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PREFACE TO FIRST EDITION

I~ writing this book I have tried to provide a text-book of the
more elementary properties of determinants, matrices, and
algebraic forms. The sections on determinants and matrices,
Parts I and II of the book, are, to some extent, suitable either
for undergraduates or for boys in their last year at school.
Part III is suitable for study at a university and is not intended
to be read at school.

The book as a whole is written primarily for undergraduates.
University teaching in mathematics should, in my view, provide
at least two things. The first is a broad basis of knowledge
comprising such theories and theorems in any one branch of
mathematics as are of constant application in other branches.
The second is incentive and opportunity to acquire a detailed
knowledge of some one branch of mathematics. The books
available make reasonable provision for the latter, especially
if the student has, as he should have, a working knowledge of at
least one foreign language. But we are deplorably lacking in
books that cut down each topic, I will not say to a minimum,
but to something that may reasonably be reckoned as an
essential part of an undergraduate’s mathematical education.

Accordingly, I have written this book on the same general
plan as that adopted in my book on convergence. I have
included topics commonly required for a university honours
course in pure and applied mathematics: I have excluded topics
appropriate to post-graduate or to highly specialized courses
of study.

Some of the books to which I am indebted may well serve as
a guide for my readers to further algebraic reading. Without
pretending that the list exhausts my indebtedness to others,
I may note the following: Scott and Matthews, Theory of
Determinants ; Bécher, Introduction to Higher Algebra ; Dickson,
Modern Algebraic Theories ; Aitken, Determinants and Matrices ;
Turnbull, The Theory of Determinants, Matrices, and Invariants;
Elliott, Introduction to the Algebra of Quantics; Turnbull and
Aitken, The Theory of Canonical Matrices; Salmon, Modern
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Higher Algebra (though the ‘modern’ refers to some sixty years
back); Burnside and Panton, Theory of Equations. Further,
though the reference will be useless to my readers, I gratefully
acknowledge my debt to Professor E. T. Whittaker, whose in-
valuable ‘research lectures’ on matrices I studied at Edinburgh
many years ago.

The omissions from this book are many. I hope they are, all
of them, deliberate. It would have been easy to fit in something
about the theory of equations and eliminants, or to digress at
one of several possible points in order to introduce the notion of
a group, or to enlarge upon number rings and fields so as to
give some hint of modern abstract algebra. A book written
expressly for undergraduates and dealing with one or more of
these topics would be a valuable addition to our stock of
university text-books, but I think little is to be gained by
references to such subjects when it is not intended to develop
them seriously.

In part, the book was read, while still in manuscript, by my
friend and colleague, the late Mr. J. Hodgkinson, whose excel-
lent lectures on Algebra will be remembered by many Oxford
men. In the exacting task of reading proofs and checking
references I have again received invaluable help from Professor
E. T. Copson, who has read all the proofs once and checked
nearly all the examples. I am deeply grateful to him for this
work and, in particular, for the criticisms which have enabled
me to remove some notable faults from the text.

Finally, I wish to thank the staff of the University Press, both
on its publishing and its printing side, for their excellent work
on this book. I have been concerned with the printing of mathe-
matical work (mostly that of other people!) for many years, and
1 still marvel at the patience and skill that go to the printing of
a mathematical book or periodical.

W. L. F.
HERTFORD COLLEGE, OXFORD,

September 1940.
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PART I

PRELIMINARY NOTE; CHAPTERS ON
DETERMINANTS

PRELIMINARY NOTE
1. Number

In its initial stages algebra is little more than a generaliza-
tion of elementary arithmetic. It deals only with the positive
integers, 1, 2, 3,.... We can all remember the type of problem
that began ‘let  be the number of eggs’, and if x came to 3} we
knew we were wrong.

In later stages « is permitted to be negative or zero, to be the
ratio of two integers, and then to be any real number either
rational, such as 3} or —}, or irrational, such as 7 or ¥3. Finally,
with the solution of the quadratic cquation, x is permitted to be
a complex number, such as 24 3:.

The numbers used in this book may be either real or complex
and we shall assume that readers have studied, to a greater or
a lesser extent, the precise definitions of these numbers and
the rules governing their addition, subtraction, multiplication,
and division.

2. Number rings
Consider the set of numbers
0, +1, +2, ... (1)
Let 7, s denote numbers selected from (1). Then, whether r and
s denote the same or different numbers, the numbers
r+s, r—s, rxs
all belong to (1). This property of the set (1) is shared by other
sets of numbers. For example,
all numbers of the form a--bv5, (2)
where a and b belong to (1), have the same property; if r and s

belong to (2), then so do r4s, r—s, and r X s. A set of numbers

having this property is called a RING of numbers.
4702
B



2 PRELIMINARY NOTE

3. Number fields

3.1. Consider the set of numbers comprising 0 and every
number of the form p/q, where p and ¢ belong to (1) and ¢ is not
zero, that is to say,

the set of all rational real numbers. (3)

Let r, s denote numbers selected from (3). Then, when s is not
zero, whether r and s denote the same or different numbers,

the numbers r4s, r—s, rXs, r-8

all belong to the set (3).

This property characterizes what is called a FIELD of numbers.
The property is shared by the following sets, among many
others:—

the set of all complex numbers; (4)
the set of all real numbers (rational and irrational); (5)

the set of all numbers of the form p+¢+3, where p and
g belong to (3). (6)

Each of the sets (4), (5), and (6) constitutes a field.

DEFINITION. A set of numbers, real or complex, is said to form a
FIELD OF NUMBERS when, if r and 8 belong to the set and s is not

2ero .
’ r+8, r—s8, rXs, r-=-8

also belong to the set.

Notice that the set (1) is not a field; for, whereas it contains
the numbers 1 and 2, it does not contain the number 3.

3.2. Most of the propositions in this book presuppose that
the work is carried out within a field of numbers; what particular
field is usually of little consequence.

In the early part of the book this aspect of the matter need
not be emphasized: in some of the later chapters the essence of
the theorem is that all the operations envisaged by the theorem
can be carried out within the confines of any given field of
numbers.

In this preliminary note we wish to do no more than give a
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formal definition of a field of numbers and to familiarize the
reader with the concept.

4. Matrices

A set of mn numbers, real or complex, arranged in an array of
m columns and n rows is called a matrix. Thus

an G - - Oy
Ay Qg . . Qg
anl a’n2 . . anm

is a matrix. When m = n we speak of a square matrix of order n.
Associated with any given square matrix of order n there are
a number of algebraical entities. The matrix written above,
with m = =, is associated
(i) with the determinant

1 e o - Qs
Ayy Qo . . Qg
anl an2 ann
(ii) with the form
n n
z a’rsxrxs’
r=18=1

of degree 2 in the n variables x,, x,,..., z,;
(iii) with the bilinear form
TZI g Upg Ty Y
in the 2n variables z,,..., x, and y,,..., ¥,;
(iv) with the Hermitian form
<1 SZ aI‘S r 8’
where z, and &, are conjugate complex numbers;
(v) with the linear transformations

z, —Za X, (r=1,.,n),

L, =r§1a,sl, (8 =1,.,n).
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The theories of the matrix and of its associated forms are
closely knit together. The plan of expounding these theories
that I have adopted is, roughly, this: Part I develops properties
of the determinant; Part II develops the algebra of matrices,
referring back to Part I for any result about determinants that
may be needed; Part III develops the theory of the other
associated forms.



CHAPTER I
ELEMENTARY PROPERTIES OF DETERMINANTS

1. Introduction

1.1. In the following chapters it is assumed that most
readers will already be familiar with determinants of the second
and third orders. On the other hand, no theorems about such
determinants are assumed, so that the account given here is
complete in itself.

Until the middle of the last century the use of determinant
notation was practically unknown, but once introduced it
gained such popularity that it is now employed in almost every
branch of mathematics. The theory has been developed to such
an extent that few mathematicians would pretend to a know-
ledge of the whole of it. On the other hand, the range of theory
that is of constant application in other branches of mathematics
is relatively small, and it is this restricted range that the book
covers.

1.2. Determinants of the second and third orders.
Determinants are, in origin, closely connected with the solu-
tion of linear equations.

Suppose that the two equations

a,x4+by = 0, a,v+b,y =0
are satisfied by a pair of numbers « and y, one of them, at least,
being different from zero. Then

by(ay2+-0,y)—by(a,+byy) = 0,
and so (a by—ay b))z = 0.
Similarly, (2, b,—a,b,)y == 0, and so a,;by,—a, b, = 0.
‘The number a, b,—a, b, is a simple example of a determinant;

it is usually written as
a, b

1 01 (1)
a, b,
The term «, b, is referred to as ‘the leading diagonal’. Since
there are two rows and two columns, the determinant is said
to be ‘of order two’, or ‘of the second order’.
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The determinant has one obvious property. If, in (1), we
interchange simultaneously @, and b,, a, and b,, we get
b,a,—bya, instead of a,b,—a,b,.
That is, the interchange of two columns of (1) reproduces the
same terms, namely a, b, and a,b,, but in a different order and
with the opposite signs.
Again, let numbers z, y, and z, not all zero, satisfy the three

equations a,x+by+c,z =0, (2)
ayx+byy+eyz = 0, (3)
aya-t byytegz = 0; )

then, from equations (3) and (4),
(@yb3—agby)xr—(byc3—bycp)z = 0,
(a3b3—agby)y—(cyag—czaz)z = 0,
and so, from equation (2),
2{a,(by c3—by c)+ by (Cy @3—C3a5)+¢y(ay by—az by)} = 0.
We denote the coefficient of z, which may be written as
a,bycs—a bgcota,b3c,—ay b, c3ta3b,c,—azb, ey,
by A; so that our result is zA = 0.
By similar working we can show that
zA = 0, yA = 0.
Since z, ¥, and z are not all zero, A = 0.
The number A is usually written as

a by ¢,
a, b, c,
a; by ¢,

in which form it is referred to as a ‘determinant of order three’
or a ‘determinant of the third order’. The term a, b, c; is
referred to as ‘the leading diagonal’.

1.3. It is thus suggested that, associated with n linear
equations in » variables, say

a,z+b,y+...+kz=0,
a,x+b,y+...+kyz = 0,

a,x+b,y+...+k,z =0,
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there is a certain function of the coefficients which must be
zero if all the equations are to be satisfied by a set of values
Z, Y,..., 2 which are not all zero. It is suggested that this
function of the coefficients may be conveniently denoted by

a, b ky |,
a, b, ky
aﬂ bIL k’l

in which form it may be referred to as a determinant of order =,
and a, b, ... k,, called the leading diagonal.

Just as we formed a determinant of order three (in §1.2) by
using determinants of order two, so we could form a deter-
minant of order four by using those of order three, and proceed
step by step to a definition of a determinant of order n. But this
is not the only possible procedure and we shall arrive at our
definition by another path.

We shall first observe certain properties of determinants of
the third order and then define a determinant of order n in
such a way that these propertics are preserved for deter-
minants of every order.

1.4. Note on definitions. There arc many different ways of defining
a determinant of order n, though all the definitions lcad to the same
result in the end. The only particular merit we claim for our own defini-
tion is that it is easily reconcilable with any of the others, and so makes
reference to other books a simple matter.

1.5. Properties of determinants of order three. As we
have seen in § 1.2, the determinant

a, b ¢
a, b, c,
a; by ¢

stands for the expression
+a,bycs—a,byc,+a,byc,—ay by cgt+asb, co—azbyey. (1)
The following facts are all but self-evident:

(I) The expression (1) is of the form
z i a, bs o
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wherein the sum is taken over the six possible ways of assigning
tor, s, t the values 1, 2, 3 in some order and without repetition.

(IT) The leading diagonal term a, b,c, is prefixed by +.

(III) As with the determinant of order 2 (§1.2), the inter-
change of any two letters throughout the expression (1) repro-
duces the same set of terms, but in a different order and with
the opposite signs prefixed to them. For example, when @ and b
are interchangedf in (1), we get

+bya,c3—b; a5 cy+-byaz¢,—byay c3+-bya;co—byaycy,

which consists of the terms of (1), but in a different order and
with the opposite signs prefixed.

2. Determinants of order »

2.1. Having obscrved (§1.5) three essential propertics of a
determinant of the third order, we now define a decterminant
of order n.

DeriNiTION. The determinant

A,=la, by . . § K
ay by . . jy ky (1)
blb ’ M jl@ klb
s that function of the a’s, b’s,..., k’s which satisfies the three
conditions:

(I) it is an expression of the form

S ta,b,...ky, (@)
wherein the sum s taken over the n! possible ways of assigning
tor,s,.., 0 the values 1, 2,..., n in some order, and without
repetition;

(II) the leading diagonal term, a,b,...k,, 18 prefixed by the

sign +;

(III) the sign prefixed to any other term is such that the inter-

change of any two letters] throughout (2) reproduces the same

1 Throughout we use the phrase ‘interchange a and b’ to donote the
simultancous interchanges a, and by, a, and b,, a; and b,, ..., a, and b,.

1 Sce previous footnote. The interchange of p and g, say, means tho
simultaneous interchanges

Py and g, p, and ¢,,..., P, and qy.

a

‘n
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set of terms, but in a different order of occurrence, and with
the opposite signs prefixed.

Before proceeding we must prove,that the definition yields
one function of the a’s, b’s,..., k’s and one only. The proof that
follows is divided into four main steps.

First step. Let the letters a, b,..., k, which correspond to the
columns of (1), be written down in any order, say

v d, g, @y ey D, ey Qe (A)

An interchange of two letters that stand next to each other is
called an ADJACENT INTERCHANGE. Take any two letters p and
q, having, say, m letters between them in the order (A). By
m-1 adjacent interchanges, in each of which p is moved one
place to the right, we reach a stage at which p comes next
after ¢q; by m further adjacent interchanges, in each of which ¢
is moved one place to the left, we reach a stage at which the
order (A) is reproduced save that p and ¢ have changed places.
This stage has been reached by means of 2m-+1 adjacent
interchanges.

Now if, in (2), we change all the signs 2m-+1 times, we end
with signs opposite to our initial signs. Accordingly, if the
condition (III) of the definition is satisfied for adjacent inter-
changes of letters, it is automatically satisfied for every inter-
change of letters.

Second step. The conditions (I), (II), (III) fix the value of
the determinant (of the second order)

a, b
a, b,

to be a,b,—a,b,. For, by (I) and (II), the value must be
+a,b,+a,by,

and, by (ITI), the interchange of @ and b must change the signs,
so that we cannot have a,b,4-a,b,.
Third step. Assume, then, that the conditions (I), (II), (IIT)

are sufficient to fix the value of a determinant of order n—1.
4703 C
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By (I), the determinant A, contains a set of terms in which a
has the suffix 1; this set of terms is

a, Y +bgc,... kg, (3)
wherein, by (I), as applied to A,

(i) the sum is taken over the (n—1)! possible ways of
assigning to s, ¢,..., 6 the values 2, 3,..., n in some order
and without repetition.

Moreover, by (II), as applied to A,
(ii) the termbyc,...k, is prefixed by +.
Finally, by (III), as applied to A,
(iii) an interchange of any two of the letters b, c,..., & changes
the signs throughout (3).

Hence, by our hypothesis that the conditions (I), (IT), (IIT)
fix the value of a determinant of order n—1, the terms of (2) in
which a has the suffix 1 are given by

a;| by ¢, ky |
b3 C3 k:l (3 a)
bn cll A"

This, on our assumption that a determinant of order n—1 is
defined by the conditions (I), (II), (III), fixes the signs of all
terms in (2) that contain a, b,, @, b,,..., @, b,.

Fourth step. The interchange of a and b in (2) must, by
condition (III), change all the signs in (2). Hence the terms of
(2) in which b has the suffix 1 are given by

—blay, ¢, . . k;
a, ¢ . . kg (3b)
a, ¢ k

n n n

for (3 b) fixes the sign of a term b, a,c,... kg to be the opposite of
the sign of the term a, b,¢,... kg in (3 a).

The adjacent interchanges b with ¢, ¢ with d, ..., j with %
now show that (2) must take the form
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a| by o . . ky|—by|ay ¢y . . kyldcyla, by . . Ky |—
by ¢3 . . kg s € . . ky as by . . kg
bn cn A kn an cn N kn a’n bn ° kn

— (=) Yy @y by .. y} .
a; by . . Js 4)

@y by - - Jn
That is to say, if conditions (I), (II), (III) define uniquely a
determinant of order n—1, then they define uniquely a deter-
minant of order n. But they do define uniquely a determinant
of order 2, and hence, by induction, they decfine uniquely a
determinant of any order.

2.2. Rule for determining the sign of a given term.
If in a term a,b,...ky there are A, suffixes less than n that
come after n, we say that there are A, inversions with respect
to n. For example, in the term a,b,¢,d,, there is one inversion
with respect to 4. Similarly, if there are A, _, suffixes less than
n—1 that come after n—1, we say that there are A, _; inversions
with respect to n—1; and so on. The sum

N == A At A,

is called the total number of inversions of suffixes. Thus, with
n = 6 and the ter
m a,bycydge,fs, (5)

Ag = 2, since the suffixes 1 and 5 come after 6,

A; = 0, since no suffix less than 5 comes after 5,

A, = 3, since the suffixes 3, 2, 1 come after 4,

A=2A=12A =0;
the total number of inversions is 24+34-2+1 = 8.

If a,b,... kg has A, inversions with respect to n, then, leaving
the order of the suffixes 1, 2,..., n—1 unchanged, we can make
n to be the suffix of the nth letter of the alphabet by A, adjacent
interchanges of letters and, on restoring alphabetical order,
make 7n the last suffix. For example, in (5), where A, = 2, the
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two adjacent interchanges f with e and f with d give, in
succession, aybycydefy €5, a3 b3¢,fed, 5.

On restoring alphabetical order in the last form, we have
azbscyd,esfg, in which the suffixes 4, 3, 2, 1, 5 are in their
original order, as in (5), and the suffix 6 comes at the end.

Similarly, when n has been made the last suffix, A, _, adjacent
interchanges of letters followed by a restoration of alphabetical
order will then make n—1 the (n—1)th suffix; and so on.

Thus A;+A,4...+A, adjacent interchanges of letters make
the term a,b,...ky coincide with a,b,...k,. By (III), the sign
to be prefixed to any term of (2) is (—1)Y, where N, i.e.
A+A+...+A, is the total number of inversions of suffixes.

2.3. The number N may also be arrived at in another way.
Let 1 < m < n. In the term

a, ba vee ko
let there be u,, suffixes greater than m that come before m.
Then the suffix m comes after each of these y,, greater suffixes
and, in evaluating N, accounts for one inversion with respect
to each of them. It follows that

N=5 pm (6)

3. Properties of a determinant
3.1. THEOREM 1. The determinant A, of § 2.1 can be expanded
in either of the forms

(i) S (—1)¥,b,... by
where N 18 the total number of inversions in the suffixes r, s,..., 6;
(i) ay| by ¢y . . ky|—=byay, ¢y . . ky|d..+
by ¢35 . . ks as c3 . . ky
b, ¢, . . k, a, ¢, . . k,
H(=1)"%y|ay, by, . . gyl
ag by . . 7,
@ b, In

This theorem has been proved in §2.



ELEMENTARY PROPERTIES OF DETERMINANTS 13

THEOREM 2. A determinant is unaltered in value when rows
and columns are interchanged; that 18 to say

a b, . . k|l=|a, a5 . . a,].
a, b, . . ky by b, . . b,
a, b, . . k, ky ky . . Kk,
By Theorem 1, the second determinant is
2 (=)Mo By ..ok, (7)

where a, B,..., k are the letters a, b,..., £ in some order and M is
the total number of inversions of letters.

[There are u, inversions with respect to k in of...x if there
are p, letters after k that come before k in the alphabet; and so
on: pu,+pa+...+u, is the total number of inversions of letters.]

Now consider any one term of (7), say

(—l)’"qlﬁ?2 e Ko (8)
If we write the product with its letters in alphabetical order,
we get a term of the form
(—1)Ma,b,...5,kp. (9)
In (8) there are p, letters that come after £, so that in (9) there
are p, suffixes greater than 6 that come before 6. There are
fn—1 letters that come before j in the alphabet but after it in
(8), so there are p,_, suffixes greater than ¢ that come before
it in (9); and so on. It follows from §2.3 that M, which is
defined as > p,, is equal to N, where N is the total number of
inversions of suffixes in (9).
Thus (7), which is the expansion of the second determinant
of the enunciation, may also be written as
S (—1)Na,b,... kg,
which is, by Theorem 1, the expansion of the first determinant
of the enunciation; and Theorem 2 is proved.
THEOREM 3. The interchange of two columns, or of two rows,
in a determinant multiplies the value of the determinant by —1.
It follows at once from (III) of the definition of A, that an
interchange of two columns, i.e. an interchange of two letters,
multiplies the determinant by —1.
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Hence also, by Theorem 2, an interchange of two rows
multiplies the determinant by —1.

COROLLARY. .If a column (row) is moved past an even number
of tolumns (rows), then the value of the determinant is unallered;
in particular

a, b ¢ dl{ =l¢, a b d|.
a, by, ¢, d, c, ay by dy
ag by ¢z dy c; uz by dy
a, b, ¢4 d, e, a, by d,

If a column (row) is moved past an odd number of columns
(rows), then the value of the determinant is thereby multiplied
by —1.

For a column can be moved past an even (odd) number of
columns by an even (odd) number of adjacent interchanges.
In the particular example, abcd can be changed into cabd
by first interchanging b and ¢, giving acbd, and then inter-
changing a and c.

3.11. The expansion (ii) of Theorem 1 is usually referred to

as the expansion by the first row. By the corollary of Theorem
3, there is a similar expansion by any other row. For example,

a, by ¢ dy|=]ay by c; dy
ay, by, ¢ d, a, by ¢ dy
a;, by ¢y dy a, b, c, d,
a, by ¢ d, \ a, by ¢ dy

and, on expanding the second determinant by its first row, the
first determinant is seen to be equal to
as| by ¢y dy|—byla, ¢, dy|+cslay by dy|—dsla, by ;.
by ¢y d, a, ¢, d, a, b, d, a, b, c,
by ¢, d, ay ¢4 d, ay by d, ay by c,
Similarly, we may show that the first determinant may be
written as
—a,| b, ¢, dy|+bya, ¢; dy|—cy|a; by dy|+d,|a; by ¢ .
by ¢c3 dy a3 C3 dy ay by dy ag by ¢;
b, ¢, d, ay ¢4 dy ag by dy ag by ¢4
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Again, by Theorem 2, we may turn columns into rows and
rows into columns without changing the value of the deter-
minant. Hence there are corresponding expansions of the
determinant by each of its columns.

We shall return to this point in Chapter II, § 1.

3.2. TurorREM 4. If a determinant has two columns, or two
rows, identical, its value is zero.

The interchange of the two identical columns, or rows,
leaves its value unaltered. But, by Theorem 3, if its value is z,
its value after the interchange of the two columns, or rows,
is —z. Hence x = —z, or 2x = 0.

TuroreM 5. If each element of one column, or row, 8 multi-
plied by a factor K, the value of the determinant is thereby multi-
plied by K.

This is an immediate corollary of the definition, for
z :tKarbs"' l'o =K z :t(lrbs... ko.

3.3. TuroreM 6. The determinant of order n,

Gytoy by+py . . kit
Wty bytBy . . kytiy
i a’n+°‘n bn+ﬂn . . kn+Kn

is equal to the sum of the 2™ determinants corresponding to the
2n different ways of choostng one letter from each column; in

particular, a4, b+,
Aytoy byt

18 the sum of the four determinants

a; B
a, B,

This again is obvious from the definition; for
z :*Z(a'r+ar)(bs+183)"'(k0+K0)

is the algebraic sum of the 2" summations typified by taking
one term from each bracket.

a b
a, b,

’ 10‘1 /31
10‘2 Bz

’ ’ 51 bl

oy by
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3.4. THEOREM 7. The value of a determinant is unaltered if
to each element of one column (or row) is added a constant
multiple of the corresponding element of another column (or row);
in particular,

a, b ¢ | =|a,+Ab; b ¢
a, b, c, a,+Ab, b, c,
ag by ¢ az+Ab; by ¢

Proof. Let the determinant be A, of § 2.1, x and y the lctters
of two distinct columns of A,. Let A; be the determinant
formed from A, by replacing each x, of the z column by
,-+Xy,, where A is independent of . Then, by Theotem 1,

Ay = 3 (—1)Na,b,... (2, +Ay,) ...y ... g

=la; by . 2 .y, . by |+]ay by o Ay ooy Ky
a, by, .z, . Y, . ky a, by . Ay, . Yy, . ky
an bIL * xn . yn * kn ' an bll . Ayn . yn * kn |

But the second of these is zero since, by Theorem 5, it is A times
a determinant which has two columns identical. Hence A, = A,,.

CoroLLARIES OF THEOREM 7. There are many extensions of
Theorem 7. For example, by repeated applications of Theorem 7
it can be proved that

We may add to each column (or row) of a determinant fixed
multiples of the SUBSEQUENT columns (or rows) and leave the value
of the determinant unaltered; in particular,

a, by ¢ | =|a+AbFpue; by+ve, ¢
a, b, ¢, @y+Aby+-puc, by4ve, ¢,
as by ¢ ag+Aby+pucy bytvey €

There 18 a similar corollary with PRECEDING instead of SUBSE-
QUENT.

Another extension of Theorem 7 is

We may add multiples of any oNE column (or row) to every other
column (or row) and leave the value of the determinant unaltered; in
particular,

a, by ¢ | =|a;+Ab; by c+pb,|.
a, b, c, ay,+Ab, by cytpby
ag by ¢ a3+Abg by c3t-pby
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There are many others. But experience rather than set rule
is the better guide for further extensions. The practice of
adding multiples of columns or rows at random is liable to lead
to error unless each step is checked for validity by appeal to
Theorem 6. For example,

A=|a,+A, by+pc, c;+va,
ay+Ab, bytpuc, cytva,
a;+Ab;  by+tpcy cg+tva,

is, by Theorem 6,
a; by c;|+]|Ab; pe, wvayl;
a, b, c, Ab, pc, va,

a; by ¢4 Aby  pcy vag

all the other determinants envisaged by Theorem 6, such as

Ab, by ¢,
Ab, b, ¢,
Aby by g

being zero in virtue of Theorems 4 and 5. Hence the deter-
minant A is equal to

(I+2w) a; by ¢
a; by ¢
ag by ¢
Note. One of the more curious errors into which one is led by adding
multiples of rows at random is a fallacious proof that A = 0. In the
example just given, ‘subtract second column from first, add sccond and
third, add first and third’, corresponds toA = —1, 4 = 1,»v = 1, a choice
of values that will (wrongly, of course) ‘prove’ that A = 0: the mani-
pulation of the columns has not left the value unaltered, but multiplied
the determinant by a zero factor, 1+Auv.

3.5. Applications of Theorems 1-7. As a convenient
notation for the application of Theorem 7 and its corollaries,
we shall use vy = lry+mry ... tr,

to denote that, starting from a determinant A,, we form a new

determinant A;, whose kth row is obtained by taking ! times the
4702 D
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first row plus m times the second row plus...plus ¢ times the
nth row of A,. The notation

Cn = Acy+pucy+...4xC,
refers to a similar process applied to columns.

ExampLEs I
‘1. Find the value of

A= 1|87 42 3 —1/|.
45 18 7 4
50 17 3 —5

91 9 6 0

The working that follows is an illustration of how one may deal with
an isolated numerical determinant. For a systematic method of com-
puting determinants (one which reduces the order of the determinant
from, say, 6 to 5, from 6 to 4, from 4 to 3, from 3 to 2) the reader is
referred to Whittaker and Robinson, The Calculus of Observations
(London, 1926), chapter v.

On writing ¢; = ¢,—2¢q—¢;, ¢35 = €3+ 3¢y,

A=]| 0 42 0 —1
2 18 19 4
13 17 —12 -5
67 9 6 0.

= —42] 2 19 4|+ 2 18 19 |,
13 —-12 -5 13 17 —12
67 6 0 67 9 6

by Theorem I. On expanding the third-order determinants,
A = —42{2(30)— 13(—24)+67(—95+48)} +
+{2(102+108)—13(108 —171)+67(—216—323)}, etec.
2. Prove thatt

1 1 1= (@BB-yy—a)
a By
By va of
On taking ¢; = c3—¢;, €3 = ¢3—¢,, the determinant becomes
1 0 0 ,
e P-a vy—B
By y(a—PB) af—y)

t This determinant, and others that occur in this set of examples, can be
evaluated quickly by using the Remainder Theorem. Here they are intendod
as exercises on §§ 1-3.
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which, by Theorems 1 and 5, is equal to

(a*ﬁ)(ﬂ—y)l -1 -1 l,

v «

1.e. (a-—ﬁ)(ﬂ—'y)(y—a).
3. Prove that

A = 0 (a—PB) (ax—y)? (x—8)* | =0.

B-x)* 0  (B—y)? (B0

(y—o) (y—B* 0  (y—9)

B—a)P (B-B2 (3—y)» 0

When we have studied the multiplication of determinants we shall

see (Examples IV, 2) that the given detcrminant is ‘obviously’ zero,
being the product of two determinants each having a column of zeros.
But, at present, we treat it as an exercise on Theorem 7. Take

r; = r;,—r, and remove the factor a—f from r; (Theorem 5),
ry = r3—ry and remove the factor 8—y from r;,

r} = ry—r, and remove the factor y—3§ from 75,
Then A/(a—B)(B—y)(y—23) is equal to

—a-+B a—B  atp—2 at+Bf—-25]
B+y—2a —B+y  B-y  Bty—2
y+8—2a y+8—-28 —y+3d y—28

@—ap  @—pF @y 0

In this take ¢; = ¢, —cy, ¢; = ¢35, €5 = €3—¢, and remove the factors
B—a, y—PB, 8—1v; it becomes

(B—a)ly—B)3—y) 2 2 2 atf—2 |
2 2 2 Piy—28
2 2 2 y—8

28—a—B 26—B—y b—y 0

In the last determinant take r; = r,—r,, r; = r,—ry; it becomes

0 0 0 a—y |,
0 0 0o B-5
2 2 2 y—=o

28—a—B 26—B—y b6—y O
which, on expanding by the first row, is zero since the determinant of
order 3 that multiplies «—f is one with a complete row of zeros.
4. Prove that
0 (a—PB)® (ax—9y) | =0.
B—a)p 0  (B—yP
(y—a)P (=B 0
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\_AS. Prove that

! B y | = (@+B+y)B—y)y—a)a—B)
aﬂ Bﬂ yﬁ
B+y y+o o+B

Hixt. Take ry = r,+7;.
\/ 6. Prove that

1 1 1 1 | =0
o B y 8

Bty y+8 8+a atp
& o B v

J/ 1. Prove that

i

0 o?—f aP—y? o?—8% | =0.
Bn_az 0 Igz__),z ﬁz_az
,}8,2_0‘2 )S,a_gz 8 0 . yagsz
ﬂ_aﬂ 2__ Q2 2___y
\/ HinT. Use Theorem 6.
8. Prove that
20 ot+B aty a+6 | = 0.
B+a 28 B4y B9
SR AN AR
+a + +y
V9. Prove that

1 1 1 1 | = (a—B)a—y)Na—8)B—y)B—8)y—3).
«a By &
Byd yda 8aB  aly
ol ﬁz ‘)" 52
v 10. Prove that

A=) 0 a b ¢ | = (af—be+cd):
—a 0 d e
—b —d 0 f
—c —e —f 0

The determinant may be evaluated directly if we consider it as
a b ¢ 4y,
a; b, ¢, d,
ag by c; ds
a, by ¢ d,
whose expansion is ¥ (—1)¥a,b,c,d,, the value of N being determined
by the rule of §2.2. There are, however, a number of zero terms in the
expansion of A. The non-zero terms are
a?f? [a, b, c,d; and so is prefixed by (—1)2],
b%s?, c2d?, each prefixed by +,
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two terms aebf [one a, b, ¢, d;, the other a; b, ¢, d,, and so each prefixed
by (—1)°],
two terms adfc prefixed by +, and two terms cdbe each prefixed by —.

Hence A = a?f %4 b2e?+c2d?— 2aebf + 2afcd — 2becd.
v 11, Prove that the expansion of

0 c b d

c 0 a e

b a 0 f

d e f O

is a2d?4- b2e? - c¥f 2 — 2bcef — 2cafd — 2abde.
V/12. Prove that the expansion of
01 1 1
1 0 22
1 22 0 2t
1 2 22 0
is Yat—23 yht
\/13. (Harder.) Express the determinant
z+a b c d
b =x+c¢ d a
c d z+a b
+

d a b z+c

as a product of factors.
Hint. Two linear factors x+a+c4(b+d) and one quadratic factor.

Jl4. From a determinant A, of order 4, a new determinant A’ is
formed by taking
€] = ¢1FAcy, ©€f = Cptpucs, 5 = c3tve, ¢ = ¢,

Prove that A’ = (1+Auv)A.

4. Notation for determinants

The determinant A, of §2.1 is sufficiently indicated by its
leading diagonal and it is often written as (a,byc¢4... k,,).

The use of the double suffix notation, which we used on p. 3
of the Preliminary Note, enables one to abbreviate still further.
The determinant that has a,, as the element in the rth row
and the sth column may be written as |a,|.

Sometimes a determinant is sufficiently indicated by its first



22 ELEMENTARY PROPERTIES OF DETERMINANTS

row; thus (a,b,¢c,... k,) may be indicated by |a,b,¢,...k,|, but
the notation is liable to misinterpretation.

