,

Since A — %‘ involves only &% z~*-* it follows that

9 seey

U, is equal to the integral part of the product AE,, that is,
to the integral part of

1, z+1 2" |njn
-—‘2 IOg:lTl . _L2_7TP”(Z).
But by Art. 78 we have

1 z+1

E+Q, (=),
where B is integral, and @, () is fractional.

29!
Hence it follows that U, = [» IER, where R has the value

2n
found in Art. 78. l—

119. Thus if % log E_i:; can be developed into a con-

tinued fraction of the form given at the beginning of Art, 112,
we have determined the n* convergent. It remains to shew

that —% log : i-} really can be developed in this form ; and also

to find a,, a,, a,,....

z+1_ R 0, (z)
z—l—.Pn(w) P, (x)°

We know that % log

>
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Now suppose, as we do throughout this process, that z is
greater than unity; then @. (x) vanishes when # is inde-

+1 = the limit of - il when

finitely great. Hence 5 lo B@)

n is indefinitely great.
We know by Art. 56 that
P, (@) — (2 —1)2f, (@) + (n—1) F,,(z) =

let Y, stand for Zpop P, (z), that is for

[2n
L» .
1.3.5...(2n—1)P~(‘”):

thus ¥, (a) oY, (0)+ gy gy Toa @ =0,

_so that . Y, ()=2Y, ,(@)—a,, Y, (2); -.ccou.o. (4),
: (n—1)
Wwhere =@n-3) (2n )
Multiply both sides of () by 3 log 2¥ 1 then each term

gives rise to an integral and a. fractlonal part and denoting

by Z, (x) the integral part of Y, log 1 , we get

Z, (x) =xZ,_, (w) Ay Zpey (a:) ......... (3).
From (4) and (5) we see that % can be put in a con-

tinued fraction of the requu'ed form, %xtendmg as far as the

component a—;—‘ . And Y"— is equal to PRE R
Also a, = -1—; , 'a, = ;——52— , and generally

= Cm-1)Cm+1)’
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CHAPTER X.
APPROXIMATE QUADRATURE.

120. SUPPOSE that we require the value of -a certain
1

integral between definite limits, say f f(@)dz; if the in-
1

definite integral is known, we can at once by taking the
values at the limits determine the definite integral. But if
the indefinite integral is not known, we are in general com-
pelled to use processes of approximation, and such processes
may also be advantageous in some cases where the indefinite
integral is known, but is of a very complex form. One of
the most obvious applications of the result is to find the
area of a figure bounded by a given curve, certain fixed
ordinates, and the axis of absciss@ ; and thus it is frequently
described as the approximate determination of the areas of
curves, or in old language as the approximate quadrature of
curves, :

121. The matter is discussed in the Integral Calculus,
Chapter viI, and various rules concerning it are there given;
these rules all imply that we draw equidistant ordinates
between the two fixed ordinates. The method of Gauss,
which we are about to explain, implies also that intermediate
ordinates are drawn, but not at equal distances, and in fact
proposes to determine the law of succession of these ordinates
1n such a manner as to ensure the most advantageous result.

122. Let f(z) denote any function of «, which is sup-
posed to remain continuous between the limits — 1 and + 1
for z. Now a function of = can always be found, which is
rational and integral and of the degree n — 1, and which is
eglual in value to f(x) when z has any one of n specified
values, '

B P Y

. S

-
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For let a,, a,,... a, denote these specified values; put

Y () = (x—a,) (z—a)...... (®~a),
(@) f(a)
R e e A

f(a)
tEma ¥ <a.>}

then ¢ () is such a function as is required.
For ¢ (x) is obviously rational and integral and of the
degree n—1. Also the value of 4'( ) when z=a,i8 ¥ (a,);

and thus the value of ¢ (z) when z= a,. is f(a,). Moreover
there is only one such function. For if there could be another
denote it by x (). Then ¢ (z) and y () are equal when z
has any of the values a,, a,,...a,; thus ¢ (z) —x (#) vanishes
for n different values of «, which is impossible, since
¢ (x) —x () is of the degree n—1 at the highest.

" 123. We may suppose that the n values a,, a,...q, all
fall between —1 and +1; thus, using geometncal la.nvuage

the curves y=¢ (z) and y= f (x) have n points in com-
mon, corresponding to absciss® between —1 and +1: and

f ¢ () dr may be taken as an approximate value of

f(.z) dz, subject of course to some examination of the
-1 .
amount of the error thus introduced.

124. Let

- ( L ¥(®) 3, be denoted by 4, ; then

f ¢ (@) de=A, (@) +4, £ @)+ everre + Ay (@) vevvee (L).

Now here it will be' observed that 4, is quite independent
of the form of the function f (x); so that when A, A4,...... 4,
have once been calculated, we can use them in (1) whatever
J (z) may be.

T. 7
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.125. The older methods of approximate quadrature used,
as we have said, equidistant ordinates. According to this
method we should have

2(r—-1) 2r—n-1

a1=_1! a,=1,a,=-1+ In—l—= n-1 "’
so that am1=—1+2,(zn:1r)=";2_ri*'l=—a,.
Thus ¢ (@)=(x—a) (@+a) (z—a,) (@z+a)......;

so that if n be even 4 () involves only factors of the form
a* —a’, but if n be odd one factor is .

Hence VY (—a)=(-1)"y();
and therefore  —y (—z)=(—1)"¥’ (),
so that - V' (—a) =(=1)" ' ().

, 1 1 A (2) dx
Now Al-'+l = 1”’ (aﬂo‘l"l-l) -I;F a)l—r+l.
1 'Y (z) d
‘\I’ (— r) -1 Zta,
‘Y= w) de
s )"“\l' (@), a-
_ f (= 1)"1Ir (z) dz
- 1)"“ 1l" (@), a-=
1 ("4 (z)dz -4
Y@y eme T

Thus the quantities 4, 4,,......4, are such that those
which are equidistant from the first and the last are equal.

126. The error which arises from taking the approximate
quadrature instead of the real quadrature i is

[f@a-34.50,

here and throughout the Chapter 3 denotes a summation
with respect to r from r=1 to » =n, both inclusive.

Now if f(x) be a rational integral function of « of a
degree not exceeding n—1 this will vanish, for then f(z) is
identical with ¢ (z), and there is no error at all. This holds

- -

4.

I+ Y PO S
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then for the ordinary process of approximate quadrature, since

it holds whatever may be the law by which a,, a,......a, are
determined.
Gauss proposed to take a, a,...... a, in such a manner

that the error should ‘also vanish when f () is any rational
integral function of  of a degree not exceeding 2n—1. To
this we now proceed.

Suppose then that f(z) is of the degree 2n—1. Since

f () — ¢ (x) vanishes when x has any of the values a, a,,...a,,

it follows that f(z)— ¢ () is divisible by 4+ (z). Assume

then that .f(thr—(%(ﬁl =Cy+ T+ CZ + oeenee +c, 2,

so that f(x)=¢ (2) + ¥ (@) {¢,+c,z+ ¢, 2" +...... +c., 2.
By ascribing suitable values to ¢, ¢,,...c,, we may obtain

every possible form of f (x) of the degree 2n — 1, under the

condition that f(z) — ¢ () vanishes for the n specified values

of @.
1 1
In order then that f F2) do— f ¢ () do may vanish
for every possible form of f(x) of the assigned degree, we
1
must have f a4 (z) dz = 0 for all positive integral values

of r between 0 and m—1 inclusive. Hence it follows by
Art. 32 that 4 (x) must be of the form CP, (x), where
C is a constant; and therefore the roots of 4+ (#) = 0 must be
those of P, (x) =0. This determines the law of succession
of the quantities a,, a,...a,.

Since the coefficient of 2" in y(z) is supposed to be unity
we must have

e g
C=135..@o0)

127. Since by Art. 7 we bave a,=—a,, and a, ,,,=—a,
it follows by Art. 125 that 4, , =4, When = is odd the
middle term of the set a, a,,...q, is zero.

128, Thus we see that if £(z) be rational and integral
. 1

and of the degree 2n — 1 at the highest then f f (@) da is
o da

7—2
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1
exactly equal to f ¢ (2) dx, when a, a,...a, are the roots

of P, (z)=0; or, to use geometrical ]angua,ge, the area of the
ﬁO'ure bounded by a portion of the curve y =f(z), two fixed
ordma.tes, and the axis of absciss®, can be determined ezactly
when besides the two fixed ordinates we know » intermediate
ordinates at suitably selected intervals.

We proceed to consider the amount of error which the
method of Gauss involves when f () is no longer restricted
to be of the degree 2n — 1 at the highest.

129. Suppose that f(z) can be expanded in a convergent
series so that

S@)=b+bx+ba+..+ba"+......... (2).

The whole error is f f ()dz—2 A,f(a,). Put for f(z)

and for f(a,) their expansions from (2); then the error will
consist of a series of terms of which the type is

ben {f_l ™ da;OEA,a,"‘};

" we will denote this by b, E,.
Now we know from Art. 126 that E, vanishes if m be
not greater than 2n — 1, so that the whole error reduces to

by By + by By + b By Foveeee

130. We have first to observe that all the terms with
odd suffixes will disappear from the preceding series; that is,
2p + 1 being any odd number, we shall have

1

f 2y -3 A4 0" =0,

-1
1

For f " dz is obviously zero; and 3 4,a,*" is zero

By reason of the facts mentioned in Art. 127.
1
131. Consider then E,,, that is f a?dx — 2 4,a,”,

2
that is ——— 21) +1 —34,a,"; it is obvious that this is equal to the
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coefficient of 27**™ in the development of log: i } -z e f'a 3
in descending powers of z. ’
__1 1P, (z) dzx

Now 4, @) w—a
let x ()= f LE-b@g,...... 3),
then C x(a)= f —"—(—) dz, for P, (a)=0;
x (@)
thus 4,= T RGN 4.

But y (2) is a rational integral function of z of the degree
n—1, an 7& therefore by Art. 122 we have

%) =P() S —X)(‘(‘z)—_a) ........... 3).
Thus from (4) and (5) we get

But by Art. 127 we can also write this
x(2)=F.(2) %
and therefore, by addition,
: A,
X ()=2P,(2) 2 7t
Hence 23 f" 3= X(2)  and therefore E,, is equal to

a’ F,(2)’
~op-1 ¢ z2+1 (Z)
the coefficient of 2™ in the development of log -1 P @

z+a,

in descending powers of z.
But by (3) we have

x(z)-—P(z)f =t 20

=P,(2) 100' —— —20, (2), by Art. 80.
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Hence finally £, is equal to the coefficient of 2™ in

the development of —*~= g = (2)

D@ in descendmg powers of z.

2 1.2.3.. !
Let p= 2n+1{1 35 (2n 1)} ; then we have
(+1)(n+2) .,
2. (z) T S Gt 3) * e
P (z) n__ n(n—l)
£ 2—(2?1—)‘2’—’*‘...

If this be developed in descending powers of z we obtain

-1, M (n+1)(n+2) n("—l)}—z-s
K +2{ Mm+3 T en—1J°

thus we have " E_ =p,

E {(n+l)(n+2)+n(n 1)}

+ ...

i g 2n+38 2n—-1

132. We may investigate somewhat more closely the
extent of the error to which the new method of approxima-
tion is exposed.

By Arts. 72 and 77 we have

20.(:)_, 241, o G,
P.(z) —log +222 a’
where {P((:Tﬁ—) when z=a,,
1
0 that S PrerEy
Thus
2Q.(:) _, z+1 1
P 1T R P P e D G-y
But since a,_,, =—a, we may write this thus:
2 Qﬂ (z) z2+1 1
T T R e Eay

-
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Let this be developed in descending powers of z, then we
find that the coefficient of 277, that is E'o is

£ 324

2 1 (a? )
By comparing this with the value of E,, at the beginning of

1 1 ) . .
Art. 131, we see that A'=-1—__—a',— {I_Ta,')} . This furnishes
a new expression for A, and shews that it is necessarily
Ppositive. .

Let 8, stand for 4.0, so that EM,=$2_'_—1 - 8,.
Let 8 denote the numerically greatest of the quantities
a,, a,, ...a,; then since 4,, 4,, ... A, are positive it is ob-
vious that S,,,, is less than B‘;é,,. But we know that B, ,

is zero, so that S, _,= 2—n—2__—i; hence it follows that S,,,,., is

less than —2-3—"—, and therefore E,, ., cannot differ from

2n—1
2 . 28
Sn+2g—1 by so much as o1’ We may observe that

each of the ?mtiti% A,A4,... A, is less than 2. For since
E,, is zero when p is zero, we have

A1+A,+ cee +A'= 2.

Moreover when = is even each of the quantities is less than
unity, since any two equidistant from the first and the last.
are equal.

133. Let us now make some comparison between Gauss’s
method and the old method of equidistant ordinates. We
suppose that n ordinates are used besides the extreme ordi-
nates. Suppose as before that f(z) can be put in the form (2).
Then according to the old method the error may be de-
noted by . E, +b,,.E,, +b,,E,,+..., and by the principles
of Art. 130 this reduces to 6.5, +0b,,E ,,+b, E,  +... if
n be even, and to b, E,,, + b, E, s + 8,55, +--- if 1 be odd.,
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According to Gauss’s method the error may be denoted by
b By + by Binrs + 0y B+ ... But it must be remem-
bered that such a symbol as E_ does not denote the same
thing in the two methods; -for this reason, and because
b,8b,,,, ... are not known until f(x) is specially assigned,
we cannot make any close arithmetical comparison between
the two methods. )

. If the expansion of f(z) is extremely convergent, so that
the quantities 3,, b,,,, b,,,, ... form a rapidly diminishing
series, we may draw two general inferences.

I In the application of the old method if » be an odd
number, then n ordinates are as advantageous as n + 1.

II. The new method by using » ordinates is about as
advantageous as the old method would be by the use of 2n
ordinates.

134. There is another mode of investigating the results.
of Art. 131 which may be noticed. We propose in fact, using
the notation of Art. 122, to find the value of

[ {r@-s@}an

Now since f(x)—¢ (#) vanishes when 4 (x) vanishes, we
will assume that f(x)—¢ () is divisible by 4+(x); this would
certainly be true if the expansion of f(x) consisted of a finite
number of terms, and on the supposition that the expansion
of f(z) is highly convergent, we may admit that f(x) may
be treated practically as if there were only a finite number
of terms, :

Let then  f(z) — ¢ (2) =¥ (2) x (=),
so that x () may be considered to be equal to the expansion
Off (w) - ¢ ("‘v)
¥ ()
- Now ¢ (x) is of one dimension lower than ¥ (x), and so

¢ (

(a:) will consist only of negative powers

in ascending powers of «.

the expansion of

of «; hence these negative powers will cancel those arising
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f(@)
¥ ()

aggregate of the terms in the expa.nslon of

, and leave x (x) equal to the

flz)
¥ ()

from the expansion of

which in-
volve po.sntwe powers of .

Suppose then 1 —é, ’Bm B,,i. cee) coceences (6),

Vv(@) @
for it is obvious that the other powers of z will not occur in
the expansion, since 4y () involves only 2" and other terms in
which the exponent differs from n by an even number. Since

n(n—1) n(n—-1)(n—2) (n-38)
Y@ =2 =g ) t S A @3 ©

the values of B,, B,, B,, ... are found in succession from the
equations

1 =Bo’

_ n(n—1)
O‘B*'ﬂ%—l) By

_ n(n—1) nin—1)(n—2)(n—3)
0‘34‘2.(27.-1) B'+2.4.(2n- 1) (2n - 38) Bos

Now the error = [ _1{ fe)— (.'c)} f ¥ (@) x (@) dos
and y (z) =that part of 1{7((.5;1) which involves positive powers of x
. +b,., (B +Ba +8) +...,
by (2) and (6): and thus the error becomes
bB,+b,,.,B +b,.B,+..

w171

where B, stands for ] Ba BT B )Y (@) e
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1
Now j &™r(x)dx vanishes if m is less than #; and thus the
error Teduces to b,.B, +b,,.,B,,, +b,,.B, ..+

n
5...(2n-1)"

Also 4 (z) = CP, (z), where C stands for 13
and thus the error

= Cb f BaP, (v) dw+ Cb,, f B&™P, (2) de

+ 0y [ B +84) (@) dot .

The integrations may be effected by Art. 35, and thus
giving to u the same value as in Art. 131, we find that the
error

_ (n+1)(n+2)
“'l“b.ﬂo'l'l"'bun[ 3. @nt3) +l3,]

(n+1)...(n+4) (n+1) (n+2)
+”b"“[ﬁ°2.:.(2n+3)(2n+5)+B’ 2. 2n+3) +B‘:|"'

135. We have supposed throughout that the limits of
the integration are — 1 and +1; but by an easy transforma-
tion we can adapt the process to the case of an y other limits.
Suppose, for example, that we put 2=2f—1; then £=0
when £=—1, and £=1 when £ =1, so that :

[r@az=2] ree-na.

Let f (2E—1) be called ¢ (£); then

[s@a=3 s an

or | f:gb(f)df=% j¢(1;i”)dz ..... -t

e ma e

J N —

B
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and thus we shall have approximately by Gauss’s method

f¢(g)de_-zA¢(1+“) ............ ®).
Let %ﬁ =C, and 1+T- =1, then approximately
f:¢(e) FE=5C, (1) errrrerrmm. e 9).

Gauss has calculated the quantities of which C, and v,
are the types, for all values of » from 1 to 7 inclusive; we
will give his results in an abridged form at the end of the
Chapter.

It will be observed that ¢,, v,, ... v, are the roots of the

uation d'@-1r_ 0, when for = we put 26—1; so that
1 "

they a;re the roots of —E.—‘(iff_—ly.:(); that is they are the
roots of

n n'(n—1) _
E-Tmt *Tam@ont t-=0

The roots of P, (z) =0 can be obtained from the values
which we shall give for v,, vy,,...,, by the relation a,=2y,—1.

ain, to estimate the error produced by using (9), sup-

¢(; 2)=L+L} +L() -

then as this is the expansion of f(z) the former notation
and the present are connected by the relations
L, _I

.

pose

b

’.=2:n)

Moreover from (7) and (8) we see that the expression for
the error will be half that formerly obtained; so that it will be
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© r+1D)(n+2)  n(n— l)}
ok "'4{ In+3 T a1 tmate

that is
(n+1) (n+2) n_(n l)}
21lu+l L + 2iu+4 { % + S + on-1 van"' b

136. We will now give the numerical values required
in the formula (9) for the values of n from 1 to 7 inclusive.

n=1
%="5
C=1

n=3
7, ='1127016654

%h="3
v, = 8872983346

n=2
v, = 2113248654
v, ="7886751346
C,=0C,="5

n=4
o, ='0694318442
v, = 3300094782
v, = 6699905218

0B .= 9305681558
. C,= C,="1739274226
= g | C,= C,= 3260725774

n=>5 n==6

o, = ‘0469100770 = 0337652429

= 2307653449 v, = 1693953068

=5 7, = 3806904070

= 7692346551 .= 6193095930

= 9530899230 = 8306046932

C,= 0, ="1184634423
C,= C,="2393143352
C, = 2844444444

s ="9662347571

0, = C,="0856622462
C,= C,="1803807865
C,=C,="2339569673

[
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n="7
v, = '0254460438286202
oy, = "1292344072003028
o7, = "2970774243113015

Y= 5

= *7029225756886985

= '8707655927996972
o, = "9745589561713798
C,=C= 0647424830844348
C, = C,=1398526957446384
0, = C,=-1909150252525595
C, ="2089795918367347
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CHAPTER XI.

EXPANSION OF FUNCTIONS IN TERMS OF LEGENDRE'S
COEFFICIENTS,

137. 'WE have seen in Art. 27 that any positive integral
power of « can be expressed in terms of Legendre’s Coeffi-
cients; and hence also any rational integral function of z
can be so expressed. We have next to determine whether
any function whatever of « can be so expressed; this matter
however is somewhat difficult, and we shall treat it very
briefly here, as it will come before us again when we consider
the more general Coefficients which we call Laplace’s, and
which include Legendre’s as a particular case.

188. Let f(z) denote any function of x; if possible
suppose that

(@) =a,+a,P,(2) + a.P, (@) + cervervenena()y
where a,, a,, a,, ... are constants at present undetermined.

Let n be any positive integer; multiply both sides of (1)
by P, (z), and integrate between the limits —1 and +1;
thus by Art. 28

[ RACYICLZE

2n 41
2

1
therefore  a,= f P, (2) f(2) d2 vvoreereernenn(2).
° -1
Thus if f(z) can be expressed in the form (1) the constants
a,, a,, ... must have the values assigned by (2).

The formula (2) implies that f (x) remains finite between
the limits —1 and +1 of «: this condition then must be
understood in all which follows.

4
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139. Since the constants in (1) are thus determined it
follows implicitly that there can be only one form for the
expression of a function in terms of Legendre’s Coefficients;
this may be shewn more explicitly in the following manner.

If possible suppose that
f(x) =a,+ alPl (z) + a:P: (‘”) +...,

and also =b,+ bP, (z) +b,P, (x) +....

By subtraction,

0=a,—- bo+ (al— b:) 'Pl (=) + (a:_ bx)'Pa (z)'*""-

Let » be any positive integer; multiply by .P, (z) and

integrate between the limits —1 and +1: thus by Art. 28
020, =)
T 2+1

Therefore @, = b,: and thus the two expressions coincide.

140. We have shewn that if f(z) can be expressed in
terms of Legendre’s Coefficients the expression takes a single
definite form ; but we have still to shew that such a mode

of expression is always possible. This we shall do, at least
partially and indirectly, by finding the value of

RS A RACY L

where 3 denotes summation with respect to » from zero to
infinity. . We shall require an auxiliary proposition that
will now be given.

141. If ¢ (2) be such that it is always finite and that

x" ¢ ) dz vanishes, where p and g are fixed, and n takes

s{iccessively every positive integral value, then ¢ () must be
always zero between the limits p and ¢.

For if ¢ (x) be not always zero between these limits it
must change sign once or oftener. Suppose ¢ () to change

its sign m times, and let z,, «,, ... z,, denote the values of @
at which the changes take place. Tet

V@) = (@=2)(—5)... (e~ 2);
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then by multiplying out we have
V@) =a"+A42""+42""+...+ 4_,
where 4,, 4, ... A, are constants.
Now we have by supposition

f: P (@) A= 0o 3).

In (3) put for n in succession m, m—1,...0; and add the
results multiplied respectively by 1, 4,,...4,. Thus we get

| [¥@s@a=. |
But this is manifestly absurd, for 4~ () and ¢ () change sign
together, so that 4 () ¢ () does not change sign.

The condition that ¢ (x) is to remain finite is intro-
duced because we can have no confidence in the results of
integration when the function to be integrated becomes in-
finite.

142. We now proceed to find the value of

i 1
222200 P@f@s
-1
We assume that it is finite, and denote it by F'(z); so that
1
F@=322P.@[ P,@f@ .
-1

Multiply by P, (x) and integrate between the limits — L
and + 1; thus

[RACLELS P ACTIOr

therefore f_ P, (@) (F (@) —f @)} dz=0rerrreerenne. ).

Now we know that #" can be expressed in a series of
Legendre’s Coefficients; let then

"= CuPu (w) + cn-lpn-l (a‘) + cHPu-ﬂ (.’l’)-l- b
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Multiply (4) by ¢,, then change n in succession into
n—1,n-2...,,and add ; thus

1
[ #1F@-f@)ds=o.
-1
This then holds for every positive integral value of n;
and hence by Art. 141 we have F (2) —f(x) =0; therefore
F (z) =f ().
This process is given in Liouville’s Journal de Mathéma-
tiques, Vol. IL

143. Thus we see that if the series denoted by

e Y RACTCL

is really finite, it is equivalent to f(z); the difficulty is to
shew generally that the series is finite, and as we have said
weo shall return to the subject.

144. As an example suppose it required to express =
in a series of Legendre’s Coefficients, where & is a positive
fraction, proper or improper, which reduced to its lowest
terms has an even number for numerator.

1
Then f &P, () de=0, when n is odd,
-1

1
and =2 f «*P,_ (x) dx, when n is even.
0o

Thus, by Art. 34,

_ 1 . bk 9k (k— 2)
=1t T ) DO D) k4 3) (545
(4m+1D)k(k—2)...(k—2m+2) :
G+ L) FT9) ... h+2mD) Twm@F-
It will be seen that after a certain term the numerical
factors are alternately positive and negative; and it may be

shewn that they are ultimately indefinitely small : hence the
series is certainly finite if & is numerically less than unity.

T. 8

P,(x)+...
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To shew that the numerical factor is ultimately indefi-
nitely small we observe that it bears a finite ratio to

dm+1 2.4.6...(2m—2)

k+2m+1°3.5.7...(2m—-1)’
dm+1 2" |m-1}

k+2m+1 |2m—-1 °

that is to

and the ordinary mode of approximation will shew that this
vanishes when m is infinite. Integral Calculus, Art. 282.

. 1 .
145. As another example we will express JaA=2) in

a series of Legendre’s Coefficients.

In Art. 14 suppose n even, say =2r; then the term in-

2
 dependent of @ will be found to be {1—3—;4———@;:1)} and

thus 71—1_ f 'rP,,r (cos 6) df is equal to this expression.
0

1 P, (x) de
AV(1=2)

this is zero if » be odd, and if » be even it has the value
just found. Thus by (1) and (2) we have

Now

] P, (cos ) db;

a3 {3 @) el e
+13 (; ;3.5 g)P (:c)+...}....' ..... 3).
If we put =0 we deduce ‘

2 1.3 1.3.5\
?r=1"5()+9(2 4) 13(2.4.6)+'°"

146. Again, we will express _(l_a:?_)_ in a series of
Legendre’s Coefficients,
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In Art. 14 suppose n odd, say =2r+1; then the term
which involves cos @ will be found to be

1.8.5...Qr=1)*2r+1
2{ 2.4...2r }2r+2c°s‘9’

and thus

.. (2r-1) '2r+1
WfPMl(cosﬂ)eosede { 3. O )

P (z)xdx [~ .
Now [ s —fo.?’;(mse)msﬂdﬁ,

this is zero if » be even, and if » be odd it has the value
just found. Thus by (1) and (2) we have

s~ 3 [arer () irem () tne.)

147. Integrate (5), making use of Art. 61; thus

?rsin"x-— ()P(w)+7( )P (v)

+11 (21 436) P,(2)+15 (%)’P, @) +..

Integrate (6), making use of Art. 61; thus

2 1 1\* 1 1\'3
2 va-ay=3-5(5)- ;R@-9(35) g 2@
1.3
-13 (557 6) Py(2) + ...
148. Multiply the left-hand member of (5) b)"
1 , and the right-hand member by the equi-

valent series 1+ Pa+ Ppa*+...; then integrate between
the limits —1 and '+ 1: thus we get
8—2
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[ e
V(A=) V(1 - 20z +)’

do
o V(1 —~2acos 8 + a¥)

= (@ () e (330«

In a similar manner we obtain from (6)

that 18

\,;-..4

f zdzr
NA=-2) V(1 -2z +a)’
that is ) cos b

o V(I —21c080 + o)

=rlpe+(e) §o ) 5o )

The examples of Arts. 145...148 are taken from Crelle’s
Journal fiir... Mathematik, Vol. 56.

e

—_—r_
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CHAPTER XIL

MISCELLANEOUS PROPOSITIONS,

149. IN Art. 96 we have shewn that
{z+¥(2'—1) cos p}*= a,+a, cos ¢ + a,cos 2 +...+ a, cos ng,

2 (@ —1)F &zt = 1)"

where ] prarape pre
or as we have expressed it in Art. 97,
2 _ 2 T

praripens P (a:' 1) w(m,n);
but when m =0 we take only half of these expressions.
Now let = be positive and greater than unity, and sup-

e+ (x*—1)cos¢p
b,+b, cosp+ b, cos 2 + ... + b, cosnp + ...,

where by, b,, b,,... are functions of z which do not involve ﬁ;
then it 18 found that so long as m is not greater than n t

fraction —b—’-" is independent of x : indeed as a,, is zero when m

pose that we expand e in the form

is greater than n, we may say sxmply that = 7)_ is always inde-
pendent of .

This has already appeared in the case in which m is zero;
for we have in fact shewn in Art. 49 tha.t%= 1. We shall

(]
now investigate the general proposition.
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150. We know that if m is greater than zero,
a, = ?—rf'{w-l-q/(a:'- 1) cos ¢}* cos mpdep ;
o

we shall denote the definite integral by J,, so that
i,
K
Also we know that if m is greater than zero, :
b = 2 (- cos mpde ) : !
=" m), [z+ (@ - 1) cos p}"™’ : |
we shall denote the definite integral by J_,_,, so that

bo=2J
™

-n—-1°

We shall now transform the definite integral J,_
It is shewn in the Differential Calculus, Art. 369, that
sin ”':n¢= A A-o)m

a™ ’ ‘
m—1
where ¢=cos and A= 3 g—l)@m—l)' :
— gy
Hence cosm¢d¢=7\.d"(l—T,f’)-dt.

Substitute in J ; thus it becomes
-1 m (] _ S\m—}
Mo -np Tl |
+1 |

Integrate by parts, and then again by parts, and so on
until the operation has been performed m times; then since
-yt

—aF vanishes at the limits so long as 7 is less than m,

which is the case in our process, we obtain

e G e

* I”-m ' +1

{g+ty(@=-1)P 1 —)"dds,
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Then restoring cos ¢ for ¢ we obtain

D™ |am . yF
T(m -1) *J,

If 'we apply a similar transformation to J_,_, we obtain

» -3
- x|n+m(w’— 1) J—u—l
N sin™ ¢ d @
TV @—1) cos G .

We shall now shew that the definite integrals on the
right-hand sides of (1) and (2) are equal; this gives in fact the
demonstration of the statement of Art. 149,

~ First change ¢ into 7—¢ in the definite integral in (1);
then it becomes j (o —N(@ — 1) cos $}"™ sin™ deb.
1]

Now use the same transformation as in Art. 49, namely,

_wcosy+4/(a"—1)
c0“”_.'0+4/(a:’—1) cos Y’

which léads to sin ¢ = Py, (:311-1_\[;) oy’
1
z=y(@-1) coB(;(’=ac+;\/(ar:’— 1) cosy’

— dyr :
d¢~m+~/(a;"— 1) cos’

thus f (& — /(@ = 1) cos )" sin™ pdp

[ sin™rdyr
“Jo [+ N (@ = 1) cosp}rm
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Hence from (1) and (2) we have

(_l)m'ﬂ n_mJ _ '_2 7

, T n T e
Jﬂ — L.n lﬁ "
so that T " oem .'n—m(_ 1)™

‘We have thus two forms for the associated functlons of
the first kind analogous to the two forms for P, in Arts. 47
and 49 ; namely

(*— 1)’w(m,n)
_Z &L_f {z + 4/ (2*— 1) cos ¢}" cos mp dp,

and also when « is positive and greater than unity
(@ —1) w (m, n)
(=1)"|n [ cos mepde
T71.8.5...Cn—1)), z+ v (@ —1) cos "

151. The process given in Art. 96 for the expansion of
{z + 4/ (4" — 1) cos $}* may be generalised.

For if 4 (z) denote any function of = we have

s b= 2Tt Y@P+ Y @) -
x+ Y (x) cosp = 244 (@) ,

and hence the expanswn of {z+1}r(x) cos ¢}* may be found
thus: expand (a:_-i-_%ig_ in powers of 2, at the end put
ey (x) for 2, and {y (z)}'—4" for a®. We shall thus obtain
for the general term

2_{[‘1;}:’11" D@+ Y+ [‘ﬁ D@+ ) }cos mg,

where D stands for (%}; and at the same time we obtain the
theorem

-~
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[ (@) I 1 C.) s .
——In+m D+ a) = [n—m D@+ )

in these formule the value of a® is to be substituted after the

differentiations are performed.

152. We may exhibit P, (z) as a determinant. For put
A +4, z+A4 2'+...+Ax"="TV............ (3),
where 4,4, ,... 4, are constantsl; let these constants be
determined by the conditions that f Va"dz = 0, when m is
any positive integer not greater than n.

) L _ 1 . .
Put a,=§f a"dx, so that a,—m if r is even, and

=0 if 7 is odd. Then by putting for m in succession the
values 0, 1, 2,...n— 1, we obtain the following » equations:
A, +A4, ¢, +...+4a, =0
.A”a‘ +A“_‘a,+...-{:Aoa.+l =0 ._""(4).

Aa_+A4, a+..+ 44, =0

% -1

‘We may counsider that (3) and (4) form n+ 1 equations
for expressing 4,, 4., ... 4, in terms of V, z, a,, a,,...q,, _,;
thus we get by the T}zeory of Equations, Art. 388,

Ao XM=Vx N;
where M stands for the determinant
@y @y Ggy ooy @,
a a,, Gy ... 0,

a’n—l’ ay» aivi-l’ e a.l—l

l, =z a2 ..2°

and N stands for the determinant obtained from M by
omitting the extreme right-hand column and the lowest
IOow.
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Now we know by Art. 32 that P, (z) is the product of
a certain constant into V, and as the coefficient of &" in

P,(x)lsl 3.8, m(2n— ),wehave

5..2n—-1) V _1.83.5...2n—-1) M
m 4T [N
" Thus P, () is expressed as the product of the determinant
M into the constant factor o5 (2n —1) .
|» N
153. The value found for P, (z) verifies immediately the
property that f P, (x) a*da = 0, when m is any positive

B (=12

integer less than n.

1
For since V= -4"1! the value of 1 Va"dz will be found

N 2),
to be %V_ , Where u is obtained from M by changing the last
row of M into

s Cpass Bprgs o+ Cpup

But thus g has two rows identical, and therefore vanishes
. by the Theory of Equations, Art. 371.

154. ‘Since a, is zero when r is odd, it will be found
that we can separate the equations (4) into two groups, one
involving 4,, 4,, 4,,..., and the other involving 4,, 4,, 4,,...
The number of equations in the latter group will be the
same as the number of the quantities 4,, 4,, 4,, ...; and
a8 the right-hand member of each equatlou 1s zero we ob-
tain 4,=0, 4,=0, 4,=0,.... The former group of equa-
tions in conJunctlon with (3) will serve to find 4; o3 we shall
obtain a result which we may express thus:

A, xM =VxN,
where M, and N, are determinants.

.
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If n=2r we have for M, the form
a, a, a, a,
a, Gy oo Gy,

a,,
.......................... .
Borgs Bapy Cpppgs +oo Cgp g

1, & a) ..a"

If n=2r+1 we have for M, the form

Qy, @, Gy .o Gy
@y Gy, Qg .o Gy

| By Coggs Gopres +-- @,

z, o o5 ..

In each case NN, is formed from M, by omitting the ex-
treme right-hand column and the lowest row.

As before we have

: 1.3.5...(2»n=-1D V
‘Pu(x)= lﬁ(n )Zo,
so that P, (z)=1°3'5'|2&(2”—1) %[V)'

Articles 152...154 are taken from the Comptes Rendus
of the French Institut, Vol. XLVIL

155. In Art. 102 we saw that if y=w (m, n) (a_’—l)::
then 5
(l—z’)’ﬂ—f&z(l—z’)i’—/+{n(n+1)—m'—n(n+1)a:’} =0;

da? dz y=5

we will denote y by. ¢ (m; n), and proceed to some properties
of this function.
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156. Let K, stand for f & (m, ) é (m, ) dz, then K,

will vanish if n and » are different.
For from the differential equation of Art. 155 we obtain

f_ll"’(m»")d {a- ,,v)dqb(m n)}

#m’j_lwmln—m,(ml) dx—n(n+1) filcp(m,n)&ﬁ(m, v) de.

By two integrations by parts the left-hand member becomes

[ senm - {a-an e
and this by the differential equation
=t [ “”""W’”’”)dz v+ 1) [ ¢ mn) ¢ (m,) do.
Th;:‘efore -l»
pE+D=n(+D)} [ §mnpm ) ds=0;
and therefore if » and » are different K, =0.

157. We shall next find the value of K when y=n.
By Art. 97 we see that

e

by Art. 96 we are allowed to change m into —m in the
expression here given without altering its value, so that we
have also

n+m ’ d.‘ﬂ w’ 1 ”
¢(m,n)—|—|zn—‘(z 1) ——-d%:—n——)—
Hence we have

n— mwl_ » -mw!_ n
f {¢(m,n) ’dz_%trm —ld d(znml) & dgvn—-l)

o — e R

S S

S g



g

this = (-1 (227 [ (P, (@)} de=
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Integrate by parts; thus
fl dn+m (’l' l)u du—n (x: l)ll
a dwvﬂ-m d A

1 Jutm-1 (x:__ 1). ™ (o —1)"
a dz*™ 1 az” ™

Integrate by parts again; and so on until we arrive at

“ 1),,}' " (@& — 1)"d"(::l’w.1 @

2( 1)

de.

{27
Thus finally when » =n we have

x 2 (=1" |n+m|n—m
" 2n+1 [1.83.5...2a—D)"

158. It will be convenient to state the results of the
last two Articles in another notation by the aid of equation
(4) of Art. 97. We have then’

' d"P, (x) d"‘P (ac)
- Tda
if n and » are different ; and :

1 d"'P“(:c_)}’ -7 2|n+

f_,{ & | L= dz= @n+1)|n—
159. 'We shall now establish the following relation:
(20~1) é (m, n) =nep (m, n—1) +(&*~1) 2
By using the formula quoted at the beginning of Art. 157

(L—a)dz=0,

¢ (m, n—=1).

and reducing, and putting D for , the proposed relation

. takes the form

n—m nt+m L3
o D™ (a*—1)

=,nan+m-1 (x _l)n-l_*_mmpvﬁm-l (wi_l)n-l_I_ (w!__l) Du-hn ($2_1)n-l;



126 MISCELLANEOUS PROPOSITIONS.
and D*™(a® - 1)" = D’“‘"“ ~ (:c —1)"—2711)‘"‘“:1: (=*-1)";

so that the relation becomes
(n —m) D" g (o - 1) ‘
=(n+ m)x D" (= 1)*" + (&~ 1) D"™ (o’ - 1)" .. ... (5).

We shall establish (5) by induction. Assume that it is
true, and differentiate both sides; thus

(n—m) D"z (!—1)"? = (n + m)aD""™(&*-1)**
+ (@ -1) D" @' - 1)+ (n + m) D" (2"~ 1)"
+ 20D ™ (@ = 1) e (6).
But by the theorem of Leibnitz,
o (2 — 1)"'1 =D’ — 1)"" + (m +n) D™ (a*— 1)"'l
and thus (6) may be written
(n—m)D" (& — 1) = (1 +-m)aD"(a? — 1)
+ (@ — 1) D" (2* = 1)** + D"z (2 — 1)**
+aD"™ (@~ 1)"":
this is what we should get from (5) by changing m into

m+1; so that if (5) be true for any value of m it is true
when m is changed into m + 1.

