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PREFACE

THIS book is written primarily for undergraduates, though
Part I may be judged by some teachers to be suitable for
mathematicians during their last year at school. It includes
the convergence theory that is commonly required for a uni-
versity honours course in pure and applied ‘mathematics, but
excludes topics appropriate to post-graduate or to highly
specialized courses of study. It has taken shape from sets of
lectures I have given at various times during some fifteen years
of university teaching.

The book develops the theory of convergence on the basis of
two fundamental assumptions (one about upper bounds, one
about irrational number as the limit of a sequence of rational
numbers). With these assumptions the theory of convergence
can be developed without appeal to the properties of Dedekind
cuts. The ‘real number’ appears in the appendix, where the
assumptions of the book are proved to be consequences of the
definition of ‘real number’.

The notation, or shorthand, used in the text is one that is
familiar to'the professed analyst and is a commonplace of the
lecture-room. It is something of an experiment to employ it in
a text-book, but its almost universal adoption in recent years
by mathematical undergraduates at Oxford leads me to hope
that it will prove acceptable. My own teaching experience is
that students who use the notation acquire clear ideas of what
they have to prove and of how they may prove it.

Of the details, few call for mention in the preface. The treat-
ment of Tannery’s theorem in Chapter XVI grew out of (i)
. Professor E. H. Neville’s note in the Mathematical Gazette, vol.
Xv, p. 166, (i) a remark once made to me by Professor Hardy,
and (iii) my own work on a special series. I cannot resolve how
much is due to each, but I am sure the chapter owes much
both to Professor Neville and to Professor Hardy, and T gladly
take this opportunity of acknowledging my indebtedness to
them. The brief chapter on Fourier series will, I hope, prove
useful in spite of its brevity and many omissions. The appendix
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contains just so much of the ‘foundations of analysis’ as is
necessary to the justification of the assumptions made in the
early chapters of the book. These ‘foundations’ are prefaced
by a very brief historical sketch that tries to show why such a
complex structure as a Dedekind cut is necessary to the defini-
tion of ‘number’.

All theorems are numbered. Some references to previous
theorems are given in parentheses; if the reader can follow the
proofs without consulting these references, so much the better.
They are given so that readers may, if necessary, look up points
they have forgotten: it is not intended that proofs in conver-
gence theory should bristle with references to previous theorems
in the manner of the old Euclid books. Though, of course, the
order of proof is as important here as it is in the development
of Euclidean geometry: we must not use 4 to prove B, and then
use B to prove 4.

The examples contain many questions set in university
examinations and many questions taken from my own notes;

of the latter, some are original and some are not. The majority

are reasonably straightforward; hints for their solution are
occasionally given. There are a few examples marked ‘Harder’,
and the beginner is advised not to attempt them on a first
reading.

Professor A. L. Dixon and Professor E. T. Copson have
kindly read the proof sheets, and I am deeply grateful to them
both for their helpful criticisms. Professor Copson has read
and criticized all the text and has worked nearly all the
examples. I wish to thank him most sincerely for this evidence
of his friendship.

In conclusion, I should like to thank the staff of the Oxford
University Press for their work on the book and for their un-
failing courtesy towards me in all matters concerning it.

WLF

HERTFORD COLLEGE,
OXFORD

16 November 1937.
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CHAPTER I
PRELIMINARY DISCUSSION

1. Definition. A set of numbers in a definite order of occur-

rence
’ Qy, Oy, Olgyeesy Oppyenes

is called a SEQUENCE.
111 1 1 11 1
TLEFTS 3 T g
If the sequence stops, as in the first example, which has only
three terms, it is called a FINITE SEQUENCE. If the sequence
does not stop, as in the second and third examples, it is called
an INFINITE SEQUENCE.
In what follows we shall be concerned chiefly with infinite
sequences. We shall use three notations for a sequence:

ExampLES. 5,6, 7;

Oy Olgs Olgyeeey Oy,
a, (n=12..),
or simply (x,).
The advantages of alternative notations soon become
apparent.

2. Preliminary discussion of convergence

2.1. Throughout the rest of this chapter we shall discuss,
with no attempt at final precision, some of the ideas which
are the subject of the more precise work in Chapter II. We
begin with an elementary example of an infinite series, namely

Lt 333+, (1)

If s, is the sum of the first » terms of this series, then
8, = 2(1-2—15) = 2—(})n-1.

As n grows large, (4)*-1 becomes small, and, in fact, we can make
(3)"~* as small as we please by taking n large enough. In other
words, s, approximates to 2 as n becomes large. We say, accord-
ingly, that s, converges to (i.e. approaches or approximates to) 2.
THIS IS THE GENERAL NOTION UNDERLYING CONVERGENCE——
CONVERGENCE IS ‘APPROACHING’, OR ‘APPROXIMATION’.
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Suppose we are given any infinite series

Uyt ugtugt-.. . (2)
Let 8, = u;+uy+...+u, We say that the series (2) converges
if s,, as n becomes large, approaches some definite number s.
THIS NUMBER 8 IS CALLED THE SUM OF THE SERIES; the series
itself is said to converge, or to be convergent.
Notice that this use of the word ‘sum’ is not the same as its
use when we say that ‘the sum of 1444} is 1§°. It is a special
use of the word ‘sum’ in its application to infinite series.

An example of a convergent series,

1 1 1

Here, the nth term, u,, is given by

_ 1 1 1

Un = D t+2) 2{n(n+l) (n+1)(n+2)}’
(1 1

and s0  u; Uyt tU, = 3 {ﬁ—m]

Accordingly, 8, = Uy+uy+...4u,

’approa,ches } as n becomes large: we say that the series (3)
converges and that its sum is }.

Note. This is a standard method of dealing with a standard
type of series, namely the type in which the nth term,
u,, can be expressed in the form v,—v,,,.

Exampres I
1

1. If v, = then u;+u;+.. is a convergent

nln+1)(n+2)(n+3)
series and its sum is 1/18.
1
2. Hu,:m,then s . .
Ut byttt = é(é”‘n—ﬁ "m)»

4 +uy+ ... is & convergent series, and its sum is §.
n

3 K= o i+ Dn T 9)

, show, by using partial fractions, that
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1 1/ 1 3
Uatttatettiy =2+ é(m—m)
Hence show that u;4-uy+... is convergent, and its sum is .
4. Find the sum of the series u,+u, +w,+... when u,, is

) 2n+3 (i) n? ‘
(n+1)(n+2)(n+3)° (n—1)n(n+1)n+2)’

er 201 . 3n+5

(111) nHnL1)s’ ™) e Ominmed)

2.2. Series which diverge. Consider the series

14+-24-3+...4nt.... (4)
Here 8y = Uyt Upgt...4u, = 14-2+4...+n
= {n(n+1).

In this example, if x is large, then so is 8,. ~

For our purposes we need some refinement of the last state-
ment. In discussing the series (1) we stressed the fact that
‘we can make the difference between 8, and 2 as small as we
please’. Here, with series (4), we can make 8;, as large as we
please by taking » sufficiently large. The refinement we fasten
on, then, is this: The sequence s, increases indefinitely; that is to
say, whatever positive number A we care fo put down, s, will
exceed A if we choose n large enough.

The series (4) is said to diverge, or to be divergent.

Another example of a divergent series is

14-24-224 | 2014 (5)
Here s, = 14-24..4-271 — 2"—1, and again s, increases
indefinitely. '

2.3. The dependence of series on sequences. In the
foregoing discussion of the convergence or divergence of a given

series, Uyt syt tu, -,

we have seen that it is the behaviour of the sequence
815 835000y Spyeney

where s, = u,+uy+...4u,, which is mn question.

We shall, accordingly, leave aside infinite series for a while
and turn our attention to sequences. A
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3. Sequences that converge to zero
(i) If 0 < z < 1, then the sequence

x, x2, 28,..., 2",...
converges o zero.

To see this, put y = (1/x), so that y > 1. Put

y=1+p (p>0).
Then y? = 14+2p+p? > 14-2p,
and, by induction, = y* > 14np.

Accordingly, y" increases indefinitely and a7, or y =", decreases
indefinitely in the sense that we can make its value as near
nothing as we please by taking « large enough.

(ii) This example is much more difficult: its result is often
useful. [It may be omitted on the first reading.]

If y is a fixred number greater than unity, and k is any fived
positive integer, then the sequence

nElyr (n=1,2,..)
converges to zero.

Before we give the proof of this theorem we try to explain some of the
ideas that lead to the proof.

(i) Numbers like 108—5, 10647 are ‘about as big’ as 10%: in calcula-
tions involving numbers as big as 108, a relatively small number like
5 or 7, when added to or subtracted from 10%, will have very little effect
on the result of the calculations.

If 1 is a fixed number and n is to be thought of as a very large number,
then n—1 is ‘about as big’ as n. Further, extending this idea a little, if
k is a fixed number and n is to be thought of as a very large number,

then n(n—1)(n—2)...(n—k)
is ‘about as big’ as nF+1l.

This idea is useful in many problems.
(ii) The y of our problem exceeds unity and we can write

y" = (1+p)* (@ >0).
The right-hand side can be expanded, when » is a positive integer, by
the binomial theorem, and, since each term of the expansion is positive,
the whole is greater than any single term of the expansion.
So, if we take n > k-1,
. o Mn—1).(n—k) ..,
y* = (1+p) S T T
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(iii) Hence, when n is thought of as a large number,
nk /yn
is n* divided by a number about as big as (or bigger than)
nEHIphHL (L 1)
Now p and k are fixed, and so n*/y" is, for large n, comparable with a

fixed multiple of (1/n), and we can make its value as near zero as we
please by choosing n large enough.

Formal proof. We are concerned with what happens when
n is large; so we may confine our attention to values of n that
exceed k+1. When n > k+1 and y = 14p, where p > 0,

n(n—1)...(n—k) , .

> (n—E)e+igh+1 (4 1)!
Hence ?1'—" < (k+1)! nk

yn pk+1 nk+1( 1 ——k/n)k“'

[This step arrives at the n¥/n*+! which our preliminary talk led us to
expect—we now get rid of » from all other terms.]

But, when n > k41,

k k 1.

1—=>1-_% -

P w el AW &

nk (k1) (k--1)k+1 ]

and so -y—n< A “w

and the theorem follows [p, k are fized numbers].

Nore. Having isolated the n*+! of ", we use the roughest
of inequalities to deal with the rest: the sole object of the
manipulations is to remove n from every place save the
one essential place where we want it at the end, namely 1/n.



CHAPTER 1I
FORMAL DEFINITIONS

1. Formal definitions of convergence
1.1. Sequences which converge to zero. A sequence like
a, = (—)"nt (n=12,..)
shows that the approach to zero need not be from one side only.
It is the absolute valuet of «,, that is, in the usual notation,.
|et, |, Which is in question.
A sequence like
1,11 1 1
2’3" a1
though artificial in structure, is enough to show that a sequence
o, can approach zero without having its terms become steadily
smaller: the approach to zero need not be a steady one.
Finally, one is tempted to say that «, will converge to zero
if o, can be made as small as we please ‘by taking » sufficiently
large’. But this is not quite accurate. In the sequence
11 11 1 1
33 1, T 2, 5% 21’ k,... (A)
we can make the nth term as small as we please by taking »
sufficiently large if we keep to values of n that are not multiples
of 3. The sequence as a whole does not converge to zero because,
in every third place, the sequence 1,2,3,... runs through it.
In our formal definition we use the phrase ‘by taking any n
that is sufficiently large’ instead of ‘by taking = sufficiently
large’. We cannot make the nth term of (A) as small as we
please by taking any n that is sufficiently large; we can do so
only by taking certain n that are sufficiently large.
These preliminary remarks made, we give our first form of
the definition.
DEerFiNtTION. FORM A. The sequence
Qlyy Qgyeeey Kpyeee
is said to converge, or tend, to zero (in symbols, «,— 0)

1 If « is & real number, |a] = « when « is positive and |«] = —a when « is
negative; e.g. |—6| =6, |7| = 7.
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‘if oy | can be made as small as we please by takmg any n that
18 sufficiently large’.

Let us examine this and put it wholly into symbols. We
‘can make |, | as small as we please’ if, on putting down any
positive number ¢ whatsoever, we can make |x,| < e ‘By
taking any n that is sufficiently large’ means that the relation
in question, namely |o,| < ¢, will hold for all values of n >
some definite number, N say.

Hence, our condition that a, - 0 may be stated in the form
B, given below.

Form B. «, — 0 if, having chosen any positive number ¢ what-
soever, we can then find a definite number N such that

lo,] < € whenn = N.

The important point to notice is that, for o, to tend to zero,
we must be able to find our N no matter what positive ¢ we
have chosen to start with: it is not enough to be able to find
N when we have taken ¢ to be one particular very small number
like 10-6. We have to be able to take |x,| as small as we
please and not merely as small as 10-8,

1.2. The definition in symbols. We now introduce a nota-
tion that is useful both in curtailing long-winded statements

and in helping one to handle the technique of convergence
questions.

We write down form B in this notation: it becomes
Form C. o, > 0if
€e>0; 3N . lol<e whenn>N.

In reading this notation, what comes before the semicolon is
set down to begin with (and is subject to no limitation that

is not explicitly shown), what comes after the semicolon is

dependent on what comes before. In detail the notation is
read ’

(i) € > 0; ‘onputting down any positive number ¢ whatsoever
to begin with’, |

(ii) ; separates what is put down to begin with from what
can be said after it has been put down,
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(iii) 3 means ‘there exists’, ‘there is (a number)’,

(iv) the point . means ‘such that’. [It is useful to have a
shorthand for this frequently used phrase.]

Thus the whole reads ‘x, — 0 if, on putting down any posi-
tive number ¢ whatsoever to begin with, there is some number
N such that |a,| < e when n > N°.

1.3. The three definitions. The form A says all that is
necessary but, in the technique of later work, it is not so con-
venient as the form B, and this again is not so convenient as the
form C. All three say the same thing in a different form of
words. .

In using C it must always be remembered that ¢ > 0; means
‘putting down any positive number ¢ whatsoever TO BEGIN WITH'.
The ¢ is set down at the beginning, a fact that cannot be
stressed too much.

2. Sequences that converge, but not to zero
2.1. Form A. The sequence o, ay,..., ay,... is said to converge
or tend to l (in symbols, «, — 1) if the sequence

oq—1, ag—1,..., o, —1,...
tends to zero.

If we use the forms B and C of the definition in §1, this
becomes

Form B. o, =1 if, having chosen any positive number e
whatsoever, we can then find a definite number N such that

|a,—1] < € whenn > N,
ForMm C. o, 1, if
€e>0;, 1N . |o,—]|<e whenn>N.
The form C is, of course, the shorthand or symbolic form of B.
2.2. NoratioN. We call /, above, the ‘limit’ of the sequence
().
3. Properties of convergent sequences

3.1. TecorEM 1. A4 convergent sequence is bounded, i.e. if
a, = o, then there is a number K such that

la,] < K  for ALL n.
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We shall use, here and latér, the shorthand (or notation)
of §1.2.
Proof.. Since «,, - a,
AN . |op,—al<<1 whenn>=N,. (1)
[In the forms B and C of our definition, ¢ is any positive
number whatsoever: in the line (1) we choose to take ¢ = 1:
we have a special object in view and any definite choice of an ¢
will serve our present, very special, purpose.]
Hence,t when n > N,

fota| = [(otn— )+

< lo—af+|«f
< 1+ ol (2)
The numbers loeg]s lotglseees Joty—a

form a finite set of numbers and so one of them, |«,| = K, say,
is greater than or equal to each and every other one of the set.

oo Japl < a definite K; when n < N,. (3)
From (2) and (3), if K is any number greater than K, and
1+4-{a|, then la,) < K for all n.

3.2. TeeorEM 2. If 0, - a and «, > ¢ for all n,

then we can deduce that o 2= c. We cANNoOT, from the hypotheses,
deduce that a > c.

Proof. Let A be any number less than ¢. Then ¢c—A is a
definite positive number and

ap—A >c—A > 0.
Hence |[o,—A|, which is «,—2, is never less than a certain
positive number ¢—A and so, as we see from form B of §2,
«, cannot converge to A.

That is, «, cannot converge to any number less than c,
and so a > c.

1 Note, for all work with absolute values,
la+b| < la}4-jb]

If the result is not known, it can easily be verified when a and b are real
numbers.
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An example to show that « may be equal to c.

Let «, = n-1, so that o, >0, i.e. « = 0. Here, for each
value of #, «, > 0, but « = 0.

CoroLLary. If o, —>a and o, < c for all n, then we can
deduce that o < c.

4. Formal definitions of divergence

4.1. Sequences which diverge through positive values.
We give three forms of the definition of a divergent sequence;
each says the same thing in a different way. The three forms
A, B, C correspond to the three forms used for convergent
sequences in §§ 1, 2.

DEFINITION. The sequence

Olyy Olgyueny Qpyens
18 said to diverge through positive values

ForM A. if o, increases indefinitely.

Form B. if, having chosen any positive number A whatsoever,
we can then find a definite number N such that o, > A when
n = N. :

FormMC. 4 >0; I N .o, >4 whenn>N.

Exampres. (i) o, =n. Whatever positive number 4 we set down,
a, >Aifn > 14+4.

(i) ay = (1+4-p)", where p > 0. We know (§ 3) that ay > 1-+np, so
that o, > A when 1+np > A, that is, when n > (4A—1)/p.

4.2. Sequences which diverge through negative values.

The sequence .
q (o), i oy o, 0gyene, ey

is said to diverge through negative values if the sequence

(—a‘n)’ ie. Ty, Ty T 0lpgeeny
diverges through positive values.

ExamprEs. (i) o, = —n; (ii) o, = —n2

4.3. Non-convergent sequences. There are certain
sequences that are neither convergent nor divergent. An

example s 10,1,0,1,0,.,
or again 1,3,2,4,8,},4,...
We call such sequences ‘non-convergent’ or ‘oscillating’.
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5. Important properties of finite sequences

5.1. Least terms of sequences. If we have a finite
number of téerms G Go.... @,
15 Qseee

3 n?
n terms in all, then there must be one of them which is less
than or equal to each and every other term. For example, in

1,2,33,21,
six terms in all, the first is less than or equal to each of the
others.
If we have an infinite sequence

C @y, Ay, Ag,...,

there may or may not be such a term. For example:

() 1, 2, 3,... is an infinite sequence and the first term is less
than any other,

(i) 1, §, 3,... is an infinite sequence and whatever term of it
we take we can always find a term less than it.

We cannot speak of the least term (or terms) of an infinite
sequence uniil we have shown that there is one.

This simple fact is one of the fundamental differences between
a ‘finite number of terms’ and ‘an infinity of terms’. The same
_ remark applies, of course, to the ‘greatest term’.
In the same order of ideas, if we have a finite sequence

ay, Qoyeeey Gy,

n terms in all, then the sequence is necessarily bounded, that is,
there is some number K such that |a,] < K for r = 1,2,...,n.
With an infinite sequence this is not so, it may or may not
be bounded.- For example, a divergent sequence is not bounded,
whereas (Theorem 1) a convergent sequence is bounded.

6. A practical way of looking at convergence
Suppose «, — 1. Then
€>0; 1N . |o—ll<e whenn>N. (1)
Think of the point / and the various points «, marked off on a

straight line, using distances from a fixed point O. Then (1)
says WHATEVER marks we make at a distance € on each side of /,
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then, from and after some value N, o, will lie within these marks.
The value of N will depend, of course, on where we put the
marks,

If we know that «, - I, we can sometimes get all the facts
we want for our subsequent work by making the marks in
special places. Thus, suppose ! > 0, as in Fig. A. We can

0 I—¢ 1 I+e 21 i o0
Fia. A. Fia. B.

put the marks at 1l and 3! and then, if a, - [, we can say that,
when 7 > some definite N, o, > }l. Again, if ] < 0, as in
Fig. B, we can put the marks at 0 and 2/, and so there is a
number N such that «, << 0 when n = N.

Readers will best see the force of these remarks when they
come to Theorem 12, though they are useful in many other
connexions.

Exampres IT
1. Prove that the sequence («,) converges to zero when a, is given by

. 1 . 1 N | . n+5
OV} / e —— _ T 7y

1) (=) pog (ii) nif2’ (iii) n' (iv) b (v) s "
The point of such examples is to show that form B (or C) is satisfied.
They are intended for practice only: a much more efficient method of
proving the results will be given in Chap. VI, § 2.2.

In approaching an example, such as the fourth, it is simplest to work
in this way.

First. We may expect (n?+43))(n3—1) to behave very much like
7n2/n® when n is a large number. ‘

[In a numerical calculation where n = 109, say, we would never
concern ourselves with the difference between 102 and 102 3.]

Second. The actual work, which is guided by the thought contained
-in the first: n*+3 < 2n® whenn > 2,
n3—1 > in® whenn > 2.

Hence 0 < o, << 4n~1 when n > 2. Accordingly, € > 0; [or, in full,
on putting down any positive number ¢ whatsoever]

log] <€ when n > l/deand n > 2,

and so.the condition that o,—> 0 is satisfied.
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Note. Actuslly, one could prove that when n is large enough
1,31 3-00...1
an <_+tog |oF —=—|

but there is no point here in doing anything more subtle than ‘get
the n~! standing clear with some definite numerical multiplier’, such

as 4.
2. Prove that a, — 1, 3, 4 according as «, is given by
R 3n +1 oy AN 6R—T
1) i1’ (i) 5%, (n>5), (i) P g (n>1).

We work (ii). We may expect the sequence to approach the same
value as 3n%/n?, i.e. 3 [for n? will outweigh » when n is large]. Now
3n?4-1 l5n +1
ni—bn —&n’
and n*—5n > }n? when n > 10. I-Ience, when n > 10,

3n3+1 16n 32
3— P &n’ == —’

3—

3n’+1 32

and so € > 0; |3— l<e whenn>

Hence €>0; EIN.],,——3]<€ whenn}N.

3. Show that the sequence (a,) given by (i) in Example 2 has & least
but not a greatest member.

Harder. In Example 2 (iii), («,) has a greatest but not a least member.
[Write «, in the form 4+ (8n2+ 6n—11)/(n®—2n2}-1).]

4. Show that the sequence (z") tends to zero when z is a fixed positive
number less than unity.

5. Show that, when yisa ﬁxed number that exceeds unity and % is
a fixed positive integer, the sequence (n¥/y") converges to zero.

[Cf. Chap. I, § 3, where, however, the formal definitions of con-
vergence were not used.]}

6. Prove that, if ¢ is a constant and if «, —> o, then ay4-¢ ~> a-+-¢ and
€, —> CXe

7. Prove that, if ay — o, then |, | — |af.

8. Show that the sequence {a,) diverges through negative values
when «, is given by

(i) 6—nt, (i) —2%, (i) (—3)*L



CHAPTER III .
BOUNDS: MONOTONIC SEQUENCES

1. The bounds of a sequence

1.1. A fundamental assumption. In the next section,
.1.2, we make an assumption; namely, that a certain set of
numbers has in it a least number. The assumption is marked
with an asterisk. If we are prepared to make a thorough
examination of the definition and theory of real number, we can
prove that the assumption is justified. This examination is
made in the appendix (it is not altogether eagy), and in the
course of that examination our assumption appears as a theorem.

1.2. The upper bound of a sequence. Let («,) be any
sequence of real numbers. Then
EITHER (i) there is a number > every «,, and so there is an

infinity of such numbers, '
OR (ii) there is not a number > every «,.

In case (i), having fixed on one such number, then every
greater number is also > every «,, and possibly, though not
certainly, there may be a less number with this property
(= every o).

AssuMpTiON 1.* We assume that in case (i) there is a least
number, U say, which is greater than or equal to each and every o,,.

DrriNiTiON. The UPPER BOUND, U, of a sequence («,) 13 the
least number which s grealer than or equal to each and every w,.

It follows at once from the definition that if U’ is any
number less than U, then there is at least one «, that exceeds
U’. We embody this important fact in the theorem which
follows.

THEOREM 3. If U is the upper bound of (o), then, given any
number U’ less than U, there is at least one «,, such that
U < o, < U.
In case (ii) the sequence («,,) has no upper bound (in the sense

of the previous definition). The definition that follows is an
alternative way of stating the same fact.
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DErFiNtTION. If there i3 no number > each and every o, we say
that the UPPER BOUND of (a,) 48 plus infinity [+o0].

This is merely a convenient way of saying ‘whatever number
A we take, there is at least one «, that exceeds A’. The defini-
tion does not postulate a number ‘infinity’.

When we are dealing with case (i), and so with the definition
on p. 16, we shall refer to the upper bound as finite.

The LowER BoUND of a sequence is similarly defined: it may be
finite or ‘minus infinity’.

1.3. Tt is convenient at this point, having introduced one
conventional use of the word ‘infinity’, to notice others of a like
character. )

If o, diverges through positive (negative) values, then we say
that o, diverges, or tends, to plus (minus) infinity We write
oy, —> +00, —0c0, as the case may be.

If the sequence («,) converges to « (compare the definitions
of Chap. II, §§1, 2), we sometimes, for convenience, say that
, tends to « as n tends to infinity; in symbols, «, > « as
n -> 00, or lim o, = a, ‘ \

n~—>0 :

1.4. Examples of upper and lower bounds. In many
examples it is easy enough to see what the upper and lower
bounds are.

With the (infinite) sequence of numbers

11 1
’ §’ §,""7—""",
1 is clearly the least number that has the property of being
greater than or equal to each and every number in the sequence;
0 the greatest number that has the property of being less than
or equal to each and every number in the sequence. Hence, the
upper bound is 1 and the lower bound is 0.

1

[Notice that it is ‘greater than or equal to’. Assumption 1 would be
completely false if it said merely ‘greater than’. There cannot be a least
number greater than 1: for suppose = to be the least number greater
than 1; then §x > } and }(1+=x) > 1, while 1l+2x) < z; and so x
cannot be the least number greater than 1.]

4449 c
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Again, with the sequence
| 0,—1,—2,—3,..,
0 is clearly the least number greater than or equal to each and
every number of the sequence, and so the upper bound is 0; but
the numbers decrease indefinitely and the lower bound is —oco.

2. Monotonic sequences

2.1. DEFINTTION. When o,y = o, for all values of n, the
sequence (a,,) is said to be MONOTONIC INCREASING, or, in abbrevi-
ated form, m.i. :

When a,,,, > «, for all values of n, the sequence is said to
be steadily increasing or monotonic increasing in the strict
sense. The difference lies in the exclusion of the possibility
a4y = o for some or all values of n: it is not often needed, but
is occasionally important.

A MONOTONIC DECREASING (m.d.) sequence is similarly de-
fined; (x,,) is m.d. if o, 4y < o, for all 2.

NoTk. The whole theory of convergence of series of positive
terms depends on the study of monotonic sequences.
Theorem 4, which follows immediately, and Theorem 19,
which comes in a later chapter, are the two fundamental
theorems of convergence theory.

TaEoREM 4. If (a,) i8 @ monotonic increasing sequence, then

EITHER it has a finite upper bound U, and o, > U,
OR its upper bound s +0, and «, - +00.

The main point of this theorem lies in the proof of the fact
that a monotonic sequence either converges or diverges—it
cannot be merely non-convergent, as are the sequences of
Chap. II, §4.3. .

We first consider the case when (o, ) is m.1. and has a finite
upper bound U. Put down any positive number e to begin
with; then U—e < U and, by Theorem 3, there is at least one

ay such that U—me<ay<U
- < U.

[The reader will probably follow the subsequent argument more
easily from the figure.] ’
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But a;,; > o for all k, and so
a, = oy whenn > N;
while, by the definition of upper bound,
o, < U for all values of n.

U= & @ T

Hence, U—E<(¥N<(:Lu< U whenn > N,
and so 0SS U—a, < U—~(U—¢€) =e.
Thatis, e>0; I N e |[U—a,| <e whenn >N, 1
and, by the formal definition of convergence, o, — U.

[The explanation of € > 0; 3, etc., is given in Chap. II,

§1.2.]
+ Now suppose that the upper bound is plus infinity. Then

4 > 0; 3ana, say ay, that exceeds A.

Moreover, o, = ay whenn > N,
so that iN .« >4 whenn>N.

By the formal definition of divergence, «, diverges through
positive values, or, as we have agreed to write it §1.3),
o, —> -}-00.

CoroLLARY 1. If (a,) is monotonic tncreasing, and there is a
number M such that
&, < M forall m,

then the sequence (a,) converges to some number U < M.

By the definition of upper bound, the upper bound, U 'say,.
of («,) is a number < M. Also, by the theorem, o, - U.
COROLLARY 2. If (x,) is monotonic decreasing, then |
EITHER ¢ has a finite lower bound L, and «, — L, '1
OR its lower bound is —co, and ®, —> —00,

In the next chapter we shall make important applications
of these results.

3. Rational and irrational numbers

3.1. When p and g are positive or negative integers, the
number p/q is said to be a rational number.
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A monotonic increasing sequence, (x,) say, of rational
numbers with a finite upper bound U must, by Theorem 4,
converge to U. This number U may or may not be itself
a rational number. Our fundamental assumption supposes a
least number; it says nothing of a least rational number, and
would be a false and foolish one if it did. If the number is not
rational we call it an irrational number.

As irrational numbers may come into mathematics when they
are not obviously derived in this way, we shall make an
assumption, easily proved as a theorem when the theory of
real numbers has been considered in full.

AssuMPTION 2.¥* Every irrational number is the limit of a m.s.
sequence of rational numbers.

The proof is given in the appendix.

Examrres 11T

1. Prove that («,) is & monotonic decreesing sequence when «, is
given by J
. l)i . ( 1)% . oy A1) —n
(i) (1+n R (i1) l—l-; —1, (iii) "
2. Prove that (x,) is & monotonic increasing sequence when o, is
given by

) :‘T:' (i) 3n—n+2, (i) and—2bn-tc,

where q, b, ¢ are independent of n, « > 0, and 3a > 2b.
3. Prove that an®—2bn ¢, where @ > 0, increases with n onee n itself
exceeds (2b—a)/2a.
4. If (b,) is a sequence of positive terms, and (a,) is a monotonic
increasing sequence, prove that
Gppi(by+bg4-.Fby) = @byt agby+..+a, b,
Hence show that, if u,, is defined by
“n(b1+bz+ e +bn) =a b1+a2 bl"" ...+a”b”,
then (u,) is & monotonie increasing sequence.
5. A worked example. If a,,, = -/(k+a,), where &k > 0, @, > 0,
then the sequence (a,) is monotonic and converges to the positive root
of the equation z? = z+k.

Let o be the positive root, —k/«a the negative root, of the equation.

Then ah—ah,, = @} —ay—Fk = (a,—a)(a,+k/x).
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Hence, if a, > «, then a, > a,,;, for a,-k/a is positive; and if a, < a,
then a, < ay,,.

Again, Ay = ktay, a?=kta
and so al —o? =a,—a.

Hence a,, > aifa, > o, and g, < aife, < a.

Let a; > «; then (a,) is a m.d. sequence and a, > « for all n; the
lower bound of a,, say !, > «, and a,— ! as n— .

Write a, = l+by, so that b,— 0. Then

2421y, +b5,, = l+b,+k foralln,
that is by—bh1—2lby,, = 1B—1—%k foralln.

Since b, — 0, we also have [pp. 36 et seq. consider such points more
fully] b,—b3,, —2lb,,, — 0 as n —> co. Hence I*!—I—k must be zero ; for
if it were equal to y, where y 5 0, then |b,—b},;—21b,, ;| would always
be equal to |y| and could not be made less than |y| by any choice of n,
which would contradict the statement b, —b3,,~—20b,; — 0.

Hence ! is a root of 22 == x{-k, and is the positive root since I > a.

Similarly, if @, < a, then (e¢,) is & m.i. sequence and @, < « for
all n; the upper bound of a,, say 4, < «, and a,—> u. As before, we can
show that u? = w4k, and so u, being positive, is the positive root of
2?2 = x4k,

6.t If a,,, = k/(1+a,), where & > 0, a; > 0, the sequence (a,) con-
verges to the positive root of 224z = k.

7. Prove that, if a,,; = a3 +k—~£? a; > 0, and a, tends to a finite
limit I, then ! must be either &k or 1—£.

8. Let (a,) be defined as above, with k > } and a, > k. Prove that
@py1 > ay 6nd hence show: that a, — - .

t Examples 5 and 6 are taken from Bromwich, Theory of Infinite Series
(London, 1908), p. 17.




CHAPTER 1V
SERIES OF POSITIVE TERMS

1. Infinite series
1.1. An expression such as
L R N T (1)
is called an infinite series. '

DEeriniTION. The infinite series (1) 18 said to converge, lo
diverge, or to be non-convergent according as the sequence

81,8565 8p0ens
where 8, = Uyt+ust...Fu,,
converges, diverges, or is non-convergent.

If 8, > s, then 8 is called the sum of the series.

1.2. There are a few series whose sums can be determined
by elementary methods. Such are those given in Examples I.
Most readers will be familiar with the geometric series, which
can also be summed by elementary methods. We shall need
to refer to this series and so we formulate the following:

THEOREM 5. The geometric series
I4r4r2f 1y | - (2)

18 (i) convergent when —1 < r < 1 and its sum is then (1—r)-1;
‘ (ii) divergent whenr > 1;

(iii) 'non-cohvergent when r < —1.

Proof. 1et s, = 1474 -rn-1,

(i) Take any definite value of » between —1 and +1. Then

1 re

By §3, Chap. I, we can make |r*|, and so also [r*/(1—r)]|, as
small as we please by taking any = that is sufficiently large.
Hence 8, > L

1—r

Hence the series (2) is convergent and its sum is (1—r)~2,
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(ii) Take r = 1, so that now
8, = n.
The sequence s, diverges to --oo.
Further, if we take a definite r > 1, s, will be greater than =,
and again s, diverges to +-co.
Hence the series (2) is divergent when r > 1.
(iil) If we put —r = y and make r < —1,theny > 1.
8y = l+r4.. . frn-1
= l—y+y24.. 4 (—)r-1yn-1
. 1+(_1)n+1 n

1+y
If n is even, = 2m say, then ’
1—yom,
. 87‘. = 82m = l+y H

this is zero if y = 1 and - —oo if y has a fixed value > 1.
On the other hand, if n is odd, = 2m-}-1 say, then

- — Ly,

S = 8oy = Ity

this is unity if y = 1 and - +-co if y has a fixed value > 1.
Hence, when y = 1 the sequence s, is merely
1,0,1,0,..,

and when y > 1 the sequence s, has two distirict sets of terms
in it, one of which diverges to plus infinity and the other to
minus infinity. In both cases the series is non-convergent.

