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IS SET THEORY INDISPENSABLE?

NIK WEAVER

Abstract. Although Zermelo-Fraenkel set theory (ZFC) is generally accepted
as the appropriate foundation for modern mathematics, proof theorists have
known for decades that virtually all mainstream mathematics can actually be
formalized in much weaker systems which are essentially number-theoretic in
nature. Feferman has observed that this severely undercuts a famous argument
of Quine and Putnam according to which set theoretic platonism is validated
by the fact that mathematics is “indispensable” for some successful scientific
theories (since in fact ZFC is not needed for the mathematics that is currently
used in science).

I extend this critique in three ways: (1) not only is it possible to formalize
core mathematics in these weaker systems, they are in important ways better

suited to the task than ZFC; (2) an improved analysis of the proof-theoretic
strength of predicative theories shows that most if not all of the already rare

examples of mainstream theorems whose proofs are currently thought to re-
quire metaphysically substantial set-theoretic principles actually do not; and
(3) set theory itself, as it is actually practiced, is best understood in formalist,
not platonic, terms, so that in a real sense set theory is not even indispensable

for set theory. I also make the point that even if ZFC is consistent, there
are good reasons to suspect that some number-theoretic assertions provable
in ZFC may be false. This suggests that set theory should not be considered
central to mathematics.

Probably most mathematicians are more willing to be platonists about number
theory than about set theory, in the “truth platonism” sense that they firmly believe
every sentence of first order number theory has a definite truth value, but are less
certain this is the case for set theory. Those mathematicians who are unwilling
to affirm that the twin primes conjecture, for example, is objectively true or false
are undoubtedly in a small minority; in contrast, suspicion that questions like the
continuum hypothesis or the existence of measurable cardinals may have no genuine
truth value seems fairly widespread.

Some possible reasons for this difference in attitudes towards number theory and
set theory are (1) a sense that natural numbers are evident and accessible in a way
that arbitrary sets are not; (2) suspicion that sets are philosophically dubious in a
way that numbers are not; (3) the existence of truly basic set-theoretic questions
such as the continuum hypothesis which are known to be undecidable on the basis of
the standard axioms of set theory, and the absence of comparable cases in number
theory; and (4) the fact that naive set theory is inconsistent. The classical paradoxes
of naive set theory particularly cast doubt on the idea of a well-defined canonical
universe of sets in which all set-theoretic questions have definite answers.

One philosophically important way in which numbers and sets, as they are
naively understood, differ is that numbers are physically instantiated in a way that
sets are not. Five apples are an instance of the number 5 and a pair of shoes is
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an instance of the number 2, but there is nothing obvious that we can analogously
point to as an instance of, say, the set {{∅}}. This is significant because it sug-
gests that we can be truth platonists about number theory without making any
extravagent metaphysical assumptions about the literal existence of abstract num-
bers (“objects platonism”), by interpreting number-theoretic assertions in terms of
these kinds of concrete instances, whereas it is much harder to see any natural way
to meaningfully interpret set language unless one literally believes in sets as real
entities.

Unfortunately, the philosophical difficulties with set-theoretic objects platonism
are extremely severe. First, there is the ontological problem of saying just what
sets are. Second, there is the epistemological problem of explaining how we, as
physical beings, could know anything about them. And third, there is the fact
that naive set-theoretic platonism is inconsistent and the remedies for this which
have been proposed are not really cogent. (I develop this point in Section 1 below.)
Combined with the observation of the preceding paragraph, this leaves abstract set
theory with no clear philosophical basis.

Perhaps the most influential philosophical defense of set theory is the Quine-
Putnam indispensability argument. According to this argument, mathematics is
indispensable for various established scientific theories, and therefore any evidence
that confirms these theories also confirms the received foundation for mathematics,
namely set theory. But as a result of work of many people going back to Hermann
Weyl, we now know that the kind of mathematics that is used in scientific appli-
cations is not inherently set-theoretic, and indeed can be developed along purely
number-theoretic lines. This point has been especially emphasized by Feferman.
Consequently, contrary to Quine and Putnam, the confirmation of present-day sci-
entific theories provides no special support for set theory. Indeed, the implications
of the indispensability argument are reversed: if we find that none of the philosoph-
ically questionable parts of mathematics have any clear scientific value, this only
tends to strengthen doubts about their actual validity.

Going beyond the indispensability argument, I see three further questions which
can be raised in defense of the view that axiomatic set theory is the proper founda-
tion for mathematics. First, even if the bulk of mainstream mathematics (including
all scientifically applicable mathematics) can be formalized in essentially number-
theoretic systems, is the formalization in Zermelo-Fraenkel set theory (ZFC) not
more elegant and aesthetically appealing? Second, is set theory not needed for
some important (even if not at present scientifically applicable) mainstream math-
ematics? And third, is set theory not of sufficient intrinsic interest on its own to
dissuade us from abandoning it? I deal with these questions in Sections 4, 5, and
6. Briefly, I claim that formalizing mainstream mathematics in essentially number-
theoretic systems actually carries substantial advantages over formalization in ZFC;
that in fact, essentially all mainstream mathematics, not just the scientifically ap-
plicable part, is formalizable in metaphysically unexceptionable systems; and that
set theory itself need not be abandoned because it is already largely practiced in
a formalistic manner which does not actually require any kind of platonism for its
justification.

This raises the possibility that the use of set theory as a foundation for mathe-
matics may be an historical aberration. We may ultimately find that ZFC really has
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no compelling justification and is completely irrelevant to ordinary mathematical
practice.

1. Platonist defenses of ZFC

Before I treat the question of indispensability I want to make a case that there is
no clear philosophical basis for ZFC, on either platonist or anti-platonist grounds.
This section will deal with platonism and the next with anti-platonism.

According to the platonist view, sets are in some sense real objects and the
Zermelo-Fraenkel axioms are true statements about these objects. Generally sets
are held to be “abstract” objects, so that they are not supposed to exist in space
and time. Whatever this even means, it immediately leads to the epistemological

problem of how we could know anything about them, a problem given wide currency
by Benecerraf [1].

We must also ask what sort of entities sets are supposed to be (the ontological

problem). This is related to the epistemological problem; presumably both questions
would have to be answered together. However, whereas the set theory literature is
largely silent on epistemology, every introductory text has something to say about
ontology. Sometimes this is nothing more than some version of the non-definition
“A set is a collection of objects” ([14], p. 4), but more often the nature of sets
is explained in terms of spurious examples such as flocks or herds. For instance,
Halmos says that a pack of wolves, a bunch of grapes, and a flock of pigeons are
examples of sets ([10], p. 1), a statement satirized by Black with the comment that
“It ought then to make sense, at least sometimes, to speak of being pursued by a
set, or eating a set, or putting a set to flight” ([3], p. 615).