But (5) is true when m =0; for then it becomes
nD"g(a? —~ 1) = nzD" (@ - 1)" + (& - 1) D*(a* — 1),
that is n(n—1)D"*a'—1)"" = (’~ 1) D*(z" — 1)*;

and this is a particular case of equation (2) of Art. 96,
namnely, what we obtain by putting 1 for m, and changing n
ton—1

160. The results of Arts. 156 and 157 enable us to ex-
tend to the function ¢(m,n) some propositions which hold
with lrespect to P,(x); this will be seen in the next three
Articles,

———
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161. Suppose that a function f(z) can be expressed in
the form
f(z)=a,p(m,m)+ a,p(m,m+1) +a,p(mm+2) +...,

where a,, a,, a,,... are numerical factors to be determined.
Then these numerical factors may be determined by the
general formula

o[ pmm+nyds = fi@)p(m mer)d

Moreover there is only one such mode of expressing f(x).
See Arts. 138 and 139. -

162. Again, suppose we have the series

b (0,7) +b,$ (1, ) +b,$ (2, 1) + ... + bup (m, m);
then, if this series vanish for every value of «, the numerical
factors b,, b,,...b, must all be zero.

For suppose that @ =1; then ¢(1,2), ¢$(2,»)... all vanish;
and therefore b,¢ (0, n) = 0; therefore 5,=0.

Then we have b¢(1,7)+bp(2,n) ... + bp(n,n) always

zero ; divide by 4/(2*—1), and then put #=1; thus we find
that b, =0; and so on.

This process assumes that MZ does not vanish when

: (@*-1)7 '

x =1, that is, that = (m,n) does not vanish when #=1; and
this we know to be the case from Art. 103,

163. Suppose that a function f(#) can be expressed in
the form 4

f @) =b$0,7) +b,p(1,7) +b$(2,7) ... +b(n,n);
then the numerical factors b, b,, b,,... may be determined
in succession, thus:

s S@ @ =bOn)
Ce0n)’ Tt S, my(E-1)’

where in the expressions on the right-hand side we must put
1 for z. There will be only one such mode of expressing £ (x).
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164. In various investigations of mixed mathematics we
obtain with more or less rigour modes of expressing a given
function analogous to those of Arts. 138, 161, and 163. It
is usually shewn in a satisfactory manner that if such a
mode of expression is possible it can be effected in one
definite manner ; but it is rarely decisively shewn that such
a mode of expression is certainly possible. We will give one
example.

Suppose that a homogeneous sphere is heated in such a
manner that the temperature is the same at all points equally
distant from ‘the centre ; and let the sphere be placed in a
medium of which the temperature is constant; then it is
shewn in various treatises on the mathematical theory of
heat that in order to determine the temperature at any
time ¢ of the points of the sphere which are at the distance
from the centre, we must find a quantity » which satisfies
the following conditions: the equation

du ,d%
a‘ c @‘- .......................... (7)

must hold, whatever ¢ may be, for all values of # comprised
between 0 and the radius of the sphere, which we will de-
note by /; and the equation

must hold when 2 =1, whatever ¢ may be. Here ¢ and & are
certain constants. ‘Then the temperature at the time ¢ of the
points of the sphere which are at the distance « from the

centre will be Z

Now we will assume that there is some expression for u
in terms of # and ¢ which does satisfy these conditions; that
is, we assume that the problem has a solution.. We will also
assume that as 4 is a function of ¢ it may be expanded in
a series proceeding according to ascending powers of e-%;
this a.ssumpt.lon may be in some degree justified by
Burmann’s Theorem ; see Differential Calculus, Chapter I1X.

S
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We assume then that » can be expresséd in a series of
the form
u=Ae 94 e 4 .. ccernirrnennns 9),
where 4,, 4., ... are functions of z; and a?, a),... are con-
stants: these are now to be determined.

Substitute from (9) in (7); then we obtain an equation
which must be true for all values of ¢ and which leads
therefore to the set of equations

t
—a’d = c’%‘, —a'd, = c'%’,

Thus we get 4,=B,sin (‘i:j—”w,), A,=B,sm(&f+0,),...

where B, B,,... C,, Cp, ... are constants which remain to be
determined.

In the present problem we must have C,, C,, ... zero, in
order that the temperature at the centre of the sphere may
be finite. Therefore

4,=B,sin"%, A,=B,sinf’—;i°,...' ............. (10).

Substitute from (9) in (8); then we obtain an equation
which must be true for all values of ¢: by the aid of (10)
this leads to a set of equations of the form

a cos%l+ he sin(—:;—l= | (1),

where a stands for any of the quantities a,, a,, ...

Put a=cp, then (11) becomes _
peospl + hsinpl=0.........c......... (12).

Thus we obtain % = ZBsin pze~®*.................. (13),

where 3 denotes a summation which is to be effected by
giving to p the values which satisfy (12), and to B the values
which correspond to those of p. The connexion between B
and p must now be investigated.

T, 9
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The value of % in terms of #, when ¢=0, may be sup-
posed to be given arbitrarily ; denote it by ¢ (z) : then we
must have

¢ () =ZBSINPZ ucourrenrinnennnnnns (14).

Let p, and p, denote two of the values of p 5 and B, and
B, the corresponding values of B. Multiply both sides of
(14) by sin pz, and integrate from #=0 to #=1. Then, since

. . _sin(p,—p)z _sin(p, +p)z
fsmp‘“m”_"zdz_ 2(,=p) 20t p)
= p,Sinp.x cos p.x+p, sin p zcos p,x
P: - P: ’

. : E
we find by the aid of (12) that f ‘8in p,@ sin pzdz = 0.
o

L ! sinplcospl
And f sinp zdy =5 — —L—01°,
. Py 2 20,
1
20, f () sin p @ dx
[]

Thus we get B, = pl—sinplcospl *

‘Similarly B,, B,... may be determined.
Substitute in (13); thus we get

'
2p sin p:ve"’?"f ¢ () sin prde
. 0
pl — sin pl cos pl

Thus the value of « is determined.. We obtain indirectly
the following theorem: if ¢(x) denotes any function of =,
which satisfies (8) when &=/, but is otherwise arbitrary, then

1
2p sin pz f ¢ () sin pzde
0.
pl — sin pl cos pl

°=

$(@) ==

This result was first obtained by Fourier: see his Théorie
Analytique de la Chaleur, page 850; and Poisson’s Théorie
Mathématique de la Chaleur, pages 171 and 294.
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CHAPTER XIII.
LAPLACE'S COEFFICIENTS.

165. WE have defined Legendre’s n** Coefficient as the
Coefficient of o® in the development of (1 —2az+a"yFina
series of ascending powers of a; thus this Coefficient is a
function of z, and we denote it by P, ().

Let cosy be put for @; then the Coefficient becomes a
function of cosy which we denote by P, (cosvy).

Suppose two points on the surface of a sphere, and let
their positions be determined in the usual manner by two
elements which we may call latitude and longitude; let

g—ﬁ be the latitude, and ¢ the longitude of one point;

let %—- @ be the latitude, and ¢’ the longitude of the other

goint; let o be the arc which joins the two points: then by
pherical Trigonometry

cosy = cos @ cos & + sin 0 sin &' cos (¢ — ¢).

Suppose this value of cosvy substituted in Legendre’s
n® Coefficient ; then it becomes what we call Laplace's n™
Coefficient : we denote it by Y,, and we proceed to discuss
the form and the properties of this Coefficient.

It will be observed that ¥, is thus a function of four
quantities, namely 6, €', ¢, and ¢'; we shall in general re-
gard 6 and ¢ as variable, and 6 and ¢’ as constant, but it
will be found that no difficulty will arise if we have in some
cases to regard & and ¢’ also as variables.

9—2



132 LAPLACE'S COEFFICIENTS.

The geometrical language about the sphere which we
have introduced is not necessary, for we might have stated
the connexion between ¢ and the new variables merely as
an arbitrary choice of notation. But with the aid of the
spherical trian%le, which is formed by connecting the two
points and each of them with the pole, a distinctness and
reality are given to the subject which will be found very
advantageous. :

166. Throughout the following investigations we shall
_use p for cos @, whenever it may be convenient ; this gives
dpu=—s5in0df. Similarly we shall use u’' for cos6'; this
gives dp'=—sin 6'dd.

Thus we have
cosey = pp’ + V1 —p* V1—p* cos (p~ ¢)
= pp’ + V1 —p® VT = pu* (cos ¢ cos ¢’ +sin ¢ sin ¢).
We shall sometimes use 4 for ¢ —¢'.

167. We shall first establish a certain differential equa-
tion.
1

L U= :
* (e + -9+ @7
then av_ Gl
@ {(@-a)V+(@y—y)+ -2
v 1
de* — {@-o)+@y-y)+@e—2)
+ 3 (z—2)* .
{(@—2)+@—y)+@E—2)}
aru AU

Similar expressions hold for F and T and thus by

addition we have
aru d*u  d*U
‘ P + d_.'y’r + A= (| R veesseens .
Now assume

z=rsinfcosd, y=rsinfsing, z=rcosh;
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then by Differential Calculus, Art. 207, equation (1) trans-
forms to
U 14U, 2dU cotf dU 1 a&U
wFrtrar T r et a0 T P ene aF
this may also be written
d* (Ur) _ond 1 d&'U_
7 +a,# 1=p) 5 2 +1 yr lr 7 0...(2).

This differential equatlon was first given by Laplace, and
may be called Laplace’s differential equation.

=0;

Let us also assume

@ =¢sin® cosd’, y'=r"sin@ sing’, z'=+ cosl’;
' _ 1

N

where A stands for cos @ cos & + sin 6 sin & cos (¢ — ¢').

then

~ Suppose ' greater than r; we may put Uin the form
1 r )3
2 {1-2x;,+;_,—,} ,.
and by expanding we obtain for U the convergent series
1 ~ r
UEERS AT Al Auor pronwmenyc )}

Substitute this value of U in (2), and equate the coeffi-
cient of 7 to zero; ‘thus

d vy | 1 &Y,
—{1— ')T,,.} 2 T D Ta=0.(8)

If we auppose r greater than 7', we have instead of (3)

I

and by equa.ting to zero the coeﬁiclent of ™7 we agé.in
obtain (4). :
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168. Confining our attention for the present to u and ¢
as the variables, we see from the equation

cosy = pu + 1 — /T —p?(cos ¢ cos ¢’ + sin ¢ sin ¢")
that cosey is an expression of the first degree with respect to
these three terms, u, v/1— u*cos ¢, and /1 — ' sin ¢. Hence
as P, (cosvy) is of the n'™ degree in cosvy, it follows that ¥,
will be of the n* degree in the three terms u, /1 —u*cos ¢,
and A/T— p¥sin ¢; that is, the aggregate of the exponents of
these three terms in any element of Y, will not exceed n.

Also, since cosy=pu'+J1—p*J1—pu"cos(p—¢'), we
see that the powers of cosy may be developed in powers of
cos (¢ —¢'); and then these pawers may be transformed by
Plane Trigonometry into cosines of multiples of ¢ —¢'. In
this way we see that Y, may be arranged in a series of cosines
of multiples of ¢ —¢". As such a term as cosm (¢ —¢’) can
arise only from the powers m, m +2, m+4, ... of cos(¢p — ¢),

it follows that @ —p’)i’. must be a factor of the element which
involves cosm(¢p —¢'); and the other factor will be of the

form
A"+ A A,

where 4,, 4,, A,, ... are independent of . We will denote

this by B,,. Thus Y, is of the form :
* By+B.J1—pF cosyr + ... + Bo(1—p))* cosmir + ...
+B,(1- p’)g cos nyr.

Substitute this value in (4), observing that % =‘f;—\}1;';

and equate to zero the coefficient of cosmy-; thus

B“m’ (l — l);

(1= ) o (Bu 1)) =2 . (B 1= 4} - P

B +a(n+ B, (1-4)7=0;
when this is developed it becomes ~

e at PR

e
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a- ’)’“%--2(m+1)#(1 ) j;

{(1 u) d* (1 - P’)’ -9 d(ld';:"’);_ m*(1— P’)g-l

+n(n+1) (1_,;)?}=

%37—2("1+ Dud- #’)’ 4B,

thatis, (1—pd*t
+ B, {n(n+1) —m'— m}(l—p’)’=0.

This may be written ‘
a%{(l ’)"'“‘zﬁ}+(n m) (n+m+1) (L - w"B, =0,

Substltute' for B the series which it represents in this
equation, and equa.te the coefficient of (1 — u*)™"u"™™ to zero;
thus, using p for n —m — 25, we have

—p(p—1)4,~2(m+ 1) pA, + (n—m) (n-+m+1)4,
. +@+2)(p+1)4,,=0.
Thus by reduction we get

_ (n—m—2342)(n—m— 2s+1)
A== 25 (2n — 28 + 1) A

Hence we find that

g (pm_(a=m)(n—m—-1) ..,
B-‘A"{" T 2.@m-1) ¥
(n—m)(n—m—1)(n—m—=2)(n—m—3) .
2.4.(2n—1)(2n—3) K e
The expression within the brackets may be denoted by
@ (m,n, p.) ; thus the term in Y, which involves cos myr is

+

4,01 -p.’)’ (m, n, ) cos myr, where 4, is independent of p.
and ¥
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But this term must be the same function of ' that it is
of pu, because w and u’ occur symmetrically in Y, ; so that we

see 4, must contain (1 — u®)¥w (m, n,u) as a factor. Hence,

finally the term in Y, which involves cos my is

(1 =) (L= (m, m, ) = (m, m, ) cos mp,
where C is some numerical factor independent of u, u/, and
4. The value of €' must now be found.

I. Suppose n—m even. Then in w(m,n,u) there is a

“term independent of x, and therefore a term independent of

# in @ (m,n,p); so that if we put x=0 and x'=0, the
above term becomes C {w (m, n, 0)}* cos my, that is

(n—m) (n—m-1)...1 :
0{2.4!... (n—’:n) z;“—l)(2n—3)... (71+1n+1)} cos my,
that is
1.8.5...(n—-m=1)1.3.5... (n+m —-1))*
G{ nl.;n.5...(2n—1) e }eosmqp

But when x and u vanish the function to be expanded

becomes (1 — 2z cosyr+ 0%, and we have to pick out the
term which involves cos myr in the coefficient of o It will
be found by Art. 14 that this has the factor

21.3.5...(11—m—1)l.3.5...(n+m—l)
2.4...n—m)2.4...(n+m) ’

2{1.3.5 v (n—=m—=1)1.8.5... n+m—-1)}"
|n—m |n+m ?

but only half of this is to be taken when m=0.
{1.8.5...(2n—-1)}*

[p—m|n+m ~°
but only half of this is to be taken when m=0.

II. Suppose n—m odd. Then in = (m,n, x) the lowest
power of p is the first, and the lowest power of u' in

w (m, n, u') is the first. Hence we find that a part of the term
in Y, which involves cos myr has the factor - .

that is

. Thus we get C=2
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M (n-m)(n—m-—1)...2 '
Cup 2.4...n=m—1)(2n—-1)(2n—3) ... ('n+m+2)} ’

3.5...(n—m)1.3.5... (n+m)}'
1.3.5... 2n—1) :

thatis Cpup' {

N Also, if we neglect powers of u and u’ above the first, we
ave ‘

(1= 2a s’ + T T oos ) + o
=(1—-2acosy + &)+ qup! (1- 22cos 4+ @)
the second term on the right-hand side
=app'(1—ae¥)H (1 - aevyt
=auy’ {1 +g a¢*+g:—za’eh‘*+...} {1 +g—ae"‘\"+—g'72 a’e"‘*f...} .
We want from this the coefficient of a"uu'cosmyr; it will
be found to be

8.5...(0—m)3.5 ... (n+m)
. i—m-D)2.4&... nrm=1)"

2{3.5...(11,—m)3.5 oo (n 4+ m)}

[n=m |ntm
but only half of this is to be taken when m=0.

. . . _1 ]
Hence we get as before =2 LY 31,,3,,. |1(;2:m . ;

but only half of this is to be taken when m =0.

2

L
.
’

that 1s

Thus finally we have
» »
I T L Bk ,
Y, =23 n—m [ntm = (m, n, p) = (m, n, @) cos myr,
where 3, denotes a summation with respect to m from 0 to n

both inclusive; and A=2{1.8.5... (2n — 1)}, except when
m =0, and then we must take only half this value.
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Or we may write separately the term which corresponds
to m =0, and thus we have

{1.3.5... (2n —1)}*
Y = = (0, 8, p) = (0, n,
M . m{g ( w = (0, n, w)

(1 — “1)1; (1 - "'lg)!:'
+A% In—m |n+m = (m, n, :”') = (m, n, l&') cos my,
where 3 now denotes a summation with respeet to m from

1 to = both inclusive. It will be observed that the symbol =
has the same meaning here as in Art. 97.

169. For examples we may give explicitly the values of
the first three of Laplace’s Coefficients.

Yy=pu' + (1=pD (1 - p)} cosy,

7=3(w-3) ("-5) +3 - L= i cony

+§(1-#’)(1- 7) cos 2¢,
25/, 3 n_ 3,
Y,=T(Il' "‘gl")(l" _'5”‘)
+7§§(l—#’)’(1-#”)l(ﬂ'—%)(f""%)m"’
+ 17,5 (1= p")(1=p") pus’ cos 2~1»+§ (=)t (1 -7 con 3y

170. From the value of Y, given at the end of Art. 168
we have immediately

f:' Y.d¢=2'ﬂ' {1 3.5 .I.é(2n - 1)}’w (0, n, l") ol (0' n, "";)'

This result was obtained by Legendre in a very laborious
manuer in his earliest researches on the subject ; see History
of the Theories of Attraction...Art. 787.

By Art. 97 the result may also be'written
24
f Y,d¢ = 2nP, (cos 6) P, (cos ).

Al A
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CHAPTER XIV.
LAPLACE’S COEFFICIENTS., ADDITIONAL INVESTIGATIONS.

171. 1IN the preceding Chapter we have given all that
is absolutely necessary with respect to the form of Laplace’s
Coefficients; in the present Chapter we shall shew how the
results may be obtained by other modes of investigation,
and shall express some of the formul® in a slightly ditferent
manner. The preceding Chapter was almost independent of
the processes already exhibited in this work; in the present
Chapter, however, we shall make more use of those Pprocesses.

172. The determination of the value of C in Art. 168 is
troublesome from the fact that two cases have to be con-
sidered, namely, that in which n—m is even and that in
which n—m is odd. Perhaps the following imvestigation,
which depends on an examination of the highest power of u
instead of the lowest, may be simpler.

Suppose pu'=pu; then
ci1- ;4,')?(1 - p")%w (m, n, p) = (m, n, ) cos myr
becomes C(1-p")" {w(m, n, w)}* cosmyr.

, The highest power of x in this expression is u™, and its
coefficient 18 C (— 1)™ cos myr.

Also when u'=u the function which is to be expanded
becomes -
{1—2a[u'+ (1 — u*) cos Y] + '} H,
thatis {1 —2a[cos ¥+ p* (1= cos )] +a'} E.
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‘When this is expanded in powers of a the coefficient of a®
1.3.5...(2rn—1) w1

n

pick out from this the coefficient of cosmy, when (1—cosy)"
18 put in the form of cosines of multiples of .
4 4

But (l—cosx[r)"=2"sm"'£— { z;: ’}“
(=1)"|2n

2"2| |n+m

where 3, denotes a summation with respect to m from 0 to n
both inclusive; except that we must take only half of the
value when m =0.

1.8.5...(20—1) |2n
Thus G=2 |» 2-|n—m|n+
_oll-83.5...@n—1)p
In-m 1n+m !
but only half this value must be taken when m=0.
This agrees with Art. 168.
178. In Art. 97 we have seen that
_|p=m amp ()
""(""””‘)_‘ 1.3...2n—1) dp™ °’
.1 d*(u-1)"
als Pu)=—"——F5.
0 s("') on Ill d/""
Thus

{1.8.5...2n— 1)}1'(1 —u)¥(1 —u)

|n+m = (e, p) @ (m, 1, )

will involve —cosy)"; and we must

2 cos my,

s

= o lﬁ Iﬁ n+m ( —/“") (1 ')‘ d[l.""
= - - pF Edﬁff,f-,
: 1 d’“ " 2\ n
where M=WW. (1—[&') (l—[l: ) .

B
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Thus from Art. 168 we have

Y, = M4+ 25(1—p) (1—p) e S

where 3, denotes a summation with respect to m from 1 to a,
both inclusive.

174. It will be observed that in Arts. 168 and 173 there
is nothing to restrict the values of 4 and u' to be unity or
less than unity, though it may be often convenient to suppose
that p=cos 0 and u' = cos@’. If we make these suppositions
we may write the result of Art. 173 explicitly thus:

2sin@sin @ cosy d'M
n (n+1) dudy’
+ 2sin*0sin’ @ cos 2y d'M
(n—=1)n(n+1)(n+ 2) du'du™

Y, =M+

+ 2 sin" 4 sin" &' cos nyr aM
|2» du*dp™"

175. We will now give another mode of obtaining the
expression for Laplace’s &eﬂicients.

We begin by shewing, as in the beginning of Art. 168,
that ¥, must be of the form Zu,, cosm+y, where 3 denotes
summation with respect to m from 0 to » inclusive, and «_ is
some function of w and x' which is to be determined.

Substitute this expression for Y, in the differential equa-

tion (4) of Art. 167, observing that qu:% ; then
equating to zero the coefficient of cos myr, we get

difl {(l—p’) Z—’:—"} +{n (n+1) —l—qf—:‘;} Up = 0.
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This differential equation coincides with (9) of Art. 102,
and its solution is of the form

‘u’m = (“" - 1)1 {CIFPn (/‘l') + OID.Qn 0")}’
where D stands for (% , and C, and C, are constants with
respect to pu, though they may involve w'.

But in the present case we must have C, =0, because u,,
is necessarily finite when px=1, whereas D"‘Q (w) is then
1nﬁn1te, as we know from the form of Q. (,u), see Art. 37.

Hence u, = C, (p.’—l)’D”‘P (u).

But as %, involves u and ' symmetuca.lly, we see in the
same manner that

= 0, (u*~1)°D"B, (&),

where D now stands for dd, ,and C, is constant with respect
to #’. Hence it follows that
3d"P, (u) d"P, (u) .

—_— 2 __ s 3 __ 3
U, = bm (/‘ 1) (F' 1) F,m d Im ’
where &, is a constant independent both of x and u".

And =3u_ cosmy,

where u,, has the value just expressed, and 3 denotes a sum-
mation with respect to m from O to n, both inclusive.

By the use of the notation of Art. 97 we may also express
the result thus:
3

Y, = Shy (4= 1)% (4 = 1) (m, , 4) w (m, m, ) cos o,
where %_ is also a constant, and is connected with &, by the

relation”
|n m
{1.3.5 .(2n—- l)} = b
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It remains to determine the value of the constant B in
the last expression for Y,. This may be done precisely as
the value of C was found in Art. 172, for the A of the pre-
sent Article is equal to the C of Art. 172 multiplied into
(=)™

Thus we find

h—gll:3:5.. @a=1)

[n=m [ntm

n-—m ",
M (" 1) )

but only half these values must be taken when m=0.

and hence b, =2,

176. There is still another method of obtaining the ex-
pression for Y, which deserves notice; this does not use
Laplace’s differential equation to which we have had recourse
in the investigations already given.

177. If A, B, and C are real quantities, and 4 positive,
and also 4*— B*— C* positive, then ,

r dt - 2w
o A+ Bcost+ Csint N(4*—B' - CH"
For assume B = pcosy, and C'=psin¢y; thus
] dt - fl' dt _ (¥  dr
o A+Bcost+Usint J, A+pcos(t—y) J., A+pcost’
Now the last integral is independent of «, for its differ-
ential coefficient with respect to v is zero, by the Integral

Calculus, Chapter I1X.: thus the value of the integral is the
same as if y were zero. '

Therefore the expression
_ f = dr 2
“Jy A+pcosT y(A'—pY)
I
V@ -B=0)

, by Art. 44,
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178. Now P, (2) is the coefficient of a® in the expansion

of (1 — 2az +a?)7%, and we obtain Y, when for z we put
pi =N =1Wp" =T cos (- ¢).

Thus we get 1—22z+a* A

= (u—op) ~ W'~ D) cos p—ay (W~ Dcos g }* . |
— WG - Dsin - ey~ sing}, |

say =A'-B'— C*

Suppose u positive and greater than u’, so that p—au’
is positive when a is small enough; then, by Art. 177,

2w

(1 =22z +a’)

* dt
=f: ptcos(P—12) o (u'—1)—a{p +cos (¢’ —t) y(* 1)}

Expand the expression under the integral sign in a series
of ascending powers of a; thus we get

y = L [ +cos (—)V@-D}
*~2n), Tuteos (- VD)
Now we know by Art. 149 that
{W' +cos (¢ = ) Y(u* - 1)° _
=a,+ a,cos (¢p'—1) +a,c082(¢p'—t) +... +a,cosn (¢' —1),
and that

1
(oo G (E—1)|

hence Y, =ap,+ % ab, cos(p—¢) + %a,b, cos2(p—¢)+...
+ % ab, cosn (¢—¢).
Moreover, by Arts. 149 and 150,

2 |20 W~ 1)? ,
a,=§.mw (m, n, ),

=b,+b,cos(p—t)+...+b,cosn (p—t)+...;
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|n —-mln+m 2 2n (u'— )'
bll = m L (— ) 2» W (m, n, F’)
2(—- 1)™(2n

9" ww W =1)* = (m, n, p);
8o that, except when m =0,

Cmba= {l ,,_m(ﬁ)} (1) 2(1—""’)’—;” (m,n, p)w (m, n, &),

and  ap,= {L.3. |_(2li =LY o (0, n, 1) = (0, m, 4).

Strictly speakmg the result is obtained on the suppo-
sition that u*—1 and u®—1 are positive; but it is obvious
from the form of the result that it holds universally.

179. It will be seen that the definite integral obtained
for Y, in (1) includes both the definite integrals given as
expressions for Legendre’s n® Coefficient in Art. 49.

For if we put p=1, we get
o) =gz [ W+ oo (@ ) V(-1 de

=-2;]:'{p'+oos1'~/(p"—l)}“dr

=;1rf:{p'+cosw(,w-1)}-d-r.
And if we put ' =1, we get
dt
20 =5 | preggvE=Tp
1 [> dr
27 ), EFoRT V=T
_1r dr
— )y {ptcos TN -
T. 10
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180. The process of Art. 178 involves the equality of
two definite integrals which may also be established in
another way.

' We know that

let 2= az,— A/ (0*—1) o/ (2,'—1) cos (¢ — ¢,) ; then in Art. 178,
we obtain another form for P, (2), namely

= 1 [* {wl + cos (¢l- ) ’\/(xx’_ 1)}”
PO =5z | e g e B

We propose then to establish in a direct manner the
equality of the right-hand members of (2) and (3).

Put y — ¢ =; thus the right-hand member of (3)
becomes

_1_ ow=d {wl + cos (X + ¢ - ¢|) "/("‘vlg - 1)}'. d
or)_y @+ cosy y(@ — )™ X

If we vary ¢ in the limits of this definite integral it
does not affect the result ; and so the definite integral

[l =g) o
. fo+ cos x V(@ — DI X
Put B for ¢, — ¢ ; and thus we get
[Flot et Avtar- b
o {z+cosyy(a—1)}*"

Separate this definite integral into two parts, one between
the limits-0 and 7, and the other between the limits 7 and

dy.

2m; and in the second part change x into 2m —y: thus

we get
l"{m, + cos (x—=B) ¥ (z,*=1)}"+ [z, + cos (xy +B8) ¥/ (z .~ 1)}* 7
1o . {x+ cosy /(¢ - 1)}™ X

Now transform this by a process like that of Art. 49;
assume o . :

. ASBa

| W S )

4
».
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_zcosyYy—w(a'-1)

(.308 X

=— -1)’
e oo to & — cos Yr y/(; )
. sin Y
X sy (@—1)’
1
w+008xV(”"1)=a;—-c08\k«/($="1),
dyr

_ dx=x—cos\kV(z’—l)'
Thus the definite integral becomes

f:(A — Beosy —Csin ) dys + f " (4—Bcosy + Csin ¥)"dy,
0
where A=ax —cos B (z*~1) ¥/(z}-1),
B=2, (@ —1) -y}~ 1)cosB,
. C=y/(x}—1)sinB.
Hence we see that 4*— B*— (*=1, so that
B’+ C*'=A4*-1= z'—l;
and therefore we may assume
B=y/(2*~1)cosa, and C=4/(2*—1)sina,
The definite integral thus

= [T evE-Deospa)ig+ | te-v(-1) con ety

=[TE-ve-Desp-aray

=f:'{z- N (2* —1) cos}* @y

Thus the definite integral is reduced to the form in (2);
and this is what was to be done,
10—2
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181. In the expressions which have been given for
Laplace’s Coefficients we have made much use of the function
introduced in Art. 97 and denoted by the symbol w. Hence
the various forms which are obtained for this function in
Arts. 103...106 become of practical interest; and two others
to which we now proceed may deserve notice.

182. Suppose n—m even. Then it is obvious from the
formula at the beginning of Art. 106 that @ (m, n, cos ) might
be expressed in a series of powers of sin §; this series might
be deduced from that formula, but an independent investiga-
tion will be simpler.

Let y= (2"~ 1)!’.w (m, m,x); then y satisfies the differen-
tial equation (9) of Art 102. Put @=cos#; then this differ-
ential equation becomes

2

%—’g+cot9%+{n (n+ 1)-,%0-}3,% ....... (4).
We know then that this equation has a solution of the form
y=c,8in"0 +c, sin"?0 + ¢, 8in" "0 + ...

Substitute this value of ¥ in (4) and let
n+m=2p, n—m=20:

we shall obtain after reduction °
(p—=r+1) (c—r+1
R AR 2 VAR ) P 5).
r(p+¢r— ) )

By direct comparison of the value of y with that of
= (m, n, cos 6) at the beginning of Art. 106 we see that

o= (=1 (1) * = (= 1)%;
therefore y= (~1)7 [sin® 6 — LT — sin™¢
1_.(p+¢r——2-)
s—plozDelol) g .
2 (p+¢.r-§) (P+°'-§)

-

A
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It will be seen that y is symmetrical in terms of p and o;
this might have been anticipated because y is unchanged in
value when the sign of m is cha.noed see Art. 100, Divide

the expression for y by (- 1)’ sin™ @; thus we get

= (m, n, cos ) = (— 1)° Jsin* § - —L-Z—ssin™* 4
1.(p+0'—§)

plp—Da(e—1) in? 49— ...|.
Hre e ]

183. Suppose n—m odd. Then we see that y will take
the form

cos 0 {c,sin"™" @ + ¢, sin"" 0 + ¢, sin"" 0 +...}.

The differential equation. (4) may be expressed thus:

d (dy ' .
de(dosme) {(n+1)—§im?,p}ysm0=0.

Substitute the value of y; then it will be found that the
term which involves ¢, is

¢, {(n—2r—1)*(sin 6)***—(n — 2r) (n — 2r + 1) (sin 6)* ™} cos @
+e, {n (n+1)— Eiz':b} (sin )™ cos 6.
Hence we see that
¢in(n+1)—(n— 21') (n—2r+1)}+ec.  {(n—2r+1)—m’}=0.
Put n+1ﬁ=2p+l, and n—m =20 +1; then

(p=r+(c—r+1)

—tCpye
r(p+a'+1—2r2 1)

c,=—

=1
z

Also by direct comparison we get ¢,=(—1) *.
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Hence finally we shall have

@ (m, n, 008 ) = (—1)” cos o{s

+

in”o—msm”"e

@(p+o+

plp—=1)a(c—1) sin”_‘ﬂ—n-}-

)

e - — —— St
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CHAPTER XV.
LAPLACE'S FUNCTIONS.

184. WE have already used the differential equation
which Laplace’s Coefficients satisfy; see equation (4) of
Art. 167. We proceed to some further consideration of this
equation.

185. We shall first shew how it may be deduced from
the more simple equation of Legendre’s Coefficients. We
known by Art. 54 that P, (2) satisfies the differential equa-

tion

(1-2 *)ng @) _ g, dl;z(z)+n(n+l)P.(z)=0.

Assume
2=acos 0+ bsin @ cos ¢ +csin fsin ¢,

where @, b, and ¢ are constants.

Then
gg=—asinﬂ+bcos€cos¢+ccos€sin¢,
a
="
%:(—bsin¢+€cos¢)sin 6,

d—?—-—(bcos¢+csm¢)sm0.
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Hence we find that

TP, df, 1 &P,_ &P, ,dP,
do‘+°°wdo 7 Rt Rl

where

4=(33) + a0 (39)

= (—asin 6 + bcos 0 cos ¢ + ¢ cos § sin ¢)*
' + (—bsind +ccos¢)?,

and

&’z dz 1 &
B=d7_0' 0d8+sln T0de*

Thus we see that 4 +z*=a*+b*+ ¢,
so that A=+ 4+ -2
and B=-—22. Hence if a*+ 5" +¢* =1, we have
(1-z *)i":ﬂ-zz%m(nnm

_d'P, dP 1 d'P,

=gg +oot0 5+ g g tret ) By

and therefore the last expression is zero.

186. Any function which satisfies the partial differential
equatlon (4) of Art. 167 may be called a Laplace’s Function
of the n** order. The variables it will be observed are 6 and
¢, and p=cos §. Thus Laplace’s Coefficients are particular
cases of Laplace’s Functions; for the Coefficients all satisfy
the equation (4) of Art. 167. We sha.ll continue to use Y
to denote Laplace’s Coeffictent of the n* order, and shall use
other symbols as X, and Z, to denote a Laplace’s Function
of the n* order.

187. Let m and n be different positive integers. Let
X, be a Laplace’s Function of the order m, and Z, a Laplace’s
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Function of the order #; then under certain conditions which
will appear in the course of the investigation we shall have

[ [z

For by the differential equation of Laplace’s Functions
we have

m(m+ 1) K== Lla- G- o1 O

_,"n d‘Pz >

1 oo
and therefore : f f X, Z,dudp
-1v0

1 e fq_ ndXa) 1 d’x,]
A R RS SR TR
By integrating by parts twice we find that

fale- G} 2= -z, - - G X,

[z fa-m ) xeaus

therefore

f.ldﬂ{(l ’)dd/h}z d"'—[ d/t{(l ”') }X-dp-

Again, by integratmg by parts twice we have
X daz a'Z,

d¢’ Z,dp = ¢ d¢”X -t W&d¢,
therefore ng"‘Z dp = ‘f;f; X, do,

assuming that X,, and %—'—' have the same values respectively
when ¢ =0 and when ¢ = 2, and making a similar assump-

P7
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Henco f [* X.z,dua4
el [T B 23]
L2 o

by the differential equation of Laplace’s Functions.
Hence since m and n are supposed different

[ [} % das=0

~ 188. In addition to the conditions which are expressly

stated in the preceding Article, we have of course one which
is always implied in applications of the Integral Calculus,
namely that the functions which occur are to remain finite
throughout the range of the integration; these functions
here are X,, and Z, and.their first and second differential
coefficients with respect to x4 and ¢.

~189. In future whenever we speak of Laplace’s Functions
we shall always suppose them to be limited by the conditions
stated in Arts. 187 and 188. :

190. The differential equation of Laplace’s Functions
has been integrated in a symbolical form by Mr Hargreave ;
and after him by Professor Donkin and Professor Boole ; see
Boole’s Differential Equations, Chapter XVIL The result
though very interesting theoretically has not hitherto been
used in practical applications.

191. Take the general expression for Y, which is-given
in Art. 168 ; consider it as a function of 6 and ¢, putting
¢ — ¢’ for 4. . This expression then may be said to consist of
2n+1 terms, namely one corresponding to m=0, and two
corresponding to every other value of m not greater than = :
the two are of the form

K, (1- ;l.')?w (m, n, p) cos mep, and L, (1— ;L’)?w (m, n, u)sin me,
where K, and Z,, are independent of x and ¢.

-~y
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Each of the 2n + 1 terms will separately satisfy the dif-
ferential equation of Laplace’s Functions; for the whole
expression satisfies that equation, and thus the terms which
involve sin m¢ and cos m¢ must separately vanish.

192. We shall now shew that any Laplace’s Function
which is a rational integral function of cos 0, sin @ cos ¢,
and sin 6 sin ¢, consisting of a finite number of terms, is of
the form :

A,=(0,n,cos0)+2 {4,C, +B,S8,},
where C, stands for sin™6w= (m, n, cos ) cos m¢p, and S,
stands for sin™ @ @ (m, n, cos 0) sin m¢, and 4, and B, denote
arbitrary constants ; also 3, denotes a summation with respect
to m from 1 to n, both inclusive. It will be seen that the
conditions which we here impose on our Laplace’s Function
include those of Art. 189, but are more restrictive still.

To demonstrate this we observe that any rational integral
function of cos 6, sin @ cos¢, and sin @ sin ¢, may be put in
the form X (u, cosme + v, sinme), where u, and v, are
functions of @ only, and S denotes summation with respect
to m. Substitute in the differential equation of Laplace’s
Functions ; then it will be found that u, and v, must both
be values of & which satisfy the differential equation

ai¢ d¢ m?
d0,+cot9d0+{n (n+1)_sin,0} £=0.

Put z for cos ; then this differential equation coincides
with equation (9) of Art. 102, and therefore the solution is
¢=(a*-1)* {(HD"F, (2) + HD"Q,(2)},
where H, and H, are arbitrary constants.
But since ¢ is in this case to be rational and integral
and of a finite number of terms, we must have H, = 0.

Thus {= (z'— 1)? H.D"P,(x); and this vanishes if m
is greater than n. And as = (m, n, ) is equal to the product
of a constant into D™P, (x) we have finally

t=@"—1) Ko (m, n2),
where K is a constant. This establishes the proposition.
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193. The expression given at the beginning of the
preceding Article denotes Laplace’s Function of the »® order
under the restrictive conditions there enunciated. We may
give various forms to this expression by means of the various
developments which have been obtained for = (m, n, x)

or for (z*—1)*w (m, n, ).

For example, let y, denote the series which is between
the brackets in the value of y of Art. 182; and let z, denote
the series which can be obtained from ¥, by changing p + o
into p+o+1 in denominators; then it will be found that
the Laplace’s Function

=3y, {bscos (p — o) ¢ + ¢, 8in (p — 7) ¢}
+ 3z, cos 0 {B, cos (p — o) § + . 8in (p — o) P}.

Here b,, ¢;, Bs, v, are arbitrary constants, and 3 de-
notes summation with respect to o. In the first part of the
expression p is to be determined by the equation p+o=mn}
. and the summation is to be from 0 to the greatest integer
in 7-21', both inclusive. " In the second part of the expression

p is to be determined by the equation p + o =n—1; and the

2 ’

summation is to be from 0 to the greatest integer in L

both inclusive.