2. Series of positive terms
2.1. Although there are comparatively few series whose
sums we can obtain by elementary methods, there are extensive
classes of series for which we can decide whether or not they
have a sum, i.e. decide whether their s,, tends to a finite limit or
does not. It is with this problem that our work will be concerned.
2.2. If u, is positive for all n the series (1) is called a series
of positive terms. For such a series the sequence (s,.), where
8, = uyt+us+...4u,,
is monotonic increasing, since
Sn178 = Upyq > 0.
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THEOREM 6. (i) A4 series of POSITIVE ferms
Uyt vyt %,
18 convergent if a number K can be found such that
8, = UytUgt...+u, < K for all n.
In such a case s, >3 < K.
(i) If no such number K can be found, then the series 1is

. divergent.

(i) As we have seen, (3,) is a monotonic increasing sequence.
If a number K can be found such that s, < K for every =,
then this m.i. sequence has a finite upper bound s < K. Also,
a m.i. sequence with a finite upper bound converges to that
bound (Theorem 4).

(ii) In this case the m.i. sequence (s,) has upper bound -0,
and s, - 400 (Theorem 4).

COROLLARY 1. If u;+uyt... 18 @ convergent series of positive
terms and if s is its sum, then s, << s.

For s, < 8,,, and, since s is the upper bound of the complete
sequence (s,), 8,41 < 8.

CoRrOLLARY 2. If a series of positive terms
Uy +Uyt...

18 divergent, and N is any given number, then the series

. . Uyt Uyiet Uizt o
18 also divergent.

From the theorem, a series of POSITIVE terms must be either
convergent or divergent. If the second series were convergent
we could find K so that

Uyt Uniet Uy, < K for all p.
We could then say that ,

8, = Uy+Ugt ..t u, < K+u;+us+...+uy | forall n.
Since the R.H.S. of this would be a definite number independent
of n, the series u,-+u,-: . would be convergent.

2.3. We go on to consider various ways of finding out whether,
in the case of a given series of positive terms, there is or is not
a number K such that s, < K for all n. One of these ways is to
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prove, by special procedure, that certain standard series are
convergent, and then to compare other series with them.

We conclude this chapter by considering one such standard
series.

3. A standard series
3.1. THEOREM 7. The series
1P 2-P4 3-P 4 fp-Pi (3)
18 convergent if p > 1, divergent if p < 1.
Let p > 1. Then

1 1 2
— — _.221_17,
21’+31'<21'
1 1 1 1 4
—_—) __=4l—p’
41’+5P+61’+71’<41'
1 1 "1 8 '
—t e —— — = 81-p,
8P+9P+ +151’<8P

and so on. Hence the sum of the first
14-244+..42m = oma_]
terms of (3) is less than

14-21-P gl-pp 4 (2m)1-0, . (4)
If we write p = 1+, so that k& > 0 and 2-* < 1, (4) becomes
1—(g)kems

1 1 1
et etms T gE
< 11—

If n is any given number, we can choose m so that
n < 142444...4-2m
and hence, if s, is the sum of the first » terms of (3),
80 < 1/{1—(3)).
Since this last expression is independent of 7, there is a number
K, namely 1/{1—(4)*}, such that
s, < K forall n.
Therefore, by Theorem 6, s, — a limit s << K. That is, the

series (3) is convergent.

1 Instead of referring to Theorem 6, we may say that (s,) is m.i., and so,
by Theorem 4, s, -8 << K. Some teachers prefer the direct appeal to the
properties of monotonic sequences.
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Now suppose p = 1, so that the series in question is
. R R ‘ (8)
Since 1+1>2.3=1
Hit+iti>43=14
Hit. Stk >8k=1%
and so on, L . .
1+§+(§+Z)+"'+(m+"'+§7') (8)
: > 14-4m.
Now (6) contains the first
1—}—1+2+22+...+2’"“1 = 2m
terms of (5). Hence, if s, is the sum of the first » terms of (5),
8, > 1+3m whenn = 2™
If we put down any positive number 4, we can choose an integer
m so that 14-3m exceeds A. Then, if we take n > 27, s, exceeds
A. Hence the series (5) is divergent.
Finally, if p < 1, then :
n-? > n-l
Hence 8, = 124+ 2-P4 . +n-P
> 1421440,
and whatever positive number 4 we put down, s,, will exceed 4

if n > 2™ and m is chosen so that 143im > 4. Hence the
series (3) diverges if p << 1.

3.2. Alternative proof of Theorem 7. Theorem 7 may also
be regarded as an example of the integral test (Chapter XIV).
The use of the integral test provides the simplest proof of the
theorem. But this proof uses properties of logarithms and
theorems in the calculus that we do not wish to use until we
have obtained an independent development of them. If we
used the integral test now, we should be in danger of employing
Theorem 7 to develop later theorems upon which the properties
of logarithms will depend—our argument would then complete
a circle.

At this stage, n~2 is defined only for rational values of p;
when r and s are integers, n~7"* = 1{/n".



CHAPTER V
THE COMPARISON TEST; THE RATIO TESTS

1. The comparison test
1.1. We shall, from now on, use the notations

0
S Uy, ”Zlun
to denote the infinite series
Uyt -
In this section we compare two series I u,, 3 v,, wherein
each u,, and each v, is positive.
TuEOREM 8. (@) If 3 v, is a given convergent series of POSITIVE
TERMS whose sum is V, and the terms of 3 u,, are such that
O<u, < Kv, foralmn,
where K is a fixed positive number, then > u, is convergent and
ils sum < KV.
() If 3 v, is a given divergent series of POSITIVE TERMS, and
the terms of 3 u,, are such that
u, = Kv, for all n,
where K is a fixed positive number, then S u,, is divergent.
Proof (a). If o, = v;+v,+...4+v,, then o, is a monotonic
increasing sequence: by the hypothesis that 3 v, has the sum V,
o, <V forallmn,
Accordingly, by the hypothesis that
u, << Kv, for all n,
8, = (U gt 4u,) < K(v+v,+...4-v,)
= Ko,
< KV.
" But (s,) is a m.i. sequence, and so (Theorem 4) s, s << KV.
That is, > u, is convergent and its sum < KV.
Proof (b). With the above notations s,, ¢, we now have
s, = Ko,
By the hypothesis that > v, is divergent, o, increases indefi-
nitelyt and hence s,, does also.
1 Compare the definitions in Chap, IT, §4.1.
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ExamerLEs IV

1. The series Y (n+3)~% is convergent, the series 3 (3n—1)~! is

divergent.
1 1

e U
and (Theorem 7) I n—2 is convergent. Put 4, = (n+3)"%, v, = n"3,
and K = 1 in the theorem just proved. Again,

1 1
3n—1" 3n'

and (Theorem 7) ¥ n~! is divergent. Put u, = (3n~1)7%, v, =n"1,
and K == } in the theorem just proved.

. 1 n
2 Thoseries D 2 iE
are convergent.

. n 1

3. The series Zm’ ZETG——T)T’E
are divergent.

1.2. The test in its practical form. In working most
examples that can be made to come within the conditions of
Theorem 8 it is simpler to use Theorem 9, which we shall now
prove. We begin with a lemma that extends the result of
Theorem 1.

Lemma. If each term of the sequence (x,) %8 positive and
«, = a finite positive number o, then there are positive numbers
H, K such that

HixT.

H<o, <K foralln.
Since «, —+ «,
€e>0; I N . |la—a,|<e whenn = N.
Let N, be the value of N when we take ¢ = 4« > 0. Then,
when n > N, |a—a,| < $«, and so

a—}o < a, < a+}a. (1)

From the finite set of positive numbers
0lgy Glgyeesy Oip—y

we can choose a least (or equal least) and a greatest (or equal
greatest): let their respective values be , k. Then we have

O<h<oa,<k (n=12,.N—1). |
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If we now choose positive numbers H, K so that
H is less than kb and 3}«,

and K is greater than ¥ and $«,

then O0< H<a, <K foralln.

THEOREM 9. If 3 u,, 3 v, are two series of POSITIVE TERMS

such that @
2> L>0,
n
then the two series are either both convergent or both divergent.
The number L must be finite and Not zERO in all applications
of this theorem.

Proof. By the preceding lemma we can, if

1"—’3-—>L>0,

n
determine positive numbers H, K such that

H<%<K for all n,

n
that is, such that Hv, < u, < Kv, for all «.

Hence, by Theorem 8 (a), if 3 v, converges, so does 3 u,, and,
by Theorem 8 (b), if 3 v, diverges, so does 3 u,. Since ¥ v, must
either converge or diverge, this proves the theorem. But if L
is zero, we cannot use the lemma and the argument fails.

1.3. It is clear, from the proof, that Theorem 9 is a particular case of
Theorem 8. It is & most useful practical form of Theorem 8, as the
following examples will show. On the other hand, from a theoretical
point of view, Theorem 8 needs to be mentioned explicitly because it
is not completely covered by Theorem 9. There is no theorem that says
‘because u,/v, remains less than a fixed number K for all n, the sequence
(u,/v,) will converge’, and so Theorem 8 covers a wider ground than
Theorem 9. Moreover, in theoretical questions (cf. Examples VIII) it is
Theorem 8 rather than Theorem 9 that is useful.

ExamprLEs V
[Defer the harder examples until pp. 36-38 have been read.]

1. Prove that 3 u, is convergent when u, has any one of the values
n+1 n+1 ni+n—1 ni4n—~1
n34-2° nd—2° nt nt—3n3+41’
(n?4n—1) nt4-5n2—8
(ns—2)t nf11
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2. Prove that ¥ u,, is divergent when u,, has any one of the values
n+1 n—1 ni4-n—1 n4n—1
nd4-2° nt—-2° n: n34-3ni—1"
(n?4n—1)* ni4-5n—6
(-2t * Tspr
MerrOD FOR ExaMPLES 1 AND 2. Consider the first example,
Uy = (n+41)/(n®+2).

We see that u, is ‘about as big’ as 1/n? (compare Examples II), and so
we put v, = 1/n2, when

Upfvg— 1.
Apply Theorem 9, with v, = 1/n3.
3. Prove that if 3 v, is & convergent series of positive terms, u, > 0,
and %,/v,—> 0, then 3 u, is convergent.
4. Prove, by considering the particular case
U, = n3, vy, = n"l,
that if 3 u, is a convergent series of positive terms, v, > 0 and

U,i/v,—> 0, then I v, is not necessarily convergent. Give an example
to show that it may be convergent. [v, = n—L]

2. The ratio tests

2.1. D’Alembert’s and Raabe’s tests. When we can
neither make use of Theorem 9 nor see fairly readily, by
examining the form of u,, whether 3 u, converges, we use
Theorem 10 and if that fails, as it will when (u,/u,,;) - 1,
Theorem 11.

THEOREM 10. Y u, i3 @ series of POSITIVE TERMS:

if 2n 11, then > u, 8 convergent;
Un11 |

Yn 1 < 1, then 3 u,, is divergent.
un+1

of
This is often called d’Alembert’s test.

THEOREM 11. 3 u, is a series of POSITIVE TERMS:

if n(—yl - l) -1 > 1, then > u, 18 convergent;

Un+1

if n( Un __ 1) —1 < 1, then 3 u, is divergent.

Up 11

This is often called Raabe’s test.
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A

2.2. These and other special tests involving the ratio U [, 14
can be proved, each one separately. But the problem of the
ratio tests goes rather deeply into the theory of convergence,
When, in the history of our subject, various tests had already
been devised, two facts were discovered. One was that however
far the line of successive ratio tests was carried it could never be
exhaustive; it would always be possible to write down a series
3 u, whose terms were such that no one of the tests already
established could say whether I u, were convergent or not.
This point we shall not pursue as it would take us too far
afield. :

The other fact was that most of the proofs of known tests
ran along the same lines. Accordingly, a general test was
devised from which the special tests could be deduced. This
general test—or rather one that is a little short of it in generality
~—We now give.

THEOREM 12. Let a divergent series of positive terms

2 D)
be given, and let the terms of a series of POSITIVE TERMS ¥ w,, be
such that o :
D,—2_D,,,~>L.
Uy, +1

Then ‘ > u,, 18 convergent if L > 0,
> u, is divergent if L < 0.

Proof (a). Suppose first that, with a given divergent series
of positive terms Y (D,)-!, the terms u, of the series to be
investigated are such that

' 'Dn—zf—’i—Dn+1—>L > 0.
Up

Then, 3 N . foralln >N

Dn Ya — Fn+1 > %L (1)

Un+1

(compare Chap. I, § 6). Since u,,,, is positive, we may multiply
‘throughout by u,,, and keep the inequality sign (if it were

)
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niegative the inequality sign would be reversed after the
multiplication and become <). Hence, when n > N,
Dy vy — Dy Yy > %I/u’n+1°
Write down this inequality for n = N, N+1,..., m—1 (> N),
and add: we get
Dyuy— Dy > 3L(uy gty sot ot thy).
N
Hence 8 = f u < u,-{—g Dyuy.
=1 =} L
But, since N is a definite fixed number, the R.H.S. is fixed and
definite. Denote its value by K, say. Then, for all m,
5, < K.
Hence, by Theorem 6.t 8,, + & < K and > u, is convergent.
Proof (b). Next suppose that the terms u, of the series to be
investigated are such that

D, % _p.,~>L<o.
Up 41

Then (compare Chap. I1,§6) 3 N . foralln > N
u .

Dn e n+1l < 0’ (2)
Up+1
and so Doy, < D 1%,
Hence Dyuy < Dyyqtnig < ooy
and u, > %DNuN (r > N).
T
Accordingly, if m > N,
m N LD 1
8p=>u = u+Dyuy z o
r=1 r=1 r=N+17T

But, by hypothesis, 3 (D,)"* is divergent and so s, is a mono-
tonic sequence that increases indefinitely. Hence 3 u, is
divergent.

2.3. The theorem enunciated is all we need to know if we have in

view its application as a test to any series ¥ u, that we may encounter.
But we have, in fact, proved rather more than we have enunciated,

t Or, since (s,) is & m.i. sequence, g, — 8 << K, by Theorem 4.
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In (a) we have nowhere used the divergence of > D;; our work in
the latter half of (a) is easily rewritten so as to prove the theorem:

If 3 Dt i a series of positive terms, divergent or not, and there are

positive numbers k, N such that
Dby~ Dy 3 Upyy > ktig,y > 0 whenn > N,

then 3 u, i8 convergent. )

In (b) the latter balf of our work proves the theorem:

If ¥ Dt is a divergent series of positive terms, and there is a number N
such that 0 < Dyu, < Dyyitin,, whenn > N,
then I u,, is divergent.

3. Proofs of Theorems 10 and 11
3.1. In Theorem 12 put D, = 1. If
Yn _1>L, then Y 141,
Up 11 Un+1
and Theorem 10 follows.

N\

Nore. If, as sometimes happens, u, < u,,, for all values
of n, then the series 3 u, is clearly divergent. For, in such

e
a case, Uyt Ugt-..u, = nu,.

. . Uy,
This fact is USEFUL FOR REMEMBERING THAT IT IS

-1

u’n+1
LESS THAN ONE WHICH GIVES DIVERGENCE.

3.2. In Theorem 12 put D,, = n. If

Uy

u
n—2-—n—1->L, then n(
Uy 41 Un1

— l) - L+1,
and Theorem 11 follows.

4. A simple explanation of Theorem 10

4.1. The following considerations led to the discovery of
Theorem 10 and also help one to remember it.

If w,/, 4y — L, then, when n is large, u,,,, is ‘about the same
as %, /L, u,,, about the same as u,/L?, and so on: the terms of
the series 3 u, are, once n is large, roughly the same as those of

(1 L1 L2 ).

Hence L >1 will give convergence, L < 1 divergence

{Theorem 5).
4449 D
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Theorem 10 can, in fact, be proved by refining the above
rough idea into a precise argument.

ExamMpPLES VI

1. Prove that each of the series
n n+l . (n+1) -
Tkt D T mronT 3"
converges when 0 < z < 1, but diverges when z = 1 (Theorem 9).
2. Prove that the series .
a.b a(a+1)b(b-+1) 72
1 ea® e Ddad ) ©
converges when 0 < ¢ < 1 (Theorem 10), that it converges when « = 1

provided that c+d > a+b-+1, and that it diverges when x == 1 provided
that ¢fd < a+b4-1 (Theorem 11).

3. Prove that each of the series

+.. (a,b,c,d > 0)

z?  ad
l+x+§-!+§~!+...,
z3 a5
x4+ g! -+ -5—! 1~ eee
converges for all positive values of x. {Use Example 10 (i).]
4. Show that X n!x" cannot converge for any positive value of .

6. Show that the series 3 n*xz" converges when £ is any fixed number
and 0 <z < L.

6. Show that the series

1+2 x+a+1 2+a+2

224+... (a > 0)

2.4.6
converges for any positive value of x, and that the series
2 1 3(a-+2
13+ (“+ Lp ;“rﬁ) W t... (a>0)

also converges for any posmve value of . [Use Example 10 (i)].
7. Show that the series

1+b +== et (a,b > 0)
converges when 0 < x < b &nd diverges when = > b.

8. Show that Y (a+n)x®/(b-+n) is convergent when 0 < z < 1,
divergent when = > 1.

9. Prove, from§ 2.3 or otherwise, that 3 u,, is divergent if u, > 0and
either (1) u, < Up,y, or (ii) n{(u, fhg 1) —1} <
when n > a fixed N.

2(a+1)
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10. Prove, from § 2.3 or otherwise, that > u, is convergent (i) if
(Unf/Unp1) —> 00, (ii) if N{(Upftiy,;)—1} — o, (iii) if either of these expres-
sions is always greater than a fixed number k, itself greater than unity.

11. Discuss the convergence of the series

1 1.3.5 . 1.3.5.7
2" 2.5.8° T3.5.8.117 T

12. Prove that each of the serios

1.3
taEot

1.2.n ., 1.2..(n+1)
3.5..2n+1)" " 3.5..(2n—1)

converges when 0 < z < 2 and diverges when = > 2.
13. Prove that each of the series

1.2.n 1.2.n
— %, e
5.7..(2n43) 7.9.2n+3)

converges when 0 < & < 2 and diverges when z > 2.
14. Prove that the series
1.2...n
—_— x‘n
4.7..(3n+1)
converges when 0 < x < 3 and diverges when « > 3, and that
1.2...n
—— xfl
7.10...(3n+4)°
converges when 0 < # < 3 and diverges when z > 3.
15. Construct series that

(i) converge when 0 < z < 4 and diverge when = > 4;
{ii) converge when 0 < = < 4 and diverge when z > 4.




CHAPTER VI
THEOREMS ON LIMITS
1. Limit theorems

1.1. The following formal theorems on limits have been
deferred as long as possible. They will be frequently used from
now on.

Let two sequences (a,,), (8,) be given; let

®, —> q, B.—B.
Then o,+B,>a+B, a,—B,>a—B, a,B,—>af,
&, /Bn — off, provided B # 0.

The proofs are as follows:

By definition (Chap. II, §2) «,—a >0, B,—B — 0; that is,
a,—a and B,—pB can each be made as small as we please
by taking any n that is sufficiently large (form A of definition).
Hence (x,48,)—(a-+pB) can each be made as small as we
please by taking any » that is sufficiently large.

1.2. Using form C of definition, we may write the proof thus:

€>0; 3N . |u,—~a| <}e whenn >N,
and 3 Na‘ - |Bn—B| < 3¢ whenn > N,.
Let N exceed both N; and N,. Then, ifn > N, :
l(an+ﬁn)—(a+ﬁ)l < Io‘n'—'al'i‘lﬁn“ﬁ‘ <€

Hence
€>0; 3 N. [(ag+Bn)—(a+B)] <€ whenn > N,
and this proves that o, +8,— a+8.
1.3. Again, it is easy enough to see, in a rough sort of way,
that if «, approaches (Chap. I, § 2) o, and B, approaches g, then
their product «, B, approaches «f. We now give a careful proof

of this.
2. A useful detail of technique
We want to show that
€>0; 3N . |of—0,B,| <e¢ whenn >N,

that is to say, putting down any positive € to begin with, we
can then find N such that, ete.

It is found, by experience, that in exercises of this sort it
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pays to put down fwo arbitrary positive numbers, ¢ and %, to
begin with and then later on to give k a definite value.

In the present exercise the detail is as follows:

Since «, —+ a, B, - B, it follows that

&k>0; 3N .|a—a,| <ek whenn =N,
and 3 N, . |B—B,| < ¢/k whenn > N,

(Notice that we have put ¢/k instead of ¢ in form C of the
definition of convergence; Chap. II, §2.)

Let N exceed both N, and N,. Then, whenn > N,
Iaﬂ_anﬁn} = la(ﬂ—‘ﬁn)‘*‘ﬁn(a_an)]
< {a(B—Bo) |+ [Bala—as)|
< pllal+ 18,13
But the sequence (B,) is convergent and therefore (Theorem 1)it
is bounded; that is, the;'e is a number K such that
B, << K for all n.
Hence, when n > N,
loB—a Bl < Z{lo+-K}.
Now give k a definite value greater than K+ |«|, and we have
at once lef—c, B,| <€ whenn > N.
We have thus proved that '
€>0; 3N . |sf—0a,B,] <e whenn > N.

2.1. We now prove the last of the four results stated in § 1, namely,
if ap—a, Br—> B # 0, then a,/B,—> o/B.

Let ¢, &, N;, N, be the numbers in the beginning of § 2. Then, when
n > N; and N,

%—;_: = ‘B‘;‘; -‘a(ﬂ»—ﬂ)—ﬂ(%*“)[
<|ggi/{fiet+ 2181

Since B,—> B 7 0, it follows that |B,]|-> |8 > 0 (see Examples I1, 7).
Let 0 < H < [B|. Then |B,| > H whenn > a certain M and, if N
exceeds N,, N,, and M,

o a,

n

1 {la]+|Ble
\ﬁ—’mv——-—k——- whenp;N.
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On choosing & > {|«|4-|B)}/H|B|, we have

%—ﬂ‘ < € whenn > N.
n

Note that we could not choose k if |8] were zero.

CoroLrARY. If «), >, 0,+A > a+A; Ax, > Ao; ete.

2.2. Method for Examples II. These limit theorems provide
a simple procedure for proving the results that were proved in
an elementary, but not very simple, way in Chapter II.

The reader will readily prove for himself that

/A k
at-+gtt e
Hencg
an’+-bnr-14- .. -k _ b k 8 <
o’ +-Brr 14 e (a+ﬁ++;,})/(°‘+;b++ﬁ)

— afo unless « is zero.

We work two typical examples from Examples II.

n?+3 (1 3 1
o= )/ (=)

The numerator — 0, the denominator — 1. Hence
(n?+3)/(n*—1) — 0.

3n4n 1 5
= o)/ (=)

But s+lng 1540,
n n
2
and so witn o
n%—5n

3. Some theorems about infinite series in general

3.1. Tt follows at once from § 1 that, if each of the series (not
necessarily series of positive terms)

Uy Uy, v+ 0,4,
is convergent, their sums being U, V respectively, then the
series (w3 +v1) 4 (ug+v,) ...

is convergent and its sum is U+ V (Chap. IV, § 1.1, Definition).
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Similarly, 3 (u,—v,) will be convergent and have the
sum U—V, .

3.2. On the other hand, 3 (u,—v,)or ¥ (u,+v,) may be con-
vergent when both ¥ u,,, 3 v, are divergent. Thus, we can write
Z (u,,—vy) = Z u’n_z Yn» Z (n+v,) = E un+z Vn
only when we know that each of 3 u,, 2 v, is convergent. We

shall come back to this point in the examples.

3.3. TrroRrEM 13. If, for a given m, the series

U1 Umgo ... (1)
18 convergent, then the series
U+ g+ ... (2)

18 also convergent. If (1) has the sum 8, then (2) has the sum
Uyt Uyt w8,

Let s, denote the sum of the first » terms of (1) and o, the
sum of the first n terms of (2). Then, when n > m,

On = 8y mt+ (Ut us+...+u,,).

Also, since m is a given number, n—m — oo as 7 -> oo,

If (1) has the sum s, then s, - s, and so 8y —> 8 88 N —> 0O,
Hence o, — s+uytugt-...+u,.

3.4. One of the occasions when Theorem 13 is useful is in
dealing with series of the type we now consider.

Suppose that the series

Uyt Ug+...

is not one whose terms are all positive, but is one whose terms
are all positive after the mth term, where m is some definite
number. We shall speak of such series as one whose terms are
ultimately positive. (In examples it is rarely of interest to
know the value of m; we merely want to know that, sooner

or later, such a value of m does occur.) We can apply to the

series
Ums1 T Upmsat ..

the tests for convergence for positive terms and so,

THEOREM 13, COROLLARY. We can apply the tests for series of
Ppositive terms to series whose terms are ultimately positive.

The following worked examples illustrate some of these points.



40 THEOREMS ON LIMITS

Exampres VII

1. Discuss the convergence of the series

z2—1  (z—1)x—2) (x—1)x—2)x—3)
-7 + 21 - 31 z +eee

for all real values of z.

In the first place, the series terminates if z is a positive integer. The
question of convergence does not then arise.

Suppose now that z is not a positive integer. The nth term of the
series, u,, say, is given by

Uy = (— 1)

(x—1)z—2)...\x—~n-+1)
(n—1)1 :

Then .
Upyy z—n nNn—
Hence u,, and u%,,; have the same sign when n > x. That is, the terms
are ultimately one-signed. If they are ultimately positive, we can apply
the ratio tests.
If the terms are ultimately negative, say u, << 0 when n > m, then

U p1 T+ Umpat e !
is convergent if (—yy;)+(—%nye)+ ... i8 & convergent series of positive
terms ; for if 8,-> 8 then —s8,—> —a.
(—%a) _ Un
(—%np)  %npa'
so that the ratio tests of Chapter V can be applied without change to
geries of negative terms, or to series whose terms are ultimately negative.
Hence, when the terms of a series are ultimately one-signed we can
apply the ratio tests. ’ :
For any fixed value of x, not an integer,

(nfting) =1
and so Theorem 10 tells us nothing. We try Theorem 11:

u nx
n( = —l) X
Uni1 n—=x

Hence the series is convergent if z > 1 and is divergént ifx < 1.

> 2+l
2. ShOW thﬁlt Zlm =1
S 2l S (L-—1)
Zln’(n—i—l)‘—z n?  (n+1))
n= n=1

Each of the series 3 n~2, 3 (n+1)~2 is convergent and 30 we may write
the last expression as
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By Theorem 13, the first of these is
1 1
1+(§3+§~,+...).
An alternative method whick avoids the minor difficulties.
S ol & (Ao 14, 1

Z nint1) Z nt (n+1@ T (NI

n=1 n=1
Hence the sum of N terms of the series - 1 as N —> c0; that is,

S 2l
Zn'(n+l)’~ )

n=1
In all similar examples this is the simplest method to use.
o0
1
3. Show that z g =
n=1

Since ¥ n—* is not convergent, it would be nonsense to say

Z;Gel+_l)= z (11»_1v:~1)

n=1 n=1]

n=1

n=1 .
= (1+3+t+.)—@F+Hi+e) =1

41

The separate brackets 1-+4-+4+... and 3-+1+... look right enough, but

they can have no meaning since these series are divergent.

But the method of dealing with N terms is quite sound, and gives

Y N
D wwsn = 2 1) = - ap b

n=1 n=1
FurTHER EXAMPLES
4. Showthat 3 {(n+Hn+Dnt+yt = 4.
f==

= 1 = 1
5. Prove that z;:l{—zm.
n=1 n=1
a0
6. Prove that > {n(n41)}3 = 10—72.
n=1
[Assume that Y n~2 = }#2.]
7. Discuss the convergence of the series
© .
3 (—1)"Yx(z—1)..(x~n+1)
n=1

for all real values of z. (Cf. Example 1.)
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3.5. A necessary, but by no means sufficient, condition Jor the
convergence of an infinite series.

THEOREM 14. If the series 3 u, is convergent, then %, >0
as n > 0.

Given only that u, —> 0, it does Nor follow that the series
> u, is convergent. :

Let 8, = Uy tus+...tu,.
Then, since ¥ u, is convergent, s, — some finite number s as
n —>o0. Equally, s, ; - s as n > 0. Accordingly, by §1,

Uy = 8,—8,1 —>8—8 =0,
On the other hand,

FRIU

is a divergent series, although 7~ -> 0.

ExavmprLes VIII

1. If 3 u, is a convergent series of positive terms, so also is each of the
series 3 uf, 3 u,u,,,.

Since ¥ u, is convergent, u,— 0 as n—> c0. Hence (cf. Chap. 11, § 6)
3N .0<wu, <1lwhenn > N. Accordingly, when n > N,

ui and w,u,,; are each less than u,.

The results follow from the comparison test.

2. If 3 u, is convergent, then 3 (% ~—2,,,) is also convergent and its
sum is u;.” (Consider the sum of N terms.)

3. Prove that if @, > 0 and if

) 1:'_"“”% 0, then é”*} 0.
By hypothesis (cf. introduction to § 2)
&k>0; IN. 112,,“7& whenn > N.
Hence, when n > N, a,{k—e) < ¢,
or, on giving k the special value 1+t¢,
a, < e
Hence, €>0 3IN.ag,<e whenn > N.

(We put down two arbitrary numbers ¢, & to begin with, and, at
our convenience, make a special choice of k: this leaves the one number e
arbitrary, and so our final statement is: ‘On putting down any arbitrary
positive number e to begin with, there is a number N such that a, < €
when n > N.’)




THEOREMS ON LIMITS 43
4. Prove that if a, — 0, then a,/(1+a,) — 0.
If a, — 0, then 1+a, —> 1 and (§1) their quotient — 0.
5. Prove that if a, > 0 and if one of the series
2 2 aq/(1+a,)
is convergent, then so is the other. .

Hinr. If the second series converges, then 1+a, — 1 and l1+a, <3
when n is large enough. Use comparison test.

6. If one of the series in Example 5 is divergent, then so is the other.

Hixt. First solution. A series of positive terms must either diverge
or converge.

Second solution. Unless a,/(1+a,)— 0,a, cannot—> 0, and neither
series can converge.

If a,— 0, then 1 < 144, < 2 when n is large enough. Use com-
parison test.

7. Prove that in Examples 3-6 1+a, can be replaced by ¢-+a,, where
¢c> 0.

8. If¢ > 0, a, > 0, prove that the series
Z aﬁl’ E (an—{-c)—l

are either both convergent or both divergent.
Hixe. Either a, — oo or it does not. Consider each case.

9. If Juy =8 Tub =8, 3 u,u,,, = o, prove that
2 > §, 8% > 20.
10. Give examples to show that 3 u, may diverge while > uj con-
verges.
11. If u, > 0 and 3 u, is convergent, with sum ¢, prove that
Uy, 2u,,
Uyt etuy, 8

when n is sufficiently large. Hence prove that 2 Upf(uy ot uy) is
convergent when 3} u, is convergent.

12. Pringsheim’s theorem. If u, > Uppr > 0 and Y u, is con-
vergent, then nu,— 0. .

Let s be the sum, and let s, = Uyt eee 2y,

Then s, — s and also 8,, — 5. Hence

Uppr+ oottty — 0.
Butu,,; > u,.4 > ... > Uy, and s0 Ny, —> 0. Hence
2nuy, — 0.
Butb uy, .y < 4y, so that we also have 2nu,,,, — 0, and finally, since
) {(2n+1)/2n} - 1, (2n+1)upy,, — O.
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13. In Example 11, if 3 u, is divergent, then so is 3 u,/s,.
Solution. If n < m, then, since &, = #,+...+u, and is m.i.,

ek
n

u,,+...+u,,, — Sm— 8

8 8y 8

If s,, —  as m —> oo, the last expression ->1 as m —» co when » is
fixed.

Hence, with any given n, we can find an m such that

Pt

and 3, (u,/s,) consists of blocks of terms whose sums each exceed §.

4. Further tests for series of positive terms. Cauchy’s
test

4.1. THEOREM 15. If u, is always POSITIVE and %fu,, — L, then
the series 3 u, is convergent when L < 1, divergent when L > 1.

Proof. (i) Let L <1, and let L; be any definite number
such that L << L; << 1. Then (compare Chap. II, § 6)

N .%Yu, <L, whenn =N,

ie. u, < L7.

But, since L; < 1, the series

LY LY+

is convérgent, and so, by the comparison test,

u N+ U N+l+ eee
is convergent.

Hence (Theorem 13) 3 u, is convergent.
(ii) Let L > 1. Then
1N .%u,>1 whenn=N.
That is, , > 1 when »n > N, so that u, does not tend to zero.
Hence (Theorem 14) 3 %, is not convergent. But a series of

POSITIVE terms must either converge or diverge, and so > u,
is divergent.

Cororrary. If a, > 0 and %/a, - R-1, then 3 a,x" is con-
vergent when 0 < x << R.
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5. The condensation test

5.1. TueorEM 16. If ¢(n) > 0 and the sequence ¢(n) is
monotonic decreasing, then the two series

0

Sem. S g
n=1

n=1
where h is a positive inieger greater than wumity, converge or
diverge together.
Since ¢(n) is m.d., we have
$(h)+d(h+1)+...+-$(R2—1) < (B2—h)$(h),
$(h?)+$(h*+1)+...+$(R%— 1) < (B*—h*)b(h?),

By adding these inequalities we get
B+t 1)+ 4 (41— 1)
< (h—1){hg(h)+h2$(h2)+ ... +-hrd(hm)}.

Suppose that > h"$(h*) is convergent and has the sum 8.
Then (Theorem 6, Corollary 1), for all values of #,

h(h)+h*p(h2)+ ...+ hp(h™) <'S.
Hence, whatever the value of m,
dR)+P(h+1)+...+P(h+m) < (R—1)8

(we can choose n to make A%*1—1 > h-}m), and the con-
vergence of

$(1)+6(2)+... +$(A)+S(h+1)+...

follows.