As Black’s comment illustrates, there is little connection between the mathemat-
ical concept of a set and everyday expressions of the kind cited by Halmos. This
was established in a decisive fashion by Slater, who analyzed in detail the various
types of collective expressions used in ordinary language and showed that none of
them has anything to do with sets in the mathematical sense ([24], Section II). His
conclusion is that “the ‘sets’ of ‘Set Theory’ cannot be interpreted either in terms
of groups of physical things, or in terms of numbers of things, or by translation into
plural expressions. Certainly there is the set-theoretic symbolism, and the rules for
its manipulation, and maybe it all has some interpretation. But it does not have
any of the traditional interpretations, on the basis of which it was developed” ([24],
p. 63). (See also Section 1.1 of [34] for more on this point.)

This raises the question of why, if naive set theory really is so ill-conceived, it
is so easy to learn and feels so natural. As I noted in the introduction, sets are
not physically instantiated in any obvious way. However, they may be at least
to some extent linguistically instantiated, as natural language exhibits the same
hierarchical nested behavior that is seen in set theory. This suggests that naive set
theory appeals to our lingistic intuitions and that the classical paradoxes of naive
set theory merely reflect limitations that would be encountered in any attempt to
develop an ideal self-referential language.

Interpreting the paradoxes from a platonist perspective is not so easy. Indeed, it
could be argued that they should block any solution to the ontological problem, on
the grounds that understanding exactly what sets are is just what would be needed
to render the construction “the set of all sets” legitimate.
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The standard platonist answer to the paradoxes is that sets should be under-
stood in terms of the iterative conception enunciated by Gödel: “a set is something
obtainable from the integers (or some other well-defined objects) by iterated ap-
plication of the operation ‘set of’ ” ([9], p. 474). One interpretation of this idea
is that it is meant to single sets out as a special kind of collection. Some authors
clearly display this interpretation by writing, in the context of discussing the itera-
tive conception, about collections which do not lie in the cumulative hierarchy and
hence are not sets (e.g. [6], p. 2 or [17], p. 40). But this merely amounts to a change
in terminology and evidently leaves the paradoxes in place as regards collections.
Since “collection” is the more primitive concept, this is ultimately unhelpful.

The iterative conception can only help resolve the paradoxes if we view it as
clarifying the intuitive concept of a collection, not as introducing a new, distinct
“set” concept. But this clarification is elusive, as can be seen by looking at some
of the versions of the conception which have appeared in the literature:

sets are ‘formed’, ‘constructed’, or ‘collected’ from their elements
in a succession of stages . . . ([18], p. 506)

According to the iterative conception, sets are created stage-by-
stage, using as their elements only those which have been created
at earlier stages. ([19], p. 183)

In the metaphor of the iterative conception, the steps that build up
sets are “operations” of “gathering together” sets to form “new”
sets. ([21], p. 637)

Thus a set is formed by selecting certain objects . . . we want to
consider a set as an object and thus to allow it to be a member
of another set . . . When we are forming a set z by choosing its
members, we do not yet have the object z, and hence cannot use it
as a member of z. ([22], p. 322-323)

It should be apparent from this selection that the nature of the set-forming op-
eration is extremely unclear. There seems to be no general agreement even as to
whether this is an actual operation which could in any sense be carried out, or
instead some kind of impenetrable metaphor. The problem is apparent in Boo-
los’s remark that “a rough statement of the idea . . . contains such expressions as
‘stage’, ‘is formed at’, ‘earlier than’, ‘keep on going’, which must be exorcised from
any formal theory of sets. From the rough description it sounds as if sets were
continually being created, which is not the case” ([4], p. 491). Yet Boolos does
not follow his rough statement with a more informative informal description that
avoids the objectionable phrases, and it seems doubtful that he could. Without
these expressions there is no informal description.

This difficulty is connected to the ontological problem, about which none of the
authors cited above has anything meaningful to say: if we have no idea what sets are
supposed to be, obviously there is little we can say about how they are supposed
to be formed. Yet the idea that sets are in some sense “formed” from elements
which enjoy some kind of “prior” existence is crucial to the iterative conception’s
ability to evade the classical paradoxes. The point is supposed to be that the set of
all sets, or the set of all ordinals, or Russell’s set, are illegitimate on the iterative
account precisely because they cannot be “formed”. So it seems fair to say that the
iterative conception successfully deals with the paradoxes only to the extent that
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it presents a clear picture of the operation of set formation, which is to say, not at
all.

This problem is especially acute because it is also part of the iterative conception
that the power set operation is the basic step to be used in the “construction” of
sets. Jané explains why this causes trouble (a similar point is made by Lear [13]):

We must also have recourse to some form of the power set operation
before setting up the iterative conception. This is an important
point that is often obscured and whose neglect might lure us into
believing that the power set axiom of ZF simply follows from the
idea of iteration. The reason given for the validity of this axiom is
that if a set lies on a layer, so do all its subsets, and therefore the set
of all of them lies on the next layer. One question about this way
of presenting the matter is what is meant by “all subsets” of a set
a. Perhaps from the standpoint that the iterative conception only
describes how the world of sets is actually structured there is really
no question to be asked (for if we can resort to the universe of sets,
there is no difficulty in saying what are all subsets of a; they are
just those sets all of whose members are members of a). But if we
want to account for the set-theoretic universe as built by iterated
application of the power set operation, such an explanation is of no
use whatever. Since we cannot turn to the result of the iteration to
tell what to do at each step, the notion of all subsets of a given set
cannot be taken for granted, but must be clarified at the outset.
([12], p. 374)

This actually understates the problem, because however the notion of all subsets

is clarified, if the force of the iterative conception against the paradoxes is to be
maintained this must be done in a manner that allows us to retain some sense of
“construction” or “formation” of power sets. But the essentially circular nature of
power sets renders this prospect quite hopeless. I refer here to the predicativist
criticism of the power set of the natural numbers as an inherently circular object.
The sort of circularity that is involved can be seen in an example I introduced in [31].
Let (An) be a standard enumeration of the sentences of second order arithmetic.
These are formal expressions which include first order variables x, y, z, . . . ranging
over the natural numbers and second order variables X, Y, Z, . . . ranging over sets of
natural numbers, and which allow quantification of both types of variables. Then
consider the set S = {n : An is true}. This is a well-defined set of numbers,
provided each sentence An has a definite truth value. However, it is the existence
of the power set of the natural numbers as a well-defined totality which guarantees
that these sentences do have definite truth values; without assuming this we cannot
give a definite meaning to second order quantification. Thus, if the power set of
the natural numbers is not already available then we cannot expect to be able to
determine the set S, or to put it differently, S is a set of natural numbers which only

becomes available after we have all sets of natural numbers. Because of this kind of
circularity, there is no sense in which we can imagine the power set of the natural
numbers as being built up in a piecemeal fashion, if it was not already available to
begin with.

The “medieval metaphysics” ([7], p. 248) of platonism must be attacked directly
on epistemological and ontological grounds. But even leaving these questions aside,
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the iterative conception is internally incoherent. If language about “formation” and
“construction” is to be taken as having any content whatever — which it must if the
paradoxes are to be defused — then the idea that the formation of power sets is to
count as a legitimate set-building operation is meretricious. There is no meaningful
sense in which power sets can be thought of as being formed or constructed.