1 ror :
194. 'We shall now find the value: of f X, Z, dudd,
where X, and Z, are two Laplace’s Functions of the order n
limited by the respective conditions of Art.192. ‘We may take
X, =3 sin"0 & (m, n, cos 0) (4,, cos m¢p + B, sin m¢p),
Z, =73, sin™0 = (m, n, cos 0) (G, cosm¢ + H,, sin m¢p),

where 4, B,, G, and H, denote constants; and = denotes
summation with respect to m from 0 to =, both inclusive.

Multiply, and integrate with respect to ¢ from 0 to 27 ;
thus

f " X, Z,dp = sin™0 {w (m, n, cos 0)}* (4, G, + BH.),

except when m =0, and then for 7 we must put 2.
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The next step then is to find the value of
1
f sin™ @ {= (m, n, cos 0)}* du,
1

" that is of f‘ (1= 2™ [ (m, n, 2)) d

By Art. 97 the expression to be evaluated is
{ pom } [ a-arpr=@-1ya
and this by equation (2) of Art. 96

=(_1)-_”_l;é'_l_’;_L:_Z‘f;pm(x'-1)-Dﬂ (=1 dz.

By successive integration by parts we have
1 1
f D™ 1) D (1) da=(~1)"™ f @1y D™-1) dz
-1 -1

e[ @-trde=m e[ a-aras
- 2n (2n —2)...2
U P Gy D@ =1)..3
Hence we obtain

2
j: lsin 0{= (m,n, cosb)}*du= ‘_lzn-lﬁ_'._ (271:1-(12)72:-)1) 23’

and thus finally f ] X, Z dudd
=170
2n (2n —

2m
= @) I35 @=Dp > romrtm (4.6, +B.H,),

but for the case of m =0 we must double the term.

2.
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Thus we may express the result in the following manner:

f’]"xz«z dep = the product of om
= € product o. ]
L), At P (Cn+1){1.3.5...2n—1)}

into {2 (0|1 4,6+ 3 [p—m [n+m (A,G_+B_H,)},

where = now denotes a summation with respect to m from
1 to m, both inclusive.

195. As a particular case of the precedin%Article sup-

pose the function X, to be the Coefficient Y,. By Art. 168
4 -2-1.8.5..Cn-D)} '

e [n—m |0 +m

and B, may be obtained from this by changing cos m¢' into

sinm¢: but when m =0 we must take half these values.

1 romw
Hence we have f f Y, Z dudp
-1v0

sin™@'= (m, n, cos &) cos me',

4
2n+1
o
= g1l ,
where Z, is what Z, becomes when for 6 and ¢ we put '
and ¢’ respectively.

3, sin™ 0 w (m, n, cos®) (G, cosm¢'+ H,, sin m¢')

This is a very important result.

196. Hence, for example, we have

T Yt dude = 2T
f:,fo Y"dﬂd‘l’—2n+l’
because ¥, =1.
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CHAPTER XVIL
EXPANSION OF FUNCTIONS.

197. 1IN the course of Laplace’s researches on Attractions
and the Figure of the Earth he obtained incidentally the
remarkable result that any function of the spherical co-
ordinates x4 and ¢ might be expressed in a series of Laplace’s
Functions. The demonstration however was not very satis-
factory and other investigations have been given since,

198. We shall first shew that a function can be ex-
pressed in only one way in terms of Laplace’s Functions.
Let F'(u, ¢) denote a given function, and if possible suppose

that
Flu ¢)=X +X + X, +...... )
and also =2+ 2, +Z;+...... ;

where X and Z, denote Laplace’s Functions of the order m,
Then by subtraction

0=X,~Z,+X,~Z,+ X,~ Z,+....

Multiply by Y, and perform the double integration with
respect.to 4 and ¢. Then, by Art. 187,

o-[ ["r.&x.-2) dud;

. therefore, by Art. 195,

O = X”/ — Z. ’ ;
where X, denotes the value of X, when we put @' for 8 and
¢' for ¢; and a similar meaning belongs to Z,'.

Thus since X,'=2Z whatever 6" and ¢' may be, it is
obvious that X, is identical with Z,, .
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199. In the simple case where a given function is a
rational integral function of cos 6, sin 6 cos ¢, and sin 0 sin ¢,
there is no difficulty in shewing that the function can be
expressed in a series of Laplace’s Functions.

Any constant quantity may be considered as a Laplace’s
Function of the order zero; since it will satisfy the differ-
ential equation of Laplace’s Functions when we put n=0.

Next take any rational integral function of cosé, sinf cos¢,
and sinf sin¢ of the first degree. This must be of the form

A cosf+ A,sinfcosp+ A,sinfsinp+ .4,
where 4,, 4,, 4,, and A4, are constants.

Here A4, is a Laplace’s Function of the order zero as we
have just seen; and 4, cosf, 4, sinf cos¢, 4,sinfsing are
all Laplace’s Functions of the first order, as we may infer
from the known form of Y7, or as we may verify by actual sub-
stitution in the differential equation of Laplace’s Functions.

Next take a rational integral function of the second
degree. This must be of the form

B, cos’@ + B, sin’6 cos’*$ + B, sin’f sin’ ¢
+ B, cos @ sinf cos ¢ + By cos 6 sin b sinp + B, sin’0 cos P sin¢p,

omitting terms of the first order, for these as we have already
seen can be exhibited as Laplace’s Functions,

We may express these six terms thus

C, (cos’0 —%) + C, sin"6 cos2¢ + C,
+ %B,sin’() sin2¢ + B, cosf sinf cosp + B, cosf sin O sin ¢,

where C,, C,, C, are all constant, as well as B,, B,, B,.

Here O, will be a Laplace’s Function of the order zero,
and the other terms will be Laplace’s Functions of the second
order, as may be seen in the manner already indicated.

But without giving any more examples let us proceed to
the general investigation,

‘!
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A rational integral function of cos@, sin@ cos¢, and
sinfsind will be an assemblage of terms of the form
(cos 6) (sin @ cos ¢)* (sin @ sin ¢)” multiplied into constants.

Now cos?¢ sin"¢p can be expressed as a series of cosines
of multiples of ¢, or of sines of multiples of ¢, according
as r is even or odd. Thus (sin @ cos ¢)? (sin @ sin ¢)” may be
expressed as the product of (sin 6)*" into a series of sines of
multiples of ¢ or cgsines of multiples of ¢. When this is

" done for all the terms in the given rational integral function,
we shall find that a term cosk¢ or sink$ is multiplied by a
power of sin 6, of which the index is %, or % increased by
some even number.

Hence if f denote any rational integral function, we can
express it thus '
f=F,+ F,sin@ cosd + F, sin*@ cos2¢ + F, sin*0 cos3p + ...

+ @, sinf sinp + G, sin*0 sin2¢ + G, 8in*d sin3p + ...,
where F, F, F,,...G,, G,... denote rational integral functions
of cos®.

Now any one of these, say F,, may be divided into two
parts, one an even function of cosf, and the other an odd
function of cosf. Let F, =wu,+7v,, where u, denotes the
even function, and v,, the odd function.

Suppose then
u, = a, cos® 0 + a, cos?~20 + a, cos®-40 +...,
where a,, a,, a,, ... are constants. -
By Art. 97 we see that )
u_—a@ (m, m+ 2\, cosf) =k cos™*-20 + ...,

that is u,, — a,@ (m, m+ 2\, cos0) is of two dimensions lower
than u_ as to powers of cos 6.

Proceeding in this way we see that we can express u_, thus:
u, = b@ (m, m, cos ) + byw (m, m +2, cos 6) _
+0m (m, m+4,cos6) +...,
where 3, b,, b,, ... are constants. .
T 11
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‘Similarly we may shew that _
vo=bw (m, m+1, cosb) +bm (m, m+3, cosb) +...,
where b,, b,, ... are constants, :
Thus F,,=bw (m, m, cos 0) + b= (m, m + 1, cos 6)
+bw (m, m+2, cosb) +....
In like manner @, may be expressed,

Then by Art. 191 we see that f takes the form of a set
of Laplace’s Functions ; the highest order being determined
by the greatest value of n which occurs in the expressions of
which the type is @ (m, n, cos ).

- 200. But we wish to shew that any function of 6§ and ¢
can be expressed in a series of Laplace’s Functions; that is,
we no longer restrict ourselves to the case of a rational
integral function of cos f, sin @ cos ¢, and sinfsind. We
shall give a process which is in substance frequently repeated
in the writings of Poisson: see for instance his Zhdorie
Mathématique de la Chaleur.

‘We have by definition

__ 1

V(1 —2az +a’)

Differentiate with respect to a; thus
z—a

(_1—-T2w +a)t

Multiply (2) by 2a, and add to (1); thus

1-a'

(1 -2z +a)t

=1+4P,(x) a+ P,(x)a* +......(1).
= P,(2) +2P, (2)a+ 3P, (2) &+ ...(2).

=1+3P (z)a+5P,(z)a" +...
+(2n+1) P, (2) @+ ......(3).
Now substitute for # the value
pi + V1= V1= ™ con(p - ¢);

PRI
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and integrate both sides between the limits —1 and 1 for
p and 0 and 27 for ¢. For brevity we shall retain the
symbol  on the left-hand side; but shall change P, (z) to
Y, on the right-hand side. Thus

[ et

=£ f’{1+31qa+5y,a'+...+(2n+r) Yo+ ...} duds.

Now by the property of Laplace’s Coefficients given in
Art. 187 all the terms on the right-hand side disappear
except the first, and thus we get

| f.lJ:' a —12:; ot dpdp = b

201. Thus we see that the value of the preceding de-
finite integral is independent of «: this very remarkable
result may be confirmed by another method.

‘We know, by Art. 165, that 2 may be considered to
represent the cosine of the arc drawn on the surface of a
sphere from a certain fixed point of which the coordinates
are & and ¢’ to a certain variable point of which the co-
ordinates are § and ¢. Denote the former point by P’, and
the latter by . Let o denote the arc PP, and x the angle

- between P'P and a fixed arc through 7. Then we may in

fact transform the double integral by expressing it in terms
of the new variables ¢ and x. The element of spherical
surface dudg will be e uivafént to sinydydy, that is to
—d cosydy, that is to —de Thus we get

' 1-o w  1-g
‘ —————— dud, =f ————— dad
-[:1-[:'(1--2r:¢a;+an’)i nip -Jo (L—2az+a})} x
gg,,f‘ _1-2
' -x(1f2m+a')§
. Now. f dz 1

(1= 20z + )t - a(l— 2z +a)
11—2
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therefore
f‘ da =1{ 1 _ 1 }= 2
a(l-2m+a)t @ ll-a l+4af 1-d”
Thus as before -
t1 3 —
fj’ 1-d 3 dudg =4
/0 (1=2ax+4")
: ]
202. Put ¢ for ﬁ—-i, where
(1 - 20z + o)

@ =pp + 1= 1= p¥ cos($ - §).

Then we have shewn that f F ¢dpude = 4ar. - This result is

true however near a may be to unity. But if the difference
between unity and a is infinitesimal, 'it is obvious that ¢is
also infinitesimal except when the denomma.tor of it is very
small: this can happen only when « is indefinitely near to
unity, that is when 6 — ¢ and ¢ — ¢’ are both infinitesimal.

If we consider { to represent an ordms;t.e which corre-
o
sponds to the two variables 4 and ¢, then ] f tdudg will

represent a certain volume; and we see that when 1— a is
ngmtesxmal the elements of this volume are insensible ex-
cept close to the point at which #=6" and ¢=¢". At this
point the ordinate becomes very great. The volume however
is always finite, namely 4.

203. Let F (6, ¢) denote any function of € and ¢ which
is always finite between the limits of 4 and ¢ with w ch we
are concerned. By Art. 200 we have

f.J (1 —2az + ;)i (0,¢)de¢

- f f F(a,-¢){1+311«+5x;a'+..'.+(2n+1)1%,3'+...}a,.d¢.
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Denote the left-hand member by X, then we may express
the result thus, X = U, + al, +a'U, +..., where

U=t D) [ [7 VPO $)duds

. 'This relation being always true when a is any proper
fraction, we may assume that it holds even up to the limit
when a is unity. The limit of the right-hand member is
obtained by putting unity for . We must investigate the
limit of the left-hand member. .

Let ¢ have the same meaning as in Art. 202. Since ¢
ultimately vanishes, except when p—pu' and ¢—¢' are
infinitesimal, we may change the limits of the integral

1 ron
j f F (0, ¢) {dude to any others which include the values
;4-1= :4' and ¢=¢'. Thus the limits may be u'— 8 and u'+8
for u, where B is infinitesimal, and ¢'—¢ and ¢+ for ¢,
where ¢ is infinitesimal.
Hence we reduce the integral to
w+B f¢'+y
[ [ " F .4 tauas.
=B ¢~y
Next we observe, that since ¢ is always positive, we have
4B [¢+y

R

where f is some value which F'(0,¢) takes between the .
limits of the integrations: see Infegral Calculus, Art. 40.
And since these limits are ultimately indefinitely close to u'
and ¢’ respectively, we have ultimately f=F (¢, ¢'). Also
J/¢dude between the limits =4w. Thus finally

4mF (@, 4) = |
[ 0T 5Tt QA DYt PO $dudh

This shews that F (¢, $") can be expressed in a series of
Laplace’s Functions; for Y, is a Laplace’s Function of u'

and ¢’ of the order #, and when it is integrated with respect
to x4 and ¢ it is still such, It is often convenient to express



166 EXPANSION OF FUNCTIONS.

" the result thus -
4nF(#,§)= U+ U+ Tyt ...

1 rox
where  U,=(n+1)[ [T T.FO.$)dudp.

204. By interchanging the symbols 6 and &, and also ¢.
and ¢, we get

4w F (6, 9)=
/ [”{1+3Y,+51;+...+(2n+1) Yo+, }F@,8)du,d¢ ;

it is unnecessary to make any change in the general symbol
Y,, for that involves 6 and ¢’ symmetrically, and also ¢ and
¢’ symmetrically.

Thus F'(6, $) is here exhibited in the form of a series of
Laplace’s Functions ; the Function of the ™ order being

Tt [Trre. s aas.

205. In Art. 203 suppose that F(8,4) is itself a
Laplace's Function of the n® order ; then by Art. 187 all the
terms in the series disappear except one, and we have

1 o
470, §)=@n+ )| [Y.7(0,¢)dudp;
) -1Y 0
this agrees with the last result of Art. 195,
206. Let the definite integral

1 [ [>(1~-a)F(6,¢)
'4—#[.,[. (1—2m+¢')id"d"’

be denoted by @ for brevity; then we have shewn in Art. 203
that the value of Q when « is'unity is F'(#, ¢): Poisson
himself puts some of the reasoning by which this is obtained
in a more formal manner, but not 1 think more decisively.
The result holds so long as & lies between O and ar, and ¢"
between 0 and 27; but at these limits exceptions occur,
which we proceed to natice,. -
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207. Suppose ¢'=0. There are now fwo values of ¢
which in conjunction with @ =6 make the denominator of
§ vanish, namely ¢ =0 and ¢ = 2.

‘We have
J T re 0 s

~[ [Fo.etauas+[ ["Fe, 8 tdud,

and we wxll consider separately the two expressions on the
right-hand side.

Take ] f F(6,8)tdudg. Sinco ¢vanishes throughout the
range of mtegratlon except when ¢ and 6 — 6 are very small,
we may reduce this to f f F(8,¢) tdudg, where 8 and y
are infinitesimal. In the next place we may take this to be
ultimately equal to F(#,0) f f ¢dud$. Then without
causing any sensible dlﬁ'erence we may change this to
F(@,0) j f tdudg ; and this is equal to 2w F (8, 0); for if

we return to the process of Art. 201, and suppose ¢’ =0, we

shall obtain half the result there given, now that the limits
of ¢ are 0 and 7 instead of 0 and 27r, Thus finally

f f F(0, §) tdudg = 2w F (@, 0).
In the same manner it may be shewn that

[ ["F @9 tinis = 2w @, 20).

Hence, when ¢'= 0, we have
Q=3{F (6,0 +F(6,2m)}. .
208. Suppose ¢'=2a. Then; adopting the same method
as in the preceding Article, we shall arrive at the same

result. Thus the value of @, when ¢' =0 or ¢'= 2, is the
half-sum of the values of F' (&, ¢') for these values of ¢'...
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209. Suppose & =0. Then the denominator of ¢ vanishes
when =0, whawver ¢ may be. Here 1—2ax+ a* reduces

to 1 —2acos @ + o*, and ¢ vanishes in the limit except when
6 vanishes. Thus

- 1-a L
d¢ red to
f.l-[ (1 24 cos 6 + o) ¥ dudp x el

' (Q-d)dn
fF(,¢)U_‘(1 2zcosﬁ+a)*jd¢
' (-ad)dp

-1(1 -2z cos 0 +a)!

Thus finally Q= f' F(0,$) d.

Thus, when & =0, we may say that Q is the mean of the
values of F'(0, ¢).

210. Suppose & =m. Then adopting the same method
as in the preceding Article, we shall find that

Q=g [ Fim )
80 we may say that Q is the mean of the values of F'(m, ¢).

and =2, as is shewn in Art. 201.

211. There is still ‘'one more remark to make respecting
the value of @. The process which we have given does not
require that the function #'(6, ¢) should have the same form
throughout the range of integration; the result will remain
unaffected, unless the change of form occurs at the value
@=0@ or at the value ¢ = & Suppose, for instance, that
for the values of @ less than @ we have F(6,$) equal to
£ (6, 4), and that for the values of @ greater than & we bave
F (0, ¢) equal to x (6, ¢); then it will ea.slly be found on
exammatlon that

Q=F{£(0, ¢) +x (6, ¢)}

. A similar remark holds if a cha.nge of form in F(6, ¢)
occurs when ¢=¢', .

(i
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- ‘212, It will be observed that the general term of the
series in Art. 204 has the factor 2rn+ 1, and thus there may
be room to suspect that the terms ultimately become very
great. It may however be shewn that the terms do in
general become indefinitely small when = is indefinitely

great.
3 ror
For consider f f Y.F (@, 4)dddd’;
-170
by reason of the differentid] equation which Laplace’s Coeffi-
clents satisfy, given in Art. 167, this definite integral is

|
equal to the product of TS| into

By a double integration by parts, as in Art. 187, this may
be transformed so as to become equal to the product of

1 .
- n(+l) nto ,
[ [ {a-m e 2n e vawas,

assuming that F(¢, ¢') has the same value when ¢’ =27 as
when ¢ =0; and assuming the same thing with respect
to 23X, &)

d¢'
Now the greatest value of Y, is unity; hence, if F(€,¢)

and its first and second differential coefficients with respect
‘ ' $EE, &)

‘to @ and ¢' are always finite, and if moreover —

vanishes when w'=—1 or =1, then the definite integral in
the last expression is finite, whatever » may be. If then we
denote by £ a value which it never surpasses, the term is

Hence the general term in

n+l)’
Art. 204 is numerically less than 45%:2—’;);

fore indefinitely small when » is indefinitely great.

numerically less than n(-—k—-

and is there-
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213. Tt will be observed that the preceding investigation
does not shew that the series obtained in Art. 204 is con-
vergent, but only that the terms are ultimately indefinitely
small.

In Art. 208 we assumed with Poisson as obvious a pro-
position which may be stated thus: the limit of % (2n+1)a"s,
18 equal to 3 (2n +1)u, when the latter is a convergent series.
For a formal demonstration we may refer to Abel's Guvres
Complétes, Vol. 1. pages 69 and 70, :

214. The proposition that a given function of 6 and ¢
may be expressed 1n a series of Laplace’s Functions is one of
the utmost importance in the higher parts of mathematical
physics. The demonstration of Poisson, though very in~-
structive, cannot be considered perfectly conclusive, and we
shall give two other investigations in the subsequent Chapters;
we will here briefly notice a third, which was published by
M. Ossian Bonnet in Liouville’s Journal de Mathématiques.
To this Professor Heine, on his page 266, refers without
any remark, and M. Resal, on page 169 of his Traité élémen~
tavre de Mécanique Céleste, pronounces it d Uabri de toute ob-
Jection.

M. Bonnet alludes to Poisson’s demonstration, and sa.ys_'

it assumes that the given function and its differential co-
efficients with respect to @ and ¢ are continuous, whereas
these conditions may not be fulfilled in very simple cases.
M. Bonnet considers that the only entirely rigorous demon-
stration hitherto given is one by Lejeune Igirichlet; he pro-
s his own as more direct than this. M. Bonnet’s process
18 very laborious, and it seems to me unsound, as resting on
the unsatisfactory investigation of the value of Legendre’s
FA‘t;ttlction for a very high order, to which I have alluded in
. 92.

-

——
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CHAPTER XVII.

OTHER INVESTIGATIONS OF THE EXPANSION OF FUNCTIONS.

215. THE following investigation is due to M. Darboux,
and is given in Bertrand's Calcul Intégral, pages 544...546.

It is required to find the sum of the first n terms of the
series of which the 7** term is o

" (%
casy] f 'Y, F(¢, ¢)sin0d0d4 ;
T JoJo
and in fact to shew that when n increases indefinitely the
limit of the sum is (6, ¢).

The variables ¢ and ¢' may be regarded as polar co-
ordinates determining the position of a point on the surface
of a sphere of radius unity. Change the coordinates, and
take the point (6, ¢) as the new pole; let 6, and ¢, be the

new coordinates which determine the position of (¢, 4:‘ ): then

cosf,=cosfcos& +sinfsinf cos (p—¢).
Also the element of surface sin & d6’ d¢’ may be replaced
by sin 6, d0, dp,. Hence the above +** term becomes

2r4+1 [ (%= . ‘
"4 j: f/ 'P- (00591) F(o‘, ¢1) silnaxdond"’:’.

where F(6,, ¢,) dénotes what F (¢, ¢') becomes when the
coordinates are éhanged, and P,(cosf,) is Legendre’s n®
Coefficient, being equivalent to Laplace’s n® Coefficient Y,
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Integrate with respect to ¢,, and put
2%
[T F6, ) ap=2mf(e0n0);

80 that f(cos,) may be considered as the mean value of
F,¢) round a small circle distant 0, from the pole,

Thus f ] P, (cos8) F (8,, ¢,) sin 0, d6, d,
00 ‘
=2 f P, (c088)) f(cos 6,) sin 6, d6), .
(]
Put cos 6, for «; then the right-hand member becomes

. . :
2m f P, (#) f () d= : thus the proposed series reduces to
-1

1 ]:f(z) (P, (2) + 3P, (&) + 5P, (2) +...+ (21 +1) P, (a)} dx.
By means of equation (11) of Art. 59, this
=% f-‘l f(@ {de:;;(a;) +JPZ,;, (a:)} da.
~ Now by integration by parts, we have
s[r@ 2+ BN ao D10 (2. @) + Pt}
~3[F @ (B@+ P, @) da

At the limit — 1 we have
P, (@) + P, (@) =(-1)*+ (- 1)™=0;
at the limit 1 we have P, (:c) +P,, (¢)=1+1=2. Thus

f @ {JP w (@) | (w)}

=fW-3[ S @B @)+ P @]
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When # is very large we know that P, (z) and P,,, (x)
are insensible, except when # is indefinitely close to —1 or 1;

thus the integral [ ' @) {P. (@) + P.,, (2)} d= may be con-

* sidered to vanish ul?lmately: at least this will be the case if

S () is always finite.

And f(1) s the value of .- f 70, ¢)) dp, when cosf,=1,

that is when 6,=0; so that £(1) is the mean value of F' @,, ¢,)
round an infinitesimal circle close to the pole, that is in fact
the value of F'(0,, ¢,) at the pole, that is F' (6, ¢).

Thus the required result is established.

216. In the process of M. Darboux, suppose that we
integrate between 8 and 1, where 8 is very near to unity;
we get the same value as if we integrate between — 1 and 1.

For & (P, (@) + P, ()} is very large when i close to

unity, but is insensible in other cases. Thus
[ 1@ &P+ Pulellda=[ @) (B0 + Pru@l do

~f O [ & P+ Py @)
where £ is between 1 and S, )
=€) {F. (1) +F,., ()} =2f(§) = 2/ (1) ultimately.

217. Although the process of M. Darboux is simple ‘in
appearance, it may be doubted whether it ought to be
accepted as satisfactory. We cannot regard P, (z) + P,,, ()
as finite when @ is unity and as vanishing when @ differs

insensibly from unity, without treating (% {P, (z) + P,,, (=)}

as infinite when « is unity; and we cannot depend on the
results of integration when the expression to be integrated
becomes infinite within the range of integration. The pro-
cess of M.. Darboux has the advantage of leading very
naturally to the special results of Arts, 207...211. ‘



174 OTHER INVESTIGATIONS OF THE

" 218. We ought not to overlook the fact that Poisson’s
treatment may be put in a form which involves the same
%(i)nd of difficulty as we have pointed out in that of M. Dar-

ux.

In Art. 203 we have a result which may be written thus :
X=U,+alU,+a J,+a'0, + ...,

. } A
where U, stands for (2n + 1) f f F(0, ¢) Yodpdu,
(] -1

and X stands for [ o f ¢ —(:'11;' a(:’fl';? dp

Then we find the limiting value when =1, and thus

obtain : .
F@,$)=U+U,+U,+T,+...

Now there is nothing that compels us to modify the form
of the right-hand member of the last result, and express it
thus:

e Lk BT Y b @0t ) Yk} FO, ) dp

If the quantity under the integral sign were always finite,
this modification would present no difficulty ; hut the fact is
that the expression

Y+ 3Y,4+5%,+ o+ @n+1) ¥, +...

is of -a very peculiar kind ; it is always zero except when
0 =@ and ¢ =¢, and then it is infinite. Hence the proposed
modification cannot be effected without risk of error, and as
there is no necessity for it in Poisson’s method, we shall do
. well to avoid it. :

219. The main parts of Poisson’s process have been called;.

Poisson’s Theorem, and presented in the following form.

. e A A A
Let v be used as an abbreviation for d—:5'+@“+a?’ let

r=y(@+y'+e), and ' =y/(@"+y"+2"), and a=7

b
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Lett 2 =rcosf, y=rsinfcosp, z=rsinfdsing,
ad=r'csl, y=r'sin@cos¢, 2'=r'sin@sing,
p=-cos 0 cos & +sin @ sin ¢ cos (¢ — ¢).
*(1-da") F (O, ' sin 6’ ¢
e =" a’>(1<2$')+d$)* ’
and suppose a less than unity.

Then V satisfies the equation VV'=0, a.nd reduces to
4nF (6, ¢) when a=1.

To establish the first part of this statement, put
N 1 1
Ne—a)+ y—y)+(=—7)" Trva- 2“P+ )
We know by Art. 167 that o satisfies the equation yo =0.

- And a‘=—-{1+dP+ ‘P, +a'P,+...},

where P, is put for shortness instead of P, (p).

Since then o satisfies yo = 0, whatever a may be, it fol- -

. lows that a™P,, will satisfy the same condition.

do _1

Now a— = {aP + 24P, + 3a’P, +...};

hence a %—a satisfies the condition ; therefore o + 2a fia also
: 1-4 —a

isfies it, that nce ————
satisfies it, that is N 2ap+a’)* e - 2ap+a)§
will satisfy the condition; and therefore ¥ will, that is

VV=0.

This establishes the first part of the statement; the

second part is established in Art. 203,

See Cours de Physique Mathématique by E. Mathieu,
pages 175...177,
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220. Suppose in the general theorem of Art. 203 that
the given function does not involve ¢'; we may write the
result thus, : . :

F(9)== U;-l- Ux"' U,-{-... U-+...,

_2n41 [ ' ar
where U= yv f_J" Y F(0)dwdg'.
But by Art. 170 we have
[ Y. = 22P, (00 P, (cu ),
[]
2n+1

1
so that T, === P, (o0 6) f P, (cos &) F(6)d.
-1
Thus if we suppose F'(f)=f(cosf), and change the
notation by putting « for cos 6, and &’ for cos &, we get

f@=32R @[ REsE) .

This is the theorem already imperfectly treated in
Chapter XL ; it is here established, for the case in which =
is less than unity ; that is to say, the truth of it is made to
. Test on the same assumptions as the investigation of Art. 203.

221. The method of Dirichlet, as we saw in Art. 214, is -
commended by Bonnet; it is also emphatically praised by
Heine: see page 266 of his work., Sidler too holds the same
opinion : see page 56 of his work. Accordingly, swayed by
tﬁe judgment of these eminent mathematicians, we shall re-
produce it. But as similar principles have been employed to
establish the truth of the well-known developments of func-
tions in sines and cosines of multiple angles, we shall treat
this simpler question in Chapter XviI, and then proceed in
Chapter XIX. to the investigation with which we are more
immediately concerned.
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CHAPTER XVIIL

EXPANSION OF A FUNCTION IN SINES AND COSINES OF
" MULTIPLE ANGLES.,

222. WE have already treated this subject in Chapter X1
of the Integral Calculus, where we have reproduced investiga~
tions due to Lagrange and Poisson respectively.

Let f(«) denote any function of ; then one of the
theorems thus obtained may be stated in the following form:

1 .
f(=) =%t U tut...,

where u, = ;2—'_ cos nx ] y S () cos nedt.
o

The process we are about to give treats the problem in a
reverse order ; instead of obtaining this development we shall
verify it by seeking the value of the sum of the infinite

series %u°+ %,+ % +.... The process is taken substantially
from Schlomilch’s Compendium der Hoheren Analysts.

223. Let ¢(f) be a function of ¢ which is continuous
between the limits @ and b of ¢; we propose to find the limit

when #z is indefinitely increased of f b¢ () sin ntdt.
‘We have
y t)cosnt 11, ,
[6 @) sinnede= o JUL. L ;;fqb (£) cos mtdt;
b
therefore f ¢ (¢) sin ntdt = 71—‘ {¢ (a) cos na — ¢ (b) cos n}

1%,
- +1—Ja¢ (¢) cos ntdt.
T, ) i 12
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Now let us assume that ¢'(¢) retains the same sign from
t=a to t =25, so that ¢(f) continually increases or continually

diminishes from ¢=a to {=>0; then by the Infegral Caloulus, -
Art. 40, we have

rcﬁ' () cos ntdt = cos n-r‘f:cﬁ' (t) dt = cos n7 {$p (D) — ¢ (a)},
whéré 7 is some value, of # lying between @ and b. Thus
| " (¢) sin ntdt =1 $(a) con na —  8) cos b}

Cos nT
n

{$(0) — ¢ (@)}

Hence when # increases indefinitely we have

. f:¢(t) sin ntdt = 0.

224. 'If ¢(t) does not increase or decrease continually
through the whole interval from a to b, we may subdivide
this interval into smaller intervals, throughout each of which
this condition holds. For example, suppose a,c, ¢, b in
ascending order of magnitude, and suppose that ¢ (¢) con-
tinually increases as ¢ increases from a to ¢, then continually
decreases as ¢ increases from ¢ to ¥ and then again con-
tinually increases as ¢ increases from ¢ to b. By Art. 223 the
integral [¢(t) sin ntd¢ taken through each of these intervals

b
vanishes, and therefore as before f ¢ (f) sinntdt =0. This
. a :

assumes, however, that the number of these subordinate inter-
vals is finite; if it be infinite we have as a result an infinite
number of infinitesimals, which is not necessarily zero. For
example, we must not put ¢ () = sin nt.

+

225.. We have supposed that ¢ (t) is a continuous function
of ¢; this involves two conditions, namely, that ¢ (¢) is always
finite, and that ¢(¢) varies infinitesimally when ¢ varies in-,
finitesimally. The latter condition, however, is unnecessary ;
that is, t(t) may change its form any finite number of times
within the range. Suppose for instance that ¢ is intermediate
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between o and b, and that ¢ (t) passes from one finite value to a
different finite value when ¢ passes through the value ¢c. Then
divide the interval from a to b into two intervals, one from
a to ¢, and the other from ¢ to 5. By Art. 223 the integral
J¢(t) sinntdt vanishes through each of these intervals, and

b
therefore as before f ¢ (f) sinntdt =0,
a

226. Now let ¢(¢) s%ﬁ@. Suppose that a=0,
and that b is less than 7. Assume that f(z+¢) is finite for
all values of ¢ from O to b. Then by Arts. 223...225 zero

is the value when n is infinite of f "%M sin nédt.
0

227. It may appear that our process requires that ¢ (z)
should be finite when ¢=0; and by evaluating ¢ (¢), when
t =0, we see that this is secured if f'(z) is finite. But it is
not necessary to impose this condition, because although the
denominator of ¢(f) vanishes when =0, yet sinn¢ also
vanishes; and thus we escape the presence of an infinite
element in the definite integral. '

228. It follows from Art. 226 that when n is infinite

. . bsin né .. bsin n¢
thehmltof]. 0 £ (o +t)di = the limit of £(2) f .

sin nt
——dt.
sin ¢

®
We proceed to find the limit of f
0

. b . i' . b .
We ha.vef sinnt g, =f S0 nt g 4 s b g,
o BIn¢ , sint je8iDC

Now the second integral on the right-hand side vanishes
by Art, 223, for-gilll—t is always finite within the range of the
integration. Thus we have only to find the value of the first
integral on the right-hand side. L

12—2
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Hitherto we have spoken of n becoming infinite, but it is
sufficient for our purpose to consider » as having a special
kind of infinite value, namely, an infinile odd positive
integral value. Suppose that n=2m + 1. Then we have

sin n¢

e = 1+2 {cos 2t+cos4et+... + cos 2mt} ;
therefore f sin nf dt =
. 0. SID¢

Thus Lo is the limit required. Hence finally if 3 is

between 0 and 7 the limit when n is an infinite odd positive
integer off smntf( z+1t)dt is wf(w)

229. Tt will be found on examination that if ¢ be any
constant, positive or negative, we may put f(z+ct) instead
of f (w +1); and thus we see that the limit when # is infinite

of [ 500 flat ot dt is 3mfo)

. 230. The result of Art. 228 holds so long as b is less
than 7, but not when b= for then the function denoted
by ¢ (¢) in Art. 226 becomes infinite when ¢=b. We will
consider this case.

f: S ot 1) de
fi smntf( +t)dt+f smntf( +)dt

sin ¢

Put in the second integral on the right-hand side t=7-1¢';
then remembering that n is an odd integer, we have

sin nt’

] Bttt de = f S flotm—t) dt;

and in the definite integral we may change ¢' to {



AND COSINES OF MULTIPLE ANGLES. 181

Thus f"’i.“”‘-f(zaft)dz

t o
=f smntf( +t)dt+f smnt o+ m—1)dt;
0
and by Art. 229 the limit of the nght-ha.nd member when n
is infinite is 2w/ (o) + 3 mF (@ +). :

231. We now proceed to find the value of the following
expression :

f {%+cos(t+x) +oos2(t+z)+cos3(t+w)+...}f(t)dt.

Suppose that the series within the brackets instead of
being infinite extends only to the term cos m (t + z) inclusive:
then the expression, by Plane Trigonometry, Art. 304,

JENLES P

= —= F©de,
° 2sin 3 (t+=)

and we have to find the limit to which this tends when m
increases indefinitely, Put l(t+z) =¢, and 2m+1=n;

) 3
then the integral becomes f oo n f(2t —z)dt’; and this

sin ¢

_fi( +z)smntf(2t a:)dt’—f mnt'f(% —a)dt,

sin ¢’

If =0 the second integral on the right-hand side
vanishes, and the first is equal to g S (0) by Art. 229.

If « is between O and = the two integrals are equal by
Art. 229 ; and thus the result is zero,

sm nt

If z=mo the expressmn reduces to f f (2( ) dl;
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g ‘
put ¢ = —1, and this becomes[ BINWE ¢ _ 24) dt, which
o sInd
is equal to 3 f (m).

232. Again consider in like manner the following ex-
Ppression :

fo' g'i'cos (t—2)+cos2 (t—z).+°053(“'"7) +---}f(t).d“'-

This reduces in the manner already shewn to

¥=2) gin nt’
f_iz SAn Fed +a)d,

where 18 to be made infinite ; and this

3 (v—2)
f Snnf (2t+a:)dt’+f S0 ¢ (2t +a)d,

or changing the form of the second term it

—) g g
= SINAE (9 +2) db + sinnt . o di
R o 8int

sint

. If =0 the second integral vanishes, and the first is
equal to %’ £ (0) by Art. 229.

If 2 is between 0 and 7 each integral is equal to & f ()
by Art. 229; and thus the result is f(@).
" If o= the first integral vanishes, and the second is
equal to-3 £ ().
© 233. From the results obtained in Arts. 231 and 232,
we deduce by addition and subtraction the two following, in

which 3 denotes a summation with respect to pomtlve
integral values of ¢ from one to infinity:

A
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lf J(@) de+ = Ecosmf cos 1t f(t) dt is equal to f(z) for
all values of z between 0 and 7, both inclusive ;

2 2% sin iz f sinit £ (£) de is equal to F(z) for all values of &
[}
between 0 and r, both exclusive.-

284. The formul® just established coincide with what
we obtain when we put !=m in equations (3) and (4) of
Art. 309 of the Integral Calculus. We may establish these

uations (3) and (4) in the same way as we have just
established the more simple cases; or we may deduce these
equations (3) and (4) by putting T for ¢, and fl_"' for ,
in the more simple cases.

235. We have in the preceding investigations expressly
stated that the function denoted by f(¢+ ) is not to become
infinite within the range of integration; this condition may
however be to some extent relaxed, as we shall now shew. -

. 2m+1
sin —5— ¢#

Put 8 for ; then we have shewn in Art. 231

2
sin % ¢
that when m is made infinite [ SF(O)de=mf(0). Weadd
now that this formula will hold even if S () become infinite
within the range of the integration, provided that / f)dt

remains infinitesimal when taken between limits which are
indefinitely close but include the value of ¢ which makes
f(¢) infinite, -

Let 7 be the value of ¢ which makes f(#) infinite, and
let ¢ and 9 be infinitesimals. Divide the interval from 0 to
into three, the first from 0 to T —e, the gecond from 7—e
to 7+, and the third from 747 to m. Then the value

of fS £ (t) dt for the second interval vanishes by our sup-
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' pposition ; we shall shew that the value for the first mtervﬂ
swf (0) and that the value for the third interval is zero.

Let x (¢) denote a function which coincides with f )
when ¢ is between 0 and 7 —e¢, and is zero when ¢ is between
—e¢ and .

Then, by Art. 231, we have f "8 x (t) d¢ = mx (0), that is
T8 .
f, 8£(0) dt=mf(0).

Again, let y () now denote a function which is zero when
t is between 0 and T+, and coincides with f(f) when ¢
i8 between 7+ 5 and 7.

Then, by Art. 231, we have f 'Sx (t) dt=my (0) =0,
[
that is ]' SF()dt=0.
. T+

236. The result obtained in Art. 223 on which the
subsequent investigations mainly depend may also be esta-
blished in another manner.