5. Standard types of determinant
5.1. The product of differences: alternants.
THEOREM 8. The determinant

Ay=o3 B 43 8

o B2 g2 82
a B y 8
1 1 1 1

18 equal to (a—B)(a—y)(a—38)(B—y)(B—25)(y—3), the correspond-
ing determinant of order n, namely («®~18"-2...1), is equal to the
product of the differences that can be formed from the letters
a, B,..., k appearing in the determinant, due regard being paid
to alphabetical order in the factors. Such determinants are called
ALTERNANTS.
On expanding A,, we see that it may be regarded
(@) as a homogeneous polynomial of degree 6 in the variables
a, B, v, 8, the coefficients being +-1;
(b) as a non-homogeneous polynomial of highest degree 3 in
«, the coefficients of the powers of a being functions of
B, v, 8.

The determinant vanishes when a = B, since it then has two
columns identical. Hence, by the Remainder Theorem applied
to a polynomial in «, the determinant has a factor «—pB. By
a similar argument, the difference of any two of o, B, v, 6 is a
facto® of A,, so that

Ay = K(a—B)(a—y)(a—38)(B—y)(B—38)(y—3). (10)

Since A, is a homogeneous polynomial of degree 6 in «, 8, v, &,
the factor X must be independent of «, B, v, 6 and so is a
numerical constant. The coefficient of o38% on the right-hand
side of (10) is K, and in A, it is 1. Hence K =1 and

A, = (a—B)(a—y)(a—8)(B—y)(B—3)(y—3).

The last product is conveniently written as {(«,B,y,9), and
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the corresponding product of differences of the n letters
&, B;..., k a8 {(a, B,..., k). This last product contains

(n—1)+(rn—2)4...+1

factors and the degree of the determinant («®-1p7-2...1) is
also (n—1)+(n—2)4...41, so that the argument used for A,
isreadily extended to A,,.

75.2. The circulant.
THEOREM 9. The determinant

= a, ay, a; . . a, :H(al_lr.azw_*_'__,{‘anwn—l)’

@y Ay Ay« - Ty
Apq Oy @y . . Ay
a, a; a, . . a

where the product is taken over the n-th roots of unity. Such a
determinant 18 called @ CIRCULANT.

Let w be any one of the n numbers
2km . . 2=
= — —_— I = 1, 2,..., .
Wy = oS — +¢sin - (k n)

In A replace the first column ¢; by a new column c¢;, where
¢; = ¢1twey+wis ...+ w1,

This leaves the value of A unaltered.
The first column of the new determinant is, on using thg fact
that w™ =1 and writing a,+a,w+...4a, 0" ! = a,

a,+a,wtaz30i ... 4a, 0"l = q,
a, wta, wta,wi4...+a, w ! = wa,

a,_,o"ta, w"tl4a, wit... 40, , w1 = wi,

ayw"ta; 0"t Ha, w24, w1 = o la.

Hence the first column of the new determinant has a factor



24 ELEMENTARY PROPERTIES OF DETERMINANTS

a = a,+a,w+...+a, w* !, which is therefore (Theorem 5) a
factor of A. This is true for w = wy (k = 1,2,...,n), so that

A= Klli(al—}—azwk—}—...—{—anw}c“l). (11)

Moreover, since A and J] are homogeneous of degree n in the
variables a,, a,,..., @,, the factor K must be independent of these
variables and so is a numerical constant. Comparing the
coefficients of a7 on the two sides of (11), we see that K = 1.

6. Odd and even permutations

6.1. The n numbers 7, s,..., 8 are said to be a PERMUTATION
of 1, 2,..., n if they consist of 1, 2,..., # in some order. We can
obtain the order 7, s,..., § from the order 1, 2,..., n by suitable
interchanges of pairs; but the set of interchanges leading from
the onc order to the other is not unique. For example,
432615 becomes 123456 after the interchanges denoted by

432615 132645 123645 123465
132645 \123645) \123465)° \123456/

whereby we first put 1 in the first place, then 2 in the second
place, and so on. But we may arrive at the same final result by
first putting 6 in the sixth place, then 5 in the fifth, and so on:
or we can proceed solely by adjacent interchanges, beginning by

432615 432165
432165 \431265)

as first steps towards moving 1 into the first place. In fact, as
the reader will see for himself, there is a wide variety of sets of
interchanges that will ultimately change 4326 15into 1234 586.

Now suppaose that there are K interchanges in any ONE way
of going from 7, s,..., 8 to 1, 2,..., ». Then, by condition III in
the definition of a determinant (vide § 2.1), the term a,b,... &y
in the expansion of A, = (albz..‘)kn) is prefixed by the sign
(—1)X. But, as we have proved, the definition of A, by the
conditions I, II, IIT is unique. Hence the sign to be prefixed
to any given term is uniquely determined, and therefore the
gign (—1)X must be the same whatever set of interchanges is
used in going from 7, s,..., 8 to 1, 2,..., n. Thus, if one way of
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going from 7, s,..., 6 to 1, 2,..., n involves an odd (even) number
of interchanges, so does every way of going from 7, s,..., 8
tol,2,..., n.

Accordingly, every permutation may be characterized either
as EVEN, when the change from it to the standard order 1, 2,...,n
can be effected by an even number of interchanges, or as oDD,
when the change from it to the standard order 1, 2,...,, » can
be effected by an odd number of interchanges.

6.2. It can be proved, without reference to determinants,
that, if one way of changing from r, s,..., 8 to 1, 2,..., n involves
an odd (even) number of interchanges, so does every way of
effecting the same result. When this has been done it is
legitimate to define A, = (a,b,...k,) as 3 4a,b,... ks, where
the plus or minus sign is prefixed to a term according as its
suffixes form an even or an odd permutation of 1, 2,..., n.
This is, in fact, one of the common ways of defining a deter-
minant.

7. Differentiation

When the elements of a determinant are functions of a
variable z, the rule for obtaining its differential coefficient is as
follows. If A denotes the determinant

a, by . . K

a, b, . . k,
and the elements are functions of z, dA/dx is the sum of the
n determinants obtained by differentiating the elements of

one row (or column) of A and leaving the elements of the other
n—1 rows (or columns) unaltered. For example,

dla? x 1]
dr|x® 2 «x
xd x3 xz
=|2r 1 Of|+] a2 =z 1|+ 22 =z 1
x a2 oz 322 2x 1 x 22 oz

¢ 23 22 zt 2% 2? 428 322 22
4702 -
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The proof of the rule follows at once from Theorem 1; since

A=Y (—1)Na,b,..ky,
the usual rules for differentiating a product give

dA _wda, db, . dkg
a;——-z( l) {%bs...ko'i"a/r dx...k0+...+arbs...‘7‘-(—i;}
Since, for example,
da da da
—1)WVIr = |- , ., I=n
Z( b dxb""kg dx dzx |’
b . . b,
kyk . . k

n
dA/dz is the sum of n determinants, in each of which one row

consists of differential coefficients of a row of A and the remain-
ing n—1 rows consist of the corresponding rows of A.

ExamprLes 11
'\/l. Prove that

1 B4y B4y =1 a o] = —{(apf,y)
1 yt+a yi+a? LB B
1 atf a2+ 1 y ot
Hint. Take c; = c3—8, ¢y, €5 = C3—85¢;, Where s, = of -+ +9".
/ 2. Prove that
1 o By|= =By
1 B yo
1 vy aﬂ
. 3. Prove that
1 B+y (B+y)? | = UxpBy)

1 y+a (y+o)?
1 a4fB (a+p)?
./ 4. Prove that each of the determinants of the fourth order whose
first rows are (i) 1, B+y+8, o2, o; (ii) 1, o, B2+y2+ 8% By, is equal to
+(a,B,7,8). Write down other determinants that equal +{(x,B,v,8).
/ 5. Prove that the ‘skew’ circulant

a, a, a . . . a, |=Tl@1+ow+..+a,w 1),
—Qy ay (22 Ap_1

—Qn, —CQ; @ Ay

—a; —az; —a, a

where w runs through the n roots of —1.
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6. Prove that the circulant of order 2n whose first row is
a; Gy Az .. Ggy

is the product of a circulant of order n (with first row a,4a,,,,
Ay+apyq,...) and & skew circulant of order n (with first row a;—a,,,,
Ag—Apygseee)-

7. Prove that the circulant of the fourth order with a first row
a,, a,, a3, a, i3 equal to

{(a1+as)?— (@, +a,)*}{(a; — a3)* + (a;—ay)?}.
8. When Q(z) = (z—a,)(z—a,)...(x—a,), prove that

1 1 e 1 - 1 e 1
Q(x) a, Coe a, a, P
ap—? Lo an—? ar-? . . . ap?
(x—a,)™t . . . (x—a,)? ap~t . . . aB?

9. By putting # = y~! in Example 8 and expanding in powers of y,
show that ,H,, the sum of homogencous products of a,, ay,..., a, of
degrce p, is equal to

1 L. 1 = 1 Coe . 1
a, o a, a . . . a,
n—2 n—2 - —
ay Y 4 af~? . . . af?
—1 - - -
apt? .. .. aptrl at™t . . . ar?

10. Prove that

1 1 1|=(@B—yy—a)a—pB)a+B+y).
« B vy
a(l B3 ,ya

Hint. The first three factors are obtained as in Theorem 8. The
degreec of the determinant in a, B, y is four; so the remaining factor
must be linear in «, 8, ¥ and it must be unaltered by the interchange
of any two letters (for both the determinant and the product of the
first three factors are altered in sign by such an interchange).

Alternatively, consider the coefficient of 8 in the alternant {(«, 8,7, 8).

11. Prove that

1 1 1= @-yy—a)a—B)By+yxtap)
az ﬂz .},2
aa ﬂa .),3

12. Extend the results of Examples 10 and 11 to determinants of
higher order.



CHAPTER II
THE MINORS OF A DETERMINANT

1. First minors
1.1. In the determinant of order =,

An = al bl . . kl ’
a, b, . . k
a, b, . . k,

the determinant of order n—1 obtained by deleting the row
and the column containing @, is called the minor of a,; and so
for other letters. Such minors are called FIRST MINORS; the
determinant of order n—2 obtained by deleting the two rows
with suffixes r, s and the two columns with letters a, b is called
a SECOND MINOR; and so on for third, fourth,... minors. We
shall denote the first minors by «,, B,,....

We can expand A, by any row or column (Chap. I, § 3.11);
for example, on expanding by the first column,

A, =y —ay0,+...+(—1)""a, «, (1
or, on expanding by the second row,
A, = —agay+b,By—...4(—1)"k, k. (2

1.2. The above notation requires a careful consideration
of sign in its use and it is more convenient to introduce
co-FACTORS. They are defined as the numbers

A, B, . ,K, (r=12,..mn)
such that A, =a,4,+a,A,+...+a, 4,
= b B1+b2 Bz+"'+bn B,
= ky K, +k, Ky+...+k, K,
these being the expansions of A, by its various columns, and
A, =a,4,+b; B,+..+k K,
=a,4,+b,B,+..+k, K,,
these being the expansions of A, by its various rows.
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It follows from the definition that 4,, B,,... are obtained by
prefixing a suitable sign to «,, 8,,....

1.3. It is a simple matter to determine the sign for any
particular minor. For example, to determine whether C, is
+7y, or —y, we observe that, on interchanging the first two
rows of A,,

A, = —|a, by . . k
a b, . . k
a, b, kg
a, b, . . k,

= —@yaytbyBy—Cryat-.,
while, by the definition of the co-factors
A, = ay Ay-+by By+c,Cy ...
so that C, = —vy,.

Or again, to determine whether D, is +3, or —38, we observe
that A,, is unaltered (Theorem 3, Corollary) if we move the third
row up until it becomes the first row, so that, on expanding by
the first row of the determinant so formed,

A, = ayoug—byfytcyy3—dyd3+....
But A, = a3 A3+bg By+c3C3+dy Dy+-...,
and so Dy = —38§,.
1.4. If we use the double suffix notation (Chap. I, § 4), the
co-factor 4,, of a,, in |a,| is, by the procedure of §1.3, (—1)7+s-2

times the minor of a,,; that is, 4, is (—1)7+¢ times the deter-

minant obtained by deleting the 7th row and sth column.

2. We have seen in §1 that, with A, = (a, b, ... k),

A, =a,A,+b.B.+..+k K,. (3)
If we replace the rth row of A, namely
a. b .. £k,
by a, b, ... k,

where s is one of the numbers 1, 2,..., n other than r, we thereby
get a determinant having two rows a, b, ... k,; that is, we get a
determinant equal to zero. But 4,, B,,..., K, are unaffected by
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such a change in the rth row of A,. Hence, for the new deter-
minant, (3) takes the form
0=a,4,+b;B,+...+k, K, (4)

A corresponding result for columns may be proved in the
same way, and the results summed up thus:

The sum of elements of a row (or column) multiplied by their
own co-factors is A; the sum of elements of a row multiplied by the
corresponding co-factors of another row is zero; the sum of ele-
ments of a column multiplied by the corresponding co-factors of
another column 1s zero.

We also state these important facts as a theorem.

THEOREM 10. The determinant A = (a, b, ... k,) may be
expanded by any row or by any column: such expansions take
one of the forms

A=aA+b B+..+k K, (5)
A=z X H42,X,+.. .42, X,, (6)
where r is any one of the numbers 1, 2,..., n and x 18 any one of
the letters a, b,..., k. Moreover,
0=a,4,+b,B,+...+k, K, (7)
0= y1X1+y2X2+"'+yan7 (8)
where r, s are two different numbers taken from 1, 2,..., n and
z, y are two different letters taken from a, b,..., k.

3. Preface to §§ 4-6

We come now to a group of problems that depend for their
full discussion on the implications of ‘rank’ in a matrix. This
full discussion is deferred to Chapter VIII. But even the more
elementary aspects of these problems are of considerable
importance and these are set out in §§ 4-6.

4. The solution of non-homogeneous linear equations
4.1. The equations
a,z+b,y+c,z =0, a,x+byy+coz2 =0
are said to be homogeneous linear equations in z, y, z; the
equations g g4 p y= —c, a,x+by = —c,

are said to be non-homogeneous linear equations in z, y.
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4.2. If it is possible to choose a set of values for z, y,..., t 80

that the m equations

e, z+by+...+kt=1 (r=12..m)

are all satisfied, these equations are said to be consisTENT. If
it is not possible so to choose the values of z, y,..., £, the equa-
tions are said to be INCONSISTENT. For example, z+y = 2,
x—y = 0, 3x—2y = 1 are consistent, since all three equations
are satisfied when = 1, y = 1; on the other hand, z+y = 2,
z—y = 0, 3xr—2y = 6 are inconsistent.

4.3. Consider the n non-homogeneous linear equations, in

the n variables z, ,..., ¢,

ax+by+..+kt=1 (r=12.,n) (9)
Let A = (a, b, ... k,) and let A4,, B,,.. be the co-factors of
a,,b,,...inA.

Since, by Theorem 10, > a, 4, = A, Y b, 4, = 0,..., the result
of multiplying each equation (9) by its corresponding 4, and
adding is

Ax+0.y+...4+0.t =L A, +...+1,4,;
that is, Az = (l; by c5... k), (10)
the determinant obtained by writing I for a in A.

Similarly, the result of multiplying each equation (9) by its

corresponding B, and adding is
Ay =1, B,+...+1, B, = (a, ly¢c5... k,), (11)
and so on.

When A s 0 the equations (9) have a unique solution given
by (10), (11), and their analogues. In words, the solution is
‘A.x s equal to the determinant obtained hy putting | for a in A;
A.y is equal to the determinant obtained by putting I for b in A;
and so on’. T

When A = 0 the non-homogeneous equations (9) are incon-
sistent unless each of the determinants on the right-hand sides
of (10), (11), and their analogues is also zero. When all such
determinants are zero the equations (9) may or may not be con-
sistent: we defer consideration of the problem to a later chapter.

t Some readers may already be familiar with different forms of setting out
this result—the differcnces of form are unimportant.
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5. The solution of homogeneous linear equations

THEOREM 11. A necessary and sufficient condition that values,
not all zero, may be assigned to the n variables z, y,..., t so that
the n homogeneous equations

@, x4by+. .. +kt=0 (r=1,2,..,n) (12)
hold simultaneously is (a, b, ... k,) = 0.

5.1. NEcEssary. Let equations (12) be satisfied by values
ofz,y,...,t not all zero. Let A = (a, b, ... k,) andlet 4,, B,,... be
the co-factors of a,, b,,... in A. Multiply each equation (12) by its
corresponding A4, and add; the result is, as in §4.3, Ax == 0.
Similarly, Ay = 0, Az = 0,..., At = 0. But, by hypothesis, at
least one of z, y,..., £ is not zero and therefore A must be zero.

5.2. SurriciENT. Let A = 0.

5.21. In the first place suppose, further, that A4; 7 0.
Omit 7 = 1 from (12) and consider the n—1 equations

bytc.z4...+kt = —a.x (r=23,..,n), (13)
where the determinant of the coefficients on the left is 4.

Then, proceeding exactly as in § 4.3, but with the determinant
A, in place of A, we obtain

Ay = —(ay¢cq... k,)x = Bz,

Alz == "“(b2 as d4 vee kn)x = Clx,
and so on. Hence the set of values

T = Alf’ Yy= Blg’ z = le; eeey
where ¢ # 0, is a set, not all zero (since 4,¢ # 0), satisfying the
equations (13). But
a,A,+b;Bi+... = A =0,

and hence this set of values also satisfies the omitted equation
corresponding to » = 1. This proves that A = 0 is a sufficient
condition for our result to hold provided also that 4, £ 0.

If A, = 0 and some other first minor, say C,, is not zero, an
interchange of the letters a and c, of the letters x and z, and of
the suffixes 1 and s will give the equations (12) in a slightly
changed notation and, in this new notation, 4, (the C, of the
old notation) is not zero. It follows that if A = 0 and if any one
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first minor of A is not zero, values, not all zero, may be assigned
te z, ,..., t so that equations (12) are all satisfied.

5.22. Suppose now that A = 0 arid that every first minor of
A is zero; or, proceeding to the general case, suppose that all
minors with more than R rows and columns vanish, but that at
least one minor with R rows and dblumns does not vanish.
Change the notation (by interchangfhg letters and interchang-
ing suffixes) so that one non-vanishghg minor of R rows is the
first minor of @, in the determinant (a, b, ... eg,,), where e
denotes the (R-1)th letter of the alphabet.

Consider, instead of (12), the R--1 equations

a,x4+b,y+..+eA=0 (r=12..,R+1), (12

where A denotes the (R+1)th variable of the set z, y,.... The
determinant A’ = (a; b, ... e,;) = 0, by hypothesis, while the
minor of @, in A’ is not zero, also by hypothesis. Hence, by
§5.21, the equations (12’) are satisfied when

x=A;, y= B, .. A=1E|] (14)
where A;, Bj,... are the minors of a,, b,,... in A’. Moreover,
A #0.

Further, if R+1 <r < n,
a,A;+b, Bi+...4¢, K7,
being the determinant formed by putting a,, b,,... for a,, b,,... in
A’, is a determinant of order B+ 1 formed from the coefficients
of the equations (12); as such its value is, by our hypothesis,
zero. Hence the values (14) satisfy not only (12’), but also
a,z+b,y+..+e A =0 (R+1<r<n)

Hence the n equations (12) are satisfied if we put the values (14)
for x, ¥,..., A and the value zero for all variables in (12) other
than these. Moreover, the value of z in (14) is not zero.

6. The minors of a zero determinant
TueoreEM 12. IfA = 0,

r = 1,2,...,'"4
Ar Bs = AsBr’ A"C; = A3 C"’ (s 1,2,. 'n)

4702 ¥
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If A = 0 and if, further, no first minor of A 1is zero, the co-
factors of the r-th row (column) are proportional to those of the
8-th row (column); that is,

4, B, _  _ K
A=B-"T K
Consider the » equations
e, z+b,y+..+kt=0 (r=12,..,n). (15)

They are satisfied by » = A4,, y = By,..., ¢t = K;; for, by
Theorem 10,
a, A, +b, B,+..4+k K, = A =0,
a,A,+b,B,+..+k K, =0 (r=23,...,n).

Now let s be any one of the numbers 2, 3,..., n, and consider
the n—1 equations

b y+ec.z+...+kt=—ax (r#s).

Proceeding as in § 4.3, but with the determinant 4, in place of
A, we obtain

(bycy ... b))y = —(ay ¢y ... k),
(bycg... k)2 = —(byayds ... k),
and so on, there being no suffix s. That is, we have
A,y = Byx, A,z = C,x,

These equations hold whenever z, y,..., ¢ satisfy the equations
(15), and therefore hold when

x=4,, y=B, .., t=K,.
Hence A,B, = A4,B,, A,C, = A,C, ... (16)
The same method of proof holds when we take
x=A4,, y=B, .., t=K,

with 7 5 1, as a solution of (15). Hence our general theorem is
proved.
If no first minor is zero, we may divide the equation
A,B, = A, B, by 4, B,, etc., and so obtain
4, _ B
4, B,

B

(17)

8
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Working with columns instead of rows, we have
4, _ 4y
B, B, -

and so for other columns.

_4s
=B,

Exawmpres II1
/l. By solving the equations
a'x+by+cz+dt=o (r=20,1,23),
prove that
(x—b)(a—c)(a—d)

(@—bfa—oja—a) ¥ =¥ r=0L23)

Obtain identities in a, b, ¢, d by considering the coefficients of powers
of a.

v 2. If A denotes the determinant

a h g
h b f
g f ¢

and G, F, C are the co-factors of g, f, ¢ in A, prove that
aQ?+4-2hFQ+bF2+29GC+2fFCHcC? = CA.
Hint. Use a@+hF+gC = 0, ete.

3. If the determinant A of Example 2 is equal to zero, prove that
BC = F? QGH = AF,..., and hence that, when C # 0,

a(ax?+2hay +by*+ 29+ 2fy + ) = (ax+hy+g)2+?lj(0y—- F),

Prove also that, if a,..., b are real numbers and C is negative, then
so also are 4 and B. [4 = bc—f?, F' = gh—af, etc.]

/ 4. Prove that the three lines whose cartesian equations are
a,z+by+ec, =0 (r=1,2,3)
are concurrcnt or parallel if (a; byc3) = 0.

Hint. Make equations homogeneous and use Theorem 11.

5. Find the conditiens that the four planes whose cartesian equations
are a,x+b,y+¢,2+d, = 0 (r =1, 2, 3, 4) should have a finite point in
common.

6. Prove that tho equation of the circle cutting the three given circles

2?+y*+2g,x+2f,y+c, =0 (r=12,3)
orthogonally is

x? +y2 -z -y 1{=0.
2 ' 1 1
Cq g2 fi 1
1

Cs [
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By writing the last equation as

at+az+hHy ptz fity| =0,
ctg:x+fiy gt fity
cstgsxt+fsy gstz fity
prove that the circle in question is the locus of the point whose polars
with respect to the three given circles are concurrent.
7. Express in determinantal form the condition that four given
circles may have a common orthogonal circle.

8. Write down 11

1 1
a By =
(12 ﬁﬂ ,yﬁ 2
as Bﬂ y3 23 N
as a product of factors, and, by considering the minors of x, 2% in the
determinant and the coefficients of z, 22 in the product of the factors,
evaluate the determinants of Examples 10, 11 on p. 27.

9. Extend the results of Example 8 to determinants of higher orders.

7. Laplace’s expansion of a determinant
7.1. The determinant

Ap=la, b ¢ . . k
ay by cg . . Ky
a’n b’l), cn kn
can be expressed in the form
> (—1)Na,byc,... ky, (18)

where the sum is taken over the n! ways of assigning to 7, s,..., 8
the values 1, 2,..., n in some order and N is the total number of
inversions in the suffixes 7, s,..., 6.

We now show that the expansions of A, by its rows and
columns are but special cases of a more general procedure. The
terms in (18) that contain a,b,, when p and ¢ are fixed, con-
stitute a sum

qQ’

a,b(AB),, = a,b, > +c¢...kg (19)
in which the sum is taken over the (n—2)! ways of assigning
to t,..., 0 the values 1, 2,..., n, in some order, excluding p and gq.
Also, an interchange of any two letters throughout (19) will
reproduce the same set of terms, but with opposite signs pre-
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fixed, since this is true of (18). Hence, by the definition of a
determinant, either + (4 B),, or —(A4 B),, is equal to the deter-
minant of order n—2 obtained by deleting from A, the first and
second columns and also the pth and gth rows. Denote this
determinant by its leading diagonal, say (c,d,...kg), where
i, u,..., 0 are 1, 2,.... n in that order but excluding p and q.

Again, since (18) contains a set of terms a, b,(4 B),, and an
interchange of a and b leaves (4B),, unaltered, it follows
(from the definition of a determinant) that (18) also contains
a set of terms —a,b,(A4B),,. Thus (18) contains a set of terms

(a,b,—a,b,)(AB),,
But we have seen that (4B),, = +(¢,d, ... k), and the deter-
minant a, b,—a,b, may be denoted by (a,b,), so that a typical
set of terms in (18) is

j:(ap bq)(cl du kl?)
Moreover, all the terms of (18) are accounted for if we take all
possible pairs of numbers p, ¢ from 1, 2,..., n. Hence

A, =2 +(a,b)(c,d,... ky),

where the sum is taken over all possible pairs p,q.

In this form the fixing of the sign is a simple matter, for the
leading diagonal term a,b, of the determinant (a,b,) is pre-
fixed by plus, as is the leading diagonal term: ¢,d,, ... ky of the
determinant (c,d, ... ky). Hence, on comparison with (18),

An = z ('— I)N(a’p bq)(ct du L kﬂ): (20)
where
(i) the sum is taken over all possible pairs p, g,
(ii) ¢, u,..., 6 are 1, 2,..., n in that order but excluding p and ¢,
(iii) N is the total number of inversions of suffixes in
P, q, L u,..., 0.
The sum (20) is called the expansion of A, by its first two columns.
7.2. When once the argument of §7.1 has been grasped it is

intuitive that the argument extends to expansions such as
A, =3 (=1)¥(a,b,¢,)(dy - ko), (21)

= > (=1)Na,b,c,d,)e, ... kg), (22)
and so on. We leave the elaboration to the reader.
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The expansion (20) is called an expansion of A, by second
minors, (21) an expansion by third minors, (22) an expansion
by fourth minors, and so on.

Various modifications of §7.1 are often used. In §7.1 we
expanded A, by its first two columns: we may, in fact, expand
it by any two (or more) columns or rows. For example, A, is

equal to ¢, dy a, b . . k|

c, dy ay by . . ky

¢, d, a, b, . . k,
as we see by interchanging @ and ¢ and also b and d. The
Laplace expansion of the latter determinant by its first two

columns may be considered as the Laplace expansion of A, by
its third and fourth columns.

7.3. Determination of sign in a Laplace expansion

The procedure of p. 29, § 1.4, enables us to calculate with ease
the sign appropriate to a given term of a Laplace expansion.
Consider the determinant A = |a,|, that is, the determinant
having a,, as the element in its rth row and sth column, and
its Laplace expansion by the s, th and s,th columns (s; < s,).
This expansion is of the form

>+

where (i) A(ry,7,;8,,8,) denotes the determinant obtained by
deleting the r;th and r,th rows as also the s, th and s,th
columns of A, and (ii) the summation is taken over all possible
pairs 7, 7, (r; < 7).

Now, by §1.4 (p. 29), the terms in the expansion of A that
involve a, , are given by

XA(71,72;81,82), (23)

s, s,
Q

738 Ts8s

("' 1 )rl+slar,s, A(rl; 81):

where A(r,;$,) is the determinant obtained by deleting the r, th
row and s, th column of A. Moreover, since r; < 7, and 8; < 8,,
the element a, , appears in the (r,—1)th row and (s,—1)th
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column of A(r;; 8,); hence the terms in the expansion of A(r;s,;)
that involve @, , are given by

(—=1)to2g, A1y, 75581, 8,),
for A(ry,7,;8,,8,) is obtained from A(r,;s,) by deleting the row
and column containing @, .

Thus the expansion of A contains the term

(—1)rintsitag, .  A(ry,7y;8,8,),

and therefore the Laplace expansion of A contains the term

(—lyntrtsia) @ @, o | XA(ry, 7538y, 85). (24)
a’lsl arlsl

That is to say, the sign to be prefized to a term in the Laplace
expansion 18 (—1)°, where o s the sum of the row and column
numbers of the elements appearing in the first factor of the term.
The rule, proved above for expansions by second minors,
easily extends to Laplace expansions by third, fourth,..., minors.

7.4. As an exercise to ensure that the import of (20) has been grasped,
the reader should check the following expansions of determinants.

/(i) a b ¢ 4
a; b, ¢y dp
ag; by c; dy
a; by ¢4 4,

a b
a; b,

+

X|es dg

¢ dy

¢, d
¢y dy

+

a b
a, b,

+

a; b X

a; by

X

¢y dy|+
C3 da(

a, b,
a; by

X

6 d
¢ dy

a, b,
a, b

xX|e, dy

cs dy

as by
a, b,

Xle, dy

c; d,

The signs are, by (20), those of the leading diagonal term products
arbyesdy, aybyeady,  a,byceds,

Alternatively, the signs are, by (24),

(;_ 1)Ltetlte ( )eEstIbE, (])lbetL2,

’
4

(ii) a, by ¢ dy e | = —(a1b;5)(cad5¢y).
0 0 ¢ dy e
0 0 ¢ d; e
0 0 ¢ d, e

as b; c; dy e

The sign is most easily fixed by (24), which gives it to be (—1)1*+5+1+2,
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.Aii) 0=|a, b ¢ b ¢ |=A47A4}+0,47—-A4}
a, by cg by ¢y
a; by cg by ¢
a, b ¢, b ¢
0 0 0 b cg

whero A, == (agbge,), A, = (a3b,¢,), Ay = (azbycy), and A7 is the co-
factor of a, in A,.



CHAPTER III
THE PRODUCT OF TWO DETERMINANTS

1. The summation convention
It is an established convention that a sum such as

3 ab, )
r=1
may be denoted by the single term
a,b,. (2)

The convention is that when a literal suffix is repeated in the
single term (as here r is repeated) then the single term shall
represent the sum of all the terms that correspond to different
values of r. The convention is applicable only when, by the
context, one knows the range of values of the suffix. In what
follows we suppose that each suffix has the range of values
1,2,...,n.
Further examples of the convention are

n
a,,x;, which denotes szlars Z, (3)
. n
a,;b;,, which denotes jz1a'j bjs» (4)
. n n
a,,x, %, which denotes > > a, x .z, (5)
r=1s8=1

In the last example both r and s are repeated and so we must
sum with regard to both of them.

The repeated suffix is often called a ‘DUMMY SUFFIX’, a curious,
but almost universal, term for a suffix whose presence implies
the summation. The nomenclature is appropriate because the
meaning of the symbol as a whole does not depend on what
letter is used for the ‘dummy’; for example, both

a,r, and a,;x;
stand for the same thing, namely,

A X+ X+ ... +a,, Ty
4702 G
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, Any suffix that is not repeated is called a ‘*REE suFFIX’. On
most occasions when we are using the summation convention,

s (6)

we regdrd

a.x

rs
not as a single expression in which r has a fixed value, but as a
typical one of the n expressions

Sa x, (r=1,2,.,n).
8=1

Thus, in (6), r is to be thought of as a suffix free to take any one
of the values 1, 2,..., n; and no further summation of all such
expressions is implied.

In the next section we use the convention in considering
linear transformations of a sct of » lincar equations.

2. Consider = variables x; (2 = 1, 2,...,n) and the » linear formst

a,x, (r=12,.,n). (7)
When we substitute

x, =b,X, (1=12..,n), (8)

the forms (7) become
a,b . X, (r=1,2,.,n). (9)

Now consider the n equations

X, =0, (10)
where Cpg = @,; by (11)

If the determinant} [c,| = 0, then (10) is satisfied by a set
of values X; (¢« = 1, 2,...,») which are not all zero (Theorem 11).
But, when the X, satisfy equations (10), we have the =

equations a2, = a,;b;, X, = ;s X, = 0, (12)
and so

EITHER all the x, are zero,
OR the determinant |a,| is zero (Theorem 11).

1 The reader who is unfamiliar with the summation convention is recom-
mended to write the next few lines in full and to pick out the coefficient of

X, in n n
Z ari ( 2 bisxa)'
i=1 §=1

t Compare Chap. I, §4 (p. 21).
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In the former case the n equations

by Xy =0
are satisfied by a set of values X; which are not all zero; that
is, |bs| = 0.
Hence if |c, | = 0, at least one of the determinants |a,],
|b,,] is zero.

The determinant |c,,|, i.e. |a,;b,]|, is of degree » in the a’s
and of degree 7 in the b’s, and so it is indicated that
'01‘8, = k,a/rsl X lbrsl7 (13)
where £ is independent of the a’s and b’s.
By considering the particular case a,, = 0 when 7 :£s,
a,, = 1, it is indicated that
[Crgl = |@pg| X lbrsl‘ (14)
The foregoing is an indication rather than a proof of the
important theorem contained in (14). In the next section we

give two proofs of this theorem. Of the two proofs, the second
is perhaps the easier; it is certainly the more artificial.