Again, on making a slightly different start so as to reverse
the inequality signs, we have

B+ 1)+ $(h+2)+ ...+ $(R2) > (R—R)H(R),
SRR 1)+ (A2 ..+ $(AE) > (W—RAG(R?),

By adding these inequalities we get |
$(h+1)+$(h+2)+ ...+ $(h")
= {(h—1)[RKR*$(R*)+ B$(h®)+ ...+ B p(h")}.
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Suppose that ¥ h"$(h") is divergent. Then, as the last

inequality shows, the sum
$(1)+¢(2)+...+(n)

increases indefinitely. Hence ¥ ¢(n) is divergent.

We have thus shown that the convergence or divergence of
2 kr¢(k~) implies the corresponding property for 3 (n).

Also, if 3 ¢(n) is convergent, then I An$(h*) cannot be
divergent, for if it were, 3 ¢(n) would be divergent also; and
if 3 #(n) is divergent, then 3 hn(h*) cannot be convergent.

5.2. The condensation test is particularly well adapted to
series that involve logarithms.

For the benefit of those readers who want the principal results as soon
as possible we give here a theorem involving logarithms. We shall not
use it in this book until after our own treatment of logarithms.

TaEOREM 17. The series

< 1
nzzn(log nyk
18 convergent if k > 1, divergent if k < 1.
If ¢(n) = 1/n(logn)* and A > 1, then
h» _ 1
h*(nlogh)e — n¥(log h)*"
Theorem 17 now follows from Theorem 7.

hngh(hm) =

Exameres IX
1. Show that the convergence of 3 n~* when &k > 1 follows from the
convergence of 3 7» when » < 1.
2. Show that 3, (nlogn)-Y(loglog n)~¥ is convergent if k > 1, divergent
ifk < 1.
3. Find for what sets of values of q, b, ¢ the series

3. n%(log n)*(loglog n)°
is convergent.




CHAPTER VII
ALTERNATING SERIES

1. Alternating series

1.1. There is one type of series other than series of positive
terms for which it is easy to decide whether or not it converges.

This type is Uy — Uyt Ug— vy .., (1)

where each u, is positive. Such a series is called an alternating
series, because the signs alternate.
TueorEM 18. The alternating series (1) is convergent if
(i) w, is monotonic decreasing, i.e. u, > Up 11
and (i) u, > 0 as n -> co.
We prove this theorem by considering separately the sum of
an even number of terms and the sum of an odd number of

terms. Sop = (ul_u2)+"'+(u2n—1'—u2n)’

and so, by hypothesis (i), the sequence

825 84, «vvy Sgpyeee : (2)
is m.i. (monotonic increasing) ; but we may write
Son = Up— (uz"us)—---‘—(uzn—z”‘uzn—l)‘“uzm
so that s,, is never greater than u,. Hence (Theorem 4,
Corollary 1) 89— L < u,. (3)
Next consider an odd number of terms. We have
Son+1 = Uy (Up—Ug) — ... — (Ugp—Upy 1),

so that the sequence 815 Sg1 ey Sypigsee (4)

is m.d. (monotonic decreasing); but we may write
Sans1 = (U —Up) (U — W)+ ..+ (Ug oy — Uy )+ Upyy 1,
80 that s,,,, is never less than u,—u,. Hence
Somi1 > L' 2> uy—u,, (5)
Accordingly, without using hypothesis (ii), we have shown

(A) that the sequence formed by the sums of an even number

of terms
89; 845 wery Sapsene

is m.i. and converges to a limit between Uy —uy (= 8,) and u,;
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(B) that the sequence formed by the sums of an odd number

of terms
81, 33, sy 821!4-1""

is m.d. and converges to a limit between u, (= s,) and u,—u,.
Since sy, - L, 85, —> L', we have (Chap. VI, §1)
Ugps1 = 8gp41—8pn > L'— L.
But, by hypothesis (ii), %,,,; -0 and so L’ = L. That is to

say, both the sequences tend to the same limit L.
Hence s, > L as n — oo through all values.

Formally, the last step in the argument may be set out thus:

8gn —> L, e
Therefore e€>0; 3 N . |[L—8;,| <e whenn >N
and I N, . |L—84p,] <€ whenn > N,
Hence iN.|L—s,]<e whenn =N,

and so 8,— L.

ExamprrLEs X
1. Show that each of the series
R S & SUMIS B B S

is convergent.
2. Show that 1-?—2-?43-?—_, is convergent if p > 0.

3. Use each of the two methods of Examples VII, 2, to show that,
when p > 1,

1"9—2-24 3P — ., = (1—21-P)(1+2-2+48-24...).
4. Show that the series
R N S
z+1 x+2 x4+3 7
is convergent for all real values of 2 other than negative integers.

(If > —1 the series is alternating; if x < — 1 the terms are ultimately
alternating in sign; in the latter case use Theorem 13.)

5. Prove that the series

‘

a8
—3— — ese

convergesif —1 < # < 1. (If —1 < # < 0, we have a series of negative
terms; use Chapter V.)

6. P
rove that AP o (—1ywh
1+Zn(n+l)=2z n
n=1 n=1

a2
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2. Power series -

We have found tests for ¥ a,2™ when @, > 0 and z > 0.
The easiest way of dealing with negative values of z is to use
the properties of absolute convergence that will be considered
in Chapter IX. But many examples can be dealt with by
Theorem 18. We shall work one of the examples of Chapter V,
Examples VI, and recommend the others as exercises.

Consider 3 {(n+1)/(n-+2)}x" when x is negative. Letz = —y.
The series becomes

—8y+{y . (=)
If v, = (n41)/(n+2), we have
n-+1 n+2 1
n+2 nt3 (n+2)(nt3)
‘Hence the sequence (v,) is monotonic increasing and we cannot
apply Theorem 18 directly. But we.note that v, = 1. So we

1
T o)

Vp—Vp41 =

write n +1 . 1
ni2 n4+2
and consider the two series
—y2 . @)
and W—1 - (3)
By Theorem 18, the series (3) is convergent if
) 1
¥ty AN

=<2 and
n42 n+4+3 n+2
These are both satisfied if y < 1.

Also (Theorem 5), the series (2) is convergent when y < 1.
When we subtract the two convergent series (2) and (3) we

obtain a convergent series; but the series so obtained is (1).
Hence the series (1) is convergent when 0 < y < 1.

4440 E




MISCELLANEOUS EXAMPLES ON CHAPTERS I-VII

1. The sequences (a,), (b,) are defined by means of the formulae
Appy = Hay+by), bpy = +(@pi1b0)s
a, = a, b, = B; and « > B. Show that (a,) is m.d., (b,) is m.i., and that
@y, b, each tend to the same limit.
HiNT (to be used only after failure).
If a, > b, then, from (i), @ni1 > by Apy1 < Gas since Gy > by,
buiy > b, from (ii). Further,

1
an+1'_b31+1 = Hap+b,)2—Cpyy b, = ai—bl)=..= Zﬁ(az—ﬂz)-

2. In Example 1, if ¢; = cosf, 0 < 8 < 3, b; = 1, find expressions
(by induction) for a,, and b,,.

Prove that (a,) is m.i. and (b,) is m.d. Show also that a,, b, each tend
to sin /6.

3. Find expressions for the finite sums

() 12H2%t...(nt1)22",
(i) F (Pt D2 +3).

Discuss the convergence of these sums as n-»> co.
4. Prove that each of the series

X logn)?, X m/(nP+1)

is convergent.
5. Prove that if @ > b > 0 the series
b b(b+1)
1
TariT @rhE+?)
converges to the sum a/(a—b).

+..

Hint. The series is convergent and its terms are m.d., so that, by
Pringsheim’s theorem, nu, — 0. Also (compare the start of Example 17)

e _ b b...(b+n—1) b...(b+n) 1
a—b 1+a+l +"'+(a+1)..,.(a+n) (a+1)..(atn)a—b".

6. Show that the series

2> G- mri-mrd)

n=1

is convergent.
7. Sum to n terms the series whose nth terms are
. 1 . 1
W ernern W amrDeEs
(iii) n(n+1)n+2), (iv) na", (v) (n*+1)x™.
Discuss the question of convergence of the corresponding infinite series.
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8. If the successive terms of a sequence of real numbers (s,) are
connected by the relation s,, = 7s,—6, and if « is any root of the
equation 2®—7x-+6 = 0, prove that 8,—a has the same sign for all
values of n.

Prove that

(i) if 8, > 2, 8, is m.d. and — 2,
(i) if 1 < 8 < 2, 8, is m.i. and — 2,

(i) if —3 < 8, < 1, 8, is m.d, and — —3,

(iv) if &; < —3, 8, is m.i. and — —3.

9. Discuss the convei'gence of ¥ sechnz, 3 2"sechnax.

10. Prove that ¥ (—1)*/{n+24(—1)*} is convergent.

‘11. If %, > 0, 8, = u;+...+u,, prove that 3 u, and ¥ (u,/s,) are
both convergent or both divergent.
12. Discuss the convergence of the series
1.2
1 z
+e® HiTaiera ™
1 1
13. If Uy = m —m "*"m'—..., show that
(i) the sequence u, is monotonic,
(ii) vo—uytUug—.ci—Ugpy_y = 2nUgy.
14. Prove that ./(n*+1)—n is ultimately monotonic and tends to
zero. Show that ¥ (—1)*/(n*+1)—n} is convergent.
a3 x8 1.327
s3tzastza6a7

is convergent when 0 < « < 1.
16. Prove that
n{n+3)n+8,
n(n+1)x*, —— L
2 nn+1) D T2)
are convergent when 0 < z < 1, divergent when = > 1.
17. Prove that, if m > n and n is a positive integer, then

15. Prove that

m+1 n m
m—n—+1 = 1+5 m—n+1
n{n—1)
1+m+m(m l)+" to (n+4 1) terms.

18. Prove that, when = > 1,
(i) njz® and N/a¥, where N =2% -—0 as n-> oo,
(i) (x— ) t—(z+1)t = 2(z*—1)7,

2 4
(i) —S+artar Frae

converges to the sum 1/(x—1).
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19. Prove that the sequence («,,), where
oy = Af(n+1)—n,

is m.d. and — 0. )
20. Prove that, when 0 < 2z < 1,

(-] @© n
Z 2n+4+1 x”——l——-l—-x @

nin-12° z nt’
n=1 =1
21. Prove that, if i is a given positive number less than unity, the

sequence (a,), where oy = fa+n—1)y"/n,

is ultimately monotonic decreasing, and that «, — 0.
22. Prove that the series

1+ax+“;lx2+...+‘-’—+:—‘"lxﬂ+...

is convergent when —1 < = < 1. Prove, also, that the series is divergent
when # = 1 and that it is non-convergent when x = —1.




PART II

THE GENERAL THEORY OF
INFINITE SERIES



CHAPTER VIII
THE GENERAL CONVERGENCE PRINCIPLE

1. The general convergence principle

1.1. In Chapter II we gave a formal definition of what is
meant by the phrase ‘the sequence («,) converges to o’. In
Examples II we showed that certain definite sequences con-
verged to certain definite numbers. But this gives no clue as
to how we are to answer the question ‘does the sequence («,,)
converge?” Chapter II will give the answer to the question
‘does («,) converge to «?’ only when we know what « is.

When we came to monotonic sequences we found a simple
auswer to the question ‘does a monotonic sequence converge?’
The answer was ‘yes, if it is bounded’. For example, if'(a,) is
mi. and «, < 100, then o, - some limit that is not greater
than 100.

If the sequence (,) is not monotonic, then the test as to
whether «,, does or does not tend to a limit, the limit not being
specified, is contained in Theorem 19. This is a fundamental
theorem. Whether or not the proof is mastered on a first
reading is a matter of personal taste, but the theorem itself
must be.

THEOREM 19. The necessary and sufficient condition that the
sequence (w,) should converge (to some finite number «) is

€>0; 3N . |ay—oyipl < e for all positive integers p.
1.2. The condition is necessary. This is relatively simple
to prove. Suppose that o, - o. Then (see Chap. VI, §2)
&k>0; 3N . |la—a, < e/k whenn > N.

Hence, if p is any positive integer, we have

loy—ansp| = |(ay—a)+ (a—oayyp)]
< |°‘-a1v|+|f¥—°‘1v+p|
< 2¢/k.

Take k = 2 and it follows that
e>0;, AN . |aN—-—aN+p|‘< e for all positive integers p.
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This proves that, if «, > «, then the condition is necessarily
satisfied.

1.3. The condition is sufficient. Preliminary. The
proof of this is more difficult and depends upon the following
theorem.

THEOREM 20. If the infinite sequence (a,) ts bounded, it con-
tains ot least one sub-sequence that converges to a finite limit.

Suppose that

o<, <b (n=123,..),
~and think of the points a, b and the various points «,, marked
off on a straight line. Bisect ab: there is an infinity of points
o, in ab, and so there is an infinity in one at least of the two
halves.

Suppose there is an infinity in the left-hand half only. Put

o, = a, b, = $(a+b),
so that a; b, contajns an infinity of the «,. Bisect a,b,: there is
an infinity of the «, in one at least of the two halves.

Suppose there is an infinity in the right-hand half. Put

a, = }(a,+b,), by = b,.

Continue this process and always make a, b, a part (right-
hand if possible) containing an infinity of «,. The construction
of a, b, from a,,_, b, _, is always such that

a, =a, b, <b,,.
Hence (2,) is m.i. and, since each a, < b, a, > L < b;.also
(b,) is m.d. and, since each b,, > @, b, > L, > a.

It follows that b,—a, - L,—

But b,—a, = (b—a)2-" and tends to zero, so that L = L,.
Since a, ~ L from the left and b, - L from the right,
wehave oy 4 <b,—a, < (b—a)2-",
0 b,—L <b,—a, < (b—a)2—.
(Notice the sign <: from a certain stage onwards a, or b, may

stay fixed at L.)
Accordingly, if z is any point in e, b,,, then

|L—zx| < (b—a)2-n.
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Now let «,; be the first member of the sequence (,) that
lies in @,b,, ayy the first other than «,, that lies in a,b,, ag
the first other than «;, and «,, that lies in a3 b,; and so on.

We then have a sequence (a partial or sub-sequence of the «,)

(33, Oiggs Oiggse..

such that [ L—a,,| < (b—a)2-n.

Hence, on writing B, = «,,, B, = L as n - c0.

Notice that, by its mode of construction, L must lie either
inside ab or, in extreme cases, at one or other of a and b; it
cannot lie outside ab.

1.4. CoroLLARY. If the infinite sequence (x,) is bounded,
then either it converges or it contains two sub-sequences that con-
verge to different limits.

As in the theorem, there is one sub-sequence (8,) that con-
verges to L. Then

EITHER (i) for each and every ¢ > 0, only a finite number
(or none) of the «, are such that |L—a,| > ¢,

OR (ii) for some ¢ > 0, an infinity of «, are such that
|L—a,| = e

If (i) holds, then o, — L (by definition of convergence).
If (ii) holds, let A be a definite positive number such that
|L—a,] = A for an infinity of w,.

Let (y,) be the sequence we get by omitting from («,) all the
terms such that |L—a,| << A. Then, if L is neither a nor b (if it
is, slight changes are necessary: these we leave to the reader),
the sequence (y,) lies in @, L—X and L-+-A,b. Moreover, by
hypothesis, (y,) is an infinite sequence.

Either in @, L—A or in L+-),b there is an infinity of y,. We
can, s in the theorem, select a sub-sequence which converges
to some number L,, and, as L, cannot be [within L—2A, L+,
L, cannot be the same as L. !

That is, («,) contains two sub-sequences, one of which con-
verges to L and the other to L, == L. .
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1.5. The condition in Theorem 19 is sufficient. Suppose
the condition is satisfied; that is,

€>0; 3N . |ay—ay,,| <e for all positive integers p.
Then, when m > some definite M (the value of N when e = 1),

IO‘M - ml <1,
i.e. &M_]- < o < (XM+ 1.

The sequence oyg,;, diprys,... is bounded. Hence (Corollary,
Theorem 20) it must either converge or contain two sub-
sequences that converge to two distinet limits L and L,. But
the latter is impossible when our condition is satisfied. For, if
possible, suppose there are two such sub-sequences and that
L, > L. Then, if k is a given positive number,

L,—

AN . Jay—ay,l < —k—l—; for all positive integers p.

Since one sub-sequence — L and the other — L,, there are
positive numbers g, r such that

Iy—L Li—L
IL"'aN-I-qI < lk ’ lLl_aNﬁ'l < lk .

It follows that
| Ly— L] = [(Ly—apip)F(enrr—on)+(an—an.g) +oyig— L)
< |L1-°‘N+fl+|°‘1v+r—°‘Nl‘|’l“N—OlN+ql+|°‘N+q“Ll
< H{L,—L)/k.
That is to say, if there were two sub-sequences converging to
distinct limits, it would follow, on taking k = 4, that
L,—L < L,—L,
which is absurd. Hence the sequence («,) must converge.
This completes the proof of Theorem 19,

1.6. Complex numbers. Complex numbers will be con-
sidered in a later chapter. In all other contexts numbers are
supposed to be real unless the contrary is stated.




CHAPTER 1IX
ABSOLUTE AND NON-ABSOLUTE CONVERGENCE

1. The convergence principle applied to series
The infinite series Uy +ug+ ...
is convergent if the sequence (s,), where

) 8, = U t+uy+...+u,,
18 convergent.

TazoreM 21. The necessary and sufficient condition for the
series 3 u, to be convergent is
€>0; 3N . Juy,t.tuy,l <e
for all positive integers p.
This is an immediate corollary of Theorem 19, for
SN+p—8N = Uyt UNpe
2. Absolute convergence

2.1. DEFINITION. The series 3 u,, is said to be absolutely
convergent if the series > |u,| 18 convergent.

THEOREM 22. If a series is absolutely convergent, then it is
also convergent. If a series is convergent it is mot necessarily
absolutely convergent. (

Suppose > |u,| is convergent. Then

€>0; AN . |juyylt.Fluy,ll <e
for all positive integers p. But (modulus of sum < sum of

moduli) luN+1+“‘+uN+Pl < 'uN+1I+.--+luN+plr

and so €>0; IN . Juyat..Fuy,l <e
for all positive integers p. Hence, by Theorem 21, I u, is
convergent. ;

On the other hand, particular examples show that 3 u, may
be convergent and ) |u,| divergent: e.g. 1—3}-4-1—... is con-
vergent, 14-4+34+... is divergent. (Cf. Theorems 18, 7.)

2.2. Turorem 23. (i) If a series is absolutely convergent, then
the series formed by its positive terms alone is convergent, and
the series formed by its negaitve terms alone is convergent.
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(ii) If a series converges but is not absolutely convergent, then
the series formed by U8 positive (negative) terms alone is divergent.
Let the series be > a,, and let |a,| = o,. Further, let
. __ [a, when a, is positive
Pn = HOptoy) = {0 when a,, is negative,
_ . y._ |#, when a, is negative
= Hay—o,) = {O when a,, is positive,
B, = py+...4p, n = Q1T
8y = ay+...+}a,, o, = ay+...Fa,.
With this notation we have, by easy algebra,
Pn = %(Sn"!'o'n): Qn = %(8n_on)' (1)
But if ¥ a, converges absolutely, then o, —> a finite limit, o say,
and ¢, -> a finite limit, s say. Hence
F,—~ 3(s+o0), Qn—> 3(s—o0), (2)
and (i) follows, since P,, @, are formed respectively from the
positive, negative terms alone.

To prove (ii) suppose that the series formed by the positive
terms alone is convergent and that the original series is con-
vergent. Then P, - a finite limit, P say, and 8, - a finite limit,
8 say. It follows, from (1), that ’

g, > 2P—s,
i.e. the series of absolute values, Y «,, is convergent.

Hence, if 3 a,, is convergent and 2 a, is divergent, the series
of positive terms alone cannot converge.

2.3. The ratio tests. When, in Chapter V, Examples VI,
we considered power series such as

1422+ 322+..., 1)

we.confined our attention to positive values of z. We now see
-that this series will converge, whether « is positive or negative,

provided that 14-2)2|+3[z)*+...
is convergent. If we write u, = (n+ 1) x|~
o (D) 1
ey @9 T
Hence the series (1) is absolutely convergent when |z| < 1.
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The examples that follow deal with the same series as did
Examples VI, but negative values of z are now included.

Exampres X1
1. Prove that each of the serigs

" ntl _nt+l
2 (nt1)am, :Sn+2x’ nr2)(nt3)”

converges when |x| < 1, diverges when 2 — 1, and does not converge
when |z > 1. Show that the third series is the only one of the three
that converges when & = —1.

Hi~t. When [z| < 1, consider the series of absolute values and use
the ratio tests. When lz] > 1, the nth term U, does not tend to zero,
and Theorem 14 proves the result. When = = —1, only the terms of
the last series tend to zero and the convergence of this series is proved
by Theorem 18.

2. Prove that the series

a.b ala+1)b(b+1)
I e aaT e
converges when |z] < 1.

3. Prove that each of the series

2 3
Lo+ Z+5+

+.. (c,d > 0)

3 a8
x+g—! +‘5—! +u.

converges for all real values of z.

4. Show that 3 n!z" cannot converge for any real value of 2.

HiNT, |u,,,] is ultimately greater than |%s), and so u,, cannot tend
to zero.

5. Show that ¥ n*z" converges when k is any fixed number and
[#] < 1. Show that it does not converge when lz| > 1 and find for
what ranges of values of & it will converge when x = 1, when x = —1,

6. Show that each of the series

a at+l . a2 s
Mget g et gt

a 2(a+1) 2, 3(a-+2) 3
ert =g “ttage ot
is convergent for all real values of z.

7. Show fhat the series

2
l+(—a’—x -}-——(ﬁb:ih—l)xz-{- :g(aT—id—)x’—l—...

converges when |z] < [b].
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3. Abel’s and Dirichlet’s tests
3.1. Let (a,), (v,) be any two sequences, and let
8, = a;+0y+...4a,.
Then, by simple algebra,
@y VAVt 8, Y, (1)
= 81' v+ (sa—81 )0t ...+ (80 —8n-1)n
= 81(”1—"72)‘{'32(”2'_”3)"{'---+8n-—1(vn—1— n)+8nvn' (2)
That is, we have transformed (1) into another shape, namely (2),
wherein we ‘sum the a’s and difference the v’s’.
Now suppose that
(i) (v,)is a m.d. sequence of positive terms,
(i) the numbers &, H are such that
h<s, <H (r=12,..,n).
Then we havetf
hvy = h(vy;—0g) +h(vs—Vg)+ ... A (v, — V) + 0,
< 81(’01-—’02) +‘92(v2—v3)+ +8n—1(vﬂ—1—vn) +8n Vns
that is, by the equality of (1) and (2),
v, < a,v;+a,0,4 ... +a, v,
Similarly, a,v;+a5v,+...4a,v, < Hy,.

3.2. We now collect these results into an important lemma.

Abel's lemma. If (v,) is a monotonic decreasing sequence of
positive numbers, and h, H are such that

h<Laytat..ta, <H (r=12,..,n),
then o, < a, v+ a0+ F-a, v, < Hoy.

In this lemma h or H, or both, may be negative. The
notation @ < b means that a is algebraically less than b; thus
—8 < —2. When we use absolute values we need the following
result.

Corollary of Abel’'s lemma. If (v,) is @ monotonic decreas-
ing sequence of positive numbers, and K is such that

(@, + 8yt ta | < K (r=1,2,.,2),
then @y v +8y v+ ... Fa, v, | < Koy

+ Notice that the argument depends on v, > ¥y, If, for example, v, < v,
then v, —v, is negative, and so

(v, —v3)h > 8,(v,—vy) WwWhen h < &,
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This follows almost at once from the lemma itself, For we
can write the condition |a,4-a,+...4-a,] < K as '
—K < ay+a,+...+a, < K,
and so, by the lemma,
—Kv, < a0, +a,0,+...4a, v, < Kv,.

3.3. TurorEM 24. If (a,) is a sequence of numbers such that,

for some fixed number K, -

layt-as+...+a,| < K foralln,
and (v,) 18 @ monotonic sequence that converges to zero, then
2 @, v, 8 convergent.

Suppose, in the first place, that (v,) is a monotonic decreasing
sequence of positive numbers, and that v, - 0. Then

k>0, AN .0<w, <ke when n > N.

[It is a matter of indifference whether we use € times % or €
divided by %.]

But, for all positive integers p,

laN+1+aN+2+"'+aN+pl
= [(@+8y+...fayy,)— (08,4 ...+ ay)|
< lagta -t Fay ., oyt ayt.. . Fay
< 2K.
Hence, by the corollary of Abel’s lemma,
@1 On 41+ By Onip] < 2Ky,
< 2Kke.
On putting k& = }K, we see that
€ > 0; iN. [aN+lvN+1+...+aN+va+p] <e€
for all positive integers p. Hence, by Theorem 21, >a,v, is
convergent.

If (v,) is a monotonic increasing sequence (of negative terms)
that converges to zero, (—wv,,) is a monotonic decreasing sequence
(of positive terms) that converges to zero. As we have proved,

2 —a,v, is convergent: hence > a,v, is convergent.

DEFINITION. A SERIES Y @, i said to be BOUNDED if there is

a constant K such that |a,+ay+...+a,| < K for all n.
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A convergent series is necessarily bounded (by Theorem 1),
‘though not all bounded series are convergent: for example, the
sum of any number of terms of the series

1-141—-14...
cannot exceed unity.

3.4. TueoreM 25. If 3 a, is a convergent series and (v,) s
a monotonic sequence that tends to a finite limit, then 3 a,v, 18
also convergent. ' _

The theorem has no interest if 3, a, is absolutely convergent, for (v,)
is bounded, by hypothesis, and so

leaval < Klau|,
say. If ¥ |a,| is convergent, the convergence of 3. |@nvy)] follows from
the comparison test (Theorem 8).

If 3 a, is convergent but not absolutely convergent, then the positive,

negative terms alone form two divergent series. The convergence of
. ¥ a, is due, so to speak, to the nicety of balance between a diverging
positive and a diverging negative. The theorem asserts that this nicety

of balance between the positives and negatives ig not upset by the
introduction of the factors v,.

Suppose that v, - v, and that
8, = a;+a,+...-+a, > 8.
Let w, = v—v,. Then ‘
a, 0,48y V..., ¥, = 8, V— (8 W+ AWyt 0, Wy).
Let 0, = QW+ AWyt ... 40, w,.
The sequence (s,,) is bounded, since s,, > s (Theorem 1). Hence
there is a number K such that
|ay+ay4-...+a,| < K for all n.
Further, the sequence (w,) is monotonic and converges to zero.
Hence, by Theorem 24, the series Y a,w, is convergent;

that is, o, — a finite limit, o say.

Accordingly,
a,v+0,0+...4+a,v, = 8,v—0,
> $V—o0.
Hence the series > a, v, is convergent.

" 3.5. Theorem 24 is usually called Dirichlet’s test, and
Theorem 25 Abel’s test. Before we give special examples we
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note one result, an example on Theorem 24, which is of almost
sufficient importance to rank as a theorem.

Let (v,) be any monotonic sequence that converges to zero. Then
2 v, 8innf is convergent for all real values of 0, and 3 v, cosnf
18 convergent for all real values of 0 other than zero and multiples
of 2x.

By elementary trigonometry, when 8 is real and sin 30 # 0,

2 __|sin4nf cos }(n+1)0 1
2,008 ’0| = sin 30 [sin 18]’
n __ |sin 4nBsin i (n+1)8 1

2 sin ’el = sin 30 sin 39|’

Hence, if sin }0 7 0, we may put K — |cosec 6| in Theorem 24
both when a, = cosnf and when @, = sinnd. But sin36 = 0
unless 6 is zero or a multiple of 2. Hence

> v, sinnd, > v, cosnf

are convergent unless § is zero or a multiple of 2.

When @ is zero or a multiple of 2, the first series is merely
a series of zeros, while the second is 2 v, and may or may not
be convergent.

Examrres XII

1. Prove that, of the series

<£;10’ z sir;nﬁ’ z co:':w’ Z sir;'nO’

all save the first converge for all real values of 6.

2. Prove that 3 n—*cosnf is convergent for all real values of @ if
k > 1, and is convergent for all real values of § other than multiples of
27 (including zero) if 0 < %k < 1.

3. If 3 a, converges, then 3 a, n~* converges when > 0.

4. If z is not a positive integer, then

2% 2
n’ n—z
are both convergent or both non-convergent.
Solution. If 3 a,/n converges, write v, = n/(n—x). Then
x
T S T 1)
F
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and, when n > [2], this has the sign of z. Hence the sequence (v,) is
ultimately monotonic; also, v,— 1 as n—> c0. Hence, by Theorem 25,

— _ —————
Z "= n n—a
is convergent.

The same method applies if we suppose the second series to be con-
vergent: we then prove that the convergence of the first series follows.

5. The series Y (—1)*n—=z)? is convergent when z is not an
integer.

6. The series 3 (—1)"/~, 3, (—1)"/4/(x-+n) when z is not a negative
integer, are both convergent.

7. The series I (—1)"b, is convergent provided that b, tends mono-
tonically to zero. (Put a, = (—1)* in Theorem 24.)

8. Prove that ZM is convergent for all real values of z.

3.6. The more general forms of Theorems 24 and 25.
The two theorems 244, 25A that follow are more general than
the previous ones and are also applicable when a,, v, are
complex numbers, but it is not so easy to see whether they
apply to any particular series. The new theorems are all but
self-evident if we return to the identity of § 3.1 and remember
that 3 a, converges if 3 |a,| does.

In §3.1 we proved that

a0+ v, v, (1)
== 31(”1—”2)+32(”2—”s)+---+3n—1(”n-1"vn)"3n v (2)
where s, = a,+a,+...+a,.

Let 3 |v,~v,.,| be convergent and let 3 a, be bounded, i.e.

K . |s,| < K foralln.
Then l‘sn(vn'—vn+l)l < Klvn'—vn-i—ll’
and each of the series
z sn(vn'—vn+1)’ z (vﬂ._vn+1) (3)
is convergent. Since Y s,(v,—v,,,) is convergent,
81(v3—5)+ 83 (V3 —V5) + .. 853 (V3 —Vp),
ie. (@, v+ o4, 0,)—8, Vs (4)
tends to a finite limit.
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Since ¥ (v,,—v,.,) is convergent,
(”1‘“'”2)+(”2"”3)+---+(”n-1_”n),

ie. 0y,
also ten_ds to a finite limit; that is, v, ~ v, a finite limit.

It follows from (4) that, if
EITHER v, >0

OR 8, > 38, a finite limit,

then (@, v,+...+a, v,) tends to a finite limit; for in the first case
(8.} < K and s,v, - 0, and in the second case s, v, > sv. We
now enunciate the theorems that embody these results.

THEOREM 244. If} a, is bounded, 3, |v,—vy,44] 48 convergent,
and v, — 0, then 3 a, v, 18 convergent. ‘

THEOREM 25A. If 3 a, is convergent, and 3 |v,—V, 44| 8
convergent, then Y a, v, 18 also convergent.

3.7. Worked example. If (v,) is m.d. and ¥ v, is convergent, then
2 n(vy—v,,4) is convergent and its sum is Y v,.

To deal with problems of this type, use §3.1 with a, = 1, so that
8, = n. Thus,

Vbt vy = (0,—0,)+2(v, —v5) + e F (R —1)(vy_1 —v,) + 10,
In the first place, v, —> 0 since Y, v, is convergent and so, in the second

place, v, must be positive since (v,) is m.d. Finally, by Pringsheim’s
theorem (Examples VIII, 12) nv,— 0, and the result follows.



CHAPTER X
THE PRODUCT OF TWO SERIES

1. The use of brackets in infinite series

Consider any sequence (o,) that is known to converge to a
limit «. Then, confining our attention to even values of n, we
are clearly justified in saying that the sequence

gy Clgyeres Olgyyens \ 1)

converges to o. On the other hand, if all we know is that the
sequence (1) converges to «, then we are not justified in saying
that «, — o; we simply have no information about the odd
values of x.

Now consider an infinite scries

ayt-ay+az+a,+t-..., (2)
and the same series with its terms bracketed
(@ +a5)+(@g+a)+-... 3)
Let 8, = a;+}a,+...+a,.

In thinking of (3) as an infinite series, we consider (@, +a,)
as one term, (a3-}-a,) as the next, and so on. To find the sum
of this series we consider the limit, as # -> 00, of

(@y+-a5)+(agf+ay)+... ton terms
= Qg+ f-Ay, = 8y,,. '

As with the sequence (a,) above, if we know that s, -,
then we can at once say that s,, - s: that is to say, if we know
that (2) is a convergent series and has a certain sum, then we
can at once say that the bracketed series (3) is convergent and
has the same sum. But if all we know is that the bracketed
series (3) is convergent and has a certain sum, then all our
information is limited to s,,, odd values of # are unaccounted
for, and we are not justified in saying that the series (2) is con-
vergent until we have investigated the sequence (s,,.).

In like manner, if n,, n,, n,,... is a sequence of steadily in-
creasing integers, then of the two statements

lim o, = lim o, = «
r
r—> Tg—>0
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we can deduce the second from the first but not the first from
the second. So, in considering series, of the two statements

Uy+u,+... is convergent and its sum is s,

(gt ) (g g, )
is convergent and its sum is s,
we can deduce the second from the first but not the first from
the second.
Briefly, we may put brackets in and be sure of our results,
but if we take brackets out we must subject our work to
careful examination.

ExamprLEs XIIT

1. The series 1=-H+F-H+...
1 1 1
=1 2" 2m(2n-1)
and is convergent (the terms are comparable with those of > n-e),
It does not at once follow that
1—j+d—F+..
is convergent: all we know from the previous work is that
1
4
But we can easily complete our work: for

has a general term

+..'.--—l-—>s.

1,1
am=1-gtg 2n

Sont1 82 = g5 and — 0 as n— oo,

But s,,—> 4, and 80 85y,, = (83n41—824) +83n — 0+8 = ¢; hence s, — 3
whether n be odd or even.

2. The series 2—-H+(E—-3+...
is the same as the series in Example 1. But if we remove the brackets,
t
o o gt 2t tg—t.
e see _, 3.4 5 2at1
fm=2—gtg—gt— g,
1.1 1 1
=l=ts— 1t
3,4 & 2n4-2
St = 2—gtg—gtetig
1 1 1 1
= 1+1 §+§ z+~--+2n+l.