Suppose that 8= a+g—, g0 that f sin nt dt=0.

Let ¢ be the least value of ¢ () between the 11m1ts a and
B, and assume ¢ (f) =c+u. Then

f¢(t)smntdt=f (c+u)s1nntdt=f % sin nt dt.

Let p be the g;‘eatest value of u between the limits t=a
B
and ¢ =25, thenf u sin nt dt cannot be so great as[ pdt,

that is as p (8 —
In this way we can shew by dividing the interval b~a
into smaller portlons that when &6—a is a multiple. of

-21 the value of f ¢ (f) sinntdé cannot be so great as

(b a), where p is the extreme difference that can exist
{etween the greatest and the least values of ¢ (f) comprised
between one subordinate pair of limits, as a and 8. .
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But when 7 is made indefinitely great, the difference
between a@ and B8 becomes indefinitely small; and hence
¢ (t) cannot experience an appreciable change in the interval
between @ and B; so that p ultimately vanishes.

The process though not extremely rigid throws some
light on the theorem ; it shews that what is essential in ¢ (z)
is that there should be only an infinitesimal change cor-
responding to an infinitesimal change in ¢ Hence if 2
should occur in ¢ (¢) the theorem may cease to be applicable;
this happens in the case already noticed in Art. 224, 1n which
¢ () =sinnt.

As in Art. 225 we may extend our conclusion to the case
in which the form of ¢ () changes any finite number of times
within the range of integration.
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CHAPTER XIX.
DIRICHLET'S INVESTIGATION.

237. Ler F(6,¢) denote any function of ¢ -and ¢’
which remains finite throughout the range of integration ;
and let

n=22 ([ re.s) s

then it is required to find the value of the infinite series
U+ U+ U+t Ut ..

238. We begin with a particular case, from which we
shall be able to deduce the general result required. We
suppose that  which occurs in Y is zero. Then Y, becomes
a function of & only, and we have with the notation of

Art. 13,
Y,=F, (cos ).
Then we may put

U _2"“[ {f F@, ¢’)d¢}P (cos &) dy.

Here o f F(#, )d¢’ will be a function of @ only, and
for shortness we will denote it by £(#); so that f(6") may be
described as the mean value of F(¢, ¢) taken round a sma.ll
circle at the distance &’ from the pole.

Thus =2+l f £(8) P, (cos @) d.

To avoid accents we shall use ¢ instead of &, so that

g,=241 f:f(t) P, (cos #) sin £,

1.

< — Vo ",
: Al —
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239. We shall now seek the value of the sum of the first
n terms of the infinite series; that is, the sum of

U,+ U0+ U0+...+ T, .
and this we shall separate into two parts.

 Let ﬂ:%f'f(t) {Py+ P, + P+ ... + P} sin 44,
0 .

and T,=f'f(t) {P,+2P,+8P,+ ...+ nP}sintdt;

where P, is now put for shortness instead of P, (cost): then
ourproposed series is equal to 7} + 7.

240. Consider first T,. By Art. 50 we have

eoslzeosrzd’z smlzcosrzdz
wj V(2cosz—2cost) w,[ V(2cost 2cosz)’

but only half of the expression on the right-hand side is to
be taken when r=0.

Hence we find that 277, =

P, (cost)=

- 8 zd 8 1 d.
f. U 7%22_210854 . ,ﬂz_cZT.iz';T)]f(t)smtdt

where S stands for 1+2 cos z + 2cos 2z + ... + 2 cos nz.
By Plane Trigonometry, Art. 304, we know that

. 2n41
sin —5—2

sm§z

and so this value may be substituted for S.

S=

241. We shall now change the order of the two integra-
tions involved in the expression for 27 7.
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Let a be any constant, and » any function of z and

then from simple geometnca.l considerations, or from tl e
theory explained in the Integral Calculus, Chapter X1, we

10 P 1

By applying this formula to the present case we obtain °
Scos 3 zdz
f [ \/ 2 cosz — 2cost)]f(t) sin ¢d¢

Scos 5 2f(t)sin tdt

' =f:[ : V(2c<2)sz—§cost)]dz

([ __Sf(@)sintds 1.
._f:l: zmm]scoszzdz,
" Ssin%ZJZ )
f: [ft V(2 cost— 2 cos z)]f(t) sin ¢tdt
8 sin%zf(t) sin tde

[/, Fememm]

S (@) sin tdt .1
_j[ V(2cost — 2cosz)]ssm§2dz'

*  f(t)sintdt
Thus 27T, = f [cos 2 s ¥/ (2co8z — 2 cos )

' f(t)sintdt
o #/(2 cost — 2 cos z)] de.

+sm s2

242. The expression here enclosed within brackets is a
function of # only, and we will denote it by x(2) for short-

ness, 80 that T,= o f x(2) Bde.

4-. '

_ad
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Now we have shewn in Art. 231 that the limit of
511—'_ f 'x(z) S8dz when n is indefinitely increased is % x(0);
)

and without using the preceding Chapter the same result.
will follow from any method of expanding a function in a
series of cosines of multiple angles; for such a method gives

x(z)=§b°+blcosz+b,éos2z+b,cos3z+...,

where b.= 2 f 'x (¢) cos mtdt,
™ )
and so when z=0 we have
x(0) =%b,+b‘+ by +b,+ ...

~ Thus ultimately T, = % x(0), that is
1 (= 1 .
T:|= §f° f(t) Ccos § tdt.

243. The result just obtained depends on the assumption
that x(2) is finite tfn‘oughout the range of the integration.
It is easily shewn that this condition is satisfied by examining

separately the two terms in 4 (2). '

For we assume that f(¢) is finite through the range of
the integration with respect to ¢; therefore by the Integml
Calculus, Art. 40,

*  f(t)sintdt sin ¢ dt
+ ¥(2cosz— 2cos t) —f(T)f, v(2cosz—2cost)’

where T is some value of ¢ between z and =,

: sin ¢ dt .
A.nd .L N(2cosz—2cos?) =W cosz-2cosar)! which

is

In the same manner we may shew that the other term in
«x (2) is finite, _
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244. We now consider the series which we denoted by
T, in Art. 239. We have by Art. 50 .

sin}zsinnzdz coslzsinnzdz
P(coat)=—gft 2 T e R
T mJo N (2co8z—2c088) " wJ;4/(2co8¢—2c082) °

Hen::e we find that =T, =

i L LI PR
. [, v (2cosz— 2 cos t) +,L m]f(t)smt A

where S’ stands for 2d(sinz+,2 gin 22 4+ 3sin 3z +...+ nsinnz);
S v

we see that §'=——-.
dz

245. Next we change the order of the two integrations
involved in the expression for 7T,. Proceeding as in Arts. 241
and 242 we arrive at the result

1~ ,
T,=;rf.§(z)8dz,
where £ (2) stands for
a1l f(f)sintds 1 2  f(t)sintds
sing# ,J(2cosz—2cost)+cos2z o N(2cost—2cos2) *

. 246. The function £ (2) is finite throughout the range of

integration, as we see by the method of Art. 243. It will
be necessary however for our purpose to shew something
more, namely that the function 1s continuous, so that it
experiences only an infinitesimal change when z does. To
shew this we examine separately the two terms of which
£ (2) consists ; take for example the second term, and it will
be seen that the first term may be treated in a similar way.

We liaf'e then in fact to shew that

=+ f(t)sintdt _[* _f(@)sintdt
o af2co8t—2co8(3+¢) o N/ 2cost—2co8z

vanishes with & '

e . aasesessasesshtlll



C oy

>

DIRICHLET'S INVESTIGATION; 191

s+¢  f(t)sintdt ‘
e Af2co8t—2co8(z+¢)

" sint sinf -
- 4 - . .
j:f( ) {J2cost—-2cosz 2 cost — 2 cos (z+g)}dt’
and we will take these two integrals separately.
Let g denote the numerically greatest value' of f (£)

between the values z and z4 ¢ of the variable; then the
former integral is numerically less than

f‘_“‘ sint dt

g s 5/2008t—2008(z+§)’
sint dt .

J2mst_2m(z+t)=—J2cost—2cos(z+§);

thus the former integral is less than g #/2 cos z — 2 cos (2 + §),
and therefore vanishes with & :

Next we treat the latter integral. Let g now denote
the numerically greatest value of f (¢) between the values 0
and z of the vanable; then the integral is numerically less
than '

This expression is equal to

But

f‘{ sin ¢ N sin ¢ }dt
), WZoosi—2cms VN2cost—2cos (z+¢)
that is less than

g{V2—2cosz—V2—2cos (z+ &) +¥2cosz —2cos(z+§)},
which vanishes with &

247. We shall require immediately the values of £ (0),
g (), and £'(0); they may be conveniently determined now.

It is obvious that £ (0) and & () are both zero.
We proceed then to investigate the value of £°(0).

.1 1
For shortness, put £ (2) = — rsin 52 + 8 cos

3%
F()sintdt f (&) sintd

: . ” &
% tha r=j‘ N (2 cosz—2cost) and o= fo W(2cost—2c0sz) "
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1 8 1 1 dr 1 ds.
Thus{-‘(z) coszz 2am23 sm2zd +cos 335
r ds
and therefore £ 0)=- st

‘where on the right-hand side we are to put 0 for z. This
assumes that 3—: is not infinite when 2=0, an assumption
which will be justified imimediately.

Now the value of d—: when z is zero is the limit when
1 f(t)sintdt

z 18 zero of the expressmn  V(@cost—2cos7)” ‘We know
_f) ) [ sin ¢ dt .
that this expression = Zoosi—2 pows 2’ where 7 is

some value of ¢ between 0 and 2.

e sin ¢ dt —2sinlz
o A/(2cost —2cos2) 27
2f(7) sin%z

so that the expression = , and the limit of it

when z =0 is £ (0).
Z—: is finite when
2=0; and we shall not require its precise value

Thus finally £ (0) =F(0) — = ] F(t) cosg ¢
248. Now return to the value of 7. We have

r-i[t@sa=-1["t0 e

Integrate by pa.rts; thus T,=l f 'E' (2) S d=.

In a similar manner we can shew that

Therefore when n is indefinitely increased, the limit of

T, is £'(0), the value of which was found in At 247,

.
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249. Hence T+ T,=£(0).
o
Thus the limit of T, + T, is o f F0, $)dg'.
[

This will comcide with (0, ¢') when F (0, ¢") is inde-
pendent of In other cases it will be what we may call
the mean value of F (0, qS)

250. Thus we have established the required result in
the particular case contemplated in Art. 238, namely that
in which 6 is zero.

We may state in words what has been shewn.

Suppose a spherical surface, let F'(¢, ¢) denote the
density at any point, or rather at any element of surface,
say at S. Then the integral in U, involves the product
of the element of the surfa,ce, into the density, into a certain
function* Y, of the arc which joins the element of surface
to a fixed pomt in the sphere. In the case in which §=0
let us call that fized point A4 ; then we see that XU, is
equal to the mean density round the fixed point.

Now if @ be not =0, let us call the fixed point C.
Then Y, becomes the same function of the arc CS as it
was in the former case of the arc AS. Hence the value
of Z U, will now be the mean density at C'; that is it will be
F (6, 4:) Thus the problem proposed in Art. 237 is solved.
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CHAPTER XX.
MISCELLANEOUS THEOREMS.

2" |m|n—m @ P, (z) d" P, (z)

251. To shew that — e p dz

A ) e A0

(1 —Z’)' - 1'). +4
t2 4. Gm+9) (2:@...4)” P.(®+...,

where £ stands for «z,, and D for gg.

To prove this we observe that Laplace’s n* Coefficient
is P, (2), where z=zz, +/1—2* /1 -z cos Y. Put ¢ for
JI=2"/1—z2cosy, then P, (z) becomes a function of
£+t say F(E+1t); and this by Taylor's Theorem is equal to

ar @, 1&FEf)
Pick out the coefficient of cos my from this, and equate

it to the (=1)"5_ (1 -— 1,)¥ - a:,’)'; % d.dlz,' -(.E‘z of

Art. 175, that is by the same Article to

2[n—m : 3d" P, (z) " P, (z)
e a-af a-a ERE R,
Now the first term 'n the series above given for F' (¢ +1)

" < e
[m D" F(§), and this will give

t+...

which involves cos myr is

4
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for the coefficient of cos myr the expression

m (1-a) -a) o D'F(a.

The next term which involves cos my- i

is = __D™F @,

l_“’*

and this will give for coefficient the expression

1 e (g 2
s (- a-ay ¥R

Next we get

+ (m+4) (m+3)
| 0T amey T IR0

D*"F (§).

D™ F (8.

And so on. Thus we obtain the required result.
252. In the formula of the preceding Article put z,=0;

P, (x)
dxﬁo
of 1—a* There will be two cases.

then we get an expression for

L Suppose n —m even. Then

aP,(z)

arranged in powers

F contains a

term which does not vanish when &, -0‘ and a similar
remark holds with respect to D™ P, (E), D‘”P (&)...

Thus we get

o™ |m |n—m g=p, (a')_1+J)(q+l)

|n+m da™ .27 (m+1)
plip—2 (<I+1) (¢+3) (@ —~1)

+

|22 (m+1) (m+2)
4 P(p= m@ 4) (g+1) (¢+3) (¢

(@—1)

+5) a_qy

L. c(m+1) (m+2) (m+3)

where p stands for n— m and ¢ for n+ m.
II. Suppose n—m odd. After ghe

+ ...

operations denoted

in the preceding Article have been pesformed divide by z,,

and then put #,=0. Thus we get

13—2
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P |m |n=m P, (o)
TR

_ p=1)(g+2), .
. ,S—1+1 ¥ (m +1)(“’ 1)

(p 1) (p—- 3)(q+2\(q+4) s
2.2 (m+1) (m+2) (@-1)

L@=D (=3 (p=5)(g+2) (4 +4) (q+6) 15
[3.2°. (m+1) (m+2) (m+3) /

=S, where

+ ..
253. The theorem for the expansion of a function in
terms of Legendre’s Coefficients may be enunciated thus

$@=32212 @) [ PE@s@,

where 3 denotes summation with respect to » from 0 to .

In Art. 220 we have deduced this as a particular case
of the expansion of a function of two variables in terms of

Laplace’s Functions. We will now give another investi-

gation.
Let £ stand for z2’. We know by Art. 251 that

P (2)P,(«)=P, (¢ + (1-2")(1-2")d"P, (&)

o g
A=) A2 d P @),
o4 ar

Now we know by Art. 200 that
2 (2n+1) P, (§) = the limit when a =1 of

hence X (2n+1) a- a:') (1 = 2") J‘f;f,(g) the limit when

=29 (1- a:")d‘ 1-a

2 dE(—2aE+at
(1-2)(1-2") 3. 5a* (1 —a)

2 (1-2z¢+a®)F”

1-4 .
A=2af+at’

a=1o0

=the limit when

a=1of

[ U=y Y

4L -
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In like manner S (@2n+1) (1—a?)* (1-2")* d'P.() _

2 4 dg
. . _ 1-aY(1-2")*3.5.7.924*(1-a"
limit when a=1 of Py - (1_215_*_“’)9 .

In this way we can transform 2 (2n+1) P, (2) P, (&), and
putting a =1 in the limit we see that the expression will
vanish provided the following series is convergent :

3.5 8.5.7.9

3.5.7.9.11.13 ,
It gr =g Tt g g 7T
— _” — —
where 7 stands for —((11—_&,2)—%%,) , that is for % .

The application of the usual rule shews that the series is
1-2)(1- m”)

(-
unity. This will be the case prov1ded z and &' are unequal
and both less than unity.

convergent so long as is numerically less than

2n+1

Hence we see that 3 ~—— P, (z) P, («')-is indefinitely

small for every value within the range of integration, except
when &' =x; what the va.lue is then we shall not require to
know.

Therefore 3,

20 p@RE e
=37 R0 P.@) 4 @) &

where the limits 8 and y may be indefinitely close provided
the value z is comprised between them.

Next we transform the last expression into

¢@ 3752 ['P, () P ) o'

and then again since 5 %_"'_1 P, (aa) P, (&) vanishes except
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when z’' =z, we may transform this to

4@ 252 P @) d,

that is to ¢()>:2“+1P,-,(w)f‘1),(xjw.

1
But f P, (d)dx'=0 except when =0, and then it

=2. Thus finally we obtain ¢ ().

The preceding investigation seems to throw some light
on the nature of the result. It has the advantage of being
quite independent of the theorem that a function of two
variables can be expressed in a series of Laplace’s Functions.

1
{@—aV+ G-y + -’
' +yy' + 22’
e :

254, Let U=

put P=2'+y'+ 7, r*=a"+y"+2" cosf=
1

I

panded in powers of = 7 we have P, (cos 6) for the coefficient

Then U— &, so that if U be ex-

of (;)”, and therefore P, (cos §) may be considered to be a

function of zw +Y. y,ﬁ .
rr
Now we see that this function has the following pro-
perties:

It iss metncal with respect to the two sets of variables ;
that is l‘y'm and 2 be mterchanged it is not altered, and
similarly for y and y', and for z and #. Since cos 8 is raised
to the power » in P, (cos §) it follows tha.t the function
when expressed in terms of , Y, z and &, ¥/, 2’ will have
(rr')" in the denominator. Hence if we make this the common
denominator, the numerator will involve each of the variables

B

e —m— N

. §
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* to the »* power, and it will be homogeneous with respect to

each set of variables. Thus if one term of the numerator
be Ax'*y82'r, where 4 does not involve &' or ¥ or 2, we
shall bave a+8+y=n.

We might take the original form of U and develop it
in powers of &, ¥/, 2’ by the usual theorem for developing a
function of three independent variables. Thus we shall get
for the type of the terms in the development

() (g (=2 Aot T
|« |8 |v dxrdyf dzv ’

1
where V stands for m . All the terms of the

degree n will be found by taking a, 8, y of various positive
integral values subject to the condition a + 8+ y=mn.

Suppose a+8+y=n; then the type of the terms just

; (&) (yPE="N
Tﬂu’f-l

a homogeneous function of z, y, 2 of the degree n.

Thus we infer that
:— P, (cos8) =3

, where N is

expressed takes the form

2) (—y ) (=2) detT
a8y derdyPdz’

xxr

! ’
when for cos @ we put ——+Zry’-'-—”, the 3 denotes a

summation for all values of @, B, v consistent with the con-
dition a + B +y=mn.

We may confirm this by supposing that 7’ is very small
compared with r; and then our result is in fact obtained by
equating terms of the same order of small quantities. The
result is of such a nature that it is then true for all relative
values of  and 7', :

255. Suppose we have to develop in terms of Laplace’s
Functions a function of which we do not know the analytical
form, but only various numerical values. For instance, we
might require an expression in terms of Laplace’s Functions
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for the mean temperature at any point of the surface of the
globe ; we may imagine this expression to be some function
of the latitude and longitude of the point, and may seek to
determine the developed form of the function from the
numerical values given by observation at various places.
We shall devote the remamder of the Chapter to this
subject. ,

256. Let F'(0, ¢) denote the function, and suppose that
F@O, ¢)=2+2,+2Z+...+2Z,
~where Z, denotes a Laplace’s Function of the order .

We suppose that the development of F (6, ¢) converges
with sufficient rapidity to enable us to stop with the term
Z,.. In Z, there are 2k+1 constants; and thus in the
development of F (6, ¢) there are altogether (n+1)' con-
stants; we must shew how these can be determined.

By Art. 192 we have

Z,=Ssin"9 D" P, (A3 mcos me + B, 810 m),
where 2, denotes summation with respect to m from 0 to %
inclusive, D stands for é—i, and P, for P, (z); also = cos 0.

Moreover 4., and B,, are constants. Then F(6, ¢) is
to be obtained by summing the values of Z, from k=0 to
k =n inclusive.

We may also put F'(6, ¢) in the form
F (0, ¢)=3,(C,cosmd + 8, sin mg)......... 1),

where %, denotes summation with respect to m from 0 to n,
both inclusive ; also

0m=8in“02kAk,,..D",Pk} ‘ )
S"=Sin“92kBg'..D"ﬂ [T &I 8

where 3, denotes summation with respect to & from m to n,
both inclusive,
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257. We first determine from (1) the values of the
quantities of which C, and S, are the types.

2 . ’
Let a= %—IT;' suppose that in F (6, ¢) we put for ¢

in succession the values 0, a, 2a,...... , 2na; and that the
corresponding values of F(6, ¢) are known. Then we have
for all values of & from 0 to 2n, both inclusive,

F (8, ka) =C,+ C,cos ka + C,cos2kz+ ...... + C, cos nkx
+ 8, sinka + S, sin 2ka + ...... + 8, sin nka.

Multiply this equation first by cosksx, and next by
sin ksz; and sum for all values of £ from 0 to 2n, both in-
clusive. Then apply the following Trigonometrical formulz,
which are easily established, and which we have used in the
Integral Calculus, Chapter XIII :

S coskszcosks’a= 2n+1 when s and s’ are both zero,

% (2n+1) when s and s’ are equal but not zero,
=0 when s and s’ are unequal.
S cosksasinks'a=0.

Ssinkszsinks'a=0 when 8 and s’ are both zero,
= % (2n+1) when s and s’ are equal but not zero,

=0 when s and s’ are unequal.

Hence we obtain

2
C,=5——3 F (0, ka) cos ksz
2n+1 ’ :
IR )}
S, = 22+121’(€ k1) sin ksa

where 2 denotes summation with respect to & from 0 to 2n,
both inclusive ; but for C, we must take only half the value
which the formula would give. .
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258. Now from (2) we have
C.=sin"04,,D"'P, ]
C,_=sin""9{4 D-'P,_+4,,,D"'P}

C, =sin0{4,,, ,D"P, +4,_ D"P_+A, DP) J

n-1,n-1

oooooooo 3

C=4,,Py+4,,P +...... +4,,,P,_+4,,P,

n=1,0

‘A similar set of equations holds in which S with suffixes
occurs instead of C with suffixes, and B with suffixes instead
of A with suffixes,

Now it will be seen that the first of equations (4) involves
only one constant to be determined, namely 4, ,; thus it
will be sufficient to know one value of the quantity denoted
by C,, that is the value of C, for one value of the polar
distance 6. The second of equations (4) involves two con-
stants, namely 4, . . and 4, ,_ ; thusin order to determine
them we must know the value of C,_, for two values of the
polar distance 6. In like manner C, , must be known for
three values of the polar distance 8; and so on,

259. But suppose that the values of the quantities
denoted by C with suffixes are known for more values of the
polar distance 6 than we have seen to be necessary; for
example, suppose that C,_, is known for four values of the
polar distance 6: then we have more equations than are
necessary to determine the constants denoted by 4 with
suffixes. Two ways have been proposed for treating such
a case,

We may use the method of least squares, or any other
method which the theory of probability supplies, as advan-
tageous for obtaining the best results from a system of
linear equations which exceeds in number the number of
unknown quantities to be found. This method is that
suggested by Gauss in order to express the elements of the
earth’s magnetism as functions of the latitude and lon-
gitude,

— —.‘_4{ At Yk .\

1

[ — —- "s

L s‘
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Or, when a suitable number of values is given, we may
treat the equations in another way which is simple and
convenient, though it does not possess any recommendation
from the theory of probability. If the equations though more
numerous than is absolutely necessary are all consistent with
each other the results obtained will be exact. If the equa-
tions though not absolutely consistent are very nearly so, we
may assume that our results will be reasonably satisfactory.
To this method we now proceed.

260. Suppose that we have a number of values of =
given, and that to each value corresponds a certain coefficient
&; and suppose that the values of z and the coefficients are
80 adjusted that the following relation holds for all positive
integral values of s from 0 to 2x inclusive:

S bt = f O G),
-1

where the summation indicated on the left-hand side is to
extend over all the given values of .

It follows from (5) that if f(z) denote any rational
integral function of &, of which the degree is not higher
than 2z, then

2676) =] @

Now apply this equation to the formule obtained in
Art. 28; then so long as & + « is not greater than 2a,

3 EP.P,=0 when k and & are unequa.l,} ©

= 2—1‘;2+ i when k=k
In like manner by aid of the formula obtained in Art. 158,
we have ‘
2 E(1-a" D*B.D*P,=0 when k and & are unequal, }
(

2|k+s (7).

==(27«;+I) |/c-s whep k=k
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The summation indicated on the left-hand side in (6)

and (7) is to extend over the same given values of x as that
in (3).

'261. The relation (5) amounts to a system of 22+ 1
linear equations to be satisfied by the coefficients of which
£is the type. We take then 2n + 1 values of « as arbitrarily
given, and the summations in (5), (6), (7) will refer to these
2n + 1 given values. It will be remembered that we have
x=cosf, so that when « is given the polar distance 6 is
givea.

Suppose now that for all these 2n+ 1 polar distances
we have the values of C, and 8, determined by (3). Take
from (4) the expression for C,, multiply it by £sin’6D°P,
and form the sum for the 2n + 1 polar distances. Thus

S£C,sin' 0 D'Po=5. (4,,,3¢ (1 — 2% D'B.DB),
where 3 denotes summation with respect to the 2n+1

polar distances, and =, denotes summation with respect to
A from A =8 to A = n, both inclusive.

By means of (7) all the terms on the right-hand side
vanish except when A = %; and thus we obtain

., .2 |k +s
2§ C’.sm H.D’B —-Em 70—-——8 Ak., ........... (8).
This determines 4,,.

2 k+s

Similarly 3£ S,sin’0 D'P, = Trilis B,,......(9).

This determines B, ,.

262. We proceed to express in a convenient form the
coefficients of which £ is the type.

Let «,, ,,...x,, denote the given values of z, so that
for positive integral values of = from 0 to 2n inclusive

B+ B+ B e g,,z',,=f o dz ...(10).

T
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Pat- 4 (2)= Z—2) (@—=x) ...... (x—=,).

When we divide ¢ (.i) by one of its factors, for example
by the first factor; we obtain an expression which is equiva-
lent to a rational function of & of the degree 2n.

Let ,(x)= ;P-(wa):o-é a,+az+as+...... + a, a™;

then we know that this expression will vanish for all the
given values of = except ,.

Multiply equations (10) in order by a,, a,,...a,,, and
add ; thus . ’ ’

b )+ B )+t B8 = [ i) 2,
sothat .. .-f,\}ro (x) = f ' “."‘o (a:) dzx.

This we may write thus
Eo (""o— "'71) (xo - “?.) L ("”‘o - mm)
=fl (z—wn) (w—z:) oo (x;wan) d‘v’

_where [d—t.lz: ¥ (a:)] indicates that ¥ (z) is to be differentiated
(]

and then z, put for .
Thus £, is determined ; and similarly we may determine

By By e -

263. We will now change our suppositions. Instead of
2n +1 given values of @ we will suppose there are n+1
values to be determined as well as, the n 41 corresponding
values of £. We may then assume 2n + 2 conditions, and
these shall be that the following relation holds for all positive
integral values of s from 0 to 2» + 1 inclusive,

Erd b Bl b e + B =[’ @ peorren(11).
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Then the equations (6) and (7) will hold so long as
k + x is not greater than 2n + 1.

We proceed to eliminate from (11) the quantities £,,
SRR E

Put ——e°—+—£‘——+......+—$"—-.

x=
-z, T—2Z, x—x,

‘When we develop the fractions in ascending powers of «,
we find that the general term of y is

1 .
—wﬁ {eoxo. + glz‘. + ..... + f.w‘.}-
Hence by (11) we have -
1 1
x=2-§if-lw'd£+?,ﬁ ................ (12),

where 3 denotes summation with respect to 8 from 0 to
2n+ 1 both inclusive, and R is an infinite series of the form
b . b
450
. b,+w +5+ .

Now x 18 a fraction of the form

B.,::::‘+ Ba"'+...... +B,z+B, (13)
"+ 42"+ ...... +A4z+4,,
where the denominator = (z — 2,) (-2, ...... (x—=,).
Let us denote the denominator by = (z), so that the
quantities z,, «;, ...... «, are the roots of the equation
@ (2)=0.
From (12) and (13) we have
Ba*+ Bx" ™ + ...... + B, x+ B,
= the product of (z""' + 42" + ...... + 4,,)
into (Hg™+ Ha*+...... + H,, &+ Rx™"),

1
where H,= f atde = Ff_—l- or 0, according as k is even
or odd. ™ : ‘

.

. JIN
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Equate the coefficients of the powers of z; thus

H, +AH, +...+4,H=0,

H, +AH, +.... +4,.H =0,

H,  +AH, +..... +A4, . H =0;
B,=H,,

B =H +4H,

B=H +AH, +...+ AH,

The former group consists of n+1 equations between
the quantities 4,, 4,, ... 4,,,, which will suffice to deter-

1
mine them. If we restore for X, its value | a*dz, we find

that these n+1 equations are all cases of the following, ob-
tained by giving to & positive integral values from 0 to =,
both inclusive :

1
f @ @+ 4@+ .+ A,,) dz=0,
-1
. 1
that is m‘a (z)dz = 0.

Hence it follows, by “Art. 32, that @ (2) = CP,,,(), where
C is a constant. Thus the values :v,, x,, ... ¢, in (11) are
the roots of the equation P, (z) =

Then, as in Art. 262, we find that
(=) dz,
—n¥i\ "/
eo [ atl (.’D)] f -— xo

whero [d% » (.z')] indicates that P, (a)is to be differentiated,

and then z, put for . Similarly we can find £, ,,... &,
Hence the coefficients £, &, ... £ are identical w1th the
quantities, the type of which 1s A,obta.lned in Gauss S process
of integration ; see Art, 131, .
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264. As a particular case, let us suppose that the func-
tion denoted by F does not involve ¢, so that it reduces to
F(6). Then, by Art. 257,

= 27(6) S cosksz, S,= 2?(;0)_ =, sin ksz,
¢ Zn+1
except that when 8=0 we take only ha.lf the value given by
the fIl’!‘St formula.

Now when s =0 we have = cos ksx=2n+1, and in other
cases Ecoslcsz—-O also = sin ksa=0.

Thus S, a.lways vanishes; and C, always vanishes except
when =0, and then we have C,=F(6): or putting f(z)
instead of & (6) we have C,=f(x).

Hence by (8) we have .fl,,.‘,—g—k———-'-:l 2Ef(z) P,.

. The constants denoted by A with suffixes vanish by (8)
except wheu the second suffix is zero; the constants denoted
by B with suffixes always vanish by (9) Thus the value of

Z, of At 256 reduces to 21 B3 Ef(2) P,

Hence we obtain for the development of the function Sf(=),

S@) =p;Py+p P +...+pP,,

where D= .

2"“ 1 o P i)+ f@)E P @)+ oo A @ E o @) (14).

But we know by Art. 138 that the exact development

of f(x) is '
Ff@=q.Lo+q P+ . +gP+ e (13),
where - - 2"“] f(@) Pode. '
If we make use of this formula in (14) we find that
nH= 2—’%'--} A {EEP,]}‘ ..... s ae),

[N
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where % denotes summation with respect to all the n+1
values of , and 2, denotes summation with respect to s from
0 to . By virtue of equations (6), which with the present
notation hold so long as %+ s is not greater than 2» + 1, the
right-hand side of (16) may be reduced. The term which
corresponds to s=% becomes simply ¢,; all the other terms
vanish so long as s is not greater than 2z 4+ 1 — k: thus we
obtain :

2=+ Gz 2 Bonias + Gosss Fppag s+ oo eeve e (17),
where E, = "Zk—;—l S EPP,, the summation extending to all

the n +1 values of .
For instance,
20= %+ GwnBisia + Goss Bnis + Goura Bpsa + -+
.pl = QI + QRD41ESH+1 + QQI+1EI"+’+ qMEM-l- sec

where it must be observed that the symbols £ with suffixes
have different meanings in the two lines; in the first line

| E,=}5P,, and in the second line E,= J3¢PP,
From (15) we have f ' fla)de=2g,

9 — 20gnFost g Bt ], By (17,
Hence by (14) we obtain

[ f@)de=tf@) + Efle) + o 485 (@)

-2 {qmﬂEm:"' Q:m-sE:-ﬂ + "‘}‘

’ 1 .
In this expression for / J(x)dx the first part is identi-
cal with the 24 _f(a,) of ATt. 126, so that the second part

gives us a new expression for the error which arises in taking
the approximate quadrature for the real quadrature,

T, 14
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CHAPTER XXI.

SPECIAL CURVILINEAR COORDINATES.

265. IN some investigations of mixed mathematics,
certain coordinates introduced by Lamé have been found
very useful : these we shall now explain. Lamé’s own in-
vestigations on the subject were first given by him in various
memoirs, and afterwards reproduced in two works entitled
Legons sur les fonctions inverses des transcendantes et les
surfaces 1sothermes, 1857 ; and Legons sur les coordonnées
curvilignes et leurs diverses applications, 1859, These co-
ordinates are also explained in the Cours de Physique
Mathématique of M. Mathieu, 1873.

266. Consider the following three equations where z, ¥, z
denote variable coordinates:

wl yl Z’ _
wtu—pty—o=t
S, ¥ P
p+m+l'b.—_~—,— ’
s 9 2
ety —e=t

Suppose b* less than ¢*, A' greater than ¢', u* between
b* and c¢*, and »* less than b*: then the first equation repre-
sents an ellipsoid, the second an hyperboloid of one sheet,
and the thirdP:n hyperboloid of two }S'E:ets.

‘We shall sometimes denote these surfaces by §,, §,, S,
respectively. '

TS
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267. -Suppose the preceding three equations to exist
simultaneously ; then 2, y, z will be the coordinates of a
point or points at which the surfaces intersect. The values
of &%, y', 7 which satisfy these equations simultaneously
are easily found to be

2N (=) (4= F) (= B)
- [ - b (b’—o’) ’
V=) (=) (=)
¢ (= b)) *
These values may be immediately obtained from the
general formul given in the Theory of Equations, Art. 291.

Or we may proceed thus. The three equations of Art. 266
may be considered as expressing the fact that

vanishes when p =\’ or p* or . Hence we have

1-2_ ¥ _ 2 _e=2 (=) (=2,
p p=b" p=¢  pp-8)(p-c) ’

" for no constant factor is required since each side becomes

unity when p is infinite. Then if we decompose the right
member into partial fractions, in the manner explained in
the Integral Calculus, Chapter 11, we obtain

SN (B (- 8) 6=

W’ y= bx(bn_cx) >
P M=) (=) (=)
¢ -0 .

Since by extracting the square roots of the last equations
we obtain three double signs, we see that the surtaces of
Art. 266 have etght points of intersection.

268. Through any point in space one such system of
surfaces as that of Art. 266 can be drawn, and only one,
b and c being fixed quantities. »
' 14—2
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For let (2, , 2) denote the point; and let it be requlred
to find ¢ from the equation
& v 2
e i R v R
" This may be.consndered as a cubic equation in ¢, and by

observing the changes of sign in the left-hand member as
¢ varies, we see that there is one root of the equation between

0 and &% one root between 4* and ¢’, and one greater than ¢ .

We suppose here that none of the three quantities x, y, z
is zero.

269. The three surfaces of Art. 266 are mutually at
right angles at the points of intersection.

Denote the first equation by =0, and the second by
"~ 9=0; then the condition that the surfaces may intersect
at right ahgles is
dudv  dudv  dudy
Gdstaydytazda="

that is =0,

. A d

Mt =) =) T =) (=)
Now this condition is fulfilled at the points of inter-

section a8 we see by subtracting the second equation of

Art. 266 from the first.

Similarly the other two surfaces intersect at right angles.

270. By adding the values of &%, ¥*, and 2* in Art. 267,
we obtain

S+ +l =N+t - =
271. By extracting the square roots of the expressions
in Art. 267, we obtain
MY NVIN=b) (w b’)(b’—v ) = (k’—c‘)(c’—p’)(c —»*) .
c(c'=b")

bo 2 Y= bv(c

Some convention as to signs is necessary in order to
ensure that the last formula shall have due generality; and
the following is found sufficient by Lamé. Out of the nine

.

BLN
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quantities N, g, v, V(M =b%), /(' —0%), ¥(B'—2"), V(A" =),
V(@ —u’), N(c*—71*), three are taken to be susceptible of
either sign, namely », #/(u'— b*) and /(A'—¢*); the rest are
considered always positive. Thus the expressions for z, ,
and z have each one factor which may be either positive or
negative.

272. The quantities N, i, v are called elliptic coordinates.
‘When they ‘are given we may suppose the surfaces of Art. 266

* to be constructed, and their common points determined. Or

we may find z, y, and z from the formula of Art. 271.

It will be observed that if we merely know A, u, and v,
the point in space is not completely determined; for there
are eight points corresponding to assigned values of A, g,
and ». If however we attend to the sign of », according to
the convention of Art. 271, the number of points is reduced
to four.

273. Suppose in the first equation of Art. 266 that A
varies; we thus obtain a series of ellipsoids, all confocal, that
is all having the same points for the foci of their principal
sections. We may suppose A to commence with a value
infinitesimally greater than ¢, and then one of the axes of
the ellipsoid is infinitesimal, namely that which is in length
equal to 24/(A'—¢*). Then A may be supposed to increase
indefinitely.

Similarly in the second equation of Art. 266, if u varies
we obtain a series of confocal hyperboloids of one sheet.
The limits between which p may vary are from a value
infinitesimally greater than b to a value infinitesimally less
than ¢. At the former limit the real axis which is in length
equal to 2 4/(u’ —b°) vanishes, and at the latter limit the con-
jugate axis which is in length equal to 2 4/(¢* — 4) vanishes.

Finally, in the third equation of Art. 266, if v varies
we obtain a series of confocal hyperboloids of two sheets.
The limits between which v may vary are from an infini-
tesimal value to a value infinitesimally less than &. At the
former limit the real axis which is in length equal to 2»
vanishes, and at the latter limit the conjugate axis which
is in length equal to 2 4/(b*— »*) vanishes.
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274. Take the logarithms of the formule in Art. 267,
and differentiate, Thus
dp =20 A | ady
A I v

?

YN | ypdu yv dy

x‘ bs + ’ b’ + y b’ 1
2 dA zp. dp . zvdy

dz h‘ i + cx, V!_ 02 .

dy=

Square and add; then by the aid of the equations of
Art. 266, we obtain

da® + dy + dz* _{ (yy’b“_'_( *f 2)’})&1;\:

’
+ it G e
z 8
+ ol e
But by the formul® of Art. 267 we shall obtain

@ ¥ g _ (=) V=)
K_.‘+ (hx_ b’)‘ + (7\."—0")' —a (7\.’ — bS) (7&2—02) H

and then by symmetry

wl 2

N B R e
‘(F's_ b‘)’ W= Y p (= b’) (“a — G’) ’
& 9 £ _ @A) (-
and V‘ + (vx_b:)! + (y:_cs)s = » (”: — b’) (vx — 0")
Hence, putting ds* for da* + dy* + d2*, we have

ds' Z OV (M=) (A i) dp (= ") (u*=N0)
(h‘ b’) (X’ ) (F’S — b:) (#g - 6’)
(P =\ (VP —puh)
(V’ -— b’) (vl — C') .

el
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Here ds denotes the distance between the point (z, y, 2)
and the point (z+dz, y+dy, z+dz).