3. Proofs of the rule for multiplying determinants

TuroreM 13. Let |a,,], |b,,] be two determinants of order n;
then their product is the determinant |c,|, where

n
CI‘S = zlaf,.ibl-s.
4=

3.1. First proof—a proof that uses the double suffix notation.

In this proof, we shall use only the Greck letter « as a dummy
suffix implying summation: a repeated Roman letter will not
imply summation. Thus

@1, 04 stands for a, 0,+a, 0,4 .

a,, b, stands for the single term; e.g. if » = 2, it stands for

@130
Consider the determinant |c,,| written in the form
A1aba1 U ba2_ e abgy s
a2a bozl a’2o¢ba2 . . a2o¢ ban
anabal amx ba‘.’. . . anabom
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and pick out the coefficient of -

Ay, oy Oy By - (15)
in the expansion of this determinant. This we can do by con-
sidering all a,, other than a,, to be zero, all a,, other than a,,

to be zero, and so on. Doing this, we see that the terms of |c,,]|
that contain (15) as a factor are given byt

alr brl alr br2 . . alr brn
Upsbgy Qb . . Gysby,
anzbzl anz bz’.’ . . anz bzn
= Q... Oy, | by by . . bl
- bsl bs2 . . bsn
bzl bz2 : . bzn

Unless the numbers 7, s,..., z are all different, the ‘b’ deter-
minant is zero, having two rows identical. When 7, s,..., 2 are
the numbers 1, 2,..., n in some order, the ‘6’ determinant is
equal to (—1)¥|b,,|, where N is the total number of inversions of
the suffixes in 7, s,..., z (p. 11, § 2.2, applied to rows). Hence

'Cpql = z (_I)Nalrazs"'anzlbpql’ (16)
where the summation is taken over the n! ways of assigning
tow, s,..., z the values 1, 2,..., » in some order and N is the
total number of inversions of the suffixes 7, s,..., z. But the
factor multiplying |b,,| in (16) is merely the expanded form of

a so that
| [epgl = |l X [0

pql’

3.2. Second proof—a proof that uses a single suffix notation.
Consider, in the first place,

A=|a b], A=
a, b,

a Pyl
a B
AA' =] a;, b 0 0],
ay, b, 0 O
-1 0 o B
0 —1 o B,

+ Note that a,; by, stands for a single term.

Then

(17)
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as we see by using Laplace’s method and expanding the deter-
minant by its last two columns.
In the determinant (17) take

ry =r1+a;rg4+by 7y,
7y = Tyt a3+ b,7y,

using the notation of p. 17, §3.5. Then (17) becomes

AN =10 0 ayoytbioy, ap+0,8, |,
0 0 ayoytbyoy ayf+b,6,
—'1 O oy ﬁl
0 -1 Oz B.
and so, on expanding the last determinant by its first two
columns, AN = a4 +byy a B+0,8. 1. (18)
Aoy tbyoy @y fy+byf,

The argument extends readily to determinants of order =.

Let A = (a,0,...k,), A" = (B, ... k,). The determinant
a, kE, O 0l
a, k, 0 0
—1 0 o Ky
0 —1 «, K,

in which the bottom left-haud quarter has —1 in each element
of its principal diagonal and O elsewhere, is unaltered if we

write
Ty = 114+0; 7, 0 T ot Ey Ty,
Ty = T t-@oTp 057, ot k7,
r;z = rn+”’n¢n+1+bnrn+2+"'+kn'r2n‘
Hence
AN =] O 0 ayoy+..tkbye, . o ayrt.F ik,
0 0 a,q+...+k,a, . . @i+ Fk,k,
-1 . 0 ay . Ky
0 —1 o Kp
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When we expand the last determinant by its first » columns,
the only non-zero term is (for sign see p. 39, §7.3)
(=D*—=1 0 . 0. |ayy+..+hyao, . @ r+...+kyK,
0o —1. 0 ayoy+...+hpa, . Ay ..tk k,

o o0 . —1| |a,q4+...4+k,q, . a,ki+...F+k,x,
= (=1 ayo;+...+k, . . ayx+..Fkx, |
a,oq4... 4k, . . a,x+...Fk,x,
Moreover, 2n is an even number and so the sign to be prefixed
to the determinant is always the plus sign. Hence

a, . k.|l . ok|l=a g+, o kgt R,

a, . k,| |a, . K, a,o 4.k, o, . a5+ +k, Kk,
(19)

which is another way of stating Theorem 13.

4. Other ways of multiplying determinants

The rule contained in Theorem 13 is sometimes called the
matrixt rule or the rule for multiplication of rows by columns. In
forming the first row of the determinant on the right of (19) we
multiply the elements of the first row of A by the elements
of the successive columns of A’; in forming the second row
of the determinant we multiply the elements of the second
row of A by the elements of the successive columns of A’. The
process is most easily fixed in the mind by considering (18).

A determinant is unaltered in value if rows and columns are
interchanged, and so we can at once deduce from (18) that, if

A= ) A= o By
a B

then (18) may also be written in the forms

a, b
a, b,

>

AA = |a;a+b, B, a105+0,B |, (20)
ayoy+b,B; ayay+0,p8,

AN = |a o+ @y byog+byay|. (1)
a,Brta.B; b Bi+b:8;

t Sece Chapter VI.
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In (20) the elements of the rows of A are multiplied by the
elements of the rows of A’; in (21) the elements of the columns
of A are multiplied by the elements of the columns of A’. The
first of these is referred to as multiplication by rows, the second
as multiplication by columns.

The extension to determinants of order n is immediate:
several examples of the process occur later in the book. In the
examples that follow multiplication is by rows: this is a matter
of taste, and many writers use multiplication by columns or by
the matrix rule. There is, however, much economy of thought if
one consistently uses the same method whenever possible.

ExampLes 1V

A number of interesting results can be obtained by applying the rules
for multiplying determinants to particular examples. We shall arrange
the examples in groups and we shall indicate the method of solution
for at least one example in cach group.

L 0 (@=PB2 (a—y)? | = 2AB—y)y—a)a—B)}
(B—a)? Y (B—y»
(y—a) (y—B)? 0

The determinant is the product by rows of the two determinants

o —2x¢ 1], 1 « of
B —28 1 1 g g
Y =2y 1 Ly

By Theorem 8, tho first of these is cqual to 2(B—y)(y—a)(a—p) and the
second to (B—y)(y—a)(a—B).

[In applying Theorem 8 we write down the product of the differences
and adjust the numcrical constant by considering the diagonal term of
the determinant.]

V2. The determinant of Example 3, p. 19, is the product by rows of the
two dotcrminants

a2 —20« 1 0, l « o 0],
g2 —28 1 0 1 B B0
y2 =2y 1 0 1 y 92 0
8 —28 1 0 1 § & 0

and so is zero.

/

3. Prove that the determinant of order n which has (a,—a,)? as the
element in the rth row and sth column is zero when n > 3.

4. Evaluate the determinant of order n which has (a,—a,)® as the
element in the rth row and sth column: (i) when n = 4, (ii) when
n > 4.
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’5. Extend the results of Examples 3 and 4 to higher powers of a,—a,.
/. (Harder.) Prove that
(a—z)* (a—y)® (a—z)* ad
(b—=)3 (b—y)* (b—2)* b°
(c—z)® (c—y)® (c—2)® ¢
x? y® 28 0
= —9abcxyz(b—c)(c—a)a—b)(y—z)(z—x)r—1y).
7. (Harder.) Prove that
(a—2) (a—y)? (a—z} a?
(b—2)* (b—y)* (b—2)® b?
(c—z)* (c—y)* (c—2)* ¢?
x* y* 2k 0
is zero when k£ = 1, 2 and cvaluate it when k = 0 and when k > 3.

v 8. Prove that, if s, = o+ f7+y"+ 8", then

S 8 8 S |=]1 1 1 1|
8, 83 83 8 xa B y &
8 8 8 8 o By &
83 8 85 S8 o B2yt &

Hence (by Theorem 8) prove that the first determinant is equal to the
product of the squares of the differences of «, B, y, 8; i.e. {{(a, B,7y,8)}*
~ 9. Prove that (z—a)(x—B)xz—y)(z—38) is a factor of
A=ls 8 8 8 8
8, 8 8 8 8
83 83 8 85 8
83 8 85 S5 8
1 =z 22 28 ot
and find the other factor.
Solution. The arrangement of the elements s, in A indicates the pro-
duct by rows (vide Example 8) of

Ay=]1 1 1 1 0|, A=]1 1 1 1 2
a By & 0 « By & 12
ol ﬁz ,ya 32 0 ol Bz ,yz 52 9
o? ﬁa ,ya 8 0 ol ﬁa ,ya § 2
2 S S S ot Bt oyt B 2

If we have anything but 0’s in the first four places of the last row of
A,, then we shall get unwanted terms in the last row of the product
A A, So we try 0, 0, 0, 0, 1 as the last row of A, and then it is not
hard to see that, in order to give A A, = A, the last column of A, must
be 1, =z, 22, 23, 24,

The factors of A follow from Theorem 8.
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~10. Prove that, when s, = o+ B+,

1 1 1 (x| 1 1 1|=[s 8 s
« B Y « B Y S1 83 8
o Byl o By 3 8 8

Note how the sequence of indices in the columns of the first deter-
minant affects the sequence of suffixes in the columns of the last
determinant.

\/(l. Find the factors of

So 81 83 |» 8 33 34 |» I S 91 %2 84 s
83 83 84 82 83 3 81 82 83 8
Sy 85 8¢ 8, 8¢ 95 83 84 S5 8

1 x x* ot

where s, = of 4B+
12. Extend the results of Examples 8-11 to determinants of higher
orders.

13. Multiply the determinants of the fourth order whoso rows are

given by
T?+?/?‘ _‘211 “2?/1‘ 1; 1 Ty Y x?"{_yg

and r =1, 2, 3, 4. Hcnce prove that the determinant [a,.,l, where
ayy = (T,—23)+ (Y, —Y,)% is zero whenever the four points (&, ;) are
concyclic.

14. Find a relation between tho mutual distances of five points on
a sphere.

15. By considcring the product of two determinants of the form
a+1b ct1d |,
—(c—d) a—ib
prove that the product of a sum of four squares by a sum of four squares
is itself a sum of four squares.

16. Express a®-+b3+¢*—3abc as a circulant (p. 23, §5.2) of order
three and hence prove that (a4 b3+ c¥— 3abe)(A3+ B34 C*—~34 BC)
may be written in the form X34Y3423-3XYZ.

Prove, further, that if A = a®—bc, B = b%—ca, C = c*—ab, then
A%+ B34 C3—3ABC = (a®+b%+c*—3abc).

17. If X == ax+-hy, ¥ = hx by; (2, 1), (£3,Y,) two sets of values
of (,y); Sy = #, X;1+4:1Y3, 812 = 21 X34y, Yy, ete.; prove that Sy, = S,
and that Sll S" a hlx Y

Sa Sy h b Ty Y
4702 "
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18 A. (Harder.) Using the summation convention, let § = a,,z"2?,
where a1, x%,..., 2" are n independent variables (and not powers of x),
be a given quadratic form in » variables. Let X, ) = a,23; Sy, = 4, X,
where (x}, 23,..., %), A = 1,..., n, denotes n sets of values of the variables
1, 22,..., ™. Prove that

1S = lars| X [x§]*

18 B. (Easier.) Extend the result of Example 17 to three variables
(x, ¥, z) and the coordinates of three points in space, (Z,, ¥y, 21), (€2, Y35 22)»
(x5, Y3» 23)-

5. Multiplication of arrays

5.1. First take two arrays

a b ¢ o B 7 (A)
a, b, c, a B ve
in which the number of columns exceeds the number of rows,
and multiply them by rows in the manner of multiplying
determinants. The result is the determinant

A=|aya+biBiteiyy aogtbiBetciy, |
gy +-byBitcyyy  ayantb,Byt-coy,

If we expand A and pick out the terms involving, say,
B; v, we see that they are B; y,(h, c;—b,¢,;). Similarly, the terms
in B,y, are —(b,c,—b,c,). Hence A contains a term

(b1¢3) X (By72),

where (b;c,) denotes the determinant formed by the last two
columns of the first array in (A) and (B, y,) the corresponding
determinant formed from the second array.

It follows that A, when expanded, contains terms

(b162)(Byv2) +(c1 @g)(y1 xp) + (@1 by) (o Bo); (2)

moreover (2) accounts for all terms that can possibly arise from
the expansion of A. Hence A is equal to the sum of terms in
(2); that is, the sum of all the products of corresponding deter-
minants of order two that can be formed from the arrays in (A).

Now consider a, b,..., k,..., t, supposing k to be the nth letter
and ¢t the Nth, where n < N; consider also a corresponding
notation in Greek letters.

(1)
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The determinant, of order n, that is obtained on multiplying
by rows the two arrays

a . .k . .4 R T
a, . . k, t, Uy « + Ky « o« Tp
is —
A=layoy+...+H o . aa,t-tT, ]
an“l+"‘+tn71 . . anan+"'+tn7n

This determinant, when expanded, contains a term (put all
letters after k&, the nth letter, equal to zero)

ayoq+... ki o aya, kx|,
(4)

a, o+ Fk,ky . . a o+ FE K,
which is the product of the two determinants (a, b, ... k,) and
(o By --+ k,). Moreover (4) includes every term in the expansion
of A containing the. letters a, b,..., k and no other roman letter.
Thus the full expansion of A consists of a sum of such products,
the number of such products being #C,, the number of ways of
choosing n distinct letters from ¥ given letters. We have there-
fore proved the following theorem.

TueoreM 14. The delerminant A, of order n, which is obtained
on multiplying by rows two arrays that have N columns and n
rows, where n << N, is the sum of all the products of corresponding
determinants of order n that can be formed from the two arrays.

5.2. THEOREM 15. The determinant of order n which is
obtained on multiplying by rows two arrays that have N columns
and n rows, wheren > N, is equal to zero.

The determinant so formed is, in fact, the product by rows
of the two zero determinants of order » that one obtains on
adding (n—N) columus of ciphers to each array. For example,

ayoq+6,8y  ayay+biBy ayay+b By

agoy+by By Apayt+b,B8,  ayaz+b, B,
agoy+b3By  azoptbyBy azay+byBs
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is obtained on multiplying by rows the two arrays

a; b o B

a, b, a B

ag by a3 PBs
and is also obtained on multiplying by rows the two zero
determinants

a, bl 0 s oy /31 0.
a b, 0 a By O
a; by 0 a; B3 O

ExampLEs V
1. The arrays

1 0 0 0 0 0 O 1
2+y) —22, —2y 1 U » oy ai+of
i+y; —2r, —2y, 1 1z, y, 2349

have 5 rows and 4 columns. By Theorem 15, the determinant obtained
on multiplying them by rows vanishes identically. Show that this result
gives a relation connecting the mutual distances of any four points in
a plane.

2. Obtain the corresponding relation for five points in space.

3. If a, B, y,... are the roots of an equation of degree n, and if s,
denotes the sum of the rth powers of the roots, prove that

S & ‘ == Z(amﬁ)a

3, 8
S 8 8| =3 ()3—'}’)2(‘)"“0‘)2(01—3)2-
8 8y 8
8y, 83 8

Hint. Compare Example 8, p. 48, and Theorem 14.
4. Obtain identities by evaluating (in two ways) the determinant
obtained on squaring (by rows) the arrays
i) a b ¢ (i) a b ¢ d
a b ¢ a b ¢ d
5. In the notation usually adopted for conics, let
S = ax®*+...4+2fyz+...,
X = ax+hy+gz, Y = hx+by+fz, Z = gx+fy+cz,
Sy, = xJXu+eru+zr Z,;
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let A, B,..., H be the co-factors of a, b,..., h in the discriminant of S.
Let £ = y123— Y22, 7 = 21 %92y, { = 2,y3—=,9,- Then

Siu Sie =A§3+B1)2+C§3+2F17{+2G{§+2Hf'q.
Sy Sz

Solution. The determinant is

0, X, +...+2,2Z, 2, X;+..+2,Z; |,
T X 4otz 2 23X+ 2,7,

which is the product of arrays

T Y % X, N Z
Ty Y 2, X, Y, 7,
and so is > (y123)(Y1 Zy).

But (Y; Z,), when written in full, is

hz,+by,+fz, g +fy+cz, |,
hxg+by,+/fz5 gxy+fystcz,

which is the product of arrays
x, Y 2z L b
Ty Y2 29 g f
and so is A¢+Hny+ GE.
Hence the initial determinant is the sum of three terms of the type

é(A¢+Hn+ QD).

f
c

6. The multiplication of determinants of different orders
It is sometimes useful to be able to write down the product
of a determinant of order » by a determinant of order m. The

methodt of doing so is sufficiently exemplified by considering
the product of (a, b, ¢;) by («, Bs).

a, b, ¢lx|e B
a, by ¢, ay Py
a; by c

= |ayoy+b8 @ u+b8; ¢
ayay+by By ayap+b,8, ¢
azay+bsfy ayap+byfy ¢
We see that the result is true by considering the first and last
determinants when expanded by their last columns. The first
member of the above equation is

{ Z icr(as bl)} X (al Bz),

1 Ilearnt this method from Professor A. L. Dixon.
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while the second is, by the rule for multiplying two determinants
of the same order,
z :l:cr(as bt) X (0‘1 /92)’
the signs having the same arrangement in both summations.
A further example is

ay by ¢ dy| Xy By
ay by ¢ dy a B
a, by c3 d
a, by ¢4 d;
= |ayoq+b:8 @yaptbfy ¢ dy,
@yoy+0,8y Gy tbyfy ¢ dy
azoy+b3B) azapt+b3B; ¢y dg
agoy+0,8; agap+b4B, ¢y d,

a result which becomes evident on considering the Laplace
expansion of the last determinant by its third and fourth

columns.

The reader may prefer the following method:

a by x|y B =l|a b ¢|X|oy By O
a, by, c a By ay b, ¢, a By O
a; by ¢4 a; by cy 0 0 1

=@ o+0,8 i u+b8

gy +0,8; Ay +byB, ¢y

ayoy+b3B; Azantbyfy s

This is, perhaps, easier if a little less elegant.



CHAPTER IV
JACOBI'S THEOREM AND ITS EXTENSIONS

1. Jacobi’s theorem
THEOREM 16. Let A,, B,,... denote the co-factors of a,, b,.,... in

a determinant A= (a by... k).
Then A= (4, B, .. K,) = Ar-1,
If we multiply by rows the two determinants
A=|a, b, . . kI AN=|A4, B, . . K|
a, by . .k A, B, . . K
an b’lb /‘n An 'B’", Kn
we obtain AA = | A 0 0l
0 A 0
o 0 . . A}

for a, A, b, By+...+k, K, is equal to zero when r 3 s and is
equal to A whenr = s.

Hence AN = A7,
so that, when A £ 0, A = An-1,

But when A is zero, A’ is also zero. For, by Theorem 12, if
A = 0, then 4, B,— A, B, = 0, so that the Laplace expansion
of A’ by its first two columns is a sum of zeros.

Hence when A = 0, A’ = 0 = A*-L,

DEerFINITION. A’ 78 called the ADJUGATE determinant of A.

-

THEOREM 17. With the notation of Theorem 16, the co-factor of
A, in A’ is equal to a,A™2; and so for other letters and suffixes.

When we multiply by rows the two determinants

1 0o . . 0] a; b, . . Kk
A, B, . . K, a, b, . .k

A, B, . . K, | a
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we obtain
a4 G Ay |»
0 A 0
o 0 . . A

wherein all terms to the left of and below the leading diagonal
are zero. Thus

AlB, . . K

= q, A",

Bn * ¢ I(n
When A s 0, this gives the result stated in the theorem. When
A = 0, the result follows by the argument used when we con-
sidered A’ in Theorem 16; each B, C,— B, C, is zero.
Moreover, if we wish to consider the minor of J, in A’, where

J is the sth letter of the alphabet, we multiply by rows

4, .. J, .. K |, a . .4y . . Ky,

Ay . . J, .. K a, . . 4, . .k

o .. 1 .. 0 e e e e

Ar+1 R Jr+1 L Kr+1 a, . . jn . kn

A, J, .. K,

to obtain A 0 0

jl . . js . . jn (1)
o . . 0 . . A

where the j’s occur in the rth row and the only other non-zero
terms are A’s in the leading diagonal. The value of (1) is
PSS

2. General form of Jacobi’s theorem

2.1. Complementary minors. In a determinant A, of
order n, the elements of any given r rows and r columns, where
r < n, form a minor of the determinant. When these same rows
and columns are excluded from A, the clements that are left form
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a determinant of order n—r, which, when the appropriate sign
is prefixed, is called the complementary minor of the original
minor. The sign to be prefixed is determined by the rule that
a Laplace expansion shall always be of the form

>t Ynr

where y,,_, is the minor complementary to u,. Thus, in

a b ¢ d;|,

the complementary minor of
is | by dy
by dy

since the Laplace expansion of (1) by its first and third columns
involves the term - (a, ¢;)(b, d,).

TurorEM 18. With the notation of Theorem 16, let M, be a
minor of A" having r rows and columns and let vy, _, be the comple-
mentary minor of the corresponding minor of A. Then

M, =y, AL (3)

In particular, if A is the determinant (1) above, then, in the
usual notation for co-factors,

A4, C by dy
4; Gy b, d,

Let us first dispose of the easy particular cases of the theorem.
Ifr = 1, (3) is merely the definition of a first minor; for example,
A, in (1) above is, by definition, the determinant (b, c;d,).
Ifr > 1and A = 0, then also M, = 0, as we see by Theorem 12.
Accordingly, (3) is true whenever » = 1 and whenever A = 0.

It remains to prove that (3) is true when r > 1 and A 5 0.
So let r > 1, A 5 0; further, let x, be the minor of A whose
elements correspond in row and column to those elements of
A’ that compose IM,. Then, by the definition of complementary

minor, due regard being paid to the sign, one Laplace expansion
4702 1

a &
a3 C3

’ (2)

A.
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of A must contain the term +pu,y,_,. Hence A may be written
in the form

oy i other
i elements
other !
elements |y, |

It is thus sufficient to prove the theorem when M is formed from
the first r rows and first 7 columns of A’; this we now do.

Let A,..., E be the first r letters, and let F,..., K be the next
n—r letters of the alphabet. When we form the product
A . .E F . .K|X|la, . .efi. .k

--------------

where the last n—r elements of the leading diagonal of the first
determinant are 1’s and all other elements of the last n—r rows
are 0’s, we obtain

A . . 0 o0 . . O
o . . A o . . O
Lo o e fen o - S

ky . .k kg . . Kk,

That is to say,
M, XA = Ay,
and so (3) is true whenever » > 1 and A # 0.



CHAPTER V

SYMMETRICAL AND SKEW-SYMMETRICAL
DETERMINANTS

1. The determinant |a,| is said to be symmetrical if a,, = a,,
for every r and s.

The determinant |a,,| is said to be skew-symmetrical if
a,, = —a,, for every r and s. It is an immediate consequence
of the definition that the elements in the leading diagonal of
such a determinant must all be zero, for a, = —a,,.

2. THEOREM 19. A skew-symmetrical determinant of odd order
has the value zero.

»

The value of a determinant is unaltered when rows and
columns are interchanged. In a skew-symmetrical deter-
minant such an interchange is equivalent to multiplying each
row of the original determinant by —1, that is, to multiply-
ing the whole determinant by (—1)». Hence the value of
a skew-symmetrical determinant of order n is unaltered when
it is multiplied by (—1)*; and if = is odd, this value must
be zero.

3. Before considering determinants of even order we shall
examine the first minors of a skew-symmetrical determinant of
odd order.

Let A,, denote the co-factor of a,, the element in the rth
row and sth column of |a,|, a skew-symmetrical deter-
minant of odd order; then A4, is (—1)*-'4,, that is,
A, = A,,. For A, and A,, differ only in considering column
for row and row for column in A, and, as we have seen
in § 2, a column of A is (—1) times the corresponding row;
moreover, in forming 4,, we take the elements of n—1
rows of A.

4. We require yet another preliminary result: this time one
that is often useful in other connexions.
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THEOREM 20. The determinant

Gy G - - O, X
Ay Gy - - Gy X,
o (1)
anl an2 . . Ann Xn
yn, .. Y, 8
= la'rslS —rzl sZl‘Ar.sr 'Xr }’si (2)

where A, 1s the co-factor of @, in |a,.

The one term of the expansion that involves no X and no
Y is |a,,|S. The term involving X,Y, is obtained by putting
S, all X other than X,, and all Y other than Y, to be zero. Doing
this, we see that the coeflicient of X, Y, is +-4,,. But, consider-
ing the Laplace expansion of (1) by its rth and (n4-1)th rows,
we see that the coefficients of X, Y, and of a,, S are of opposite
sign. Hence the coefficient of X, Y, is —A,,. Moreover, when
A is expanded as in Theorem 1 (i) every term must involve
either S or a product X.Y,. Hence (2) accounts for all the
terms in the expansion of A.

5. THEOREM 21. A skew-symmetrical determinant of order 2n is
the square of a polynomial function )szfs elements.

In Theorem 20, let |a, | be a skew-symmetrical determinant
of order 2n— 1; as such, its value is zero (Theorem 19). Further,
let Y, = —X,, § = 0, so that the determinant (1) of Theorem 20
is now a skew-symmetrical determinant of order 2n. Its value is

i i ATS XT ‘XS' (3)

r=18=1
Since |a,,| = 0, 4,,A,, = A,, A, (Theorem 12), or A% = A4,, A,
and 4,,/4,; = A,,/4, or A,; = A4,, 4,,/A,,. Hence (3) is
(X VA X VAt + X, V4,,,)% (4)
where the sign preceding X, is (—1)», chosen so that
4y, =(— l)p\/(Au 4,,).
Now A4,,,..., 4,, are themselves skew-symmetrical deter-

minants of order 2n—2, and if we suppose that each is the
square of a polynomial function of its elements, of degree n—1,
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then (4) will be the square of a polynomial function of degree n.
Hence our theorem is true for a determinant of order 2n if it is
true for one of order 2n—2.

But

a1

— g2
‘ 0 = 1
—a,; 0

and is a perfect square. Hence our theorem is true when n = 1.
It follows by induction that the theorem is true for all
integer values of n.

6. The Pfaffian

A polynomial whose square is equal to a skew-symmetrical
determinant of even order is called a Pfaffian. Its properties
and relations to determinants have been widely studied.

Here we give merely sufficient references for the reader to
study the subject if he so desires. The study of Pfaffians,
interesting though it may be, is too special in its appeal to

rarrant its inclusion in this book.

G. SALMON, Lessons Introductory to the Modern Higher Algebra (Dublin,
1885), Lesson V.

S. BARNARD and J. M. CHILD, Higher Algebra (London, 1936), chapter ix,
§22.

Sir T. Muir, Contributions to the History of Determinants, vols. i~iv
(London, 1890-1930). This history covers every topic of deter-
minant theory; it is delightfully written and can be recommended
as a reference to anyonc who is seriously interested. It is too
detailed and exacting for the beginner.

ExampLEs VI (MISCELLANEOUS)
1. Prove that

ay @y - . . @ X
Qg Gy - . . Gy Xy
Qpp Gpa - - - Gnp Xy
X, X, . . . X, 0

= —‘{AuX?"*'-"'{"(Ars'{"Aar)Xr Xs+‘~-}a

where A,, is the co-factor of a,, in |a,]|.
If a,, = a, and |a,| = 0, prove that the above quadratic form may

be written as —(4,, X;—}-...-}-A,,.Xﬂ)z/Au-
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” n
2. IfS=3 > a,zxz2, 2X, = 8S/ox,, a,, = a,, and k < n, prove
1

f=18=
that
J = Q;, Gy . . . Qe Xl.
Gy Gy . . . ag X,
Ay Gy - . . Qrx Xk
X, X, . . . X S

is independent of z,, z,,..., Z;.

Hint. Use Example 1, consider 8J/dx,, and use Theorem 10.

3. Ay = (83b5¢,), Ay = (a3dc1), Ay = (a,by¢4), Ay = (a,5y¢5), and
A? is the co-factor of a, in A,. Prove that A} = —A4}, that 4} = 44,
and that

Al A3 Al| =0, A} A} A} | = AA,.
B B] Bj Bf B} B;
a a o ct ¢ O

Hint. B3C}— B} C} = —a,A, (by Theorem 17): use Theorem 10.

4. A is a determinant of order n, a,, a typical element of A, 4,, the
co-factor of a,, in A, and A # 0. Prove that

Ay +Alx Ay, coe Ay, =0
A, Agyp+Alz . . . A,,
Ay Agy .o . AgtAlx
whenever
an+z a5 . e Gy = 0.
a1 aptz . . . Qg
[ 7Y Ayy . e . Guetx

5. Prove that
1 sina cosa sin2x cos2«x | = 256 [] sin(ax—pB),

1 sinf cosB sin28 cos2B
1 siny cosy sin2y cos2y
1 8ind cosd 8in28 cos28

(=]

sine cose s8in2e¢ cos2¢

with a proper arrangement of the signs of the differences.

6. Prove that if A = |a,,| and the summation convention be used
(Greek letters only being used as dummies), then the results of Theorem
10 may be expressed as

a¢,A,=0=a,, A4, whenr #s,

i

a,,A4,, whenr =g,

allA'q' = A
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Prove also that if n variables z are related to n variables X by the
transformation
Xr = araxc’
then Ary, = A,,X,.

7. Prove Theorem 9 by forming the product of the given circulant
by the determinant (w,;, w3,..., w}), where w;,..., w, are distinct nth roots
of unity.

8. Prove that, if f,(a) = g,(a) = h,(a) when r =1, 2, 3, then the
determinant
filz) gilx)  hy(x)
Sa(@)  ga(x)  hy(x)
f3(x)  gs(x)  hy(x)

whose clements are polynomials in z, contains (¥ —a)? as a factor.

HinT. Consider a determinant with ¢{ = ¢,—c,, ¢; = ¢;,—cy and use
the remainder theorem.

9. If the elements of a determinant are polynomials in z, and if r
columns (rows) become equal when x = a, then the determinant has
(xr—a)! as a factor.

10. Verify Theorem 9 when n = 5, @, = a, = a; =1, a, = a, and
a; = a® by independent proofs that both determinant and product are

equal to (a*+a+3)a—1)4a*+ 3a®+ 4a?+ 2a + 1).
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CHAPTER VI
DEFINITIONS AND ELEMENTARY PROPERTIES

{

1. Linear substitutions

We can think of » numbers, real or complex, either as separate
entities z,, x,,..., x, or as a single entity x that can be broken
up into its n separate picces (or components) if we wish to do
so. For example, in ordinary three-dimensional space, given
a set of axes through O and a point P determined by its
coordinates with respect to those axes, we can think of the
vector OP (or of the point P) and denote it by z, or we can
give prominence to the components z,, z,, 2; of the vector along
the axes and write x as (ry, 2,, z3).

When we are thinking of x as a single entity we shall refer to
it as a ‘number’. This is merely a slight extension of a common
practice in dealing with a complex number z, which is, in fact,
a pair of real numbers z, y.T

Now suppose that two ‘numbers’ x, with components z;, z,,...,
x,, and X, with components X, X,,..., X,, are connected by
a set of » equations

X, =a 21+ a0+ Fa,z, (r=1,..,n), (1)
wherein the a,, are given constants.

[For example, consider a change of axes in coordinate geo-
metry where the x, and X, are the components of the same
vector refcrred to different sets of axes.]

Introduce the notation 4 for the set of n% numbers, real or
complex,

Ay G . . Gy
@y Qgg . . Qgy
Ay (2% . . ann

and understand by the notation Az a ‘number’ whose components
are given by the expressions on the right-hand side of equations
(1). Then the equations (1) can be written symbolically as

X = Ax. (2)

t Cf. G. H. Hardy, Pure Mathematics, chap. iii.
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The reader will find that, with but little practice, the sym-
bolical equation (2) will be all that it is necessary to write when
equations such as (1) are under consideration.

2. Linear substitutions as a guide to matrix addition

It is a familiar fact of vector geometry that the sum of a
vector X, with components X,, X,, X;, and a vector Y, with
components Y}, Y,, ¥;, is a vector Z, or X+Y, with components
X, 44, X+, Xy+¥,.

Consider now a ‘number’ z and a related ‘number’ X given by

X = Az, (2)
where A has the same meaning asin § 1. Take, further, a second
‘number’ Y given by Y — Bz 3)

where B symbolizes the set of #2 numbers
by by . . b
bnl bnz . . bnn
and (3) is the symbolic form of the n equations
Y, = by@ytbptyt o tbnt, (1 =1,2,.,n).

We naturally, by comparison with vectors in a plané or in
space, denote by X +Y the ‘number’ with components X,+¥,.
But

X, +7Y, = (a,3+b,1)21+ (@2 +by0)2a+ ...+ (@ 4,0 )%,
and so we can write
X+Y =(4+4+B)
provided that we interpret A+ B to be the set of n? numbers

antby  anptb, . . Gutbh,
an1+bn1 an2+bn2 . . ann+bnn
We are thus led to the idea of defining the sum of two symbols

such as 4 and B. This idea we consider with more precision
in the next section.
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3. Matrices

3.1. The sets symbolized by 4 and B in the previous section
have as many rows as columns. In the definition that follows
we do not impose this restriction, but admit sets wherein,the
number of rows may differ from the number of columns.

DEFINITION 1. An array of mn numbers, real or complex, the
array having m rows and n columns,

TR T . T P
Ay Gy . . Gy
An1 A2 - amn

18 called a MATRIX. When m = n the array is called a SQUARE
MATRIX of order n.

In writing, a matrix is frequently denoted by a single letter
A, or a, or by any other symbol one cares to choose. For
example, a common notation for the matrix of the definition
is [a,,]. The square bracket is merely a conventional symbol
(to mark the fact that we are not considering a determinant)
and is conveniently read as ‘the matrix’.