8ani1—82n—> 1.
The series without brackets is not convergent.
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3. Prove that

1+ -P+¢-H+.. =2-F-H-E—-8—...
4. Prove that

1-p+E—d+.. =1-¢—-H-G—-—-.

2. Change of order of the terms of a series
2.1. In a finite number of terms, say
ay+ay+-...4-ay, (4)
the algebraic sum is unaltered by writing the terms in &
different order.

In an infinite series we must first say what we mean by
‘writing the terms in a different order’.

DEFINITION. The series
by, +by+bs+...
13 the series a,+aytagd-...
with its terms in a different order if every b, comes somewhere

in the a series and every a, comes somewhere in the b series;
S b, is also said to be a rearrangement of 3. a,.

ExamprEs. (i) 1—3+3—3+3—3+..,

and —3+1—+i—d+iHo
@) 1~3-+3—f+i—4+- ()

and © 14+3—3+i+—1+
The second example brings out a point that marks an important
difference between finite and infinite series, namely, we can
go on for as long as we like putting two positive terms to one
negative term. If we were dealing with a finite number of terms,
say 20 terms, some of which were positive and some negative,
and began by putting two positive to one negative, we should
be obliged to stop when we had exhausted all of one sign and
fill in with those terms we had so far left out. For example,

the 20 terms 44 it th—d

may be rearranged as

L= =i ot A h—f— b

Here we have gone on as long as possible putting two positives
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to one negative, but at the end we have been obliged to redress
the balance by putting in all the negatives we had previously left
out.

But, as we have seen, when rearranging the infinite series (5)
we can continue ad infinstum with two positives to one negative.
We cannot expect that the sum of the series will remain the
same as it was before. '

2.2. Suppose that a;+a,+...

is a given series and that
by+byt...

is a rearrangement of it. The sum of the first series is the limit,
if it exist, of a sequence

8), 8gy..c, 8psee., Where 8, = a,+...4+a,;

the sum of the second series is the limit, if it exist, of a sequence

O1; Tgyeeey Tpserey Whel'e o, = b1+.-.+bn-

The two sequences may well be quite dissimilar and it is,
on the face of it, as likely as not that their limits will be
different.

There is one important general theorem that deals with
rearrangements of infinite series, namely,

THEOREM 26. If a series i8 absolutely convergent, then its sum
18 unaffected by any change in the order of its terms.
2.3. Proof of Theorem 26 for a series of positive terms.

We first prove the theorem for a series of positive terms. Let
each u, be positive, and let

A S I SV S
be a rearrangement of the series
Uyttt U+
As yet, we make no assumption that either series is convergent.
Let 8y = Uyt U, o, = ty+...40,.
For any definite value of », &, contains n terms each of which

comes, sooner or later, in the v series, and 8o we can find a
corresponding m such that o, contains all the terms of s, (and
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possibly others not contained in s,). Since each term is positive,
o, = 8,. Hence
given n, 3 a corresponding m . o, > s,,.

Suppose now that the v series is convergent. Then the

sequence (0,) has a finite upper bound o, say. Since o,, > s,
‘ o =0, =8,

Hence the upper bound (cf. the definition of Chap. III, §1.2)
of the sequence (s,), say s, cannot exceed o: hence the u series
is convergent and o> . (6)

But, for any defiuite value of #, ¢, contains # terms each of
which comes, sooner or later, in the « series, and so we can find
a corresponding M such that s, contains all the terms of o,, (and
possibly others not contained in ¢,,). Since each term is positive,

831 = Ope
Since s > s,, it follows that s > ¢,, and so o, the upper bound
of the o, eannot exceed s: hence
8 = o. (7)
By (6) and (7), s =g,
and the u series has the same sum as the v series.

Suppose now that the v series is divergent. Then o, increases
indefinitely and, since we can find an s,, to exceed any given
o,, 8, must also increase indefinitely and hence the « series is
also divergent.

Alternative treatment of divergence. Suppose the v series is
divergent. Then

A>0;, I N.o,>A4A whenn>N.
But, as we have seen, 3 M . 8y = oy and hence
3 M.s8,>A4A whenm > M.
Hence the u series is also divergent.

2.4. Proof of Theorem 26 for absolutely convergent
series. Let ) a, be an absolutely convergent series; let P be
the sum of its positive terms alone, Q the sum of its negative
terms alone. Then (Theorem 23) if s is the sum of > ay,

8 = P+@ (Q is, of course, negative).
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Any change in the order of the terms of Y @, gives a new

series which, by § 2.3, is such that ‘

its positive terms alone converge to P,

its negative terms alone converge to Q.
Hence (Theorem 23) the new series is absolutely convergent
and its sum is P-}@, so that the new series has the same sum
as the old one.

Exampre. The two series

1,1 1
I—gtm—gter  rgoatmtaogate
are absolutely convergent and have the same sum. This should
be contrasted with the example given in § 2.5.

2.5. Further results about rearrangements of series.
If we rearrange the order of the terms of @ non-absolutely con-
vergent series > @,, we may or may not change the sum of the
series. Roughly speaking, the sum will be changed if we
interfere too much with the balance between positive and
negative terms. ,

In the following example the new series gives more weight to
the positive terms than the original series does.

ExamPLE. The series

1—3+3—3+.., (8)
=3+ (©)
are convergent and their sums are log 2, §log 2 respectively.

For the purpose of working this example we assume the
result, which will be proved in Chapter XIV, that as n — oo,

1 1 1
1 +—2—+§+... +ﬁ~—log,n -9,

where y is a constant (Euler’s constant).
Assuming this result, we see that we may write

1
1 +§+%+ +% = logn-l-)'m

where v, ->y a8 n —>co. (This procedure reduces the difficulty .
of handling limit problems connected with 1-4+4-434-....)
The series (8) is an alternating series whose terms tend
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steadily to zero and so (Theorem 18) the series is convergent.
Let s, denote the algebraic sum of its first » terms; 8 the sum
of the series. Then

- . . 1 1
o= tmo. = limay, = fim(1 3.5

’ . 1. 1 1 1 1 1
1.1 1 1 1

= Lim (log 2n+y;,—log n—y,)

= i‘_’j}o (log 2+ vz, —yn)

= log 2,
8Iince ya,—y, > y—y = 0.

The series (9) is not obviously convergent by any of the
standard tests. We begin by considering the sum of 3n terms
(equivalent to first considering the series where the terms are
bracketed in groups of three). Let o, denote the sum of the
first » terms of (9). Then

Cfy ! Wt 11
°3"—(1+"_")+(5+7 4)"' +(4n 3"'5-3—27»)

= (1433t gmy) - (I+§+--,+h1-)

‘ 1
= (1 +.2-+§+... +Zﬁ) ~§(1 5+ +_2_15)_
1 1 1

_»5(1 +5t- +;;)
= lOg 4n+74n—%(log 2n+y2n) %(logn"l")’n) i
= §log 2+ (1—}—hlog nt-ye,— bran—1tya > Hlog 2.

Further
O3pn41 = 3n+4 +l > g’log 2’

1 1 3
Taniz = m+m+4n+3_>§l°g2. !
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' Hence, not only the bracketed series
Q+3i—-H+eE+H-bH+-.
but also the series, without brackets,
T

is convergent and has the sum §log 2.

3. The multiplication of two infinite series

3.1. Suppose, for a moment, that we disregard all questions
of convergence and see what form of answer we should get if
we were to multiply together

a,+a,xt+agat+...ta, 2+
and by+byx+bgxt+...4b a1+
The form of answer is, clearly,
a, b+ (@ byFayby)x+ ... (3 0, a3 b+ 1 b amrt4....
We state our theorems about the multiplication of serieg
in such a form that they can be used easily for power series.

The coefficient of z#~1 in the previous work gives the reason
for our choice of ¢, in the subsequent work. '

3.2. Tukorem 27. If 3 a,, > b, converge absolutely, and
¢, = @b+, 1by+...4a, by,
then S c, is absolutely convergent and S, = (2 a,) (2 b,):
Let .
4, =at+at+...ta;, A= lay |+ lagl+... 4 @],
B, = by+bg+-... by, B, = by 14 [bg[+ ...+ 1al,
andlet 4, >4, B,—~> B, 4, > 4’, B,~ B
Write down the terms of the product 4, B, thus:

ab; aby a by . . . b,
agh, ayb, asby . . . asb,
azb, agzby asby . . . azb, (S)

a,b, a,by asby . . . a,b,
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Consider 4, B, set out in the form
Ay By+(4, B,—4, B))+
+ (Aa Bs"‘Az Bz)+ et (An Bn_An—l Bn—l)’
that is, a,b,+(a, bi+a,b,4+a,by)+... to n terms. (1)
Now remove the brackets from (1) and consider the infinite

series 16118301+ by @, by+-ag by +-agby-t-... (2)

First step. The sum of the moduli of any number, say m, of
its terms < some A, B,; for we can choose big enough to
ensure that all the m terms are in the square (8) and the sum
of the moduli of all the terms in (S)is 4, B,.

But 4, is a m.i. sequence and so 47 < A’ and, similarly,
B, < B'. Hence 4, B, < A’B’, Hence (Theorem 6) the series
formed by taking the absolute values of the terms in (2) is
convergent; that is, (2) is absolutely convergent.

Second step. The sum of the series (2), which has no brackets,
is equal to the sum of the series, with brackets,

@, by + (@2 6,4+-a 0540, b)) +-...+(a,, by+a,by+...4-ab,)+...

=lim 4, B,,
N—r00
as we see*by looking at (1), which is another way of writing
4,B,. But 4, > A4, B, > B. Hence (2) has the sum 4B.

Third step. Since (2) is absolutely convergent, any series
got from it by rearranging its terms is also absolutely convergent
and has the same sum. Hence

a,by+a,b,4-a,by,+a,b,4-a, by+a,b3+a,b ... (3)
is absolutely convergent and has the sum 4B,

Finally, the series got by putting brackets in (3), namely,

@01+ (a5 b, +a,b,)+-...+(a, by +a -1bgtotayb,)4-., (4)
ie. ) (o 7% S N S
is absolutely convergent and has the sum 4B,

Exampres XIV
Questions 1-6 may be made to depend on the fact that

I4+g+g+t 2 —logn >y asn s,

1 1 1 1 1
1. 1+§+5+...+m—§logn—>§y+log2.
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1
2. 1+§ +4+5 6+ +—~—_———-—-———logn—> y+log3
3. 1—3+3~1+... is convergent: its sum is log 2.

@
1
=]l

5. The series obtained by rearranging the series
1—3+i—1+..
so that 3 positives alternate with 2 negatives, that is,

13 +i—3—1+3+..,
has the sum }log 6.

6. If, in Example 5, p positives alternate with ¢ negatives, the sum

is log 2+ log(p/q).

7. If f
A(x) = ag+a, 2z +a, 22+ ..., B(x) = by+b,x+byx?+-...,
each series being absolutely convergent, and if
= a,,bo+a,,_,b1+...+aob,,,
then A(x)B(z) = ¢y+c, x+coa%+...
8. If ayt-a; 2 +...4-a, 2% +... is absolubely convergent when x| < 1,
and if A(z) is its sum, prove that, when 2] < 1,
(1-2)14(z) = 3 s,2m,
where 8, = ay+a;+...+a,. "

9. Prove that, if 4% = "+"! ang 47 = 1, then

i Ay = Ari,

v=0
HiNT. One method is to write
3 n(n—1)
E =i D) |
and to use (cf. Mise. Exx. on Chaps. I—-VII) the fa.ct that
"'n+7‘+1=1 _n_g;{-r { 141 .n+r—l
r41 n+r r+4+1 ,-n+r n+r—- r41

10. Prove, by induction (using Example 9), that when Jol < 1

) ke

O
(1—2)" 1= 3 AT an,
n=0
11. By writing (1—2)~"~#-2 = (1—z)~-}(1—2)~*-1, prove that

7
T Asdy, — A,
yv=
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12. Prove that the series
1ot S+ T+
21781
is absolutely convergent for all real values of x. If E(x) denotes its

sum, prove that E(z)E(y) = E(z+y). (Prove the result by means of
Theorem 27, not by quoting e*.e¥ = e**7.)

4. Abel’s continuity theoremf

4.1. Before we obtain the next theorem about the multi-
plication of infinite series we establish two preliminary theorems
about power series, a topic we shall not discuss systematically
until later.

TaeorREM 28. If 3 a, is convergent (not necessarily absolutely
convergent), then 3 a, x* i3 absolutely convergent when |z| < 1.
Since ¥ a, is convergent, a, - 0. Hence
iN.l|e|<3} whenn>=N.
When |z| < 1,3 |2[*is convergent. By the comparison test,

o
3 lana"!

is therefore convergent when [z} < 1. Hence (Theorem 13)
i a, x" is absolutely convergent when |z| < 1.
n=0
4.2. In the enunciation of our next theorem we employ the
idea of a function of x tending to a definite limit as x tends to
a definite value. The formal definitions are

DeriNiTiON. ForM B. A function f(x) is said to tend to the
limit | as x tends to a certain value a from values less than a if,
having chosen any positive number ¢ whatsoever, we can. then find
an X such that

lf@)—l| <e when X <z <a.
We write - f®)>1 asx—>a—0.

Notice that we are completely uninterested in what the value
of f(a) may be: we want the behaviour of f(z) for values of «
a little less than a.

+ Some readers will prefer to omit all save the result of Theorem 30 on a ‘
first reading.
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DermviTioN. ForM C. A function f(x) s said to tend to the
limit | as x tends to a certain value a from values less than a, if
€e>0; IX . |fe)-ll<e whenX <z<a.
We shall use, without the formality of a separate proof,
theorems analogous to those given in Chapter VI, §1.1.
There is a similar definition dealing with values of 2 greater
than a.

DErFINITION. f(*) > 1 a8 2 —> a from values greater than a if
e>0; I X . |fx)~ll<e when X >z >a.
We write Jx)>1 as x> a-+0. »
Finally, if f(x)->1 both as x->a—0 and as z —> a-}-0, then
we say that f(x) >l as x — a.

TaEOREM 29.17 If i a, 18 convergent and 8 18 it8 sum, and zf
n=0

J(x) denotes the sum ofﬁioa”x” when x| < 1 (¢f. Theorem 28),
then f(xz) — 8 as x — 1 from values less than 1.
Let s, = ay-+-a,4-...+a,. Then, since s, - s, two facts may
be stated about s,. First, by Theorem 1,
3K.ls| <K foralln,
so that (Theorem 2) |s|] < K, and

|8—8,| < |8]+]8,] < 2K for all n. (1)
Next, on using the device introduced in Chapter VI, § 2,
k>0, IIN . |[s—s,| <ek whenn > N. (2)
fle)—s

We now consider
1—2

When |z| < 1, we have
f@) = ay+a, z+aza?4-...+a, 2.,
(1—x) = 14a+a34-...fan4...,
the two series being absolutely convergent. Hence, by Theorem
27, we may multiply them, collecting like powers of z, and so
obtain ‘

(1—2)"f(2) = ay+(ay+-a,)x+(ay+a,+a5)22+ ..
= 8y-+8, x4 8,2% ... +-8, 27+ ...
1 For an alternative proof see Examples XVT, 8.
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Hence, when 0 < z < 1,
F@=2 _ (g s)+ o=Vt ot (st s (3)

1—x
and so, by (1) and (2), and by the use of Theorem 8,
’f%?:)_féf, < 2K(1+-a+...+aN-1)f el(aN 42N+ ..
N

1—z

—oxl= g
l—z

Accordingly, when 0 < x < 1, )
If(x)—s] < 2K(1—aN)4-¢k. (4)
But, N being fixed, as also are € and £,
3X.1-2"<ek whenX <z < 1.
In (2) take & = 1/(2K--1). We then see that
€e>0; 31X . |fa)—s|<e whenX < z<1,
that is, fiz)—>s asxz->1—0.

4.3. The reader will see that the proof in 4.2 consists of
writing down (3)—which is simple algebra apart from the use
of Theorem 27—getting an ek/(1—=x) out of (2) for » > N and
getting a multiple of ek for the terms not so dealt with by taking
z sufficiently near to 1.

5. Multiplication of series (continued)
TarEoREM 30. Ifc, is defined as
a, b, +ayb, +..+a,b,,

then (i an)( i b,,) = i ¢, whenever all three series are com-
n= n=1 n=1

vergent,

Let each of the series Y a,, X b,, 3 c, be convergent; let
their sums be 4, B, C. Then the series

§ a, "1, f: b, a1

n=1 n=1 .
are absolutely convergent (Theorem 28) when 0 < z < 1, and
their product (Theorem 27) is then :

0
> el
n=1
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But, by Theorem 29, Y a,2*1->4, >b,2"1—- B, and
>c,2*1->C as xz—->1—0. Hence, by the analogue of
Chapter VI, §1.1, AB = C.

ExavrLeEs XV
1. Prove that

et = S s )2
(a) when |z| < 1, (b) whenw =1.

[Assume in (0) that —— (1+ + ot )->0.]

2. Assuming the expansion
tan—x = z—}x* -}t —...,

< -
Hton~tzp = > (—1)*;%12(1+l+...+ oy

n=1

prove that

Prove that the series are absolutely convergent when Ix] < 1 and are
convergent when z = 1.

3. By first putting # = —y in Examples XTIV, 10, show that
g1 ¥ (—1)4r,
when 7 is a pasitive integer. =0
4. Prove tl at each of the series
x—jat4-Jad—fat 4.,
r—ad-dat—...

is absolutely convergent when [z] < 1 and that the functions they
represent tend to the sums of the series

I—3+4—-1+..,
1—3+3—..
as z tends to-1 from values less than 1.
5. Consider the validity of (3 a,)(3.b,) = 3 c¢,, where

€y = G b+ a3 b, 1 +...4a,by,
in the three cases

(i) @, =0b,=n"3, (i) a,=b, = (—1)"n"1,
(i) @, = by = (—1)"n"12%



CHAPTER XI
UNIFORM CONVERGENCE

Foreworp. This chapter is rather long. The reader may find the
following plan useful on & first reading. Master §§1, 2; get a first, rough
idea of the theorems in §§ 3, 4, 5; see how these theorems apply to some
of the examples at the end of the chapter; make a more careful study
of §§ 3, 4, 5. Theorems 36, 37 should be omitted on a first reading.

1. Preliminary discussion

We have proved that we can add and subtract (Chap. VI, § 3)
convergent series, and that we can multiply them together when
certain conditions are satisfied (Chap. X). We now start on the
problem ‘When can we integrate and differentiate infinite series?’

Suppose we know that, for each and every x such that
a < z < b, the sequence

a,(x) (n=1,2,8,.)

tends to a limit. This limit depends upon x; let it be denoted
by a(x). Then what we know is this: if we first fix x, then

€e>0; 3N . |afx)—a,(r)] <e whenn > N. (1)

If we move to another x and keep the same ¢, then the state-

ment le{r)—o ()| <e whenn =N

may cease to be true if we keep the same N: we may need to
take a larger N for the statement to be true. This possibility
that N will grow bigger and bigger as we move to different z
will lead to difficulty in many problems. So, to cut out all such
difficulty, we consider a different type of convergence, namely,
uniform convergence in an interval (a,b). We say that «,(x)
converges uniformly in the interval (a,b) to the limit a(z) if
€e>0; 3N . |ur)—a,(z)] <e whenn > Nanda <z < b.
(2)
In (2) there is no question of first fixing x; we fix the interval
(a,b) and not any special x in it, and then (2) says ‘If we put
down any positive number ¢ whatsoever, there is some number

N such that |a(z)—a,(x)] < ¢ when n > N, no matter what
z of a < z < b we consider’,
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2. Formal definitions

2.1. It will be convenient to make precise the meaning of
‘interval’. Geometrically, an interval on & straight line con-
sists of all points lying between two fixed points, the ends of
the interval: sometimes we want to think of the end-points
as belonging to the interval (a closed interval), sometimes we
want to exclude the end-points from our consideration (an
open interval). Analytically, the definitions are
The closed interval (a,b) consisis of all numbers x such that
a<<x<<b The opent interval )a,b( consists of all numbers x
such that a < x < b,

In this book ‘interval’ will mean ‘closed interval’ unless the
contrary is stated. The phrase ‘all z in (a,b)’ will mean ‘all
numbers z such that a < z < b’.

Uniform convergence can be defined with respect to a closed
interval, an open interval, or indeed with respect to any set
- of values of the variable . But we shall, for simplicity, confine
our attention to closed intervals.

Definition of uniform convergence in an interval. The
sequence «,(x) 48 said to converge uniformly to the limit a(z) in
the interval (a,b) if :

¢>0; 3 N .forallxin(a,b), lcx(x)——a,,_(a:){ <" € whcm n_} N.
A less emphatic form of the last line is
€e>0; 3N . |«fz)— a,,(a:)l<e when n > Nanda z<'b.

The reader may use either so long a8 he holds firmly to the
fact that e having been set down, it is possible to find an ¥ that -
governs the whole interval.

The gertes uy () t+ug(z)+... -, (2)+ ...
8 said to converge uniformly to the sum s(x) in the interval (a,b)
if, with 8,(x) = uy(x)+...+%,(), '
€e>0; 3N .forallxin(a,b), |s(x)—s,(x)] <e whenn > N.
That is, the sequence 8,(x) converges uniformly to 8(x) in (a,b).

1 The brackets open outwards to denote an open interval.
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2.2. An example. Consider the sequence
 (n=123,..)
when 0 < 2 < 1. If we fix z, then 2% -0 as n—>o0. If we
fix a definite number 3, as near 1 as we please but less than it,
then 2" < 8" when 0 < o < 8.
Since 8" - 0 as n - o,
€e>0;, I N . <e¢ whenn >N,

and so 3 N . for all z in (0,8), |x*| << ¢ when n > N. That
is to say, the sequence (z*) converges uniformly in (0,3) to the
limit zero. -

The reader will see for himself that the argument breaks
down completely if 8 = 1: there is not uniform convergence in
(0,1), though there is in any (0,5) where 0 < § < 1.

3. Properties of uniformly convergent series
3.1. Integration. Turorewm 31. If the series

(@) Uy (@) +- ..y (2) - (1)
converges uniformly to the sum s(x) in the interval (a,b), then
b o b
fa(x) dx = 2—:1 fun(x) dx (2)

provided s(x) and each u,(x) can be integrated over (a, b).

The process of forming the R.H.8. of (2) is usually called
integrating the series (1) term by term; the theorem itself may
be expressed in the form ‘A uniformly convergent series may be
integrated term by term over a finite range.’

Consider the graphs

5

Fre. 1.
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X,

- sn(x el T2

0 ) P x
Fie. 2.
wherein the curves y = 8(x), y = s, (x) are shown in typical

relative positions: s,(x) = u,(x)4...+u,(x).
Since the series converges uniformly to the sum s(x) in (a, b),

€e>0; 3 N . forall xin (a,b),
ls(x)—s,(x)| < F—e——a whenn > N,

That is, the vertical distance between the two graphs is less
that ¢/(b—a) at every point, and so the area between the two
graphs is less than e. Hence, if n > N, then

b b
f 8(x) dx — f 8,(x) dz i,

which is less than (Fig. 1) or equal to (Fig. 2) the area between
the graphs of y = s(x) and y = s,(x), is less than . Hence
b

|

a
that is, the series of integrals converges to the integral of s(x).
For readers whose knowledge of integral calculus is sufficiently
advanced the following proof is given.
By hypothesis,
k>0, 3N . |o(x)—8,x)) <ek whenn >N and a<z<b
Whenn > N

b b b
|[ te) dz — [ outa) de| = | [ totz)—au(al} de

b
e>0; I N. s(x)dx—f fu,(z)dx << e whenn >N,
rala

b
< [ ls(@)—24@)| dz < (b—a)ke.

(The modulus of the integral of f(z) < the integral of |f(x)|.)



86 UNIFORM CONVERGENCE
Take k = 1/(b—a), and we have

b b

f &(x) de — f 8,(z) dz
a a

e>0; IN. <€ whenn > N,

and so the series of integrals converges to the integral of s(x).

3.2. Continuity. A4 function f(x) is said to be continuous

at x = xy if
€e>0; 338 . [flx)—flxy)] <€ when [xt—xzy] < 8.

That is to say, given ¢, there is a & such that f(z) is within
e of f(x,) whenever 2 is within 8 of #,; or, again, on using the
notation of Chapter X, §4.2, f(z) > f(z,) as  — z,.

We shall make only occasional use of continuity, but it is
impossible to give clear enunciations and proofs of some
theorems without using it. We shall assume, without proof,
that if f(x) is continuous at every z, in (a,d), then f(x) can be
integrated over the whole or any part of (a, b), and, if

F(x) = ff(t) a (a<z<b),

then F'(x) = f(x). We assume also (what can be proved as an
exercise) that the sum of a finite number of continuous functions
is itself a continuous function.

TaEOREM 32. If each u,(x) i8 continuous in (a,b) [that is,
continuous at each x, in (a,b)] and 3 u,(x) converges uniformly
to a sum s(x) in (a,b), then 8(x) 18 continuous in )a, b(; also

8(x) — s(a) as x > a0, and s(x) > s(b) as x > b—0.

Let x, be any given z in (@,5). By hypothesis,

k>0, 3N . |s(x)—sy(x)] <ek whena <z <b.
Hence, for any 2 in (a, b) other than z,,
[8(x)—8(xo)| < [8(2)—8n(2) |+ [n(%)—8n(20) |+ |8x(2)—8() |
< 2¢k+ [an(x)—sn (@)l ,

But N is a definite, finite number and so, by hypothesis, s,(x)
is continuous in (a,b). Hence

338 . Jey(x)—sy(2y)| < €k when |x—z,| < 8.
Hence, on taking k = },

€e>0; 33 . [s(x)—s(x,)] < e when |[x—x,| < 8.
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3.21. Problem. In the proof of Theorem 32 we have used nearly
the full force, but not quite the full force, of our hypothesis
that 3 #,(x) converges uniformly to the sum s(x). What have
we found it unnecessary to use?

3.3. Differentiation. TurorEM 33. If 3 u,(x) converges for
all x in (a,b), and if each u,(x) has a continuous differential
coefficient in (a,b), then

2 Sue) = Supe) (6 <z <b)

provided THE SERIES OF DIFFERENTIAL COEFFICIENTS 18 uni-
Jormly convergent.

Let 3 u,(x) = G(z) and ¥ u,(x) = F(z). By Theorem 32,
G(=) is continuous and so, if @ < x < b,

d &
2 f Q) dt = Q). (1)
By Theorem 31, since Y u, () converges uniformly in (@, z),
f Git)dt =3 f u,,(t) dt

= F(x)—F(a)
(by the subtraction of two convergent series).
By (1) 2 {(Fl@)} = 6().

3.4. General Note on Theorems 31, 33. The conditions
we have given are sufficient to prove the theorems. It is not
necessary that a series should be uniformly convergent for
term-by-term integration to be valid: nor is a continuous
differential coefficient necessary to the truth of Theorem 33.
We have confined ourselves to the simplest and most common
circumstances.

The following examples, taken from Bromwich, Theory of
Infinite Series, illustrate the fact that not all series can be
integrated or differentiated term by term.
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ExawrLe 1. For the sequence

8u(x) = nxe ™ (n=1,2,3,..),

&(z) = limit of s,(x) when n—> o0, = being fixed, = 0. The graphs of
Y = 8,(¢) have the general form shown:

J

———mtmme
x

0

the larger » is, the steeper and the closer to the y-axis is the ascent.
The top of the peak is at a height ,/(3ne') and its abscissa is \/(3n71).
For each fixed positive  the sequence 8,(x), 85(x),..., 8,4(x),... tends to zero
as n tends to infinity. But the nearer  is to zero, the larger must we take
N if, for n > N, all ¢,(z) are to be small. [s,(x) only settles down to being
small after it has passed its peak and it will be no good considering any
N which does not make ,/(}N-1) < 2.] Hence there is not uniform con-
vergence of s,(x) to its limit zero in (0, 1).
1
f &(x) dx = 0, since s(x) is itself zero.
0

1

But [ onl@) dz = H—e7], = H1—e),
0

and this — § as n —> .

ExampLE 2. For the sequence

n(2) = T{%ﬁ (n=1,2,3,..),
8(x) = 0 and so §'(z) = 0. Also
, n(1l—n3xt)
8”(x) = Zl—-{—-—n—’;'—)_’_'

When z # 0, g,(x) = 0 a8 n — ® and the formula
&' (z) = lim &) (x)
>0

is true. But, when = 0, g,(z) = n and —> o0 as n —> co.

Here it is 8,(x) that does not converge uniformly in an interval that
contains & = 0.
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4. The general convergence principle

We now state the condition for uniform convergence in a
form that does not presuppose a knowledge of what s(x) is.
The theorem that follows is an extension of Theorem 19.

THEOREM 34. The necessary and sufficient condition that the

' sequence 8, (x) should converge uniformly to a limit in the interval

(@,b) is that
€e>0; 3 N . forall xin (a,b)

[83(x)~851p(x)] < € for all positive integers p.

To prove that the condition is necessary: In Chapter VIII,
§1.2 replace ‘I N’ by ‘I N for all 2 in (a,b)’; the remaining
details are unaltered. :

To prove that the condition is sufficient: If the condition is
satisfied, then, for each fixed x in (a,b), the sequence must
converge to some limit (Theorem 19). Let this limit be denoted
by s(z). By hypothesis,
€e>0; 3N .forallxin (a,b) [sy(r)—8y.p@)| < de. (1)
Thatis,  sy(@)—de < syip(®) < ay(z)+ie,
and so  sy(x)—3e < s(x) < sy(x)+3e (Theorem 2). (2)
By (1) and (2), [s(x)—sy.,(x)| < € when p is a positive integer.
Hence the condition is sufficient to ensure the uniform con-
vergence of 8, (x) to some limit s(x) in (@, b).

CoroLrary 1. If s,(z) is the sum of the first » terms of an
infinite series ) u,(x), then
on(2)—8np@)| = | 1a(@) ...+ uyp(@)].

Hence the necessary and sufficient condition for the uniform con-
vergence in (@, b) of the series

Uy () Fuy(x) + .o+ ().
18 that €e>0; 3 N . forall xin (a,b)
My () ...y, (x)] < € for all positive integers p.

CoROLLARY 2. If the series of absolute values. S |u,(x)| con-
verges uniformly in (a,b), then so does the series 3 u,(x).
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5. Tests for uniform convergence

5.1. The M test of Weierstrass. THEOREM 35. The series
> uy(x) #8 uniformly convergent in (a,b) if we can find a con-
vergent series of positive CONSTANTS > M, such that

|u,(2)] < M, whena <<z <b. (1)
Since ¥ M, is convergent, we know that
€>0; AN . My +..d Uyl <e
for every positive integer p (Theorem 21). But
[y +2(®) 4 Uy 15 ()|
< luyaa@)|+ ol @)]
< Myyy+-+My,, whena <z <b,
by hypothesis. Hence
€>0; 3 N . forall zin (a,b),
[uy (@) +...Fuyp(@)| < € for every positive integer p,
~and 80 Y u,(x) is uniformly convergent in (a, b).

5.2. Notice that, by using (1), the onus of finding an NV has -
been removed from Y u,(x) altogether; the onus of finding N is
placed on > M,, a series of constants.

5.3. Dirichlet’s test, THEOREM 36. Let

8,() = a,(@)+ay(2)+-...+a,(x);
let v,,(x) be monotonic decreasing in n for each fixed x sn an interval
(@,b). Then 3 a,(x)v,(x) is uniformly convergent in (a,b) pro-
vided that
i3I K. |sdx)l <K forallnwhena < x < b,

(ii) v,(x) > O uniformly in (a,b).

By hypothesis (ii),
ek>0; 3 N . forall zin (a,b), |v,(x)] < ek whenn > N.

Also, by Abel’s lemma (cf. the proof of Theorem 24),

[an 11 (@) on (@) .ty (®B)On 1 (®)] < 2K |oya(@)| < 2KKe.

The uniform convergence of 3 a,(z)v,(x) follows from
Theorem 34 if we take k = 1/2K.

CoROLLARY. The theorem 18 also true when v,(x) i8 monotonic
increasing in n for each fixed x and tends uniformly to zero
(through negative values) in (a,b).
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5.4. Abel’s test. THEOREM 37. Lel v,(x) be either monotonic
decreasing in n for each fixed x in (a,b) or monolonic increasing
in n for each fixed x in (a,b). Then Zan(x)v,,(z) s uniformly
convergent in (a,b) provided that

(i) 3 a,(x) is uniformly convergent in (a,b),
() 3 K . |v,(x)] < K for all n when a < x < b.

Since v,(z) is bounded and monotonic in n for each fixed
z in (@, b), it must converge to a limit, v(x) say. Write

Uy (%) = v(x)—v,(x) or v,(x)—v(z)
according as v,(r) is m.i. or m.d. Then w,(x) is positive (or
zero) and is m.d. Also, by hypothesis (ii),
[v(x)] < K whena <z <b.

Hence |, (x)| < 2K for all n when a < = < b.
By hypothesis (i),

k>0, 3N . (ay, @) +..toy,@)] < ek

whenever p is a positive integer and a < # < b.
Hence, by Abel’s lemma,

@y 2@V 12 (@) o Oy (@ (@) | < bty 4y() < 2¢kK.

‘On taking k = 1/2K we see that (Theorem 34) Y a,(x)u,(x) is
uniformly convergent in (a,b). '

Also, since |v(z)| < K, it is easily shown (by Theorem 34) -
that 3 a,(zy(z) is uniformly convergent. The uniform con-
vergence of 3 a,(z)v,(x) follows by the analogue for uniform
convergence of Chapter VI, §3.

5.5. In many applications of these theorems either a, or
v, does not vary with x. Suppose 3 a, is a convergent series
of constants; then, for the purposes of Theorem 37, it is to
be thought of as a series that is uniformly convergent in any
interval whatsoever,

5.6. We shall state the analogues of Theorems 24 A and 254,
and leave to the reader the task of amending the proofs so as
to cover uniform convergence.
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THEOREM 36A. Let 8,(2) = a,(x)+...+-a,(x). Then
S ay@m(e)
18 uniformly convergent in an interval (a,b) if
() 3 K . ls, ()| < K forall n when a < = < b,
(i) 3 |v,(x)—v,41(2)] 18 uniformly convergent in (a,b),
(iii) v,(x) - O uniformly in (a,b).