275. Suppose we put dA=0 in the result of the pre-
ceding Article; then the two points both lie on the surface
S,, and the formula becomes

ot ) (=N | B (=X (= )
@R T e-ne-a

276. Suppose we put du=0 and dv=0 in the result
of Art. 274 ; then the two points both lie on the surface S,
and also on the surface S, and the formula becomes

d':=dx’ A'—p) M=)
=B )

This is therefore the value of the square of the length
of the infinitesimal straight line drawn normally to &§,, to
meet the adjacent surface of the same family as &, in which
the parameter has the value A + dA.

A similar expression holds for the infinitesimal distance
between S, and the adjacent surface of the same family, and
also for the infinitesimal distance between S, and the ad-
jacent surface of the same family.

We shall now give some examples of the use of the
formule which have been obtained.

277. Let do denote an element of the surface of a solid,
p the perpendicular from a fixed origin on the element ; then
3 pdo represents the volume of an infinitesimal cone having
its vertex at the origin, and having do for base. Thus the
volume of the whole solid = %jpda-, the integral being taken
between appropriate limits.

We will apply this to the ellipsoid given by the first
equation of Art. 266, taking the origin of coordinates as the
vertex of the cones. .

. °e
o ° .
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‘We have by the usual formule of Solid Geometry

7= )+ (ete) + (w5

transforming this by the aid of the expressions in Art. 267

we obtain
AR
==
Also by Art. 276 we have

W@ =AW -N) o) F=N) (F — )
NG - JE=) - 0)
_ dudy(p* =) JN =) N =) |
JE= A=A - =b)
If we integrate between the limits O and & for v, and b

and ¢ for u, we obtain one-eighth of the volume of the
ellipsoid whose semi-axes are A, /(A*—5°) and y(A*—c%). -

Thus _
1, s [°[° (W' = V") dpdy
3A"\/(Ao b)o\’ c)fbfo ‘J(bx__ys) (02—112) (6’—[&2)(/&’—'6’)

- T AR
o (u* = ") dpdy =T
and t#erefore j ) /0 TP e @b 2.

278. Let o denote any element of area on the plane
(2, y), and let z be the corresponding ordinate of a solid ;
then the volume of the solid is found by taking the integral
fzdew between proper limits. If do denote an element of the
surface, and + the angle between the normal to do and the
axis of z, we may put cosydo for dw. Thus the volume
= [z cos ydo.

We will apply this to the ellipsoid given by the first
equation of Art. 266. We have by the usual formule of
S(;Jld Geometry
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w1 =5 Zo %) * (wlw) + (o )} E

transposing this by the aid of the expressions in Art. 267 we

obtain

M-8 (@~ ')(0 —v)
JE=F) M=) V=)
Hence proceeding as in Art. 277 we obtain finally

ro (b (W= )J(E = (=) d,,,dy _
f / ((b: -y ) (#: bz) G’(O, bﬂ)‘
279. If we take the three expressions furnished by

Art. 276 we find that an element of volume of a solid may
be denoted by HdAdudy where

R Ty |ty M
J(N' —b) W= ) (W =8 (¢ = ) (B = o) (¢ )
Apply this expression to the ellipsoid given by the first

equation of Art. 266; then proceeding as in Art. 277 we
obtain

cosy=

.[Afofbdedpdv=%xm,

280. There is another system deserving of notice in .
which the ellipsoid is replaced by a sphere and the two
hyperboloids by cones, Here we have

d+y+2t=1r

$2 2

u+ ,y’b,'l' az G=0’
a:’ o 2
Frrpty—a= "

These equations give

P P8, P - =)
"”'-' b:l 3 2 3/ bx(bz cx) s &= c:(cx_bu) .




218 SPECIAL CURVILINEAR COORDINATES.

It is easy to shew, as in Art. 269, that the surfaces re-
presented by the three equations intersect at right angles.

281. We may apply the formul® of Art. 280 to obtain
an expression for the surface of a sphere of radius 7.

If we proceed as in Art. 277 we shall find that the area
of an infinitesimal element of the surface is
(W — v r*dudy .
JE—AE-AC- =)
and if this be integrated between the limits 0 and b for »,
and b and ¢ for u, we obtain one-eighth part of the surface of’

the sphere, that is gr’. Hence

[ (2 = P)dudy _r
pJon/ (=) (=) ("~ ) W' - &) 2
This agrees with Art. 277.

e



CHAPTER XXII.

GENERAL CURVILINEAR COORDINATES.

282. 1IN the preceding Chaptér we have given an account
of a special system of curvilinear coordinates; we shall now
treat the subject more generally.

283. Let there be three surfaces represented by the

equations
-fl (z’ .’/» 2) = Pp
Si@ 48) =gy b oo .
fi(@ 9, 2) = p,.

Here «, y, z are variable coordinates and p,, p,, p, are
parameters which are constant for any surface; but by vary-
ing a parameter we obtain a family of corresponding surfaces.
For shortness we may denote the surface of the first family
for which the parameter has the value p, by the words the
surface p,; and similarly the surface p, will denote the sur-
face of the second family, for which the parameter has the
value p,; and a like meaning will apply to the words the
surface p,.

284. To given values of @, y, z in (1) will correspond
definite values of p,, p,, p,; that is, for every point of space
the parameters of the three surfaces can be determined.
Conversely, if p,, p,, p, are given the values of z, y, § may
be theoretically found ; that is, the points (z, y, 2) may be
considered to be known when the three parameters are given.
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< dp\' (Ao, (do' s
285. Put (d—w) + (@) + (d,) =k},
dp\' | (des\' | (9p5\' _ 7 s
(&) +(G) + (&) -
dp,\' |, (dp dp,) 2
(d-’:) + (d ’> + (dz hy'
Let a,, b,, ¢, denote the cosines of the angles which the
normal at (z, v, z) to the surface p, makes with the coordi-

nate axes ; let a,, b,, ¢, be s1mlla.r quantities with reference
to the surface py; and ’let a,, b,, ¢, be similar quantities with

220

respect to p,. Then
wlde 4 _1ds | _1dp
v h,dx’ ' h dy’ ' h, dz
_ldP; _.ldp, _1% D)
“hdot BThdyr TR [ @
_1 dps _ 1 dP; 1 dps
“Thde TRy TR

286. Let V denote any function of =z, y, z; by sub-
stituting for z, 9, # their values in terms of p,, p,, p, from (1),
we transform 7/ into a function of Pu» Pas Pae Then by the
aid of (2) we get

av_dv av av .

& = dp, ah + d h+ &, ah,

dav_dv dV av

a7y b+~ bh+d [ S (3).
av_ dV dV

d dp lhl+ d Rhl P& ake J

287.

Now let us suppose henceforth the three surfaces

given by (lg to be mutually at right angles; then the nine

cosineg a,, b, c, ..

. satisfy certain well-known relations, and

with the aid of these we deduce from (3) by squaring and

adding
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+(G) (%)
oy (jD +h-('“’) +he (‘2’) (4.

288. One of the relations between the nine cosines to
which we have just alluded is )

,Cs — 0,e,) + a, (b,e, ~ b,¢,) +a, (be,—be)=1;

hence by the aid of (2) we have a result which we may
express in the notation of determinants, thus:

(%)

do, dn,
dz’ dy’ dz
dp ‘_Jﬂs dp,
dz’ dy’ dz
dp, d + dp
2, 7’;, P2 | =hhh,

289. TFrom equations (2) we deduce

ado+bdy +ode=dp,,
1
a,ds +bdy + ods = % dp,,

adx+bdy+cdz-— dp,,

and from these we deduce

=% e 4+ T o + % dp,)
dz 3 dp1+7idp,+h: dp,

by dp, é!dp,+2 dpy b evvrrerrenan3),

dy= k

et §
hy
dz= ZLd +h dp,+h dp,
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From (5), by squaring and adding, we obtain
. 1 .
A+ dyt +det= Sedpr+ Ldpt + Lidpt ... (6).
hl h’ hl

The left-hand member may be replaced by ds*, so that
ds denotes the distance between the adjacent points (z, y, 2)
and (z+dz, y+dy, z2+dz).

290. Three particular cases of (6) deserve special notice.
Suppose that the adjacent points both lie on the surface p,,
ancY also both lie on the surface p,; then they both lie on
the common intersection of these two surfaces, which by
hypothesis is at right angles to the surface p, at the point
(z, ¥, 2). Thus we have dp, =0, and dp,=0; so that (6)
becomes ds’=bl,dpl’; therefore Edp, is numerically equal

1 -
to the distance at the point (z, y, ) between the surface
p, and the adjacent surface p, + dp,.

Similarly we can interpret the special equations
y P q
- 7}— dp?, and dst= ,-1- dp,.

291. From equations (5), we obtain

de_a, dz_g, dz_aq,
dp1—h1 ’ dp, —-ha ’ dp,_h_.’
dy b dy _ b dy_},
dPx—h: ’ dp, A, ’ dPa—hs ’
de_o dz_o dz_o
dp, h’ dp, h,’ dp, Bk’

These equations may also be obtained in another way.
For if a small change dp, be ascribed to p, we have g-: dp,
1

for the corresponding change in #. This expression must
therefore be equal to the projection on the axis of # of
the normal distance between the adjacent surfaces p, and
p,+dp, at the point (z, y, 2). Now this normal distance
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by Art. 290 is ’% dp,, and the projection on the axis of z
is obtained by nlmltiplying by a,, which is the cosine of
the angle between the normal and the axis of x; so that

92 .

~% dz, _a,
dp, = dp,, and therefore - = A

h, dp, b,
Similarly the other cases can be established.
By the aid of Art. 285 these become
ldp, dy_1dp, dz_1dp]
dp, hldz’ dp, hidy’ dp, h'dz
ldp, dy_1ldp, dz_1dp, L cvene (7).
dp, hldx’® dp, h'ldy’ dp, b dz
© . de_ldp, dy_ldp, dz_1dp,
dps—hﬂ"dw’ dP8 h dy dPS— .
292. From equations (7) we obtain, by the aid of Art. 288,
in the notation of determinants
de dy dz
., dp,” dp,’ dp,
> de dy de |_ 1
dp,’ dp,’ dp, ki
dz dy dz
dp,’ dp,’ dp,
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CHAPTER XXIIL

“TRANSFORMATION OF LAPLACE'S PRINCIPAL EQUATION,

293. 1IN equation (4) of the preceding Chapter a certain
expression involving first differential coefficients is trans-
formed from the variables z, y, and £ to the variables p,, p,,
and p,. It is the object of the present Chapter to effect
a similar transformation with respect to the expression
av d’V_FH
&t T aF T
count of the well-known equation which Laplace first con-
sidered : see Art. 167. The expression is called by Lamé
the parameter of the second order of the function V.

; the expression is very important on ac-

294, The parameter of the second order of any function
V can be expressed in terms of the parameters of the second
order of the functions p,, p,, and p,.

dae  dp, dw ~ dp, dx ' dp, da J
TY_&V o)t OV dot T
dz* ~ dp} ( dp,’( dpf\d=

F
dz &) T
a'V_dp, dp, av %é&, 9 d'V_dp, dp,
dp,dp, dz dz ~ ~ dp,dp, dz dz ~ ~ dp,dp, dz_dw
+ &8P, av dp,  dV &p,
dp, dz* * dp, da* d_pu d&"..
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Similar expressions hold for ‘5—;,7 and %Z ; hence by

- addition, observing that the surfaces of Art. 283 are at right

angles, we obtain _
av 4av fd—'—V=k’d.V av av,

b — — - — ‘_—_ ’_
@ty e gt dp3 T dp,’!

avdp,  dp, d&p)\ A AV (dp, &, , dp
+d—P1 (——ll, + dy’:+'@'1)+¢7lp_,(;‘l’+7y_"!+_f :)
av (dp, dp, , &p,
+'d7,(“’+7ﬁ+dz=) .............................. ().

Thus the parameter of ¥ of the second order is expressed
in terms of p,, p,, and p, and of the parameters of the second
order of .p,, p,, and p,: 1t remains to transform these three
parameters.

‘We shall us?i’ the dsnymbol V as an abbreviation of the

operation @‘+ @, + pal

295. The relations among the nine cosines to which we

have alluded in Art. 287 may be made to give the following

results:
a, = ba,cs - bucs’ b1 =00y —Cyyy €, = a!bs - aabv
together with two other similar sets, '
Hence by the aid of Art. 285 we obtain

dp, b, (dp, dp, dp, dp,) ) )

dx hh,\dy dz~ dy dz

dp, _h, (dp,dp, dp ¢_ip_) »i
d_z;_ﬁjf.(?lf Do T TP) e (2)
dpl__ﬁ_(d_fi,_%_f}& ‘_iea) .
. de dy dx dy/’ |
together with two other similar sets.

Differentiate the first of (2) with respect to ¥, and the
second with respect to @, and equate ; thus we get;

T 13
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b (o dov, dou Fn_ Toyde,_ b, Tir)
hh,

dy* dz * dy dydz ™ dy* dz ~ dy dydz
4 (h \ (dp, dp, _dp, dp,
+@&O(

dy dz ~ dy dz

=L(ﬁ%+ﬂﬁ._ﬁ%_é&&)‘
b \dwdz dz ™ dz do* " dadzdx ~ de do

b () (@ oy ).

dx\hp/\dz de dz dx
'Re-arranging, and introducing terms for the sake of ‘
symmetry, we get '
Y T T
AR 5102 4E) 1
ST EOR TR TS I

ol d (b o d (1Y, 4 d (L))

dz |dz do \hh/) * dy dy\hp},) * dz dz\hp,

Now the expression within brackets in the second line,
by equations (7) of Art. 291, ‘

-1 i (&) v 5(8) 5 &)

=1.;7%(%) .......................................... ).

A similar transformation can be effected of the exfp -
sions within brackets in the remaining three lines of (3);
and thus (3) becomes : ' :
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d dp, )
H, (d‘:’ o Vp,)

( d, d /d
+H, {z.- ( p,) ,g;dp’( p)}
dp +4H, dp, ,dH
d ’ka dp. dz k oooooooo .....(5),
] h
where H, stands for .
1. hnhg

Divide by H,, then we obtain
‘ 7/
%s Gp - e p,
d dp d (dp,
2 2
+hig (d ') b, dp,(dz)
dp, h’d log H, dp,k,dlogH

H R - D S0 6),
Simila,rly we have
2V sz"'
+"=’.§i (fz';') —h di, (fzzp’
| +‘§f;s;,-‘“:l’gaﬂ—‘%h'“"§’ﬂ 073
and % VPs = f;;’ \3
w0 () w5

dphdlogH dpsk,dlogH
dy™ dp, dy* dp

2
Multiply (6) by 221, (7) by %2, and (8) byg% and add;

then by virtue of the rela.tlons alluded to in Art. 287, we
obtain

15—2
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woneis (o L0 24 )+ 52 5)

dy dp,\d,
dp, d (dp,\ , dp, d_(dp,\ , dp, d (dp
=k {dz b, @)+ 2 &, @)+ o dp,(d )
T Y A ©).
P, e

This may be simplified ; for we have

B &) Lan(E)+ 55 (E)

14 (/dp, dp. dpg'} 1d,,
2dps{(dz) 275." _k’dp,

RETTART IR

d dp,\dx) " dy dp, \dy
_dp, d dz\  dp, d dz\  dp, d (., dy
= dz dp, (h" dp,) T (k” dpa) 3y a, (h’ dp.)

dp, & (dz\ , dp, d (dx\  dp, d (dy
h {dz dp’ (dp + s dz dpa (df' + dy dpl (dp,)}
B {dp, d (dz +dp, d (dx dp, d (dy }

dz dp, \dp,/ * dz dp,\dp,) ~ dy dp, \dp

dp, @ (1.dp)\ dp, d (1dp)\ dp, d (1dp
ki {dz dp, (h dz) + d:;dp, (h da:) + _(i—jtl_m,(h_: d_;l;)}

2 d, dh, ,
.=1;,,{ g +h,h,d} hy' dhy

Hence (9) becomes

dh, dlog H
2 2 279 =0
h}vp,+ 2k, h,—id +A'h, o 0;

therefore Flg A/ (-;—l— log L. 0 (10).
: s Ps
In the same way we have
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d hoh,
h’vpl+d log—-O ............... (11);

. d hh
and 5 —log 2—2=0 ..cccvvarnrenne 12).
h Ve, + d g h, (12).

By the aid of (10), (11), and (12) we obtain from (1)
av d'v. a'v
P R
vV de,h d d’V aVhh, d (h
g peu )
dp,’ dpl . dpy (hx]"s) A dpy’ dPs s dpa ( )
h,

@V dVhh, d }
+h{ ’+dpa dps(—’?)

’

v &V 4V
eyt ar =

Rk, {dp, (h"h g:) +;% (,%;f%) + d% (:_11 %—:)}...(13).

296. Hence we see that the equation VV—-O trans-
forms into

d (h d d (h, dV h, AV
+—(——’———)+ (x5 ) =0 (9.
dp 1 (h’h'l dp 1 dp 2 hlhl dp 2 dp 8 h dp 8 ( )
As a particular case we may suppose that p,, p,, p, are
respectively the A, p, » of Art. 266; for the equatlons of that
Article theoretwally express each of the last three quantities
as functions of , ¥, and 2.

By comparing Art. 274 with Art. 289 we have

M T N T N U
1= R e W G W=
and these may be substituted in (14).

But we may make another supposition which will give &
still simpler form to (14). We may suppose that p, is any
function we please of A, that p, is any function we llease of
p, and that p, is any function we please of ». Let us put
a, B, 7y respectively for p,, p,, p, Where

that is
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asc”“ dn B=c » dp
AN=B) =) T e (T— ) (= 1)’

f v dv

y=c| ——= _.

o =) (=)
Let 7, n,, 7, denote respectively what A, &,, b, become

when a, ﬁ, vy respectively are put for p,, p,, p,. A

From Art. 274 we now get .
a5t = O ) O 5) B () ()
=N @-NT.

Thus
. ¢ i e c
HEEA W) T ) T
Therefore .

o =y 9 M-

nn, ¢ M ¢ owm  ©
Hence (14) becomes

w2 T B) 5 )=

thatis .
W= Sg + 2= Tk 0e- ) gﬁso . (15).

297. We have obtained equation (13) by the direct
processes of the Differential Calculus; we shall now however
follow Jacobi in deducing the equation in another way, by
the aid of the Calculus of Variations: see History of the
Calculus of Variations, page 361,

298, Let ¥ be an%function of z, y, #; let F be any

function of V, g , %3/_’ %I;; and for s;)ortness puft

{
{
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av av av
de =P dy P G TP

Consider the triple integral |[[Fde dy dz, which may be

supposed to be taken between fixed limits. Let the variables

be changed to the p, p,, p, of the preceding Chapter. B,
Art. 290 we have Pu P a P 8 P d

the element of volume dz dy dz = dp, dp,

T
= Edp, dp, dp, say.
Henco ] [Fazayas= f [[27dp, dp,dp, .....(06)

Let V receive a variation 8V, then each side of (16)
receives a variation which we will now express, beginning
with the right-hand side. 'We have

afﬂEde,dp,dp,=fﬁs(EEjdpl dp, dp,.

-For shortness put av_ =w av 14

&= 3y G,
Then

5 (EF) = (Emsmd‘g‘ms d(EF’aw + é‘msw

aV+E"st +E§f

Hence reducing ff fS (EF)dp,dp,dp, in the usual way

8w+E 8ar

we find that it becomes f f f Kd Vdpl.dp, dp,, where
K= B35 (Baz) - 45 (Fa) i, (F2:)-

together with certain terms in the form of double integrals
which depend on the limiting values of the variables.
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In the same manner if we develope the variation of the
left-hand member of (16) we find that it becomes

185 (00)- 3 (45)- & (D) avanaa,

together with certain terms in the form of double integrals
which depend on the limiting values of the variables.

The terms which are in the form of #riple integrals must
agree ; and therefore putting X dp, dp, dp, for dz dy dz in the
second we obtain

£ {%“%Gﬁ) dy (d_p Tdz (dF)}

4R ) )

. 1 E
80 that ( F) + 5 2y \d ( (Zp,

1(d (,dF\ K6 d dr\  d dF
299. As a particular case of the precedmg general result

suppose we put (ZZ) ( dV) (dV) for ¥ on the left-
hand side; then, tra,nsfemng to the new variables, we see by

Art. 287 that we must put A} (fl:,) +4} (fl:) +h, (ﬁ:)
for F on the right-hand side. ‘Hence on the left-ha.;xd

gide gF 2‘2:, and so on; and on the right-hand side

/21
dF av
=, =2h dp,’ and so on. Thus (17) becomes .

d (b dv\, d(h dV\, d (b d
VV:b'hfh'{EE (’Z’Z%)J'dps("h dp,. dP-(“ dPs}

which agrees with (13).
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300. Another very instructive method of establishing
equation (13) is given by Sidler in the treatise mentioned in
Art. 4; and is apparently ascribed by him to Dirichlet.

Let V be any function of @, ¥, 2, which together with its
first and second differential coefficients with respect to the
variables remains finite throughout the space bounded by a
given closed surface ; then will

J f VVdzdyds = — f LT 18);

where the integral on the left-hand side is extended through-
out the space, and that on the right-hand side over the whole
surface : dS is an element of the surface, and dn an element
of the normal to the surface drawn inwards at d&S.

The theorem is well known ; it may be obtained as a
particular case of Green’s Theorem : see Statics, Chapter Xv.,
putting unity for Uin the general investigation there given.

Now conceive an infinitesimal element of volume bounded
by the three-surfaces of Art. 266, and by the three surfaces
obtained by changing p,, p,, p, into p, +dp,, p,+ dp,, p,+dp,
respectively. To this six-faced element we propose to apply
equation (18).

As we have already seen the element of volume dzdydz
becomes khihdpldp,dp, when expressed in terms of the
new variall)l;s’; hence the left-hand side of (18) becomes

Wt

A dp,dp,dp,, where W is what VV becomes when ex-

pmsz;eci in terms of the new variables.

Now consider the right-hand member of (18). Take first

the face which lies on the surface p,. Here d§= Iz—lﬁ dp,dp,,
2778

1 av h AV
and dn= 3 dp, ; 8o that %dS becomes ’T—;‘—B &, dp,dp,. The

correspondiilg value for the opposite face would be found
numerically from this by changing p, into p, +dp,; but the
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sign must be ehanged because the formula (18) supposes &z
always measured snwards; hence this value is

_[(A 4V & (B dV }
{hshs do, " dp, (kJ'a dm) Ipsj G-

Hence the balance contributed by these two faces to the
. . . d (h AV
right-hand side of (18) s — - (h—h’ d_m) dp,dp,dp,.

Similar expressions arise from the other two pairs of
faces of the element considered ; and the aggregate is to be
put equal to the expression already found for the left-hand
side of (18). Therefore -

1
w hjl:il: dpxdpsdps

d (h dVy, d (h dV i_";i}
{dp‘ hsh‘ dpl> + dps (hsh dps) + dPa (hlk dps dP,dp,dps.

1 3
Then by simplifying we get for W the form already
obtained in equation (13).

4
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CHAPTER XXIV.
TRANSFORMATION OF LAPLACE'S SECONDARY EQUATION.

301. WE shall find it useful to transform into Lamé’s
variables the equation satisfied by Laplace’s n* coefficient ;
this equation we may call Laplace’s secondary equation, to
distinguish it from that considered in the preceding Chapter.

802. Denoting the n® coefficient by Y, we have by
Art. 167 the following equation expressed in terms of the
usual variables,

1 d@dy. N, 1 &Y
ma—e(-d—a-sma)+mw+n(n+l)l’=0 ...... (1)
Now the following is a very common system of relations
connecting polar co-ordinates with rectangular,
g=rcosf, y=rsinfcosd, z=rsinfsing;

and by comparing these with Art. 280 the following relations
are guggested :

w JE=PT=)

ma€_=}c, ginfcosdp= TR
sin 8 sin ¢ =__._.__~’(";;€:, )_("l:,;"') ......... (@).

We propose then to transform (1) by the aid of (2) ;b and
‘we shall also introduce auxiliary variables 8 and #, which are
connected with u and » respectively by the equations

(R . e
B=¢ft~/(ﬁ'-b‘)(c’—,f)’ 7—0[0Jm__y,)...(3).
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‘We shall shew that the transformed equation is
a Y Y +1
Bt +200 D (o r0n, 4).

303. From equations (2) we have cosf and tan¢ ex-
pressed as functions of p and ». - These give

do v o - p .
du~ besn®’ dv  besind’
dp_ bJEF=-NE=v) _ u
B @ Ee W
dp__boJW=B=p) v |
dv~ J(b*—f) @) HV-be

a9 3
therefore 8= "TFsm 9.\/ @ =0 ("= u"),

dd _ B Twor T
d/y bc SIDoJ(b—")(c’_”’)’

do _ e v O
dB s”: bzcx (b "’)(c—v,)

d_'y = T”z b:c:\/m
Let us now. suppose that :1;01: + cot OdY 1,—aé’—¥
transforms into 4, d’Y+A dY+B d’Y &

BBt BGy T+ 0,3
we want to find A,, 4,, B,, B, and C,.
dY dY do ded) therefore

We have B deB d¢d,8’

'Y a'Y(do ary (d¢ 9 aY df d¢
W‘W(«Tﬂ) +—d;;(d—,3) 8 3B B .
’ dY A dYﬁ

+39 ag g g’



SECONDARY EQUATION. 237

2
similarly (g and ddxg may be expressed ; and

ay d’Yd0d0 dY d'6 d”Yd4>d¢ Yy '

dBdy~ A6 Byt B d/3d‘7 g gyt d$ dBdy
+ Y 'y (dO d¢ do d¢)
d0do \dB dy d'y dB
Substitute these values in

a Y Y ay a Y
4,55 T A‘dﬁ +B,—55 " aF +B, - +C°d/3dy’
and compare the terms with those in the original expression;
thus we obtain .

d9 do do
4,(Z) + 3, ”)+q,dﬂd7_1 ..................... ©);
do\? d dp dp 1
A(dﬁ +B( )+0,dﬂd7 T S m;
dé do do d¢ db d¢ do d¢
24,7 dﬂ+2B°dryd;y+0(dﬁdy dydﬂ)_o...(aa).
A,ZZ+B“§"+A,,Z'; B,$+ ood‘gg —cot...(9).
d d XA
PETEY TR T TR S
Now equations (5) give
dp _ 1 df
BT R Gy e ennanes (11);
dp 1 do-
éy_—md—ﬁ oooooooooooooooooooooooooooo (12)

Multiply (7) by sin'6, and subtract from (6); then by
(11) and (12) we have

armo -} +s0 o
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Also (8) may be written
dod do do\* (do\*
- 2-npg-of(E-(E)) e
The last two equations give
. Ao‘ - BO = 0 0 = 0
From (6) we have now 4 { dg)l} =1, so that

AP+ BN E =)
b%* sin* @

A, (W =A@ —p) _
c* (b%c*— ) ’

therefore 4, and B, each equal

or

c’
2 vﬂ‘

We have still to find 4, a.nd B, ; the equations for this
purpose are (9) and (10).

Now from (5) we get

Y ) 2 cos §
csmeo-lB—,=—c089(b’+c’~2) bcﬁe("' B)( — ),

a9 g
Fuin 05 = cos(F+'~2) bfc,m B =) (=) ;
therefore ¢sinf (Z’g, 3’0) (u* —v") cos .

And from (11) and (12) we have &'$ d.¢ =0,

BTy
Hence equations (9) and (10) become
do aé _ d
4,55 +B.5 =0, A,dgw 9@

therefore 4,=0 and B,=0.
Thus the truth .of (4) is established.

e ———— . | ae—— ,&?g
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Another investigation of this process of transformation
will be found in Liouville’s Journal de Mathématiques for
1846, pages 458...461.

304. Another transformation of the equation (1) deserves
notice. We will express the equation in terms of ¢ and 7,
where

csf=g, sinfsing=r............... (13).
From (13) we have

2,
2o o —sind, 77— —conf, 37 = cosfsing, 7 =~ sinfsing,

do dr T o d'r
‘E=O’~ Fr -$,=—sm0n¢, Eo—d—‘#—cosecognﬁ.
dY_dY do dY dr dY

Now G=decaot ar do="do ™™

a'y d4a‘Y/de &Y rdr dY d'c dY d*r
EF‘:W(E@) 7?(?1@)““%&9”7;@
‘Y do dr
dodr 46 d0

=gind cos ¢,

Y .
inf + — pr cos@sing,

+2

‘51: in®d + d}:cos’esm ¢——I-70030

_”fi_yma sin ¢ — 2‘2:‘1; sin 0 cos @ sin ¢;

Y _IY by AT & _OT

d¢*  dr (d¢ dr dp' i
Thus (1) becomes

ZZ 0+¢Z},’cos’9 sin ¢—§Z cos 6 — ‘fi—fsinOsincp

‘zysm 0+ zYcosa sm¢)

in'6 cos’p ~ —-smﬁamc[x

-2 it smﬁcos0sm¢+cot0(

dodr
d'Y dY sm¢

cs’¢ +n(n+1)Y 0;
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that is %sin’ 0+ %’—-Z(OOS’ o+ gos’ Osin’¢) — 2 ?l—fcos 6

, .
_2Q;.Ysino sin¢-2;”£sinﬁcosﬂsin¢+n(n+l) Y=0,

d
that is (1-0*)%’+(1_7-) ‘f;_f..zwd%

iy aY
- %%— 27 Er-+n(n+l) Y=0...... (14).

305, If now we transform (14) by putting
cosy=o, sinysiny=r,
we shall obtain an equation like the original with  instead
of 6, and 4 instead of ¢. But as (14) is symmetrical with
respect to o and T we shall obtain precisely the same result
if we put
csx=7, sinysiny=o.
Hence we arrive at the following conclusion : if we trans-
form (1) by supposing :
cos @ =sinysiny, sinfsin¢=cosy....... (15),

we shall obtain an equation like (1) with  instead of 6, and
< instead of ¢.

From (15) it follows that
gin 6 cos ¢ = sin  cos Y.

806. From the two preceding Articles we may now draw
the following inference : we shall obtain the same result from
equation (1) if instead of equations (2) we take any other
mode of associating the old and new variables differing from
(2) merely in order of arrangement. For instance, instead of
*(2) we might put :

B infsing, J(’i:/(i?_(b;.;v’)=sin9008¢:

N(CETICET)
cy(¢—b)

=cos §,

|
1

S WP
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CHAPTER XXV,
PHYSICAL APPLICATIONS.

307. ALTHOUGH in the present work we are concerned
with pure mathematics, yet it must be remembered that
much of the value of the formule which are obtained depends
upon their application to physics. As we have stated in the
beginning, the researches of mathematicians in the theories
of the Figure of the Earth and of Attraction first introduced
the functions with which we have been occupied. The
investigations of Lamé, which we are now more especially
considering, were connected mainly with the theory of the
propagation of heat, and accordingly we propose to devote
a few pages to this subject in order to increase the interest
of the subsequent Chapters.

We shall however treat the matter very briefly, as our
object is rather to shew the meaning of the symbols employed
than to furnish very elaborate demonstration. The reader
will see that some of the processes resemble one with which
he is probably familiar in the modern treatment of the
Equation of Continuity in Hydrostatics.

308. Suppose a homogeneous solid bounded by two
arallel planes; let ¢ denote the thickness of the solid.
guppose one face of the solid maintained at the fixed tem-
perature a, and the other at the fixed lower temperature
b. Suppose a plane section parallel to the faces, and on
this section take an area 8. The solid being supposed
in a state of equilibrium of temperature there will be a
constant transmission of heat from the face which has the
higher temperature to that which has the lower.
T, ‘ 16
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We take it as a result verified by experiment that the
quantity of heat which passes through the area § in a time
. a=b
t is expressed by Stx p
on the nature of the substance. If ¢ is the unit of length,
S the unit of area, ¢ the unit of time, and ¢ —5 the unit of
temperature, the expression reduces to «; and we have thus
a definition of what 18 meant by the conductivity of the given
substance.

309. To form the equation for determining the variable
state of temperature of a homogeneous body.

* Conceive an elementary rectangular parallelepiped having
one corner at the point (,, 2) and its edges parallel to the
coordinate axes: denote the lengths of these edges by &z, 8y,
and 3z respectively. -

Let v'be the temperature at (z, y, 2) : then the quantity
of heat which passes through the faece &y 8z into the
parallelepiped during the infinitesimal tinve 8¢ is by the
preceding Article ultimately «8ydz v_____(g: %) 8t, that is

—xdy 8z %St, where x is the eonstant whick measures the

» where x is a constant depending

conductivity of the substance. The quantity which passes
‘out-of the parallelepiped during the same time, through the
opposite face, will therefore ultimately be

dv d (dv
—xSySzSt{d—z a;(a—w)&c}. ]
R

Thus the augmentation of heat is « 8x &y 8z &t R

Similarly we may proceed with respect to each of the
other pairs of opposite faces. Thu’s on the whole the aug-
t) 9,
mentation of heat is x &z dy 8z 8¢ {3—2; + -Z—v +% .
Now let T be the specific heat, o the ensity of the body :
then the mass of the element is o 828y 8z ; and the quantity
of heat acquired by the element in the time & is

dy
Wm&&cSySz.

R

o

Fy
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Thus finally :
dv .k (d  d%  d% ' .
az—;{‘d?‘i'@,“i'z,} ............. ..(1). |
310. If the body is in a state of equilibrium as to
tempera.ture,vthen Z—Z =0, and we obtain ‘
& d &% '
e + P + P L1 s ).

This important equation coincides with that which we
obtain in treating the theory of the Potential Function, and
which we have already noticed in Art. 167,

311. Besides the general equation (1) or (2) we may
have to satisfy special conditions relative to the surface of
the body considered. - :

Thus, for example, the surface of the body may be
maintained at a temperature which at any time is an as-
signed function of the coordinates of that point; and then
v must be so taken as to have the assigned value at-the

- surface,

Or the space external to the body may be maintained at
a given temperature, say zero. Then let 88 denote an
element of the surface of the body, én an element of the
normal to 88 measured outwards. Let % denote the con-
ductivity of the surface of the body. Then the amount of

heat which passes through the area 88 outwards in an

element of time &¢ is measured by —x%—: 88 8¢, and also

by nv3S8t. Thus

d
'qv=—x£ ......... cevesetusrenens (3).

Equation (3) may be developed. We have

do_dvde dvdy doe
dn dedn” dydn dgan®
16—2
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Now g—: = the cosine of the angle between the normal

to.the surface at (@, ¥, £) and the axis of «; so that if u=0
be the equation to the surface, we have

S ERCRe

Similar expressions hold for Tn and an°

' 812. The equations (1) and (3) of Arts. 309 and 311
take other forms in special cases, as we will shew in the
next two Articles. ‘

313, Suppose we have a right circular cylinder in which
the temperature remains unchanged as long as we keep
to a straight line parallel to the a.xis.’ Take the axis of

the cylinder for the axis of #; then % is zero, and the

equation (1) becomes
dv_ & (d'%  d% '
g (WJ'W) ................... ).
We may transform the variables «# and y to the usual
polar variables » and 6 : and thus (4) becomes, if we assume
that v is independent of 6,

dv_ k(A 1dv .
%—;;'(W-'-;E') .................. (5).
The equation (3) will become
dv
PWHEZ=0 i, (6)

This is to hold at the curved surface of the cylinder where
r has its greatest value,

_814. Again let the body be a sphere, and suppose the
origin of coordinates at its centre. Assume that v is a
function of r the distance from the centre alone; then
(1) becomes '

dv_k (d 2 dy
“T‘-;—f (d—F+; 3;) 8800000000000 00 (7).
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This may be written
d, o« d(vr)
&=z
The equation (3) will become coincident with (6) : it is

to hold at the surface of the sphere, where » has its greatest
value,

315. Let f(z, y, z) denote any value of v which satisfies
(2), and let ¢ be any constant; then the surface determined
by the equation .

Sy 2)=c

is called an isothermal surface, being a surface every poinf of
which has the same temperature under the circumstances of
the problem., o

The constant ¢ is called the thermometrical parameter of
the surface. If different values are ascribed in succession to
¢ we obtain a family of isothermal surfaces.

316. Suppose that the equation F(z, y, 2, A)=0 re-
presents a family of isothermal surfaces, by varying the
g:rameter A. Suppose that two of the surfaces form the

undaries of a solid shell, and that these two surfaces are in
contact with constant sources of heat; then the temperature
v, and the geometrical parameter A will have constant values
in each individual surface of the family, and will vary from
surface to surface. Thus these two quantities will be mutu-
ally related ; or we may say that » will be a function of A.
Hence we shall be able to find the condition which must
hold in order that an assigned family- of surfaces may be
1sothermal.

For we have
do _do
~ da drde’ o _
Lo _ddn By
d d\dat dx’(dw ’

and similar equations-hold with respect to y and 4,
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Thus equation (2) becomes
dv{d’k L d’)\.}+d'v{

o\t Iy T I taw
theref : ' ==t (8).
erefore (%) +(%) +(g}), %

But the right-hand member is a function of A only, and
therefore the left-hand member must be a function of \ ondy.

This is the necessary condition in order that a family
of surfaces in which A is the geometrical parameter may be

isothermal.

It is also suffictent ; for when it is satisfied we can de-
termine v as a function of A from (8), and v will satisfy (2).

817. We shall now investigate by the aid of Art. 316
whether the family of ellipsoids obtained by varying A in

the following equation is isothermal :
o 2
Nt i% + T b ) N (9).

We have, by differentiating with respect to z,

A R ]

{%' * w‘fb')' T z ) {"% * (%)'}

(&) e e 82

A8 + (x! - bl)l + (A..— di)lj

say H{x‘m (@)}—4x’(d—x)'(¥+%%é%...(ll). '

2= \g= 2

—

B+ @+ @] -o0:

| ———. i | . e htnn |

|
«
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Similar formuls follow from (9) by differeniiating with
respect to y and # respectively.

Square (10) and the two corsesponding equations, and

add; thus ‘
: s [(AN\' | 7dAN' | (AN ’} P
‘ A {(Iz) + (d—y) + (ﬁ) H=1 .. (12).
Again; from (10) we have '
A2 dr z’
rMe T - (13).
From this and the two correspondmg equations we obtain
by addition
zdh, .y 2 A,
»b Y {x il et a}H-. @...(14).
From (11) and the two corresponding equations we obtain
by addition and the aid of (12) and (14),
d'\  d°\ , d°\ 1 1
XH{M d’+dz"} '—'zg‘l'm ........ (15).
From (12) and (15) we have
> &'\  d\  d’X
@Zrtagta

= sy e (16).
@) +G)+Er ¥

The right-hand member is a. function of X only, and
} thus the COIldlthn of Art. 8186 is satisfied : hence by varying
A in (9) we obtain a family of isothermal surfaces,

318. If v denote the temperature in the case of the
preceding Article, we have by equations (8) and (16)
d%
al
~ % =v- Fopt g d
ar
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Hence, by integration,
Io —d—g=constant-—llo (x’-b')-ll : A=d;
g 508 508 H

therefore

v=k ] __.__.dx '
VW) -y’
where k, denotes a constant.