As we have seen, the idea of matrices comes from linear
substitutions, such as those considered in §2. But there is one
important difference between the A of §2 and the A that
denotes a matrix. In substitutions, 4 is thought of as operating
on some ‘number’ x. The definition of a matrix deliberately
omits this notion of 4 in relation to something else, and so
leaves matrix notation open to a wider interpretation.

3.2. We now introduce a number of definitions that will
make precise the meaning to be attached to such symbols as
A+ B, A—B, 24, when A and B denote matrices.

DEriNiTION 2. Two matrices A, B are CONFORMABLE FOR
ADDITION when each has the same number of rows and each has
the same number of columns.

DeFINITION 3. ADDITION. The sum of a matriz A, with an
element a,, in its r-th row and s-th column, and a matrix B, with
an element b,, in its r-th row and s-th column, 18 defined only when
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A, B are conformable for addition and is then defined as the matrix
having a,,+0b,, as the element in its r-th row and s-th column.
The sum is denoted by A+ B.
The matrices a,], a, 0
a, a, O
are distinct; the first cannot be added to a square matrix of
order 2, but the second can; e.g.

al 0 + bl Cl == a1+b1 Cl .
a, 0 by ¢ a,+b, c,
DEerINITION 4. The mairix —A is that matrix whose elements
are those of A multiplied by —1.
DEFINITION 5. SUBTRACTION. A—B s defined as A+ (—B).
It is called the difference of the two matrices.
For example, the matrix —4 where A is the one-rowed

matrix [, b] is, by definition, the matrix [—a, —b]. Again, by
Definition 5,

a; b ‘[“2 b2]= a, b]+[—a. _bz]:
¢ dy cy dy ¢ 4 —c, —d,

and this, by Definition 3, is equal to
a,—a, b;—b,].
¢—¢y dy—d,

DErFINITION 6. A matrix having every element zero is called
@ NULL MATRIX, and is written 0.

DeriNiTIiON 7. The matrices A and B are said to be equal, and
we write A = B, when the two matrices are conformable for addsi-
tion and each element of A is equal to the corresponding element
of B.

It follows from Definitions 6 and 7 that ‘4 = B’ and
‘A— B = 0’ mean the same thing, namely, each a,, is equal to
the corresponding b,,.

DEFINITION 8. MULTIPLICATION BY A NUMBER. When r is
a number, real or complex, and A is a matriz, r4 s defined to
be the matrix each element of which is r times the corresponding
element of A.
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For example, if
A={[a, b], then 34 = [3a, 3b,].
[01 dl] [3‘31 3d1]
In virtue of Definitions 3, 5, and 8, we are justified in writing
24 instead of A-+A,
34 instead of 54—24,
and so on. By an easy extension, which we shall leave to the
reader, we can consider the sum of several matrices and write,
for example, (4+1)4 instead of 4+ A+ A+ (1+12)A4.

3.3. Further, since the addition and subtraction of matrices
is based directly on the addition and subtraction of their
elements, which are real or complex numbers, the laws’ that
govern addition in ordinary algebra also govern the addition
of matrices. The laws that govern addition and subtraction in
algebra are: (i) the associative law, of which an example is

(@a+b)+c = a+(b+c),
either sum being denoted by a-+b-+-c;
(ii) the commutative law, of which an example is

a+b = b+ta;
(iii) the distributive law, of which examples are
r(a-+b) = ra-+rb, —(a—b) = —a+b.

The matrix equation (44 B)4C = A+ (B4 C) is an imme-
diate consequence of (a+b)+c = a+(b+c), where the small
letters denote the elements standing in, say, the rth row and
sth column of the matrices 4, B, C'; and either sum is denoted
by A+B+C. Similarly, the matrix equation 44+ B = B+ 4
is an immediate consequence of a+b = b-+a. Thus the asso-
ciative and commutative laws are satisfied for addition and
subtraction, and we may correctly write

A+ B4 (C+D) = A+B+C+D
= (B+0)+(4+D);

and so on.
On the other hand, although we may write

r(4+B) =rA+4rB
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when 7 is a number, real or complex, on the ground that
r(a+b) = ra+rb

when 7, @, b are numbers, real or complex, we have not yet
assigned meanings to symbols such as R(4+ B), RA, BB when
R, A, B are all matrices. This we shall do in the sections that
follow.

4. Linear substitutions as a guide to matrix multiplica-
tion
Consider the equations
T = @Y+, Y Yy = by 214052y,
= - Y
Ty = Q51 Y1152 Y, Yo = by 211+byy 2y,
where the a and b are given constants. They enable us to
express z,, ¥, in terms of the a, b, and 2,, 2,; in fact,
®; = (031 011+ 013021021 (013 by 115 by5)2,, } @)
Ty = (@yy byy+0pp b51)2y+ (Ag; byot@9p bgp)2,.

If we introduce the notation of § 1, we may write the equa-

tions (1) as x = Ay, y = Be. (1a)
We can go direct from x to z and write
xr = ABz, (2a)

provided we interpret A B in such-a way that (2a) is the sym-
bolic form of equations (2); that is, we must interpret AB to
be the matrix
[“n by t+apby a5 bitay, bzz] . (3)
Q1 b1yt @200y @y byt gy by
This gives us a direct lead to the formal definition of the
product A B of two matrices 4 and B. But before we give this
formal definition it will be convenient to define the ‘scalar pro-
duct’ of two ‘numbers’.

5. The scalar product or inner product of two numbers
DErFINITION 9. Let 2, y be two ‘numbers’, in the sense of §1,
having components x,, %,,..., x, and ¥;, Ya,...; Y,. Then

Z Y+ 2 Yot Ty Yn
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18 called the INNER PRODUCT or the SCALAR PRODUCT of the two
numbers. If the two numbers have m, n components respectively
and m # n, the inner product is not defined.

In using this definition for descriptive purposes, we shall
permit ourselves a certain degree of freedom in what we call
a ‘number’. Thus, in dealing with two matrices [a,,] and [b,,],
we shall speak of

Q11 b12+@19 b0y +Ay3 055+ 40y, by (1)

as the inner product of the first row of [a,,] by the second
column of [b,]. That is to say, we think of the first row of
[a,,] as a ‘number’ having components (a,,, @ys,.-., @;,) and of
the second column of [b,] as a ‘number’ having components

(b12’ b22’ ct bn2)'

6. Matrix multiplication

6.1. DEriNITION 10. Two matrices A, B are CONFORMABLE
FOR THE PRODUCT A B when the number of columns in A is
e“ml to the number of rows in B.

DeriNiTION 11. PRODUCT. The product AB is defined only
when the matrices A, B are conformable for this product: it s
then defined as the matrix whose element in the i-th row and k-th
column s the inner product of the i-th row of A by the k-th column
of B.

It is an immediate consequencet of the definition that AB
has as many rows as 4 and as many columns as B.

The best way of seeing the necessity of having the matrices
conformal is to try the process of multiplication on two non-
conformable matrices. Thus, if

A =[a,], B={[b, ¢],
ay by ¢y
AB cannot be defined. For a row of A consists of one letter
and a column of B consists of two letters, so that we cannot

+ The reader is recommended to work out a few products for himself. One
or two examples follow in §§ 6.1, 6.3.
4703 L
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form the inner products required by the definition. On the

other hand, BA=T[b, ¢].[a
by ¢ la,
= [bla1+cla2]:
bya,+cya,
a matrix havix}f 2 rows and 1 column.

6.2, THEOREM%Z The matrix AB is, in general, distinct from
the matriz BA.

As we have just seen, we can form both AB and BA only
if the number of columns of 4 is equal to the number of rows
of B and the number of columns of B is equal to the number of
rows of A. When these products are formed the elements in
the +th row and kth column are, respectively,

in AB, the inner product of the ith row of A by the kth
column of B;

in BA, the inner product of the i¢th row of B by the kth
column of 4.

Consequently, the matrix AB is not, in general, the sadl
matrix as BA.

6.3. Pre-multiplication and post-multiplication. Since
AB and BA are usually distinct, there can be no precision in
the phrase ‘multiply 4 by B’ until it is clear whether it shall
mean AB or BA. Accordingly, we introduce the termst post-
multiplication and pre-multiplication (and thereafter avoid the
use of such lengthy words as much as we can!). The matrix 4
post-multiplied by B is the matrix 4 B; the matrix 4 pre-
multiplied by B is the matrix BA.

Some simple examples of multiplication are

a blX[a y] = [aa+t+bB ay+bd],
o o 3 e otal

a h glx[x] = [ax+hy+gz].
[h b f ] [y] [h:c—}-by-{- fz]
g [ cl Lz gr+ fy+cz

t Sometimes one uses the terms fore and aft instead of pre and post.
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6.4. The distributive law for multiplication. One of the
laws that govern the product of complex numbers is the dis-
tributive law, of which an illustration is a(b+c) = ab+ac. This
law also governs the algebra of matrices.

For convenience of setting out the work we shall consider
only square matrices of a given order », and we shall use 4, B,...
to denote [a;], [b:),-- -

We recall that the notation [a,;] sets down the element that
is in the ith row and the kth column of the matrix so denoted.
Accordingly, by Definition 11,

n
(2] X [ba] = [ 2 aiabu]-
=1
In this notation we may write

A(B+C) = [au] X ([bu]+[ca])
= [a;] X [bi+¢i] (Definition 3)

= [Ai ai)\(ch‘*‘CAk)] (Definition 11)
-1

= [AglaiAbAk]+[A§1a{ACAk] (Definition 3)
= AB+AC (Definition 11).
Similarly, we may prove that
(A+B)C = AC+BC.

6.5. The associative law for multiplication. Another law
that governs the product of complex numbers is the associative
law, of which an illustration is (ab)c = a(bc), either being com-
monly denoted by the symbol abc.

We shall now consider the corresponding relations between
three square matrices 4, B, C, each of order n. We shall show

that (AB)C = A(BC)
and thereafter we shall use the symbol 4BC to denote either
of them. .

Let B = [b;], C = [c;] and let BC = [y;], where, by

Definition 11, n
Yik = jglbij Cik-
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Then A(BC) is a matrix whose element in the ith row and
kth column is n n n
lgl“u Yk = z=Z-1 Ay ,Elsz Cik

]=‘.
n n
=3 Z @by e (1)
1=17=1

Similarly, let AB = [B;;], where, by Definition 11,
n
B = Z @505
=1

Then (AB)C is a matrix whose element in the ith row and

kth column is n n n
> Bacw = 2 Z @050 (2)
=1 I=1j5=1

But the expression (2) gives the same terms as (1), though
in a different order of arrangement; for example, the term
corresponding to ! = 2, j = 3 in (1) is the same as the term
corresponding to I = 3, j = 2 in (2).

Hence A(BC) = (AB)C and we may use the symbol 4BC
to denote either.

We use A2, A43,... to denote A4, AAA, etc.

6.6. The summation convention. When once the prin-
ciple involved in the previous work has been grasped, it is best
to use the summation convention (Chapter III), whereby

n
b;jc;, denotes ,-Zlb"jcf"’
By extension,
n n
ayby;c;y,  denotes 1-21121a“b’jcjk’

and once the forms (1) and (2) of §6.5 have been studied, it
becomes clear that any repeated suffix in such an expression is
a ‘dummy’ and may be replaced by any other; for example,

aubyci = a;;65cy.
Moreover, the use of the convention makes obvious the law
of formation of the elements of a product 4 BC...Z; this pro-

duct of matrices is, in fact,

(@4 615 Cim - 2],

the ¢, k& being the only suffixes that are not dummies.
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7. The commutative law for multiplication

7.1. The third law that governs the multiplication of com-
plex numbers is the commutative law, of which an example is
ab = ba. As we have seen (Theorem 22), this law does not hold
for matrices. There is, however, an important exception.

DeriniTIiON 12. The square matriz of order n that has unity
in its leading diagonal places and zero elsewhere is called THE
UNIT MATRIX of order n. It 18 denoted by I.

The number 7 of rows and columns in I is usually clear from
the context and it is rarely necessary to use distinct symbols
for unit matrices of different orders.

Let C be a square matriz of order n and I the unit matrix of
order n; then IC = CI = C.

Also =P=D3=...

Hence I has the properties of unity in ordinary algebra. Just
as we replace 1 X« and X1 by x in ordinary algebra, so we
replace I X C and C'x I by C in the algebra of matrices.

Further, if k is any number, real or complex, kI.C = C.kI
and each is equal to the matrix £C.

7.2. Tt may also be noted that if 4 is a matrix ofrn rows,
B a matrix of n columns, and I the unit matrix of order n,
then JA = A and BI = B, even though 4 and B are not
square matrices. If 4 is not square, 4 and I are not con-
formable for the product A1.

8. The division law

Ordinary algebra is governed also by the division law, which
states that when the product zy is zero, either x or y, or both,
must be zero. This law does not govern matrix products. Use
O to denote the null matrix. Then 40 = 0A = O, but the
equation 4B = O does not necessarily imply that 4 or B is
the null matrix. For instance, if

A: a b, .B= b 2b ],
[0 0 —a —2a
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the product 4B is the zero matrix, although neither 4 nor B

is the zero matrix.
Again, A B may be zero and B4 not zero. For example, if

A = |a b ) B = b 0 )
0 0 —a 0
AB =10 0], BA =T ab b2 1.
0 0 —a? —ab

9. Summary of previous sections

We have shown that the symbols A4, B,..., representing
matrices, may be added, multiplied, and, in a large measure,
manipulated as though they represented ordinary numbers.
The points of difference between ordinary numbers a, b and
matrices 4, B are

(i) whereas ab = ba, A B is not usually the same as B4;

(ii) whereas ab = 0 implies that either @ or b (or both) is
zero, the equation AB = 0 does not necessarily imply
that either A or B is zero. We shall return to this point
in Theorem 29.

10. The determinant of a square matrix

10.1. When A is a square matrix, the determinant that has
the same elements as the matrix, and in the same places, is
called the determinant of the matrix. It is usually denoted by
|4]. Thus, if A has the element a; in the i¢th row and kth
column, so that 4 = [a;], then |4| denotes the determinant
@]

It is an immediate consequence of Theorem 13, that if 4 and
B are square matrices of order n, and if 4B is the product of
the two matrices, the determinant of the matriz A B 18 equal to the
product of the determinants of the matrices A and B; that is,

|AB| = |A| X |B|.
Equally, |BA| = |B|x |4].

Since |4| and | B| are numbers, the commutative law holds for
their product and |4|X |B| = |B| X |4].
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Thus |AB| = |BA|, although the matrix 4 B is not the same
as the matrix BA. This is due to the fact that the value of
a determinant is unaltered when rows and columns are inter-
changed, whereas such an interchange does not leave a general
matrix unaltered.

10.2. The beginner should note that in the equation
[AB| = |4|x |B|, of §10.1, both 4 and B are matrices. It is
not true that |k4| = k|A|, where k is a number.

For simplicity of statement, let us suppose 4 to be a square
matrix of order three and let us suppose that k = 2. The

theorem ‘|A+B|=IAI+IBI,

is manifestly false (Theorem 6, p. 15) and so [24| # 2|4|. The
true theorem is easily found. We have

A =Tay a) ag],

Qg1 Qgz Oy

@3 Q33 Qgg
say, so that

24 = [2a,, 2a,, 2a,,] (Definition 8).
[2(121 2a,, 2a23]
2ay, 2a5, 240,
Hence |24] = 23|4]|.
The same is evident on applying §10.1 to the matrix product

21 x A, where 21 is twice the unit matrix of order three and so is

2 0 0].
0 2 0
0 0 2

ExampLEs VII
Examples 1-4 are intended as a kind of mental arithmetic.
1. Find the matrix A+ B when :

e A R A |
-1 -3

(i) 4=r1 , B=7_3 ;
EE
3 —3 5 —5

(i) A= 2 3, B=[4 5 6
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Ans. (i) [ 6 8], (1) 4 —47, (i) [6 7 9]
10 12 6 —6]
8 —8
2. Is it possible to define the matrix A+ B when

(i) 4 has 3 rows, B has 4 rows,
(ii) A4 has 3 columns, B has 4 columns,
(iii) 4 has 3 rows, B has 3 columns?
Ans. (1), (i), No; (iil) only if 4 has 3 columns and B 3 rows.

3. Is it possible to define the matrix BA and the matrix 4 B when
A, B have the properties of Example 2?
Ans. AB (i) if 4 has 4 cols.; (ii) if B has 3 rows; (iii) depends on the
number of columns of A and the number of rows of B.
BA (i) if B has 3 cols.; (ii) if 4 has 4 rows; (iii) always.
4. Form the products 4B and B4 when

S PO A PR R A A F

Examples 5-8 dcal with quaternions in their matrix form.
5. If « denotes 4/(—1) and I, 4, j, k are defined as
I=[l 0], i:[z 01, s7=7]0 1], k:[O L],
0 1 0 — -1 0 ¢ O
then ¢ =k, jk=1, ki=j; ji= —k, kj= —i, itk= —j.
Further, =2 =k?= —1I
6. If Q =al+bitc¢+dk, Q = al—bi—cj—dk, a, b, ¢, d being
numbers, real or complex, then
QQ’ = (a®+ b2+ +d*)I.
7. If P=oal+Bityj+8k, P’ = ol—Bi—yj—38k, a, B, v, & being
numbers, real or complex, then
QPP'Q = Q.(*+B2+y*+84)1.Q’
= QQ’.(a®+B2+y24 891 [see § 7]
= (a®+b2+c2+d?) 1. (a4 B2 492 +82)1
— (a'-’+b’+cz+d2)(a3+ﬁ’+y2+8’)l

= Q'P’'PQ.
8. Prove the results of Example 5 when I, 1, 5, k are respectively
100 07, 0 10 01, 0 0 107, 0 0 0 1
0100 —100 O 0 0 01 0 0-—-10
0010 0 00 —1 -1 0 00 0100
0001 0 01 O 0 —-100 —-10 0 O

9. By considering the matrices

B IR O
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together with matrices al +bi, al —bt, where a, b are real numbers, show
that the usual complex number may be regarded as a sum of matrices
whose elements are real numbers. In particular, show that

(al+b)(al—be) = (a*+b%)1,
(aI+b)(cI+di) = (ac—bd)I+(ad-+be)e.
10. Prove that
[t y =z]. [a h g][x] = [az?+by?+ cz? + 2fyz + 2gzx + 2hxy],

h b flly
g [ cllz

that is, the usual quadratic form as a matrix having only one row and
one column.
11. Prove that the matrix equation
A*—B* = (A— B)A+ B)

is true only if AB = BA and that a4+ 2hA B+ bB? cannot, in gencral,
be written as the product of two linear factors unless’AB = BA.

12. If A}, A; are numbers, real or complex, and 4 is & square matrix
of order n, then

AV W A)A AN T = (A=A INA—) ),

where I is the unit matrix of order n.

HiNt. The R.H.S. is A3—A\, AI—), I4+) A, I* (by the distributive
law).

13. If f(A) = poA"+p, A" 1+...+p,, Where p,, A are numbers, and if
f(A4) denotes the matrix

P Ar+p A% 4+ Py

then f(4) = po(4 —Al I)..(4 _”\n 1),
where Ay,..., A, are the roots of the equation f(A) = 0.

14. If B = AA +pul, where A and pu are numbers, then BA = AB.

The use of submatrices

156. The matrix P =[py P P
Ps1 P Pss
351 Pss Pss
may be denoted by [I;u P,,].
n Fu
where P, denotes [Py, pu], P,y denotes Pu]v
Pa1 P Pas

F,, denotes [py; Pasl Py, denotes [pg,].
4703 M
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Prove that, if @, Q,,, ctc., refer to like matrices with g;; instead of py;,
then P+Q = [Py+@Qn Pxe+Qla]r
Pp+Qn Ppt Qs
PQ = [Pu Qut+PQy Py @ustPrg Qza]-
Pﬁl Q11+P2i Qzl P2l Q12+P22 Qzﬁ
Note. The first ‘column’ of PQ as it is written above is merely
a shorthand for the first two columns of the product PQ when it
is obtained directly from [p;;] X [gix].
16. Prove Example 8 by putting for 1 and ¢ in Example 5 the two-
rowed matrices of Example 9.
17. If each P,, and Q,, is a matrix of two rows and two columns,
prove that, whenr =1, 2, 3,5 =1, 2, 3,

[BX[Qu] = [ 2 P Ou]

Elementary transformations of a matrix

18. I; is the matrix obtained by interchanging the ith and jth rows
of the unit matrix I. Prove that the effect of pre-multiplying a square
matrix 4 by I, will be the interchange of two rows of 4, and of post-
multiplying by I;,, the interchange of two columns of 4.

Deduce that If} = I, IikaJ'IJ'i = I;“'.

19. If H = I+[hy;], the unit matrix supplemented by an element
in the position indicated, then HA affects A by replacing row; by
row;+hrow, and AH affects A by replacing col.; by col.;4-Acol.;.

20. If H is a matrix of order n obtained from the unit matrix by
replacing the rth unity in the principal diagonal by k, then HA is the
result of multiplying the rth row of A by k, and AH is the result of
multiplying the rth column of 4 by k.

Examples on matrix multiplication
21. Prove that the product of the two matrices
[ cos?d  cosfsinf], [ cos? cos¢ sind;]
cosfsinf  sin%d cos¢sing sin%¢
is zero when 6 and ¢ differ by an odd multiple of .
22. When (A;,A,5,A;) and (uy, g, p3) are the direction cosines of two
lines ! and m, prove that the product
A M AAXT pE pape paps
NA A A Baps  HF Hafis
My AAy A3 Hils Hafs K3
is zero if and only if the lines [ and m are perpendicular.
23. Prove that L? = L when L denotes the first matrix of Example 22.



CHAPTER VII
RELATED MATRICES

1. The transpose of a matrix

1.1. DEriNITION 13. If A is a matriz of n columns, the matrizx
which, for r = 1, 2,..., n, has the r-th column of 4 as its r-th row
18 called the TRANSPOSE OF A (or the TRANSPOSED MATRIX OF A).
It is denoted by A'.

If A = A’, A is said to be SYMMETRICAL.

The definition applies to all rectangular matrices. For
example,

1 27 is the transpose of [1 3 5],
[3 4] 2 s o
5 6

for the rows of the one are the columns of the other.

When we are considering square matrices of order n we shall,
throughout this chapter, denote the matrix by writing down
the element in the ¢th row and Ath column. In this notation,
if 4 = [a,], then A" = [a,,]; for the element in the ith row
and kth column of 4’ is that in the kth row and ¢th column

of 4.

1.2, THEOREM 23. LAW OF REVERSAL FOR A TRANSPOSE. If
A and B are square matrices of order n,
(AB)y = B'A’;
that is to say, the transpose of the product AB is the product of
the transposes in the reverse order.
In the notation indicated in §1.1, let
A = [ayl, B = [by],
so that Al = tag], B’ = [b,]

Then, denoting a matrix by the element in the ¢th row and
kth column, and using the summation convention, we have

AB = [a;by),  (AB) =[a,b;])
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Now the ith row of B’ is by, byy,..., b,; and the kth column of
A’ i8 ayy, ay,..., a3,; the inner product of the two is

$b S a,,b
a,;=>a .
}gl 1t ki 121 kj Vit
Hence, on reverting to the use of the summation convention,
the product of the matrices B’ and 4’ is given by
B'A’ = [byai;] = [arb4]
= (AB)'.
CoroLLARY. If A, B,..., K are square matrices of order n, the
transpose of the product AB...K 1is the product K'...B'A’.
By the theorem,
(ABC) = C'(AB)
= C'B'A4’,

and so, step by step, for any number of matrices.

2. The Kronecker delta
The symbol §,; is defined by the equations

3, = 0 when i # [, 84 =1wheni=r.

It is a particular instance of a class of symbols that is exten-
sively used in tensor calculus. In matrix algebra it is often
convenient to use [8,,] to denote the unit matrix, which, as we
have already said, has 1 in the leading diagonal positions (when
1 = k) and zero elsewhere.

3. The adjoint matrix and the reciprocal matrix
3.1. Transformations as a guide to a correct definition.
Let ‘numbers’ X and x be connected by the equation
X = Az, (1)

where 4 symbolizes a matrix [a;].
When A = |a;| # 0,  can be expressed uniquely in terms
of X (Chapter II, §4.3); for when we multiply each equation

X, = ay (1a)
<
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by the co-factor 4, and sum for 7+ =1, 2,..., n, we obtain
7 n n
Z AyX; =3 %, Z ady
=1 k=1 i=1

=k2” %;,8,4A (Theorem 10)
=1

= x‘A.
That is, x, = i (4,4/A)X,
=1
n
or z; =k§1(AH/A)Xk' (28)
Thus we may write equations (2a) in the symbolic form
z= A1X, (2)

which is the natural complement of (1), provided we interpret
A-! to mean the matrix [4,,/A].

3.2. Formal definitions. Let 4 = [a,;] be a square matrix
of order n; let A, or |4|, denote the determinant |a;,|; and let
A,, denote the co-factor of a,, in A.

DErFINITION 14. 4 = [a,] i3 @ SINGULAR MATRIX if A = 0;
it 18 an ORDINARY MATRIX Or @ NON-SINGULAR MATRIX if A # 0.

DzrinNiTiON 15. The mairix [A,,] i8 the ADJOINT, or the
ADJUGATE, MATRIX of [a;].

DEriNITION 16. When [a;] i3 a non-singular matrix, the
matrix [A;;/A] 18 THE RECIPROCAL MATRIX of [a;].

Notice that, in the last two definitions, it is 4;; and not 4,
that is to be found in the ith row and kth column of the matrix.

3.3. Properties of the reciprocal matrix. The reason for
the name ‘the reciprocal matric’ may be found in the properties
to be enunciated in Theorems 24 and 25.

THEOREM 24. If [a,] i3 a non-singular square matrix of order
n and if A,, 18 the co-factor of a,, in A = |ay|, then
[aa]x[4r/A] = 1, (1)
and [Ar/A]X[ag] = T, (2)
where I 18 the unit matriz of order n.
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The element in the ith row and kth column of the product

(@] X [A1i/A] is 1
0
i=1

which (by Theorem 10,1 p. 30) is zero when ¢ # k and is unity
when ¢ = k. Thus the productis [3;,] = I. Hence (1) is proved.
Similarly, using now the sum convention, we have

[Ar/A]X [ay] = [Aj;a;/A]
= [Sik]’

and so (2) is proved.
3.4. In virtue of Theorem 24 we are justified, when 4 denotes
[@;], in writing [4,,/A] = A1

for we have shown by (1) and (2) of Theorem 24 that, with
such a notation,

AA-1' =1 and A4 = 1.

That is to say, a matrix multiplied by its reciprocal is equal
to unity (the unit matrix).

But, though we have shown that 4-! is a reciprocal of A4,
we have not yct shown that it is the only reciprocal. This we
do in Theorem 25.

THEOREM 25. If A is a non-singular square matriz, there is
only ome matrix which, when multiplied by A, gives the unit
matriz.

Let R be any matrix such that AR = I and let A~ denote
the matrix [A4,,/A]. Then, by Theorem 24, AA~! = I, and hence

A(R—AY)Y = AR—A44 ' =1-1=0.
It follows that (note the next two steps)
A14(R—A1)=A"1.0=0 (p.75,§6.5),
that is (by (2) of Theorem 24),
I(R—A41) =0, ie. R—41=0 (p.77,§7.1).
Hence, if AR = I, R must be 4-1.

t For the precise form used here compare Examplo 6, p. 62.
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Similarly, if R4 = I, we have
(BR—4 )4 =RA—A4A'A=1-1=0,
and so (R—A4-1)AA-1= 0.4"1 = 0;
that is (R—A-1)I =0, ie. R—4A-'=0.
Hence, if RA = I, R must be A~
3.5. In virtue of Theorem 25 we are justified in speaking of

A-1 not merely as a reciprocal of A, but as the reciprocal of 4.
Morcover, the reciprocal of the reciprocal of 4 is A itself, or,

in symbols, (A-)-1= 4
For since, by Theorem 24, A4-1 = A-14 = [, it follows that

A is a reciprocal of A-! and, by Theorem 25, it must be the
reciprocal.

4. The index law for matrices

We have already used the notations 42, 43,... to stand for
AA, AAA,.... When r and s are positive integers it is inherent
in the notation that

AT X 43 = Ar+s,
When A-! denotes the reciprocal of 4 and s is a positive integer,
we use the notation 4-° to denote (4-1)%. With this notation
we may write AT A5 — Ar+s (1)
whenever 7, s are positive or negative integers, provided that
A° is interpreted as 1.

We shall not prove (1) in every case; a proof of (1) when
r>0, s= —t and ¢ >r > 0 will be enough to show the
method.

Let ¢t = r+k, where & > 0. Then

ATA-t = ATA-"F* = ATA"Ak.
But AA-' =1 (Theorem 24),
and, when r > 1,
ATA" = AT 1AA A"+ = AT 1A+ = Ar-14-4,
so that A"A" = A'A' = 1.
Hence A4~ = TA-* = A-F* = 4,
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Similarly, we may prove that
(dry = A7 (®)

whenever r and s are positive or negative integers.

5. The law of reversal for reciprocals

TueorREM 26. The reciprocal of a product of factors is the
product of the reciprocals of the factors in the reverse order; in

particular, (AB)-1 = B-14-1,
(ABC)! = C-'B14-,
(A1B-1)-1 = BA.
Proof. For a product of two factors, we have
(B-14-1).(AB) = B'A-'AB (p.75,§6.5)

= B-'IB

= B-'B=1 (p.77,§1.1).
Hence B-1A-! is a reciprocal of AB and, by Theorem 25, it

must be the reciprocal of AB.
For a product of three factors, we then have

(C-1B-'4A-)(ABC) = C-'IC
= (010 =1,
and so on for any number of factors.

THEOREM 27. The operations of reciprocating and transposing
are commutalive; that is,

()1 = (4.
Proof. The matrix 4! is, by definition,

[4w/A),
so that (471 = [Au/A]
Moreover, A’ = [ay]
and so, by the definition of 2 product and the results of
Theorem 10, 4;'(14_]’_)! — [S{k] = I

Hence (4-1) is-a réc;iprocal of A’ and, by Theorem 25, it must
be the reciprocal.
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6. Singular matrices

If A is a singular matrix, its determinant is zero and so we
cannot form the reciprocal of 4, though we can, of course, form
the adjugate, or adjoint, matrix. Moreover,

TueoreM 28. The product of a singular matriz by its adjoint
18 the zero matrix.

Proof. If A = [a,] and |a,| = 0, then

n
J’glafiAkJ' =0, ZAN kT
both when ¢ # k and when ¢ = k. Hence the products
[an]<[Ax] and  [A,]x[ay]

are both of them null matrices.

7. The division law for non-singular matrices

7.1. THEOREM 29. (i) If the matrix A is non-singular, the
equation A B = 0 implies B = 0.

(i1) If the matriz B is non-singular, the equation AB = 0
implies 4 = 0.

Proof. (i) Since the matrix 4 is non-singular, it has a reci-
procal A-1, and 414 = 1.

Since AB = 0, it follows that

A-1AB = A-1x0 = 0.

But A-1AB = IB = B, and so B = 0.

(ii) Since B is non-singular, it has a reciprocal B-!, and
BB =1

Since AB == 0, it follows that

ABB1=0xDB"1=0.
But ABB1= Al = A,andso A =0. .

7.2. The division law for matrices thus takes the form

‘If AB = 0, then either A = 0, or B = 0, or BO;I‘H A and B

are singular matrices.’
4702 N
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7.3. THEOREM 30. If A 18 a given matrix and B is a non-
singular matriz (both being square matrices of order n), there s
one and only one matrix X such that

A = BX, (1)
and there is one and only one maitrix Y such that

A=7YB. (2)
Moreover, X = B-4, Y = AB-L.

Proof. We see at once that X = B-14 satisfies (1); for
BB-14 = I4 = A. Moreover, if A = BR,

0 = BR—A = B(R—B-14),

and 0 — B-\B(R— B-14)
= I(R— B-14),
8o that R— B4 is the zero matrix.

Similarly, ¥ = 4 B-!is the only matrix that satisfies (2).

7.4. The theorem remains true in certain circumstances when
A and B are not square matrices of the same order.

CoroLLARY. If A is a matriz of m rows and n columns, B
a non-singular square matrix of order m, then

A = BX
has the unique solution X = B-1A4.

If A 18 a matriz of m rows and n columns, C a non-singular
square matrix of order n, then

A=YC
has the unique solution Y = AC-.

Since B-! has m columns and 4 has m rows, B-! and A4 are
conformable for the product B-'4, which is a matrix of m rows
and n columns. Also

B.B14 = JA = A,
where I is the unit matrix of order m.

Further, if A = BR, R must be a matrix of m rows and
n columns, and the first part of the corollary may be proved
as we proved the theorem.
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The second part of the corollary may be proved in the same
way.

7.5. The corollary is particularly useful in writing down

the solution of linear equations. If A = [a;] is a non-singular
matrix of order n, the set of equations

bi =k§1aik1‘k (i = 1,..., n) (3)

may be written in the matrix form b = Az, where b, z stand
for matrices with a single column.
The set of equations

n
b, :_—kg:la,“-y,c (t=1,.,mn) (4)

may be written in the matrix form b’ = y'A4, where ', ¥’ stand
for matrices with a single row.
The solutions of the sets of equations are

x = A, y =bA4L
An interesting application is given in Example 11, p. 92.