2. Anti-platonist defenses of ZFC

The goal of this section is to argue that there is no good anti-platonist justifi-
cation of ZFC. But first something needs to be said about what would count as a
“justification” in this context. Since anti-platonists do not believe in a well-defined
universe of sets, they obviously cannot be expected to affirm that the Zermelo-
Fraenkel axioms are really true in any strong sense.

It is tempting to suppose that the only issue for anti-platonists is whether ZFC is
consistent. However, this ignores the fact that some theorems of ZFC are genuinely
meaningful even from a very strong anti-platonist perspective. For example, certain
sentences in the language of set theory are directly interpretable as statements of
first order arithmetic. Anyone who recognizes such statements as meaningful ought
to be interested in knowing whether all theorems of ZFC of this form are actually
true.

At a minimum, I think that any attempt to justify ZFC on anti-platonist grounds
ought to say something about whether ZFC is Σ1-valid, i.e., whether every Σ1

sentence of first order arithmetic that is provable in ZFC is actually true. These are,
in effect, assertions of the form “Turing machine x halts on input y” for particular
values of x and y. I take it that few anti-platonists would deny the meaningfulness
of such assertions. Therefore the question of the Σ1-validity of ZFC is legitimate.
It is also pressing: if ZFC gives us bad information about which Turing machines
halt, we surely would not want to use it as a basis for mathematical theories used
in scientific applications, nor should we be enthusiastic about using it as a basis for
mathematical theories generally.

Mere Σ1-validity would seem to be a very minimal requirement, but there are
a number of purported anti-platonist justifications of ZFC which in fact do not
address this issue in any way. For example, a variety of reasons have been given
by various authors as to why anti-platonists ought to feel confident that ZFC is
consistent. These arguments may or may not be persuasive, but even if we could
be certain that ZFC is consistent, that in itself would not entail its Σ1-validity. For
instance, if ZFC is consistent then the theory ZFC+¬Con(ZFC) is also consistent,
but it proves the false Σ1 sentence ¬Con(ZFC).

(According to ([25], pp. 1-2), Gödel criticized the formalist goal of proving the
consistency of infinitary mathematics in precisely this way: “. . . it would be, e.g.,
entirely possible that one could prove with the transfinite methods of classical
mathematics a sentence of the form ∃xF (x) where F is a finite property of natural
numbers (e.g. the negation of the Goldbach conjecture has this form) and on the
other hand recognise through conceptual considerations that all numbers have the
property not-F ; and what I want to indicate is that this remains possible even if
one had verified the consistency of the formal system of classical mathematics.”)

“Naturalistic” philosophies which rationalize ZFC in terms of the fact that set
theorists like its properties also fail the Σ1-validity test. For example, Maddy
approves of arguing from “this theory has properties we like” to “this theory is
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true” ([15], p. 163); but we may like a theory for reasons which have no bearing
on its Σ1-validity, and the sorts of reasons Maddy admires generally do fall in this
category. In particular, she rejects demands that mathematical theories be true in
any substantive sense as “philosophical niceties” and states that “what matters are
the intra-mathematical goals and the effectiveness of various means of achieving
them” ([16], p. 417). Probably when she says this she is thinking of questions like
the continuum hypothesis which could plausibly be supposed to have no definite
content, and not about the fact that axioms which settle such questions might also
have elementary number-theoretic consequences.

On the other hand, there are more ambitious philosophical programs, such as
those in [5] and [8], which attempt to justify ZFC (or a large fragment of ZFC)
in a very strong way on anti-platonist grounds. If some program of this sort were
to succeed, we could then be confident that ZFC is Σ1-valid. However, these at-
tempts are, I believe, generally regarded as actually involving substantial platonist
assumptions, and this is only to be expected given the proof-theoretic strength of
ZFC. As I suggested in the introduction, a straightforward case can be made for
Peano arithmetic on anti-platonist grounds, but when we turn to set theory the
prima facie case goes against anti-platonist acceptability. Indeed, Peano arithmetic
(PA) lies more or less at the limit of what can be regarded as obviously legiti-
mate by an anti-platonist. There are accepted methods of working up to stronger
systems, for example by adding an assertion of the consistency of PA and then
iterating (cf. Section 5), but it seems extremely unlikely that one could get all the
way up to ZFC using such techniques. The point is that there is a huge gap in
consistency strength between PA and ZFC, so that the prospect of incrementally
working up to ZFC appears quite hopeless. The other possibility, that there is some
anti-platonist principle that would allow us to bridge the gap in a single step, also
seems highly unlikely. So the prospect of anti-platonistically justifying ZFC in a
manner sufficient to establish its Σ1-validity is not realistic.

I have been taking it as prima facie plausible that Peano arithmetic is anti-
platonistically legitimate; I defend this claim in more detail in Section 1.3 of [35].
Various objections could be raised. For example, some set-theoretic platonists
would say that even number theory requires objects platonism. Their response to
the argument that numbers can be understood in terms of concrete instances might
be that this only works for small numbers since the universe could be finite. To the
contrary, I find it perfectly reasonable to suppose that one can understand basic
arithmetic without having to believe in an abstract world of numbers. The question
whether our universe is finite or infinite does not seem relevant since the point is
not that we have to actually physically observe and manipulate n objects in order
to have access to the number n. All we need is to have an idea of what it would
mean to observe and manipulate n objects. I think this is a perfectly sensible way
to interpret number theory and I think the idea that there is something deeply
problematic with it is disingenuous. Note that set theory apparently cannot be
interpreted in any similar way because there are no natural concrete proxies for
sets.

An objection can also be made in the other direction, from the point of view
of intuitionism. Whereas the set theorist accepts PA himself, but argues that one
must be an objects platonist to do this, the intuitionist is genuinely unable to accept
PA. This position has integrity but I think it runs against common sense. Even if
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we reject the idea of a platonic world of numbers and interpret number-theoretic
assertions in concrete terms, questions like the twin primes conjecture still seem to
me completely definite. I argue this point further in Section 1.3 of [35].

It is important to recognize that the legitimacy of ZFC as a foundational system
involves more than its mere alleged consistency. If it is to be taken as the rightful
foundation of mathematics we should at the very least have good reasons for be-
lieving it is Σ1-valid. Yet “soft” justifications of ZFC which merely aim to show
that it is consistent or pleasing in some way do not speak to this question. There
remains the possibility of a “hard” justification which does accomplish something
substantive on this score, but this does not seem a realistic hope.

I will go further and say that it is more likely than not that some false statements
of first order arithmetic are theorems of ZFC; see Section 7 below.

3. Applicable mathematics without set theory

In the preceding two sections I have indicated that Zermelo-Fraenkel set theory
does not have a clear philosophical basis in either platonist or anti-platonist terms.
It therefore becomes reasonable to ask what the consequences would be of rejecting
ZFC as a foundation for mathematics.