819. In the manner of Arts. 317 and 318 we may shew
that a family of hyperboloids of one sheet represented by the
second equation of Art. 266 is isothermal; and that the
temperature v is determined by

. dp
v= k f )
(@ =p) (@)
where %, denotes a constant.

Also a family of hyperboloids of two sheets represented
by the third equation of Art. 266 is isothermal; and the
temperature o is determined by

o=k [ dv
IR NI CEN
where %, denotes a constant.

320. We will now obtain by a direct process the equa-
tion in polar coordinates which corresponds to (2); the
result will agree with the well-known transformation of (2):
see Differential Calculus, Art. 207.

Let r, 6, ¢ be the usual polar coordinates ; then the known
expression for an element of volume is 7*sin Gdr db d¢.

Put o, for »d@dr, o, for rsin 0drde, , for 7*sin §d0dé.

Then o,, »,, ®, denote ultimately the areas of the faces
of the element of volume which meet at the point (7, 6, ¢).

Let « denote the conductivity of the body, v the tem—
perature at the point (r, 6, ¢).

\
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The quantity of heat which passes through the face
o, into the element during the infinitesimal time &t is

dv . «xdrdfdv
‘mst, that is —WTSt The
quantity of heat which passes qut of the element during the
same time through the opposite face' will therefore be

. kdrdf (dv d ,
ultimately — e { pr3 + i d¢} 8. Thus the augmenta~
xdrdfd¢ d*v

sind d¢*

ultimately — xw

tion of heat is ot.

Again the quantity of heat which passes through the face
o, into the element during the infinitesimal time & is

ultimately — xw, ;%% 8t, that is —xdrd¢ g—; gin 08 The

quantity of heat which passes out of the element during the

same time through the opposite face will therefore be
. dv . ... .d(dv .

ultimately — «drd¢ {@ sin 0.+ T8 ((—1—9 sin 9) JG} &t. Thus

the angmentation of heat is « dr 0 db (% sind) 3.

Finally the quantity of heat which passes through the
face w, into the element during the infinitesimal time & is

ultimately — ke, ?1;- &t, that is — x»*sin 0 d6 d¢ g:—f 8t. The

quantity of heat which passes out of the. element during the

same time through the opposite face will therefore be
. . dv  d (,dv

ultimately — «sin 8 df d¢ {r‘ &t ar (r‘ %) dr} 8t. Thus

the augmentation of heat is « sin 0 dr df d¢ Ed; (r’ %{) at.

Now the sum of the three augmentations must be zero
since the temperature is supposed stationary: thus

T d’v+ 1 d(dv. e)+d(r,dv)

s temoap\@ )t & ") =0
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- 3821, 'We shall finally obtain the equation corresponding
K)m(.‘?.) when Lamé's elliptical coordinates are employed : see
272, .

We suppose that we have a set of variables a, B, y con-
nected with A, u, » respectively by the relations

_n dr N L dup
a_”fo Voo =) R=c wVie—p) (@ -b)’

e f' dv .

LR RV
It may be observed that these relations are not assumed
arbitrarily, but are suggested by the process of Arts. 318
and 319. We may consider that these relations give, at
least theoretically, a, B, v in terms of A, u, » respectively ;

and conversely that they give A, u, » in terms of a, B, o
respectively.,

322. Let ds, denote the length of the normal to S,
intercepted between this surface and an adjacent surface
of the same family ; so that by Arts. 266 and 276 we have

ds? = a (A — l‘f)_(i‘_' VD .

CEICEDN
then from the value of « in Art. 321 we obtain

ods, = da SO =) (P =),

Similarly let ds, denote the length of the normal to 8,
intercepted between this surface and an adjacent surface of
the same family ; and let ds, denote the length of the normal
to 8, intercepted between this surface and an adjacent
surface of the same family. We shall have

ods, = dB N =) (=),
' odo, = dy JTF=T) Z=7).
The three normals are all supposed to be drawn from the
point (\, p,9). -
Put o, for ds, ds,, o, for ds,ds,, w, for ds,ds,,
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Take an elementary solid which is ultimately a rect-
?ancgular parallelepiped having w,, »,, and @, for adjacent
es.

The quantity of heat which passes through the face e,
into the element during the infinitesimal time &t is ulti-
mately — kw, 9 3, that ia % By - ) % 5. The

1 .
quantity of heat which passes out of the element during the
same time through the opposite face will therefore be ulii-

mately —%dﬂ&y(p:"- 7) {‘di:+$ da} 8. Thus the aug-
mentation of heat is £ dadBdy (4~ ) 7o 3,
Proceed in the same way for the other pairs of opposite

faces; and thus finally we obtain as the condition of station-
ary temperature

=) T OF =) Tt 00 ) S =0



CHAPTER XXVL
LAME'S FUNCTIONS.

323. WE are now about to introduee the student to
certain functions which we shall call Lamé’s Functions ; their
character will be seen more distinctly as we proceed, but
in the mean time we may say that they are analogous to
Laplace’s Functions, only that instead of the variables r, 6, ¢
with which these functions are concerned, we now have
Lamé€’s variables A, g, v involved directly or indirectly.

324. Suppose an ellipsoid of which the semi-axes in
descending order of magnitude are r, 7, 7’. Put b=4/(r*~r"),
and c¢=,/(r*—7"%). It is required to determine ¥ so that
for every point within the ellipsoid it shall satisfy the
equation

v TV 4
(IL,—V')d—a,"l'(X'—V’)(E,"l'(X’—[&’)W;'O ...... (1),

and moreover shall have at the surface an assigned value
which is fixed for any point but variable from point to point.

The variables a, B, «y are connected with A, u, » respect-
ively by the equations

A ar N du
ansf, VT M W Yk

v

v di
. 7=6]°7(;’—;__——;;-j—-(c’—-7) ...... (2).
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Thus V may be supposed theoretically. to be a function
of A, u, vor of a, B, y. The condition relative to the surface
which we are to satisfy may be expressed by saying that
¥V is to be equal to F(a, 8), where ¥ demktes a given function,

‘ - X

°[ NN=B) (V)

825. We have in the preceding Article enunciated the
problem in a purely mathematical form ; but the student
who has read Chapter XXv. will readily give to it the
additional interest of a physical application, for it amounts
to the following : the surface of an ellipsoid is retained at a
temperature which is fixed for each point but variable from
point to point, and it is required to determine the temperature

"at any point in the interior of the ellipsoid in the state
of equilibrium of temperature.

when A =r, that i8 when a=

826. Let us examine whether fve can obtain a soiution
of (1) by taking V = LMN, where L involves a alone, M
involves B alone, and N involves « alone.

" Substitute in (1), and divide by LMN; thus we get
3 s __ 1_ 3
L;'%+¥%+LN—“—%=O (3.
Now we have identically »
W=r+r =N+ = u'=0,
W= N+ =N+ N —p) = 0.
Hence if g and ‘% be any constants

W= (5 =)+ 00-2) (% )
+ (W =p) (lg:-y)

© 827. Thus we see that equation (3) will be satisfied
if we put

%=('L§-g) L, 8= (-2 5= (B -o)r.o,

0.
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Now from (2), we have

d’L
¢ =V -5 (- @)d;,{J(*’ o) - O’de}

develope this, putting 4*+ ¢’ =p, and b%c'= ¢, and treat the
other equa.tlons (i) in a similar way ; thus we obtam

NN +g) & TW + (%'—ph)— = (N—ge) L |

(w'- p#+q) -+(2/w PI‘) =(h;~’-96")M>---(5).

W-pr )T ) Y @t -pm)® 7,; = (W' —gc) N

These three equations it will be seen are identical in
form.,

328. It will be seen from the commencement of Art. 326
that we do not profess to investigate the most general solution
of (1), but only to obtain a solution. Thus guided by the
analegy of Laplace’s Functions, we shall ascribe to the
arbitrary constant % of equations (5) the value n(n+1),
where n is a positive integer, and then we shall endeavour
to find a solution of any one of the three equations (5),
involving 27 +1 terms; and we shall assume the solution
to be of the degree n in the independent variable which
oceurs,

320. Take then the first of equations (5), put n (n+ D
for b, and pz for gc'; thus we have

(7\.‘—127\,’+g) N + (27\.’—1)?») PN + {pg—n(n+1) N} L=0...(6).

‘We shall now examine whether this equation has a solu-
tion of the form

L=N+E N+ BN o+ B NP R (M.

Substitute this value of L in (6); it will be found that
the first term, which involves A™", va.mshes of itself; and by

s, €quating to zero the coefficient of N we get;

e
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28(2n+1-20)k,=pls — (n—2+2)]E,.,
+q(n—-28+4)(n—28+3)k,,...... (8).

In this equation put for s in succession the values
1, 2,3,...; then observing that k,=1, and that &_, k_, ...
do not exist, we obtain

2(2n—1)k, =p(z—~n"),

4(2n—8)k,=pl{z—(n—2) '}k, +gn(n—1),

6(2n—5)k,=plz—(n—4)"1k,+ qg(n—2)(n-3)k,,
and so on,

The first of these equations gives £,, and it is of the first
degree in z; substitute the value of %, in the second equation,
and we obtain k,, which will be of the second degree in z;
substitute the values of %, and %, in the third equation, and
we obtain %,, which will be of the third degree in z; and so
on. Thus the coefficient k, will be of the degree s in z.

But we require the series (7) to be finite, and thus.the
coefficients of which %, is the type must vanish from and
after some certain value of s. This will happen if we can
make two consecutive coefficients k,_, and k,_, vanish ; for
then by means of (8) we have &, =0, and also all the sub-
sequent coefficients. Thus we have two conditions to satisfy ;
one may be satisfied by properly choosing the value of 2,
which is as yet undetermined ; the other may be satisfied by

nt4 nt3 , for in this case the last

taking s equal to —5— or 5
term of (8) vanishes: the former or the latter value of 8
must be taken according as » is even or odd.

Let then o denote the value of s which causes the last
term of (8) to vanish ; then %, is expressed as a multiple of
k,—1, and therefore if we take'z such that k,_; vanishes, then
k. will also vanish, :

The equation k,-;=0 is of the degree o —1 in 2, and so
has o—1 roots; any one of these roots may be taken: it
will be shewn hereafter that these roots are all real,
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. When n is even the. expression (7) contains only even
powers of A, and the last term is the constant %,-3; when n
18 odd the expression contains only odd powers of A, and the
last term is &, -gA.

830. We shall next examine whether the equation (6)
has a solution of the form L = K /(A" — ") where

K=N"4EAN "+ o + 6 N4k, ™ 4L 9.
Substitute K4/(\'~ ") for L in (6) ; thus we obtain

K dK
(M=pN+g) et {4 =(p+2¢)A} N
+{pg—c—(n—1)(rn+2)N} K =0.

Substitute in this the value of K from (9); it will be
found that the first term, which involves A", vanishes of
itself; and by equating to zero the coefficient of A"
we get
25(2n+1—28)k, = [pz—p(n—2s+1)"~c*(2n — 43 + 3)} k,_,

+q(n—23+8)(n—28+2)k,_,.

We then. proceed to ensure that the series in (9) shall
be finite, by a method like that of Art. 329. We take
n-;-2 n;3ifnisodd. Let o denote
the value of s thus taken ; and let z be found from the equa-
tion k,.; =0. Then all the coefficients in (9) from and after
k,-; will vanish,

The equation %,_; = 0 is of the degree o —1 in £, and so

has o —1 roots ; any one of these roots may be taken : it will
be shewn hereafter that these roots are all real.
" When n is even the expression (9) contains ounly odd
powers of A, and the last term is k,-sA; when n is odd the
expression contains only even powers of A, and the last term
is the constant £,_3.

331. In the manmer’of the preceding Article we may
also shew that the equation (6) has a solution of the form
L=Ky(\—c"), where K is of the same form as in (9). We
have only to change b* into ¢* in the investigation of the
preceding Article. :

if n 1s even, and =

8=




e
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332. Finally we shall examine whether the equation (6)
has a solution of the form L = KJ(A* = b") (A — &), where
K="+ kAN o, Nk, N+ 10).

Substitute KJ/(N=8)(N'=¢") for L in (6); thus we
obtain

'K dK

(A'—pA'+g)
+{pz=1)—(n—2)(n+3)N} K =0.

Substitute in this the value of K from (10); it will be
found that the first term, which involves A", vanishes of
itself; and by equating to zero the coefficient of A*™ we get

202n+1—-28)k,=p{z—1—(n—2s)(n—28+2)}k,_,
+g(n—28+2)(n—2s4+1)k, _,.

We then proceed to ensure that the series in (10) shall
be finite, by the method already used. We take s ="1.2

2
if » is even, and =%l if n is odd. Let o denote the value
of s thus taken; and let 2z be found from the equation
k,_1=0. Then all the coefficients in (10) from and after
k-1 will vanish.

The equation k,_; =0 is of the degree o —1 in 2, and so
has o —1 roots; any one of these roots may be taken: it
will be shewn hereafter that these roots are all real.

333. We may now sum up the results obtained in
Arts. 329...332. '

First suppose n even, let it be denoted by 2m. Then L
may have m + 1 values of the form discussed in Art. 329, and
m values of each of the forms discussed in Arts. 330, 331,
and 832: thus on the whole there are 4m +1 values, that is
2n + 1 values.

T, 17
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Next suppose n odd, let it be denoted by 2m¢ +1. Then
L may have m + 1 values of each of the forms discussed in
Arts. 329, 330, and 331, and m values of the form discussed
in Art. 332: thus on the whole there are 4m 4 3 values, that
is 2n 4 1 values.

The values of M and N may be said to be determined by
those of L; for by Art. 327 the same form of differential
equation applies to all three, and the value of z must be
simultaneous for the three.

334. We have still to attend to the condition relative
to the surface which is mentioned in Art. 324, and also te
shew that the equation %,-1=0 which we have used has all
its roots real: these points will be considered in the mnext
Chapter.

Pt J

-
-l L
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CHAPTER XXVIIL
SEPARATION OF THE TERMS.

835. WHEN a function is expanded in a series of sines or
cosines of multiple angles, the coefficient of each term can be °
found separately; or at least can be expressed in the form of
a definite integral: see Integral Calculus, Chapter x111. In
like manner when a function of one variable is expanded in
a series of Legendre’s Coefficients, or a function of two
variables is expanded in a series of Laplace’s Coefficients,
the coefficient of each term can be separately expressed: see
Arts, 138 and 204. The object of the present Chapter is to ob-
tain similar results with respect to Lamé’s Functions, Lamé
does not attempt to give any evidence to shew that an assign-
ed function can be expanded in a series of his functions; but
assuming that such expansion is possible he shews in fact
how to determine the coefficients. Admitting, however, that
the possibility of expansion in a series of Laplace’s Functions
has been established, we may by the aid of the transformations
of Chapter XXIV. grant that a similar proposition holds with
respect to Lamé’s Functions.

3386. In Art. 324 we have defined a, B, ry; we shall now
introduce two new symbols connected with 8 and . Let =
denote the value of 8 when p=¢, and o the value of ¢ when
v=>0; so that

‘W=0f° dF — w=C b.—-——i_i—————
s N (=) (¢ —p)’ WO =) (=)

We shall now demonstrate two important propositions re«
lating to the limiting values of x and », i

17—2
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337. At the limits 0 and = for 8 we have either M= 0
2
g =
The values of M may be inferred from those of L ; and by
Arts. 329...332 there are four forms to be cons1dered

L See Art. 329. When 8=0 we have u=5b; and

dM _dM du iy
therefore d—B_O and since B du dB we have B =0.
Sumla.rly when B=w we have p=c; and therefore 37"; =0;
and therefore _4% = 0.

II. See Art. 330. When B=0 we have u=>5; and
therefore M=0. When ,8 == we have p=c; and therefore

31_3 =0; and therefore @ =0.

III. See Art. 331. Here when 8=0 we have %=
and when 8 == we have M =0.

IV. See Art. 332. Here we have M=0, both when
B =0 and when 8=w.

0,

338. At the limits 0 and © for ¢ we have either N=0

dN
or ';i:y— =0,

I. See Art. 329. When =0 we have »=0; and then

N=0if n be odd, and ‘%Lo if n be even: in the latter

" case since %l-f=0 we have also a_ 0. When y=w we

dy

heve v=>0; and therefore v _ 0; and therefore aN =0,
. dry dy

II. See Art. 330. When ¢=0 we have N=0 if a be

" even, and av_ 0 if n be odd. When y=w we have N=0.

dry



SEPARATION OF THE TERMS. 261

III. See Art. 331. When =0 we have N=0if n be

even, and %’:0 if n be odd. When y=w we have %{;—T=O.

IV. See Art. 332. When y=0 we have N=0 if n be

odd, and %\T =0 if n be even. When y=w we have N=0.
339. Let M and M’ denote two different expressions of .

the same form, out of the four forms considered in Art. 337;

then M é}g -M %%[ vanishes both when 8=0 and when

B=w. This follows from Art. 337.

340. Let NV and N’ denote two different expressions of
the same form, out of the four forms considered in Art. 338;

and let n and n' be the corresponding exponents; then
N ‘%A';—N ’,dgl}; vanishes both when y=0 and when y=w,
provided n and #’ are both even or both odd. This follows
from Art. 338.

341. We can now establish the proposition that the roots
of the equations in z obtained in Arts. 329...332 are all real.

For take any one of the equations, and suppose if pos-
sible that it has a root £+ & ¥/—1; then since the coefficients
of the equation are all real, there must also exist the root
¢—t'¥=1. We may suppose that in M we put the former
root, and in M’ the latter root. Suppose then that M takes
the form Z + Z’~/'—1, then M’ will take the form Z— 2" ¥=1.
Substitute these values of M and M’ in the expression of

Art. 339; then it reduces to (Z’ @-z LJé) «/.— 1; hence

dg B
zZ' :i%— Z % must vanish both when 8=0 and when S=w.

Now the value of M must verify the second of the dif-
ferential equations (4) of Art. 327 when we put n(n+1) for

k, and —Po—f, that is (1 +%,) z,forg. Thus we obtain
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&z &7 —
agtagdt
=1+ D e+ evmD=ner 1} 24 20 7),
Change the sign of »/—1 and we obtain the equation

which M’ must satisfy. Then from the two equations by
addition and subtraction we obtain

%{= {(1+§)g_n(n+1)2—f}_z— (1 +%,) ¢z,
a7

_ b lb’ B .,
= {(1 +5)t-n@m+1) ;,}z+ (1+5) ¢z
Multiply the former by Z, and the latter by Z, and sub-
tract ; thus
&7

A7 B\ o s s o
2 == (1+;,’);*(Z +2,

Multiply both members of this equation by dB, and inte-
grate between the limits 0 and =. Then the left-hand member

4 _ d7

vanishes, because the indefinite integral Z B2

vanishes at both limits. Therefore
‘1
~(1+5)¢ [7 @+ zyag=o;
c [ ]

this is impossible unless ¢’ = 0, because every element of the
definite integral is positive.

342. We shall now advert to the condition relative to
the surface which is mentioned in Art. 324.

The process which we have given leads us to express V'
by an aggregate of terms each of the type LMN; each term
may also be furnished with an arbitrary constant as a multi-
plier. Now at the surface the value of A is given, so that
the term L becomes constant. Hence in fact we have to
satisfy a condition which may be expressed thus

F(8y)= CMN+CMN +C'M'N'+........ ),

-k
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where M, M, M",... N, N', N", ... are terms of the nature
indicated in Art. 333; and C, C’, C” ... are arbitrary
constants, On the right-hand side of (1) we have 2n+1
different terms for every value of 7.

‘We shall shew how the values of the arbitrary constants
may be determined. The essential part of the process is a
proposition analogous to that of Art. 187, which we shall
now give. '

343. Let M and N be two expressions of the nature
indicated in Art. 333, and let them correspond to the values n
and z; similarly let M’ and N’ be two other expressions of
the same form as M and NV respectively, and let them cor-
respond to the values #’ and 2'; then will

f:’ fo Y (W=D MM'NN'dBdy=0;

n and n’ being supposed both odd or both even.
a’N v b
We have 3/7={n ('n+ 1)?— (1+ z;) Z}N;
3 AT 2 2
% = {n'(n'+ 1)% - (1+ %)z’} N
4N’ d'N '

h N—+-N==

ence ar o

=1 +1§) (s=#) NN' = {n (n-+1) =’ ('+ 1)} 5NN,

Multiply by dy and integrate between the limits 0 and e ;
the left-hand member vanishes because the indefinite integral

N ﬂ—N ’ %—/V vanishes at both limits by Art. 340. Thus

the right-hand member vanishes ; and therefore

[0 (0 +1)—n' (@ +1)} f:y-NN'd,y
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In a similar manner we may shew that.
W
fn(n+1)—n' (W' + 1)} f wMMd8
)

=+ (z—2) f’ MM'QB......(3).

If neither n(n+1)—n'(n + 1) nor z—2 is Zero, we
obtain by cross multiplication

f i f C MNN'dBdy = F fowv’MM’NN'dde;

and therefore f v f (=) MM'NN'dBdy =O....... .(4).

If however n(n +1) —n’ (n'+1) is zero but z—2 is not
zero ; then we have from (2) and (3)
w .
f NN'dy =0, f” MM'dB=0.
[ 0
Hence
@ s (2]
f NN'dy f” PMMdB~ f MM'dB f ANN'dy=0;
o (] (] o
and thus we again arrive at (4). :
Finally, if z—2' is zero but n(n+1)— ' (n'+ 1) is not
zero, we have from (2) and (3) ‘
[ W
f ANN'dy=0, f WMMdB=0;
) )

and as before we again arrive at (4).

Thus (4) holds universally except in the case where we
have simultaneously n=n’, and s =2,

344. Tt appears from Art. 337 that in two out of the
four forms M vanishes when 8=0,and in the other two forms

k73 vanishes when 8=0: in the first case M must be an odd

function of B, and in the second an’even function.
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It appears also from Art. 338 that in two out of the four
forms XV vanishes when y=0, and in the other two forms
_(:%T vanishes when y=0: in the first case N must be an odd
function of ¢, and in the second an even function. If n be
odd the forms I. and IV, make N odd, and the forms II. and
III. make it even. Ifn be even this is to be reversed.

This leads us to break up our equation (1) into four parts.
345, Let F (8, v) =/,(8,7) +£,(B.7) +£,(8, ) + /(8,7

where f,(B,r) denotes an expression which is even with
respect both to 8 and «; f£,(8,v) an expression which is even
with respect to 8 and odd with respect to «; £, (8, %) a func-
tion which is odd with respect to 8 and even with respect
to v; and J(B, ) a function which is odd with respect both
to B and «.

Then the terms on the right-hand side of (1) must admit
of a similar distinction; so that the equation resolves itself
into four, of which the type will be

fBy)=CMN+CMN +C"M'N"+......... (),

where (B, v) may denote any one of the four terms £, (8, ),

f;(B, ry), fi(B.v), f.(B,7); and the terms on the nght-hand
all of the same kind as f(B,); thus N, N’, N”,...are

a.ll odd or all even functions of ¢,

Now to determine C; multiply both sides of (5) by
(&' = V") N dBdy, and integrate between the limits 0 and =
for B, and 0 and w for y. Then by equation (4) all the terms
on the right-hand side vanish except that involving C; and
we obtain

of [arwie-viagay=[ [ s 6 m a2 -)agay.

This theoretically determines C. In like manner ', C”,...
may be determined.

We proceed to discuss the value of

f’ :M’ (- v )dB .
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346. We have by Art. 324,

- [E=ITE) .
e .
o5 VT |
By differentiating these we get
LR
K oo .
PLANEPY R R
&7’

Now, m being any positive integer, multlply the first of
equations (7) by u™"dB, and integrate between 0 and = ;
thus

f St d,l-" dﬂ—-zf wHAB + (B + ¢ )fw =148, .(8).
By mtegra.tlon by parts we have

Jime Thdg = e (amr 1) fum (%) dB...(0).

When 8=0 we have ,u,-b, and when 8= we have
p=c; hence we see by (6) thatg—gvanishes at both limits,
8o that from (8) and (9) we get

(2m+1)f ( )dB-—

2 /ﬂ g8 _ (A4 b’)f ............. (10).
Substitute for \ d /3) its value from (6) ; thus we get

(om+9)[* p=iB = (m+9) 2+ ) f’ 3a
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Treat the second equation (7) in the same manner as we
have treated the first ; thus we get if & =g

W 0
@m+3) [ sy = Em+2)e@+8) [ #dy
] <
— (2m+1) % f . (12).
1]
e @
Put ‘dB = Vdy=v;
[ wag=u, [ viy=v
then if we take m =0 in (11) and (12), we get
Fp‘dﬂ:%c’(l+k’)u-—%c‘k’w,
[
© 9 1
fv‘d'y=§c’(1+k’)v—§c‘k’w.
[

Then in (11) and (12) put for m in succession the values
1,2, 3,...; thus we shall obtain

w

[T = POt @
[]

f wv"‘d'y =P™ v+ Qc™w;

[]

where P and @ are integral functions of &*

Now M* is some function of u*, and N* of o*; and there- .
fore by the equation (13) we get

sz;s= Gu+ Hs, -

[]

wa'dy= Gv + Ho;
o .

where G and H are integral functions of &* and ¢* and of the
coefficients of M or NN, i
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And in the same manner we get
22
f WM'dB = Gu+ Hw
[}

f " PN'dy = G + Ho
[
From (14) and (15) we get

_[ wf’ N dBdy = (Gv + Ha) (G + Hm),
[w [ 1N vagay = Gu+ HoY( G+ Ho);
then [ [“IPN (2~ 7)dBdy = (O, H ~ GH) (s~ o).

But - = ? 2 =0 d H
ut wo—ve=[ [ (- dBdy
and by Art. 277 this =¢'7 .
Thus finally
f’ [arw -y dgdy =3 (@B~ 6B,
[] 1] .

where‘ the multiplier of "25 is an integral function of ¢, &7,
and the coefficients of M or N.
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CHAPTER XXVIIL

SPECTIAL CASES.

347. IT must be observed that the formule which we
ve in Chapter XXI. are not applicable to the case in which
§a=. ¢, nor to the case in which 6= 0.

For since u* is supposed to lie between b* and ¢!, when

b =c the values of y and 2 take the form ((—; And if =0

then » also = 0, and the values of « and y take the form g

Now the advantage of the formule already used is that
they enable us to solve problems in which the general
enunciation is accompanied by some special condition which
is to hold at the surface of an ellipsotd; but when that
ellipsoid becomes one of revolution, we have either b=c,
or IE) =0; and hence the investigations hitherto given become
inadmissible.

Lamé accordingly supplies special investigations, which
are applicable to the case in which the problems are modified
by reference to an ellipsoid of revolution instead of a general
ellipsoid : these special cases are also treated by Mathieu
in the work cited in Art. 265 ; his method is not identical
with Lamé’s. These special investigations however add
nothing of importance to the analytical results already given ;
and we shall accordingly confine ourselves to a few para-
graphs giving the method of Mathieu.
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348. In order to obtain formule which shall be uni-
versally applicable, let us introduce two angles ¢ and +,
connected with Lamé&’s variables by the relations

N(c'sin® ¢ + b* cos’ ¢), v="Dbcosy;
hence /(B'—2")="bsin, 4/ (u'—b") =4/("~b") sing,
— i) = V(@ =) cos §, V(@ —") = y(c' —F cos' ).
Thus we have for z, 7, z by Art. 271 the expressions
= l(%—wk y/(¢*sin’ ¢ + " cos’ §),
y=+(N—b)sin ysing,
2= y(\'— &) cos ¢~/(c’ bcos «p)

These formule are universally apphcable.

If b=c¢, they become
g=Acosy, y=+A"—c")sinyrsing, z=4/(A"— ") sinyrcos.
If =0, they become
x=Acosyrsingd, y=Asinysing, z=NQA"—¢")cos.

349. Tt is easy to transform the differential equations
which are given in Art. 327 for M and N,

The equation for M may be written
sdM
JE=T TR o =TT G =g M=o,

wehmﬂJ—f"-—-w (=t 5

and thus we shall obtam the equation
M
{c-(c' b") cos }d9'>' +(°' b')mn¢°°8¢d¢

~ {h (¢~ ¥) cos® § = (h - g) ¢} M= 0,
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In like manner the equation for N may be transformed
into

(=P cos"\]r) iy + Hsinvr cos«lr. %— (hd*cos'y—gc) N=0,

The simpler forms which these equations assume when
b=c, and when b= 0, can now be readily obtained,

350. We will give finally an investigation which in-
directly establishes the transformation of Art. 303, though
not in a very rigorous manner.

We have by Art. 327
M _ h;& d°'N _(w*
M (" _\N
-l a7 = (e —9) ¥

Multiply the first equation by NN, and the second by X,
and add ; then putting F for MN we have
d'F d’F h
d,B’ ,(p.’ V) F=0..coeueenees (1.

Here B and  are known theoretically as functions of u

and v respectively; we propose to transform (1) by the
relations

fj_‘:=cos¢sino’
N b;;‘\‘ bl:' V’ ¢sino L eccsscercracs (2).
N =@ Ve =+
Tove—g

Instead however of effecting the transformatlon directly
as in Chapter xx1v. we will adopt an indirect process.

Let us suppose that instead of the variables which occur
in (1) we substitute a corresponding system in which ac-
cented letters are used to denote quantities analogous to
those in (1). Moreover, let us assume consistently with (2)
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L4 S __ A X __ 3__ 77 ‘3 __ .2
w_py g B =BJE =Y JmBJ0e

E - b¢ ? chg_ b b,Jcm —_ b’i
‘We have also
cdu cdy
—_—_— = d ) —_——— = d 'y
=8 e - ? Jo—Je=n 7

cdy’ , cdv’
= d — _- = ',
NN R N For
Now suppose 4’ and ¢’ proportional to b and ¢, so that

v_d

' b ¢’

Denote this ratio by o ; then
¥ oc Jclx_b:
g=g=—= =
b o Jo-¥

Hence we shall get from (3)
1.,
py = Pl rv,

and '+ v’=7:'3(p,"+v");

1, 1,
therefore p=si, v=_v;
dﬁl=d:8’ d7'=d'y.
Hence (1) becomes
AF &'F h,n_ m oo
Btapta P~V F=0...co.... (4).

Hence, without interfering with the final transformation

- by the aid of (2), we may change b.and ¢ respectively into
b

and ¢, where " and .’ may be as small as we please, pro-

vided only%,=§. So that we may ultimately suppose b

and ¢ to vanish.
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Thus the transformation of (1) by the aid of (2) will be
fully effected if we ascertain what (1) becomes consistently
with (2) when 4 and ¢ are supposed ultimately to vanish,

Now we have in general

B_cf”____.i’f_ .
b.,/}bx—b* ,0‘—[4"’

put ﬂ-cf—————-————— ___ .
w =8 S — s =0 JE—pt’
then 8 =k—1, and k is a constant, so that
aF_aF
a8 dp*’

When  is very small we may assume consistently with (2)
v=bcos¢,‘ p.--csino;

i ccos0df £ d0
therefore = .[ Fsinfcosf esing’
dp _ 1
Hence (79 = —m .
Also / ap=T-
NN T y',./c = f $=3-¢
@F d d
Thus g sin @ - 20 (sm 6 dlg)
and d’F _d'F
o
and therefore when 5 is indefinitely small (1) becomes
d d'F
smem(smo d¢"+hF81 n*d=0.

This equation does not involve ¢, and therefore remains
the same when we suppose ¢=0. Thus we have the required
transformation.

T, 18
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CHAPTER XXIX.
MISCELLANEOUS PROPOSITIONS.

351. IN Art. 296 we introduced certain auxiliary varia-
bles a, B, v, connected respectively with the original variables
A, g, v. We may observe that these auxiliary variables cun
be made to depend upon elliptic functions.

352. For begin with ¢; we have

gt
RS Ay ey e
Assume » =2bdsin; thus
v dy
I Py
S .
o 1—k'sin*y’

y=c

where k =§ .
: c

Thus % is the modulus, and y the amplitude of o, which
_is an elliptic function of the first kind ; see Integral Calculus,
Chapter Xx.

Let » have the meaning assigned in Art. 336; so that @
is the value of y when » has the value b. Then, as » is sup-
posed to vary between — b and b, we have ¢ varying between
—-w and o.
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353. Tn the notation of elliptic functions the relation

v = } sin 4 may be expressed thus

v=bsinam(-y, g),

that is, % is the sine of the angle which is the amplitude

of i corresponding to the modulus g

Then #/(b*—»") = b cos am ('y, g) ; and

./c’_-—v’=0 /1_g=c,\/1_z_:%:=c,\/l—§sin'¢: .

the last result is usually expressed thus
. ) b
Je~vV=cAam ('Y, 5) .

334. Next consider the equation

g=c[ __
N /Iy N o

Assume /& — =g, ' — F=h ; and then we shall have

J=t=Jb=a p=Jo=d;

therefore dp = do

Hence, by integration,
» du ¢ do
°L Je—pva—p s

i

Je—vJo—p JR-cje-o

—==—=———— = constant.
VE—ovo—a o
To determine the constant, we observe that for u=¢

we have o=0; so that the constant becomes the w of
Art, 336. Hence from the preceding equation we have

- do .
U—B=c[° Vh‘——,_c’vé-:—a,l

182
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and then as in Arts, 352 and 353 we get

. K
o =hsinam (w—B, E) .
Thus o may be considered known‘ in terms of 8; and
‘then g, ¥u'— 8%, and ¥c* — u* may also be considered known.

For we have

V¢ =yt = hsin am (w-ﬁ, é),

c

V;?——b'=.h cos am (‘D‘—B, %‘),

K
p=cAam (w—B, Z)'
355. Finally, consider the equation.
[ ==
R Vv, i

Assume A= b—:; then we shall have

'ﬂ/)\.’—b‘=é‘\/c“—7’, t\/),’—g':il]b‘_.r’;
T T

therefore dr = 4 .
Yy LV NP =2 NG~
Hence, by integration,

¢>r\—————_dk+(}fT dr = constant.
‘ NPV N =N
To determine the constant put A =c¢, then the first in- *

tegral vanishes and the second becomes w; so that the
" constant is equal to . Hence

¢=,,,_cf'_i__
oW —PNE =T
From this formula we deduce

'r=bsinam(w—a, l’).

C
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e
T sinam(w—a, k)’

N/F——bi-—'-cA am(w—a, k)

sin am (w —a, k)’

V=g = 0008 am (0—a, k)

Hence

sin am (w—a, k) ’
where % is put for g
856. The results of Art. 354 and 355 may be put in

a more convenient form by the aid of certain elementary
formule in elliptic integrals. Thus take the notation of

. Art. 355, and assume that the modulus is %k throughout,

which will save the trouble of repeating it. We have

gin am (o — @) = 2 2 ‘
@ T Aama
_ i —jatinama
cosam (0 —a) =V1—k Aama [ ().
N1-F
Aam(m—a)=Ammz )
Thus the results of Art. 355 may be written
_x=cAama’
cosam a
V’X'_'b’= c’_bs’
cos am a
. VN —b'sinama
MNog=— I E
cosama

357. To prove the formuls (1) we observe that by the
fundamental property of Elli})tic Functions explained in the
Integral Calculus, Chap. X., if we have

’ d‘l" ¢ dyr ’_ M dyr
fo ‘\ll—k'sins‘\lr-FL) Vl—k’sin‘#,-— 0 "/l—k‘Sin’?‘".(2)’
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then 6, ¢ and p are connected in the manner which may be
expressed by any one of the following equations,

wsecbs¢—sin'08in¢m=cosp, '
cos¢cosp+sin¢siani_:kTixl’_0=cosa,} ------ (3).
cos @ cos p + sin @sin u /1 — K sin* p =cos .
The modulus being supposed to be & throughout, let
0 =amu, and ¢ =amv;
then (2) gives
p=am (u+v).
Thus equations (3) may be expressed as follows,

cosamu=cosamvcosam(u-+v)+sinamvsinam(u+v)Aamu

cosam(u-+v) =cosam ucosam v—sin amu sinam vA am (u+1v) }
cosamy=cosamucosam(u-+v)+sin amusin am(u-+v)Aamv

Suppose that u =12-r, then f:ﬁg—ﬁ becomes the ‘
o of Art. 336; also sinam (u+9) =1, and cosam (w+1v) =0.
Thus the second of equations (4) gives
COBAMU=S8INAM VA QMU .creveerrenrane (3).

This coincides with the first of equations (1), for we may
put & for u, and then (2) givesv=0—a.

Again, supposing still that p =%, the first*of equations
(4) gives
cos am u cos am v = sin am u sin am v/ 1 = &*;
divide this by (5) ; thus

sinamuNl —k?

cosamv=
Aamu

................ (6).

This coincides with the second of equations (2).
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Finally, square the first of equations (1), and multiply by
1—4*; then square the second of equations (1) ; add the two
results and extract the square root, and we obtain the third
of equations (1),

358. In like manner the results of Art. 354 may be
modified in form by the use of equations like (1) of Art. 356.

859. In the results of Art. 353 we see that » is expressed
in terms of a sine, and so may be regarded as an odd function
of ; while ¥/b*— »* and ¥¢*—1»* may be regarded as even
functions of . Again, in the results of Art. 354 when we
use equations like (1), we shall see in like manner that

V' =8 may be regarded as an odd function of 8; while
~/¢*— u? and u may be regarded as even functions of 8. Finally
in the results of Art. 355, as modified in Art. 356, we see

that ¥A*—¢* may be regarded as an odd function of a, while
A and ¥A?—b* may be regarded as even functions of a.

360. As an example of the values of the auxiliary
variables @, 8, v at special points, consider the ellipsoid
represented by the first equation of Art. 266. At all points
of the surface of the ellipsoid A has the same value, and so
a will have the same numerical value.

At the ends of the major axis we have 8=+ =, and
o =+ w ; the upper signs belonging to one end and the lower
to the other. At the ends of the mean axis we have 8=+ w,
and y=0; the upper signs belonging to one end, and the
lower to the other. At the ends of the least axis we have
B=0and y=0. See Art. 267:

861. We shall not enter here further into the considera-
tion of Elliptic Functions; we may observe that the first of
Lamé’s works, cited in Art. 266, is much concerned with this
department of analysis, but by no means supersedes the
necessity of studying the systematic treatises on the subject.