Exampres VIII

A=TJa h g7, B =[x, x5 3],
[h b f ] [yx Ya ya]
g [ ¢ 2, %y %
form the products A B, BA, A’B’, B’A’ and verify the result enunciated
in Theorem 23, p. 83.
Hint. Use X = ax+hy+g2, Y = hx+by+fz, Z = gx+fy+ca.
2. Form these products when A, B are square matrices of order 2,
neither being symmetrical.

1. When

3. When 4, B are the matrices of Example 1, form the matrices 4-1,
+ B! and verify by direct evaluations that (4B)™ = B~14"1,

4, Prove Theorem 27, that (4’)~! = (4~!)’, by considering Theorem
23 in the particular case when B = A1,

5. Prove that the product of a matrix by its transpose is & sym-
metrical matrix.

Hixt. Use Theorem 23 and consider the transpose of the matrix 4A4’.
6. The product of the matrix [a,;] by its adjoint is equal to |ag]|I.
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Use of submatrices (comparc Example 15, p. 81)
7. Let L = [A l], M == [,u l], N = [v], where A, p, v are non-zero

0 A 0 u
numbers, and let A=TL 0 O017.
[0 M 0]
0O 0 N

Prove that
A*=T[L* 0 01, Al =T[Lt O 0 1.
[O M2 O] [ 0o M1 0 ]
0 0 N? 0 0 N7
HinTt. In view of Theorem 25, the last part is proved by showing
that the product of A and the last matrix is I.
8. Prove that if f(4) = pyA™+p, A*1+...4p,, where p,,..., P, are
numbers, then f(4) may be written as a matrix
Sy 0 01
[ o f(M) O ]
Y 0 f(N)
and that, when f(A4) is non-singular, {f(4)}"! or 1/f(4) can be written
in the same matrix form, but with 1/f(L), 1/f(M), 1/f(N) instead of
F(L), f(M), f(N).

9. If f(A4), g(A4) are two polynomials in A and if g(4) is non-singular,
prove the extension of Example 8 in which f is replaced by f/g.

Miscellaneous exercises
10. Solve equations (4), p. 91, in the two forms
y= (4%, oy - bAn
and then, using Theorem 23, prove that
(A1 = (A7)

11. A is a non-singular matrix of order n, z and y are single-column
matrices with n rows, I’ and m” are single-row matrices with n columns;
y == Az, Uz =m'y.

Prove that m’ = VA=, m = (471)'L.

Interpret this result when a linear transformation y; =k§ Qe T,
(t =1, 2, 3) changes [, x,+1l,x,+1l3x; into m, yl+m2y2+m3y: and
(21, Tas T3)s (Y1 Y2 ¥3) are regarded as homogeneous point-coordinates in
a plane.

12. If the elements a,;, of A are real, and if AA” = 0, then 4 = 0.

13. The elements a,; of A4 are complex, the elements G, of 4 are the
conjugate complexes of a;, and A4’ = 0. Prove that A = 4 = 0.

14. A and B are squarc matrices of the same order; 4 is symmetrical.
Prove that B’AB is symmectrical. [Chapter X, §4.1, contains a proof
of this.]



CHAPTER VIII
THE RANK OF A MATRIX

[Section 6 is of less general interest than the remainder of the chapter.
It may well be omitted on a first reading.]

1. Definition of rank

1.1. The minors of a matrix. Suppose we arc given any
matrix 4, whether square or not. From this matrix delete all
elements save those in a certain 7 rows and r columns. When
r > 1, the elements that remain form a square matrix of order
r and the determinant of this matrix is called a minor of 4 of
order r. Each individual element of A is, when considered
in this connexion, called a minor of 4 of order 1. For
example,

the determinant |a c¢| isaminorof [a & ¢
g ¢ d e f
g h 1

of order 2; a, b,... are minors of order 1.

1.2. Now any minor of order r-+1 (r > 1) can be expanded
by its tirst row (Theorem 1) and so can be written as a sum of
multiples of minors of order . Hence, if every minor of order
is zero, then every minor of order 41 must also be zero.

The converse 1s not true; for instance, in the example given
in §1.1, the only minor of order 3 is the determinant that con-
tains all the elements of the matrix, and this is zero if @ = b,
d = e, and g = h; but the minor ai—gc, of order 2, is not
necessarily zero.

1.3. Rank. Unless every single element of a matrix 4 is
zero, there will be at least one set of minors of the same order
which do not all vanish. For any given matrix with » rows and
m columns, other than the matrix with every element zero,
there is, by the argument of §1.2, a definite positive integer p
such that

EITHER p is less than both m and », not all minors of order
p vanish, but all minors of order p+1 vanish,
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OR p is equal tot min(m, n), not all minors of order p vanish,
and no minor of order p+1 can be formed from the matrix.

This number p is called the RANK of the matrix. But the
definition can be made much more compact and we shall take
as our working definition the following:

DEFINITION 17. A matrix has rank r when r is the largest
integer for which the statement ‘nol ALL minors of order r are
zero’ 1s valid.

For a non-singular square matrix of order n, the rank is n;
for a singular square matrix of order n, the rank is less than n.

It is sometimes convenient to consider the null matrix, all
of whose elements are zero, as being of zero rank.

2. Linear dependence

2.1. In the remainder of this chapter we shall be concerned
with linear dependence and its contrary, linear independence;
in particular, we shall be concerned with the possibility of
expressing one row of a matrix as a sum of multiples of certain
other rows. We first make precise the meanings we shall attach
to these terms.

Let ay,..., a,, be ‘numbers’, in the sense of Chapter VI, each
having n components, real or complex numbers. Let the com-

onents be
p (@ygseees Byn)s  core (@pppseeey Tppy).

Let F be any field] of numbers. Then a,,..., a,, are said to be
linearly' dependent with respect to F if there is an equation

La+..+1,a, =0, (1)
wherein all the I’s belong to F and not all of them are zero.
The equation (1) implies the n equations

Lha,+..+1,a,. =0 (r=1,.,n).
The contrary of linear dependence with respect to F is linear
independence with respect tc F.
The ‘number’ a, is said to be a suM oF MULTIPLES of the
t Whenm = n, min(m,n) = m = n;

when m % n, min(m, n) = the smaller of m and n.
${ Compare Preliminary Note, p. 2.
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‘numbers’ a,,..., a,, with respect to F if there is an equation of
the form a, = La,+...4+1,4a,, (2)
wherein all the I’s belong to F. The equation (2) implies the
n equations

a,, = lLa,+..+1,a,, (r=1,.,n).

2.2. Unless the contrary is stated we shall take F to be the
field of all numbers, real or complex. Moreover, we shall use
the phrases ‘linearly dependent’, ‘linearly independent’, ‘is a
sum of multiples’ to imply that each property holds with
respect to the field of all numbers, real or complex. For
example, ‘the “number’’ a is a sum of multiples of the “numbers’
b and ¢’ will imply an equation of the form a = I, b+41,¢c, where
1, and I, are not necessarily integers but may be any numbers,
real or complex.

As on previous occasions, we shall allow ourselves a wide
interpretation of what we shall call a ‘number’; for example, in
Theorem 31, which follows, we consider each row of a matrix
as a ‘number’.

3. Rank and linear dependence

3.1. THEOREM 31. If A is a matrix of rank r, where r > 1,
and if A has more than r rows, we can select r rows of A and
express every other row as the sum of multiples of these r rows.

Let A have m rows and n columns. Then there are two
possibilities to be considered: either (i) r =z and m > n, or
(ii) r < n and, also, r < m.

(i) Let r = n and m > n.

There is at least one non-zero determinant of order n that
can be formed from 4. Taking letters for columns and suffixes
for rows, let us label the elements of 4 so that one such non-
zero determinant is denoted by

A=la, b . . Kk
ag b, . . Kk
a, b, . . k,

With this labelling, let n+6 be the suffix of any other row.
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Then (Chap. 1II, §4.3) the n equations

a litayly+...F-a,l, = a, .y,
b1l1+b2l2+...+bnln = bn+0’ (l)

ke li+k 4. k1, =k,
have a unique solution in [,, I,,..., I, given by

I = (a,49bs...k,)[ (s by... k),

l2 = (a, bn+0 C3 ""kn)/(al b2 kn):
and so on. Hence the row? with suffix n+6 can be expressed
as a sum of multiples of the n rows of 4 that occur in A. This
proves the theorem when r = n << m.

Notice that the argument breaks down if A = 0.

(ii) Let r < n and, also, r < m.

There is at least one non-zero minor of orderr. Asin (i), take
letters for columns and suffixes for rows, and label the elements
of A so that one non-zero minor of order r is denoted by

M=|a b . . p|
a by . . P
aQ b . . p
With this labelling, let the remaining rows of 4 have suffixes
r+1, r+2,..., m.
Consider now the determinant

.D = al . . pl ay )

a, . . P, o
Ay -« Prif O4p
where 6 is any integer from 1 to m—r and where « is the letter
of ANY column of 4.
If « is one of the letters a,..., p, then D has two columns
identical and so is zero.
If « is not one of the letters a,..., p, then 4D is a minor of
A of order r+1; and since the rank of 4 is », D is again zero.

+ Using p, to denote the row whose letters have suffix ¢, we may write

i 1
equations (1) as pnte = U pytls pytecot-ln pne
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Hence D is zero when « is the letter of ANY column of 4,
and if we expand D by its last column, we obtain the equation

Mo, g4+2A -+ A0 +...+A o, = 0, (2)
where M # 0 and where M, A,,..., A, are all independent of a.
Hence (2) expresses the row with suffix 46 as a sum of
multiples of the r rows in M ; symbolically,

pro = —2p—2p— .2

r+8 M 1 .M 2 Mpf'
This proves the theorem when 7 is less than m and less than n.
Notice that the argument breaks down if M =

3.2. THEOREM 32. If A i3 a matrix of rank r, it is vmpossible
to select ¢ rows of A, where q < r, and to express every other row
as a sum of multiples of these q rows.

Suppose that, contrary to the theorem, we can select ¢ rows
of A and then express every other row as a sum of multiples
of them.

Using suffixes for rows and letters for columns, let us label
the elements of 4 so that the selected ¢ rows are denoted by
P1) Pase-s Pg- Then, for k = 1,..., m, where m is the number of
rows in A4, there are constants Ay such that

Pr = A1kp1“+‘~-'*‘Aquq; (3)
for ifk=1,..., q, (3) is satisfied when A, = 3,
and if k& > ¢, (3) expresses our hypothesis in symbols.

Now consider ANY (arbitrary) minor of A of order r. Let the
letters of its columns be «,..., 8 and let the suffixes of its rows
be k,,..., k,. Then this minor is

1k‘°‘1+ +Aq,‘, ¢ - '\mo +-. ‘qu.

lk' °‘1+ +Aqkr Og - Alky 01+ +Aqk' 0
which is the product by rows of the two determinants

Au‘.‘. .Aqk‘ 0. .0 Qy . .(!q 0. . 0

’

A, « - Ag, 0. .0 6, . .6, 0. .0
each of which has r—g columns of zeros.
4702 0
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Accordingly, if our supposition were true, every minor of 4
of order r would be zero. But this is not so, for since the rank
of A is r, there is at least one minor of 4 of order r that is not
zero. Hence our supposition is not true and the theorem is
established.

4. Non-homogeneous linear equations
4.1. We now consider

n
tglaux, =b;, (1=1,..,m), (1)

a set of m linear equations in n unknowns, x,,..., z,. Such a set
of equations may either be consistent, that is, at least one set of
values of x may be found to satisfy all the equations, or they
may be inconsistent, that is, no set of values of 2 can be found
to satisfy all the equations. To determine whether the equa-
tions are consistent or inconsistent we consider the matrices

A=TJa,; . . a,], B=Tla,; . . a, b
a mn b"l

ml amn aml a

We call B the augmented matrix of 4.

Let the ranks of 4, B be r, 7’ respectively. Then, since every
minor of 4 is a minor of B, either r = ' or r < »' [if 4 has
a non-zero minor of order r, then so has B; but the converse
is not necessarily true].

We shall prove that the equations are consistent when r = r’
and are inconsistent when r < r’.

4.2, Let r < #'. Since v’ < m, r < m. We can select r rows
of A and express every other row of 4 as a sum of multiples
of these r rows.

Let us number the equations (1) so that the selected » rows
become the rows with suffixes 1,..., ». Then we have equations
of the form

Qi = A10alt—}""'4f'Ar0arl (t=1,.,n) (2)

wherein the A’s are independent of ¢.
Let us now make the hypothesis that the equations (1) are
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consistent. Then, on multiplying (2) by z, and summing from
t=1tot=n, weget

brig = Agbi+... A0, (3)
The equations. (2) and (3) together imply that we can express
any row of B as a sum of multiples of the first » rows, which
is contrary to the fact that the rank of £ is r* (Theorem 32).
Hence the equations (1) cannot be consistent.

4.3. Let v’ = r. If r = m, (1) may be written as (5) below.

If r << m, we can select r rows of B and express every other
row as a sum of multiples of these r rows. As before, number
the equations so that these r rows correspond to 2 =1,..., 7.
Then every set of x that satisfies

ti a0, =b, (G=1,.,7) (4)
=y

satisfies all the equations of (1).

Now let a denote the matrix of the cocfficients of = in (4).
Then, as we shall prove, at least one minor of a of order r must
have a value distinct from zero. For, since the Ath row of 4

can be written as
’\lk P1+ +Ark Prs

every minor of A of order r is the product of a determinant
|A;xx| by a determinant |a,.|, wherein 1 has the values 1,..., r
(put ¢ = r in the work of §3.2); that is, every minor of A of
order r has a minor of a of order r as a-factor. But at least
one minor of A of order r is not zero and hence one minor of
a of order 7 is not zero.

Let the suffixes of the variables x be numbered so that the
first » columns of a yield a non-zero minor of order . Then,
in this notation, the equations (4) become

r n
Sayx,=b— Y ayx, (t=1,.,7), (5)
t=1 t=r+1

wherein the determinant of the coefficients on the left-hand
side is not zero. The summation on the right-hand side is
present only when n > r.

If » > r, we may give z,,,,..., &, arbitrary values and then
solve equations (5) uniquely for z,,..., z,. Hence, if » = ' and
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n > r, the equations (1) are consistent and certain sets of n—r
of the variables 2 can be given arbitrary values.t

If n = r, the equations (5), and so also the equations (1), are
consistent and have a unique solution. This unique solution
may be written symbolically (Chap. VII, §7.5) as

x = A7,
where A, is the matrix of the coefficients on the left-hand side

of (5), b is the single-column matrix with elements b;,..., b,
and z is the single~column matrix with elements z,,..., z,,.

5. Homogeneous linear equations
The equations

n
tglaﬂx‘ == 0 (@ == l,..., m), (6)

which form a set of m homogeneous equations in » unknowns
Z,,..., &,, may be considered as an example of equations (1)
when all the b; are zero. The results of §4 are immediately
applicable.

Since all b; are zero, the rank of B is equal to the rank of 4,
and so equations (6) are always consistent. But if r, the rank
of A, is equal to =, then, in the notation of §4.3, the only
solutai n of equations (6) is given by

x = A7, b=0.
Hence, when r = n the only solution of (8) is given by z = 0,
thatis, ¢; = 23 = ... = 2, = 0.

When r < n we can, as when we obtained equations (5) of
§4.3, reduce the solution of (6) to the solution of

r n
Sayr,=— Y ayx, (i=1,.,7), (7)
t=1 t=r4+1

wherein the determinant of the coefficients on the left-hand
side is not zero.} In this case, all solutions of (6) are given by

t Not all sets of n—r of the variables may be given arbitrary values; the
criterion is that the coefficients of the remaining r variables should provide
& non-zero determinant of order r.

1 The notation of (7) is not necessarily that of (8): the labelling of the
elements of 4 and the numbering of the variables x has followed the procedure
laid down in §4.3.
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assigning arbitrary values to z,,,,..., z, and then solving (7) for
Zy,..., &,. Once the values of z,,,,..., z,, have been assigned, the
equations (7) determine 2;,,..., z, uniquely.

In particular, if there are more variables than equations,
i.e. n > m, then r < n and the equations have a solution other
than x;, = ... =2, = 0.

6. Fundamental sets of solutions

6.1. When r, the rank of A, is less than n, we obtain n—r
distinct solutions of equations (6) by solving equations (7) for
the n—7 sets of values

Tryy=1 2,,=0 .., x.,.,=0,
Tppg =0, Zpp=1, .., 2.,,=0, (8)
z, =0, =z,=0, .., =x,=1

We shall use X to denote the single-column matrix whose ele-
ments are z,..., ,. The particular solutions of (6) obtained
from the sets of values (8) we denote by

X, (k=12,..,n—7). (9)

As we shall prove in § 6.2, the general solution X of (6), which

is obtained by giving z,,;,..., z, arbitrary values in (7), is
furnished by the formula

n—r
X =35 X (10)

That is to say, (a) every solution of (6) is a sum of multiples
of the particular solutions X,. Moreover, (b) no one X, is a sum
of multiples of the other X,. A set of solutions that has the
properties (a) and (b) is called a FUNDAMENTAL SET OF SOLU-
TIONS.

There is more than one fundamental set of solutions. If we
replace the numbers on the right of the equality signs in (8) by
the elements of any non-singular matrix of order n—r, we are
led to a fundamental set of solutions of (6). If we replace these
numbers by the elements of a singular matrix of order n—r,
we are led to n—r solutions of (6) that do not form a funda-
mental set of solutions. This we shall prove in §6.4.
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6.2. Prooft{ of the statements made in §6.1. We are
concerned with a set of m homogeneous linear equations in n
unknowns when the matrix of the coefficients is of rank r and
r << n. As we have seen, every solution of such a set is a solu-
tion of a set of equations that may be written in the form

7 n
2 ux = — 3 ayx, (i=1..,7), (7
t=1 t=r+1
wherein the determinant of the coefficients on the left-hand
side is not zero. We shall, therefore, no longer consider the
original equations but shall consider only (7).

As in §6.1, we use X to denote z,,..., z, considered as the
row elements of a matrix of one column, X, to denote the
particular solutions of equations (7) obtained from the sets of
values (8). Further, we use I, to denote the kth column of (8)
considered as a one-column matrix, that is, I, has unity in its
kth row and zero in the remaining n—r—1 rows. Let 4, denote
the matrix of the coefficients on the left-hand side of equations
(7) and let A7 denote the reciprocal of A4,.

In one step of the proof we use X2+ to denote z,,..., z,,,
considered as the elements of a one-column matrix.

The general solution of (7) is obtained by giving arbitrary
values to z,,,,..., 2, and then solving the equations (uniquely,
since 4, is non-singular) for x,,..., z,. This solution may be
symbolized, on using the device of sub-matrices, as

n—r al,f+k
—A-1
AL S|

r 1
X = [ Xl ] = k=1 ar,r+k

n

r+1 n—r
Z Ier+k
k=1

But the last matrix is

al,r+k
— A1
471 .
Dy r sk

I,

t Many readers will prefer to omit these proofs, at least on a first reading.
The remainder of § 6 does not make easy reading for a beginner.

nir n—r X
Lrik = z
i) r k~2—~1 r+k < g
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and so we have proved that every solution of (7) may be repre-
sented by the formula

n—r
X :kglxr+k Xk' (10)

6.3. A fundamental set contains n—r solutions.

6.31. We first prove that a set of less than n—» solutions
cannot form a fundamental set.

Let Y,,..., Y,, where p << n—r, be any p distinct solutions of
(7). Suppose, contrary to what we wish to prove, that Y, form
a fundamental sct. Then there are constants A, such that

P
Xk == ZA”‘Y,,: (k = 1,..., n-?‘),
1==1

where the X, are the solutions-of §6.1 (9). By Theorem 31
applied to the matrix [A;], whose rank cannot exceed p, we
can express every X, as a sum of multiples of p of them (at
most). But, as we see from the table of values (8), this is
impossible; and so our supposition is not a true one and the
Y, cannot form a fundamental set.

6.32. We next prove that in any set of more than n—r solu-
tions one solution (at least) is a sum of multiples of the re-
mainder.

Let Y,..., Y,, where p > n—r, be any p distinct solutions of
(7). Then, by (10),

n—r
Y; Zkglﬂm Xp (G=1L...,p),

where p; is the value of z,,; in Y,. Exactly as in §6.31, we
can express every Y; as a sum of multiples of n—r of them
(at most).

6.33. It follows from the definition of a fundamental set and
from §§6.31 and 6.32 that a fundamental set must contain n—r
solutions.

6.4. Proof of statements made in § 6.1 (continued).

6.41. If [c,;] is a non-singular matrix of order n—r, and if
X is the solution of (7) obtained by taking the values

Tryg = Cipy Lpyg = Cigy ooy Ty = Cyppy
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then, by what we have proved in §6.2,
n—r
X;: = z cik X’C (1. = 1,..., n—r).
k=1
On solving these equations (Chap. VII, §3.1), we get
n—r
X‘i =k§1'yik X;‘ (i = 1,-.., n—r), (11)

where [y;;] is the reciprocal of [c;].
Hence, by (10), every solution of (7) may be written in the

form n—r n—r
X = Z Tpri 2 Vi Xk
i=1 k=1
—rn—r X!
= kgl(iglzrﬂ"}'ik) K
Moreover, it is not possible to express any one X as a sum
of multiples of the remainder. For if it were, (11) would give
equations of the formi

n—r—1

X, = kgl BuXi (1=1,.,n—r)

and these equations, by the argument of §6.31, would imply
that one X; could be expressed as a sum of multiples of the
others.

Hence the solutions X; form a fundamental set.

6.42. If [c,] is a singular matrix of order n—r, then, with
a suitable labelling of its elements, there are constants A, such
that
Cosbk =é‘,l)lgscsk (k=1,..., n—r),

where p is the rank of the matrix, and so p < n—r.
But, by (10),

n—r
Xo40 =k210p+0,k X, (0=1,.,n—r—p)
, n—-r
and X,=cy X, (=1..,0p)
=1

t We have supposed the solutions to be labelled so that X},_, can be written
as a sum of multiples of the rest.
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Hence there is an equation
4 p ’
Xp+0 =‘§1A03 X,
and so the X cannot form a fundamental set of solutions.

6.5. A set of solutions such that no one can be expressed
as a sum of multiples of the others is said to be LINEARLY
INDEPENDENT.

By what we have proved in §§6.41 and 6.42, a set of solutions
that is derived from a non-singular matrix [c;] is linearly
independent and a set of solutions that is derived from a singu-
lar matrix [c;,] is not linearly independent.

Accordingly, if a set of n—r solutions is linearly independent,
it must be derived from a non-singular matrix [c;,] and so, by
§6.41, such a set of solutions is a fundamental set.

Hence, any linearly independent set of n—r solutions is a
Sfundamental set.

Moreover, any set of n—r solutions that is not linearly in-
dependent is not a fundamental set, for it must be derived from
a singular matrix [¢;].

ExamprLes IX

Devices to reduce the calculations when finding the rank of a
matrix

1. Prove that the rank of a matrix is unaltered by any of the following
changes in the elements of the matrix:
(1) the interchange of two rows (columns),
(i1) the multiplication of a row (column) by a non-zero constant,
(iii) the addition of any two rows.
Hint. Finding the rank depends upon showing which minors of the

matrix are non-zero determinants. Or, more compactly, use Examples
VII, 18-20, and Thcorem 34 of Chapter IX.

2. When every minor of [a,.] of order 71 that contains the first
r rows and 7 columns is zero, prove that therc are constants A,; such
that the kth row of [a;;] is given by

r
Pr = 2 Aixpi-
=1

Prove (by the method of § 3.2, or otherwise) that every minor of [a;;]

of order r+1 is then zero.

4709 P
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3. By using Example 2, prove that if a minor of order 7 is non-zero
and if every minor obtained by bordering it with the elements from an
arbitrary column and an arbitrary row are zero, then the rank of the
matrix is 7.

4. Rule for symmetric square matrices. If a principal minor of
order r is non-zero and all principal minors of order r+1 are zero, then
the rank of the matrix is . (See p. 108.)

Prove the rule by establishing the following results for [a;;].

(i) If A;; denotes the co-factor of a;; in

C=|ay . . a, a; oy (5= ag)
Qpy . o Gy Gy Gy
Agy - - Qg Gy Gy
A - - Gy Qg Qg

then 4, A;;— A, 4, = MC, where M is the complementary minor of
@y @y — a4y @y in C (Theorem 18).

(ii) If every C = 0 and every corresponding A4,, = 0, then every
A, = Ay, = 0 and (Example 2) every minor of the complete matrix

[a] of order r+1 is zero.
(iii) If all principal minors of orders -1 and 42 are zero, then the

rank is r or less. (May be proved by induction.)

Numerical examples
5. Find the ranks of the matrices

@rr 3 4 71, ()[4 5 61,
[2458] [567]

312 3 78 9
(i) [2 1 3 47, (iv)J 6 1 3 8
5 8 1 4 4 2 6 —1
6 5 8 1 10 3 9 17
3 8 7 2 16 4 12 15

Ans. (i) 3, (ii) 2, (iii) 4, (iv) 2.

Geometrical applications

6. The homogeneous coordinates of a point in a plane are (z,¥,2).
Prove that the three points (z,, y,, 2,), r = 1, 2, 3, are collinear or non-
collinear according as tho rank of the matrix

Ty Y %
Ty Y2 2,
Ty Ys 2,

is 2 or 3.
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7. The coordinates of an arbitrary point can be written (with the
notation of Example 6) in the form

x = Az +pxy+vas,
Y = My +pys+vys
z = Ny +pzytvzs,

provided that the points 1, 2, 3 are not collinear.

Hint. Consider the matrix of 4 rows and 3 columns and use
Theorem 31.

8. Give the analogues of Examples 6 and 7 for the homogeneous
coordinates (z, y, 2, w) of a point in three-dimensional space.

9. The configuration of three planes in space, whose cartesian equa-
bions are anrtapytagz=>5 (i=123),
is determined by the ranks of the matrices A4 == [a;,] and the augmented
matrix B (§4.1). Check the following results.

(i) When |ag| # 0, the rank of A is 3 and the three planes meet in
a finite point.

(ii) When the rank of 4 is 2 and the rank of B is 3, the planes have
no finite point of intersection.

The planes are all parallel only if every A4;; is zero, when the rank
of A is 1. When the rank of 4 is 2,

either (a) no two planes are parallel,
or (b) two are parallel and the third not.
Since |ag| = 0,
Ay 1A Ay = Ag i Agyi Agy = Ay 1 Ay Ays

(Theorem 12), and if the planes 2 and 3 intersect, their line of inter-
section has direction cosines proportional to 4,,, 4,,, 4,3. Hence in
(a) the planes meet in three parallel lines and in (b) the third plane
meets the two parallel planes in a pair of parallel lines.

The configuration is three planes forming a triangular prism; as a
special case, two faces of the prism may be parallel.

(iii) When the rank of 4 is 2 and the rank of B is 2, one equation
is a sum of multiples of the other two. The planes given by these two
equations are not parallel (or the rank of 4 would be 1), and so the
configuration is three planes having a common line of intersection.

(iv) When the rank of 4 is 1 and the rank of B is 2, the three planes
are parallel.

(v) When the rank of 4 is 1 and the rank of B is 1, all three equa-
tions represent one and the same plane.
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10. Prove that the rectangular cartesian coordinates (X, X,, X3) of
the orthogonal projection of (x;, Z,, ¥,) on a line through the origin having
direction cosines (I, l,, I;) are given by

X=[8 Ll Lz,
L, 1B 1l
Ly Lly 13
where X, x are single column matrices.

11. If L denotes the matrix in Example 10, and M denotes a corre-

sponding m matrix, show that
I? =L and M?=M
and that the point (L+ M)z is the projection of z on a line in the plane
of the lines I and m if and only if [ and m are perpendicular.

Norte. A ‘principal minor’ is obtained by deleting corresponding rows
and columns.



CHAPTER IX
DETERMINANTS ASSOCIATED WITH MATRICES

1. The rank of a product of matrices

1.1. Suppose that 4 is a matrix of n columns, and B a matrix
of » rows, so that the product 4 B can be formed. When 4 has
n, rows and B has n, columns, the product 4B has n, rows
and n, columns.

If a;, b, are typical elements of 4, B,

n
Cir = 2 ;b
i=1
is a typical element of AB.

Any ¢-rowed minor of 4B may, with a suitable labelling of
the elements, be denoted by

A=lecy ¢ - . ¢yl
Cap Cpp . . Oy
¢qp C2 - - Oy

When ¢ = n (this assumes that n, > n, n, > n), A is the
product by rows of the two determinants

a, . . G | by - - b s

bin - - b
that is, A is the product of a ¢-rowed minor of 4 by a ¢t-rowed
minor of B.

When ¢ 5 n, A is the product by rows of the two arrays

An1 - - Qup |

Q- Oy, R

ay .. by . . by
Hence (Theorem 15), when ¢ > n, A is zero; and when ¢ < n,
A is the sum of all the products of corresponding determinants
of order t that can be formed from the two arrays (Theorem 14).
Hence every minor of A B of order greater than n is zero, and
every minor of order ¢ < % is the sum of products of a ¢-rowed
minor of A by a t-rowed minor of B.
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Accordingly,

TuEOREM 33. The rank of a product AB cannot exceed the
rank of either factor.

For, by what we have shown, (i) every minor of AB with
more than n rows is zero, and the ranks of 4 and B cannot
exceed n, (ii) every minor of A B of order ¢ < n is the product
or the sum of products of minors of 4 and B of order . If all
the minors of A or if all the minors of B of order r are zero,
then so are all minors of A B of order 7.

1.2. There is one type of multiplication which gives a theorem
of a more precise character.

. THEOREM 34. If A has m rows and n columns and B is a non-
singular square matriz of order n,then A and AB have the same
rank; and if C 1s a non-singular square matrix of order m, then
A and CA have the same rank.

If the rank of A is r and the rank of 4B is p, thenp < r.
But 4 = AB.B-! and so r, the rank of 4, cannot exceed p and
n, which are the ranks of the factors 4 B and B-1. Hencep = r.

The proof for CA4 is similar.

2. The characteristic equation; latent roots

2.1. Associated with every square matrix A4 of order n is the
matrix A—AZ, where [ is the unit matrix of order n and A is
any number, real or complex. In full, this matrix is

a,—A  ag .. a,
Qg1 Ap—A . . Gy
nn —A

(2] a

nl a

n2
The determinant of this matrix is of the form

fQ) = (=1 +p, A1 4-pa), (1)
where the p, are polynomials in the n? elements a;;. The roots
of the equation f(A) = 0, that is, of

|A—AI |=0, (2)
are called the LATENT ROOTS of the matrix 4 and the equation
itself is called the CHARACTERISTIC EQUATION of 4.
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2.2. THEOREM 35. Every square matrix salisfies its own
characteristic equation ; that is, if
[A—Al| = (—1)"A"+p; A" .. 4Dy),
then Ardp A+ p, A+p, I = 0.

The adjoint matrix of 4A—AI, say B, is a matrix whose ele-
ments are polynomials in A of degree n—1 or less, the cocffi-
cients of the various.powers of A being polynomials in the a,,.
Such a matrix can be written as

By+ByA+...+ B, A"+ B, _ A1 (3)
where the B, are matrices whose elements are polynomials in
the a;.

Now, by Theorem 24, the product of a matrix by its ad-
joint = determinant of the matrix X unit matrix. Hence

(A—AD)B = |A—-AI|x 1
= (= 1)"A"+p A4 +pa) ],
on using the notation of (1). Since B is given by (3), we have
(A—AI)(By+ ByA+...+ B, _,A*-2+ B, _,A»1)
= (=1 py X1 )

This equation is true for all values of A and we may therefore
equate coefficientst of A; this gives us

_Bn—l = (—’l)nl (IBn—l = Bn—l)’
dBn—2+AB -1= (_1)"1’1[’
_Bn—3+ABn—-2 = (_l)np2 I,

_Bo+ABl = ("’1)" n—1 I,
ABy = (—1yp,I.

t We may regard the equation as the conspectus of the n? equations
(@ —A84) (B + ...+ b~V A1)
= (“l)'(/\"+1’1'\"_1+---+?..)8a (Z, k=1,., ”)1

so that the equating of coefficients is really the ordinary algebraical procedure
of equating coefficients, but doing it n* times for each power of A.
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Hence we have
Ar+p AP Ppg A+ 1
= ArI+Arp, I+..+A.py_ I+p, I
= (—1){—A"B, ,+ A" Y(—B, ,+AB, ) +...+

. +A(—By+AB,)+ABy)

2.3. If A, A,,..., A, are the latent roots of the matrix 4, so
that [A=M| = (—1)"A=2)A—=Ay)...A=2,)
= (_l)n()\n_*_plAn—l_*_:_._{_pn)’
it follows that (Example 13, p. 81),
A=\ I)(A—2I)..( A=A, I) = A+p, A"+ +p, I = 0.

It does not follow that any one of the matrices A—A, I is the
zero matrix.

3. A theorem on determinants and latent roots

3.1. TuEorREM 36. If ¢(t) is a_polynomial in t, and A is a
square matrix, then the determinant of the matrix g(A) is equal to
the product gA)I).g(A,),
where Ay, A,,..., A, are the latent roots of A.

Let g@t) = c(t—t,)...(¢—1,,),
so that g(A) = c(4—t, I)..(A—t, I).
Then, by Chapter VI, § 10,

g(A)| =c|d—t I|x..x|A—t, 1]
— (= 1)™enf(t,)... f(t)

= o 131 (A —1y)... H1 M—tn)
= 7I:IIg(A,)-

The theorem also holds when g(4) is a rational function
g1(4)/g,(A) provided that g,(4) is non-singular.
3.2. Further, let g,(4) and g,(4) be two polynomials in the
matrix 4, g,(A4) being non-singular. Then the matrix
M —{g,(4)/g:(4)},
that is {Ag.(4)—g,(4)}/g.(4),
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is a rational function of 4 with a non-singular denominator
g,(4). Applying the theorem to this function we obtain, on
writing ¢,(4)/g,(4) = g(4),

MI—g(4)| = 1_1 D—g(M)}.