Some philosophers may naturally be reluctant to pursue this question because it
could entail having to tell mathematicians that they are practicing their subject in-
correctly. The situation is not quite as bad as that, since, after all, most mathemati-
cians have little interest in foundations and may have no particular commitment to
ZFC. (Maddy [15] paints a very different picture, but her “mathematicians” really
seem to be set theorists.) Still, for example, one commentator, who clearly recog-
nized the difficulty in justifying the power set axiom, was driven to simply postulate
the existence of power sets based on “external requirements”, presumably meaning
the fact that mathematicians use them ([12], p. 388).

However, it is now a settled fact that power sets of infinite sets are not actually
needed for the vast bulk of mainstream mathematics. The philosophical stance
which admits the natural numbers but not its power set is called predicativism; it
was originally put forward by Bertrand Russell and Henri Poincaré, and there is a
long line of research stretching back to Hermann Weyl which establishes in detail
its ability to encompass ordinary mathematics. (See the introduction to [32] for
references, and see [31] and Section 3 of [34] for more on the philosophical basis of
this view.) The basic idea is that we accept the natural numbers and individual
real numbers (or equivalently, individual sets of natural numbers, which can still
be pictured in terms of physical instantiation) but do not assume the existence of
a well-defined set of all real numbers (which cannot be meaningfully understood in
terms of physical instantiation). In effect we treat the real line as a proper class.
We can then accomodate all of the structures that appear in normal mathematics
by various encoding tricks; for example, using an injection from N × N into N we
can encode a sequence of reals as a single real number, and so on. Formalizing this
approach yields the system ACA0, and the fact that the bulk of normal mathematics
can actually be carried out in this system is established at length in [23]. ACA0 is
conservative over PA, i.e., any theorem of first order arithmetic provable in ACA0

is already provable in PA.
There are a number of possible variations on the above. For instance, in [35] I

present a system which allows a limited additional ability to reason about arbitrary
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properties of real numbers. This has to be done carefully in order to maintain
the philosophical integrity of the system, but it has the advantage of reducing the
coding machinery needed in [23]. Another approach is to explicitly construct a
countable structure which can play the role of a miniature set-theoretic universe,
and then formalize core mathematics within this structure in the standard way.
This was done in [32].

Feferman has made the point that the fact that normal mathematics can be
formalized in systems like ACA0 neutralizes the Quine-Putnam indispensability
argument mentioned in the introduction ([7], Chapter 14). The latter is possibly the
most influential philosophical defense of set-theoretic platonism, but in light of the
above facts it completely loses its force. If all scientifically applicable mathematics
can be straightforwardly formalized in systems which are conservative over PA, then
the fact that some scientific theories which use this mathematics are well confirmed
lends no particular support to ZFC.

Set theory apologists have responded rather grudgingly to Feferman’s point.
Quine himself, writing in 1991, acknowledged its validity in a magnanimous but
curiously subjunctive way:

Sanguine spirits there have been, and Solomon Feferman and Hao
Wang are two of them today, who hope to show that enough mathe-
matics can be derived for purposes of natural science without going
beyond predicative set theory. This would be a momentous result.
It would make a clean sweep of the indenumerable infinites and
unspecifiable sets . . . ([20], p. 229)

The “hope to show” and “would” language is a little strange, given that Wang
outlined how to do this in 1954 [28] and gave details in 1963 ([29], Chapter XXIV),
and several others had done similar work between 1955 and 1975.

Tellingly, Maddy finds it “striking” ([14], p. 4) and “remarkable” ([15], p. 23)
that so much mathematics can be formalized in ZFC, and concludes “that set
theory plays this role is central to modern mathematics” ([15], p. 35), yet as far as
predicative systems are concerned she makes only the vague admission that “for the
purposes of providing tools for current science . . . weaker systems would probably
do” ([16], p. 413) and sees no special significance in this fact. Steel also considers
the formalizability of mathematics in ZFC “remarkable” ([26], p. 423) but thinks
the fact that mainstream mathematics can be done in (unspecified) weaker systems
“will never be more than a description of the current state of affairs” ([26], p.
424). In both cases formalizability in the favored system, ZFC, is accorded great
significance but the stronger phenomenon of formalizability in essentially number-
theoretic systems is dismissed as irrelevant.

Hellman actually claims that at present “some physically applicable mathematics
appears to transcend the bounds of predicativism, especially the use of nonseparable
Banach or Hilbert spaces, e.g. in quantum field theory (see e.g. Emch (1972))” ([11],
p. 218; italics in original). It is unfortunate that this reference is not more specific,
as I cannot find any use of nonseparable Hilbert spaces in Emch’s book. They
certainly play no significant role in modern quantum field theory, or in any area of
modern physics for that matter.

Nonseparable Banach spaces, on the other hand, are routinely used in the math-
ematics of quantum field theory: every infinite dimensional von Neumann algebra
is nonseparable. But already in ordinary quantum mechanics, the space B(H) with
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H separable is itself non-separable, and even in engineering applications nonsepa-
rable L∞ and H∞ spaces are commonly used, so one hardly has to go all the way to
quantum field theory to see nonseparable Banach spaces in applications. However,
every such example of which I am aware (including local nets of von Neumann
algebras in quantum field theory, presumably the point of the reference to Emch)
can be straightforwardly handled in, e.g., the systems of [32] or [35] or, with minor
indirection, in ACA0. (The Banach spaces cited above are all weak* separable,
local nets of von Neumann algebras are countable unions of such spaces, and so
on.) So Hellman’s assertion is not well-taken.

Hellman, Maddy, and Steel are all impressed by the possibility that set-
theoretically substantial mathematics might one day be needed in scientific ap-
plications. But of course the mere possibility of future applications provides no
support whatever for the indispensability argument. Indeed, one could say of vir-
tually any formal system that future applications are possible. We would only find
this possibility noteworthy if we had separate reasons for being interested in the
particular system in question. This is really the opposite of an indispensability ar-
gument, because ZFC is not gaining credibility from its scientific applications — at
present it has none — but rather is seen as a good candidate for future applications
because evidently it is already felt to be credible on some other grounds.

I must add, however, that given our current understanding of basic physics,
the prospect of set-theoretically substantial mathematics ever becoming essential
to meaningful scientific applications appears extremely unlikely. This should be
obvious to anyone with a basic knowledge of mathematical physics and an under-
standing of the scope of predicative mathematics. An essential incorporation of
impredicative mathematics in basic physics would involve a revolutionary shift in
our understanding of physical reality of a magnitude which would dwarf the passage
from classical to quantum mechanics (after all, both of these theories are completely
predicative). I would rate the likelihood of ZFC turning out to be inconsistent as
much higher than the likelihood of it turning out to be essential to basic physics.

The assumption that set-theoretically substantial mathematics is of any use in
current science is simply false. One can hold out hope that some radically different
future physical theory would require such mathematics, but there is no rational
basis for this hope. It certainly finds no encouragement in the character of current
physics. The argument that ZFC should be retained as the standard foundation
for mathematics because it might conceivably be indispensible to some future sci-
entific application only makes sense if we have an independent reason for favoring
ZFC over other foundational systems, and is not itself a reason for favoring ZFC.
Consequently, given the scope of predicative mathematics, the Quine-Putnam in-
dispensability argument no longer has any force whatever.