THEOREM 37A. 3 a,(x)v,(x) s uniformly convergent in an
tnterval (a,b) if
(i) 3 a,(x) is uniformly convergent in (a,b),
(i) 3 |v,(x)—v,.1(x)| ts convergent and its sum is bounded in
(a,b),
(i) 3 K . |v,(x)] < K forallnwhena < x <b.

Exampres XVI
1. On Theorem 35. (i) Prove that

\ x“ xﬂ xzﬂ .
nt’ Zn(n+ 1)’ z:c“—i—n’

are uniformly convergent in (—1,1).
(ii) Prove that, if § is any fixed number greater than unity,

25 2T 2w

converge uniformly with regard to all # > 3, i.e. prove that
€>0; IN. |sx)—s,x) <e¢ whenn > Nandz > 8.
(iil) Prove that, if § is any fixed positive number less than unity,
X an, 3 (n4-1)"12m, 3 (n+1)xm, > nizn
converge uniformly with regard to x in (—3§, 3).

(iv) Prove that
1 1
Z nd-+nix?’ Z nif-nizt

converge uniformly in (—A4, 4) whatever real value A has.
Hints. (i) 2% 4-nt > 0, 2@¥+n%)~! < n? when |2} < 1.
(ii) [x"] < 8—* and ¥ §-* is convergent.
(iv) nt4n? > ns,

2. On Theorem 36. If (v,) is a monotonic sequence of positive con-
stants that converges to zero, then each of the series > v,sinnb,
2 vycosnd is uniformly convergent with regard to @ in the interval
(3, 27— &), where 8 is any fixed positive number less than 27.
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3. Prové that each of the series

Si, e

is uniformly convergent with regard to 8 in (8, 27 —8), where & is any
fixed positive number less than 27, and that each of the series

sinnf cosnf
Z nt ’ z ns
is uniformly donvergent with regard to 8 in (0, 27).
4. On Theorem 35. Prove that the series '

e—’z e—u e-"ﬂ
Yoag-aite—

is uniformly convergent with regard to z in x > 0.

8. On Theorem 33. If the sum of the series in Example 4 is f(z),
prove that f*(x) is given correctly by differentiating the series twice
term by term when = > § > 0.

6. On Theorem 31. Prove that

1
" 1
f(Z,ﬁ) o= STy
0
7. On Theorem 37. By considering v,(x) = 2®, prove that Sa,anis
uniformly convergent in (0, 1) provided that 2 a, is convergent.

8. On Theorem 32. Prove Theorem 29 by using the result of
Example 7.

9. On Theorem 35. Prove that the series

1 2a
e 1,cos:v-l-a“_?cos‘..’:r:—...

is uniformly convergent in any finite interval of values of . (Hixr,
ja*—n?| = |[n?—a?| > nt when n exceeds a certain N)

10. Discuss the uniform convergence of
2 (—z)"/n(1+am)

for real values of z.

11. Euxtension of Theorem 31. If the conditions of Theorem 31 are
satisfied and [F(z)| < 1 for all = in (a,b), then
b w b
f s(z)F(z)dz = I f () F(z) d ‘
o n=1g

provided s(x)F(x) and u,(z)F(x) are integrable over (a,b).



CHAPTER XII

BINOMIAL, LOGARITHMIC, EXPONENTIAL
EXPANSIONS
1. The binomial theorem
1.1. We assume the elementary theorem that

(142

— 1_I_m:__l_'n,('n 1)

2. 2+ ..am (1)

a(n—1)...(n—r-+1)
r!

when 7 is a positive integer. It can be proved by induction.
We use the notation
n(n—1)...(n—r+1)
r!

(:) to denote

when r is a positive integer, whether » is an integer or not.
Sometimes, for convenience, we use

(z) to denote 1.

Notice that, if n is a positive integer less than 7, then (:)
is zero.

1.2. As a preliminary to our first proof of the binomial
theorem when the index is not a positive integer, we now prove
an identity usually known as Vandermonde’s theorem.

THEOREM 38. If r 8 a positive integer; then, for all values of
m and n,

)= Cp ) o

When m and n are both positive integers, (2) follows by
assuming (1) and equating coefficients of 2* in the identity

r=0

=D W 2D O

r=0
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Now consider =, r to be fixed positive integers. Then

(T)+(r7—r'bl),(7)+"'+(’f)(,fl)+(f)—(mf") @

is, as we see by writing out the terms in full, a polynomial of
degree 7 in m. But, by (3), wherein m and n are any positive
integers, it vanishes when m = 1,2,3,...,r41. That is, the

‘ . polynomial (4), of degree 7 in m, vanishes for -1 values of m.

Hence (4) is identically zero when n, r are fixed positive integers.

Now let r be a fixed positive integer and let m be fixed
(integer or not). Then (4) is a polynomial, of degree r in n, that
vanishes when n = 1,2,...,741, that is, for -1 values of «.
Hence (4) is identically zero when m is fixed and r is a fixed
positive integer.

Hence, when r is a fixed positive integer, (4) is zero for all
values of m and n.

1.3. TeEOREM 39. If —1 < x < 1, the series
n(n l)

f,n) = 14naz+ 2. +( )x’+...

converges for all real values of n (it stops at the (n+1)th term if
n 18 @& positive integer) and ils sum is the real positive value of
(1+2)™
e.g. when n = } the sum of the series is the positive fourth root
of 1+-2.
By d’Alembert’s ratio test, the series
) g
r
r=0

is convergent for all real » when |2| < 1. By the multiplication
of absolutely convergent series (Theorem 27),

f(a:,yn).f(x,m) = 2 .,

mers o= () +{ )+ ()6 2o ()

whenever m, n are real and |x| < 1.
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But, by Vandermonde’s theorem, ¢, = (m—i—n). Hence, when

r
lz] < 1,

fem)-fem = > ("o = femin. @
By induction =

fx,n). f(x,m)...f(x,A) = flx,m+n+...4]),

{f(z,n)}¢ = f(x,nk) (k a positive integer). (6)
Further, fx,n). f(x,—n) = f(x,0) = 1, (7)

since the series for f(x,n) reduces to 1 when » = 0.
If n is a positive fraction p/q, then (6) gives

{f(=, plg)}* = f(z,p) = (1+z)?
since p is a positive integer. Hence, when || <1 [(5), (6), (T
have been proved only when this condition is satisfied],
f(x,p/q) isa value of (14-z)rle,

Moreover, if 0 << 8 < 1, the series for f(zx,n) is (by the M test)
uniformly convergent in 0 <{ [z| < 3: each term is continuous
in z, and so, by Theorem 32, f(x,n) is continuous in (—3,d).
But f(0,n) = 1, and so f(x, p/q) is that value of (14-2)7 which
tends to 1 as z tends to zero; and this value is the positive gth
root of (1+zx)P.

In virtue of (7) the same result holds when p is repla.ced by
—p. Hence, if n is a positive or negative rational number,
and —1 <z < 1, then

l+nx+n(n )xz+ +( ) wo= (I42)* (Jo] < 1),

the positive root being taken.

The proof of the theorem for % not rational, by means of a
limiting process, is not an easy proof. A proof by a different
method will be given after we have dealt with the exponential
function.

2. The exponential function
2.1. We define ¢ to be the sum of the series

. RIS S (8)
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and consider the series

1+2 +2,+3,+ + + (9)

The series (9) is

(i) absolutely convergent for all values of z,

(ii) uniformly convergent in any finite interval (—A4, 4).
(The series > A”/n! converges, by Theorem 10, and (ii) follows
by the M test (Theorem 35).)

Let E(x) denote the sum of the series (9), so that E(l) =e,
E(0) = 1.

2.2. The relation between E(z) and ¢*. Rational
numbers. By the multiplication of absolutely convergent
series (Theorem 27),

® @y | we v
B=). Bly) = Z r—+(1'f-l)!1!+(r-—2)!2!+"'+ﬁ}

r=0
@

=2 r!y)r = Ex+y),
r=0

for all real values of x and y. As in the proof of the binomial
expansion, this gives

I'\

E(n) = (BQ)} = o, (10 )

E(g) = g value of §/(e?) ie.oferlt, . (10Db)
2). B[ -2) = E(0) = 1.

)Y -mo-n o

That is to say, when « is a rational number, E(x) is a value of
e, and, by continuity, it is that value of ¢* which — 1 as 2 — 0,

Irrational numbers. Since the series (9) is unaltered when
it is differentiated with regard to z, the differentiated series
converges uniformly in any finite interval (—4, 4). Hence, by

- Theorem 33,

——E(z) E(z);
also, for any glven z, E’(z) is a finite number. That is to say,

w»aﬁmw limit as 2 > 0,

Accordingly, E(z--k) must tend to E(x) as h — 0; for if it did

4449 H
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not, then {E(x+h)— E(x)}/h could not tend to a finite limit.
(In words, a function with a finite differential coefficient must
be continuous.)

If z is irrational and («,,) is a m.i. sequence of rational numbers
that tends to z, then, by what we have proved,

E(z) = lim E(x,) = lim e™. (11)
Oy [

It is now a matter of indifference whether

(i) we define e as E(x) and deduce e* = lim e,
>

or (ii) we define e* as lim e* and deduce ¢ = E(z).

Cy—>T
With either definition we have e*Xe¥ = €*+¥, e > ¢ when
x > y, ¢ —> ¢* when x, -> x, and so on.

3. Logarithms
It follows from (10) and (11) of § 2 that
" e¥ is positive if y is real. (12)
If ev = 2, we write y = logx, thus defining the logarithm of
any positive number. By the differential calculus

— o d =1
lwe”(]—li, or %(logx)__x.

Also, log 1 == 0 gince E(0) = 1, so that, when z > 0,
f dt
— =logux,
t
1

an equation which is frequently taken as the definition of a
logarithm.
From § 2 it follows that, when z,, x, are positive,
log(w, 7p) = logz;+log,,
and so on. There is one detail which should be noted particu-
larly, and that is
‘if logx, >y, thenx, —>e¥’.
To see the truth of this statement, let log z,, = ,,, so that y, - y
and z, = e¥». But, as we saw in §2.2, E(y+h) > E(y)ash >0,
and so E(y,) > E(y) as y,, - y; that is, e¥» — eV,
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4. The function o® when « is positive
Rational index. If z is a rational number, p/q say, then
aPlt = (¢l®¢a)rla  (by the definition of logarithm)
= {E(log a)}rie
= E{(p/q)logt} = ewlales,
by the results established in §2.

Irrational index. If z is an irrational number we take
e*lo8a a5 our definition of a®. Thus, whether z is rational or

irrational, 4% — ezloga, (13)
If = is an irrational number and («,) is a m.i. sequence of
rational numbers that tends to z, then, by (11),
lim (a%) = lim (e%1989) = ¢zloga — g2,
Un—rZ Uz

We also have a®x a? = a*+v, and so on, whether z, y are rational
or irrational.

A point in the differential calculus. When x is positive
and 7 is any real constant we have, using the equation (13),

d

@) =1 (ntoss)

d
- pnlogz
€ L (logz)

=an 2 — a1,
z .

Thus if z > —1, and if u is any real constant, then

d _ 2d(14-2) 1
(o = plger Sy, g
a result of fundamental importance to the work that follows.

5. The binomial theorem for any real index

The proof we are about to give is one that depends, essen-
tially, on a prior establishment of (14). The point is of some
logical interest: we can, if we so wish, find a proof of the
binomial theorem for any index and then use the binomial
theorem in proving (14) for any index; alternatively, we can
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make our proof of (14) independent of the binomial theorem and

then use (14) to prove the binomial theorem. Some care is

necessary to ensure that we do not use each to prove the other.
Consider the series

1+ pz +"( 1)x2+...+(’:)xf+..., (15)

where p is any fixed real number.
If % is any fixed positive number less than umty, and if

—k <z < k, then
()] <6l
r r
r4l r+l l
and ( ) (H-l) k s k_-)k as r —> 0.

Hence, by Theorem 18 and the M test, the series (15) converges
uniformly in (—¥k, k) for any fixed u.
The series obtained by differentiating (15) term by term is

,L[1+(F—1)x+...+(”:l)x'+...]

émd 8o converges uniformly in (—k, k). Hence, by Theorem 33,
if f(x) denotes the sum of (15), and if —k < x < k, then

flz) = #2(”':1)%’,

and zf'(x) = p i (’: : :)x' )
r=1
But, ifr > 1, then ’
)02 = )
Hence rartare = w1+ > ()],
=1

that is, (14+z)f (x)—pf(x) = 0.
Hence, assuming that (14) is true (as we have proved it is),

df f@ | _
i) =
Hence Jlx) = A(l 42,
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where A is a constant, independent of . But f(0) = 1. Hence,
if by (1-4-z)* we mean the real positive value of (14-x)#, which
reduces to 1 when « = 0, then A = 1; and so

oy = 1pa Mo Dot (bt 10)
for all real values of .

Finally, (16) has been proved when —k <z<k and k is
any fixed number less than unity. Hence (16) is true for every
x such that —1 < 2 << 1. For, if we take any definite z in
)—1,1(, we can choose a k less than unity so that this 2 lies
in )—Z%, k(. (The statement becomes obvious on drawing a line
and marking the points —1, z, 1 on it.)

6. General remarks on §§1-5

We have tried to give a logical framework for the develop-
ment and interdependence of the binomial, exponential, and
logarithmic functions. We have made no attempt to develop
all the properties of exponential and logarithmic functions from
the definitions. The reader will probably be familiar with these
properties. He can, if he so wishes, develop them, and that
without any serious difficulty, from the definitions here adopted.

7. The binomial series when 2 = 1 and when 2z = —1
We have seen that, when —1 < z < 1 and p is real,
l+px—{—p'—(“§—7—l—)x2+...+(’;)x”+... (1)

is (absolutely) convergent and that its sum is the positive value
of (14+-x)*. When z = 1, the series becomes
-1 1 1
1+F+M(ﬂ2! ) +#(# )- n({t n+ ) N 2)
When n exceeds 1, the factors u—n-1, u—n-42,... are all
negative, so that the terms of (2) are ultimately of alternate
gigns. Write
b= (gDt ),

Then we have
Vn n-l- 1 n+ 1 +p,+ 1
Un+1 p—n n—# —p
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Hence, if u+1 > 0, the sequence (v,) is m.d. when n > p.
Also, when 2 > u > —1,

n—p < n+1l and 1

1
n—p >n+l’
U o [y et pt1 pt1
0 that E>(l+n+l)(l+n+2) (l+n+p)

3

it tais)

Now let p —» 00, keeping n fized. Since I (1/n) is divergent, the
expression (3) - <0 a8 p — 0, and 80 v, ., > 0 a8 p — 0.

Hence the sequence (v,) is ultimately m.d. and v, —> 0 as
n ->co. Hence, by Theorem 18, > (—1)"», is convergent; that
is, the series (2) is convergent if u-1 > 0. Further, when
0 <z < 1, the sum of the series (1) is (1+2)* and — 2* as
x — 1 from values less than 1. Hence, by Theorem 29, the sum
of the series (2) is 2* when g1 > 0.

We have thus proved that, when p > —1,

> l+(#+1)(

When 2 = —1 the series (1) becomes
1—y+"("271)_.... )

This series we have considered in Examples VII, 1. It is con-
vergent when u > 0. By Theorem 29, its sum is given by

lim (1—a)*, ie.O.
x—>1
Hence, when p > 0,
—1
1— ,L+"(" ). —o. (6)

8. The logarithmic expansion
As we have seen in §3,

]

1

z
* fgg=logx (x > 0).
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Putz = 14y, 8 = 14, and we get
[ a =log(l+y) (y > —1).
1+¢
By elementary a.lgebra,

—n
1= 1424421,
1—2z

or __l_ = 1424 +zn—1+_.zn_
l_z _— ne 1—' .
On writing z = —¢, this becomes

1

= 1—t4-82—... 4 (— )”'1+(—1)”1+t
Hence

— _?_/3 ls n—-ly n tn di
log(1+y) =y 5+ 3 +. (=1 +( 1) 1+t
But, when y > 0, so that 14¢ > 1 throughout the range of

integration, v
indt i
dt =
| <f

0
and this > 0asn >0 if 0 <y <1
Also, if 0 > y > —1, so that

1+t > 14y >0
throughout the range of int,egration we have

f ( )ntn dt J* . |y|n+1

< Tty ~ - D(IFy)’
which > 0 as » > c0. (Notice that the argument breaks down if
y=—L)

Hence, if —1 < y < 1, the series

y— bl
converges to log(1+y).
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9. Some useful inequalities
Consider the graph y == -1, P the point (1,1) on it, and @

J

0

the point (x, ') on it, where # > 1. Since ¢-! becomes steadily
less as ¢ increases, it is clear that

rect. NQ < area PNRQ < rect. NT.
That is, when 2 > 1,

x
it <fit<x—-—l,
x t
1

¢

ie. "—t—:—l <logz <z—1 (x>1), ' (1)
z .
or iy <log(l4z) <z (x> 0). (2)
In (1) put x = (1—§)-?, where 0 < £ < 1; we get
1 §
The inequalities (2) and (3) enable us to show that
1im(1+i”)" — e (4)
n->w n
for all real values of x. For, if z > 0, then (2) gives
x x

z+n
nx

n+zx

< Iog(1+£) < pog ]
n/ =n

< nlog(l—i—%) <z (5)
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Since I sz asn—>oo,
n+tx
it follows that nlog(l+x/n) >z as n — o0, and so, by § 3, (4)
follows when 2 > 0.
When z is negative, equal to —¢ say, and we take n large
enough to make (¢/n) < 1, (3) gives
£ _ &\ _ ¢
- < log(l oy < —E’
i.e. on multiplying throughout by —,
nx
m, (6)
which is (5) with the inequality signs reversed.
We conclude with an ‘inequality theorem’ that has frequent
and diverse applications.

THEOREM 40. If k is any fixed positive number, then

e*
— >0 a8 x->00,

xk

lo_gi:_)o as x —> o0.

x*

In the first place, if x is positive and M is an integér that
exceeds k, say M—k = o > 0,

> nlog(1+;fb) >

x? M
e > 1+x+—2-—!+...+m.
e aM-k  po
Hence o > T = (x > 0).

As z increases indefinitely, so does x%, and, M being fixed, the
first part of the theorem follows.
Next, if # > 1, then (1) gives

o0<logr <z—1<u2,
so that, if » is positive, and x > 1,
nlogz = loga™ < a".

Hence . !gfkf < 7—;:,,,
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or, on taking n = 3,
log 2
o Tt
But, k being fixed and positive, the last expression tends to zero

as x tends to infinity, and the second part of the theorem follows.
Notice that logx > 00 as # - o0; for if ¢ > en,
 logz > loge* = n.
Theorem 40 is often useful in the forms
(i) e® tends to infinity faster than any power of z,
(ii) logx tends to infinity more slowly than any power of z.
Nore. The formal definitions for convergence, divergence when

# —> oo through values which are not necessarily the integers
1,2,3,...,n,... are, in the notation introduced in Chapter II,

(i) f(xz)—> 1l as z — oo if

€>0; 3X.|ftx)—l| <e whenz > X,
(ii) f(z) -0 88 £ — 0 if

A>0; 3IX.f(z)>A whena> X.

ExampLEs XVII

1. Expand (2--z)~! as a power series in z.
The binomial theorem when the index is not a positive integer refers
only to the expansion of (1+4z)". To expand (24-x)~! we proceed as

follows: (2+2) = 27114 o)t
= H1— o+ (e~ (Jo)*+..),
when |{z| < 1, that is, when |z| < 2.
2. Prove that, when [¢| < 1,

1 1.3 1.3..(2n—1)
—)t — ol b bbbl kb
(=27 = ltgzt et + 2.4.2m C T
11 1.3...(2n—3)
e =1l—ig— g2 _ 2rOe(2n—3)
(-2 =1-za—ma 2.4.9n

Note. It is worth while to be able to recognize the R.H.S. as the
series which represents the L.H.S.

3. Prove that, when |z < 1,

(1—z)™ =14 Z m(m+1).;.‘(lm+n_1)x,,'

n=1
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4. Prove that, when [¢| < 1,

(1+z)m =14+ 2o+

5. Prove that, when |z| < 1,
(1—z)? = 14 2z+ 32+ 423+ ...,
(1—2)® = 1+ 32+ 622+ ...+ 4+ 1)n+2)a™+ ...

6. Various identities can be obtained in a manner similar to the
following: (1—zy™

p— p— 1
= (1)

Hence

{1“(T)”+(1;)%’—...+(—)"(:‘)x"+...}{1 ataita)

== ] (ml— l)x+ (mz— l)x‘— et (— )"(m; l)a:"+...

when |z| < 1. Multiply the first two series: Theorem 27 gives, on
equating coefficients, .

()l bior() = ()

NoTe. See Theorem 47, which justifies the step of equating coefficients
in two power series.

7. Establish identities by considering

(1—z)™
(1—z)*

8. When n is a positive integer, prove that
3 —1(?) =0,
r=1 r

= (1—2)™*,  (1+a)™(1+z)* = (1+2)y**.

and prove also that
. . .
> (—l)’r’”(r) =0 whenm=12,.,n—1.
ro=]l

9. If f(x) = 1 (x—a,), a product of n different factors, and ¢(x) is of
degree less than n, prove that

dx) _ X fla) 1
f@) Zf’(ar) z—a,’

and hence show that when |z| is sufficiently small

$@) _ N { $(a,) _,,_}
o=~ 2\ 2 e
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and that when |2| is sufficiently large

$(z) _ i x—k—l{ S ‘fﬂ')ak}.
S() fa) ™"
k=0 r=1
10. Show, by using partia.l fractions, that
5x2—162+4-13
{r—1)x—2)(3z—35)
can be expanded in & series of ascending powers of 2 when |#| < 1, and
find the coefficient of " in this expansion.
11. Prove (i) that the series whose nth torm is
i1 -1
n 2n+l1 2n+2
is convergent, (ii) that its sum is $—1log 2.
12. Expand log(1 -'i-x*) and log(l—x+a2) in powers of z.

13. If n is & positive integer, expand log(1+n~1) as a power series in
{1/(2n+1)}.
14. Show that, if powers of 2 above the sixth can be neglected,
(120+ 60+ 1222 4 2%) = (120 — 602 + 1222 — %)
is equal to €.

15. Multiply the expansions of (1—x)~! and log(1—z), and deduce by
integration that

Hlog(1—2)]* = Ja*+3(1+3)20+ F(1+ 3+ 1wt + ...
18. Determine the expansion of log(1+x).log(1 —x) either by direct
multiplication, or by expanding the differential coefficient.

17. Prove that, when z > 1,
1 1.3
S TS S P Ll e
(1+=x) x 2r_+2.4:c




CHAPTER XiII
POWER SERIES

1. Series of complex terms
1.1. We assume that the reader is familiar with the complex
number z = z-}+1y, or, on writing x = rcos# and y = rsin®,
z = r(cos §-+1isin 6); and that he is familiar with the representa-
tion of complex numbers in an Argand diagram.
DEFINITION. A sequence of complex numbers
2, = x,+1y, @m=12.),
8 8md to converge to z = x+1y, if x, > x and y,, —> ¥.
DEFINITION. A series of complex numbers
> u,, whereu, = v,+iw,,
18 said to converge if the sequence (s,) converges, where
8, = Uy+Us...-+ Uy,
Thus a necessary and sufficient condition for the convergence
of Y u, is the convergence of each of the series 3 v,, dw,.
DEFINTTION. If 2 = 241y = r(cos §+isinb), then
|2| = r = +4/(x2+y?) is called the MODULUS of 2,
and argz = 0 is called the ARGUMENT of z.
1.2. We shall not go very fully into the theory of geries of

complex terms,} but we develop certain results which are
necessary in the theory of power series. ’

THEOREM 41. If u, = v,+}ww,, 80 that
[u,| = J(vi+wh),
and if 3 |u,| 18 convergent, then 3, u, is convergent. If > |u,| is
convergent, then 3 u, is said to be absolutely convergent.

For |v,| = +4/(v2) < |u,|, and so, by Theorem 8 (the com-
parison test), 3 |v,| converges when Y |u, | converges. Similarly,
Y |w,| converges when E |u, | converges.

Hence, when Y lu,| is convergent both ¥ v, and ) w, are
convergent.

1+ The topic is more fully treated in E. T. Copson’s book on Functions of a
Complex Variable (Oxford University Press, 1935).
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TuEOREM 42. If 3 u, i convergent, then |u,| —> 0 as n —> c0.
Because |u,,| - 0 it does NoOT follow that 3 u,, is convergent.

If , = v,+1w,, and if 3 u, is convergent, then both ¥ v,
and 3 w, are convergent. By Theorem 14, v, - 0 and w, — 0,
8o that |u,| - 0.

The series z (%+ 7%)

is not convergent; its nth term — 0 as n — 0.

2. Power series

2.1. We shall use a, to denote a number that depends on
n but not on 2, and the power series we shall consider is

i @, 2" = ay+-a,2+4...4-a, 2"4.... (1)

n=0 .
This series we shall usually denote by 3 a,, 2"
The most important fact about such a series is that either

(i) it converges for no value of z other than z = 0,
or (ii) it converges for all values of z,

or (iii) there is a finite number R, dependent on the coefficients
a,, such that

> la,z"| and so, also, 3 a,, 2"
is convergent when |z| < R, and
2 la,z*| is divergent when |z| > R.

We first establish the theorem on which this fact depends.

THEOREM 43. If, for a given z, 3 a,z} is convergent, then
2 a,z" i3 absolutely convergent when |z] < |z,|.

Since 3 a, 2§ is convergent, we have (by Theorem 42)

lanéz,‘l -0 asn-—>o0,

Hence IN.|e,2}] <<% whenn =N,
and |a, 2" < %|2[2,]* when n > N.

But 3 |z/z|" is convergent when |z/z,] < 1,and so (by Theorems
8 and 13) 3 |a, z"| is convergent when |z| < |z,].
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2.2. Now suppose > a,z" converges for at least one value
of z other than z = 0, so that the alternative (i) of § 2.1 is ruled
out. Let the series converge when z = 2;, and let |zy| = 7,.
Then, by Theorem 43, it converges when |z] = r if r < 7,.

Now suppose, further, that > a, 2™ does not converge for all
values of z, so that the alternative (ii) of § 2.1 is ruled out.

- Lot the series be non-convergent when z = z,, and let |2;| = r,.
Then the numbers r such that 3 |a,2"| is convergent when
|2] = r must have a finite upper bound < r,. Let this upper
bound be R.

This number R is, by definition of upper bound, the least
number that is greater than or equal to each and every r for
which Y |a,2"| is convergent when [z| = r.

It may be that R is actually greater than every such r; 1t
may be that R is itself a possible value of . Thus, ALwAYS,
> a,z" is absolutely convergent when |z| < R, and, PossIBLY,
> a, 2" is absolutely convergent when 2| = R.

Finally, 3 a,2™ cannot converge for any z whose modulus
exceeds R. For, suppose it converges for a z whose modulus
is R+«, where a > 0; then, by Theorem 43, 3 |a,2"| is con-
vergent whenever [z| = R+3}a, so that Rt}}a is a possible
value of the r, and R is not the upper bound of the r.

We have thus proved that, corresponding to every power
series, Y a, 2" which converges for some non-zero value of z
but not for all values of z, there is a number R such that

> |a,z"| is convergent when [z| < R,

> |a,2*| is divergent when [z] > R.
This number R is called the radius of convergence of the
power series.

Whether or not > |a,z"| converges when |2| = R depends
entirely upon the character of the sequence (a,). For example,

both the series
2.5 2

converge when |z] << 1 and diverge when [z] > 1 (as is seen by
Theorem 10, the ratio test). When [z] = 1, the first series
. converges, while the second diverges.

zn

n

zn
n?
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2.3. The radius of convergence is given by
l_i_l_li lanl_u”’
but we shall not go into the proof of this, as lim is outside the
scope of our present treatment of convergence.
In examples we confine our attention to power series (and
these are by far the most common type) whose radii of con-

vergence can be determined by other means, usually by the
ratio tests. ‘ ‘

2.4. THEOREM 44. The series obtained by differentiating or
inlegrating a power series term by term have the same radius of
convergence as the original series.

If the original series converges for all 2, so do the differentiated
and integrated series.

Let R be the radius of convergence of ¥ a,2". Let z be any
complex number (not zero) whose modulus, r, is less than R.
Choose 2, so that r < |2;| < R [say, for example,

2, = 3(r+R).]
Then ¥ |a, 27| is convergent, so that |a,2}| - 0, and
IN.le,2t|<} whenn>N.
[n@, 2" = —

When'n > N,
S
n —_—
2] \zy

l n
< —2-;n|z/z1| .

1
- la, 23|

But the series ¥ mp” is convergent when |p| < 1, so that,
gince [z| < [2,], 3 ml|2[z|" is convergent. Hence (by Theorems
8 and 13) 3 [na,z""1| is convergent, and so ¥, na,z""! is abso-
lutely convergent whenever |2| < R.

Similarly, ¥ a@,z%+!/(n+1) is absolutely convergent when-
ever |z| < R.

Now suppose that the radius of convergence of 3 na, 2" is
greater than R and equal to R,, say. Then, on integrating this
series, the series Y a,, 2" is absolutely convergent when |2| < R,.
But this is incompatible with the assumption that 3 |a, 2"
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diverges when |z| > R. Hence the radius of convergence of
> na,z""! cannot exceed E.

Similarly, the radius of convergence of the integrated series
cannot exceed R.

This proves the theorem when the original series has a finite
radius of convergence. If the original series converges for al
values of z we may, by the previous work, show that Y na, 271
and Y a,2"t/(n+1) converge absolutely when |z| << 4, where
4 is any number we choose. Hence these series also converge
for all values of 2.

2.5. For our remaining theorems we shall confine ourselves
to real values of z.

TaEOREM 45. If the radius of convergence of > a,z™ is R,
then 3 a,x™ is uniformly convergent in (— R,, R,), where R, 13
any fired positive number LESS THAN R.

In special cases it may be uniformly convergent in (— R, R):
in general, it i not.

Let R, be any fixed positive number less than R. Then
> la, RY| is convergent. But

la,z*| < |a, B}] when |z| < Ry,
and the M test proves the theorem.

In the special case when ) |a, R"| is convergent, the M test
proves uniform convergence in (—R, R). We have only to
consider the series > 2™ to see that (— R, R) is not, in general,
an interval of uniform convergence; for then B = 1 and the
'geries diverges when x = 1.

CoroLLARY. If ¥ a,z™ has a radius of convergence R, and
if f(x) denotes the sum of the series when |r| < R, then

fl(x) — z nan xn-l?
z xn+1
a[f(z) dt = Za"?ﬁ-’i
whenever |x] < R.

Let x have any definite value whosge modulus, 7, is less than
R. In Theorem 45 take R, = #(r+ R), so that |v| < R;

4449 1



114 POWER SERIES

> a,z" and (by Theorem 44) > na, z"~! are uniformly conver-
gent in (—R,, R,). The two parts of the corollary follow by
Theorems 33, 31 respectively.

2.6. The result just given about integrating a power series
term by term is all that we can obtain from a straightforward
application of Theorem 31 to the general case. If the series
> a,z" is one which is absolutely convergent when || = R,
then :

z 741
[reyae=> an:;1 when || < R,
0

since there is then uniform convergence in (—R, R).

But by far the most useful result about the integration of
power series is contained in Theorem 46, which follows. Its
proof uses most of the facts we have proved concerning power
series.

THEOREM 46. If f(t) denotes the sum of the series 3 a,t", then
n+1

0ff(t) dt =72 an

provided only that the latter series i3 convergent.
We shall first prove that

1 o = b,
! (ngob" x") dx Z;n T

whenever the series on the right is convergent.

If 3 b,/(rn+1) is convergent, then, by Theorem 43,

2 b, z"/(n+1)|

converges when |z| < 1. Hence, by Theorem 44, > b, 2" con-
verges absolutely when |¢| < 1 and, by Theorem 45, it con-
verges uniformly with respect to x in (0, ), where 8 is any fixed
positive number less than 1.

Let ¢(x) denote the sum of ¥ b, 2" when |z| < 1, and let
8 be any number between 0 and 1. Then, on integrating a
uniformly convergent series,

3 © n
[$@)ae=> 220 M
[ n=0
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But, whether ¢(x) remains finite or does not remain finite as
x—>1,

1 8
[ $@) do = lim [ $(=) d (2)
0 0

as 8 —> 1 from values less than 1.
Also, by Theorem 29, whenever ) b,/(n+1) is convergent

we have
) I § b, dn+l
2_ — lim S (3)
’ ,Zon_*_ nzo n+1

as 8 > 1 from values less than 1.
By (1), the R.H.S. of (2) = the R.H.S. of (3) for every
positive 8 < 1. Hence they have the same limit as § - 1, and
1

® had b
n — L4
6" (”Zob”x ) dz ﬂZo'n—{—l
whenever the latter series is convergent.
Now put b, = a,a"+! and, in the integral, z = ¢/a; we get

« ©

< in\ dt a, o+l
n+1 — n
f(za""‘ oz”)oc Z n+1
0 n=0

n=0

provided only that the latter series is convergent. The theorem
follows on simplifying the L.H.S. of the last equation.

2.7. We conclude with a theorem which justifies the device
usually known as ‘equating coefficients’.

TaEOREM 47. If one and the same function f(x) can be ex-
panded in a power series in two distinct ways, so that

flz) = % Uy, X" = i b, =",
n=0 n=0
both series being convergent when |x| < R, then a, = b, for all
values of n.
If we write a,—b,, = c,, then, when |z| < R,

0=Yc,a" (1)
)

and our theorem is equivalent to saying that a power series
cannot represent zero unless all its coefficients are zero.
Let R, be any positive number less than R. Then, by
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Theorem 45, ¥ ¢, z" is uniformly convergent in (— R,, R;) and
80, by Theorem 32, its sum is a continuous function of z in
(—R;, R,). Hence, if ¢(z) denotes its sum,

co = $(0) = limgb(x) = 1m0 = 0.
-0 w0 ’
Hence c, is zero; when z 5 0 we have, on dividing (1) by =,
0= ilcnx”-l (lz} < R, x # 0).. (2)
no==

If (x) denotes ¥ ¢, z"~, the previous argument gives
¢y = $(0) = lim ().
xz—>0

But, by (2), (x) = 0 when z 3 0, and therefore the limit of
Y(x) as x tends to zero is also 0. Hence ¢, = 0, and so on for
the coefficients c,, cg,..., Cp,... .