From this follows an important result:

THEOREM 36. COROLLARY. If A,,..., A, are the latent roots of
the matrix A and g(A) i3 of the form g,(A)/g,(A), where g,, g, are
polynomials and g,(A) 18 non-singular, the latent roots of the
matrixz g(A) are given by g(A,).

4. Equivalent matrices

4.1. Elementary transformations of a matrix to stan-
dard form.

DerNiTION 18. The ELEMENTARY TRANSFORMATIONS of @
malrix are

(i) the interchange of two rows or columns,

(ii) the multiplication of each element of a row (or column) by
a constant other than zero,

(ili) the addition to the elements of one row (or column) of a
constant multiple of the elements of another row (or column).

Let A be a matrix of rank r. Then, as we shall prove, it can
be changed by elementary transformations into a matrix of the

form [ 1 0 ]

where I denotes the unit matrix of order r and the zeros denote
null matrices, in general rectangular.

In the first place,t elementary transfor.nations of type (i)
replace 4 by a matrix such that the minor formed by the
elements common to its first r rows and r columns is not equal
to zero. Next, we can express any other row of 4 as a sum of
multiples of these r rows; subtraction of these multiples of the
r rows from the row in question will theréfore give a row of
zeros. These transformations, of type (iii), leave the rank of the

t+ The argument that follows is based on Chapter VIII, § 3.
4703 Q
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matrix unaltered (cf. Examples IX, 1) and the matrix now
before us is of the form

Bl

where P denotes a matrix, of r rows and columns, such that
|P| # 0, and the zeros denote null matrices.

By working with columns where before we worked with rows,
this can be transformed by elementary transformations, of type

(iii), to Plon
["6'§'6‘]
Finally, suppose P is, in full,
a, by ¢ . . I
ay, by ¢ . . ky
a, b, ¢ . . k

Then, again by elementary transformations of types (i) and
(iii), P can be changed successively to

ra, 0 0 . . 07,
a B Y2 - - Ky
L4, Br Yr - - K
@, O 0 . . 07,
0 B 0 . . O
@, B ¢ . . K

and so, step by step, to a matrix having zeros in all places other
than the principal diagonal and non-zerost in that diagonal.

A final series of elementary transformations, of type (ii),
presents us with I, the unit matrix of order .

4.2. As Examples VII, 18-20, show, the transformations
envisaged in §4.1 can be performed by pre- and post-multiplica-
tion of A by non-singular matrices. Hence we have proved that

+ If a diagonal element were zero the rank of P would be less than r: all
these transformations leave the rank unaltered.
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when A 18 a matriz of rank r, there are non-singular matrices
B and C such that BAC = I,

where I, denotes the unit matrix of order r bordered by null
matrices.

4.3. DeFINITION 19. Two matrices are EQUIVALENT if it is
possible to pass from one to the other by a chain of elementary
transformations.

If A, and A, are equivalent, they have the same rank and
there are non-singular matrices B,, B,, (), C, such that
B, A,C, = 1, = B, A4,C,.
From this it follows that
A, = B{'B,4,C,C;t
= LA, M,
say, where L = By 1B, and so is non-singular, and M = C, Cy?
and is also non-singular.

Accordingly, when two matrices are equivalent each can be
obtained from the other through pre- and post-multiplication
by non-singular matrices.

Conversely, if 4, is of rank r, L and M are non-singular
matrices, and A, = LA, M;

then, as we shall prove, we can pass from 4, to 4,, or from
A, to A,, by elementary transformations. Both 4, and A4, are
of rank r (Theorem 34). We can, as we saw in §4.1, pass from
4, to I, by elementary transformations; we can pass from 4,
to I, by elementary transformations and so, by using the inverse
operations, we can pass from I, to 4, by elementary trans-
formations. Hence we can pass from A4, to 4,, or from 4, to
A,, by elementary transformations.

4.4. The detailed study of equivalent matrices is of funda-
mental importance in the more advanced theory. Here we
have done no more than outline some of the immediate con-
sequences of the definition.}

+ The reader who intends to pursue the subject seriously should consult
H. W. Turnbull and A. C. Aitken, An Introduction to the Theory of Canonical
Matrices (London and Glasgow, 1932).
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CHAPTER X
ALGEBRAIC FORMS: LINEAR TRANSFORMATIONS

1. Number fields
We recall the definition of a number field given in the pre-
liminary note.

DErFINITION 1. A set of numbers, real or complex, is called
a FIELD of numbers, or a number field, when, if r and s belong
to the set and s 18 not zero,

r+8, r—s8, rxs, r--8
also belong to the set.
Typical examples of number fields are

(i) the field of all rational] real numbers (&, say);
(ii) the ficld of all real numbers;
(iii) the field of all numbers of the form a+b+5, where a and
b are rational real numbers;
(iv) the field of all complex numbers.

Every number field must contain each and every number
that is contained in §, (example (i) above); it must contain 1,
since it contains the quotient «/a, where « is any number of
the set; it must contain 0, 2, and every integer, since it contains
the difference 1—1, the sum 141, and so on; it must contain
every fraction, since it contains the quotient of any one integer
by another.

2. Linear and quadratic forms

2.1. Let § be any field of numbers and let a;, b;;,... be deter-
minate numbers of the field; that is, we suppose their values
to be fixed. Let z,, ¥,,... denote numbers that are not to be
thought of as fixed, but as free to be any, arbitrary, numbers
from a field §&,, not necessarily the same as §. The numbers
@, byg,... we call CONSTANTS in §; the symbols z,, y,,... we call
VARIABLES in {;.

An expression such as

n
2 04 %; (1)
J)=1
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is said to be a LINEAR FORM in the variables z;; an expression

such as
‘Zl 12 AT Y; (2)

is said to be a BILINEAR FORM in the variables z; and y;; an
expression such as

Z Z ayx,x; (2= ay) (3)

t=]1 fm
is said to be a QUADRATIC FORM in the variables z,. In each
case, when we wish to stress the fact that the constants a
belong to a certain field, § say, we refer to the form as one
with coefficients in .

A form in which the variables are necessarily real numbers
is said to be a ‘FORM IN REAL VARIABLES’; one in which both
coefficients and variables are necessarily real numbers is said
to be a ‘REAL FORM’.

2.2. It should be noticed that the term ‘quadratic form’ is
used of (3) only when a,; = a;;. This restriction of usage is
dictated by experience, which shows that the consequent theory
is more compact when such a restriction is imposed.

The restriction is, however, more apparent than real: for an
expression such as

Z E by 2y,

i=1j=

wherein b;; is not always the same as b,;, is identical with the

quadratic form n

2 Z ayr.x; (8 = ay)

i=1j=1

when we define the a’s by means of the equations
a; = by, Ay = Ay = i(btﬂ‘bﬂ)

For cxample, z2+ 3xzy+2y? is a quadratic form in the two
variables z and y, having coefficients

a, =1 Age = 2, a1y = aq = .

2.3. Matrices associated with linear and quadratic
forms. The symmetrical square matrix 4 = [a,], having a,,
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in its ¢th row and jth column, is associated with the quadratic
form (3): it is symmetrical because a;; = a;, and so 4 = 4’,
the transpose of 4.

In the sequel it will frequently be necessary to bear in mind
that the matrix associated with any quadratic form is a sym-
metrical matrix.

We also associate with the bilinear form (2) the matrix [a,]
of m rows and n columns; and with the linear form (1) we
associate the single-row matrix [a;,...,a;,]. More generally,
we associate with the m linear forms :

ji a;x; (2=1,.,m) (4)

the matrix [a;;] of m rows and n columns.

2.4. Notation. We denote the associated matrix [a;,] of any
one of (2), (3), or (4) by the single letter 4. We may then
conveniently abbreviate

the bilinear form (2) to A(x,y),
the quadratic form (3) to A(z,x),
and the m linear forms (4) to Az.

The first two of these are merely shorthand notations; the third,
though it also can be so regarded, is better envisaged as the
product of the matrix 4 by the matrix x, a single-column matrix
having #,..., , as elements: the matrix product Az, which has
as many rows as 4 and as many columns as z, is then a single-
column matrix of m rows having the m linear forms as its
elements.

2.5. Matrix expressions for quadratic and bilinear
forms. As in §2.4, let « denote a single-column matrix with
elements z,,..., «,: then a’, the transpose of z, is a single-row
matrix with elements z;,..., z,.

Let A denote the matrix of the quadratic form > ¥ a,,2,z,.
Then Az is the single-column matrix having

Ay 21+ ... Fa,, 2,

as the element in its rth row, and z’Ax is a matrix of one row
4702 B
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(the number of rows of ') and one column (the number of
columns of Ax), the single element being

n n n

2 xr(ar1x1+"'+arnxn) = z 2 g Ty Xge

r=1 r=18=1
Thus the quadratic form is represented by the single-element
matrix 2’ Ax.

Similarly, when « and y are single-column matrices having

Zyyeery T, and yy,..., Y, as row elements, the bilinear form (2) is
represented by the single-element matrix «’Ay.

2.6. DEFINITION 2. The DISCRIMINANT of the quadratic form

n n
2 Yaywwy (ay = ay)
1=17=1
18 the determinant of its coefficients, namely |a,;|.

3. Linear transformations
3.1. The set of equations

n
‘Xi :jglaﬁxj (7: b 1,-": n)) (l)

wherein the a;; are given constants and the z; are variables, is
said to be a linear transformation connecting the variables x; and
the variables X;. When the a,; are constants in a given field §
we say that the transformation has coefficients in §; when the
a,; are real numbers we say that the transformation is real.

DEerINITION 3. The determinant |a;|, whose elements are the
coefficients a; of the transformation (1), is called the MODULUS OF
THE TRANSFORMATION.

DEeFINITION 4. A transformation is said to be NON-SINGULAR
when its modulus 13 not zero, and 18 said to be SINGULAR when
1t8 modulus is zero.

We sometimes speak of (1) as a transformation from the
z; to the X, ; or, briefly, z > X.

3.2. The transformation (1) is most conveniently written as

X = Az, 2)
a matrix equation in which X and z denote single-column
matrices with elements X,...., X,, and «,,..., z, respectively,
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A denotes the matrix (a;;), and Az denotes the product of the
two matrices 4 and x.

When A is a non-singular matrix, it has a reciprocal 4-!
(Chap. VII, §3) and
A1X = A-1Ax =z, (3)

which expresses 2 directly in terms of X. Also (4-1)-1= A4,
and so, with a non-singular transformation, it is immaterial
whether it be given in the form x - X or in the form X — x.
Moreover, when X = Az, given any X whatsoever, there is one
and only one corresponding z, and it is given by = 4-1X.
When A4 is a singular matrix, there are X for which no corre-
sponding « can be defined. For in such a case, r, the rank of
the matrix 4, is less than n, and we can select r rows of 4 and
express every row as a sum of multiples of these rows (Theorem
31). Thus, the rows being suitably numbered, (1) gives relations

X, =3.X, (k=r+1,., ), (4)
i=1

wherein the [,; are constants, and so the set X,,..., X, is limited
to such sets as will satisfy (4): a set of X that does not satisfy
(4) will give no corresponding sev of x. For example, in the
linear transformation

X = 2z+ 3y, Y = 4z} 6y,
which has the singular matrix (i 2), the pair X, Y must satisfy

the relation 2X = Y; for any pair X, Y that does not satisfy
this relation, there is no corresponding pair z, y.

3.3. The product of two transformations. Let z, y, z be
‘numbers’ (Chap. VI, §1), each with #» components, and let all
suffixes be understood to run from 1 to ». Use the summation
convention. Then the transformation

may be written as a matrix equation x = Ay (§3.2), and the
b
transformation y; = by @)

mav be written as a matrix equation y = Bz.
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If in (1) we substitute for y in terms of z, we obtain
x; = a;by 2, (3)
which is a transformation whose matrix is the product AB
(compare Chap. VI, §4). Thus the result of two successive
transformations * = Ay and y = Bz may be written as
x = ABz.

Since AB is the product of the two matrices, we adopt a
similar nomenclature for the transformations themselves.

DEeriNiTION 5. The transformation x = ABz s called the
PRODUCT OF THE TWO TRANSFORMATIONS z = Ay, y = Bz. [It
18 the result of the successive transformations x = Ay, y = Bz.]

The modulus of the transformation (3) is the determinant
la;;b;,], that is, the product of the two determinants |4| and
|B|. Similarly, if we have three transformations in succession,

x = Ay, y = Bz, 2z = Cu,
the resulting transformation is x = A BCu and the modulus of
this transformation is the product of the three moduli |4, | B|,
and | C|; and so for any finite number of transformations.

4. Transformations of quadratic and bilinear forms
4.1. Consider a given transformation

n
xi =kzlbika (i - l,..., n) (1)
and a given quadratic form
n n
Az, ) :igl jg:laij x,x; (@ = ay). (2)

When we substitute in (2) the values of z,,..., z, given by (1),
we obtain a quadratic expression in X,,..., X,,. This quadratic
expression is said to be a transformation of (2) by (1), or the
result of applying (1) to the form (2).

TueoreEM 37. If a transformation x = BX 13 applied to a
quadratic form A(z,x), the result is a quadratic form C(X,X)
whose matriz C is given by

C = B'AB,
where B’ is the transpose of B.
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First proof—a proof that depends entirely on matrix theory.
The form A(x,x) is given by the matrix product #’Az (com-
pare § 2.5). By hypothesis, z = BX, and this implies 2’ = X'B’
(Theorem 23). Hence, by the associative law of multiplication,
2¥’Ax = X'B'ABX
= X'CX, (3)
where C denotes the matrix B’4AB.

Moreover, (3) is not merely a quadratic expression in
X,,..., X,, but is, in fact, a quadratic form having c;; = c;;.
To prove this we observe that, when ¢ = B’AB,

C' = B’A’B (Theorem 23, Corollary)
= B’AB (since 4 = 4’)
that is to say, ¢; = ¢;;.

Second proof—a proof that depends mainly on the use of the
summation convention.

Let all suffixes run from 1 to » and use the summation con-
vention throughout. Then the quadratic form is

QT (A = ). (4)

The transformation x, = by X, (5)
expresses (4) in the form

e X Xp (6)

We may calculate the values of the ¢’s by carrying out the

actual substitutions for the z in terms of the X. We have
@y %, %y = by Xy 0y X)
= by.a;;0; X, X,
80 tha/t ckl = bikaij bﬂ == b;’cia,—j bjl’
where bj; = b, is the element in the kth row and ith

column of B’. Hence the matrix C of (6) is equal to the

matrix product B’4 B.
Moreover, ¢;; = cy; for, since a;; = a;;, we have

ey = by @i;65 = by sy,
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and, since both s and j are dummies,

b5 by = bya;;by,
which is the same sum as b, a;;b;; or ¢;. Thus (6) is a quadratic
form, having ¢;; = cy.

4.2. Turorem 38. If transformations x = CX, y = BY are
applied to a bilinear form A(z,y), the result is a bilinear form
D(X,Y) whose matriz D is given by

D = C'AB,
where C' 18 the transpose of C.

First proof. As in the first proof of Theorem 37, we write
the bilinear form as a matrix product, namely 2’4y. It follows
at once, since 2’ = X'C’, that

2’Ay = X'C"ABY = X'DY,
where D = C'AB.

4.3. Second proof. This proof is given chiefly to show how
much detail is avoided by the use of matrices: it will also serve
as a proof in the most elementary form obtainable.

The bilinear form
m

A(x,y) = Z Zﬂ a;;%;Y; (1)

. i=17j=1
may be written as

A(z,y) =i§1li Zyy L =j=21aijyj'

Transform the y’s by putting

yj = z bjkY;c (j = l""’ n);

k=1
n n
m n n
and A(x,y) = 2 2 ( 2 4y bjk)xt Y. (2)
i=1k=1'Y=1

The matrix of this bilinear form in x and Y has for its element
in the ith row and kth column

i b
a .
i~ i %5k

This matrix is therefore 4B, where 4 is [a,;] and B is [b;].
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Again, transform the z’s in (1) by putting
x; =1§16”‘Xk (¢t =1,..,m),
~ and leave the y’s unchanged. Then

m n
Az, y) = 2 jzlaijxiyi

Z ( 2 Czk“u)xk?/;

kl)l

m
The sum 3 c;a;; is the inner product of the ¢th row of
i=1

[Cu Cm1 |
Cim Crmm ]
by the jth column of
[a’ll aln ]
A1 A
Now (5) is the transpose of
[cn e e ]
Cm1 - - - Cpml

127

3)

(4)

(6)

that is, of C, the matrix of the transformation (3), while (6) is
the matrix A of the bilinear form (1). Hence the matrix of the

bilinear form (4) is C’'A4.

The theorem follows on applying the two transformations in

succession.

4.4. The discriminant of a quadratic form.
THEOREM 39. Let a quadratic form

Zl Zlaux x; (ay; = ay)

be transformed by a linear transformation

xi == i lika (7: = 1,..., n)
k=1

1)
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whose modulus, that is, the determinant |l |, s equal to M; let
the resulting quadratic form be

n n
i:_z-l j;lcij X; Xy (e = ). (2)

Then the discriminant of (2) is M? times the discriminant of (1),
wn symbols loy| = M2ja)|. 3)

The content of this theorem is usefully abbreviated to the
statement ‘WHEN A QUADRATIC FORM IS CHANGED TO NEW
VARIABLES, THE DISCRIMINANT IS MULTIPLIED BY THE SQUARE
OF THE MODULUS OF THE TRANSFORMATION .

The result is an immediate corollary of Theorem 37. By that
theorem, the matrix of the form (2) is C = L'A L, where L is
the matrix of the transformation. The discriminant of (2), that
is, the determinant |C|, is given (Chap. VI, §10) by the product
of the three determinants |L’|, |4], and |L].

But |L| = M, and since the value of a determinant is
unaltered when rows and columns are interchanged, |L’| is
also equal to M. Hence

|C| = M2|A4]|.
This theorem is of fundamental importance ; it will be used

many times in the chapters that follow.

5. Hermitian forms

5.1. In its most common interpretation a HERMITIAN BI-
LINEAR FORM is given by

n n
Z z a;;%: Yy (1)
1=17=1

wherein the coefficients @;; belong to the field of complex num-
bers and are such that

The bar denotes, as in the theory of the complex variable, the
conjugate complex; that is, if z = «+if, where « and B are real,
then Z = a—1B.
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The matrix A of the coefficients of the form (1) satisfies the
condition A4’ = 4. @)

Any matrix 4 that satisfies (2) is said to be a HERMITIAN
MATRIX.

5.2. A form such as

S 3 ayus; (ap=ay
A X: X ; a;, = A;;
g, 9TETTE Y
is said to be a HERMITIAN FORM.
The theory of these forms is very similar to that of ordinary
bilinear and quadratic forms. Theorems concerning Hermitian

forms appear as examples at the end of this and later chapters.

6. Cogredient and contragredient sets

6.1. When two sets of variables z,,..., z, and ¥,,..., ¥, are
related to two other sets X,,..., X,, and Y,,..., Y, by the same
transformation, say

z=AX, y =AY,
then the two sets x and y (equally, X and Y) are said to be
cogredient sets of variables.

If a set 2,,..., 2, is related to a set Z,,..., Z, by a transforma-
tion whose matrix is the reciprocal of the transpose of 4, that is,
2= (47, or Z= Az
then the sets z and 2z (equally, X and Z) are said to be contra-

gredient sets of variables.

Examples of cogredient sets readily occur. A transformation
in plane analytical geometry from one triangle of reference to
another is of the type

z=0LX+mY+n, Z,

y=0LX+m,Y+n,2Z, (1)

2=l X4+msY+n;Z.
The sets of variables (z,,¥,,2,) and (z,,¥,, 2,), regarded as the
coordinates of two distinct points, are cogredient sets: the
coordinates of the two points referred to the new triangle
of reference are (X,, Y;, Z,) and (X,, Y;, Z,), and each is
obtained by putting in the appropriate suffix in the equa-
tions (1).

4702 s
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Analytical geometry also furnishes an important example of
contragredient sets. Let
le+my—+nz =0 (2)
be regarded as the equation of a given line « in a system of
homogeneous point-coordinates (z, y, z) with respect to a given
triangle of reference. Then the line (tangential) coordinates of
« are (I, m, n). Take a new triangle of reference and suppose
that (1) is the transformation for the point-coordinates. Then

(2) becomes LX+MY4NZ =0,
where L= Liltlmtlyn,
M = ml4+m,m-+mgyn, (3)

N = n;l4+nym-+tngn.

The matrix of the coefficients of [, m, n in (3) is the transpose
of the matrix of the coeflicients of X, ¥, Z in (1). Hence point-
coordinates (z, ¥, z) and line-coordinates (I, m, n) are contra-
gredient variables when the triangle of reference is changed.
[Notice that (1) is X, Y, Z—>=z, y, z whilst (3) is [, m, n >
L, M, N.]

The notation of the foregoing becomes more compact when
we consider n dimensions, a point x with coordinates (z,,..., x,),
and a ‘flat’ [ with coordinates (/;,..., [,). The transformation
x = AX of the point-coordinates entails the transformation
L = A'l of the tangential coordinates.

6.2. Another example of contragredient sets, one that con-
tains the previous example as a particular case, is provided by
differential operators. Let F(z,,...,x,) be expressed as a func-
tion of X,,..., X, by means of the transformation x = AX,
where A denotes the matrix [a;;]. Then

oF  oF ox; < oF
oX; Lo ok, o Towy

1=

That is to say, in matrix form, if r = AX,
7] 0
—_=A .
oX ox

Accordingly, the z; and the ¢/ox; form contragredient sets.



ALGEBRAIC FORMS: LINEAR TRANSFORMATIONS 131

7. The characteristic equation of a transformation
7.1. Consider the transformation X = Ax or, in full,

Xi:ia”xj (t=1,.., n). (1)
<1

Is it possible to assign values to the variables « so that
X, = Ax; (¢t =1,..., n), where A is independent of ¢7 If such
a result is to hold, we must have

n
Az; =j§1aﬁxj (¢t =1,..., n), (2)

and this demands (Theorem 11), when one of z,..., z, differs
from zero, that A be a root of the equation

AQ) =1 a;—A  ayp, .. a,, |=0.
Qs Ayo—A . . a,, (3)
% Ay . . alL7z_>‘

This equation is called the CHARACTERISTIC EQUATION of the
transformation (1) ; any root of the equation is called a CHARAC-
TERISTIC NUMBER Or a LATENT ROOT of the transformation.

If A is a characteristic number, there is a set of numbers
Zy,..., &,, not all zero (Theorem 11), that satisfy equations (2).
Let A —= A, a characteristic number. If the determinant A(A;)
is of rank (n—1), there is a unique corresponding set of ratios,

sa
y Va2l

that satisfies (2). If the rank of the determinant A(A,) is n—2
or less, the set of ratios is not unique (Chap. VIII, §5).

A set of ratios that satisfies (2) when A is equal to a charac-
teristic number A, is called a POLE CORRESPONDING TO A,.

7.2, If (x,,ya5) and (X, X,, X;3) are homogencous co-
ordinates referred to a given triangle of reference in a plane,
then (1), with |4] # 0, may be regarded as a method of
generating a one-to-one correspondence between the variable
point (x;,z,,2;) and the variable point (X, X, X;3). A pole
of the transformation is then a point which corresponds to
itself.



132 ALGEBRAIC FORMS: LINEAR TRANSFORMATIONS

We shall not elaborate the geometrical implicationst of such
transformations; a few examples are given on the next page.

ExampLEs X

1. Prove that all numbers of the form a+4bv3, where a and b are
integers (or zero), constitute a ring; and that all numbers of the form
a-+bv3, where a and b are the ratios of integers (or zero) constitute a
field.

2. Express ax?®+ 2hxy-+by? as a quadratic form (in accordance with
the definition of § 2.1) and show that its discriminant is ab—h? (§ 2.6).

3. Write down the transformation which is the product of the two
transformations

z=lLf+mn+nl =X+, Y+ 2
y=l2§+m27}+nzc ’ 7)=A2X+#2Y+V2Z .
z=lsf+m,7’+n3§ C=A3X+;43Y+V3Z

4. Prove that, in solid geometry, if i, j;,k; and i,, j,, k, are two unit
frames of reference for cartesian coordinates and if, for r = 1, 2,

ir/\jr'—"kr’ P Ak =1, k, A, =]
then the transformation of coordinates has unit modulus.
[Omit if the vector notation is not known.]
5. Verify Theorem 37, when the original quadratic form is
ax® -+ 2hxy + by?
and the transformation is x =, X+m,Y, y = [, X+m,Y, by actual

substitution on the one hand and the evaluation of the matrix product
(B’A B of the theorem) on the other.

6. Verify Theorem 38, by the method of Example 5, when the
bilinear form is

)1 2:1Y,+ 01371 Ya T8 Xy Yy + Apa Xa Y.

7. The homogeneous coordinates of the points D, E, F referred to
ABC as triangle of reference are (z,,¥;,2,), (%3, ¥a,2g), and (%3, ys, 23)-
Prove that, if (I,m,n) are line-coordinates referred to ABC and
(L, M, N) are line-coordinates referred to DEF, then

Al = X, L+X,M+X,N, etc.,

where A is the determinant |z, ¥, z;| and X,,... are the co-factors of
Z,,... in A.

Hint. First obtain the transformation z, y, 2z — X, Y, Z and then
use § 6.1.

t Cf. R. M. Winger, An Introduction to Projective Geometry (New York,
1922), or, for homogeneous coordinates in three dimensions, G. Darboux,
Principes de géométrie analytique (Gauthier-Villars, Paris, 1917).
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8. In the transformation X = Az, ncw variables Y and y, detined by
y = Bz, Y = BX (|B| # 0),
are introduced. Prove that the transformation Y —y is given by
Y = Cy, where C = BAB™L

9. The transformations x = BX, y = BY change the Hermitiant

a,;x;y; (with A’ = A)into ¢;; X;¥;. Prove that
C = B'AB, ¢’'=B'A'B = C.

10. Prove that the transformation x = BX, together with its conju-
gate complex & = BX, changes a;;z;%; (4’ = A4) into ¢;; X; X; (C' = C),
where C = B'AB.

11. The elements of thc matrices 4 and B belong to a given field §.
Prove that, if the quadratic form A(z,z) is transformed by the non-
singular transformation z = BX (or by X = Bz) into C(X, X), then
every coefficient of C belongs to {.

12. Prove that, if each z, denotes a complex variable and a,, are com-
plex numbers such that a,, = d,, (r = 1,...,n; 8 = 1,...,n), the Hermitian
form a,,x, %, is a real number.

[Examples 13-16 are geometrical tn character.]

13. Prove that, if the points in a plane are transformed by theo

scheme
' = a,x+b,y+c,z, Yy = agx+byy+cy2,
2' = a;x+byy+cyz,

then every straight line transforms into a straight line. Prove also that
there arc in general three points that are transformed into themselves
and three lines that are transformed into themselves.

Find the conditions to be satisfied by the coefficients in order that
every point on a given line may be transformed into itself.

14. Show that the transformation of Example 13 can, in general, by a
change of triangle of reference be reduced to the form

X" = oX, Y’ = fY, Z' = yZ.
Hence, or otherwise, show that the transformation is a homology (plane
perspective, collineation) if a value of A can be found which will make

a,—A b ¢
a;  by—A ¢
ag by c—A

of rank one.

Hint. When the determinant is of rank one there is a line [ such that
every point of it corresponds to itself. In such a case any two correspond-
ing lines must intersect on I.

t+ The summation convention is employed in Examples 9, 10, and 12.
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15. Obtain the cyuations giving, in two dimensions, tho homology
(collincation, plane perspective) in which the point (xj,y;,2;) is the
centre and the hne (1], 13, ;) the axis of the homology.

16. Points in a plane are transformed by the scheme

z' = pr+oldr+py-tvz),
¥ = py+PAx +py+z),
2’ = pz+y(Az+py +vz).
Find the points and lines that are transformed into themselves.

Show also that the transformation is involutory (i.e. two applications

of it restore a figure to its original position) if and only if
20+oA+Bu+yv = 0.
[Remember that (kx', ky’, kz’) 1s the same point as (z’,y’,2’).]



CHAPTER XI
THE POSITIVE-DEFINITE FORM

1. Definite real forms
1.1. DEFINITION 6. The real quadratic form
n n
3 Z a;xx; (4 = ay)
i1=1j=1
s said to be POSITIVE-DEFINITE if it i3 positive for every set of
real values of x,,..., x, other than the set x, — x, = ... = x, = 0.
It is said to be NEGATIVE-DEFINITE if it i8 negative for every set
of real values of z,,..., x, other than x, = x, = ... = x, = 0.
For example, 3234-2x% is positive-definite, while 32} — 2z} is
not positive-definite; the first is positive for every pair of real
values of z; and x, except the pair z; = 0, x, = 0; the second
is positive when x; = x, = 1, but it is negative when z; =1
and z, = 2, and is zero when z; = v2 and z, = V3.
An example of a real form that can never be negative but
is not positive-definite, according to the definition, is given by

(32, —2x,)%*+ 4x3.
This quadratic form is zero when x; = 2, x, = 3, and 23 = 0,
and so it does not come within the scope of Definition 6. The
point of excluding such a form from the definition is that,
whereas it appears as a function of three variables, z;, x,, 3,
it is essentially a function of two variables, namely,

X, = 3x,—2x,, X, = z,.
A positive-definite form in one set of variables is still a
positive-definite form when expressed in a new set of variables,

provided only that the two sets are connected by a real non-
singular transformation. This we now prove.

TuroreM 40. A real positive-definite form in the n variables
Xy,..., X, Us 4 positive-definate form in the n variables X,,..., X,

provided thal the two sets of variables are connected by a real,
non-singular transformation.

Let the positive-definite form be B(r,x), and let the real
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non-singular transformation be X = Az. Thenx = A-1X. Let
B(z,z) become C(X, X) when expressed in terms of X.

Since B(z,x) is positive-definite, C(X, X) is positive for every
X save that which corresponds to x = 0. But X = Az, where
A is a non-singular matrix, and so X = 0 if and only if z = 0.
Hence C(X, X) is positive for every X other than X = 0.

Note. The equation & = 0 is a matrix equation, x being a single-
column matrix whose clements are x,,..., z,,.

1.2. The most obvious type of positive-definite form in »n
iables i
varables 1S apait.ta,,2i (@, >0).
We now show that every positive-definite form in n variables
is a transformation of this obvious type.

THEOREM 41. Every real positive-definite form, B(x, x), can be
transformed by a real transformation of unit modulus into a form

ey X3+ +c,, X2
wherein each c,, 18 positive.
The manipulations that follow are typical of others that occur
in later work. Here we give them in detail; later we shall refer
back to this section and omit as many of the details as clarity

permits.
Let the given positive-definite form be

n n
B(z, ) Ei; zlbﬁxi z; (by = by)

n n
= zbrrxrg'*—zzbrsxrxs' (1)
r=1 r<s
The terms of (1) that involve z, are
by 23 4+-2b, 2y 2+ 20y, 2 2. (2)
Moreover, since (1) is positive-definite, it is positive when 2, =1
and z, = ... = x, = 0; hence b;; > 0. Accordingly, the terms
(2) may be written ast
b b 2
11(x1+ A2yt + 1 ) b — (bra %yt ..+, 7,)3,
1n

t It is essential to this step that by, is not zero.
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and so, if b b
X, = 2 4 Ba,+...+ 0z,
! Tyt by " (3)
X, =2z (r=2,.,n)
we have
B(x,x) = by; X2+ a quadratic form in X,,..., X
= b11X12. + 2 z BrerXv (4)
r==28=2
say.

The transformation (3) is non-singular, the determinant of
the transformation being

L obi/byy - o byyfby | =1
0 1 . 0
0 0 . 1

Hence (Theorem 40) the form (4) in X is positive-definite and
Baz > 0 (put X, =1, X, = 0 when r # 2).
Working as before, we have

2
B(x,x) = buX¥+322(X2+@X3+‘-'+@Xn) +

22 22
-+ a quadratic form in X,,..., X,.

Let this quadratic form in Xj,..., X, be 3 > y,, X, X; then, on
writing
Y =X,

¥,= X, +Pex 4oy, (5)
B22 22
Y, =X, (r=3,..,n),
we have

B(x,x) = bll Y%‘I_BZZ Y%"'rga ga'yrsy;ys' (6)

The transformation (5) is of unit modulus and so, by Theorem
40 applied to the form (4), form (6) is positive-definite and
yss > 0 (put Y3 =1, Y, = 0 when r 5 3).

Working as before, we obtain as our next form

by Z3+Bos Zi+ys3 Z3+ a quadratic form in Z,,..., Z,, (7)

wherein b,;, Bys, 33 are positive. As a preparation for the next
4702 T
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step, the coefficient of Z; can be shown to be positive by proving
that (7) is a positive-definite form. Moreover, we have

Z, =Y, =X, —x1+bu

Z, =Y, = x,+ gf_sxs_*_ +ﬂ2n

Zy = xa—{-y’“a +.. -i—‘}—/—"llx

V33

Z,=Y=X,=2x (r>3)

ﬁ Tys
22

x2_+_ + ln

Proceeding step by step in this way, we finally obtain

g

(9)

B, x) = by £1+ B E3+vss €3+ + 0 €7, (8)
wherein b,;,..., «,, are positive, and
b b
& =x+ 12“’2‘*‘ + iy
§2 = 1'2+.‘.+—B—-21!x7
Boe
§n = Ly )

We have thus transformed B(x,z) into (8), which is of the
form required by the theorem; moreover, the transformation

x — £ is (9), which is of unit modulus.