4. ZFC is foundationally unsuitable

The idea that Zermelo-Fraenkel set theory is to be justified by its scientific
applications is not the only potentially persuasive argument in favor of taking it to
be the appropriate foundational system for modern mathematics. A case could also
be made that predicative systems, while in principle adequate, are too awkward in
practice and should yield to ZFC on aesthetic grounds. Or one could argue that
in order to be acceptable a foundational stance must encompass all mainstream
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mathematics, not just the scientifically applicable parts. Or one could argue directly
in defense of ZFC as a mathematical system of intrinsic interest.

I will address these points in this and the following two sections. First, is ZFC
really the most attractive foundational system available? It is certainly aesthetically
preferable to some predicative systems, particularly some of the older ones, but that
does not settle the issue. A variety of predicative systems have been proposed as
settings in which to formalize core mathematics; the question is whether any of
them competes with ZFC in terms of elegance and ease of use.

For instance, several predicative systems based on type-theoretic formalisms have
been put forward by various authors. Personally, I tend to dislike this sort of ap-
proach. Partly this is because extra work seems to be involved in keeping track of
the different types, and partly it is because I find some of these systems unintu-
itive, but probably my main disagreement with type-theoretic approaches generally
is that they seem stylistically too far removed from mainstream mathematical prac-
tice. Probably this is simply a matter of taste.

A different complaint can be raised against the formalization of core mathe-
matics in ACA0 as described in [23], namely that it involves fairly heavy coding
machinery. However, that criticism is unfair because the goal in [23] is to determine
the weakest possible systems in which various theorems can be proven. Getting by
with absolutely minimal assumptions may require some extra coding, but that is
not the point. As I show in [35], passing to a third order language substantially
reduces the need for coding.

We must remember that every formalization of mathematics involves some sort
of coding. In ZFC natural numbers are coded as von Neumann ordinals, integers are
coded as equivalence classes of ordered pairs of natural numbers (and ordered pairs
are coded set-theoretically), rationals are coded as equivalence classes of ordered
pairs of integers, and reals are coded as (say) Dedekind cuts. The predicative system
CM of [35] requires roughly the same degree of coding. Here natural numbers are
taken as primitive, so we do not have to code them as von Neumann ordinals.
We use an injection from N × N into N to code ordered pairs of natural numbers
as natural numbers; I do not think this is terribly awkward compared to coding
ordered pairs set-theoretically. The constructions of Z, Q, and R in CM are then
similar to their constructions in ZFC.

With one additional use of an injection from N × N into N the preceding con-
structions yield sequences of integers, sequences of rationals, and sequences of reals.
Now virtually every standard mathematical space can be more or less straightfor-
wardly realized inside Rω, so the amount of coding needed in CM to construct
these standard spaces is roughly comparable to that needed in ZFC.

One of the less attractive coding aspects of ACA0 involves continuous maps
between complete separable metric spaces. In this setting a complete separable
metric space X is coded by a countable dense subset of X , and functions between
such spaces are slightly complicated to handle because we cannot assume that the
given dense subset of the domain is mapped into the given dense subset of the
range. In CM this difficulty disappears because the third order language allows us
to represent separable spaces (and even some nonseparable spaces) directly.

In short, I think the formalization of core mathematics in CM is quite comparable
with its formalization in ZFC in terms of simplicity, elegance, and ease of use. Of
course real mathematics is not actually formally executed in ZFC; it is presented
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informally in a manner which, ideally, would render formalization in ZFC tedious
but not difficult. Instead taking CM as the foundational standard would in most
subjects alter this informal presentation of mathematics in everyday practice not

at all. In some more set-theoretically oriented fields like functional analysis there
would be noticeable differences, but still, mainstream practice would not have to
change in any really substantive way. The idea that predicative mathematics has
to be horribly complicated is just not true.

The formalizations of core mathematics in ZFC and CM are roughly comparable
in terms of elegance. However, this does not mean that the two systems should
be thought equally suitable for this task. ZFC has one major shortcoming that
predicative systems do not share, namely, that the Zermelo-Fraenkel universe is

grossly discordant with the realm of ordinary mathematics. Following Gödel’s it-
erative conception of sets (see Section 1), we can prove in ZFC the existence of
sets Sα, with α ranging over all ordinals, such that S0 = N, Sα+1 = P(Sα) (the
power set of Sα), and Sα =

⋃
β<α Sβ when α is a limit ordinal. This means that

Sα is defined for α = ω, ω2, ωω, ǫ0, ℵ1, ℵω, ℵℵω
, and so on. Yet virtually none

of this sequence beyond S1 = P(N) is needed in mainstream mathematics. Almost
no objects, arguably no objects at all, in mainstream mathematics have cardinal-
ity greater than that of the continuum, and consequently virtually every ordinary
mainstream object can be more or less straightforwardly encoded as either a set of
natural numbers or a set of reals. This dichotomy between sets of numbers and sets
of reals is just the dichotomy between discrete and continuous mathematics. We
have no analogous word for mathematics at the level of P(P(N)) or at any higher
level because there is no mainstream mathematics there. Maybe the right word is
pathological.

In contrast, the predicative universe exhibits a strikingly exact fit with the uni-
verse of ordinary mathematics. This is particularly well illustrated by the dual
Banach space construction in functional analysis. Classically, every Banach space
V has a dual Banach space V ′, but predicatively this construction is only possible
when V is separable. Remarkably, it seems to be a general phenomenon that for
any “standard” Banach space V , its dual is also “standard” if and only if V is sep-
arable. In other words, start with any well-known Banach space V that commonly
appears in the functional analysis literature, and iteratively take duals to create
a sequence V, V ′, V ′′, . . .. It will generally be the case that if V is in common use
then V ′, V ′′, etc., will also be in common use — up to the first nonseparable space
in the sequence. All spaces after that point will be highly obscure.

For example, take V = L1(R) (separable). Then V ′ = L∞(R) (nonseparable),
and V ′′ is an obscure space that has no standard notation. Or take V = C[0, 1]
(separable). Then V ′ = M [0, 1] (nonseparable), and V ′′ is an obscure space that
has no standard notation. Take V = K(H) (the compact operators on a separable
Hilbert space H; separable). Then V ′ = TC(H) (the trace class operators on H;
also separable), V ′′ = B(H) (the bounded operators on H; nonseparable), and V ′′′

is an obscure space that has no standard notation. If V = c0 (separable) then
V ′ = l1 (separable), V ′′ = l∞ (nonseparable), and V ′′′ arguably has a standard
notation — it is the space of Borel measures on the Stone-Čech compactification
of the natural numbers — but it is certainly an obscure space that appears in the
literature with extreme rarity. Examples of this type could be multiplied endlessly.
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The explanation of this phenomenon is simple: generally speaking, duals of
nonseparable spaces are highly pathological objects about which little of value can
be said. This is characteristic of impredicative mathematics generally. The extra
generality of ZFC is spurious, involving structures which are highly pathological
from the point of view of mainstream mathematics. Generally speaking, “nice”
spaces are predicative. This may sound like a purely subjective judgement, but it
can also be seen more objectively in the fact that basic properties of impredicative
spaces tend to be undetermined in ZFC. For instance, the most familiar example of
a pathological, impredicative space is βN, the Stone-Čech compactification of the
natural numbers. Does βN − N have any nontrivial self-homeomorphisms? The
answer is independent of ZFC, assuming ZFC is consistent [27]. The existence of
basic questions which cannot be answered in ZFC is typical of impredicative spaces.