862. In Art. 326 we do not profess to obtain the most
general solution of a certain differential equation, but only
a solution. Also when we treated one of the differential
equations of Art. 327 we did not seek the most general
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solution, but only obtained a solution. In this latter case
however it is easy to complete the process, at least theoreti-
cally, and thus to obtain the most general solution.

For let L denote one solution of the differential equation
%’f,' = {n n+1) 2—': —g} L..inis. (7),
and let S denote a second solution ; so that
€§=%@+U§J}S ............ (@)

From (7) and (8) we obtain
'S da'L
L= 8=
therefore, by integration,
ds dL
Lia=S %
Divide by L*, and integrate ; thus

da
S= OlL P...e .................... (9).

= (|, a constant.

Thus the solution of (7) may be given in the form
C, L + C,L, where C, is another constant; and as there

are here two arbitrary constants this is the general solution.

363. Lamé tacitly assumes that for the solution of his
problem we must put C,=0. Mathieu gives on his page 255
a reason for this. We have

RERNPY N
D=[vvatﬁﬂﬁfﬁ ...... v—— (my

Now corresponding to a =0 we have A =¢; and then the
first surface of Art. 266 degenerates from an elhpsmd to the
area on the plane of (z, y) bounded by the ellipse

€+.7U SRR 1.
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The value of ¥ ought to differ very little for two points
which are very near the area bounded by the ellipse (11),
one point being on one side of the plane (z, y), and the other
on the other. But the formula in (10) changes sign with a,
for it changes sign with ¥A*—¢*; and thus ¥V would differ
to a finite extent for two such points though indefinitely
close.

o Hence for the solution of Lamé’s problem we must put
=0,
1

364. But for the solution of other problems it might
happen that we must put C,=0. Suppose for instance we
want to find the potential of the ellipsoid defined by the
first equation of Art. 266 for all external points. Then for
all such points the equation (1) of Art. 324 must hold with
respect to the potential V. Moreover for points at an in-
definitely great distance from the ellipsoid the potential
must vanish. Now when A is very great we find that the L
of equation (9) or (10) varies approximately as A", and then

xﬂﬂ °
fore that the potential cannot involve the term C,L, though

it may involve the term C,L f %:: .

L f % will vary approximately as . It is obvious there-

365. In Art. 341 we have shewn that all the values of z
are real ; this result can also be deduced readily from equa- °
tion (4) of Art. 343, as by Mathieu on his page 265.

For if possible let ¢+ ¢’ ¥—1 denote a value of z; let
M, + M, V=1 denote the corresponding value of M, and
N,+N,¥=T1 that of N. Then there must also be a value
¢—¢ V=1 of 2, and we may take for M the value M,—M,¥/—=1,
and for N’ the value N,— N,¥—1. Thus (4) of Art. 343
becomes

fowf:(M:"’M;') N2+ N (u* — ") dBdy = 0;

but this is obviously impossible, for u® is greater than »* so
that every element of the integral is positive.
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366. If we compare equation (4) of Art. 343 with the
corresponding equation respecting Laplace’s coefficients,
which is given in Art. 187, we shall be led to anticipate
that (u'—1*) dBdy is the variable part of the transformation
of sin @dfd¢. This is easily verified. For we know by the
Integral us, Art. 246, that d0d¢ transforms to

(d0 d¢ do dp
@& @3 @)
Now by Art. 303 we have%%—j—g%

=~ TG FE (¢ O - E == - )}

_ ;&'V'-—v’[b‘+b'c’(p'—v')_;b'—l"
ST T Sl (W —bd)  dsmd’

so that ¢’ sinf@dfd¢ is equivalent to (u*—1*) dBdy.

367. It ought to be remarked that the notation of the
present volume is not coincident with Lamé’s; for English
readers would be displeased with his neglect of symmetry.
The following table will exhibit the principal changes which
have been made ; the first column contains the symbols of
the present volume, and the second column Lamés corre-

- sponding symbols,

N P B ¥
a, B, v % B a
L: M N -R» M; N

368. In Chapter XxVI. we have investigated Lamé’s re-
sults independently as he does himself; they might however
have been derived from Laplace’s results, by the aid of the
transformation of Chapter xx1v. Heine pays some attention
to this mode of derivation; I may rema.ria that he states on
his page 207 the result obtained in Chapter XX1V. without
reference to a place where it is worked out, or any warning
of the length of the necessary process.

e
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Lamé says on his page 196 with respect to his indepen-
dent treatment: Facilement applicable a tout autre systéme
de coordonnées curvilignes, cette méthode directe a I'inap-
préciable avantage d’éviter tout passage par I'antique systéme
des coordonnées rectilignes : instrument désormais impuissant
et stérile, dont l'’emploi abusif sera plutét un obstacle
qu'un secours pour les progrés futurs des diverses branches
de la physique mathématique. It may however be doubted
whether Lamé’s opinion of his own methods as compared with
those of his predecessars is not too favourable,
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CHAPTER XXX,
DEFINITION OF BESSEL'S FUNCTIONS.

369. THE functions we are now about to consider were
formally introduced to the attention of mathematicians by
the distinguished astronomer Bessel, in & memoir published
in 1824 in the Transactions of the Berlin Academy. They
have since been the subject of investigations in various
memoirs, and have been discussed in two special treatises
which have the following titles: Theorie der Bessel'schen
Functionen ... von Carl Neumann, Leipzig 1867; Studien
iiber die Bessel'schen Functionen, von Dr Eugen Lommel,
Leipzig 1868. These two treatises supply references to
various memoirs on the subject.

In the present and following Chapters we shall give all
the most important theorems relating to these functions.

370. If we seek for a series proceeding according to ascend-
ing powers of x, which satisfies the differential equation

du 1du n
_%_‘+5d—-z+(l—?')u—o.................(1),
we obtaln
- + z*
2(2n+2) " 2.4(2n+2)(2n+4)

v =_Cz" {1

o
T2.4.6(2n+2) (2n+4)(2n+6)+"'}’

where C is an arbitrary constant.

= ¢ 1 e oot SOS

-
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If we suppose n a positive integer, and ascribe to C the

value —1—, the expression is called Bessel's Function, and is

2%|n
denoted by J, (), so that
@ e at
J. (=) =%{1 "2(2,”.2) +2,4(2n+2) 2n+4)

2
BRI I I } -e(2).

The series within the brackets is always convergent; see
Algebra, Art. 559,

Or, taking a somewhat more general view, let us ascribe
1
to the constant C the value m,

the former when 7 is a positive integer, and will be real and
finite, whatever n may be, provided »+ 1 be positive. Thus
we have

this will agree with

z aj’ z*

2
_2.4:.6(2n+2)(2n+4)(2n+6)--.} ...... (3).

This then is the definition of Bessel’s Function, n being
any real quantity algebraically greater than — 1, and & any
real quantity.

The student is supposed to be acquainted with the pro-
perties of the Gamma Function: see Integrai Calculus,
Chapter XII. ‘

371. We may also express Bessel's Function in the
following manner by a definite integral for any value of n

which s algebraically greater than ——% s -

J ()= z "cos (x cos ¢) sin™ ¢ deb...(4).
ﬁr2"l’ (n + %) L :
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For oos(zcos¢)=1-£cos’¢ +w‘oos‘¢—-a'—;ooa‘¢+'-.a;

and thus the general term under the integral sign may be
denoted by

(‘1)'¢~f'oos'-¢sin*¢d¢.

|2m

Put cos’¢ =¢; thus we get
f"oos"¢sin~¢d¢ =2fcos~¢sin~¢d¢

1 1\’
PR

(@m—1) (2m—3)...11‘(%) r (H%)

=?(n+m) mrm—1)...a+ )T n+1)

Thus the genera.l term on the, right-hand side of (4)
becomes

wﬂ (___ )l 2m
9.4 3 TaIm I m-) . DT’

and this coincides with the general term in (8).

872. 'We may also express Bessel’s Function in another
manner by a definite integral, for any positive integral value
of n, thus:

Jue) =1 f:cos (np— 2 5in @) db cvveee..... (5).
For this expression
= }_r f w{cos ne cos (x sin ¢) + sin n¢ sin (z sin )} dop;

it is necessary to treat separately the cases of n odd and =
even. '

L4
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First suppose n even ; then f "sin n¢ sin (z sin ¢p)d¢p van-
ishes. For by changing ¢ into - ¢' we have

['sinn.psin(zsin¢)d¢=f'sann(w-¢3 sin (z sin ) d’
=—cosmrfwsinn¢'sin(wsin¢’)d¢’ |
— [ "sinngb sin (z sin @) dep

_ thus 2 f " sin ng sin (v sin ) dp = 0.

Hence the proposed definite integral reduces to

:;f:"“ né cos ( sin ) d,
and this =%,[:008n¢ {l_w_'sl—i:‘!;’_tﬁ_*_aisli‘_;xi_m
(—l)“w"‘sx ¢ }d¢

Now let the powers of sin ¢ be expressed in terms of
cosines of multiples of ¢ by the formula

2%t (— 1)™sin™ ¢ = cos 2me — 2m cos (2m — 2)¢
L2m(@m—1)

2
then if there be a term which involves cosn¢ there will be a
corresponding term in f cos n¢ 8in™ ¢ dp, and no other. In

cos(2m—4) ¢ —...

this way we obtain the :equired result.

Next suppose n odd; then ] " cos n¢ cos (z sin ¢) dd van-
ishes, For by changing ¢ into . ¢’ we have
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f:cosn¢cos(msin¢) d = /' cos n (m — &) cos (= in ¢) g’

= COS nwr [ "cos ng’ cos (2 sin ¢") d¢p’

=_f°'oosn¢cos(zsin¢)d¢;

thus ‘2 f " cos n¢ cos (z sin ¢) dep = 0,
Q
Hence the proposed definite integral reduces to
1 f "sin ne sin (2 sin ¢) de,
7o
2" sin’ ¢
3
(_ l)nxlllﬂ sin’ll+l¢
2m +1 +

and this =}J'sinn¢{xsin¢- +...
. )

+ ...}d¢.

Now let the powers of sin ¢ be expressed in terms of
sines of multiples of ¢ by the formula

2™ (-1)"sin*™"¢ =sin(2m+1)¢ — (2m+1) sin(Zm—1)Pp+... ;
then proceeding as before we obtain the required result.

373. We may observe that for the case in which » s a
positive integer the formula of Art. 371 may be deduced from
that of Art. 372.

First suppose n even; then by Art. 372
Ju@) =1 [ o8 cos msin ) .
[

Change ¢ into g+ ¢'; thus we get

J (@)= 71; cos %f;* cos n¢’ cos (x cos ¢') dp’

T W e

N,
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=gcos—7f'-rf’ cos n¢p’ cos (z cos ") d’
T 2/,

= %cos n%r / " cos n¢’ cos (x cos ¢) d¢';
see Integral Calculus, Art. 42. :

But by Jacobi’s Formula, given in Differential Calculus,
Art. 370, if ¢ = cos ¢, then

(-1
1.3.5...@2n—1) de

. Therefore if f(cos¢”) denote any function of cos ¢, we
ave

f f (cos §) cosng’ g

(=" e
~1.3.5.. . (2n— 1)[ f(t)dt” =) * dt;

integrate by parts n times in succession, and we finally
obtain

fo JS(cos ¢”) cosng’ dp’ = 133 1 @as l)f:f""(t) sin™ ¢'dep’.
Put f (cos' )= cos (@ cos ¢’); then

cos ng’' d’ =

n-1
d (1-8)7 de.

f‘”’(t):a;“cos(mcos¢'+n )—-w cos 5 cos(wcos¢)

wll

Thus J, (x) = 7135 .@n=1)), cos(x cos¢’) sin™¢'d¢,
whlch agrees w1th equatlon (4)
Next suppose n odd; then by Art. 372

J @)=~ [ :sin ng sin (z sin ) d.

Change ¢ into %+ ¢'; thus we get
T, \ 19
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J, ()= sm—f cos n¢' sin (z cos ¢') dp’

sin — f cos n¢p’ sin ( cos ¢') d’

24
™
L in ——f cos n¢’ sin (x cos ¢") d¢p’
T 2/, '

Then use Jacobi’s formuls as before, and we arrive at the
same result.

374, In equation (4) put z for cos ¢ ; thus we obtain

1 & .-
Ju@) == ;—;—<n+—$) f_lcos (22) (1 —2)*~3 d...(6).

875. In the expression just obtained put 1—v for 2;
thus

J, (z)= W ;—mf:cos {z(l=v)}{v @ —v)}* tdv;

now f " cos {z(1=v)}{v (2—' D tdy=

cos z f ’ cos(av) {v (2—2)}* ¥ dv+sinz f ’ sin (a;b) {v(2-0)}* ¥ dv.

If we expand cos(zv) and sin (zv) in powers of zv we
obtain expressions to integrate of which the general type is

[ Yo (2—-2)]* .

0

1
Put 2y for v;. thus we get 2™ [o skt Te Qniat ¥

2

i (m+n+1) T (n+%)
that is I'(m+ §n+1) *

-t

2"y
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wﬂ
Thus J, (z) =

(Ccosz + Ssin z), where

o=2~r(n+§)r(n+%) 22T (24t ) (a4 D)

T (2n+1) 2 T(2+2n+1)

- 1) 1
w‘2 I‘(4+n+2 I‘(n+§)

(4 T'(4+2n+1) T

2T (1+n+3)T (n+ 1
S=z gw1+2:2n( 2)

e 1 1
2 r(3+n+§)r(n+§) -

+

-——

13 I'G+2n+1)

L 2m (5+n+1)1‘(n+1)
+Z __ 2 2/
5 TG+ont )

We may change the expressions for €' and &, since

T (m+n+%> I‘(n-i-%)
IFm+2n+1)

(m+n-3) (m+n=3).(n+5)T(n+3) f(n+%)

(m +2n) (m+2n-—’1)...(2n+1)1‘(2n+ 1) ’

2n
and T(@n41) =2 T (n + 1) T (n+1), (Integral Calculus,
F)=0=T s .
Art. 267),
19—2
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a” cos x on+ 382
Thus J"(w)=2"I‘(n+l){ Toam+2[2

(2n+5) (2n+T)2* (2r47) (22+9) (2n+11) 2°
@n+2)2n+4)[4 @n+2) 2n+4)(2n+6) [6 }

osing ( m+5at  (2n+7)(2n+9) & }
2L (n+1) {‘”— 2m+2[37 @n+2)(2n+4) 8

The series within the brackets are always convergent.

£(,1
376. Suppose e’( 2 to be expanded in powers of z. .|

Since this is the same as e®* ¢ *, we obtain

xz o2 o x x* a*
{1+§+2’—E+—23_l§+"'} {1—§+2T—I2—?—?T§7+...} .

Multiply out and arrange in powers of z; and then ac-
cording to the notation of Art. 370 we obtain

&) =0, @) +2J,@) + 2, @) + 2, (0) + ..

_{l;(a:_)_*_J,T('a:) —J—'—;”i)  CTTTTIR () 8

Thus we see that for positive integral values of n we
have J, (z) equal to the coefficient of 2" in the expansion

1
of a’('_ ) in powers of 2, :
377. It should be remarked that the definition of the

Functions has been slightly modified by Hansen who is fol-
lowed by Schlomilch ; see Zestschrift fiir Mathematik, Vol. 1.

age 145: according to these mathematicians we should
Eave 2z instead of @ in the various expressions which we
have given for J, (), so that for instance they put

J,(x)= %fwcos (ndp — 2z sin ¢) dep.

We mention this in order that the student may be pre-
ared for the diversity if it should occur in other works;
gut we shall adhere to the definition we have formerly given.

el
.
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378. As a simple example, we observe that by Art. 371
we have

T, (@) =2 [ oos (2 08 §) sin’$ 343

by changing ¢ into 7—;— ¢ we obtain

J, (z) = ;J"cos (@ sin ¢) cos ¢ dp.

By integrating the following expressions by parts, we see
that each of them is also equal to J, () ;

lf'sin (= cos @) cos ¢ do, 1f"sin (zsin ¢) sin pdep:
TSy - wJ,

either of these may be obtained from the other by changing
¢ into 5 — .

Again, by comparing the equation (3) with the known
expressions for cos z and sin , it is easy to see that

when n= % , we have J, (z) = 7% sinz,

and when n=%, we have J, (z) = 3-(ﬂli”--cosw).
Tz \ @
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CHAPTER XXXL

PROPERTIES OF BESSEL'S FUNCTIONS.

379. DIFFERENTIATE both sides of equation (8) of
Art. 376 with respect to z: thus

2 +2) D e T () 4 220,) 4 8, (0) 4 .

Ji(=) _2J,(a) , 3J,(=)
+ ‘z' - Z’ + z‘ T ees
Hence if we multiply the series on the right hand of
equation (8) of Art. 376 by ;(1 + %,) the result must be

equal to the series on the right hand of the equation just
given. Thus we obtain for any positive integral value of n,

g{J,_,(z)+Jm(z)} P () T .-

880. The equation (8) of Art. 376 can be made in this
manner to furnish various formule, which may if we please
be verified by the use of some of the other expressions given
for J,(z). Thus for instance we may obtain (1) by the aid of
the expression of Art. 372. For let y» =n¢ — a sin ¢, so that

T@) =1 [ oos s,
Toa@) =3 [Coos(p-9)d,

Ton(@) =2 [ con -+ 4)
therefore  J,_(z) + Jo, () = ?r f " oo ¥ cos pdp.

e
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Now d sin 4 = cos Y dyr = cos Y (ndp —  cos pd) ;

integrate between the limits 0 and 7 for ¢: thus .

0=f'cos~]r(n—zeos¢)d¢
=nf'cosqrd¢—-z]rcosqrcos¢d¢;

therefore  0=nJ, (2) - 5 {7,,(@) + T, @)}-

This investigation, like that of Art. 379, applies to the
case in which » 18 a positive integer; but we may verify the
equation by means of equation (3) of Art. 370, and thus it
will be seen to hold for every positive value of n.

381. Differentiate both sides of equation (8) of Art. 376
with respect to z; thus '

17 1\ 3(-D_dJ @) dJ(@) , ,dJ(2), ,dJ(2)
§(z—;)e e e

_1d@ , 1d,@) _1d/,@),
z dz 2 dr & dx

Hence if we multiply the series on the right-hand side of
equation (8) of Art. 376 by % (z —%) the result must be equal

to the series on the right-hand side of the equation just
given. Thus we obtain for any positive integral value of =,

dJ (z) 1

Y =3 (T @) =T (@)} eeeeeerennne 2;
and we have also the special result

dJ, .

-fdow(@ ==J,(2)..... cechorerscneonsenonses 3).

The equation (2) may also be obtained by the aid of the
expression of Art. 372, For as in Art. 380 we have

J (@)= 71’_ f :cos Vvdp,
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dJ,(m)__l_f'dcosap _I_J". . .
therefore 3wl dp = = sin ¢ sin g{»dxﬁ,

w0, 4(0) = o) = [ feos (= ) — o (4 + B}

= f—;f:sin'\}r sin ¢pd¢;
therefore ﬂéz(:i) = }2- {J (@)=, (=)}

Simiia.rly (3) may be obtained, observing that we have by
Art, 372

Ji@) =1 f "sin ¢ sin (2 sin ¢) d.
]

We may also verify equation (2) by means of equation
(3) of Art. 370, and then it will be seen to hold for every
positive value of n.

382. From (1) and (2) we obtain

2n d '
2 @ = U @) = Ve @) e (4.
383. We have by Art. 376
£(, 1
DT @) +ad @)+ @) 4 D LS

Change the sign of z; thus

e-:-(‘-;l)= Jy(@) = 2J,(x) + 2T () — ... + (—7"5—“’) +%@+

= 1 z 1
Hence since ¢ ¢--3) X e_’('-') =1 we have unity for the.
product of the two series just written; and this gives rise to
various results by equating to zero the coefficients of vari us
powers of z. By considering the terms independent of & we
obtain

1= {L@F+2{7,@F + 2{, (@) + 2 {J, (@)}'+......(5\
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384. Multiply both sides of equation (4) by n; thus

ot d
20 4 @) = s @ = Vs @

Ascribe to # in succession all positive integral values
1,2, 8,... and add; then the terms on the right-hand side
reduce to the series which occurs in (5), and thus

—En {J (@) =1.

385. Differentiate (2) ; thus

‘z_'J;, ($_) = d’;.l (w) n+l (x)
da* dx

substitute for the differential coefficients on the nght-ha.nd
side their values from (2); thus

2800 _ g (@)~ 2,(0) + T (o).
Similarly 2*79(2) - &) =8T )+ 3T,) o)

and so on.

These formule must be understood with the conditions
which follow from (2); thus in the last which is expressed n
may be any positive quantity greater than 3.

Thus the successive differential coefficients of any one of
Bessel’s Functions can be expressed in terms of Functions of
higher and lower orders.

386. From (1)and (2) we have

T @) =2, (@) - LLE) .ovieercn )

aJ, (w)

‘and I, (@)== J @+ =3 s (7).
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Then from (3) and (6) we obtain in succession

J @) =—-20E,
J, (@) =— § d«;ém) + g _«%D Sa:) d’.(;g:c)

and so on.

Thus for a positive integral value of n we can express
J,(x) in terms of J,(x) and the differential coefficients of
J, @). ,

387. From (6) we have

W) _2 5 o)~y 0)

therefore d'ﬁ;ﬁ"’) =2 ® T, ( )+Z%£w) :i:: (=)
g 2AC) +§~{§ T@)=Tu@} + 25 T @) = T, @),
by (6) and (7).

Thus

&J, () (n(n-1) 1
2ol 1@ + 1 )
2
We may now differentiate again, and thus obtain d—i";,@
in terms of J, (z) and J,,, () ; and so on.

888, Let Q, (x) stand for 2y (2) . From (1) we have

7. (@
a @ T ) 2,
’ AT = J.@ "=




PROPERTIES OF BESSEL’S FUNCTIONS. 299

: . z Q. (&) 2n
therefore o @ r =
therefore | Q.(z)=2n RS

O N P
o
therefore Qus (2) =2 (n+1) - NO) »
therefore 4

“O=rmiy- @
Hence, continuing the process, we have
2
Qu (w) = lon
20t ) - ge)

and. 50 on,

Moreover we can shew that Q,, . (z) vanishes when m is
indefinitely great ; for, by Art. 370,

| 1-—2 4
Q nmx(w) o 4 (n+m+2) .
wn (&) = S = S T 1] = i
“Emimri) T

the first factor vanishes, while the second factor is finite
when m is indefinitely great.

Hence our process develops @, () into an infinite con-
vergent fraction of the second class, in which the first com-

mﬂ

2(n +r+1)

ponent is 3 (:i 7 and the 7 component is
see Algebra, A_rt 778..

389. Various mterestmg theorems have been obtained
‘with respect to Bessel’s Functions when the variable is not 2
but #z; with some of these we shall ‘close the present
Chapter.
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390. To shew that

% {zf¥,/:,(~/5)}= (_ %)"‘w-“-*,ﬂ Ty

By Art. 371 we have

1

_n - 1 1 . . )
z ’{(J@fj;-@fo cos (\/« cos ¢) sin™ pdp ;

thus & (073, (/a))

_.2_}7:;-(1—4-%—)[ sm(J.ccosqb)s "$cospdd;

 but by integration by parts
f sin (\/z cos ¢) sin™ ¢ cos ¢ d

= 213{- 1 sin""'l¢sin (s/ E CO8 ¢) + E’r_;/‘-’:—l cos (J ;(308 ¢) sin™*, ¢d ¢.
Thus, taking the integrals between the limits we have

d A =

LR AN

1 1
2V 2"(2n+1)I‘(n+2

)f cos (v cos ¢) sin™" ¢ dp

=-2§;.-2.ﬂr(1+1+2)f con (Vs oos ) is™" ¢ 0

== § @ n+l (‘\/‘v)
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Then differentiating again we have

T LR & 4, (/5

1\ -2
= (—' '2') @ * nii (f)
" In this way we obtain the proposed theorem.

391. To shew that

T @ LW = (5) & Tl

We have & (277, (J2)) = & (o3 g, (/)

= ;,"1 {w'fJ.. o) +a7F LR o

n—l

=- Jons (V—) + nx J ('\/“’)

But by (1) we have J,,, (V) = '\/—J Wa)-J,_, (Vz);
hence by substitution we get

.4

dz

Then differentiating again, we have

d d
dz

@ I, (Va)) =32 I, (Va)

&, W)} = o @ M)

1\* =2
= (é) & : e];_’ ('V/;;).
In this way we obtain the proposed theorem.

892. By Taylor's Theorem we have
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@+B) I (Ve TR =2 ' J, (V)
.+’¢d—x{ ’J(V-)}+Ldz,{ 7 (Va))

+.. +der{"’ ’J(*/“’) |+1WF —;J;(N/?)}:

where £ is put for z + 6%, and 6 denotes a proper fraction.

The differential coefficients which occur on the right-hand
side of this formula may be conveniently expressed by the
theorem of Art. 390.

Similarly by Taylor’s Theorem we have
(2+ B3, (ot B =" J, (Ja)

+kj7{ﬁ,f,(m;+§g—i.{w".f.(va}

A a
+.. +de, {@*J,(J=)} + &dwz.f(@},

and the differential coefficients which occur on the right-hand
side of this formula may be conveniently expressed by the
theorem of Art. 391

393. In the theorem of Art. 891, change n into n+m;
thus

(5) e Wa= g (T o W)

_nim
=d—§{“’"”-w * o (V2)}
by the theorem of Leibnitz, the right-hand member is equal to

e (A m & ) T )
+MEL) @ m)w{ S (./;)}+...;
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and by Art. 390, this

_ (_ %y' o . (Wa)+m (m+n) (_ %)”,;%‘ Ty (V2

+ _(_"EL_I) (m +n) (m +n—1) (— —)Hm";’ s (V2.

Thus
T, (42 = (= 1 T (V) - Tuns (5)

2'm (m — 1)(m+n)(m+n—l)
oDy TR = e}
Then putting 2* for z, we have

T @) = (D" { o @) -

2m (m — 1)(]";:3”)(’”‘"’" I)J (a;)—}.

In this theorem m may be any positive integer, and n
any quantity which is algebraically greater than — 1. The
demonstration, as it rests on Art. 371, would require n to

be a.lgebra.icaliy greater tha —-1 ; but from the form of the
result it is ea.sﬂy seen, by the a1d of Art. 370, that n ma.y
be any quantity which is algebraically greater than —

Lommel proposes to defing J, (x) for negative va.lues of
8o as to make this theorem a]ways hold. Thus, for example,
suppose n & negative integer, and put it equal to —m ; then
we have by this theorem

I (@) = (=1, (2),

2m (m+n)

2m (m +n) J (@
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CHAPTER XXXIL
FOURIER'S EXPRESSION.

394. SUPPOSE n=0 in the equation (2) of Art. 370; thus
6 a z*
gt gFarel

This expression had been studied by Fourier before
Bessel brought forward his general Functions: see Fourier’s
Théorie de la Chaleur, Chapitre vi. We will reproduce

Fourier’s results, and then shew that they may be extended
to Bessel's general Functions. ,

J, (@) =1~

3
395. Put 6 for ;—:a in the preceding series, and denote

the expression then by f(6); thus

¢ 6 ¢
FO)=1-0+g—grgtog g
We B8hall first shew that the equation f(6)=0 has an
infinite number of roots, all real and positive.

In treating this proposition, and that of the next
Article, it is really assumed that f(6) may be considered to
be a finite algebraical expression; the justification of this
assumption must be found in the fact that £(6) is a rapidly
convergent series, and thus whatever may be the value of
0, and whatever may be the closeness of approximation we
desire, the terms in f(6) after some finite number of them
may be neglected.

It is easily seen by two differentiations that

FO) +/ 0)+6f"(6)=0;
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or this may be obtained from the general differential equa-
tion of Art. 370 by changing the independent variable.

By successive differentiation we now obtain
fl (e) + 2f" (o) + o‘flll (a) = 0,
fll (o) + 3fl" (0) + o.f"” (0) = O’
flll (o) + 4f’l’l (0) + Qf’ll’l (o) = 0’
and so on,

These equations shew that when any one of the derived
functions, 1" (6), £”(6), ... vanishes, the preceding and follow-
ing functions have contrary signs, if 6 be positive.

Now suppose we consider f(6) to be of the m degree

in 6, where m may be as large as we please. Take the series
of functions

F@, 1), O ... *6);

this series may be called Fourier's Functions, and the student
may be assumed to be acquainted with their importance;
see Theory of Equations, Chapter XV.

No change of sign in the series can be lost by the passage
of 6 througgh a vi?ue which makes any of the derived
functions vanish; for as we have just seen when any de-
rived function vanishes the preceding and following functions
have contrary signs. Hence a change of sjfn in the series
can be lost only when 6 passes through a value which makes
f(6) vanish. But m changes of sign in the series are lost
as 6 passes from O to + . Hence the equation f(6) =0 has
m real positive roots; that is all its roots are real and
positive.

We may remark that it is obvious that f(6) cannot
vanish when 6 is negative.

396. If \ be any given positive quantity the following
equation has an inﬁm}t/e number of roots, all real and positive:

2 LO_ ... eeeneee(1)s

‘ f@

Let a and ¢ denote two consecutive roots of f(f) =0; by
the Theory of Equations f”(6) =0 has a root between a and
¢: denote it by b, ) .

T, : 20
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Then as 6 changes from @ to b the numerical value of
6f' (6)
{ ©) .
changed. As 6 changes from b to ¢ the numerical value of
o () increases from 0 to oo, while the sign remains un-

) o @)

- changed, but contrary to what it was before. Hence “7(0)

diminishes from o to 0, while the sign remains un-

takes, once at least, any specified value as 6 changes from
a toc. Therefore (1) has a root between @ and ¢. In this
way we see that there is a root of (1) between every two
consecutive roots of £(f)=0. And since M is positive there
will be one root of (1) between 0 and the least root of
f(6)=0. Thus all the roots of (1) are real and positive.
Moreover only .a single root can lie within each interval
which we have considered.

897. The equations of Art. 395 which connect the suc-
cessive derived functions may be put in the form :

£ __ 1
OB i )
o
£ _ 1
7O T L oo
J"(6)
f/l’(e) - 1
FHOREPNL 0N
‘ fm(e)
and so on, #6) L
Thus 'f(9)4=_1_ 09 =
‘ ' 2-3-
and A= .
: 1— 00.
9 7
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* Thus M is exhibited as an infinite continued fraction of
the second class in which the r* component is g; see Algebra,
Art. 778.

398, The results obtained by Fourier admit of easy
extension to Bessel's general Functions, as we shall now shew.

‘We have by Art. 370,

2T'(r+1 2t ¢
LoD s =1~ 2

2@ +2) T @) Gk d)

Put 8 for ;i: in the preceding series, and denote the -

expression then by ¥ (6) ; then
0 ¢ ¢
FOR- 5 + T3 ~ 123 mid)mes)
It is easily shewn by two differentiations that
F(6) + (n+1) F'(6) +6F"(6) = 0;

or this may be obtained from the general differential equa-
tion of Art. 370 by first putting va" for u, and then changing
the independent variable from « to 6.

By successive differentiation we now obtain
F'(0) + (n+2) F'(0) + 0F"(6) =0,
F(0) + (n+3) F"(6) + 6F"(6) =0,
and so on. )
399. The equation F (6) =0 has an tnfinite number of
roots all real positive.
The demonstration is precisely like that of Art. 895. ,
400. If N be any given positive quantity, the following
equation has an infinite number of roots all real and positive.
6F'(6) _ 0
F@e)
The demonstration is precisely like that of Art. 396.
20—2

A
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401. From the preceding equation, by a process precisely
like that of Art. 397, we deduce the following expression
for A as an infinite continued fraction:

A= 0 ]
n+l-— ]
Lty T
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CHAPTER XXXIIIL
LARGE ROOTS OF FOURIER'S EQUA‘!ION.

402. PorssoN has shewn how to determine the large
roots of the equation J,(xz) =0: see Journal de l’Ecolc
Polytechnigue, e(?ahler 19, pages 349...333. We will give his
pnnc:)}:{l results though not altogether according to his
meth

Let y stand for =/, (), so that

=f cos (£C08P) dP veuvunenniunnnan (1);
dy  1d;
we have d.v’ ‘Z—'Z+y Y| 2);
this may be written

d_%"/_‘”) + (& + 1) y./;= 0.cevenecvanness(8).

This suggests that when « is very great, so that é may
be neglected in comparison with unity, we shall have very
approximately

yNe=A4,c08z+ BgIn& «...eveeu.e... (4),
where 4, and B, are constants.

403. Poisson assumes that the integral of (8) can be
put in the form

sza(A,+ %1.,.‘_4_:4.%: + ) cos z

+(Bo+%+€, +% + .. )sinm,

where 4,, 4,,... B,, B,, ... are constants to be determined.
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Substitute in (3) and equate the coefficients of distinet
terms to zero; thus we obtain the following equations for
expressing the constants 4,, 4,,... B,, B,,... 1n terms of
4, and B,

1

2A1+415Bo=01 . ] —2B1+4!Ao= 0,
2.24 .+ {1 2+ %} B=0, —22B+ {1 24 %} A4,=0,

eesesvesvace . ) sseosse teeses

24 + {(r—l) r+ %} B, =0, | —2rB+ { (r—1)r+ %} 4_=0,

............ - eeescscasans

But the series we thus. obtain are divergent for any
asgigned value of z. ’ :

_404. Let us however assume that (4) is admissible when
z is very large; thus :
_4,cos0+ B sine dy B cosz—A4,sinz

Ve . 7 de Nz ’
approximately. ' A
Therefore y vanishes when tanz=— %—" ; 80 that z=nr+a,
(]
where ta.na=—i’, and n is any integer. In like manner

B,
% vanishes when #=mmn + 8, where 8 is such that tan ,8=% s
and m is any integer. But m and 7 must be supposed ve;'y
large integers, as we are concerned only with very large
values of z.

- 405. Tt is natural to conjecture that 4 = B, ; for then

the large roots of Z—%= 0 are midway between those of y=0.

This conjecture may be verified. We have

y=f:cos (Zw'cos’% - )dcﬁ"
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=cos® f "cos (2:0 cos* é) dp+sin z f "sin (2«: cos® 1’) do.. .'(5).

We shall investigate the value of y when & =2, whele
r is a large integer. 'We have then from (5)

d o b
y_fo c9s (2.'ccos 2) d¢.
Put 2mcos’-?=t; thus

r cost dt costdt | [* costdt

y= Vi (@o—1) '\/t Vo0 ) Viy@a—1
In the second of the two integrals put =2z —r; then
cos TdT

observing that cos (2z—1)= cos 7, it becomer vty (2a—1)’
so that we have

2 costdt s cost dt

o Ntn/(22—1) '\/2w ° i /

This integral when « is very large may(be repla.ced by

2 [“costdt t : .
—=—= | “—=—; for 1 —5~ may be taken as unity so lon;
VZzle W 25 y 8o ong
as ¢ is not large, and when ¢ is large the corresponding
elements of the integral are of no account because then

cos?t .
— is very small.

i

Hence we may say that y= sz “eost dt, and this = Va

Vi vz’
see Integral Calculus, Art. 303.

Comparing this result with the va.lue given by (4) when
@ = 2rm, we see that 4 = /.

Similarly by finding the value of the right-hand member
of (5) when 2 = (21' + %) mr, we shall see that B= .
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406. The method of the preceding Article admits of
extension to Bessel’s general Functions,

Let u stand for J, () ; we know that

du 1du n .
l"+a; 7wt 1—;,')u=0,
d'(uVa) .~ Vo
thus —gF +uNg—— (”_..) =0;

and when « is very great, provided n be finite we have
approximately

P65 | wiia=o,
- so that uVz=A4,c082+ B 8T ..covene..... (6).

Now by Art. 371, adopting the same method as in
Art. 405, we have

u_l’/__-;?(-v_l] cos (2wcos’¢) sin™¢ d

+-—£“’;'m-ﬁ-i— [ sin (20008 ) sin p d .7
— 0
4/1"2 r (n + §)

Suppose = 2rmw, where r is a large integer; then we
have from (7) 8

u=‘\/7_r2":‘(n+%)f' (2(0 ) e

Put 2«:008’9 =t; then proceeding as in Art. 403, we get
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The equation (8) is exact. If we qgr;tinue as in Art. 405,
we should first suppose that (1 - ft.{;) may be replaced by

unity ; and thus the integral reduces to f ,cos t.t¥d:, Then
replacing the upper limit by <, and us?mg Art. 802 of the

. 1 1I\=w
Integral Caloulus, we obtain I' (n + §) cos (n + -2-) 3 Thus
finally

2 nwr
v (7 + E) ;
Hence by comparison with (6) we have
Y2 os (ML T
A,—‘\hrcos( 2 +E) *
Similarly by finding the value of the right-hand member

of (7) when = (2r+ %) a, we get

B N2 . w
'—:./ws (2 +Z)'
Hence by (6),

=V2 (M T ‘
"_4/;,;005(2 +3 a:)..... ........... (9).

407. The approximations which we employed after ob-
taining the exact equation (8) are not very satisfactory for
every value of n; but at least they involve little difficulty
8o long as n is less than % . The formula of Art. 371 from
which we started supposes n to be algebraically greater than
- % . Hence we may consider that (9) is fairly established

for any value of n between —% and % Then we infer that

it will hold generally by the aid of equation (8) of Art. 386
for when z is very great we obtain from that formula

de:sz) ; and from (9) we have approximately
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du _ 42 ( ___)__4/2 n+1 T )
Zmimen (T o)== (" w4l -a);
so that if (9) holds for any value of n it holds when that
value 13 increased by unity. Hence since it holds when = lies

‘between —% and = 3 it holds when n lies between ‘1) and g
then it holds when n lies between g and g, and so on.

408. Another method of obtaining the result in Art. 405
has been given. 'We continue to use y for 7J, (z).

Thus y=f:cos (mcos¢) d¢=2[jcos(a:cosgb) de;

' cos 2 (1 — 2)

Jz (2 —z)

=./§cosa:f cos (x2) dz Bl2) O 2sing f sin a:z)dz
(1——2 1-

I3 1 cos (xz)
—J2cos . Jz {1+

. ! gin (22) 1 2 1.3 f)’
+J§s1?w R {1+-2-.2+2.4(2 +.oo.t da.

As soon as the values of f cos (a:z) dz and f sin (a:z) dz

are known we can obtain by dlﬁ'erentlatlon with respect tox
the values of the other integrals which occur in the expres-
sion for y. Thus denote the former by P, and the latter by
Q; then we have

2 cos (a:z) zsin (:cz) _dp
f dz= ] ' dz = dz ’

put 1—z for cos ¢ ; then y=2f

D]
| IR0
+

ll—l
w0
(AR
v

+
[

— s, A .. o S —
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12 cos z'cos (x2) , (_i_’£ 12%sin (wz) _aeQ
[ —5 v f dz =

d‘c”
and so on,
Thus we find that
y=v2 {Pcos:c'+ Qsinz— L%(’P" cosz + Q" Sin‘”).'*"--

1.8.5 . m

+%(Q’cbﬁw—?sinw) 515 (Q" cos

o Pring )

where the accents denote differentiation with respect to x.