2. Necessary and sufficient conditions for a positive-

definite form

2.1. THEOREM 42. A set of necessary and sufficient conditions

that the real quadratic form

gl jz @y 22y (@ = ay)
be positive-definite is
a,; >0,

a,, a, | >0, ey a;,

g Qg

(1)
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If the form is positive-definite, then, as in §1.2, there is a
transformation

X, _x1+ xz’i" + Yny

Xg——‘_ x2+ +gz: n»

X’IL = xn’

of unit modulus, whereby the form is transformed into
a11X§+322X§+“'+KnnX12L! (2)
and in this form a,;, Bss,..., K, are all positive. The discriminant

of the form (2) is a;; By -.- x,,. Hence, by Theorem 39,

Ay - .y | =y Bay e K

a’n 1

nn
and so is positive.

Now consider (1) when z, = 0. By the previous argument
applied to a form in the n—1 variables z,,..., z,_,,

@y - . Gy,q | = 5 By ... to n—1 terms

an-l,l . . an—l.n—-l [
and so is positive.
Similarly, on putting x,, = 0 and z,,_; = 0,

ay . . Gy | = @y Bgy ... to n—2 terms,

an—?.l . . a -2,n-2

and so on. Hence the given set of conditions is necessary.
Conversely, if the set of conditions holds, then, in the first
place, a;; > 0 and we may write, as in §1.2,

2
A, x) = all(xl—* 222+ +~h—'x ) +

+a quadratic form in z,,..., x,

= ay X}+Ba X3+ A Bun Xa+2Bgs Xp X+, (3)
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say, where

a
X, = x1+—~xo+...+ g,
an

Xk = :L'k (k > l).
Before we can proceed we must prove that B,, is positive.
Consider the form and transformation when z;, = 0 for k > 2.
The discriminant of the form (3) is then a;; B,,, the modulus
of the transformation is unity, and the discriminant of

2 2
Ay X342, ) Xy +0yp T3

is a,, a,,—a%,. Hence, by Theorem 39 applied to a form in the
two variables «; and z, only,

— 2
ayy Boy = Qyy Ay —07,
and so is positive by hypothesis. Hence B,, is positive, and we
may write (3) as

a,, Y3+ B,, Y3+ a quadratic form in Yj,..., ¥,,,

where Y, —

1

o Xt X g Ko

Y, =X, (k>2).
That is, we may write
A@,x) = ay Yi+Bon Y3ty Vit . +2vsuYaYot.,  (4)
where a,, and B,, are positive.
Consider the forms (3), (4) and the transformation from X to
Y when z;, = 0 for k > 3. The discriminant of (4) is a;; By, V33,
the modulus of the transformation is unity, and the discri-

minant of (3) is
Ay Qi Q3 |,

@g1 gy Qg (5)
A3 A3y dgy
which is positive by hypothesis. Hence, by Theorem 39 applied
to a form in the three variables z,, x,, 2; only, the product
@y, Bas va3 I8 equal to the determinant (5), and so is positive.
Accordingly, vys3 i8 positive.
We may proceed thus, step by step, to the result that, when
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the set of conditions is satisfied, we may write A(x,z) in the

form
Ay X+ Bas X3+ +Knn X3, (6)
wherein a,,, Bys,..., k,,, are positive and
Xy = a Byt
X2= IE2+ +an Tpy (7)
BZZ
Xn = xn'

The form (6) is positive-definite in X,,..., X, and, gince the
transformation (7) is non-singular, A(x,z) is positive-definite in
Zy,..., &, (Theorem 40).

2.2. We have considered the variables in the order z,, x,,...,
x, and we have begun with a,;. We might have considered the
variables in the order z,, x,_,,..., ; and begun with @,,. We
should then have obtained a different set of necessary and
sufficient conditions, namely,

Aun > 0’ an,n an,n—l > O’
an—l,n a‘n—l,n—l

Equally, any permutation of the order of the variables will
give rise to a set of necessary and sufficient conditions.

2.3. The form A(z,z) is negative-definite if the form
{—A(z,z)} is positive-definite. Accordingly, the form A(z,z)
is negative-definite if and only if
ap <0, >0, Ay Ay A3 [ <0,

Ay Qgp Qo3

an Gy

3, A3y Qg3

Exampres XI
1. Prove that each of the quadratic forms
(i) 6.%4-35y*+ 11224 34yz,
(i1) 62?4 49y2+ 5122 —82yz+ 20zx — 4xy
is positive-definite, but that
(ii1) 4a?+ 9y?+ 2224-8yz+ 62z + by
is not.
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2. Prove that if
3

3
F=3 a2z, (a;=ay)
r~1s=-1
is a positive-defihite form, then
ay F = (a) %)+, 25+ a,375)* + K(g, 73),
where K is a positive-definite form in z,, x; whose discriminant is a,;
times the discriminant of F.

HinTt. Use the transformation X, = a,, ¥, +a,, 2, a,32;5, X, = 7y,
X; = x5 and Theorem 39.

3. Prove that the discriminant of the quadratic form in x, y, z
F = (a,x4-b,y+c 2)2+(agx+byy+cy2)?
is the square (by rows) of a determinant whose columns are
a,,b,,¢,5 a5,b4,¢55 0,0,0.

4. Extension of Example 3. Prove that a sum of squares of r distinct
linear forms in n variables is a quadratic form in n variables of zero
discriminant whenever r < n.

6. Harder. Prove also that the rank of such a discriminant is, in
general, equal to r: and that the exception to the general rule arises
when the 7 distinct forms are not linearly independent.

6. Prove that the discriminant of

n n 2
F=3 (Z Ay 1',)
r=1\=1
is not zero unless the forms

n
S agx, (r= 1,.,n)
s=1

are linearly dependent.
Hint. Compare Examples 3 and 4.
7. Prove that the discriminant of the quadratic form
S (@—2)t (r8 = 1..,n)
T#8
is of rank n—1.

8. If f(xy,...,x,) i8 & function of n variables, f, denotes &f/ox,, and f;;
denotes ¢2f/ox; 0x, evaluated at x, = a, (r = 1,...,n), prove that f has a
minimum at z, = «, provided that I Y f;; €€ is a positive-definite
form and each f; is zero. Write down conditions that f(z,y) may be a
minimum at the point ¢ = o, y = B.

9. By Example 12, p. 133, & Hermitian form has a real value for every
set of values of the variables. It is said to be positive-definite when
this value is positive for every set of values of the variables other than
z, =...= z, = 0. Prove Theorem 40 for a positive-definite Hermitian
form and any non-singular transformation.
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10. Prove that a positive-definite Hermitian form can be transformed
by a transformation of unit modulus into a form

cqu Xl+""+‘cnanXn
wherein cach ¢,, is positive.

Hint. Compare the proof of Theorem 41.

11. The determinant |A| = |a;;| is called the discriminant of the
Hermitian form ¥ 3 a;;%; %;. Remembering that a Hermitian form is
characterized by the matrix equation 4’ = 4, it follows, by considering
the determinant equation

] = 4] = 1],
that the discriminant is real.
Prove the analogue of Theorem 42 for Hermitian forms.

12. Prove, by analogy with Example 3, that the discriminant of the

Hermitian form H=XX+YT,
whero X =a,x-+by+cz Y = a,x+by+4c,2,
is zero.

Obtain the corrcsponding analogues of Examples 4, 5, and 6.



CHAPTER XII

THE CHARACTERISTIC EQUATION AND
CANONICAL FORMS

1. The X equation of two quadratic forms

1.1. We have seen that the discriminant of a quadratic form
A(z,z) is multiplied by M? when the variables x are changed
to variables X by a transformation of modulus M (Theorem 39).

If A(z,x) and C(z,z) are any two distinct quadratic forms
in » variables and A is an arbitrary parameter, the discriminant
of the form A(z,x)—AC(x, x) is likewise multiplied by M2 when
the variables are submitted to a transformation of modulus M.
Hence, if a transformation

Ty = zlbij X;, b1 = M,
=
changes Y @,,%,%, Y €22, into ¥ «,, X, X, 3 y,, X, X,, then

JM? all—'Acll - aln_)qu = 0‘ll.'_"A'yll L O‘ln"—’k}’ln .
a’nl‘-’\cnl . ann_’\cnn altl_AYIll .o 0‘nn"’Aynnl
The equation |4—AC| = 0, or, in full,
all—Acll - aln_Acln =0,
anl_’\cnl . . a’nn'—/\cnn

is called THE A EQUATION OF THE TWO FORMS.

What we have said above may be summarized in the theorem:

THEOREM 43. The roots of the A equation of any two quadratic
forms in n variables are unaltered by a non-singular linear trans-
formation.

The coefficient of each power X' (r = 0, 1,..., n) is multiplied
by the square of the modulus of the transformation.

1.2, The Aequation of A(x, z) and the form x} ... +x2is called
THE CHARACTERISTIC EQUATION of 4. In full, the equation is

ay—A  ay, .o a,, |=0.
Qg ye—A . . @y,
A1 @y ann_"A
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The roots of this equation are called the LATENT rRoOTS of the
matrix 4. The equation itself may be denoted by |4 —AI| = 0,
where [ is the unit matrix of order n.

The term independent of A is the determinant |a,;,|, so that
the characteristic equation has no zero root when |a;| # 0.
When |a;,| = 0, so that the rank of the matrix [a;,] is r <=,
there is at least one zero latent root; as we shall prove later,
there are then n—r zero roots.

2. The reality of the latent roots

2.1. THEOREM 44. If [c;;.] ts the matriz of a positive-definite
form C(z,z) and [a;] is any symmetrical matriz with real ele-
ments, all the roots of the A equation

A —CiuA  @—Cpd . . @, —CRA [ =0
Ay —Cn A Gyp—Cyd . . Gy, —Cpp A
anl-cnl)‘ a’n2——cn2)‘ . . ann_cnn/\

are real.

Let A be any root of the equation. Then the determinant
vanishes and (Theorem 11) there are numbers Z,, Z,,..., Z,, not
all zero, such that

that is, 2S¢, 2, =Sa,Z, (r=1,.,n) 1)

Multiply each equation (1) by Z,, the conjugate complext of
Z,, and add the results. If Z, = X,+1Y,, where X, and ¥, are
real, we obtain terms of two distinct types, namely,

2,247, 2, = (X,+1Y,)(X;—iY)+ (X, — X )(X,+ X))
— X, XA X).

t When Z = X+iY,Z = X—i¥;i = +(—1), X and Y real.
4702 U
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Hence the result of the operation is
N2, enXEHTD+2 3 0l X, XA K T)
r= r<s

= | S an(Xi+ry)+2 3 a,(X, X,+Y, X)),
r=1 r<s

or, on using an obvious notation,
MCO(X, X)+C(Y,Y)} = AX, X)+A(Y,Y). (2)

Since, by hypothesis, C(x, x) is positive-definite and since the
numbers Z, = X,+1iY, (r = 1,..., n) are not all zero, the coeffi-
cient of A in equation (2) is positive. Moreover, since each a,,
is real, the right-hand side of (2) is real and hence A must be real.

Note. If the coefficient of A in (2) were zero, then (2) would tell us
nothing about the reality of A. It is to preclude this that we requiro
C(z, ) to be positive-definite.

CoRrROLLARY. If both A(x,x) and C(x,x) are positive-definite
forms, every root of the given equation is positive.

2.2. When ¢,, =1 and ¢,, = 0 (r # 8), the form C(z,z) is
x2+a2+...4+22 and is positive-definite. Thus Theorem 44 con-
tains, as a special case, the following theorem, one that has
a variety of applications in different parts of mathematics.

THEOREM 45. When [a;;] is any symmetrical matrix with real
elements, every root X of the equation |A—AI| = 0, that is, of

23— ST S C1n =0 (a,=a,),
ay, e Aoy
., (1 Ce By —A

18 real. .
When [a;,] is the matrix of a positive-definite form, every root
18 positive.

3. Canonical forms

3.1. In this section we prove that, if 4 = [a;;,] is a square
matrix of order n and rank r, then there is a non-singular
transformation from variables z,,..., z, to variables X,,..., X,
that changes 4(x, z) into

gIX‘]z.+--'+ng1?r (3)
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where g,,..., g, are distinct from zero. We show, further, that
if the a,; are elements in a particular field F' (such as the field
of real numbers), then so are the coefficients of the transforma-
tion and the resulting g;. We call (3) a CANONICAL FORM.

The first step in the proof is to show that any given quadratic
form can be transformed into one whose coefficient of 22 is not
zero. This is done in §§3.2 and 3.3.

3.2. Elementary transformations. We shall have occa-
sion to use two particular types of transformation.

Tyre I. The transformation

=X, z.=X,, x,=X;, (8s#1,7)
is non-singular; its modulus is —1, as is seen by writing the
determinant in full and interchanging the first and rth columns.
Moreover, each coefficient of the transformation is either 1 or 0,
and so belongs to every field of numbers F.

If in the quadratic form Y Y a,z,x, one of the numbers
ayy,..., @, 18 not zero, then either a,, # 0 or a suitable trans-
formation of type I will change the quadratic form into
> > b,,X,X,, wherein by; # 0.

If, in the quadratic form Y > a, x,z,, all the numbers a,,,...,
a,, are zero, but one number a,, (r 7% s) is not zero, then a
suitable transformation of type I will change the form into
> Y b, X, X,, wherein every b,, is zero but one of the numbers
bygs-.., by, 1s not zZero.

Typg II. The transformation in n variables
v, = X, +X,, z,=X,—X,, v, =X, (t+#s,1)
is non-singular. Its modulus is the determinant which

(i) in the first row, has 1 in the first and sth columns and
0 elsewhere,
(ii) in the sth row, has 1 in the first, —1 in the sth, and 0 in
every other column,
(iii) in the tth row (¢ % s, 1) has 1 in the principal diagonal
position and 0 elsewhere.

The value of such a determinant is +2. Moreover, each element
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of the determinant is 1, 0, or —1 and so belongs to every field
of numbers F.

If, in the quadratic form Y 3 b,,2,%,, all the numbers b,,,...,
b, are zero, but one b,, is not zero, then a suitable transforma-
tion of type II will express the form as 3 Y ¢,, X, X,, wherein
¢,, is not zero.

3.3. The first step towards the canonical form. The
foregoing elementary transformations enable us to transform
every quadratic form into one in which a,; is not zero. For
consider any given form

n n
z zarsxrxs (a5 = ag,). (1)
r=18=1

If one a,, is not zero, a transformation of type I changes
(1) into a form B(X, X) in which b, is not zero.

If every a,, is zero but at least one a,, is not zero, a trans-
formation of type I followed by one of type II changes (1) into
a form C(Y,Y) in which ¢,; is not zero. The product of these
two transformations changes (1) directly into C(Y,Y) and the
modulus of this transformation is +2.

We summarize these results in a theorem.

Az, x)

I

THEOREM 46. Every quadratic form A(z,x), with coefficients
in a given field F, and having one a,, not zero, can be transformed
by a non-singular transformation with coefficients in F into a form
B(X, X) whose coefficient b, is not zero.

3.4. Proof of the main theorem.
DerINITION 7. The rank of a quadratic form is defined to be
the rank of the matrix of its coefficients.

THEOREM 47. A4 quadratic form in n variables and of rank r,
with coefficients in a given field F, can be transformed by a non-
singular transformation, with coefficients in F, into the form

oy X34 4o, X2, (1)

where ay,..., o, are numbers in F and no one of them is equal
to zero.

n n
Let the form be 3 ]2 a;2;x;; and let 4 denote the matrix
i1 /=1
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[a;;]. If every a;; is zero, the rank of 4 is zero and there is
nothing to prove.

If one a;; is not zero (Theorem 46), there is a non-singular
transformation with coefficients in F' that changes A(z,x) into

n n n
o X323 o, X, X+ 3 2 a; X, X,
1=2 i=2 )=2
where a; 7 0. This may be written as
12 Ayn 2 %3
o X+ X+ 22X )+ 3 D by X X,
o oy i=2j=2
and the non-singular transformation, with coefficients in F,
%19 X1n
Y, =X+ 2X,+..+ 22X,
ol Xy

Y£=Xi (1:: 2,..., 'n),

enables us to write 4 (z,z) as
oy Y%+,22 ,zzbinin- (2)
1=2 j=

Moreover, the transformation direct from z to Y is the pro-
duct of the separate transformations employed; hence it is non-
singular and has its coefficients in ¥, and every b is in F.

If every b;; in (2) is zero, then (2) reduces to the form (1);
the question of rank we defer until the end.

If one b;; is not zero, we may change the form ¥ 3 b, Y Y;
in n—1 variables in the same way as we have just changed the
original form in n variables. We may thus show that there is
a non-singular transformation

Zi =f§2lij:Yj (i = 2,..., n), (3)
with coefficients in F, which enables us to write
n n n n
b, Y, Y, = oy Z2 L. 7,
igz jgz #rits T % 2+i§3 Jgsc'j i

where «, # 0. The equations (3), together with ¥; = Z,, con-

stitute a non-singular transformation of the n variables Y;,..., ¥,,

into Z,,..., Z,. Hence there is a non-singular transformation,
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the product of all the transformations so far employed, which
has coefficients in F and changes A(x,z) into

ay Z3+ay Z§+Z zs"i;izi ZJ" (4)

i=3 j=
wherein o; # 0 and «, £ 0, and every ¢ is in F.
On proceeding in this way, one of two things must happen.
Either we arrive at a form
n n
ay X+ 4o XF+ ' d; X; X, (5)
i=k+1j=k+1
wherein £ < n, oy # 0,..., oy, # 0, but every d;; = 0, in which
case (5) reduces to
o X3+..4o X3 (k< n);
or we arrive after » steps at a form
oy X2 4, X2
In either circumstance we arrive at a final form
o X34 4o, XE (K < n) (6)
by a product of transformations each of which is non-singular
and has its coefficients in the given field F.
It remains to prove that the number £ in (6) is equal to 7,
the rank of the matrix 4. Let B denote the transformation
whereby we pass from A(z,z) to the form

oy X244 oy X3+ jﬂo.xg. (7)

Then the matrix of (7) is (Theorem 37) B’AB. Since B is non-
singular, the matrix B’A B has the same rank as 4 (Theorem
34), that is, . But the matrix of the quadratic form (7) con-
sists of ay,..., o in the first k& places of the principal diagonal
and zero elsewhere, so that its rank is k. Hence £k = r.
CoroLLARY. If A(x,x) is a quadratic form in n variables, with
its coefficients in a given field F, and if its discriminant is zero,
it can be transformed by a nom-singular transformation, with
coefficients in F, into a form (in n—1 variables at most)

o X344,y Xz,
where o, ..., a,_, are numbers in F.

This corollary is, of course, merely a partial statement of the
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theorem itself; since the discriminant of A(x, x) is zero, the rank
of the form is n—1 or less. We state the corollary with a view
to its immediate use in the next section, wherein F is the field
of real numbers.

4. The simultaneous reduction of two real quadratic
forms

THEOREM 48. Let A(z,x), C(x,x) be two real quadratic forms
wn n variables and let C(x,x) be positive-definite. Then there is
a real, non-singular transformation that expresses the two forms as

MX3+FA, XS XX,
where Ay,..., A, are the roots of |A—AC| = 0 and are all real.

The roots of |[A—AC| = 0 are all real (Theorem 44). Let A,
be any one root. Then A(x,z)—A, C(x,) is a real quadratic
form whose discriminant is zero and so (Theorem 47, Corollary)

there is a real non-singular transformation from x,..., z, to
Y,,..., Y, such that

A, x)—A, Clx,x) = au Y3+...+a, Y2,
where the a’s are real numbers. Let this same transformation,
when applied to C(z, z), give

Clx,x) = z 2 vy Y Y (1)
Then we have, for an arbltrary A,

A, )20, x) = A(z,x)—A, C(x,2)+ (A, —A)C(x, x)
—Sartv-nd 3yry. @

Since C(x,z) is positive-definite in the variables z, it is also
positive-definite in the variables ¥ (Theorem 40). Hence y,, is
positive and we may use the transformation

Z, =Y, -{—Y”Y +. +')’1n
Zs = Ys (8 = 2,..., n).
This enables us to write (2) in the form (Chap. XI, §1.2)

A@,x)—AC(x,2) = $(Zy,..., Zy)+ A — Ay Z3+¥(Zy,., Z,)},

where ¢ and 1/: are real quadratic forms in Z,,..., Z,.
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Since this holds for an arbitrary value of A, we have

A(x,2) = Ay Z3+¢+M ¢ = A yn 2346, } (3)
Clx,z) = 711 Z§+¢'>
where 6 and ¢ denote quadratic forms in Z,,..., Z,,.
This is the first step towards the forms we wish to establish.
Before we proceed to the next step we observe two things:
(i) ¥ is a positive-definite form in the n—1 variables Z,,..., Z,,;

for yn Z3+9(Zy,.... Z,,)

is obtained by a non-singular transformation from the form (1),
which is positive-definite in Y},..., Y,,.

(ii) The roots of |§—AY| = 0, together with A = A,, account
for all the roots of |[4-—AC| = 0; for the forms (3) derive from
A(z,z) and C(z,z) by a non-singular transformation and so
(Theorem 43) the roots of

I(Al 7’11—”\)’11)Z§+9‘—)\‘/‘| =0,

that is, of
y11(A;—A) 0 .o 0 = 0,
0 022'_A¢’22 . . gzn_)“l’mz
0 '9n2—"\‘/‘n2 . . 0nn_A5[’nn

are the roots of [A—AC| = 0. If ), is a repeated root of
|A—AC| = 0, then A, is also a root of [#—A¢| = 0.
Thus we may, by using the first step with 6 and ¢ in place
of A and C, reduce 0, i to forms
0 = Ao, US+0'(U, ..., U,), }
p= oUi+¢' Uy, Uy),
where «, is positive, A, is a root of |4 —AC, and the transforma-
tion between Z,,..., Z, and U,,..., U, is real and non-singular.
When we adjoin the equation U, = Z, we have a real, non-
singular transformation between Z,,..., Z, and U,,..., U,. Hence
there is a real non-singular transformation (the product of all
transformations so far used) from z,,..., z,, to U,,..., U, such that

A, x) = A oy Ud+-Xy 0 USHf(T, ..., U), }
Cl@,2) = o U+ ayUi+F(Uy,...,U,),

(4)

(5)
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where «, and «, are positive; A; and A, are roots, not necessarily
distinct, of |4—AC|; f and F are real quadratic forms. As at
the first stage, we can show that F is positive-definite and that
the roots of |f—AF| = 0 together with A; and A, account for
all the roots of [A—AC| = 0.

Thus we may proceed step by step to the reduction of A(x, )
and C(x,x) by real non-singular transformations to the two

forms g0 2) = Moy YifAap Y24 dA, o, T2,
Cl,x) = o Y3+ oV3+..+ «,Y3

wherein cach «; is positive and A,..., A, account for all the roots
of |[4—AC| = 0.

Finally, the real transformation

X, = Va,.Y,
gives the required result, namely,
A(r,z) = A X244, X2, C(r,a) = X3+ .+ X2

5. Orthogonal transformations

If, in Theorem 48, the positive-definite form is X342,
the transformation envisaged by the theorem transforms
a?+...+a2 into X?+4...+X2. Such a transformation is called
an ORTHOGONAL TRANSFORMATION. We shall examine such
transformations in Chapter XIII; we shall see that they are
necessarily non-singular. Meanwhile, we note an important
theorem.

THEOREM 49. A real quadratic form A(x, x) in n variables can
be reduced by a real orthogonal transformation to the form

AXE A, X

where A,,..., A, account for all the roots of |A—2AI| = 0. More-
over, all the roots are real.

The proof consists in writing x¥+..+4a2 for C(xr,x) in
Theorem 48. [See also C‘hapter XV, § 3.]

6. The number of non-zero latent roots
If B is the matrix of the orthogonal transformation whereby
A(x,x) is reduced to the form
AL X3+ 42, X2, (1

4702 X
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then (Theorem 37) B’AB is the matrix of the form (1) and
this has A,,..., A, in its leading diagonal and zero elsewhere. Its
rank is the number of A’s that are not zero. But since B is
non-singular, the rank of B’AB is equal to the rank of 4.
Hence the rank of A is equal to the number of non-zero roots of
the characteristic equation |A—AI| = 0.

7. The signature of a quadratic form

7.1. As we proved in Theorem 47 (§3.4), a real quadratic
form of rank r can be transformed by a real non-singular trans-
formation into the form

o X2+ 4o, X2, (1)
wherein a,..., o, are real and not zero.

As a glance at §3.3 will show, there are, in general, many
different ways of effecting such a reduction; even at the first
step we have a wide choice as to which non-zero a,, we select
to become the non-zero b,, or c,,, as the case may be.

The theorem we shall now prove establishes the fact that,
starting from the one given form A (z, ), the number of positive
o’s and the number of negative «’s in (1) is independent of the
method of reduction.

THEOREM 50. If a given real quadratic form of rank r is
reduced by two real, non-singular transformations, B, and B, say,

to the forms oy X3+ ... 4o, X2, 2)
B Yi+...+B. Y (3)

the number of positive «’s 18 equal to the number of positive B’s and
the number of negative o’s 18 equal to the number of negative B’s.

Let » be the number of variables z;,..., z, in the initial quad-
ratic form; let u be the number of positive o’s and v the number
of positive B’s. Let the variables X, ¥ be so numbered that
the positive a’s and B’s come first. Then, since (2) and (3) are
transformations of the same initial form, we have

oy X+ Aoy XE— oy g | X — oo — oy [ X7
=pYi+. 4B Y~ 1B ulYin——IBIY7. (4)
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Now suppose, contrary to the theorem, that w > v. Then

the n+v—pu equations
¥,=0, ., ¥,=0, X,,=0 ., X,=0 (5

are homogeneous equations in the » variablest z,,..., ,. There
are less equations than there are variables and so (Chap. VIII,
§5) the equations have a solution z; = ¢,,..., z, = §, in which
&1, €, are not all zero.

Let X, Y, be the values of X,, Y, when x = £. Then, from
(4) and (5),

aIXi2+"'+ap.X;l.2 = - [ﬁvﬁ-lly;‘?{—l_""— ]Brly;z’

which is impossible unless each X" and Y’ is zero.
Hence either we have a contradiction or

X;=0, .., X,=0, } (6)
and, from (5), X;L+1 =0, .., X,=0.
But (6) means that the » equations
X,=0, .., X,=0, (7)
say % Ly, =0 (1=1,.,n)
=1

in full, have a solution z, = ¢, in which ¢,,..., £, are not all
zero; this, in turn, means that the determinant |I,;,| = 0, which
is a contradiction of the hypothesis that the transformation

n
Xi ='kzllikxk (Z = 1,..., n)
is non-singular.
Hence the assumption that pu > v leads to a contradiction.
Similarly, the assumption that v > u leads to a contradiction.
Accordingly, 4 = v and the theorem is proved.

7.2. One of the ways of reducing a form of rank r is by the
orthogonal transformation of Theorem 49. This gives the form
A XA XS,
where A,..., A, are the non-zero roots of the characteristic

equation.
Hence the number of positive «’s, or B’s, in Theorem 50 is
the number of positive latent roots of the form.

t Each X and Y is a linear form in z,,..., Za.
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7.3. We have proved that, associated with every quadratic
form are two numbers P and N, the number of positive and
of negative coefficients in any canonical form. The sum of P
and N is the rank of the form.

DerFINITION 8. The number P—N is called the SIGNATURE of
the form.

7.4. We conclude with a theorem which states that any two
quadratic forms having the same rank and signature are, in
a certain sense, EQUIVALENT.

THEOREM 51. Let A, (x.x), Ay(y,y) be two real quadratic forms
having the same rank r and the same signature s. Then there 13
a real mnon-singular transformation x = By that transforms
Ay, ) into Ay, y).

When A,(z,z) is reduced to its canonical form it becomes

o X34 Ao, X2—B, X2 —...—B, X, (1)
where the o’s and B’s are positive, where p = 3(s+7), and
where the transformation from a to X is real and non-singular.

The real transformation

= X\Voy, .y €= X Vo,
fy%»l = Xy.+1 V) RS TR fr = Xr Vﬁr
changes (1) to G+ t&E—En— & (2)

There is, then, a real non-singular transformation, say
x = (¢, that changes A,(z, x) into (2).
Equally, there is a real non-singular transformation, say
y = (, &, that changes 4,(y,y) into (2). Or, on considering the
reciprocal process, (2) is changed into A,(y,y) by the trans-
formation ¢ = C;'y. Hence
x=C0C;ly

changes 4,(x,z) into 4,(y,y).

ExampLes XII

1. Two forms A(z,x) and C(z, x) have
a,, = ¢, when r = 1,...,k and 8 = 1,...,n.

Prove that the A cquation of the two forms has k roots equal to unity.
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2. Write down the A equation of the two forms ax?+ 2hxy+by? and
a’z*+2h’'zy+b'y* and prove, by elementary methods, that the roots
are real when a > 0 and ab—A% > 0.

HiINT. Let

az?+ 2hry +by? = a(z—oy y)(z—BrY),

a’x? 4202y +b'y? = a’(x—ay y)(x—Pyy).

The condition for real roots in A becomes
(ab’+a’b—2hh’)2 —4(ab—h?)(a’b’—h'?) > O,

which can be written as

a*a’(o; — o)y — Be )y — o) (B —ag) = 0.
When ab—h? > 0, o, and B, are conjugate complexes and the result can
be proved by writing oy = y+18, B; = y—18.

In fact, the A roots are real save when «,, B,, a,, B, are real and the
roots with suffix 1 separate those with suffix 2.

3. Prove that the latent roots of the matrix 4, where

Az, x) = 6a%+ 3522+ 11a%+ 34z, 25,
are all positive.
4. Prove that when
A(x,x) = 4o+ 2]+ 222+ 8z, x4+ 632, + 62,
two latent roots are positive and one is negative.

5. A=33a,r.2 X, = $0A4/ox,;
dp=lay o ag Xy, = an - Ak
- - age X yq - - ek
X, . . X, 4 X, . . X

By subtracting from the last row multiplies of the other rows and then,
for A,, by subtracting from the last column multiples of the other
columns, prove that 4; and §, are independent of the variables z,..., 2},
when k < n. Prove also that 4, = 0.

6. With the notation of Example 5, and with

Dy=la,; . . aul,
Qpy - . Qr
show, by means of Theorem 18 applied to A;, that
Apr €| = Dy 4y
& Dy

7. Uso the result of Example 6and the result A, = 0 of Examplo 5 to
prove that, when no Dy is zero,
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Consider what happens when the rank, r, of A is less than n and
D,,..., D, are all distinct from zero.

8. Transform 4x,x,+ 22,7+ 6z, x, into a form 3 ¥ a,, X, X, with
a,; # 0, and hence (by the method of Chap. XI, §1.2) find a canonical
form and the signature of the form.

9. Show, by means of Example 4,that
423+ 923+ 223+ 8xy 2y + 63, + 62, 7,
is of rank 3 and signature 1. Verify Theorem 50 for any two independent
reductions of this form to a canonical form.

10. Prove that a quadratic form is the product of two linear factors if
and only if its rank does not exceed 2.

HinTt. Use Theorem 47.

13. Prove that the discriminant of a Hermitian form A(x, &), when it
is transformed to new variables by means of transformations x = BX,
% = BX, is multiplied by |B|x |B|.

Deduce the analogue of Theorems 43 and 44 for Hermitian forms.

12. Prove that, if 4 is a Hermitian matrix, then all the roots of
|A—AI| = Oarereal.

HinTt. Compare Theorem 45 and use

n .
Clz, &) = I x, &
re1
13. Prove the analogues of Theorems 46 and 47 for Hermitian forms.
14. A(z,%), C{x,%) are Hermitian forms, of which C is positive-
definite. Prove that there is a non-singular transformation that expresses
the two forms as
AX X 440X X, X, X +...+X, X,
where A,,..., A, are the roots of |4 —AC| = 0 and are all real.
15. An example of some importance in analytical dynamics.t Show
that when a quadratic form in m+n variables,
2T = 3 a2, %y (A, = Q)
is expressed in terms of &,,..., £my Tmirseers Tmyn» Where & = 8T [0, there
are no terms involving the product of a ¢ by an x.
Solution. The result is easily proved by careful manipulation. Use
the summation convention: let the range of 7 and & be 1,..., m; let the
range of u and ¢ be m+1,..., m+n. Then 2T may be expressed as

2T = @y 2, Ty + 20,y T, Yy + Bt Yu Yoo
where, as an additional distingui-l.ing mark, we have written y instead
of  whenever the suffix exceeds m.
We are to express T in terms of the y’s and new variables £, given by
& = A Tptany, (8= 1,.,m)

+ Cf. Lamb, Higher Mechanics, §77: The Routhian function. I owe this
example to Mr. J. Hodgkinson.
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Multiply by A,,, the co-factor of a,, in A = |a,,|, a determinant of order

m, and add: we get Az, = Ay ly— Ay Yy

Now 2T = z(apy Ty + 20,y Yu) + A Yu Y
= 2§+ Cru Yu) FCu Yu Yo
2AT = (Apéy— s Oy YulEr+ru Yu) + 0 Y 91 A
= A, &6+ Yty Ay §i— 00 44 €)Y, Y),

where ¢(y, y) denotes a quadratic form in the y’s only.
But, since a,, = a,,, we also have 4,, = 4,,. Thus the term multiply-
ing y,, in the above may be written as

amAnfs—amAarfr’

and this is zero, since both r and & are dummy suffixes. Hence, 2T may
be written in the form

2T = (AH/A)fa£r+bwyuy¢9
where 7,8 run from 1 to m and «, ¢ run from m-+41 tom-+n.