Of course, the existence of undecidable statements is a feature of any sufficiently
strong consistent formal system. The issue is not whether such statements exist,
but how common and how basic they are. The impredicative portion of the uni-
verse of ZFC is rife with undecidability, and many known undecidable statements
are not contrived, but appear quite fundamental — the prototype of such a state-
ment being the continuum hypothesis. Despite strenuous efforts by logicians to
identify similarly fundamental number-theoretic statements which are undecidable
in predicative systems, the best available examples are still rather complicated and
unnatural. Extravagent claims along these lines are sometimes made, but this seems
to be wishful thinking similar to the expectation that impredicative mathematics
is likely to become scientifically relevant (see the end of Section 3). Even if some
really good examples were found, this still would not compare with the ubiquity of
undecidability in impredicative mathematics.

The pathological quality of ZFC has consequences. One effect is that work-
ing mathematicians in certain fields have to expend effort learning to avoid set-
theoretically pathological lines of investigation. This is illustrated by Hellman’s
suggestion mentioned in Section 3 that nonseparable Hilbert spaces could be im-
portant in mathematical physics. They are not, but this is something mathematical
physicists have to learn. Similarly, functional analysts have to learn that duals of
nonseparable spaces are not fruitful. Thus, in some fields the greater generality
of ZFC merely opens non-productive avenues that working mathematicians must
actively avoid.

I do not want to overemphasize this point, as it is not difficult to recognize set-
theoretic pathology or to learn that it is to be avoided. However, the standard use
of ZFC as a foundation for mathematics does entail some wasted effort in this way.
A more significant effect is the loss of top-flight mathematicians to impredicative set
theory. This is not to say that the study of ZFC should be abandoned wholesale
(see Section 6), but on the other hand it is obvious that the intellectual power
that has gone into the development of set theory is far out of proportion to its
importance to mathematics as a whole. The erroneous assessment of ZFC as being
central to mathematics has attracted many first-rate mathematicians to study it,
drawing them away from other genuinely central subjects.

ZFC is not an appropriate foundation for mathematics. While the formalization
of core mathematics in ZFC is reasonably straightforward, it is no more elegant
than formalization in predicative systems like CM. But ZFC, unlike CM, is very
poorly fitted to mainstream mathematics in that it embeds the well-behaved realm
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of ordinary mathematics in a vast arena of set-theoretic pathology. This can be a
distraction for ordinary mathematicians because it opens up fruitless lines of investi-
gation. More significantly, the widespread ascription of fundamental status to ZFC
has the effect of channeling intellectual resources away from truly central subjects.
Taking ZFC as the foundational standard is, in important ways, pernicious.

5. The limits of predicativity

As I discussed in Section 3, current science makes no essential use of impred-
icative mathematics. One reaction that some people have to this fact is that it
is just an accident and future scientific theories surely will (or at least, there is
a reasonable expectation that they will) use impredicative mathematics. I think
this could seem plausible if one thinks of mathematics as a whole as being highly
interconnected in an intellectually and aesthetically compelling way, and one also
sees predicative mathematics as a small, artifically restricted part of mathematics
as a whole. Then one might see no significance in the fact that all currently applied
mathematics happens to be predicative and no reason to expect this to remain true
as science develops further.

The clearest error in this way of thinking is the idea that predicative mathemat-
ics is a small part of mathematics as a whole. On the contrary, most mainstream
subjects — differential geometry, algebraic topology, complex analysis, PDEs, etc.
— as they are currently practiced, lie virtually entirely within the bounds of pred-
icativity. Some other mainstream areas like abstract algebra or functional analysis
in principle include impredicative material, but the role impredicativity plays in
current research in these fields is still quite minimal. It is only in set theory itself
that significant impredicativity is routinely seen.

This calls into question the “organic unity” picture of mathematics as regards set
theory. The latter is not interconnected with the other fields listed above in anything
like the same way that those fields are interconnected with each other. This should
be obvious to any working mathematician; it can also be seen, for example, in the
fact that virtually all mainstream mathematics can be straightforwardly construed
as taking place in (at worst) P(P(N)).

Thus, Feferman’s emphasis on the fact that scientifically applicable mathematics
is predicative (see Section 3) substantially understates the scope of predicativity, as
it can leave the impression that there may be a large body of scientifically unapplied
mainstream mathematics which is not predicative. Certainly, framing the debate
in terms of scientifically applicable mathematics is the best way to make a case
specifically against the Quine-Putnam indispensability argument because it is only
this type of mathematics that is relevant to that argument. However, it may not
be persuasive as a general defense of predicativism because of course one wants to
preserve all mainstream mathematics, not just those bits that are currently being
used in science.

Now it is more difficult to decisively show that all or virtually all mainstream
mathematics is predicative because “mainstream” is not as sharp a concept as
“scientifically applicable”. But there are still ways of making this case. For exam-
ple, one can observe that the material that appears on qualifying exams in typical
mathematics Ph.D. programs is entirely or almost entirely predicative. By making
observations like this one can build up the idea that impredicative mathematics is,
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by mainstream standards, highly pathological, and this should lead to the expec-
tation that it is unlikely to be significantly used in successful scientific theories.

Although it is imprecise, the question of just how much mainstream mathematics
is impredicative deserves to be considered further. Indeed, are there any compelling
examples of clearly mainstream results that are fundamentally impredicative? And
if there are, what are the philosophical consequences?

First of all, I do not accept the idea that the existence of even a single impred-
icative mainstream theorem would decisively discredit predicativism. If there were
only a handful of examples of impredicative mainstream results and none of them
seemed centrally important, then anyone who found predicativism to be philosophi-
cally persuasive might be willing to simply give up those results. (Actually, as I will
explain in Section 6, this would be an overreaction: impredicative mathematics does
not have to be given up, but only to be reinterpreted in formalist terms.) But I have
already made the point in Section 3 that the vast bulk of mainstream mathematics
is uncontroversially agreed to be predicative. So the case for predicativism does not
hinge on whether there are any good examples of clearly mainstream results that
are essentially impredicative.

Having said this, I will now add that I believe there are in fact no such examples.
This runs against claims routinely made in the foundations literature that certain
mainstream results (e.g., Kruskal’s theorem) are known to be impredicative. The
basis for assertions like these is an analysis of the proof-theoretic strength of pred-
icative systems that was carried out by Feferman and Schütte, based on an idea of
Kreisel. I have thoroughly criticized this analysis, including a series of subsequent
papers of Feferman, in [33]; here I will outline my critique of the original analysis
involving autonomous systems.