No' j‘ cos (a:z) Iz j‘ cos (a:z) do— ] cos (:cz) cos (z2) ;.

f °°s(“’”) de, by Integral Caloulus, Ast. 303.

'9/ 2«;
- By integration by pa.rts we have
cos (:vz) sin (wz) sm (acz)
f ds = zNz oA d
_sin(xz) cos (z2) 1.3 (cos(z2) dz
TaVz | ot 2% t
* In this way we find that '
N 1 1.3 1.8.5.7
P—-V_x—-l- {""‘"2—,(?4"—'24T—...}

—oosgfl _1:3.5 1.8.5.7.9 _
o 7 I P A

we will denote this result thus,

P—;/{"—r-+¢(w) smw—«]r(w) cos 2.

In the same manner we may shew that
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Q=12 4 (ose-t@sina
Hence we find that
Pecosa + Qsinz=://.—-—:_;cos (z— ;i)—'v}r(z)-
Also
dP_ W
dz (20t

l
49 _ £'+ ¢ (z)sinz—¢'(z) cos £ — - (z) cosz— (z) sinz ;

dz " (22)
therefore wsw% —sine % = 2/2:,—; sin (a - g) = ¢'(2) = Y(=).

+ () 08+ (o) sine+ ¥ (2)sin 2 — (s) 008

Therefore if we stop at this stage of approximation, we
get from (10)

y=V§{%m(z-g)+gsm( -7

-3#@-7 ¥ @)}..av.

Thus as far as we have gone we see two classes of terms
in y; one class involves fractional powers of # with trigono-
metrical functions, and the other class involves whole powers
of & without trigonometrical functions. We shall shew how-
ever that the latter class of terms will disappear as the pro-
cess is continued.

I. We shall shew that ¢ («) and 4 («) and their differ-
ential coefficients will occur, as they do in (11), free from
sin 2 and cos z as multipliers. For we have

Pcosz + Qsina:=--\(v-(a;)}
Psinz— Qcosz= ¢ ()

t e e . .

omitting the terms which are multiplied by VV%, for we

are not concerned with them here, |
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Then, by differentiating,

Pcosz+Q sing— Psinz + Qcose=—'(z),
P'sine—~Q cosz+ Peose+ Qsina= ¢'(2).

From these and (12) we obtain
Pcosw+Q’sinz=—~P’(w)+¢(w)}
Psino-Qosa= ¢(@)+¥(@)

In like manner from (13) and its derived equations we

obtain
P'cosz+ Q' sinz = w, (z),
P’sinz - Q" cos &= x, (2),
~ where =,(z) and y, (¢) involve only ¢ (=) and ¥ (z) and
their denvatives. :

Then again we obtain

P"cosz+ Q" sin z ==, (v),
P"ging — Q" cos z = x, (),
and so on.

Then substituting in (10), we see that in the value of Y

we shall have ¢ (#) and 4 (2) and their derived functions
free from gin « and cos # as multipliers,

II. But on the whole the terms involving ¢ (z) and
V¥ (#) and their derived functions must adjust themselves
80 as to cancel and disappear, For if they did not suppose

;‘i the first term which remained in y; substitute in the

. . . dy ldy ,
differential equation e B o 0, then as none of the
terms involving fractional powers of # and trigonometrical
functions can combine with this, we see that the differential

equation will not be satisfied unless 4 =0.

Thus omitting all the terms which depend on ¢ () and
¥ (z) we obtain finally
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T (o L)L (L) REST LY )
y="Jz °* (‘” ir 4.8 (2x 481216 (2.1:
Ve :_11"). by (l)-l'-3’-5’ l)'+
V- (‘” a")13 %) "18.12 (2:1,' Feefe
This will be found to agree with the result obtained by
Poisson, when in his result we take 4,= B, =+7. The series
within the brackets are divergent; but we may in our
process instead of infinite series use finite series with- symbols

for the remainders. Thus when we apply integration by

parts to fco&:/(fz‘) dz, we may, as we have seen, denote the
z

remainder by an integral after any number of terms we
please. So in the expansion of (1 - %z) b _which we have

used we may express the remainder after any number of
terms in the method given by the modern investigations of .
Maclaurin’s Theorem, ‘
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CHAPTER XXXIV.
EXPANSIONS IN SERIES OF BESSEL'S FUNCTIONS.

409. W shall in the present Chapter give examples
of the expansion of various functions in infinite series of
Bessel’s Functlons.

410. We know by the Integral Calculus that
cos (x sin ¢) =@, +a, cos ¢ + g, cos 2¢ + g, cos 3p + ...,

where = % f " cos ( sin ¢) cos npde,

except when n=0, and then we must take half this value.

Hence, as we have shewn in Art. 372 we have a,=0
when 7 is odd, and a, =2/, (x) when = is even ; except when
n =0, and then a, = =J, ,(@).  Therefore

cos (z sin ¢) = J, () + 2J, (z) cos 2¢ + 2J, () cos 4¢ +..

411, In the manner of the preceding Article we can
shew that

sin (2 sin ¢) = 2J, () sin ¢ + 2J, (z) sin 3¢ + 2J,(x) sin 5¢ +...

412. As particular cases we have
1=J,(2) + 27, (@) + 2/, (@) +.os
z=2.1J,(2) +2.8J, (&) + 2.5J, (@) +...

the former is obtained from Art. 410 by putting —0 and
the latter is obtained from Art. 411 by d1v1dmg y ¢ a.nd
then putting ¢ =0,
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413. In Art. 410 change ¢ into +¢ ; thus

cos (z cos ) = J, (x) — 2J, () cos 2¢ + 2J, (z) cos4¢—
Similarly from Art. 411 we get
gin (z cos @) =2.J, () cosPp — 2J,(x) cos3¢ + 2J;(x) cos5¢p +..

Various particular cases may be deduced. Thus putting
¢ =0, we have

conz= J, () — 2, (a) + 2/, (&) =
sin z = 2J, (z) — 2J, («) + 2J; () —...

Again differentiate these two formule twice with respect
to ¢, and then put ¢ =0; thus we get

zsin g =2 {2/, (x) — 4/, (z) + 6'J, () —...},
zcosz =2 {1'J, (z) — 8'J, () + 5%/, (z) —
414. In Art. 410 we have shewn that
cos (z sin @) =J, () + 2, (x) cos 2¢ + 2J, () cos 4 + ...
Now we know by Plane Trigonometry, Art. 287, that if

nbeeven,
conng =1~ sin'g T D aineg -
md  cos(esing)=1- Tt T

Hence equating the coefficients of the powers of sin ¢
we have the following results in which 3 denotes summation
with respect to even values of n from 2 to infinity:

1 =J, () + 23J, (),

o = 2500, (a),

a' =237 (n* — 2" J, (2),

o8 = 250 ('~ 2) ('~ 4) /. (2),
and so on,
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415. In Art. 411 Wé have shewn that
sin (z sin ¢) = 2J, () sin ¢ + 2J, (2) sin 3¢ + 2J, () sin 5 +...
Now we know by Plane Trigonometry, Art. 287, that if
n be odd,

. n@'-1) .,  a@-1N@"-3) .,
sinngp=n sm¢———E—sln ¢+———E——— sin’p—...;
a® sin’$ + afsin’p '
Hence equating the coefficients of the powers of sin ¢

we have the following results in which 3 denotes summa-
tion with respect to odd values of = from 1 to infinity,

x = 23nJ, (z),
@’ =23n (n' - 1") J, (2),
a*=22a (n*—1°) (n* - 3") J, (),

and sin(zsin¢g)=xsing—

and so on,

416. Suppose n an even number. If we combine two
of the results obtained in Art. 414 we deduce the following :

23ntJ, (2) = o + 4a”.

In like manner we see that 23n°J () can be expressed
in terms of 4% 2°, and 2. Thus we are naturally led to
conjecture that 2Zn®"J, (x) can be expressed in terms of
o, o7, ...a', @’ To shew the truth of this conjecture
take the expansion given in equation (2) of Art. 870, and
substitute in every term of 23n™J,(z); then picking out
the coefficient of 2 we shall find it to be

.2_’72@—1 {(21')”"— 2r (2r—2)™+ gﬁzlg—ﬁl) (2r—4"~ } ’
that is
9 2r (2r-1)

W{r"‘—2r(r—l)’"+—l—2-—— (r-2)"™~ } ;

the series within the brackets is to continue until 1™
occurs, so that there will be » terms. When m is specified

T. 21
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the value of this expression can be calculated for any value
of r; and it will be found to vanish when r is greater than
m, and to be equal to unity when r is equal to m. To shew
the truth of these statements it is convenient to put the ex-
pression in the form

1 wm, 2r(2r—1) -
27,_,”—[_2_;{7’"‘—21'(1' 1) + B (7—2) —eesly
where the series within the brackets is now to be continued
until it ends with — 27 (r — 2r + 1)™ + (r — 2r)™, that is with
— 2 (=74 1)™+ (—r)™; thus there are now 2r+1 terms,
of which the middle one is zero. With the notation of

1
g AT

where we are to put —r for z after the operation denoted
by A* has been performed. Then it is known by the theory
of Finite Differences that the expression vanishes when # is
greater than m, and is equal to unity when 7 is equal to 7.

Finite Differences the expression becomes

417. Suppose n an odd number. If we combine two of
the results obtained in Art. 415 we deduce the following :

23n*J, (z) =2° + .

In like manner we see that 23n°J,(x) can be expressed
in terms of 2°, 2%, and . From this we are naturally led to
conjecture that 23n*™*"J () can be expressed in terms of
& 2™, ...a" «. To shew the truth of this conjecture
take the expression given in equation (2) of Art. 370, and
substitute in every term of 23n°™*'J (z); then picking out
the coefficient of ™ we shall find it to be

2

. {(27‘ 1) (20 4 1) (2r — 1)™"
#Z A2 o0 gy } ;

2

the series within the brackets is to continue until 1%+
occurs, so that there will be r+1 terms. When m 1is
specified the value of this expression can be calculated for
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any value of r; and it will be found to vanish when » is
greater than m, and to be equal to unity when r is equal
to m. To shew the truth of these statements it is con-
venient to put the expression in the form

émé"""j {(r + %)WA— 2r+1) (r + % - l)mﬂ
NCZSEI SN

2 2

where the series within the brackets is now to be continued

. 2m+1 1\
until it ends with + (2r+1) (— r+1-— 'é) - (— r— §) ;
thus there are now 2r+2 terms. With the notation of Finie

> 3 1 ertl, om+1
Differences the expression becomes S| At
where we are to put —r— % for x after the operation denoted

by A™"* has been performed. Then it is known by the theory
of Finite Differences that the expression vanishes when r is
greater than m, and is equal to unity when r is equal to m.

" 418. From Art. 376 we have

S AT AC R DR S AORS PR R

Expand the exponential functions; and then equate the
coefficients of z"; thus

7 () =745 70+ (5) gln@ (5) plmte + -

Equate the coefficients of él—,; thus
! e\t 1 z\™ 1
0= (3) e+ 5 e ) et

- (&) e+ () e () gt

21—-2 -
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419. From the latter formula, by putting for  in suc-
cession the values 1, 2, ... we obtain

L @)+ g @)+ g (@) 4 = (@)

P
Z @+ g <ac)+2468 (@) + ... =5J,(@) ~ @),
and so on.

420. From the two expressions just given, we obtain

o 2 82t
T (@ =55 +55 6@ +5 453 ,<x)+

In like manner by proceeding to a third expression in
Art. 419, and combining with the other two, we can deduce
a formula for J; () ; and so on. The general formula is

™ & r(r+1)
J4e) =g )+ gt @ g T
+ z?  r(r+l) (r+2)
2""’[ r+3 E
This may be established by induction. For assume that

(1) is true, divide by 2" and differentiate ; then by equations
(6) and (7) of Art. 386 we obtain

Jy(2)

Jy (@) +...(1).

1 d
-z JH-I (w) = Q_’T; dz J;(.’l:) + o 7 1 (x)

2r+l| + 1

s r(r+1)
tEas R J, (@)

.8 ri+1)(r+2)
&f(a;)

Now by Art. 381 we bave =~J,(x); substitute

from Art. 419 ; thus

— o —
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-z, (5)=— I__{ J()+24 l(w)+2456 S+ }
x x* r(r+1)
A R

z* r(r+1)(r+2)
2 r+ 3 |3

4

+

J, (2) +

so that finally J,,, (z) =

xﬁl w"ﬂ
Ca P |r+1J;(w) + om0 r+2 (r+1)J,(2)

+2mji+3“+lkf+2\4@whn4m.

Thus (2) is the same formula as we should get by
changing r into » + 1 in (1). But we' have seen that (1) is
true when r=1, and when =2, hence it is true when
=23, and when r=4, and so on.

N 421. In equation (8) of Art. 376 change x into kx;
thus

¢ O = . (k) + 27, (ko) + 27, (ka) + ..
— (k) + 5T G) . (3).

Again, in equation (8) of Art. 376 change z into kz;
thus

o (75) — J(w)+sz(w)+k’z’J(z)+
J@+”u@ .
But of (8 = g7 () (D3 *, so that the product of

the right-hand side of (4) into e_;('k_i); must be equal to

the right-hand side of (3). Thus putting u for k& — 7lc , we have
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T, (k) + 27, () + 2T, (52) + . — = ) + 2, (k) —
= 6% (@) + ke (2) + K, (2) + ..
~ 2 ) + pa(e) - } .

. Expand the exponential and equate the coefficients of 2";
thus

J, (k‘v) =K Jr (z) —ak™ ;Jr-u(x) + :E’I]—‘;z (/é) r+3 (w)

For a particular case we may suppose k = /2, and

1
then = VQ

422. Take equation (8) of Art. 376, and suppose both
sides integrated m times with respect to «; the integration

can be eﬁ'ected on the left-hand side, and ma.y be denoted
by the symbol S™ on the right-hand side. Thus we have

(5 = 276D o) 28 @)+ 257, ) 4 .

— 287, (@) + 5 87, (@) = ...
and therefore
= (1-3) @+ 0@+ 20,0+ L T@+
= 8"J,(2) + 28T (z) + 228", (@) + ...
— 2 8 (&) + 28", (&) = ... (5).

From (5) we may deduce various formule. Thus for
example equating the terms which are independent of z,
we have

877, (2) = 2"‘{J(w)+1JM,()+ m(m+1) . (w)+...}

2

I A——
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8o that
|m=15%7,(a) =2 {|m=1..(0) + @

1
+ L"—i%l_ @)+ } eena(6).

Particular cases of (6) may be obtained by putting for
m in succession the values 1, 2, 3, ...

In the same way as (6) is obtained we may by equating
the coeflicients of 2" in (5) obtain 'a formula which differs
from (6) in baving the order of every Bessel's Function
advanced by r; so that

=186 =2 fm=1 T ) 4 2 )

|m+1

+ “L.:T“ I ria (@) +}
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CHAPTER XXXV,
GENERAL THEOREMS WITH RESPECT TO EXPANSIONS.

423. 1IN the preceding Chapter we have given various
examples of the expansion of functions in infinite series of
Bessel’s Functions; in the present Chapter we shall give
some general theorems relating to the subject.

424, We know that the function J,(z) satisfies the
differential equation
d’Jy(z) | 1dJ,(x)

e To do THE=0

Let a be a constant, and put % for J,(ax); thus

o , 1du dw_ 1
au+ 5 d—.’ﬂ + (7;2 =0 terieencecrtnsnnes ( ).
Let B be another constant, and put v for J,(8z); thus
1dv d%
B’v+;d_;+(7.’b’—_0 .................. (2).
Let £ be any assigned quantity ; then we shall shew that .

8- 2)f:wuvdx=g[,, ‘é_:_u%:l

where the square brackets denote that for @ we are to put &

after the operations indicated have been performed; we shall
employ square brackets throughout the Chapter in this sense.
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For by the aid of (1) we have

Joie =~ 1 B+ )

g em)e

_1{ du dudvdx}

dz~ " dz dx

e R MG

du. I°a
- (v?i—a—c —u JI;) +5 zuvdz, by (2)

Thus if we integrate between limits 0 and £, we have

(ﬂ’;a’) f:wuvdx= £ [v% —-u 2—1] .

425. We shall next determine the value of f wu’dzx
‘We have shewn that

du  dv
¢ Elv 7o~ Y
f zuvdr = g

Now let us suppose that 8 approaches « as a limlt then
the expression on the right-hand side takes the form 0’ and
hence its limit found in the usual way is
E [dv du d™
(38 2 ~as]
where 8 is to be made equal to a ultimately,

dv =z dv
Now v=J,(Bx); thu sdg B do

Qa
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Thusﬂ’ﬁli‘ d* _i"l’f@._,(d” z‘ﬂ’)
dp dx dBd.c Bdxdr pB\dr az’
x du dv
) = Bde do + Bzuy, by (2).

When B is made equal to a this becomes 2 (g—:)’-i-axus;

so that finally
g’ du
[ a'u’ + ( da:)i' ............. 4).

f o
426. We are about to particularise the values of 2 and

B. Suppose p and ¢ two roots of the equation (1) of Art. 396;
and let @ and B be determined by

P ﬁt .
p= _ZTE‘ y 4= Z;? ................... (0).
then will j curdz = 0.
For we have A ’.’;:( (7))\ 0.

Now f(p) is the value of u when we put £ for z; so that
f(p)=[ul. And 2 X f (p) is the value of %c when we put

£ for ; so that —2;]“'(17) = [35] .

o = e du] |

of =5 |20
Therefore f ) —m-— =9 |udzl’
so that 7\=-§ [1 du]
u dx
Efldv
In the same way we obtain A = — 3 [E Em:l .

Hence the right-hand side of (3) vanishes, and therefore
&
f zuvdz=0......cco0nvrriiriennns (6).
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427. With the value of a assigned in the preceding
Article we shall have

¢
f outde = (i’i +g*) T P ).
o
£ [1dul, -
For, as we have just shewn, A= — 5|eamls ; and there
fore [Z:J =— [u] Hence substituting in (4) we ob-
tain (7).

428. Suppose now that any function, as ¢ (), can be
expanded in the following form

¢ (1) = AJ, (az) + BJ, (Bz) + CJ, (y2) + +evereeve (8),

where @, B, v, ... are constants determined by (5) and other
similar equatlons and A4, B, C, ... are constant coefficients,
then the preceding theorems enable us to find the values of
these constant coefficients.

Suppose for instance we wish to find the value of 4;
multiply both sides of (8) by «J,(az) and mtegrate between
0 and £; then by (6) we have

f x¢p (z) J,(2z) dw = Af z {J,(az)} dz ;
o [}
and by (7) the value of the right-hand side is

S (B +e) v

thus 4 is known, or at least its value depends only on the
single definite mtegral

f 2 ¢ (@) J, (as) d.
[}
Similarly B, C,... can be found.

429. Tt will be seen that in the precedinz Article we
do not undertake to shew that ¢ (z) can be always expanded
in the assigned .form, but assuming that it can be so
expanded we find the values of the constant coefficients,
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The fact is that the solutions of various physical problems
lead to such processes as we have given, and the nature
of the problems themselves may perhaps give some evidence
of the possibility of the expansion: writers for the most
part content themselves with finding the values of certain
coefficients, as in Art. 428. Thus for instance Fourier
discusses in the Chapter cited in Art. 394 a problem re-
specting the propagation of heat in a cylinder. He arrives
at the general equation '

dv d»  1dv

7=z %)

this is to be satisfied consistently with the following special

equation which is to hold when « has its greatest value £,
hv + Z—Z} =0 cieeneriinniienan. (10) ¢

v is the temperature, ¢ is the time, z# is the distance from

the axis of the cylinder. Assume v =¢ ™u; then if we put

q for !I)cll we obtain

du o
gu+%d—:;+3;=0 ................... (11).
The constant ¢ will have various values to be found by
the aid of (10). The general solution of (9) is taken to be
v =2¢™u, where 3, refers to the different values of m.

The mathematical investigations which Fourier gives are
equivalent to those of Arts. 895...897 and 424...428,

430. Suppose thata, B3, v, ... instead of being determined
as in Art. 428 are such that

J,(a€)=0, J,(BE)=0, J,(v£)=0,...... ’
and that any function, as ¢ (z), can be expanded in the form
b (@)= AJ, @) + BJ, (85) + O, (y2) +...0--(12);

then we may find the values of the constant coefficients
4, B, C, ... by a process like that applied in Art. 428.
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For equation (3) holds as before; and then since in the
present case [u] =0, and [v] =0, we should obtain equa-
tion (6) as before.

Also equation (4) holds as before; and then since in
the present case [u] =0, it reduces to

f:wu R [(j:)] ................ (13).

Moreover @ = dJ;) (m) dJ (ax)

e 0 "7 (@) =—aJ, (ax) by Art. 381.
Hence we may if we plea.se put (13) in the form
jf z{J, (aw)}’d:c— X CAC7 ) O (14).

~ Hence by (6) and (14) we have

¢ A
[ o @) J,@0) do =5 £, G0
Similarly B, C, ... can be found.

431. The process of Art. 430 may be regarded as an
easy modification of Fourier's, and by several German writers
is stated to be given in the Chapter of Fourier which we
have cited : but what Fourier really gives is that which we
have ascribed to him in Art. 429, ’

432. The investigations of the present Chapter admit
of obvious extension, as we will now briefly indicate.

433. Let a and B be constants. Let J, (ax) = (ax)*u and
J,(Bz) = (Bz)"v. We shall find from Art. 370 that

2n+ldu+du
dx ' dro*

2n+1dv  d%
ﬁ’v-!'—w—"—i—z d_x"-=0"' ............ (16).

a'u +
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434, Let £ be any assigned quantity; then we shall have

B*—a’) fs:c"'“uvdx-—: g [v %-u %] ...(17).

0
The demonstration is precisely like that of Art. 424.
435. Also

¢ Etnﬂ[ du du ':l
ede = | e+ 2nu % 42 (24) | ...(18).
fo u U u (da;) (18)

24 dz
The demonstration is like that of Art. 425.

436. Let p and ¢ be roots of the equation of Art. 400 ;
and let a and B be determined by

2
p=°‘2§4, q=3;§' ................ (19);
¢
then will f T T S (20).
[J

The demonstration is like that of Art. 426.

437. With the value of a assigned in the preceding
Article we shall have

The demonstration is like that of Art. 427.

438. Suppose then that any function, as ¢ (), can be
expressed in the following form
¢(x).=Au+Bv+Cw+ ey

where u, and v are as already stated, w is similarly related
to J, (yx), where « is of the same nature as a and 3, and so
on; then the constant coefficients 4, B, C, ... may be found.

For by (20) we have
£ ¢
f "ug (x) de = A f =™ u'de,
[ 0

and the integral occurring on the right-hand side is known
by (21). Similarly B, C,... can be found.
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439. Suppose now that a, B, v, .., instead of being
determined as in Art. 436 are such that

E,,J”(af)=0, Eu J,(8B8)=0, Eu J,(v6) =0, ...,

then if any function, as ¢ (x), can be expanded in the form
p(@)=Au+Bv+ Cw+...,

we may-find the value of the constant coefficients 4, B, C,...
by a process like that applied in Art. 438.

For equation (17) holds as before ; and then since in the
present case [4]=0 and [v] =0, we should obtain equation
(20) as before.

Also equation (18) holds as before ; and then since in the

present case [u]=0, it reduces to
du
f o [( dx) ] .............. 22).
Thus as before we can find A, B, C,....

440. If in Art. 434 we put for v and v their values in
terms of Bessel's Functions we shall find that equation (17)
becomes

—a’)f w7 (az) J, (82) dz

= [ .(80) 7, /. (a) = I, 0) 7, 7,(89) |

and by equation (6) of Art. 386 the right-hand member may
be transformed into

[BJn (“E) Jm(ﬂf) - aJn (BE) J:H-l (af)}'

In like manner equation (22) becomes

[ "’ o, (a)rde=5 7 [{dii o7, (am)}']

-5 {2 o]

E { a1 (“E)} by equation (6) of Art. 386.
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441. We shall now give a remarkable theorem due to
Schlomilech by which any function is expressed in an infinite
series of Bessel's Functions.

We know that if F'(z) denote any function of z, then for
any value of z which lies between 0 and %, we have

27z
F(z)-—A +4, cos 2 7 +A c08—= +A h ¥ (23),

where A——f F()cos
For h put %W, and for z put px; thus
|
F (uzx) =§A0+A,cos 2,u.a:+A, cos 4ux + .4, cos ux +...,
where 4,= % F (u) cos 2nudu.

Multiply each side of this equation by ;Tfi;&T’ and
integ'rate between the limits 0 and 1; this gives, by Art. 374,

the relation holds for values of 2 between 0 and %'n', be--

cause u 18 never greater than unity.
Now suppose that

' F (zp) d,
p V(fﬂpl;—f() ................. (23);

differentiate with respect to @, thus

2 F’ (uxpd ,
;.f Fv(l_““ =f' ().
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In this equation write %€ instead of z, multiply both sides

by N/_({E"i‘f_?j’ and integrate between the limits 0 and 1 for &:

thus
k(1 A (k) 0 £ (k) dg
?f:va—f‘){., - }‘”E "f VA-F) "

Hence by a theorem-due to Abel, which will be estab-
lished in the next Article, we shall have

_1. [F [ (kE) dE
F@)-FO)=k| 5.

When =0 we have F(0)=£(0) from (25);

hence F()=f(0)+k {/(‘1’“{);,)5 eeeeeerenne(26).

Equation (26) involves the solution of (25), when in (25)
we regard f as a given, and F as an unknown form.

Substitute in (24) for F in terms of f: thus
£ (&) =3 Ayt AT (2) + AT, (4) + AJ,(6) +..,

where 4, =§r- ] b { JO)+u i ((1“9:35} cos 2nudu :

for every value of n except zero the last equation reduces to
o ‘£ (uE) dE
A =— f '———} d 'y
ol o N (1 - E‘) *
but in the case of » =0 we must add 2£(0).

Thus f(x) is expanded in an infinite series of Bessel’s
Functions.

% cos 2nu {

442, It remains to establish the theorem due to Abel.
- It is immediately obvious that
vir-2 F' (z) dzd;
f [ e <SP m-F )
22
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Transform the definite double integral by the use of
polar coordinates ; then it becomes

f f‘" F'(r cos 6) » dr dO
vE—
Put cosf = E, and 7=kpu ; then the definite double integral

becomes k& f f Vﬁ’ ('”’?f;) jg"‘di . Hence we have

k[ va- E’){ F;/(Gkg)“d“}df— k) - Ok

this is the theorem which was to be established.

443. Differentiate with respect to = the result obtained in
Art.441; and put ¢ (z) for f'(z); then since ——* °(x) =-J,(z),

we have
¢ (z) = B,J, (2x) + B,J, (4x) + B,J, 6:v)+

where B, =—-§n f i vfl(ueg') f}

444. If we put h = instead of A =§7r in equation (23)

and proceed as in Art. 441, instead of the result of that
Article we shall obtain the following :

U COS 2nu{

F@) =3 8,407, (@) +0,J, (20) + 8,7, (3) + ..,

where a,= ?r ] : % CO8 NY {j ng—:%} du,

for every value of n except zero, and when n is zero we must
add 2f(0). The formula holds for values of & between 0

and 7.
By differentiating this, as in Art. 443, we obtain

¢ (@) =b,J, (2) +b,J; (22) +4,J, (82) + ...,

where b, =~ %f:u cos nu du 38‘9 g,i
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The formule of the present Article might also be deduced

from those of Arts. 441 and 443 by putting in them « =’; .

445. In the first formula of the preceding Article change
x mto Jz x; thus :

f(ﬁ =§(1°+2a,.=];(’n~/5),

where 3, denotes summation with respect to » from 1 to
infinity.

Differentiate both sides m times with respect to #; then
since by Art. 390 we have

1 L] -
| dﬂ*——']&gﬁw = (" Q) e *J, (n ),
we obtain *
1 L]
d.:f (“/w) = (— é) o Ea n™J, (nVz),
where a, has the va.lue assxgned in Art. 444,

‘e

22—2
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CHAPTER XXXVI.

MISCELLANEOUS PROPOSITIONS.

446. IN this Chapter we shall collect some miscellaneous
propositions which involve the use of Bessel’s Functions:

447. Having given y=2z+sin y it is required to ex-
press y in terms of z.

This problem may be stated in Astronomical language
thus ; to express the eccentric anomaly in terms of the mean
anomaly see. Hymers's Astronomy, Art. 315, or Godfray’s
Astronomy, Art. 179,

When y=0 we have 2=0, and when y=7 we have
z=m. Thus y— 2 vanishes both when z =0 and when z=;
and we may therefore expand y — 2 in the following series :

y—z=Csinz+ C,;sin2z+ C,8in 3z +...,
where C',‘=g f’r(y-—z) sinnzdz
™ [

= -“Z—f'rg/si11nz¢i.'e:+g €OS N
ml, n
By integration by parts we have

fy sin nzdz=—%cos nz+%fcosnzdy

=Y lf — s :
= ncosnz+n cosn (y—xsiny)dy;

therefore

f'ysinnzdz=—7—fcosmr+ 1 [*cosn@/—wsiny)dy.
n nl,

ov
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Thus '
C’,.=—2—f'cosn (y—zsiny)dy= —2-J,.(n:v), by Art. 372.
™), n
Therefore
y—z= 2{J‘(w)sinz+ % J,(2z)sin2z+ % J,(82)sin 3z+.. } (1)

448. In like manner we may find expressions for cosky
and sin ky, where % is any integer.

For we may put
cosky=A,+ A,cosz + A ,cos2z+ A,co83z+...

Then 4 -1 'coskydz=1 ”cosky(l—a:cos ) dy ;
o= n y)ay

0 T/
this vanishes if & is not unity, and is equal to -; if k&
is unity.

Moreover A,= % f " cos ky cos nz dz
o

= 72r—’:‘ f " sin ky sin nz dy, by integration by parts,
[
2k [~ . . .
= w—nf, sinkysinn (y—asiny)dy
= 7—56—"]: cos (ny — ky — nx sin y) dy
k[~ .
—;nfo cos (ny + ky — nx sin y) dy

- :‘i (s (02) = T, (n2)].

Inlike manner we may put
sinky =B, sinz + B,sin 2z + B,sin 3z +...,
and proceeding as before we shall find that

By s (08) + o (1))
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Suppose for example that £=1; then by Art. 379

B=1. 27 (na)= 2 J, (na);

therefore .
zsiny=2 {J (:v)smz+ J (2x)sm"z+ J,(3z)sin3z+.. } -(2).
Thus (2) agrees with (1).

449. Let r denote the radius vector from the focus in
the ellipse corresponding to the eccentric anomaly y, and
suppose the semi-axis major to be unity ; then r=1—zcosy,
and this can be expressed in terms of z, since the series for
cos y is known by Art. 448.

Also we have % (1—2zcosy)=1; therefore : = Z—‘Z: and
finding %Z from (1), we have
=1+ 2 {J,(z) cosz + J, (2z) cos 2z + J,(3x) cos Bz +...}.
450. To shew that
f ¢ J, (az) do =
[}
We have :
Jo(aw)=}—rf cos (ax cos ¢) d¢ ;
0

_1
NEEHh

therefore
f e”J, (ax)dx = }rf f”e""’cos(a:c cos ¢) dz dep. '
[ ovo
Integrate with respect to « first; thus we get

1 bip_ 2 1
fb’ S and this = f b'+acos¢ V@+b) °

Put b=0in the preceding result ; thus
[° _1
fo J,(a2) da= .
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451. To shew that . .
reor (157 r(3)

f z"J, (az) de = sin m,
'y 27!'*(14“
where m denotes a positive proper fraction.

We have

J,(az) = 7 [ cos (az cos $) d 5
0
hence the proposed definite integral

=.;1-rfnf"z"‘"cos (azz cos ¢) de dop.

But f cos (ax cos @) dp = 2 f cos (ax cos ¢) d¢p ; thus the
Pproposed definite integral
m_f f "1 cos (az cos ¢) dz dep.

Integrate with respect to @ first; then by Integral Cal-
culus, Art. 302, we get

2T (m) cos o8 I g

Ta" o cos™”

&‘ll‘
But 2]' dp 2zdz
v -y =

o COS"P .z"(l-z*)*_f & (1)}
‘f y"”(l gt o r(i-%) °

[y I3
and r(ﬂ)r(l-"l’)=—"’-:
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thus the definite integral
s WL -
- ma" g S
P (5" (5)
= py=y sin mr.

452. We ha\}e, by Art. 371,
J(z+y) =71rfwcos(wcos¢+ycos¢) d¢
= ';}r- f: cos (2 cos @) cos (y cos ¢) d
- :T-f: sin (# cos ¢) sin (y cos ) de.
But, by Art. 413,
cos (z cos ¢) = J, (z) — 2J, () cos 2¢ + 27, (x) cos 4¢p —...,
© cos (y cos @) =dJ,(y) — 2J,(y) cos 2¢ + 2J, (y) cos 4 — ... ;
therefore }r f : cos (z cos ¢) cos (y cos¢p) d
= 7,(2)J,(5) + 2, (=) J,(9) + 2J,(@) J, 1) + ..
Also, by Art. 413,
sin (zcos ¢) =2J, () cos p — 2J,(x) cos 3p+2.J,(x) cos 5p — ...,
sin(ycos ) =2J,(y) cos p—2J,(y) cos 3p+2J,(y)cos 5 — ... ;
therefore }r f : sin ( cos ¢) sin (y cos ¢) d

= 2J,(2) J,(y) + 2J,(2) J,(4) + 2J,(2) J, (3) + ...
Hence finally J, (z + y) =

(@) J () — 27, (2) I, (9) + 2J,(2) I, (y) — 2J,(2) /() + ...
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433. Let P, Q, R, k be constants which satisfy the
relations
Bcosk=P, Rsink=¢Q; °*

80 that R'=P + Q"
By Art. 372 we have

J,(B) = }J' cos (B sin ) d.
Now obviously
f " cos (R sin ) dp = f:'cos (B sin (¢+ 1)} dp;

and by differentiating the last expression with respect to %
so far as depends on the limits of the integration we obtain
zero for the result, so that the value is independent of the
value which we ascribe to k in the limit, and we may con-
sequently put zero for % in the lvmit. Thus

1~ S
T (B) = [(con (Bsin (p+1)} d
=1 f'cosR{sin¢cosk+cos¢sink}.z¢
TS
_1 f'cos (Psing + Qcos ) dp...cuuen....... (8).
e
In precisely the same manner we may shew that
JO(R)=%f:cos (Psing— Qcos ¢) dp .......... 4).
From (3) and (4) by addition and subtraction

J®=2 f: cos (P sin ) cos (Q c08 $) dgb .......(5),

0= l-f'sin (P sin ¢) sin (Q c08 $) dp ......(6).

T/
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Now let R denote the distance of two points determined -

by polar coordinates, so that we may put
R=r+r)—2mr cosb,

or R'= (r —r,cos8 0)' +r'sin* 6.

Then by (4) we have

J,(R)=}rf'cos {(r —, cos 6) sin ¢ — r, sin O cos ¢} d¢p,

[
that is , .
J,(R)= ;}rft cos {rsin ¢ —r, sin (¢ + 0)} d .......(7).
[

But by Arts. 410 and 411,
cos (rsin ¢) =J, (r) + 2J,(r) cos 2¢ + 2J,(r) cos 4 +...,
sin (r sin ¢) = 2J, (r) sin ¢ + 2J, (r) sin 8¢ + 2J(r) sin 5 +...;

and two other formule may be expressed by changing » into
r,, and ¢ into ¢+ 6.

Thus we obtain

f " cos (rsin @) cos {r, sin (¢ + 6)} dp
o U 0) T (1) 2,01, () 00820+ 2,01, eos 40+ ..,
and f'sin (r sin ) sin {r, sin (¢ + 6)} dp
=2 {J (r) :fn(";) cos@+J,(r)J () cos30+J,(r) J (r,) cos 30 +...].
Add the last two results, and thus we obtain from (7)
Jy(R) = J,(r) Jy(r) + 22 J,(r) J, (r,) cosn......... (8),

where 3 denotes summation with respect to #» from 1 to
infinity.

If we suppose 6= the result agrees with that obtained
in Art. 452 for J, (z + ).
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434. As a particular case of (8) suppose 7, =r, so that
0.
R=2r sm ; then

7 (2rsin g) — [P+ 25T, ()] 008 18 veee..(9).

But by Art. 372 we have

(2r sin ”) =1 f (2r sin ¥ sin ¢) dg,

and, by Azt 410, '
cos (21' sin ¢ sin g) =J, (2rsin ¢) + 2J, (2r sin ¢) cos §

+ 2J, (2rsin ¢) cos 20 + ...,
therefore J, (2r sin g) =

}J' (7, (2rsin §) + 27, (2r sin ¢) cos 0
+2J, (2rsin ¢) cos 20 + ...} dé ... (10).
Hence comparing (9) and (10) we have

A —-f J,.(2r sin ¢) deb.

455. The equation of Art. 376, as we have seen in the
preceding Chapters, easily leads to various theorems respect-
ing Bessel’s Functions when the number expressing the order
of the function is a positive integer. And, as we have seen
in Arts. 380 and 381, it is sometimes easy to extend these
theorems to the case in which the number expressing the
order is not restricted to be a positive integer. As another
example of such extension we may take the last formula of
Art. 422, which has been established on the supposition
that r is a positive integer, and shew that this restriction
may be removed,
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The first term in J, (x) is z"; and when this

1
T (r+1)
is integrated m times we obtain T m+r+D) ™", and
thus we easily see that the lowest term on the left-hand side
is identical with the lowest on the right-hand side.

In like manner the other terms will be identical. For
multiply both sides by I' (»+ 1), and then when the appro-
priate reductions are made which the properties of the
Gamma functions allow, we sball obtain for the coefficients of

any assigned power of z, definite algebraical functions of r;.

and as we know already that they coincide for every integral
value of r it follows that they are identically equal.

456. Both Neumann and Lommel have introduced func-
tions to which they give the name of Bessel's Functions
of the second order; the two functions are not the same,
but for them the reader is referred to the original works.

‘We may observe that equation (1) of Art. 370 remains
unchanged when the sign of » is changed; this suggests
that a sedond integral of the equation will be given by the
following series when = is not a positive integer:

a’ w‘ .
to@m—9 e a@m-2) (@-9

Ba™ {1

'
Y2 4.6@2n—2)(n—4) 2n-6) " } ’
and this may be easily verified.

In Lommel's work will also be found tables of the
numerical values of J,(z) and J;(«) and of some others of
the functions.
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