3. The behaviour of a power series on its circle of con-
vergence

In all the preceding discussion we have considered the
question of convergence for points z that lie on the circle
of convergence, |z| = R, only in the very easy case when
2 la,| R is convergent. Then, of course, Y a, 2" is convergent
when |z| = R.

If 3 |a,|R™ is not convergent, then almost anything may
happen to the series > @, 2* when [z] = R. There are series
that converge, but not absolutely, for all z whose modulus is
R; there are series that do not converge at all. As an example
of the latter take 3 2*. Its sum to » terms when z = cos §4¢sin 8
is given by

14244271 = (1—27)/(1—2)
__1—cosnf—1isinnd
" 1—cosf—¢sind

__sinnf

" sindd

and, § being fixed, this does not tend to a definite limit as »
tends to infinity,

Again, there are series that converge at all points save one

n—1 ..o n—1
{cos 3 0+isin 3 0},
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of their circle of cbnvergence, some at all points save two, and
so on. For example

2 ‘o
1+z+%+...+% +...

has |z] = 1 for its circle of convergence. It does not converge
when z = 1. But, when z = cosf+isinf and 0 < 6 < 2n,

each of the series
cos nd sinnf
z n ? z n

is convergent (Chap. IX, §3.5). That is, the series Y 2%/n
converges at all points save one of its circle of convergence.

ExamprLes XVIII

1. If Za,. is convergent, then 3 a,z® is uniformly convergent in
(0, 1) (Examples XVI, 7), and if ¥ (—1)"a,, is convergent, then 2 a,. "
is uniformly convergent in (—1, 0}.

2. If f(z) = Y a,2" when |¢| < R, and if g(z) = 3 b,a" when
[#] < R, then f(z)g(z) = 3 ¢, 2, where
Cq = Ggby+0 by y+...+a,b,, Wwhen |z] < Ry, R,.
Zn~1 -

3. Differentiate {1+z+ 2!+ +(n 1)'}6 @

and hence prove that its expansion is

* 1 % x?
1_(n-m{ﬁ"n-u+21(n+2)""'}'
4. Determine the radius of convergence of each of the series
n n+1 2 nz®
2w 2eramrs™ IUN 2G5

and find the sum of each series. (The ratio tests for absolute convergence
give unity as radius of convergence.) Show that the second and fourth
series converge when z = —1.

a.b . ala+1b(d+1) ,

5. Prove that l+ﬁz+ 1.2.cctT) 284,

has unit radius of convergence.

6. If F(a,b;c;2) denotes the sum of the series in Example 5, prove
that

@) d—zF(a.b;c;z)=‘%”F(a+1.b+1;c+1;z);

(ii) F(a,b;e;2) = (1—z) 0t F(c—b,c—a;c;z).
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7. By considering the coefficient of z*! in the expansion of
(1 —x—2?%)"1, prove that p
_ (n—3)}n—4) _ar—pgn
14(n—2)+ 3 Fe = oy

where a, 8 are the roots of the equation 3 —u—1 = 0.
8. Prove that if (#g+ayx+...4+ayz*) "t = 3 pya® when |z| is suffi-
ciently small, then
APpt ot PpatetGhPer=0 (n=1)
provided that p_;, p_s,... are interpreted to be zero.
9. Prove that each of the series
223  2.5.8.2°
—+33t 2356
4zt | 4.7.10.27
*+3at 3067 T
is convergent when |42®] < 1. If y denotes the sum of either series, then

ooy

(42— 1)dgy+ea:= =0.

10. (Harder.) By considering the expansion of
a™(x+1)"(2c+1)—a™(x—1)"(2x—1)
in powers of x, determine s, and s, when 8, = 17427+ ...+ n", and show
that s,,, where m is a positive integer, is equal to n(n--1)(2n+1)
multiplied by a polynomial in n(n-+1).
11. Prove that the series
123 1 a® 1.3 27
23245 T2.467
is convergent (i) when 0 < 2 < 1, (ii) when = 1.
Find, in each case, the sum of the series.

12. Prove that the series

x+2:+33m3+ w o S

+...

converges if [z| < e.

13. Show that
1_1_|..1.___1_+l = + == log(1-+~2).
59 1317 4«/2 2«/2
14. Prove that the radius of convergence of the series
1.8.5
-x+—- i g e
is §.

15. Prove that the series 1+4,z+ 4,2+ ..., where
A, = gD (g —1)(g2—1)...(g"—1)
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and lg| < 1, converges for all values of z. If F(z) is the sum of the
series, prove that F(z) = (1—qz)F{(gz).
Find the value of B, if

{F(2)y! = 1+ B, 2+...4+ By2% ...
and prove that this series converges when [zg]| < 1.
16. Prove that, if F(a,b;c;z) is the sum of series in Example §, then

2
z(l—z)%ﬂ+{c—(a+b+l)z}%—abﬁ' = 0,

P(a,b;c;2)— Fa, bye—1;2) = —%F(au,b“;cﬂ;z»



CHAPTER XIV
THE INTEGRAL TEST

1. The integral test for series of positive terms

1.1. TaeorEM 48. If f(x) > 0 when = >0, and if f(x)
decreases as x increases, then the sequences

8, = f()+f2)+...+f(n) (n=1,2,..),
I, = ff(x) dz (»=12,..)

are either both convergent or both divergent.

Since f(x) > 0 when z > 0, the sequence (s,) is monotonic
increasing and the sequence (I,) is monotonic increasing.

0

Let P, @ be points on the graph y = f(z) such that x = n,
n--1 respectively. Then, from the graph,

rect. NRQS < area NRQP < rect. NRTP.

Hence, since NR = 1, NP = f(n), RQ = f(n+1),
n+1l

font1) < [ fla) do < f(n). M

If we write down (1) with the special valuesn = 1, 2,..., n—1,
and add, we have
8n_f(1) < In < sn-f(n)' (2)
Now suppose that I, — a finite limit I as n ->o0. Since (Z,)
is m.i., we have I, < I, and so, from (2),

8, < Li+f(1) < I+f(1). (3)

f
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But 7+f(1) is independent of =, so that, by (3), (s,) is a m.i.
sequence whose upper bound < I+f(1). Hence s, —> a finite
limit, ¢ say, such that s << I4-f(1).

Similarly, if s, ~> a finite limit s, (2) gives

In < 8,,,—'f(’n) <8, <8
and I, > I < 8.

If I, - oo, then, since 8, > I,+f(n), 8, - c; and if 8, - 0,
then, since I, > s,—f(1), I, - 0.

Notes. 1. A better proof of the last two lines is ‘A m.i. sequence
must converge or diverge: the convergence of either one of (s,), (I,)
implies the convergence of the other; hence the divergence of either
implies the divergence of the other’.

But not every one finds it easy to follow.

2. For readers whose knowledge of integral calculus is sufficiently
advanced, (1) may be proved without any appeal to graphical considera-
tions thus:

When n < 2 < n+1, f(n) > f(z) > f(n+1), and

nt1 nt1 n+1
[ 1mdz > | f@yde > [ fint1)de,
n n »

a+1

ie. ‘ fm) > [ f@)dz > fnt ).
The = sign covers the case when f(z) remains constant from 2 = n to
z=n+1.
COROLLARY. Y n~P i8 convergent if p > 1, divergent if p < 1.
For, when f(n) = n—?, '

n
de nl-7—1

L= 2 1—p

- or logn,

according as p % 1 or p = 1.

1.2. There are numerous occasions when the comparison
of a series with an integral is & useful step. Especially is this -
the case when the integral can be evaluated.

If f(x) decreases as « increases we have, from (1),

[+ 1)+ +f(ntk)

ntk ntk-1 '

< [ f@) dz < fo)+...+fnt+k—1) < [ fiz)de.

n—1
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For example, when n and k are integers,

k
log(1+) n+n+1+ . +k 1<log(1+m),

k.o 1 1 k
) +(n+1)2+ RPNy v e
1 1 1

n2+1+(n+1)2+1+"'+(n+k—1)2+1
3 k
<t )

If we keep n fixed and let k& — o0, we see from the second of
these examples that

1

wit et

lies between 1/n and 1/(n—1).

2. Euler’s constant

TaroRrEM 49. If f(x) > O when = > 0, and if f(x) decreases as
x increases, then

FO+H@)+ ... +fm)— f f() da (4)
tends to a finite limit as n - co.
Write ¢,, to represent (4). Then, by (2),

$n = 8,—1I, > f(n) > 0. (5)
her,
et ot = Ensr—tn)—Upi—1,)
n+l
=fot)— [ f@)dz
<o, "

by (1). Hence
1> >y > >, > > 03 (8)

that is, ¢, is a m.d. sequence whose lower bound > 0. Hence
¢, —> a finite limit,
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CoroLLARY. In particular

1 1 [de
1+§+...-gi—— !;,

n
. 1 1
that 18, l+§+...+;—‘-f10gn,

tends to a finite limit C, called Euler’s constant.

The constant C (or, in an equally common notation, y), is of
frequent occurrence in analysis. The corollary itself expresses
precisely what is often useful in the less precise form

‘1+%+...-+% is about as big as logn’.

ExamprLes XIX
1. Examples XIV, 1-6.
o0
2. Prove by the integral test that the series 3 1l/n(logn)? is con-
n=2
vergent if p > 1, divergent if p < 1. (Compare Theorem 17.)

3. Prove that if p > 1 the sum of the infinite series 1-?--2*?+-... is
less than p/(p—1).

4. (Harder.) Prove that the series whose nth term is
1 1
a—log(1+7)
is convergent, and that the sum of p terms of this series after the nth
lies between
1 » and 1 P ( _12n+1+p)
2 n(n+p) 2 (n+1)n+1+4p) 3 nitnp /'
[When z > 0, 32?—32® < z—log(l4x) < 3a2.]
5. Find the limits as n — oo of
1 1 1 11 (=)t
n+1+n+2+"'+2n’ n+1 n+2+"'+ 2n
6. If z is real, show that
1 1\z* ( 1.1 1 I\
@+ (1-5+5)5 + (-5 +5-3+3) T+~
converges when [#] <1 but not otherwise. Show that its sum is
(tan—1x)(tanh~1z).
- 7. Prove that, when0 > p > —1,
124204+ nP— ﬁ
p+1

tends to a finite limit as n —> oo, and hence that
{(124-29+ ...+ n?)/n?+1} — 1/(p+-1).




CHAPTER XV
THE ORDER NOTATION

1. Gauss's ratio test

1.1. If 3 u, is a series of positive terms, and if the ratio
(%n/u,4,) tends to a limit other than unity, then Theorem 10
decides at once whether the series is convergent or divergent.
For a large number of series whose terms are such that (, U U 41)
tends to unity, the following theorem will decide whether the
series is convergent or divergent.

TeEOREM 50. If w, is real, and if the ratio (u,/u,.,) can,
when n > some fixed N, be expresaed in the form
U
1
un+1 + + nh +1 ] ( )
where |A,| < a fixed number K, and X > 0, then > u, s con-
vergent when p > 1, divergent when p < 1.

We see at once that u, is eventually of constant sign and
that
d

. l)—>p, as n —> o0,
and so (Theorem 11) the series converges when p > 1 and
diverges when u < 1.

When p =1 we apply Theorem 12 with D, = nlogn; by
Theorem 17, 3 D;' is then divergent. When p =1 and
D, = nlogn,

D, Un___ nﬂ.-nlogn{l-{- -+ 1“} (n+Dlog(n+1)

Up+1

A4,logn [ 1
= nn" —(n+ l)log(l-]-ﬁ).
But, by Theorem 40, n~2logn — 0 when A > 0, and 80, since
|4,,| remains less than a fix ;d K, A,n *logn - 0 when A > 0.
Also (by Chap. XII, §9 (2))
1
n-1

< IOg(l +;1‘—) < 71&,
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so that (n+4 l)log(1+ l) - 1. Hence

D, ————D —1,
'“n+1 m

and 3 u, is divergent when u = 1.
1.2. In many examples it is not difficult to see that the
ratio (%,/u,.,) can be expressed in the form (1). Consider the

series 21 31
‘5+w(x+l)+x(x+l)(x+2)+ 2)
Here ", . " otn 1+x_—_1
Uyt T a4l n+1
z—1 z—1
TS
z—1 A,

and if it —_— =1
nd if we write AT =

then |4,| < |z—1]. Hence if z is fixed, the ratio (%,/u, ;) can
be expressed in the form (1) with u = x—1, and the series (2)
converges when x—1 > 1, diverges when z—1 < 1.

1.3. The test contained in Theorem 50 becomes more power-
ful when it is combined with the technique of using the order
notation, which we shall now explain.

2. The order notation

2.1. Let f(n) be a given function of n, a variable positive
integer. If the sequence { f(n)/n"} is bounded, that is, if there
is a number K such that

[fn)] < Knr (3)
Jor all n, we write f(n) = O(w). If (3) holds when r = 0, that
is, if the sequence {f(n)} is bounded, we write f(n) = O(1).

ExAMPLES. '

(i) (n4-2)2 = O(n?).

For (2

4 4
=144 -1 .
+n+n2—> a8 7 —>» Qo0
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By Theorem 1, a convergent sequence is bounded, and so the
sequence {(n-}-2)?/n?} is bounded.
(ii) (34n)+ = O(n-Y).

N DU Sy
For lJ(n"-{-n)l <Ww="
oy SN—4
For the sequence :Z";; —> 3 and 80, by Theorem 1, is bounded.

2.2. Sometimes the function f(n) is comparable to some func-
tion other than a power of n. For example, the notations

f(n) = 0("),  f(n) = O(nlog 2n)
mean respectively that

f(n) f(n) =
e’  nlog2n (n=1,2.)
are bounded sequences.
Sometimes, too, » must be restricted if the relation implied
by the O symbol is to be true. Thus

__1 _.0() when n > 2.
n—1

1 1 n
For vy o L
which takes the values 2, §,... when n = 2, 3, and each of these
values < 2: but we cannot admit the value n = 1.
Similarly, .
(n—a)(n—>b)
and, more generally,

agnP+4-a, n?-14...4-a,

bond4-b, ne- 1. Fb,

where N is greater than every real root of the equatlon
box?+...4+-b, = 0.

2.3. When one is thoroughly practised in the use of the O notation,
it is convenient to modify it. Usually, one is not interested in the
behaviour of f(n) save when n -—> o, and the limitationsn > 1,n > N

=0(—1§) whenn > N >a,b,
7

= O(n?-9) whenn > N s
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are merely irksome details without real relevance to the problem in
hand. The common practice is to write
fn) = O(n~*)
to mean that ‘if we fix 7, suitably, there is a constant K such that
|f(n)] < En—t whenn > n,'.

This practice is recommended to the reader only after he has worked
for some time with the notation in which the limitationsn > 1,n > le]s
ete., are taken into account.

3. The limit notation
In much the same way the notations

fn) =on),  f(n) = o(n-3)
denote respectively the facts that

"%—)»O, n3f(n) >0 as n-—>o0,
while the notation Jn) = o(1)
denotes that J(®»)—>0 asn->co.

4. Applications of the order notation
4.1. TrEOREM 51. If, for n > 1,
& o4
fn) = Oto—l-;;l-l-n—z-l----,
where the o’s are independent of n and the series is absolutely con-
vergent when n = 1, then
1
fm) = a-0[3),
o 1
Ty = st 2-0(;).
and so on.
By hypothesis, Y |«,| is convergent, and so the series
oy oy 2oy 2?4,
converges uniformly in |z| < 1. Hence its sum is a con-

tinuous function of # in || < 1. In particular, its sum — o,
as z —> 0. Hence the sequence

n{f(n)—ag} (n=1,2,3,..)
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tends to the finite limit «, as n — c0. Accordingly, this sequence
is bounded and there is a K such that

n|f(n)—a| < K,
ie. fn)—op = 0(%).
In order to prove that
s —ca—2 = 025)

we repeat the same argument, beginning now with the series
gtz -4-....

CoroLLARY. If f(n) = ag+oyn~t+ayn-24... is absolutely
convergent only when n > some fived N, then

f) =ag+0@m-1),  f(n) = agtun14+-0(n?) whenn >N,
and 80 on.
In this case the sequence

. n{f(n)—ag} (n=N,N+1,.)
is bounded.

ExampLES.
(i) 1+lk=l+lc—+0—l— when n > 2
n, n n? ==
. a\k ka 1
(ii) (1+;) = 1+7+0(;ﬁ) when n > N > |a],
i) log(1+L) =1+0(L) whenn>2
n/  n n? ="
. aln a 1
(iv) etln = 1+7—z+ O(;z—’)'
In (i) our method gives the result when n > 2 and not when

.n > 1 because, unless k-1 > 0, the binomial series does not
converge when n = 1. '

4.2, TaeoreM 52. If a, b are fixed, and if
a 1 b 1
g =14240(5) s = 14240(3) when n >R,

then f(n)p(n) = l+‘—l—~;&}:’—)+ O(niz) when n > N.
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By hypothesis, when n > N,
a A,
f(n)=1+1—z+'ﬁs é(n )=1+ +n2’
where |4,| < K, and |B,| < K,. Hence
a-l—b 1 b a
Sn)pn)— h—,,{ab+An(1+;)+Bn(1 +2))
Moreover, the sequences
b a
1+1_z’ 1+;& (n=N,N+1,...)

are convergent and so there are constants, K, and K, say, such .
that
b

1+;z < K, (n = N).

1+% <K

Hence, whenn > N,
If(n)¢(n) l—ﬁl—’l 2{lab|+K1K3+K K},

and the latter is a constant multiple of (1/n2).

4.3. The result of Theorem 52 may be written

[ezeeiesteo) oo

It includes as a special case (4, = 0in §4.2)

e
| _1+“+b+0( ) (n > N).

4.4. Applications to Theorem 50.

(i) The series

3_'_ 2! 3!
z ' x(@+1) ' 1) (z+2)

4449 K

+ o
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is convergent when z—1 > 1, divergent when z—1 < 1.

22l

Un+1 - m o n n
x 1 1
= (1+3){r-2+0() @>2
Seeteof})

and Theorem 50 proves the result.
Or the work may be set out as in §1.2.

(ii) The series Z (————~—3 2 5 42::"_ i

= t) = () (3)
et o
=1+5+0(3)

and the divergence of Y u, is proved by Theorem 50.
Or, on the lines of §1.2,

2n43\2 1\ 1 1
(2n+2) _(1+2n+2) - 14‘17_?1‘4'4(n+1)2’

2
) is divergent.

and, if we write this as

1 4,
then A4 1 1 1
W afl a darlR
1 1
T dn+1)2 nnt1)
of1 1} _5
ol < m{ ol = 5

and the divergence of > u, is proved by Theorem 50.
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5. Series of compiex terms
Let u, = v,+iw,, and let

Un atif  A,+iB, 1

un+1—1+ e I (1)

where |4,|, | B,| are bounded for all n > some fixed N.
If we recall the fact that, when z = z-1y,
2|2 = (24-iy)(z—y),
we see that (1) gives (on using Theorem 52 extended to com-

plext a, b)
] = pePeof e of)
=1 +%°‘ +O(nl?)’
and so, by the binomial expansion for (14-z)4,
] =150l @

Hence if the terms of a series > u,, are such that (1) holds,
then the series is absolutely convergent when « > 1; that is,
for absolute convergence, the real part of a-i8 must exceed
unity.

ExampLEs XX

1. Prove that, when b is neither zero nor a negative integer,

a  ala+1)
$+b(b+ 1)

is absolutely convergent if b—a > 1.

+...

2. Prove that the hypergeometric series
ala+1)B(B+1) ,

129G+ = T
has unit radius of convergence and converges absolutely when x| = 1if
(i) ¥ > a+p, or (ij), assuming o, B, ¥ to be complex, if the real part of
y—a—f is positive.

1+“;—‘£x+
¥

+ The only new fact wanted is ‘if @, = an+ifn is a sequence that converges
to a finite limit a8, then |a,] is bounded’. This follows at once from Theorem
1: for ap—>a, fu— B a0d 80 |ay}, |Ba| are bounded. Hence |as| = +(ag+£3) i8
bounded. ‘
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3. Prove that, when a and b are positive,
+ a(2a+1) L a2a+1)3at1)
b(2b+1) * b(2b+1)(3b+1)
is convergent if and only if b > a (Theorem 10).
4. Prove that the infinite series
S =
is absolutely convergent if the real part of p > —}.
5. The sequence (a,) is such that

Dnpr _ (l)
o, an+b+0 >

+...

Prove that the series

2. T
z(@+1)...(x+n)
is absolutely convergent when |a| < 1 and also when a = 1 provided
that z > b.
In the following examples use the O notation as explained in § 2.3.
6. Prove that, when A > 0,
o 1
145+ 0(55) = (‘+;){1+0(m)}’
and hence that
o 1
tog{1+%+0(;15)) = n o)
where . > 0.
7. Prove that, when A > 0,

o, Af 1 o 1
oxp5 +0(Gm)} = 142+ 0( )
where v > 0.
8. Use Example 6, part (i), to prove that

(145 +0(m)) = 1421 0(h)
where 8 > 0.




CHAPTER XVI
TANNERY'S THEOREM

1. Tannery’s theorem

1.1. We first prove what is usually known as Tannery’s
theorem in a form that differs from the original form given by
Tannery himself. The new form accentuates the relation of the
theorem to the idea of uniform convergence.

TaEOREM 53. Let ©
F(z) = lvn(x),

the series being uniformly convergent with regard to x for all positive
z. Further, for each fixed n, let

v,(x) > w, as & —> 0.

Then the series > w, is convergent and
F(z)—>>w, asx-—>0.
n=1

(i) We first prove that 3 w, converges.
By the uniform convergence of Y v,(x) for all positive z,

e, k> 0; 3 N . for all positive
N+
lszv"(x)I < ek whenp=1,2,...
T1
As 2>, Uy () ... FUn4p(E) > Wy g+ Wy, Hence
N+
' prnl < ek whenp=12,...
N1
On taking k = }, we see that
0; AN .|
€e>0; . 'Nzlwﬁ

< e whenp=12,...,

which is the condition that 3 w, should converge.

(ii) The convergence of ) w, having been established, we
make a fresh start. Let W = Y w,. Then, since 3 v,(x) con-
verges uniformly to its sum F(x) for all positive x, and since
2> w, converges to the sum W,

. N
k>0, 3N . lF(x)— > vn(x)l < ek for all positive z,
n=1
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N
and W—3 w,,l < k.
n=1 |
Hence, for all positive z,

F@)—~W| < [F@)— 3 0a@)]+| E oute)— F ]+ £ o~ W]

< 2ek+‘n§10n(x)—”=1 .

But as x - o0, each v,(z) > w, and so, since N is finite,
N N
2 () > 3w,
n=1 n=1

N N
Hence 3 X . ‘Zvn(x)—— n
n=1 n=1

Finally, then, we have |F(x)—W| < 3¢k when z > X. Hence, -
on taking t = }, we have proved that

€e>0; 1 X . |Fx)—W|<e¢ whenz > X,
which is the condition that F(zx) > W as z —» 0.

Note. The result is unaltered if there is uniform convergence,
not for all positive z, but only for z > X, a fixed constant.

1.2. There is a particular case of Theorem 53 corresponding
to each of the tests for uniform convergence established in
Chapter XI, § 5. We shall enunciate two such particular cases.

THEOREM 54. Let ®
F(x) = 3 v,(),
=1
and let 3 M, be a convergent series of positive constants such that
[on(®)| < M, for all positive x. Further, for each fixed n, let
v, (%) >w, asz-—>o0.
Then the series 3 w, is convergent and
F(x)»iwn as x —>co.
n=1
By an easy extension of Theorem 35, since 3 M, is con-

vergent and [v,(zx)| < M, for all positive z, the series > v,()
is uniformly convergent for all positive x.
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THEOREM 55. Lel ©
F(z) = 3 a,v,(2);

. n=1
where S a,, i8 a convergent series of constants. Let v,(x) be mono-
‘tonic decreasing (increasing) for each fixed x that is positive and
let |v,(x)| < K for all n and for all positive x. Further, for each
fied m, let () >1 asxz—>o0.
Then F(z) —~ Y a, as x -> .

By an easy extension of Theorem 37, 3 a, v,(%) is uniformly

convergent for all positive z. Further, a,v,(z) > @, as £ -0,
and so, by Theorem 53, F(x) > 3 a,.

1.3. Tannery’s original theorem is a particular case of
Theorem 54. If v,(x) has zero values when n > k(z) we have
the following result.

TurorkM 56. Tannery's theorem. Lel

F@) =3 %)
where
(i) k(x) >0 asx >0,

(i) |vn(@)| < M, for all x, where M, is independent of «,
and > M, 18 convergent, '

(iii) for each fixed n, v,(x) - w, as z->0.

Then F(x)> Y w, @sx->00.

There is a corresponding particular case of Theorem 55 in

which the value of v,(x) is zero when n exceeds k(x).

2. Examples of Tannery’s theorem
(i) (l-}--lﬁ)"»e as % —> o0,
If we write F(n) = {14-(1/n)}*, then, n being a positive
integer, the elementary form of the binomial theorem gives
_ 1, anr—1)1
F(n) = 1+n.1—t+———2—!— e to n+1 terms

— 1_|_1+2l!(1_l).{_él_!(l—;b)(l—%)-}—... to n-+1 terms.

n
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1 1 r—1
Put v,.(n) = ;—I(l—ﬁ) P (I—T).
"Then, for each fixed 7 =2

Cy(n)] < ;1—' for all n

1
and v,(n) > asm->co.

Moreover, 3 (1/r!) is convergent. Hence, by Theorem 56,
1 1 1
F(n) > 1+1+2_!+§i+'"+ﬂ+"”
(ii) If 2 -> o0, not necessarily through integer values,
1 1)
(3 e
The binomial theorem for any index shows that
(l—!-;-;) _ 1+1+x(x 1) 1

2+
whenever x > 1. But, when z is positive,

— |ez—1)..(z—n4+1) 1
[oa(@)] = = =

x(x+ 1)...(x+n—1) 1

n! zn|

If we write u,, to denote this last expression, then

_(+lxr  14n
Upsy  @+n 1tnz
U, 14n in
>0
e ek b v i it

and when 7 > 2 the last expression > 2.
Hence us < §u,, u, < ($)u,, and so on. Also, when z =2,

x(x+1)__1(1+ ) i<t

22
Hence u,, < (§)"3 when % > 2, so that
oa(@)] < (§)”'3 whenn > 2and z > 2.
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It is now a fairly straightforward application of Theorem 54
to show that {1+ (1/z)}* > e as x — 0.

ExamrrEs XXI

1. Prove that, when a is a real number,
n
(i) (l+$) ~>e* asn-—> o,

. a\2
(ii) (1+5) ->e% as x-—> 0.
2. Show that
1 1 - 1 1
P =it ttm >3
and hence that F(n) cannot tend to zeroas n —> 0, although (n+47)-1 - 0
for each fixed r as n — oo.

3. TeEOREM 54. Prove that
@

0
1 1
znm’—f-n‘/z’_)Zr_ﬁ as & —> co.
n

n=1 =1
4. THEOREM 55 (with 2 — 1-1-0 instead of  —> ).

S (~1)"n2 > log2 as z > 140,
n=1

5. TaEoREM 55 (with some v,(z) zero). Prove that, as k& — oo,
k—1 k—2 1
a, -+ % a,-+ T a,+...+7c—a,,

tends to 3 a, whenever the latter series is convergent.
Hence prove that

8 +83+...+8,
n

6. TEEOREM 55 (with some v,(x) zero). The limit as n — 0 of

—>& whenever s, —> .

n
r___ (n1)? a
. (=1 (n—r)(ntr)l z—r

is given by the sum of the infinite series

<«
a,
-1y
D=
r=1
whenever the latter series is convergent.



CHAPTER XVII

DOUBLE SERIES
" 1. Double series
1.1. Consider the doubly infinite array

all alz L] - . aln
Qgy QGgo . . . Gy,
a’ml Qpng . . < Omp

Suppose that, for each fixed m, the infinite series formed by the
terms in the mth row, that is,

a’m1+am2+ v +a’mn+ (s
has a finite sum, R,, say. Suppose further that the infinite

series R+ Ry+ Ryt ...+ Byt
has a finite sum, R say. Then R is called the sum by rows of
the double series > > a,,,,.
Similarly, if, for each fixed n (i.e. each column),
am—l—az,,—l—...—{—um—i—y...
has a finite sum C,, and if
C = C,+C+Cs+..4+Cp+...,
then C is called the sum by columns.

1.2. Let 8, denote the sum of all terms that are to be
found in the rectangle formed by the common part of the first
m rows and the first n columns. If there is a number S such that

e>0;, 3N .|S-8,.|<e whenmmn=N,
then S is called the sum by rectangles, or simply the sum, of
the double series.

1.3. Double limits. When we consider a doubly infinite

set of numbers

Opy (v=1,2,..;v=12..),

it is fairly obvious from the definition of ‘limit’ that the two

numbers lim {lim ap.v}’ lim{ lim a,w}

>0 " p—>0 Y—+00 \ f—>00
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are not necessarily equal. It is easy to construct examples
where the two numbers are equal and to construct examples
where they are not equal. For example, if .

_ D+

= v 2)(pt2)’
then, for each fixed »,
lime,, = v+1

pro 7 w42’

. . vl o
sdso mflime) = lim Ty =
and a similar calculation shows that

1
lim{lima,,; = lim prl_ 1.
p—»co{v—roo w } H—>o [L+2
On the other hand, if
_ p=vpv+1)

T iy p 1)
then, for each fixed u,

li -
VI—I’IZ.OO(P,, ’L+ 1’
and, for each fixedv, lima,, = vl .
o 14
Hence lim {lim = li = _ —1
p—ro {»—»m a'w} F,-Ecloy.—*— 1 ?
and . lim{lima#,,} = limv+1 = 1.
V>0 " p—>0 p—o0 V

Going back to the sum by rows and the sum by columns of
§1.1, we see that if

S}w - z z Qipns
m=1n=1
then lim§,, = $ R,
y—>00 m=1
and so lim {im S, =wR= y
fim [l 8] = 3, R
the sum by rows. .
Similarly, lim (lim8,,} = 3 ¢, = ¢,
Y0 | >0 n=1

the sum by columns.
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As we have seen by examples, C and R need not be equal.

1.4. We shall not attempt a discussion of the general theory
of double series. All we do here is to state simple conditions
which will ensure that the sum by rows is equal to the sum by
columns,

2. Double series of positive terms
TuroreM 57. If each a,,, is positive or zero in the array

ay Gy . . . Oy
azl azz - . - alzn
By Qpo e Qg

and if there is a finite sum by rows, then there is a finite sum by
columns and the two sums are egual.

First step. We can arrange the terms of the array as terms in
a single sequence in a number of different ways: for éxample,
we can write a,,; then all terms the sum of whose suffixes is 3,
namely a,; and a,,; then terms ay,, a,,, @,; each with suffixes
whose sum is 4; and so on. Given any term in the array, we
can assign to it a definite place in the single sequence. We write

b, = ay,, by = ay, by = a,,, by = ag,...

2]
and consider Y b,.
n=1

Let Rm =n§1amn’ -R =m§ 1.Rm,

oy =-b;+by+...4by.
Whatever value we give N, we can find a corresponding M such
that R,+ R,4...+ R, will contain all the terms of oy and
others besides. Thus for each N there is a corresponding M
such that o
oy <mlem < R.

Hence Y b, is a convergent series and, if B is its sum,
B < R. (1)
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Second step: Again, if A is any number less than R, then
3(A+R) < R, which is the sum of 3 R,. Hence there is (by
Theorem 3) a suffix % such that

B,+Ry+...+R;, > 3(A+R). (2)
This numberk having been fixed, there is (again by Theorem 3)
a suffix » such that

1
a11+...+a1n > R1—2—'k(.R‘—A),

1
a21+...+a2” > Rz—-z—k-(R'—A),

1
Gt oty > Ry— o (R—D).

But, the numbers % and » having been fixed, there is a number
N such that b,+b,-+...+by contains all the terms on the left
of these inequaﬁtie§ and others besides. Hence, there is an
N for which

On > R1+R2+...+VR,‘—%(R—A)
> HB+A)—HRB—2), by (2).
It follows that B, which is the upper bound of the sequence
(on), exceeds }(R+2A)—3(R—2)), that is, \. Hence B exceeds
any number less than R. Hence
B> R. (3)

From (1) and (3), B = R.

Third step. We now prove that if B is finite, then the sum by
columns, C, is finite and equal to B.

Consider ay-tan+..4a,+.... (4)

The sum of the first n terms, where n is any given number, is
less than oy if we choose N large enough; also, oy < B. Hence
series (4) has a finite sum, C, say.

Similarly, each column has a finite sum. Let the sums be
G, C;,...,C,,...

Let M be an arbitrary positive integer. Then, as in the
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second step, there is, given any | ogitive 8, a number n such that

B
au-i— —l—a,,L > C— 82M

B
a’12+ +“ ng = 02 M

Gyt Oap > Cy— 82?[
The sum of all the terms on the left of these inequalities is less
than B. Hence

B > Cy+Cy+...+Cy—13B.
Hence the infinite series 3 C,, has a sum which is less than
B(1+43) for every positive 8. That is, C < B.

But we can repeat the argument of the first step to show that

B < C. Hence B=C.

CoroLLARY. If each a,,, in the array is positive, and if we
know that 3 b, has a finite sum B, then the array has a sum by rows
and a sum by columns, each equal to B.

By the argument of the third step, we obtain B = C; and
by the same argument applied to rows we obtain B = R.
A convenient name for B is ‘the sum by diagonals’.

3. Absolutely convergent double series
TarorEM 58. If the array

Ay Gy . . . gy
Ay; Gy . . . Qop
Cpy Ome - . « Oy

is such that the array got by replacing a,, by its absolute value,
la,s|, has a finite sum by rows, then the original array has a
finite sum by rows R, a finite sum by columns C, and a finite
sum by diagonals B; moreover, R = C = B.