Without going into great detail, the general idea of the autonomous systems is
the following. We construct a recursive well-ordering ≺ of ω with least element
0 and a corresponding family of formal systems Sa (a ∈ ω) such that we can
predicatively infer, for any a, that if all Sb with b ≺ a are valid then so is Sa. In
particular, the base system S0 is predicatively acceptable; the successor system to
Sa is something like Sa + Con(Sa) (actually, it is a bit stronger than this). Also let
“a is an ordinal notation” mean that {b ∈ ω : b ≺ a} is well-ordered.

The question is which systems are predicatively acceptable. Kreisel’s answer was
that if S0 proves that a1 is an ordinal notation, then Sa1

can be accepted, and if
Sa1

proves that a2 is an ordinal notation, then Sa2
can be accepted, and so on. The

Feferman/Schütte analysis identifies a countable ordinal Γ0 with the property that
it is the smallest ordinal such that there is no finite sequence of ordinal notations
a1, . . . , an with a1 = 0, an a notation for Γ0, and such that Sai

proves that ai+1

is an ordinal notation. Thus, Γ0 is the smallest predicatively non-provable ordinal.
One can show that Kruskal’s theorem implies that a notation for Γ0 is well-ordered,
so we conclude that it cannot be predicatively proven.

There are two problems with this analysis. First, the plausibility of Kreisel’s
proposal hinges on our conflating two versions of the concept “well-ordered” —
supports transfinite induction for arbitrary sets versus supports transfinite induc-
tion for arbitrary properties — which are not predicatively equivalent.

When we prove ai is an “ordinal notation” in the Feferman/Schütte analysis,
we are only showing that transfinite induction up to ai holds for statements of the
form “b is in X”. That is, we know that if the assertion “for all b, everything less
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than b is in X implies b is in X” holds for some set X ⊆ ω, then everything less
than ai is in X . But to infer soundness of Sai

from this fact, we would have to be

able to form the set

X = {b : Sb is sound},

which predicatively we cannot do. The problem is that the systems Sa are formu-
lated in the language of second order arithmetic and hence involve assertions about
all sets of natural numbers. So in order to diagnose whether a given Sa is sound
we need to quantify over P(N). This means that the set X displayed above is a
set of natural numbers which is defined by means of a condition that quantifies
over all sets of natural numbers. This is circular in exactly the same way as the
example I described near the end of Section 1. Indeed, it is a fundamental fea-
ture of predicativism that such constructions are considered illegitimate. The set
X is not a predicatively legitimate set, so we cannot use the fact that transfinite
induction up to ai holds for sets to predicatively infer that Sai

is sound, and hence
the Feferman/Schütte analysis collapses. This point is made in greater detail in
[33]. I show there that essentially the same problem pervades all of the analyses of
predicativity which link it to Γ0.

I made this criticism public in 2005 and I have yet to see any substantive coun-
terargument, or even any indication that it has been clearly understood.

There is a second basic problem. Let I(a) be the assertion that a is an ordinal
notation. In order for Γ0 to be the exact bound for predicativity on the Fefer-
man/Schütte analysis, it must be the case that for any formula A and any numbers
a and n the predicativist has some way to make the deduction

from I(a) and Sa ⊢ A(n) infer A(n). (∗)

(Sa ⊢ A(n) means: A(n) is a theorem of Sa.) We have just seen that this inference
is predicatively illegitimate on its face. But suppose the predicativist had some way
to draw this inference. In order for the Feferman/Schütte analysis to succeed, it
would also have to be the case that he cannot accept the single assertion

(∀a)(∀n)(I(a) ∧ Sa ⊢ A(n) → A(n)) (∗∗)

for arbitrary A, as this would allow him to go beyond Γ0. Not only is (∗) predica-
tively invalid, it is hard to imagine what could lead anyone, predicativist or not,
to accept every instance of (∗) but not accept (∗∗). In [33] I discuss three sepa-
rate remarks of Kreisel on this question; the first is a brief comment that has no
substance, the second is clearly fallacious, and the third is a highly implausible
speculation. As far as I know, no other writer has even attempted to address this
objection, or perhaps even recognized its existence.

An extra difficulty about this point that has apparently never been recognized
is that whatever reason is given for the predicative acceptability of each instance
of (∗) would itself have to be impredicative. For if a predicativist could see that
he would accept each instance of (∗), then he would grasp the validity of the entire
Feferman/Schütte construction and thus get beyond Γ0. Expositions of the Fefer-
man/Schütte analysis typically presume that the predicative acceptability of each
instance of (∗) is obvious, which raises the question of why this is not obvious to the
predicativist himself (as well as the question of why the predicative acceptability
of (∗∗) is not equally obvious).

I believe this criticism of the Feferman/Schütte analysis is decisive. Later at-
tempts to verify the same conclusion about Γ0 in other ways involve so many errors



IS SET THEORY INDISPENSABLE? 17

(see [33]) that its uncritical acceptance by the foundations community for forty
years raises serious sociological questions. There is no connection between predica-
tivism and Γ0, nor does there appear to be any coherent foundational stance which
would lead one to accept all ordinals less than Γ0 and not Γ0 itself.

In the second part of [33] I show how hierarchies of Tarskian truth predicates can
be used to access ordinals well beyond Γ0, sufficient to prove Kruskal’s theorem. I
also make a case that these theories are predicatively legitimate. The basic idea here
is to create a hierarchy of formal systems (Sa) in which the successor theory to Sa

has a truth predicate Ta with which one can reason about the truth of statements in
the language of Sa. This is similar to the autonomous progressions of Kreisel. But
we then jump one level up and consider a formal system S1

0 in which we can reason
about the entire sequence (Sa), use this as the basis of a new sequence (S1

a), and
iterate this process. The system Sω

0 proves that a notation for Γ0 is well-ordered,
but there is no reason to stop here. Indeed, we can reason about the sequence (Sa

0 ),
and this leads to a system which proves that a notation for the Ackermann ordinal
φΩ2(0) is well-ordered. This technique can be pushed further to access even larger
ordinals.

It is important to be clear that there are two aspects to [33], the first being a
criticism of the various analyses which have been put forward as showing that Γ0 is
a limit to predicativism, and the second being a new analysis involving hierarchies
of truth predicates which goes beyond Γ0. If the second part is right, then examples
of impredicative mainstream results vanish almost entirely. The best example of
which I am aware that is not covered by the results of [33] is the graph minor
theorem; however, it seems likely that further work along similar lines will succeed
in establishing this result predicatively as well.

Such a large fraction of mainstream mathematics is already uncontroversially
recognized to be predicative that failure to cohere with mathematical practice is no
longer a meaningful criticism of predicativism. If anything, it is a greater problem
for ZFC; see Section 4. Moreover, if the truth theories approach of [33] is predica-
tively valid then meaningful examples of impredicative mainstream mathematics
may disappear altogether.