Consider two arrays, of which the first consists of the positive
terms of the given array, and zeros in the places of all the nega-

.
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tive terms. This array will have a finite sum by rows, R’ say.
By Theorem 57, it has a finite sum by columns, (' say, and a
finite sum by diagonals, B’ say. Moreover, again by Theorem 57,
. R =C=8. _
. Let the second array consist of the negative terms of the
_ given array, but with the sign changed, and zeros in the
places of all the positive terms. Then, with an obvious notation,
R' = Cl — B”
as before.
It is easy to prove that R = R'—R", that C = C'— (", and
that B = B'—B". '
CoroLLARY. The result of Theorem 58 also holds when the
a,,, are complex numbers. '

We merely need to write a,,, = o, +48,, and to consider
the real and imaginary parts separately.

4. An example .

+... ‘ )

] z 22
1+z’+ l+z4+ 1428
can be considered as the sum by rows of
z —28 +28 —77
22 —28 10
P R +215 gl

The array with absolute values has a finite sum by rows if

2> |21

T—jzp t T P TR @
has a finite sum. But, if § is any positive number less than
unity, and if |z| < 1—38, then 1—|z| > 3§, and so

1—]z|2 > §, 1—jz[*>8, .., l—lzl”‘ > 4.
Thus the terms of the series (2) are less than those of
52|+ [z[2+ 23+ .-.}.
Hence (2) has a finite sum whenever |z] < 1.
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144
The sum by columns of the original array is
z
1—2 -—z3 + - z5 @)

Hence (1) and (3) are equal when |z| < 1

ExamprEs XXII
Some of these examples are taken from Bromwich, Theory of Infinite

Series.
1. Given that, when ¢ > 0,
1 1 1 1.2
i RS V) RS TNy Tk

2 tt+1)
write down the array whose sum by rows is
£ (8 1) (E+2)2 .

and hence show that this series is equal to

11 1.2
T aern Tagrnery T
1 1 1 1
Huor. T ~ i~ Frnes)
2. (Harder.) Prove that, when jz| <1, ’
x’ _ 14z 142 1+.'1: 142t
toem oy b T e s e T L

z x
1—x+ 1—x’+ 1—2a?
[An extension of Theorem 57 is required in that the right-hand side

is not a sum by columns.]

3. Prove that, when lzl <1,
x x z? 8
1422 1+x°+1+x1°+'" i1 1—:c°+ 1—at0” 7
e 2 ¥ _ .z 2 2
1+« 1428 " 142* " 14wz 1+x3+1+x5
4. Show that, if |z| < 1,
z_2x’+3x’__w_x’ix3
I+ 1+x= It+a® 77 (142) (142?142 7
525 _a(1+2?) | 21429
+1-—x‘°+ Q- x’)*+(l a°)2

TR

8. Show that, when jg| <1,
8¢ , 16¢*  24¢° '

14+ — —_t =1
tigtTrgti=g™ +(1 q>=+(1+q

g
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6. Prove tha.t when 0 <c¢ <1,

. i o c(c+ 1) pet—o ot 13)$c+ 2) — st

n=1 n=1 n=1

=1.

7. If the terms a,,, of a doubly infinite array can be arranged in a
single sequence (b,) such that 3 |b,| is convergent, prove (vide Theorems
57, Corollary, and 58) that the double series has a sum by rows or
columns equal to 3 b,.

8. (Harder.) In the double series
>/ (m24-nt)e,
mn

where both m and n run from —o0 to 4 00, and the dash denotes the
omission of the term m = n = 0, show that the number of terms for
which |m|+|n| = r, a positive integer, is 4r; that for each such term
r? > m*+n? > }ri. Hence show that the double series converges if and
only if 3 r1-% does.

4449 L



CHAPTER XVIII
INFINITE PRODUCTS

1. The convergence of infinite products
1.1. We recall three properties that were proved in
Chapter XII. These are:
(1) if o, - «, then e* — e*;
(i) log(142) < x when % is positive;
1 ¢
—— L 1.
(idd) §<l°g1,_.§< jr: when 0 < ¢ <
1.2. We say that the infinite product
11 un
n=1
is convergent if p, = u,u,...u, tends to a finite limit v as n
tends to infinity; v is called the ‘ value’ of the product.
If all the u, are positive, we may write
Pp = eloB U plog Uy  ologu,
— elogul+losu.+...+locu,.
By (i) above, if 3 logu,, is convergent and w is its sum, then
Pp—>€% asn-—>o0.
Moreover, if > logu, diverges to plus infinity, then p, -> 4-c0,
and if ¥ logu, diverges to minus infinity, then p, — 0.
1.3. THEOREM 59. Let (a,) be a sequence of positive numbers
less than unity. Then, as m —> oo,

m m
H (l+an)’ ]._I (1’—' n)
n=1. n=1
converge to finite, non-zero, limits if > a, 18 convergent; if 3 a,
18 divergent, then the first product — o0, and the second pro-
duct — 0.
We note first that, by the hypothesis 0 < a, < 1,
log(l+au)’ {_log(l_an)}
are positive numbers.
Let ¥ a, be convergent. Then, by (ii) of § 1.1,

log(l4-a,) < a,
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and Y log(l+a,) is therefore convergent. Hence, by (i) of
§ 1.1, the first product converges to a finite, non-zero, limit.
Again, by (iii) of § 1.1,
{_log(l_an)} < ]_.(j.na < Ka,,

because (1—a,)-! is a sequence that — 1.
[@, >0 since 3 a, is convergent.]

Hence 3 {—log(1—a,,)} is convergent; so also is 3 log(1—a,,),
and the second product converges to a finite, non-zero, limit.

Now let > a, be divergent. Then, without recourse to
logarithms,

(1+a,)(1+ap) = 1+4-a,+a,+a,ay > 1+-a,+a,,
and (14+ay)(14-ay)...(1 +a,) > 14-a;+a,1...+a,.
Hence the product '
(14a,)(14-a,)...(1+4a,)

increases indefinitely.

1
Further, l—a, < I_-T—T,, ’
as we see by cross-multiplication. Hence
(1—a,)(1—ay)...(1—a,)
is less than the reciprocal of (1+a,)...(14-a,), and so tends to zero.

1.4. As in the case of series, a, — 0 is a necessary but by no
means sufficient condition that T (14 a,) should converge. For,
if the product has a finite, non-zero, value, P say, then

(1+a)..(1+4, ) and (14a,)..(1+a,)

each converges to P as # —>c0. Hence 14a, - 1.

2. Absolute convergence

2.1. The series > log(1+-a,) will have a sum independent of
the order of its terms, and so TJ (14@,) will have a value
independent of the order of its terms, if ¥ [log(1+a,)| is
convergent.

Before we give a formal definition of the absolute convergence
of a product we prove that

A necessary and sufficient condition for ¥ |log(l+-a,)| to be
convergent 18 that > |a,| be convergent.
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If the first series is convergent, then so is 3 log(l+4-a,),
so that log(1+-a,) - 0, and 1+¢a, - 1. Hence a, —~ 0 and
iN.le,]<} whenn>=N.
When n > N we have
log(1+a,) = a,—302+3a3—

log(1+a,) @, O
and so —a lgj—-2+3
1 1 1
Smtat- =3
Hence %\ log(1-+a,) <§ (1)
n

Accordingly, le,| < 2|log(1-+-a,)| when n > N, and so Y |a,|
is convergent.

If 3 |a,| is convergent, then again a, >0, and (1) proves
that |log(l4a,)| < $la,] when n > N. Hence z |log(1+a,)]|
is convergent.

2.2. DerintTION. The product T] (1+-a,) is said to be abso-
lutely convergent if > a,, is absolutely convergent.

By what we have proved in § 2.1, this definition is equivalent
to saying that the product is absolutely convergent when
> log(1-+a,) is absolutely convergent. Sometimes the one and
sometimes the other definition will be found in more advanced
work.

3. Uniform convergence
If the a, are functions of a variable x, and

pn(x) = {1+a1(x)}"‘{l+an(z)}’
the product is said to be uniformly convergent if the sequence
P.(x) is. The properties of uniformly convergent sequences have
been considered in Chapter XI.
The one test that is adapted to products is the analogue of
the M test for series.

THEOREM 60. If l|a,(x)] < M, when a <z <b, and if
> M, is a convergent series of positive constants, then the sequence
Pplx) converges uniformly in a < x < b.
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By the Mtest (Theorem 35), Y |a@,(x)| is uniformly convergent
in (a,b). Hence, by an adaptation of §2.1, 3 |log{1+a,(x)}|,
and so also Y log{1+4a,(2)}, converges uniformly in (a,b). If
the latter series converges uniformly to the sum u(x), it follows
that p,(x) converges uniformly to e“®.

4. A test for non-absolute convergence
TueoreM 61. If —1 < a, <1, and if 3 a} is convergent,
then
(i) TI (1+a,) converges when 3 a, converges,
(i) TI (1+a,) > +oo when 3 a, —> -+,
(iii) 1'['(1+a,,) -0 when Y a, » —o0.
If -1 < a, < 1,and if 3 a? is divergent, then T (1+a,) > 0
when Y a,, s bounded.
The proof depends upon the identity
t 1 -

TR E
which, upon integration, gives
y
tdi . ' :
f ige = Y los(1+y) (1

- 0
when —1 < y < 1. Moreover, the left-hand side of (1) is
clearly positive when y is positive; when y is negative, equal

to —z say, the substitution t = —8 gives
v ]
tdt 9do
f1+t=f1-—0>0’
0 0

and again the left-hand side of (1) is positive.
Hence, for any integers N and p,

N+p N+p Nip o tdt
0 <rgNa,—r§Nlog(l+a,) —,g‘-f 15 (2)
Suppose now that Y a% is convergent. Then a,—>0,
1+4a, - 1 and, since 1+a, > O for each n, there is a positive
K such that (Chap. V, §1.2, lemma)
1+a, > K >0 for all n.
Moreover, since some a,, are negative, K < 1.
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It follows that

14t 2K
0 1]
e [leae 1 1
~ 7 = it — [ .
when a, < 0, f1+t 1_0<Kf0d0 S
0 0 0

Hence, from (2),
N+p N+p 1 .
0 <r_zNar—'=leog(l+ar) < E_K"Z;a’r' (3)

Hence, by the general convergence principle (Theorem 21), if
both 3 a, and 3 a2 are convergent, then 3 log(1+-a,) is also
convergent, and (i) is proved.

If 3 a2 is convergent, and if 3 @, — +-00, then (3) shows that
3 log(1+4a,) must also — o0, and (ii) is proved.

If Y a2 is convergent, and if ¥ a, - —co, then (3) shows that
> log(1+a,) must - —oo, and (iii) is proved.

The last part of the theorem follows from (2) on observing
that, in each integral, 0 << 14+¢ < 2 throughout the range of
integration, so that

a"F o1 4a) > 13 [ tat = 1’

r=N

°"-—~.n

Examrres XXIIT
1. Prove that each of the products

[T0+2) TI0-2 TT(wd)

n=1 nax n=1

converges to a finite, non-zero, limit.

2. Prove bha.t
(1—7) 1—[(1—— (>0

ne=l
each tendstozeroasN—» 0.

3. Prove that the second product in Example 2 tends to infinity when
z < 0.
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4. Prove that

log 1+ﬂ)——l—\ 2 ‘ |“"'{1+”+"“'+ ).

Hence show that, if jz] < 4,

jog(1+5) -5
when n > 24.

5. Prove that ﬁ (1+ ?L)rzl"

n=1
is (i) absolutely convergent for any fixed =,
(ii) uniformly convergent for |x| < 4, where A4 is any fixed number. .

6. Prove that ﬁ(l_”_f;.i)

=1
is (i) absolutely convergent, for any fixed &, |
(ii) uniformly convergent for |z] < 4, where 4 is any fixed number.

7. Verify the identity

(1___)(1_5) .(1_5) - l_z_l_x(x;l)_m+(_)”x(z—l)..1.::::—~n+l).

Prove that, when z > 0, the product —> 0 as n — c0.

8. By means of Example 7 ‘show that

w(:c 1)

l—z42— - . =0

when 2 > 0.
9. Prove that, when |g] < 1, each of the products

=1 (1—g*), ¢ =TT (1+¢™), } n=1,2,..)
& =II10+g™?), a=II(1—g*"), T
is absolutely convergent.
Prove also that
29 = I1(1—g*), @9 = IT(1+4¢"),
and Qath=1
further that

, 14+ )(1+4g*)1+¢%)... = 1/(1—g}{1—g*}(1—g")-...
10. Prove that, when |z} < 1,
(14z)(1 42t 1 fat)l+2%)... = (1—2z)2
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11. Evaluate 2"sin-§;.cos-2x;cos§,%...cos;,
and hence prove that
cosocos cos Y ... = sinz
gCO85CO8 5 = — =,

12. (Harder.) Find the limit as n — o of

”}':Io{<1—q'"‘)/<1+q"'>}m"
when 0 < g < 1.

13. Prove that 111
t t+1 fe+1)
1 1 1 2

t i+l @FE+2)  WeF(E+2)

and, more generally, that

n—1
1 1 r! n!

PSS Ly G Fr D) T e+ 1)..(t+n)

14. Use Examples 3 and 13 to prove that

1 n!

l o0
Tt ”Z_l CFOEL2)...GFn+1)

15. Prove that if b > a, then
a(a-+1)...(a+n)
o+ Dbt
provided that b is neither zero nor a negative integer. -
b+n b—a
atn = 1T aTm

Hanw.

and the series 3 (a+n)! is a divergent series whose terms are ulti-

mately positive.




, CHAPTER XIX
THEOREMS ON LIMITS: CESARO SUMS

1. A general theorem on limits

1.1. Tarorem 62. If (b,) is @ sequence of positive numbers
that increase steadily to oo, and if the sequence (a,) ts such that

i1 =% finite limit I, 1)
bn+l'—
then also =l ®
b,

In the first instance, suppose that I = 0. Then, by hypo-
thesis,

k>0, IN. —ek<Z—"ﬂ——an<ek when n > N.

n+l n
Since b, ,;—b,, is positive, we have
"-Ek(bn+l_bn) <Oppn—a, < €k(bn«l-l_bn)'
Write down this inequality forn = N,N+1,..., N4p—1,and

add: we obtain :

—€k(by1p—by) < Gy, p—ay < k(by,p—by).
A fortiori

—GkbN-l-p < aN+p—' N < EkbN_.,p-

Hence
nip| < |TN+p— %N Ay
b =1 b
N+p N+p N+p
< ek layl .
bN +p

But, if N is kept fixed and p — oo, byip— 0 (by hypothesis).
Hence 3 P . |ay|/by,, < ¢k when p > P. If, then we take
k = } at the start, we have proved that

= N+P,

and the theorem, with I = 0, is proved.

Now suppose that I = 0in (1). Write

4, =a,—b,,
An+1—An LY

so that
bn+1_bn bn+1—b

2_1-0.
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Then, by what we have already proved,

é’—‘ -0, ie. On__7-5 0,

ba n
and the theorem is proved when [ has any value.

1.2. The converse of the theorem is not true as a general
proposition. Because (2) holds it does not follow that
(an+1'— n)/ (bn+1'_bn)

will tend to a limit. For example, if

a,, =0, Bgpyy = 1, b, = =,
then (a,/b,) — 0; but
Ganea—%n _ 3 azn Ban-1 . _,
ban+1——ban bzn—‘bzn—1

so that (a,,,—a,)/(by+1—b,) cannot tend to a limit.

2. Particular cases of Theorem 62
2.1. When b, = n, the theorem takes the form

(i) if @,,,—a, —> 1, then also % -1
When we put @, = o+ og4-...+a, in (i), we have
@) if oy,q >, then also M'_%%ﬁi"—»z
a theorem that is frequently used in advanced work on series.

Turning now to products, we have, on putting

ay, = logB, (B, >0),
(iid) if B, — B, then also %/(8, By Bu) > B.
Again, if we put

pl lulls 'Bn = ]un/un—ll (n > 1)1
we have

(iv) if |u,/u,_,| = p, then also }u, - p.
Finally, as a numerical example, put

8= (1+5)

Buby e = 21D,

so that 8, - e. Since
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the form (iii) shows that
n41
V)~
2.2. In each of the particular cases (i)-(iv) the remark made

in § 1.2 about the general theorem still holds. The first limit
need not exist because the second does.

n
e’ or %!—)‘ _+ e-

3. Conventional sums of non-convergent series

3.1. Suppose a sequence (s,) is given. Then the sequence of

its arithmetic means

t, = wﬁ_ﬂn (n=1,23,.)
cannot fluctuate with greater violence than does the sequence
(8,); it may well fluctuate with less violence. Modern mathe-
matics makes considerable use of non-convergent series by
means of a technique that began with this simple considera-
tion. ‘

The ‘sum’ of a series, as we have hitherto used the word, is
defined thus:

The sum of Y u, is & if s, = u,+u,+...4+u, and s, —>s.
There are many series met with in analysis for which (s,) is
not a convergent sequence, although its fluctuations are mild
enough to be ‘ironed out’ by the process of taking arithmetic
means; that is to say, (s,) is not a convergent sequence, but
(¢,) is. It is natural to take the limit of /, as the ‘sum’, in a
special sense, of the series in question. Such a sum is called
the (C, 1) sum of the series, the C recalling its inventor Cesdro
and the 1 denoting the first of such sums (the second, third,...
being derived from similar, but less simple, considerations).

DEFINTTION. The series S u,, i8 said to have a (C, 1) sum s if
t, > 8 as n — oo, where

t, = M_ﬂ__j;ﬁf‘!"fﬂ, 8, = Ut us+...-Fu,.

3.2. It would lead to intolerable complications if it so
happened that a series might have one sum in the ordinary
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(convergent series) sense and another sum in the (C, 1) sense.
‘But, as we see by Theorem 62, particular case (ii),
ifs,—>s, theni,—»>s;
that is to say, if a series is convergent, then its (C, 1) sum is the
same as its sum in the ordinary sense.
As it is rather unsatisfactory to have such an indirect proof
as the one we have just given, we shall give a direct proof.

THEOREM 63. If 8, — s, and if
_ 83+8y+...+8,

n

¢

n
then t, - s.

We have at once

1
l,—8 = ;{(sl—s)-{-(sa—s)—l—...—i—(sn—s)}. .

The sequence s,—s >0, and so, by Theorem 1, is bounded.
Hence

(i3 K . [s,—8] <K forall =,

(ii) e>0; I N . |s,—8 <3¢ whenp >N.
Take a definite such value of N (> 1) and let » > N. Then

(N—1)K  (n—N-41)e
n + 2n

!tn—sl <

SUET

But N, K are fixed, and we can make the last expression less
than e by taking » > 2(N—1)Ke-1. Hence
€e>0;, 3N . |t,—s8|<e whenn >N,

4. The more general form of Theorem 62

The full force of Theorem 62 cannot be realized from the
elementary point of view, which confines itself to sequences
(x,) that tend to a limit. The two limits

lima, and lim o,

are necessary to a full statement of Theorem 62,
We refer the reader to the appendix for a definition of these;
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meanwhile, we note that, if ‘(bn) is a sequence of positive
numbers that increase steadily to +o0, then

Oy @ =—a, —a
lim_ 2872 > lim-® > hm——- hm——”—’i—”; (1)
+1_bn = b'n b bn+1_bn
and a sequence (a,) converges to a finite limit « if, and only if,
fim o, = lima, = o

If the two extremes of (1) are equal, the middle terms must

be equal and have the same value as the extremes; but the

converse is not necessarily true, since the middle terms may be
equal and the extremes unequal.

Examrres XXIV
1. Prave that, if

r(r+1) rir4-1)...(r+n— l)

S(') =8y 18y gt —5— 8 2t nl
and AN = (r+1)(r+2)...{r+n)/n!,
and if ST-V/A7~V 51, then, provided that r > 0,

S(r)/A(r) — 1.

[Ss‘r) S(r) S(r— 1)’ A(r) A(r) A(r—— 1) ]
2. If s, — 8 as n — oo, prove that each of the sequences
(i) 2n~*e,+28, 3 +...+n8y),

@) pla(tegte ) ta(g 4 tta)+ota()
also tends to s.

3. (Harder.) P(n) denotes the sum of the products, in pairs, of the
~ pth powers of the first n positive integers; prove that, if p+1 > 0,
P(n) 1
(nr 1) 2p 1y
4. Prove that the (C, 1) sum of the series
1—-14+1—141—..

as n —> .

is §.
5. If a,, —> a and b, — b, then
‘1
;(alb,,—l—a,b,,‘l-f-...—}-a”bl)—-) ab.

HinT. Prove the theorem first when @ = b = 0. To do this, note that
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oneof the suffixes r,n —r mustexceed N if n > 2N, Let |a,| < 4, [b,| < B
for all n. We have

k>0, 3N . |a,] <ek, |by] <ek whenn > N.
Hence, when n > 2N and K is any fixed number > 4, B,

1
';‘ (al. bn+ e +aubt) < Kikv

and the result follows on taking k = 1/K.
6. If 3 ¢, is a divergent series of positive terms and (d,/c,) — 8, then
_also {(dy+dy+ ... +-dy)/(C+CgF oo tCQ)} = 8.

Hixt. Put ¢;+c34...4-¢, = b, in Theorem 62. v

7. If p,is positive and {p,/(py+ ...+ P4)} = 0, prove that g, — s implies
P8t Pp181t -+ Po8s

PatPaate.+Do
HinT. Cf. the method of proving Theorem 63.

-> 8.




CHAPTER XX

FOURIER SERIES
1. Periodic functions

A function f{z) such that f(z) = f(z+Q) for all values of
z, where Q is a constant, is called a periodic function of 2z,
and Q is called the period of the function. For example, sinz
and cosz are periodic functions.

If we are given a series

3a,+ §1(a” cos nx + b, sin nx) (1)

that converges for all values of x, then its sum is necessarily a
periodic function of z, for each term is unaltered when z--27
replaces z.

The problem of this chapter is to find when, given a periodic
function f(z), of period 2, the function can be expressed as the
sum of a series of type (1).

2. Elementary properties

The following facts in integral calculus form the basis of all
the subsequent work. Throughout we use m, » to denote positive
integers or zero.

f CO8 M2 co8 NT dz = } f {cos(m~+mn)x+cos(m—n)r} dx
) =0,—-::-r according as m # n, m = n;
f sinmxsinne de = } jfr {cos(m—mn)x—cos(m+n)z} da
= Q,7 accordingasm # n,m = n;

m

fcosmxsinnx dz = 3 f{sin(n+m)x+sin(n-—m)é:} dx

-



160 FOURIER SERIES

”

fcosmxdx = 0,27 according asm > 0, m = 0;
-

w

fsinmxdx: 0.

-7

3. Fourier series

3.1. If numbers a,, a,,..., a,,...; by, by,...s b,,... are derived
from a function f(z) by means of the equations

na, = f f(t)cos nt dt, wb, = }! f(t)sin nt dt, (2)

then the series -
tao+ 3 (a, cosnw + b, sin nz) 3)

is called the Fourier series of f(x).

The series (3) is not necessarily convergent because the
numbers a,, b, are so defined; even if the series is convergent
its sum is not necessarily f(z), though it often will be.

The numbers a,, b, are called the Fourier coefficients of
f(x).

3.2. The relations between a function. f(z), its Fourier
coefficients, and its Fourier series have been the subject of
extensive research.}

We shall here prove only two theorems, Theorems 64 and 65,
both concerned with stating conditions under which a Fourier
series can be used to represent the function from which it is
derived.

THEOREM 64. If the series
$ay+- E (@, cos nx + b, sin nx),
n=1

where the a,, b, are constants, is uniformly convergent in (—, ),
and if f(x) is its sum, then it is the Fourier series of f(z).

1 See, for example, A. Zygmund, Trigonometrical Series (Math. Monographs,
Warsaw, 1935), where the theory of Fourier series is developed.
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The proof of this theorem is & straightforward deduction
from the properties we have given in §2. We have

J(x) = 1a,+ 21(% cos nx -} b, sin nx). 4)

Since the series is uniformly convergent in' (—=,w), we may
multiply by cosma (m > 1) and integrate term by term. When
the integration is from —= to =, all the terms of the resulting
series are zero (by §2) excepting only

”
a,, J' cos?mz dzx, \
-7
whose value is ma,. Hence

T,y = ff(x)cosm:c dr (m=12..).

Similarly, -
' wb, = ff(x)sinmx dr (m =1,2,..).

Finally, on integrating (4) as it stands, the results of §2 give
” ks
, ff(x) de = 4a, J' dz = nay.
- -

This last step shows that the term a, (and not a,) is necessary
if the definition of a, by means of (2) is to hold for n = 0 as
well as for n > 1.

- 3.3. The other theorem we shall prove is much more difficult
to establish. It will form the basis of the examples we shall
give and is, par excellence, the practical form of Fourier’s expan-
sion of a function in a series of sines and cosines.

We need a preliminary definition.

DerintTION. If f(2x+h) tends to a definite limit as h tends to zero
through positive values, then this limit is denoted by f(z--0).

If f(x—h) tends to a definite limit as h tends to zero through
positive values, then this limit 18 denoted by f(x—0).

If a function is continuous at z, then

f@+0) = flz—0) = f(z). |
. M

4449
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EXAMPLES.

yF(x)

0 i 2\

Fia. 1.

In Fig. 1 we have the graph of a continuous function.
If we take any definite z, say x = 1, then
f(4+h) > f(1) as b >0, so that f(1+0) = f(1);
JA—Pk)—~>f(1) as h > 0, so that f(1—0) = f(1).

J

Fie. 2.

In Fig. 2 we have the graph of a function that is discon-

tinuous at z =1, 2,.... When % is small and positive the
point {1—h,f(1—h)} lies in OA4; as h —» 0, f(1—h) - 1. That is,
f(1—0) = 1.

On the other hand, the point {1+4A,f(1+A4)} lies in CB; as
h— 0, f(14h) - 0. That is,
f(1+0) = 0.
3.4. TeEOREM 65. Let f(x) be a periodic function of period 2=,
80 that f(x+2n) = f(x); let |f(x)| be integrable in (—,7) and let
a,, b, be its Fourier coefficients. Then

39 + 3 (ay cosno+ b sinne) = Hfw+0)+f@—0}  (5)
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whenever
(i) the series is convergent
and (ii) the limits on the right of (5) extst.
The limits f(z-0) will not exist for all functions: for example,
Sin(ﬂ-l—%) = —sinz‘l-
does not approach a definite limit as b — 0.

3.5. We return to a proof of Theorem 65 later. We first
dispose of more elementary considerations, assuming mean-
while the main result of Theorem 65, namely, that with the
given conditions

‘equation (5) holds whenever both sides make sense’.

Let a function f(z) be given, not necessarily periodic. Define
a new function thus: '

When —7 < ¢ < =, define F(x) to be f(x); for other values
of x let F(x) be defined by the relation
, F(x+427) = F(z). .

Then, if |F(x)| is integrable in (—a, ), its Fourier series, when
convergent, has for its sum
H{F(x+0)+ F(xz—0)}.
We assume, of course, that these last limits do exist.
In the interval —7 < x <, this is {{f(x-+0)+f(x—0)}. But
F(n+h) = F(r+h—2m) = F(—n+h) = f(—n+h),
and F(r—h) = f(n—h),
so that  F(740)+F(7w—0) = f(—=+0)+f(m—0).
Hence the sum of the Fourier series of F(zx)at x = mis
Hf(—m+0)+f(m—0)}.

Outside the interval (—, ) the Fourier series is related to
F(z) and not to f(x).

3.6. A worked example. Find the Fourier series that represents
T —m << x <

The function e* is not periodic and so, in order to have an
appropriate periodic function, we define a function thus:

Let Jx) =e when —7 < 2z <,
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and let f(z) be defined for all other values of by means of the
equation fe-+2m) = f(z).

For example, the value of f(x) when x = $r would be given by
J(@m—2x), i.e. e~im,

The Fourier coefficients of f(z) are given by

T
nay = fe’dx: 2ginh 7,
-

(—1)

T
TOpy = fe%osmxdx: m2+12sinh1r,

H —1)™m .
nb,, = fe’"sinmxd =——(—W—_)F;—'—"2smhm

Hence the Fourier series of f(x) is

2smhﬂ{ z( 1 (cosnx—nsinm)’- (6)

Each of the series
3> (—1)*cosnz/(n?+1), 2 (—1)*nsinnx/(n241)
is convergent [cf. Chap. IX, §3.5: (—1)"sinnz = sinn(z4=)].
Moreover, when —7 < & < m,
flx+40) = hm eSth = ¢Z,

flx—0) = hm et = ¢,

Hence (6) is equal to ¢* when —7 < 2 < =.
When z = 7 or —= we must consider carefully how f(x) is
defined. By definition, when % > 0,

fr+h) = f(w+h—2m) = e-"+%, . g0 that f(n+0) = -7,
flmr—h) = e™*, so that f(m—0) = e™.
Hence, when 2 = m, the sum of the series (6) is not e, but is

He-7+4-em).
Similarly,

fl—m+h) = e and  f(—m40) = e,
f—m—h) = f(—n—h+27) = e"-» and f(—uw—0) = e
The sum of (6) when z = —x is, therefore, }(e-"--¢7).
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4. Sine series and cosine series
4.1. If f(z) is an event function of z, then

f f@)sinmz dz = 0

and the Founer series of f(z) is a series of cosines only.
Similarly, if f(x) is an odd function of z, then its Fourier
series is one of sines only.

4.2. We can find series of sines or cosines, as we wish, that
are related to a given function f(z) in (0,w), though not
necessarily so related outside this interval.

Take any function f(z) that is integrable in (0,7) and define
two new functions thus:

n " 0<asa  let $@)=f@), P@)=7f=);

in—r<z<0, let $@)=f—2), $)=—f—a)
for other values of « let ¢, ¢ be defined by the periodicity

eqUAtions gt om) = da),  Pla+2m) = ().

Then the Fourier series of the even functlon ¢(x) is

%ao—l— Za cos nx, )
where nay, == j! d(x)cos kx dx = 2 f f(x)cos kx da.
- [}

Assuming the Fourier series of ¢(x) to be convergent, itg sum
will be #{¢(x+0)+$(x—0)} when these two limits exist. This
sum is:

for 0 <z<m, Hf(@+0)-+f(z—0)};
for z=0, Hf(+0)+f(4+0)} ie. f(40);
for =, Hf(x—0)+f(w—0)} i.e. f(m—0).
For other values of 2 the sum is related to ¢(z) and not to f(z).

1 DeriNITION. f(2)is an even function of z if f(—=) = f(z);
J{(z) is an odd function of z if f(—z) = —f(=).
When f(x) is an even function,

JF fl)inmes do = f fl@)sinma dez — f fit)sinme de =0,
- 0

as we see by putting ¢ = —z in the interval —7r < z < 0.
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The Fourier series of the odd function (x) is

ilbn sinnz, (8)

n=

where wb;, = I P(x)sinkx dxe = 2 f f(z)sin kxdx.
- 0

The function }{{h(x+0)-+(x—0)} is 3{f(x+0)+f(x—0)} when
<<
When z = 0, the sum of (8) is clearly zero. For values of
x outside (0, ) the series is related to y(x) and not necessarily
to f(=). o
4.3. A worked example. To find the series of sines that represents
22ind<x <. ‘
Let J(x) = «? when 0a<n,
fl@) = —2® when —7w < <0,
and let f(x) be defined by the periodicity equation.
fla+2m) = f(x)
for values of x other than —n <z < =.
The Fourier coefficients of f(z) are given by

a, = 0, since f(z) is an odd function,
m
7b, = 2 f x?sin nx dx
0

_ 2 —1)ntl 4 T ‘
= S (- (©)
The Fourier series of f(x) is > b,, sin nx, where b, is defined by (9).
This series isconvergent (Chap.IX,§3.5proves > (—1)*+n-1sinnx
to be convergent) and its sum is }{f(x+0)-4f(z—0)}.
When 0 < z < m, f(x+0) = f(x—0) = 2, and so the sum
of the series is 22
‘When x = 0 or 7 the sum is zero: outside (0, =) the series does
not represent x2.

5. Iantervals other than (—m,n)

5.1. If we require a Fourier series to represent f(x) .in
(0,27) we proceed as in §3.5, but we use (0,27) instead of




FOURIER SERIES 167

(—r, 7). Thus, to represent  in the interval (0, éw) we calculate
27 21

ao::_rfxdx, an=%fxcosmdx, \ -
0

bid

b, = 1 f zsinnx dz,
™
0

and so obtain

z = n—zzsm”‘” (0 <z < 2m).

5.2. We can make the interval (a,b) correspond to the
interval (—r, ) by means of the transformation

z—a X4
b—a | 27
ie. X = E"L__’_’(i‘_“_b_),
b—a

To represent f(x) by a Fourier series in (@, b), let f(z) = F(X)
and let o
vy, = f F(t)cos kt dt

b
2 wk(20—a—b)
=i f JO)eos =5 —5—

mhy, = f F(t)sin kt dt

-7

b
_ 2m . mk(20—a—b)
=2 f f(@ysin TE=0=2) g,

Then, assuming the convergence of the series and the existence
of the limits, we find that

ia, + z (@, cosnX b, sinnX)
! n=1
represents {F(X+0)+F(X—0)} in —7 < X < #; and so
< nm . nw
%»;%-I—; [a.,, cosg:_—a-(&c——a-—b) + b, sin;— (2x—a—b)]

represents {f(z+0)+flx—0}ina < x < b.
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6. Proof of Theorem 65

6.1. THEOREM 654. Let |f(x)] be integrable in (—m,w) and
let f(x) have a period 2m; let

= J' f)cosktdt,  mb, = f f(@®)sin kt dt, (n
8, == $a, 4+ i (@,, cos mx +‘b,,,sinmx), (2)
m=l
and let o, = "It"_l"_;_;:j&l_ 3)

Then, for any x such that the limits f(z+0), f(z—0) are defined,
o, = Hf(x+0)+f(x—0)}. (4)
First step. By (1) and (2),
s,,=_21; ff(t)dt +%mz=

1

j cosm{x—t)f(t) dt

-

-
—a

2 sin (x—1)

on summing the series }--cos(x—12)+...4-cos n{z—1).
Now put t—z = u; we get

T—2
1 sin{n-+3)u
8y = o f —snlu flut-x) du.
—T—2
But the integrand has a period 27, and so its values from
—ar—a to —r are repeated in its values from n—zx to = Hence

_ 1 [ sin(ntdpu
=% ) e SR

—r

= o (SOt Dug, )4 ) du,

T 27 sin du
o

on writing —u for  in (—=, 0).
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On summing sin ju+sin $u+...+sin §(2n—1)u, we get

1 [ sin?}nu
= — - . 5
o= g | S et HE—w) A )
0

But we also have, on taking the particular case f(z) = 1 (when
a, = 2 is the only Fourier coefficient that does not vanish, and
s08,=1lando, = 1),

1 [ sin 2inu

= 6
2nm | sin®fu “sintg O ®)
0

If s is any given number, then, by (5) and (6),

1 sin2{nu
on—t = = — | I 40) du, (7)
‘ 2n ! sin®}u ‘
where $(u) = fl@-+u)+f(z—u)—2s. (8)

PArENTHESIS. What we have to prove is that (7) will tend
to zero as n tends to infinity if we take s to be 3{f(x- 0)+f(z—0)}.
The first step has been concerned solely with arriving at a
suitable form for o,—s.

Second step. Let 3 be any fixed positive number iess than .
Then

o

1 sin?}nu
;f $(u) duf <

sin?}n
3

By hypothesis, |f(x)] is integrable, and so the integral on the
right of (9) is a finite number, independent of n. Hence (9)
tends to zero as n tends to infinity. :

This disposes of the interval (3,7). We begin our attack on
the interval (0, 8) by noting that

cosec?lu— (u)-2

~ cosect 35 f )| du.  (9)

is bounded in (0, 8) (expand (sin 3u)—2 and use the analogue of
Chap. XV, §4). It follows that

)
L f sinzg‘nu{gn—l%;-%w}ﬂu) dul < f K|p(w)| du — 0.
0
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But the expression (9) also tends to zei'o, so that (7) will tend
to zero if, with a definite positive & less than =,

X |
.715 f sin ‘3”’“95( ) du - 0. (10)
0

Third step. Suppose now that z is a value for which
Hf(x+0)-+f(x—0)}
is defined—i.e, the limits exist—and put 8 = ${f(x+0)+f(z—0)}.
Then  4(u) = flo-+u)-He—w)—fa+0)—f—0)
so that, by the definition of ¢(u), ¢(u) - 0 as w— 0. Hence
€e>0,4A>0; 3 9. |pu) <ed when [u| <.

We now take a definite %, choosing it to be less than 8.
Then, for all n,

3
1 “ sin’ %nu

no
0

$(u) du

= An u?

3
2 in?
<< fs‘“*’"‘d 5 [ g au
7
=Ix+Izy
say. But, on putting v = }nu in the first integral,
1 sin? iny
_J‘ﬁ%nud ﬂ_fsmvd < 1 J‘?_lgzd
n /] 2
1]

which is a positive constant; if we take

w0

in2
sin<y
A= f do,

2

1]
we have, at this point, 0 < I; << {e.

3
- 1 [ |$(u)]
Again, o<hL< p f uE du,
"

)
< ntn [ (u)] du.
n
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Since 7, 8 are fixed, we can find an N for which

0<I, <} whenn > N.
Hence

e>0; I N.

3
: J sin %”“qb(u) du| << whenn > N.

1]
That is, (10) is true and, by the second step, (7) - 0 as n —> o0;

that is, o, = Hf(z4-0)+f@—0)}.
6.2. If, further, s,, tends to a finite limit, that is, if the series

ia, + il(am cos mx + b, sin mx)

is convergent, then (Theorem 63) o,, tends to the same limit as
does s,,. Hence Theorem 65 follows from Theorem 65 A.

ExamprEs XXV
1. Prove that

7m—2x sinz  sin2r  sin3x
——2——=——1—'+ 3 +T+... (0<9:<21r).

2. Prove that the function f(#), where
f(6) = ¥0(r—a) when —ax < 0 < (<7),
J0) = da(wr—0) when «a <0< 2r—a
can be represented in (—a, 27 —«) by the series
3 nsin nf@sin no.
3. Prove that, when 0 < 2 <=,

2
4. Find the cosine series that represents 22 in (—r, ).
5. Show that ¥ b, sinnx, where

:c——l'n-—é(cosw—}- 5C08 3z + o5 cosﬁx-{-)

by = — it':osﬂ-rsiny—rsin?-E
» 3n 2 3 6
represents in (0,7) the function }{f(x+0)--f(z—0)}, where f(x) is {=
when 0 <z <3}m, is zero when {n <z <<%, and is —}w when
fr<x<m.

6. Prove that,in —7 <z <<,
2428 = In?+44(—cosx+}sinz)+ (cos 2z —sin 2x)+....
7. Prove that, if —7 <z <<, then
7i—z? = §w‘+4(cosx—{cos2x+lcos3a:—— e
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1. Prove that 3 n¥z" is convergent when |z| < 1. If Fj(z) is its sum,
show that ‘ d i
Fenl®) = 22 Fi(2)
and that, when £ is a positive integer,

k

(—=r4
Fi(z) = (—l_:‘z-)v’;""rl’
r=0
where the A, are positive constants, (Use induction.)
2. From the formula
nsinngd £ sin #
cosnfi—1 0(30510——00&;21'0:’

—

where o = m/n, deduce that

~1
$(n2—1) ="2 cosec?ra.
F=1

3. Given that ¥ a, is & divergent series of positive terms, show that
3 ay/(14-nta,) is convergent and 3 a,/(1+a,) is divergent.
4. Show that the doublo series
m-+n)! :
Z 2 (m!ng) (Fz)y™+  (m,n = 0,1,2,...)
converges by rows or by columns to (1—z)~! provided that —2 < 2 < 1.

5. The series ¥ a, is convergent, and
23 Tpi1

b" =n+l+ﬂi—§+....
Translorm b, by Abel’s identity (sum the a’s, and difference the
1/(n+r); see p. 62) and prove that nb, — 0 as n — o0.

Show further that, if B, = by+b;+...+b,, 4, = ag+a,+...-+a,
then 4, = B,—(n+1)b,,,; and hence show that 3 b, = ¥ a,.

6. Discuss, for all real values of x, the convergence, and in particular
the ranges of uniform eonvergence, of

| 3 nH(1+am) X (—a)".

7. Find the sums of the series
' © )
2 (9n*—n)t, 2 {(n+1)2n+1)}1
ne=1 n=0

8. If y+yt = £+iy, prove that {(1—ty)(1—ey 1))yt may be ex-
panded as & power series in ¢ convergent when |f| << w, where 0 < w <1, |
provided that the point (£,7) lies either on the ellipse

& 7t
=1
(w+w 1) + (w1—w)E 4
or inside this ellipse.
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9. If a, is m.d. and — 0, and if ¢(n) = O(n*), prove that the con-
vergence of 3 |a,¢(n)] implies nktla,— 0. (Compare Pringsheim’s
theorem, Examples VIII, 12.)

10. If ¥ a, 2" is absolutely convergent when |x] < R and R > 0,
show that 3 a,z"/n! converges for all values of x.

11. Find the radius of convergence of the power series

1.3..(2n—1)
2.4..2n

.and discuss the behaviour of the series on its circle of convergence.

(142t Do

12. Prove, by using partial fractions or by any other method, that

1—rcos@
*rm = 1+TCOSG+TSCOS20+... (]rl < 1),
1___ 2
m= 14 2rcos@+2r8cos20+... (|r] < 1),
r8in 8

T—Zroosfir — rsin@+risin204-... (Jrj<1).

[(1—2rcosf+47t) = (1—re¥)(1 —rei8).]

13. Find the series of cosines that represents

d%log(l —2rcosf+412),
and hence prove that
—3}log(l—2rcos 0473 = rcosO—}-fr’cos 204... (jr] <)
14. Use 13 and Abel’s theorem to prove that, when 0 < 8 < 2,
cosf+}cos 20+ cos30+... = —log(2sin 36).
15. When [z| < 1, prove that
1 log(1+2xsin 64 2?) = xsin 0+ kot cos 20— 3P sin 30— ...
Prove that, when n is a positive odd integer,
n(n?—12)(n2— 3%)

sinnf n(n®—12)
=n— sin’ =

sinf 3! 0+

sinif—....

18. If 3 ne, is convergent, then so is

Cpt+20h,1+3Chat o0
and its sum — 0 as n —> c0.

17. Prove that, in the usual binomial coefficient notation,
2n\2 (Zn)’ (215)2 _ (2n)
(0) —\1) Fotlgy) =D, )

(T ERTRALICROE N TE

7 \n,
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18. Prove that
1\2 1.3 1.3..2n—1
y=14(g) et (g s+ (P )
satisfies the differential equation
d*y dy _

o(1—2) Z+(1-20) 7 —y = 0,

and find the radius of convergence of the series that defines y.

19. Prove that 1—3}+3—3+..., 1—}—3-+3+34+3—3—... (the
series containing blocks of 1, 2, 3, 4,... equal terms) are convergent series;

but that - 1—4—f+i+i+Hi+i—i—
(with blocks of 1, 2, 4, 8,... equal terms) is not convergent.
20. Ifb > 0 and 3 23! is a divergent series of positive terms, prove that

Ty Tgeee Typy bxyxy.. 250,

— Z(xl"‘b)(‘ra—b)"-(xn“b) (z,—b).. (zﬁ-{-l—b)

n==1

11 > (2y—b)...(x,—b)

b =z Ty Tgeee Ty
a=1
21. The function f(x) is defined by
0
(i)™
flz) = P
n=0

Deduce from the series, and without quoting properties of trigonometrical
functions, that

0 f@fe) =faty), ) |f@]=1 () FergfE =1
Prove that f{z) is a periodic function of z.
[NoTE: |a-Lib[2 = (a-+ib)(a—ib).]

22. Use the inequality (3 a, ,,)” (3 ai)(3 b3) to show that

o0
2 a, by 1 is convergent when 2 a3, 3 b} areconvergent. Prove
n= —® n=—®© n=-—0w0

that its sum — 0 as k — oo,

23. The number of sets of values of m,,ms,,...,m; (integers not all
zero) whose absolute value < z is (2z+1)*—1. The number of sets
where these absolute values < z is (2x—1)*—1. (The m’s may be
positiveor negative.) If 8§ = 3 (m}+md+-...--ml)~*, a multiple sum, and
8, iz the sum ol the terms wherein at least one |m| has the value «, then
(2x+ 1)k — (22— 1)* S8, > 1 (2x41yc— (22— 1)k

a2 % = s . 235

o0
Hence show that S converges when 3 z*-1-2= converges.
=1
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24. When 7 is a positive integer, prove that

z a3 x5
I=m—a) T =) —a5) T I —a)i—a)
. i -1 .
. 1-—z=ﬂ{i"5+1 z‘+"'+ l_xln-—l} if 2| <1

1 .
b Tagm) i [o] > 1.

and is 1 x”‘{l—z 1 :v‘

25. Show that the series
zn—l

A== 77%)

is equal to (1—z)~2 when |z| <1 and is equal to z~}(1—2z)~2 when
2| > 1.

26.t P(z) =
2 (1—g)2? (1—g)(1—g)2?
T—oi—2 T I=ai—2(—g) T (I—g1—2)(1—g)1—g%) T
where |z| <1 and |g| < 1. Show that
F(z)—Fl(gz) =
z [ 1 (—g) (1—g)(1—¢*)
= T i—ei—g9) T (=g —g2) (i) -

= z(1—2)"1,
F(z) = 2(1—2)*4gz(1—gz) 3+ ...
— S n 3]
- Z Ry
fn=1

27. Différentiate the result of Example 26 with respect to z and put
z = g, to obtain

a0

1 Examples 26, 27 are taken from a paper by W. N. Bailey, Journal London
Math. Soc. 11 (1936), 157.
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1. The definition of a real number, given in §2, is abstruse
and far removed from ‘common sense’. Some such definition
is a necessity and not a matter of choice. It is ‘common
sense’ to suppose that some ‘number’ corresponds to each
‘length’ of line in a geometrical figure. In each of the two
great constructive periods of mathematics this ‘common-sense’
view has been found unsatisfactory.

In the ancient period the Greeks found that

(a) their theory of numbers dealt only with integers and the
ratio of integers; ‘

(b) their geometry introduced lengths that could not be
represented by such numbers, e.g. the diagonal of a unit square.

Their solution was to accept (2), to build up a geometrical
theory of incommensurables, and to make all geometrical pro-
positions independent of any results discovered by means of
(@). For example, it is almost certain that Pythagoras’ theorem
was discovered by some variant of the argument

‘z_a c—x b
a ¢’ b ¢’

and so, on cross-multiplication and

addition,

x c-x ¢? = a?}-b%,

The proof usually given in Book I of Euclid (even in modern
- geometries!) is one that deliberately avoids arithmetical
arguments.

In the modern period analysis reached the stage of very
careful discussion of continuity, convergence, and so on, without
any close examination of what it meant by an irrational
number. Cauchy (p. 4 of Cours d’ Analyse, 1821) merely s8ys:
‘an irrational number is the limit of diverse fractions which
furnish more and more approximate values of it’, and it is
much later in the book that he builds up his technique of e
and N, now so familiar in the definition of what a limit is.
That is, Cauchy takes the ‘common-sense’ view of what an
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irrational is arid then builds up his theory of limits (in the strict
mathematical sense) for both rational and irrational numbers.
Later on, when people were familiar with the idea of limit in
the strict mathematical sense, it was inevitable that some one
should ask, ‘what does limit mean on page 4 of Cauchy’s Cours
d’Analyse?’ Whatever answer is given, the result is unsatis-
factory: either ‘limit’ is used before it is defined, or the word
‘limit’ is used in two different ways, i.e. in the first instance
it expresses a vague notion and not a definite one.

All attempts to build up a theory of limits, which shall be
applicable both to rational and to irrational numbers, are bound
to fail unless they are prefaced by an exact arithmetical defini-
tion of rational and irrational number.

Further, some of the work of 1800-60 showed that geometrical
intuitions, though frequently useful and reliable as guides to
analytical results, were not invariably so. Analysis sometimes
deals with functions y, of a variable z, that cannot be repre-
sented graphically. Thus, cf. Goursat, Cours d’Analyse, i. 75,

y= ezo: b™ cos(annx),
n=0

where b < 1 and @ is an odd integer, has the properties
(i) it is a continuous function of z,
(ii) it has a differential coefficient if ab < 1, but not if
- ab > 1+43§n.

Ifab > 14§, then any notion of a graph or geometrical picture
of the function is bound to be false: we cannot think of a graph
that nowhere has a tangent.

The net result of the logical difficulties into which the older
point of view had led is that modern analysis aims at being
purely arithmetical: even when it deals with geometrical facts
it deals with them in an arithmetical fashion.

Note. There is one important note to be made in this
connexion. The arithmetical argument is often doing nothing
more than state, in the requisite forms, facts which are indicated
by geometry. It is frequently useful to draw a figure and see

what geometrical intuitions are being arithmetized.
4449 N
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2. Real numbers
We shall assume the notions of
unity, aggregate or set, order, 'correspondem;e.

We shall assume that the theory of positive and negative
integers and fractions has been developed and that rules for
their comparison (>, =, <), their addition, subtraction, multi-
plication, and division have been given.f These are the rational
numbers, or, to distinguish them from what we shall later call
rational real numbers, the elementary rational numbers (E.R.)

Anent these, we notice three results that will be particularly
useful.

(i) Any set of E.R. that contains 1 and is such that it must
contain k-1 if it contains k contains the unending sequence
1,2, 3,.... Thisis called the Principle of Mathematical Induction.

(ii) If @, b are two positive E.R. and @ < b, then we can find
positive integers n such that na > b. This is sometimes called
Archimedes’ Axiom from the fact that Archimedes set it out in
a form concerning lengths of lines.

(iii) Ifa is an E.R., then there is no least £.R. which exceeds a.

Proof. If b is any E.R. greater than a, then so is }(a-+b): it is
less than b, and so b cannot be the least £.®. which exceeds a. '

Dedekind cuts or sections

DeFINITION. Two sets L, R of elementary rational numbers are
said to form a cut when

(a) there is at least one E.R. in each sel,
(b) each and every E.R. belongs either to L or to R, but not to both,
(c) each and every member of L < each and every member of R.

A real number is a cut of the elementary rational numbers.

The notation (L, R) will be used to denote a cut; alterna-
tively, in discussing particular cuts, a single letter or symbol,
such as a, §, ¥2 will be used.

+ Cf. Hobson, Functions of a Real Variable, vol. i (1921), pp. 1-18. Any one
who is really interested in the logical foundations of analysis will find this
well worth reading.
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Lemma. (L, R) is a cut and a is an E.R. of R: then any E.R.
b that exceeds a is also in R.
Proof. Ifbisin L, then (c) of the definition is not satisfied.

Geometrical picture

If we think of the E.R. plotted along a line, a cut will be
given if we take a point P on that line, put all E.R. to the left

L R
il 4
in L, all to the right in R, and, in case P itself corresponds to an
E.R., then that E.R. may be put either in L or in R, but not in
both. The rough geometrical picture will help to keep clear the
implications of the arithmetical arguments which come later.

Classification of real numbers

There are two simple types of cut which are, quite naturally,
called rational real numbers.

(i) When L contains all E.R. < a given E.R. a,
and R contains all E.R. > a,
then the cut (L, R) is denoted by a and is called a rational real
number. Occasionally, to avoid confusion, we shall use @' for
the rational real number, a for the £.x.

(ii) When L contains all E.R. < a given E.R. a,
and R contains all E.R. > a,
then the cut (Z, R) is denoted by a and is called a rational real
number.

We shall refer to either of these cuts as the rational real
number ‘corresponding to the E.R. @’ or ‘derived from the
E.R. @’. : ‘

Nore. We ought strictly, at this point, to use different
symbols to denote the cuts of (i) and (ii): we shall see later that,’
with our definition of ‘equals’, the two real numbers or cuts
(i) and (ii) are ‘equal’ when they are derived from one and the

_same E.R. a.
The chief characteristic to be noticed about (i) and (ii) before
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we proceed is that in them either L has a greatest member or
R has a least.

We now ask ‘Can we have cuts either

(iii) such that L has a greatest and R a least member, or
(iv) such that L has no greatest and R no least member?’

We see at once that the type (iii) is not possible. If possible,
let « be the greatest L and B the least R; then }(x-pB) lies
between the two: being an E.R., it belongs either to L or to R
if (L, R) is a cut. It follows that either B is not the least B or «
is not the greatest L.

On the other hand, we have only to consider the cut that is
indicated as the obvious way of defining ¥2 to see that type (iv)
is possible. Define two sets L, R of E.R. in the following way:

every negative E.R. and
every positive E.R. whose square << 2 belongs to L, } (A)

every positive £.R. whose square > 2 belongs to E.

We want to show that (L, R) is a cut. To do this we have to
show that the conditions (a), (b), (¢) are satisfied. Now it is
clear at once from (A) that (a) there is at least one E.R. in each
of L and R and that (c) each and every member of L < each
and every member of R. Further, provided that there is no
E.R. whose square is actually equal to 2, each and every E.R.
belongs either to L or to R, but not to both.

Hence all we need do to show that L, R give a cut is to show
that there is no elementary rational number whose square
is 2. This was shown by the Greeks at the time when they
encountered the logical difficulty referred to in §1. Many
proofs are known both of this and of such theorems as ‘There
is no rational number whose square is m/n (where this fraction
is expressed in its lowest terms) unless m and n are the squares
of integers’. There is some interest, however, in recalling the
traditional Greek proof. In geometrical guise (i.e. it used
lengths of lines) it ran on the following lines: If x:y is a ratio
0 tt8 lowest terms, then ils square cannot be 2.

For if 22 = 232, then 2?2 is even and, since the square of every
odd number is odd, z is even. But now two things follow:
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(i) since z, y have no common factor, ¥ is odd;

(ii) since z is even, 22 contains 4 as a factor; so y2 is even, and
y is also even because the square of every odd number is odd.

Hence y is both even and odd, which is absurd.

We now show that the cut given by (A) is one in which L
has no least, R no greatest member. Let x be any E.R. in L and
let 22 = 2—Fk, where k > 0. If € is a positive E.R. such that

e <z, € < k3,
(x+€)? = 2—k+2xe-€2

then

< 2-—-k+§’fé3x,

and so xz-¢ also belongs to L. Hence 2 cannot be the greatest
member of L.

Hence L has no greatest, and similarly R has no least,
member.

IrrAaTIONAL NUMBERS. We have just established two facts:

(i) there is no cut (L, R) having a greatest member in L and
a least member in R;

(ii) it is possible to have a cut (L, R) in which L has no
greatest-and R no least member.

DErixtTION. 4 cut (L, R) tn which L has no greatest and R no
least member is called an irrational real number.

3. The comparison of real numbers

"Suppose two numbers a, b are given by cuts, say (Ly, R,),
(Ly, Ry). We use ‘number’ to denote ‘real number’ unless E.x.
is expressly mentioned in the context.

For convenience, we shall use I, to denote any particular
E.R. that belongs to L,, and so on. Sometimes we use the
phrase ‘an I of @’ instead of ;.

The symbols >, =, << between real numbers.

Either (i) all #’s of @ > all I’s of b,

or (ii) some r of @ < some ! of b; when we say a < b.
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When (i) holds, then
either (ia) some ! of @ > some r of b; when wesay a > b,
or  (ib)all s of a < all #’s of b; when we say a = b.

In (ib) it may happen that @ and b are rational and that the
greatest [ of @ = the least r of b, i.e. the cuts are the same save
that in one the E.R. corresponding-to the real number goes into
L and in the other it goes into R.

Note. Draw a figure to see how obvious the above pro-
cedure is.

Positive and negative real numbers

Positive numbers are those that are greater than zero,
negative numbers are those that are less than zero, zero (as a
real number) being defined as the cut that has positive E.R.
in its R class and negative E.R. in its L class. (Positive E.R.
refers to what is meant by positive in the domain of the
elementary rational numbers.)

Exercise. If x is a positive real number, then some U's of x are
positive E.R.

DerFiNtrioN. If x denotes the cut (L, R), then —x is denoted
symbolically by (—R, —L); if the ER. c isan r of x, —c is anl
of —x, and if the BE.R. cisanl of x, —cisanr of —x.

There is one concluding result that will exercise the reader
in thinking about these definitions; it will be used in Theorem II.
Itis

‘If a, b are E.R. and a > b, and if o', b’ are the rational real
numbers derived from them, then, in the sense in which > i3
defined for real numbers, a’ > b'’

4. Operations with real numbers

THEOREM I. Given an arbitrary E.R. € > 0, we can find, for any
gtven cut (L, R), an ! and an r such that r—1 < e.

If the cut (L, R) is a rational real number, the theorem is
all but obvious. For then either L has a greatest member, say
l,, and I, e is necessarily an R, or R has a least, say r;, and

—3eisan L.

t
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If the cut (L, R) is an irrational real number, let I, be any
! and r, any r: let r;—I; = «. Either « < 4¢ and [,,r, are
numbers which satisfy I,—r; < e or, by Archimedes’ axiom,
we can find an integer n such that }en > «. In the latter.case,
consider the n4-1 E.R.

U, L4-1e, ..., li+ine.

The last exceeds 7, and so is in R; the first is in L; each must
be either in L or in R, since each is an E.R. Hence one of the
sequence is the last to be in L and the next is the first to be
in R: their difference is ¢ and we have found an 7 and an r
such that r—I < e.

Note. The theorem is ‘obvious’ from the geometrical picture
of § 2.

The sum of real numbers

Let z, y denote the real numbers or cuts (L,,R,), (L, R,).
Divide the E.r. into two sets A, p in this way: an E.R. ¢ belongs
to A if we can find an /; and an [, such that

L+l = c;
otherwise ¢ belongs to p. '

Then, examining the conditions for a cut, we see that (b)
each E.R. is either a A or a p number, and (c) each and every
member of A < each and every member of p.

The one thing needed to prove that (A, p) is a cut is to show
that there is at least one E.R. belonging to A and at least one
to p. To show this, take

k, other than the greatest member of L,
(if there is such a greatest),
k, other than the greatest member of L,
(if there is such a greatest).
Then, if ¢ = k;+k,, we can find an I, and an [/, such that
1,41, > c: hence this ¢ belongs to A.

Moreover, any ¢ of the form r,+r, belongs to p.

Hence (A, p) is a cut; it is called the sum of # and ¥ and is
written z-}y.

An alternative method of defining «-y is given in Whittaker
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and Watson’s Modern Analysis (pp. 5, 6): it is more mtmtlve,
but leads to minor difficulties of detail. .

A COROLLARY TO THE DEFINITION OF SUM. If y is posi-
tive, then A (above) contains E.R. that exceed SOME of the E.R.
of R,.

0o v x Xty
This result, needed for future reference, is geometrically
obvious. The arithmetic proof is as follows:

Since y > 0, L, contains some positive E.R. If [, is one such,
then, by Theorem I, we can find an 7, and an r; such that

ry < L+1,.
Moreover, I,-}-1, is a member of A.

THE DIFFERENCE OF REAL NUMBERS. The number x—y ts
defined to be z4-(—y).

The product of real numbers

In the first place, suppose z and y to be positive real numbers.
We then proceed much as we did in defining a sum; put the
E.R. ¢ in L if we can find a positive /; and a positive I, such that
L;1, > ¢; otherwise put ¢ in R. Then (L, R) may be proved to
be a cut, called the product of x and y, and written xy.

If z or y (or both) is negative, then we frame the definition
so that the familiar ‘rule of signs’ for elementary rational

" numbers will still hold for real numbers; e.g. if x is negative
and y is positive, then xy is defined as —(—z)y.

THE RECIPROCAL OF A NUMBER. If x denotes the positive
number (L, R), then its reciprocal, 1/x, is the number (L,, R,),
where R, consists of the reciprocals of all positive I's of x and L,
of all .. that are not reciprocals of positive I's of z.

If x denotes a negative number, then 1/x is defined to be
. —()—=).

FURTHER OPERATIONS. Division by z is multiplication by
(1/x). The reader can, if he so wishes, fill in the details of defin-
ing x® (n an integer), ¥z, etc. The details present no difficulty,
though some care will be necessary.
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5. The manipulation of real numbers

To make a complete preparation for manipulating real
numbers with the same confidence as we did before the abstract
definition by means of cuts was known to us, we ought at this
stage to set up a lengthy formal scheme. For example, the
proposition }a << @ when a > 0, though easily proved, is not so
obvious that it can be dismissed as silly when we are discuss-
ing real numbers. Again, the theorems in proportion must be
proved for real numbers, e.g. if a/b = ¢/d then ad = bc.

The definitions of real numbers, their sums, products, etc.,
are, in fact, such that the ordinary arithmetical manipulations
hold for them as for the elementary rationals. If we begin to
prove this for particular steps, it soon becomes obvious that
such is the case generally, and we shall not attempt to prove up
to the hilt -for real numbers any property that is reasonably
obvious from our experience in dealing with numbers as we
understood them before we considered cuts.

6. Upper and lower bounds
We shall use the notation introduced in Chapter IL.
TaeorEM II. If (L, R) i8 a cut denoted by G, thent
€e>0; Janrof @ .r < G+te;

also, Janlof G .l > G—e.
By the corollary to the definition of a sum,
3 an I of G+¢ > some r of G. 1)

But G+4-¢ > each and every I’ derived from an E.Rr. that is an
{ of the cut G-e.

[NorE. We cannot say G-+e¢ >, because G-}¢ is a real
number, while / is an E.R., and we have set up no machinery
for comparing a cut of the E.Rr. with one single E.R.]

Hence

G'+¢ > the particular I’ derived from the I
that has been found in (1)

> the 7" derived from the r found in (1).

1 7 is the rational real ‘derived from »’.
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This proves the first part of the theorem ; the second part may
be proved in similar fashion.

First fundamental assumption of Chapter III

In the work on convergence that preceded the present dis-
cussion of real numbers we built up our theory on the following
assumption:

If («,) is a sequence of numbers and there is one number
A > every «,, then there is a least number, U, that is greater
than or equal to every «,.

We are now in a position to prove that this assumption is a
consequence of our definition of real number.

TaEOREM III. Let {a} denote an arbitrary set of real numbers.
Let there be a number Ay = each and every member of {a}. Let
{A} denote the set of all numbers that are greater than or equal to
each and every member of {a}. Then {A} possesses a least element
U, which is called the UPPER BOUND of {a}.

Every rational real number is or is not an 4. Define two sets
L, B of E.R. thus:—the E.R. ¢ belongs to L if the rational real
number derived from it is not an A, and otherwise it belongs
to R.

Then there are E.R.’s that belong to L and, since 4, > each
and every a, there are E.R.’s that belong to R. Also, every E.R.
goes either into L or into R, and each and every I < each and
every r, so that (L, R) is a cut. Denote this cut by U. By
Theorem 11,

€ > 0; 3 7 of U such that U}-¢ > 7,
where 7’ is the rational real derived from r. Hence

U-+e€ > each and every a. (i)
This is true for every positive ¢, and therefore
U > each and every a. (ii)

N.B. The.argument used to derive (ii) from (i) is of frequent oceur-
rence in analysis.

If the argument is not at once clear, consider the following. If (ii)
does not hold, then there must be at least one a, say a,, that exceeds U.

In that case U+i(¢?1"' U) < U+t(a;—U) = a, _
i.e. when ¢ = }1a,—U), U+€ < a certain a, and (i) is denied.
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It follows, then, that U belongs to {4}.

Moreover, if U' < U,Janrof U’ < anlof U, andso U’ <
some @ (by the way in which L was formed). Hence U ig in
{4} and any number less than U is not.

7. Greatest and least limits

We recall, from Chapter XI, §2, the formal deﬁmtlon of an
‘interval’.

Let {a} denote any set of numbers. If z is such that in each
and every open interval 8, containing « there is at least one @
other than x itself, then « is called a limit point of {a}. The
number 2 itself may or may not belong to {a}—see examples
below.

If z is a limit point of {a}, then each open interval §, con-
taining « contains an infinity of @. For, if a given §_ contained
only a finite number of @, then there would be a greatest a
that was less than x and a least a that was greater than x;
there would be no a other than, possibly, x itself between them.
That is, there would be an interval about x with no «, save
possibly «x, in it. This is contrary to the supposition that z is
a limit point of {a}.

Exampres. If {a} consists of all y such that 0 <y < 1,
then every x such that 0 < z < 1 is a limit point of {a}.
If {a} consists of the sequence

L5458 54.

then 0 and 1 are the only limit points.

We now consider the greatest limit of a sequence ().

In the first place we suppose that (x,,) is a bounded sequence;
ie.3 K . |z,] < K for all n.

Divide the £.R. into L, R thus: the E.R. ¢ goes in R if only a
finite number (or none) of the x, are greater than or equal to ¢/,
the rational real derived from c; otherwise ¢ goes in L. Then,
as is readily verified, (L, R) is a cut. Denote it by @. We shall
show that G is a limit point of (x,). By Theorem II,

e>0;, IlLr.G—e<<l, G+te>r',
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But, by definition,
U < z, for an infinity of values of #,
r" > x, for all save, possibly, a finite number of values of n.

Hence

G—e < x, < Q+¢ for an infinity of values of n,
so that, since ¢ was any positive number whatsoever, G is a
~ limit point of the sequence.

Moreover, no limit point of (x,) can exceed G. For,if p = G+«
where o > 0, then 3 an r of @ such that »’ < G4« Hence,
there is at most a finite number of values of n for which
Z, 2> @+4a = p—3}a. Hence p is not a limit point.

@G is called the greatest limit and is denoted by limz,,.

In the course of the preceding work we have proved the
following fact. When @’ > G, there is at most a finite number
of the z, that exceed @’. Thus, if @ = limz,, then

G >@G 3N .z, <@ whenn>=N.

This is a most useful property and enters into most applications
of the notation limz,.

THE STATEMENTS limz,, = 400, imz, = —co0. Suppose now
that the sequence (z,) is not bounded. If, however large we
take the E.R. ¢, z, > ¢’ for an infinity of values of #, then
we write limz, = -o0. If, however large and negative we
take ¢, only a finite number of z, > ¢’ (and there is an infinity
of x, altogether), we write hmw = —o0.

ExaMPLES. L
1,1,2,4,8,%,.; limz, = +oo0.

~1,—2,—-3,..; limz, = —c0.
The least limit
The least limit, written lim 2, is similarly defined.} No limit
point can be less than it. Also, if limz, = L, then
L'<L; 3N .z,>L whenn>N.

t An alternative definition is effected by ‘reflection in the origin® thus:
lima, = — lim(—a,). A diagram of points z, and —=, will show the reason
for this definition.
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THE STATEMENT limz, = z. As in Chapter II, we say that
limz, = zif

€e>0, 3N . |z—=z,|<e whenn>=N. 1)

It follows, almost directly from the definitions, that limz,
and-lim x,, are then both equal to z. For, if (1) is satisfied, and
X is other than z, then only a finite number of the x, canlie
in a closed interval that contains X but excludes z; hence X
cannot be a limit point of the z,,.

8. The second fundamental assumption

At the conclusion of § 7 we stated formally the condition that
a sequence (x,) of real numbers should have  as its limit. We
now show that

Any irrational real number may be expressed as the limit of a
sequence of rational real numbers.

By Theorem II, if @ denotes a given real number, then
€ > 0; 3 arational real ' . ¥ < G+4-e.

If G is irrational, then this 7' cannot be G and we have ' > G.

First take € —= 1; then there is an 7’ that satisfies

G<r <G+l
Let r'—G = %, and let ¢, be any number that is less than both
7 and 1.

There is then a rational real r; that satisfies G < r; < G+e,.
Also 7} < G+4n=1¢'. Let r;—G = 7, and let ¢, be any
number that is less than both 5, and .

There is then a rational real 7, that satisfies

G <1 < GHe,
Also r3 < G459, = r{.
Proceeding in this way, we determine a sequence of rational
real numbers ry,7,,...,75,..., such that
@ ran<rm, () > (i) 7—0 <2
That is to say, we have determined a monotonic decreasing
sequence of rational real numbers whose limit is G.
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By using the I’ of Theorem II instead of the ' we may
express G as the limit of a monotonic increasing sequence of
rational real numbers.

Thus the assumption of Chapter III, §3, is proved to be a
consequence of the definition of real number. '
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