6. Set theory and formalism

ZFC is not a good choice to be the standard foundation for mathematics. It is
unsuitable in two ways. Philosophically, it makes sense only in terms of a vague
belief in some sort of mystical universe of sets which is supposed to exist aphysically
and atemporally (yet, in order to avoid the classical paradoxes, is somehow “not
there all at once”). Pragmatically, ZFC fits very badly with actual mathematical
practice insofar as it postulates a vast realm of set-theoretic pathology which has no
relevance to mainstream mathematics. We might say that it is both theoretically
and practically unsuited to the foundational role in which it is currently cast.

As we have seen, these two defects are linked: reducing to the philosophically
more sensible attitude of considering structures which could conceivably be phys-
ically instantiated has the effect of neatly eliminating the set-theoretic pathology
which characterizes ZFC, while retaining all of the structures that are essential to
mainstream mathematics.

However, this is not to say that the study of ZFC must be abandoned. It can
still be understood as an interesting formal system which some mathematicians may
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find quite appealing. The same could be said for ZFC plus various large cardinal
axioms, or ZF plus the axiom of determinacy, or ZFC plus V = L, or ZFC plus
Martin’s axiom, and so on.

How are we to interpret theorems proven in such systems? First of all, the fact
that some statement is a theorem of ZFC is a combinatorial fact which is just as
valid predicatively as it is classically. We can also regard such a theorem as a
true statement in any model of ZFC, which predicatively exist provided ZFC is
consistent. (And even if we are not certain that ZFC is in fact consistent, we can
still reason under this hypothesis.) What we cannot do is to regard theorems of

ZFC as being true statements in some canonical universal model of ZFC, because
we have no reason to believe that such a model exists.

It is worth noting that whatever set theorists privately believe, their professional
behavior is quite consistent with a formalist interpretation of ZFC. Indeed, a large
part of modern set theory explicitly concerns itself with the study of ZFC and
various extensions of ZFC as formal systems. For example, the seminal result of
modern set theory is the relative independence of the continuum hypothesis from
ZFC. This is the fact, provable in PA (or even weaker systems), that if ZFC is
consistent then so are ZFC + CH and ZFC + ¬CH. One finds in the set theory
literature very little discussion of whether questions like CH are really true, but a
great deal of work — work which can be formalized in PA — about which axioms
imply or fail to imply questions like CH. Thus, should predicative foundations be
universally adopted, the actual practice of set theory would have to change very
little.

A parallel can be drawn between set theory and nonstandard analysis. In both
cases we formally legitimize a vague intuitive idealization — actual infinitesimals
in the case of nonstandard analysis, and concretely existing uncountable structures
in the case of set theory. Both are very elegant from a formal standpoint, but not
from the point of view of models: the nonstandard reals do not have the simple,
canonical quality that the standard reals possess, and even if one believes that ZFC
has a canonical model this is only an abstract fact; we do not have a clear picture
of it in the same way that we have a picture of N (the canonical model of PA) or
even J2 (which models a predicative set-theoretic system [32]).

Adopting a predicative foundational outlook does not entail abandoning ZFC
altogether. Rather, it means that we must interpret ZFC in formalist terms, some-
thing that, operationally, set theorists already do.

7. ZFC and number theory

I just made the point that we have no a priori reason to believe that ZFC has
a canonical model. One consequence of this is that we should be skeptical of the
actual truth of number-theoretic results proven in ZFC that are not provable in
predicative systems. These could only be trusted if we had some reason to believe
that ZFC has models in which ω is standard.

Now we may believe that ZFC is probably consistent because (1) no inconsistency
has been found yet and (2) we have built up some sort of intuition for ZFC which
tells us that it is consistent. I personally find these arguments persuasive but not
compelling. They suggest that ZFC probably does have a model. However, they tell

us nothing about whether it has a model with a standard ω. This seems to me more
likely to be false than true. Given the recursive compexity of ZFC (as measured by
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its proof-theoretic ordinal, and already suggested by the circularity of the power
set of ω mentioned in Section 1) we should not expect that there is such a model
absent some special reason to do so. The presumption should be that ZFC has no
such model and hence that there are probably some false statements of first order
arithmetic that are provable in ZFC.

Antiplatonistic belief in the arithmetical validity of ZFC seems to be mainly
a matter of faith. One could argue that the hierarchy of large cardinal axioms
exhibits a compelling structure which is evidence for the truth of the arithmetical
consequences of these axioms. Maybe so, but this is at best very indirect evidence
and hardly seems very convincing. At present I think a rational assessment of the
evidence would have to conclude that ZFC very likely proves false number-theoretic
assertions.

I hasten to add that this is not an indictment of mainstream number theory,
since mainstream number theory can be formalized in predicative systems. Rather,
we should be suspicious of any number theoretic result whose proof requires set-
theoretically substantial mathematics. (Harvey Friedman has given examples of
such results.)

8. Conclusion

In brief, my position is as follows:
Reifying collections as “abstract objects” is an elementary philosophical mistake

and is directly responsible for the paradoxes of naive set theory.
The “iterative conception of sets” does not succeed in legitimizing abstract set

theory. It crucially involves an idea of set formation as if sets were physical objects
that could be manipulated, which they are simultaneously denied to be (yet no
characterization of the sort of entities they are is given). It also takes the ability to
form power sets as basic, yet there is no meaningful sense in which one can imagine
forming power sets of infinite sets.

We cannot evade the problem of justifying set theory by settling for the fact that
“mathematicians (meaning set theorists) like ZFC” or the probability that ZFC is
consistent. At a minimum, if ZFC is to be taken as the standard foundation of
mathematics then we should at least demand some conviction that it is Σ1-valid,
which anti-platonism is unable to provide. Thus ZFC has no clear philosophical ba-
sis. We should not ignore the real possibility that some number-theoretic assertions
provable in ZFC might be false.

Sets are universally understood in quasi-physical terms and their properties are
justified in terms of imagined quasi-physical manipulations. (E.g., the axiom of
choice seems true because we could run through any family of nonempty sets and
choose one element from each, etc.) This is only legitimate for in principle physically

possible structures, which is precisely the world of predicativism. The idea that
uncountable structures are in any meaningful sense physically possible does not
withstand scrutiny; indeed, by the Löwenheim-Skolem theorem we know that we
have no way (that does not presuppose set theory) of describing a possible universe
which contains uncountable structures.

All of the mathematics that is currently applied in science is predicative, and
the idea that this will some day change is not credible. Virtually all mainstream
mathematics is predicative [23], and it is probably the case that absolutely all
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mainstream mathematics is predicative [33]. The predicative system CM of [35] is
at least comparable to ZFC in terms of elegance and ease of use.

I am calling for the abandonment of ZFC as a foundational standard. I believe
its erroneous identification as the correct framework for mathematics as a whole has
led it to receive a disproportionate amount of attention. However, I am not calling
for the study of ZFC to cease altogether. I believe it and various related systems
(including its augmentation by large cardinals, and variants not including the axiom
of choice) are interesting and worthy of study, but they are also peripheral to the
concerns of mainstream mathematics.
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