CHAPTER XIII

ORTHOGONAL TRANSFORMATIONS

1. Definition and elementary properties
1.1. We recall the definition of the previous chapter.

DerFiNITION 9. A transformation x = AX that transforms
a¥+4...+a% into X}+...+ X2 is called an ORTHOGONAL TRANS-
FORMATION. The matrix A is called an ORTHOGONAL MATRIX.

The best-known example of such a transformation occurs in
analytical geometry. When (z, y, z) are the coordinates of a
point P referred to rectangular axes Ox, Oy, Oz and (X, Y, Z)
are its coordinates referred to rectangular axes OX, OY, OZ,
whose direction-cosines with regard to the former axes are
(y, my, ny), (g My, my), (I3, My, my), the two sets of coordinates

are connected by the equations
=L X+LY+1,Z,
y=mX+m,Y+4mzZ
= X+n,Y4nzZ
Moreover, x?4y2422 = X24+Y24-Z2% = OP2

1.2. The matrix of an orthogonal transformation must have
some special property. This is readily obtained.
If A = [a,,] is an orthogonal matrix, and x = 4X,

zXz gx = Zl(ar1X1+"'+aran)2
for every set of values of the variables X,. Hence

at+..4a%, =1 (s=1,.,mn), } (1)
Qe ay+...+a, a, =0 (s F#t).

These are the relations that mark an orthogonal matrix: they
are equivalent to the matrix equation

A4 =1, (@)

as is seen by forming the matrix product A’A.
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1.3. When (2) is satisfied A’ is the reciprocal of 4 (Thecorem
25), so that AA’ is also equal to the unit matrix, and from this
fact follow the relations (by writing 44’ in full)

al+..+a3, =1 (s=1,.,n), } 3)
G an+... 4+ a, =0 (35£1).

When n = 3 and the transformation is the change of axes
noted in §1.1, the relations (1) and (3) take the well-known
forms  pimim=1,  Lmetlmetlomg =0,

B+4mi+4n} =1, Ll,+mymg+nyn, = 0,
and so on.

1.4. We now give four theorems that embody important
properties of an orthogonal matrix.

THEOREM 52. A necessary and sufficient condition for a square
matrix A to be orthogonal 18 AA' = 1.

This theorem follows at once from the work of §§1.2, 1.3.
CorOLLARY. Every orthogonal transformation is non-singular.

THEOREM 53. The product of two orthogonal transformations
18 an orthogonal transformation.

Let x = AX, X = BY be orthogonal transformations. Then
AA’ =1, BB = 1.
Hence (AB)(ABY = ABB’A’ (Theorem 23)
= AIA’
= AA' =1,
and the theorem is proved.

THEOREM 54. The modulus of an orthogonal transformation s
etther +1 or —1.

If AA' = I and |A| is the determinant of the matrix 4, then
|4]|.]4’| =1. But |4’| = |A|, and hence |4|? = 1.

THEOREM 55. If A is a latent root of an orthogonal transforma-
tion, then so s 1/A.

Let A be an orthogonal matrix; then A4’ = I, and so

A =41 (4)

4702 Y
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By Theorem 36, Corollary, the characteristic (latent) roots
of A’ are the reciprocals of those of 4. But the characteristic
equation of 4’ is a determinant which, on interchanging its
rows and columns, becomes the characteristic equation of 4.

Hence the n latent roots of 4 are the reciprocals of the n
latent roots of A, and the theorem follows. (An alternative
proof is given in Example 6, p. 168.)

2. The standard form of an orthogonal matrix

2.1. In order that 4 may be an orthogonal matrix the equa-
tions (1) of § 1.2 must be satisfied. There are

(1) _ nfa-t1)

n+"0, = n-}-ﬁ

2 2

of these equations. There are n® elements in 4. We may there-
fore expectt that the number of independent constants ncces-
sary to define A completely will be

2_n(n—f—l) _ n(n—1)

" 2 2

If the general orthogonal matrix of order n is to be expressed
in terms of some other type of matrix, we must look for a matrix
that has in(n—1) independent elements. Such a matrix is the
skew-symmetric matrix of order n; that is,

[bik]’ bik = —'bki'

For example, when n = 3,

0 bl2 b13
_blz 0 b23
-bm —b23 0

has 142 = 3 independent elements, namely, those lying above
the leading diagonal. The number of such elements in the
general case is

1424...4+(n—1) = 3n(n—1).

t The method of counting constants indicates what results to expect: it
rarely proves those results, and in the crude form we have uscd above it
certainly proves nothing.
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TuEeOREM 56. If S is a skew-symmetric matrizx of order n, then,
provided that I+S is non-singular,

0= (I-8)(I+8)?
8 an orthogonal matrix of order n.
Since S is skew-symmetric,
S = -8, (I—8) = I+8, I+8) = I-8;
and when I+ 8 is non-singular it has a reciprocal (I+4S)-1.
Hence the non-singular matrix O being defined by
0 = (I-8)(I+8),
we have
0" = {(I+8)}({—S8) (Theorem 23)
= (I—-8)"1(I+8) (Theorem 27)
and 00’ == (I—8)(I+8)~Y(I—8)-}(I+S). (5)
Now I—8 and I+ S are commutative,t and, by hypothesis,
I+ 8 is non-singular. Hence]
(I=8)I+8)7 = (I+8)(I-8),
and, from (5),
00 = (I+8)I-8)I—8)I+S8) = (I+8)YI+8) = 1.
Hence O is an orthogonal matrix (Theorem 52).

NoTe. When the elements of S are real, I+ S cannot be singular. This
fact, proved as a lemma in §2.2, was well known to Cayley, who dis-
covered Theorem 56.

2.2. Lemma. If S is a real skew-symmetric matriz, 148 is
non-singular.

Consider the determinant A obtained by writing down S and
replacing the zeros of the principal diagonal by z; e.g., with

n =3,
A=]| x a b, S=TJT0 a b].
—a x ¢c [-—a 0 c]
—b —c¢ =z —b —c¢ 0

t (I=8)I+8) = I*+IS—SI—8* = I"—8? = (I+S)(I—-S8) [SI = IS].
1 If AQ = QA and Q is non-singular, then 4Q—! = Q—4.
For Q14Q =Q'Q4 =4

and so AQ-1 = (Q—'AQ)Q~! = Q-14QQ~! = Q4.
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The differential coefficient of A with respect to z is the sum of
n determinante (Chap. I, §7), each of which is equal to a skew-
symmetric determinant of order n—1 when x = 0. Thus, when
n =3,

dA | 1 0 0|+ = a bl+ x a b

de | —a =z ¢ 0 1 0 —a z ¢
—b —c =z —b —c¢ =z 0 0 1
=| 2 c¢|+|  b|+|] z al,
—Cc x —b =z —a x

and the latter become skew-symmetric determinants of order 2
when x = 0.

Differentiating again, in the general case, we see that d?A /dx?
is the sum of n(n—1) determinants each of which is equal to
a skew-symmetric determinant of order »—2 when z = 0; and
80 on.

By Maclaurin’s theorem, we then have

A= Ay+2 g +a? }2: +...4an, (6)
where A, is a skew-symmetric determinant of order », > a sum
1

of skew-symmetric determinants of order n—1, and so on.
But a skew-symmetric determinant of odd order is equal to
zero and one of even order is a perfect square (Theorems 19, 21).

Hence n even A = P+2*Pp+...+an, g
nodd A= xP+23FP+...+a", (7)
where P,, P,,... are either squares or the sums of squares, and
so P, P,,... are, in general, positive and, though they may be
zero in special cases, they cannot be negative.
The lemma follows on putting x = 1.

2.3. THEOREM 57. Every real orthogonal matrix A can be
expressed in the form
JI—8)(I+8)7,
where S 18 a skew-symmetric matriz and J 18 a matrixz having 41
in each diagonal place and zero elsewhere.
As a preliminary to the proof we establish a lemma that is
true for all square matrices, orthogonal or not.
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LEMMA. Given a square matriz A it is possible to choose a
matriz J, having +1 in each diagonal place and zero elsewhere,
8o that —1 1is not a latent root of the matrix JA.

Multiplication by J merely changes the signs of the elements
of a matrix row by row; e.g.

1 . . ay; Q3 G| = | Ay Aya Q3 |-
.ol . Qg1 Qg2 Ggg —@y —Qyy —0Og
. . —lllag a3 ay —Q3 —Q3 —Og

Bearing this in mind, we see that, either the lemma is true or,
for every possible combination of row signs, we must have

ta,+1 ta - . +a, = 0.
tay +ag+1 e +a,, (8)
l ianl ﬂ:a’2n . . Itann+1

But we can show that (8) is impossible. Suppose it is true.
Then, adding the two forms of (8), (i) with plus in the first row,
(ii) with minus in the first row, we obtain

dan+1l . . tay, =0
Ce e 9

+a,, . . . . +4a,,+1
for every possible combination of row signs. We can proceed
by a like argument, reducing the order of the determinant by
unity at each step, until we arrive at +a,,+1 = 0: but it is
impossible to have both +a,,+1= 0and —a,,+1=0. Hence
(8) cannot be true.

2.4. Proof of Theorem 57. Let A be a given orthogonal
matrix with real elements. If 4 has a latent root —1, let
J, A = A, be a matrix whose latent roots are all different from
—1, where J, is of the same type as the J of the lemma.

Now J, is non-singular and its reciprocal J; ! is also a matrix
having 41 in the diagonal places and zero elsewhere, so that

A=JWA=J4,=JA,,

where J = Jy! and is of the type required by Theorem 57.
Moreover, A,, being derived from 4 by a change of signs of
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certain rows, is orthogonal and we have chosen it so that the
matrix 4,4 I is non-singular. Hence it remains to prove that
when A, is a real orthogonal matrix such that 4,+ I is non-
singular, we can choose a skew-symmetric matrix S so that
4, = I—-8)(I+S8)™
To do this, let
S = (I—-4;)(I+4,)" (10)
The matrices on the right of (10) are commutativef and we
may write, without ambiguity,
_I—A4, ,  I—A;
e 8 = ER (11)
Further, A, A; = A, A, = I, since A4, is orthogonal. Thus 4,
and A4, are commutative and we may work with 4,, 4;, and I
as though they were ordinary numbers and so obtain, on using
the relation 4,4, = I,

, I—4, I-—A;

S+8 T I4+A4, T I+4,
_ 2244,
CI+A4,+A+4,47

Hence, when S is defined by (10), we have § = —J§’; that is,
8 is a skew-symmetric matrix. Moreover, from (10),
S+84,=1—-4,
and so, since I+ 8 is non-singularf and I—S8, I+ .S are com-
mutative, we have
4, = I-8)I+8), (12)
the order| of the two matrices on the right of (12) being

immaterial.
We have thus proved the theorem.

2.4. Combining Theorems 56 and 57 in so far as they relate
to matrices with real elements we see that

‘If S is a real skew-symmetric matriz, then
A= J(I-8)(I+8)

1 Compare the footnote on p. 163. 1 Compare § 2.2.
|| Compare the footnote on p. 163.
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18 a real orthogonal matrix, and every real orthogonal matrix can
be so written.’

2.5. THEOREM 58. The latent roots of a real orthogonal matrix
are of unit modulus.

Let [a,,] be a real orthogonal matrix. Then (Chap. X, §7),
if A is a latent root of the matrix, the equations
Ar, = a,, ¥,+...+a,,x, (r=1,.,n) (13)

have a solution z,,..., z, other than x; = ... =z, = 0.
These z are not necessarily real, but since a,, is real we also
have, on taking the conjugate complex of (13),
A\, = a, &+ ...+a,, %, (r=1,..,n).

By using the orthogonal relations (1) of §1, we have
M x, %, = En:x,x",.
r=1 r=1

But not all of z,,..., x, are zero, and therefore > x,Z, > 0.
Hence A\ = 1, which proves the theorem.

ExamprEs XIII

1. Prove that the matrix

-3 & 3 3
3 -4 3 3
¥ ¥ -1 %
+ ¥ i i
is orthogonal. Find its latent roots and verify that Theorems 54, 55, and

5} hold for this matrix.
2. Prove that thc matrix

is orthogonal.
3. Prove that when
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(I—-SYI+8S)1is
14+a3—b3—ct 2(c—ab) 2(ac+bd)
1+a%+b%+c? 1+4a?+b2+c® 14ad+bi4c?
—2(c+ab) 1—a3+b3—c? 2(a—bc)
1+a3+bi+¢? 1+a®+b'fc® 14alfbitc?
2(ac—0b) ) —2(a+bc) 1—al—b+ct
1+4+a%+b%+c? 14a*+b24c? 1+a®4b24c?
Hence find the general orthogonal transformation of three variables.t

4. A given symmetric matrix is denoted by 4; X’AX is the quadratic
form associated with 4; S is a skew-symmetric matrix such that I+4SA4
is non-singular. Prove that, when S4 = 4§ and

I—-SA4

X=71r54

Y,
X’'AX = Y'AY.

5. (Harder.)t Prove that, when A is symmetric, S skew-symmetric,

and R = (A+8)Y(4-2S8),
R(A+S)R = A4S, R(A—S)R = A—8;
R’AR = A, R'SR = S.
Prove also that, when X = RY,
X'AX =Y'AY.

6. Prove Theorem 55 by the following method. Let A be an ortho-
gonal matrix. Multiply the determinant |4A—AI| by [4| and, in the
resulting determinant, put A’ = 1/A.

7. A transformation z = UX, # = UX which makes

2% =23 X, X,
is called a unitary transformation. Prove that the mark of a unitary
transformation is the matrix equation UU’ = I.

8. Prove that the product of two unitary transformations is itself
unitary.

9. Prove that the modulus M of a unitary transformation satisfies the
equation MM = I.

10. Prove that each latent root of a unitary transformation is of the
form et*, where a is real.

+ Compare Lamb, Higher Mechanics, chapter i, examples 20 and 21, where
the transformation is obtained from kinematical considerations.

1 These results are proved in Turnbull, Theory of Determinants, Matrices,
and Invariants.



CHAPTER XIV
INVARIANTS AND COVARIANTS

1. Introduction

1.1. A detailed study of invariants and covariants is not
possible in a single chapter of a small book. Such a study
requires a complete book, and books devoted exclusively to
that study already exist. All we attempt here is to introduce
the ideas and to develop them sufficiently for the reader to be
able to employ them, be it in algebra or in analytical geometry.

1.2. We have already encountered certain invariants. In
Theorem 39 we proved that when the variables of a quadratic
form are changed by a linear transformation, the discriminant
of the form is multiplied by the square of the modulus of the
transformation. Multiplication by a power of the modulus, not
necessarily the square, as a result of a linear transformation is
the mark of what is called an ‘invariant’. Strictly speaking, the
word should mean something that does not change at all; it is,
in fact, applied to anything whose only change after a linear
transformation of the variables is multiplication by a power of
the modulus of the transformation. Anything that does not
change at all after a linear transformation of the variables is
called an ‘ABSOLUTE INVARIANT .

1.3. Definition of an algebraic form. Before we can give
a precise definition of ‘invariant’ we must explain certain tech-
nical terms that arise.

DEFINITION 10. A sum of terms, each of degrce k in the n
variables x, y,..., t,

k!
D lapa A=Y (1)

wherein the a’s are arbitrary constants and the sum s taken over
all integer or zero sets of values of «, B,..., A which satisfy the
conditions

0<a<h o, 0<SA<k oatB+..4+rA=k (2

18 called an ALGEBRAIC FORM of degree k in the variables x, y,..., ¢
4702 z
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For instance, axz?+2hzy-by? is an algebraic form of degree
2 in z and y, and

= n! ner
Z “rmzt;,)‘!x'y (3)
r=0
is an algebraic form of degree » in « and .

The multinomial coefficients k!/a!...A! in (1) and the binomial
coefficients n!/r! (n—7)! in (3) are not essential, but they lead
to considerable simplifications in the resulting theory of the
forms.

1.4. Notations. We shall use F(a, ) and similar notations,
such as ¢(b, X), to denote an algebraic form; in the notation
F(a,z) the single a symbolizes the various constants in (1) and
(3) and the single x symbolizes the variables. If we wish to
mark the degree k& and the number of variables », we shall use
F(a,x)k.

An alternative notation is

(@0, @ys---, @) (2, )" (4)
which is used to denote the form (3), and

(@gs..-) (2, 8)%,  OT  (@g,...)(Ty,..., )%,

which is used to denote the form (1). In this notation the index
marks the degree of the form, while the number of variables is
either shown explicitly, as in (4), or is inferred from the context.

Clarendon type, such as x or X, will be used to denote single-
column matrices with n rows, the elements in the rows of x or
X being the variables of whatever algebraic forms are under
discussion.

The standard linear transformation from variables z,,...,
to variables Xj,..., X, namely,

z, =l X+..+,X, (r=1,.,n), (5)
will be denoted by x = MX, (6)

M denoting the matrix of the coefficients /,, in (5). As in pre-
vious chapters, | M| will denote the determinant whose elements
are the elements of the matrix M.

n
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On making the substitutions (5) in a form

F(a,z) = (ay,...)(Ty,..., 2,)%, (7)
we obtain a form of degree & in X ..., X, : this form we denote by
G(4,X) = (Ag,.. )( Xy, X5 (8)

The constants A in (8) depend on the constants a in (7) and

on the coefficients /. By its mode of derivation,
G(A4,X) = F(a,x)
for all values of the variables x. For example, let
F(a,2) = ay a+2a,, 7, Ty +-aq 23,
xy =1 X+, X, Ty = Iy X115 Xy;
then
Fa,z) = G(A,X) = 4, X3+24,, X, X,+4,, X3,

where Ay = ay By +2ay, by 1y g 1y,

Ay = ayy by lp ol lag+loy L)+ @ap Uy Lop,

Ay = ayy Uy +2a15 015 1o+ a5y U5,

In the sequel, the last thing we shall wish to do will be to
calculate the actual expressions for the A’s in terms of the a’s:
it will be sufficient for us to reflect that they could be calculated
if necessary and to remember, at times, that the 4’s are linear
in the a’s.

1.5. Definition of an invariant.

DEFINITION 11. A function of the coefficients a of the algebraic
form F(a,z) is said to be an invariant of the form if, whatever the
matriz M of (6) may be, the same function of the coefficients A
of the form G(A4, X) is equal to the original function (of the coeffi-
cients a) multiplied by a power of the determinant |M |, the power
of | M| in question being independent of M.

For instance, in the example of § 1.4,

Ay Apy— A%, = | M [¥(ay, Ggy—al,),
a result that may be proved either by laborious calculation
or by an appeal to Theorem 39. Hence, in accordance with
Definition 11, a,, a,,—a3, is an invariant of the algebraic form
gy 23+ 201, 2, X+ agp 25
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Again, we may consider not merely one form F(«,x) and its
transform G/(A, X), but several forms Fi(a,z),..., F.(a,2) and
their transforms G,(4,X),..., G.(4,X): as before, we write
G.(4, X) for the result of substituting for z in terms of .X in
F (a,z), the substitution being given by x = MX.

DeriNiTION 12. A4 function of the coefficients a of a number of
algebraic forms F,(a,x) is said to be an invariant (sometimes a
joint-invariant) of the forms if, whatever the matriz M of the
transformation X = MX, the same function of the coefficients A of
the resulting forms G.(A4, X) is equal to the original function (of the
coefficients a) multiplied by a certain power of the determinant (M |.

For example, if

Fi(a,z) = a,z2+b,y, Fya,x) = ayz+b,y, (9)
and the transformation x = MX is, in full,
=0 X+B7Y, y=aaX+B,7Y, (10)

so that
Fi(a,z) = Gy(4,X) = (a,0,+b; a) X+ (2, B;+b, B,)Y,
Fy(a,z) = Go(4, X) = (ay0,+by o) X+ (a5 8140, 8,)Y
we see that

A, B, |=|a,q+bay a;+b,8,
4, B, ayoaqtbyoy  ayB+0,p,
=la, b |xX|o Byl 1
a, by Qg Bz‘ (1)

Hence, in accordance with Definition 12, a,b,—a,b, is a joint-
invariant of the two forms a,2+4-b,y, ayx+b,y.

This example is but a simple case of the rule for forming the
‘product’ of two transformations: if we think of (9) as the trans-
formation from variables F; and F, to variables « and y, and
(10) as the transformation from 2 and y to X and Y, then (11)
is merely a statement of the result proved in § 3.3 of Chapter X.

1.6. Covariants. An invariant is a function of the coeffi-
cients only. Certain functions which depend both on the
coefficients and on the variables of a form F(a,x), or of a num-
ber of forms F,(a, x), share with invariants the property of being
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unaltered, save for multiplication by a power of | M|, when the
variables are changed by a substitution x = MX. Such func-
tions are called COVARIANTS.

For example, let » and v be forms in the variables « and .
In these, make the substitutions

x=10X+mY, =0 X+m,Y,

so that u, v are expressed in terms of X and Y. Then we have,
by the rules of differential calculus,

u ou ou v o ov
==+ - —~ =l
X~ T 2oy’ X T 2oy’
ou ou ou o o ov
=My — My, = My — My —.
oY Lox R oy oy 0x+ 2oy
The rules for multiplying determinants show at once that
ou du L % ou ou
oX oY my My ox oy |
(12)
v o v ov
0X oY oxr oy

The import of (12) is best seen if we write it in full. Let
U = qy2"+na, 2" WY+...4a, y", }
v = byan+nby " ly+-...+0b, y",
and, when expressed in terms of X, Y,
U= Ay X"+na, X" V+4..44,Y",
v = By X"4-nB, X" Y --..4+B,Y"
Then (12) asserts that
Ay X 14 44, Y1 4 X444, Y
B, X" '+..+B, Y*1 B X"14. . 4+B Yr!

(13)

L, 1

My My

X (on"'l-i—...—{—(l”_ly”"l alx"—1+...+a,,y“—1

[)ux:z-l+__.+b,l —1?/”‘1 bl.’v"-1+...-i—b“ y"“

The function

ay 2" A,y a4 e,y
boxr 4. 4b, _yy* 1 byxr-l4-..4b, Yyt
depending on the constants a,, b, of the forms u, v and on the
variables z, y, is, apart from the factor [, m,—I,m,, unaltered

T (1)
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when the constants a,, b, are replaced by the constants 4,, B,
and the variables z, y replaced by the variables X, Y. Accord-
ingly, we say that (14) is a covariant of the forms , v.

1.7. Note on the definitions. When an invariant is defined as

‘a function of the coefficients a, of a form F(a,z), which is equal to

the same function of the coefficients A, of the transform G(4, X),

multiplied by a factor that depends only on the constants of the trans-

Sformation’,
it can be proved that the factor in question must be a power of the
modulus of the transformation.

In the present, elementary, treatment of the subject we have left
aside the possibility of the factor being other than a power of |[M|. It
is, however, a point of some interest to note that the wider definition
can be adopted with the same ultimate restriction on the nature of the
factor, namely, to be a power of the modulus.

2. Examples of invariants and covariants
2.1. Jacobians. Let u, v,..., w be n forms in the n variables
z, Y,..., 2. The determinant

wu, vy, . . w, |,
ull vU wU
u, v, . w,

where u,, u,,... denote du/ox, ou/dy,..., is called the Jacobian of
the n forms. It is usually written as
o(u,v,...,w)

Wynz)
It is, as an extension of the argument of §1.6 will show, a

covariant of the forms %, v,..., w, and if x = MX,

o(u,v,...,w) o(u,v,...,w)
U2 T = M| 2
oX,Y,....2) ! o(x,y,...,2) (1)
2.2. Hessians. Let » be a form in the variables z, v,..., 2
and let u,,, u,,,... denote 0%u/0x?, 0%u/0x0dy,.... Then the deter-

minant

Upy Upy - - Ugy
Uyz Uy Uy, (@)
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is called the Hessian of « and is a covariant of «; in fact, if we
symbolize (2) as H(u;x), we may prove that

H(u; X) = | M |?H(u; z). (3)

For, by considering the Jacobian of the forms u,, u,,..., and
calling them u,, u,,..., we find that §2.1 gives

o(uy, Uy,...) o(uy, Us,...)

e Al Y " 4
o(X,Y,...) M o, y,...) @
ou, 0 du
But X X ox’
and if x=LX+LY+..,
y = m1X+m2Y+...,
then
) 0 0
— l _— -
X~ e t™ 33/+ ’
—_— =, — — ..
¥~ 2T 23!/+
Hence Uxx Uxy - - Uxz
Uyx Uyy . . Uyz
Uzx Uzy - - Uzz
= l]_ m1 . . .1 X u.zX qu ‘ * P
g My . . . Uy Uyy
l, m, . . . Uzz  Uyz

as may be seen by multiplying the last two determinants by
rows and applying (5). That is to say,

o(Uy, Usy...
Hw;X) = | M| a((’;; ‘I‘;——)’

which, on using (4), yields
Hu; X) = |M|*H(u;x).
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2.3. Eliminant of linear forms. When the forms «, v,..., w
of §2.1 are linear in the variables we obtain the result that the
determinant |a,,| of the linear forms

a2+ Fa,,x, (r=1,.mn)
is an invariant. Tt is sometimes called the ELIMINANT of the
forms. As we have scen in Theorem 11, the vanishing of
the eliminant is a necessary and sufficient condition for the

equations a &+ ta,x, =0 (r=1,.,n)

to have a solution other than z; == ... = x, = 0.

2.4. Discriminants of quadratic forms. When the form
u of § 2.2 is a quadratic form, its Hessian is independent of the
variables and so is ar invariant. When

U = z a,r.2; (@, = ag), (6)

we have ufox, ox, = 2a,,
so that the Hessian of (6) is, apart from a power of 2, the
determinant |a,,|, namely, the discriminant of the quadratic
form.

This provides an alternative proof of Theorem 39.

2.5. Invariants and covariants of a binary cubic. A form
in two variables is usually called a binary form : thus the general

binary cubic is 123+ 3, 2%y + 3a, 2y?--ay . (7)
We can write down one covariant and deduce from it a second
covariant and one invariant. The Hessian of (7) is (§2.2) a
covariant; it is, apart from numerical factors,
QT+ y a;x+ay
G2 +ay ayr+azy
ie. (@yay—af)a®+(ay a3—a, ay)ry+(a, a3—ag)y®. (8)
The discriminant of (8) is an invariant of (8): we may expect

to find (we prove a general theorem later, §3.6) that it is an
invariant of (7) also.t The discriminant is

’

@y ay—aj $(aya3—a, a,)
$(aya;—a, a,) a,a;—aj

(9)

t The reader will clarify his ideas if he writes down the precise meaning of
the phrases ‘is an invariant of (7)’, ‘is an invariant of (8)’.
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Again, the Jacobian of (7) and (8), which we may expect?
to be a covariant of (7) itself, is, apart from numerical factors,

ay %+ 20, xy+a, y* @, 22+ 2a, Ty +-az y?
2(agay—ad)T+ (2 A3—a1 Qy)y (A a3—a, ay)r+2(a, az—al)y
ie. (ataz—3a,a,a,+2a3)r3+3(aya, a;—2a,a3+-a2 a,)xy -+
+3(2a} az—a,a,a3—a, al)ry?+ (3a, a,a3—aya3—2a3)ys.  (10)
At a later stage we shall show that an algebraical relation
connects (7), (8), (9), and (10). Meanwhile we note an interesting
(and in the advanced theory, an important) fact concerning the

coefficients of the covariants (8) and (10).
If we write

cox%+c xy-+ic,y? for a quadratic covariant,
1 . .
CoX3+-c 22y + %cz xy? 4 5730 y® for a cubic covariant,

and so on for covariants of higher degree, the coefficients c, are
not a disordered set of numbers, as a first glance at (10) would
suggest, but are given in terms of ¢, by means of the formula

0 7] 0
Cry1 = (Palé(;;‘l"(Z’-l)azéa—l‘f‘m*f—apzm)cn (11)

where p is the degree of the form u. Thus, when we start with
the cubic (7), for which p = 3, and take the covariant (8), so
that ¢, = a,a,—a?, we find that

ac ac ac
3“16—;4‘ 2a 28(;:‘*-“3%2 = QpA3— a3y = €y
oc, ocy ocy 2
and 3ala + 2a,2 +aaa = 2(a,a3—aj) = c,

and the whole covariant (8) is thus derived, by differentiations,
from its leading term (a,a,—a?)x®.

Exercise. Prove that when (10) is written as

Cox3+cy 2y + degxy?+ ey B,

ac, ac ac.
c,+1—3ala'+2,aa'+' saa' (r =0,1,2).

t Compare §§ 3.6, 3.7.

4702 Aa
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2.6. A method of forming joint-invariants. Let

u = F(a,z) = (ay,..., ) (@y,..., 2, )k, (12)
and suppose we know that a certain polynomial function of the
@, say ¢(a0""’ am)5

is an invariant of F(a,x). That is to say, when we substitute
x = MX in (12) we obtain a form

U= G(A7X) = (AO"")Am)(Xp"-,Xn)ky (13)
and we suppose that the a of (12) and the 4 of (13) satisfy
the relation g 4,,..., 4,) = 1M (... ), (14)

where s is some fixed constant, independent of the matrix M.

Now (12) typifies any form of degree L in the » variables
Zy,..., T,, and (14) may be regarded as a statement concerning
the coefficients of any such form. Thus, if

v= Fa,x) = (ag,...,a,,)(Zq,..., T,)F,
is transformed by x = M X into
v= G4, X)= (4g... A7) Xp..., X,))F,
the coefficients a’, A’ satisfy the relation
d(Ag,..., 4,,) = | M|"(aq,..., an,). (15)
Equally, when A is an arbitrary constant, u+Av is a form of
degree k in the variables z,,..., x,. It may be written as
(@p+Aag,..., @, +Aa, ) (..., 2,)F
and, after the transformation x = M X, it becomes
(Aogseees Ay ) Xpsenn, X)EHA(Agyens 40)( X, X)),
that is, (Ay+2Adg,..., A, +2A4,)(X ..., X))k
Just as (15) may be regarded as being a mere change of

notation in (14), so, by considering the invariant ¢ of the form
u-+4Av, we have

$(Ag+AAy,..., A +A45) = | M |d(ay+Aaq,..., a,,+Aay,), (16)
which is a mere change of notation in (14).

Now each side of (16) is a polynomial in A whose coefficients
are functions of the 4, a, and |M|; moreover, (16) is true for
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all values of A and so the coefficients of A%, A, A2,... on each side
of (16) are equal. Hence the coefficient of each power of A in
the expansion of
¢(a’0+’\a(;"“’ a’m+)‘a;n)
is a joint-invariant of » and v; for if this coeflicient is
<l)r(a()""’ am’ a(,)""a a;n)’
then (16) gives
¢r(A0 Am’ A 0 ©) A;n) = IMlsd’r(aO!‘“’ a’m’ dé,..., a':n) (17)
The rules of the dlﬁercntial calculus cnable us to formulate
the coefficients of the powers of A quite simply. Write

by = ay+Aay, s by, = @p+Aay,.
Then d
ax (@g+Adg,..., @p+Aay)
__ 04 db, op db,,
= T, i
o¢ 8(;9
= 1
aodb“*‘ + mdb (8)
and the value of (18) when A = 0 is given by
(ao-———f— -+ mdam)d)(%’m’ a,). (19)

Hence, by Maclaurin’s theorem,

d(ag+2Aay,..., a,+Aa,,)

A? 0
+2‘( 0"'_+ '! mf

the expansion terminating after a certain point since

d(ag+Aag,..., A,+Aay)
is a polynomial in A. Hence, remembering the result (17), we
have

)oqb(ao,---, )+ oo

m

.. +A )r¢(Aoa---; Am)

oA

8 ’ a ’
= |M| (ao%+...+am

(152,

ain)rqS(ao,..., a,). (20)
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ExamprLEs XIV A

Examples 1-4 can be worked by straightforward algebra and without
appeal to any general theorem. In these examples the transformation
is taken to be e =L, X+mY, y =L, X+m,Y,
and so |M] is equal to I, my—I,m,; forms ax+by, ax®+ 2bxy+cy® are
transformed into AX+BY, AX?4+2BXY -+ CY?% and so for other
forms.

1. Prove that ab’—a’b is an invariant (joint-invariant) of the forms
ax+by,a’z+by.

Ans. AB'—A’'B = |M|(ab’—a'b).

2. Prove that ab’?—2ba’b’+ca’? is an invariant of the forms

ax? 4 2bzxy+cy?, a’z+b'y.

Ans. AB*—2BA’B’+CA’? = |M|[*(ab’*—2ba’b’+ca’®).

3. Prove that ab’+4a’b—2hh’ is an invariant of the two quadratic
forms ax?+ 2hxy +by?, a’2x?+ 2h'xy + b'y?.

Ans. AB'+A’B—2HH’ = |M|*ab’+a’b—2kh').

4. Prove that b’(ax+by)—a’(bxr+cy) is a covariant of the two forms
ax?+ 2bxy+cy?, a’x+b'y.

Ans. B'(AX+ BY)—A'(BX+CY) = | M|{b'(ax+by)—a’(bz+cy)}.

The remaining examples are not intended to be proved by sheer
substitution.

5. Prove the result of Example 4 by considering the Jacobian of the
two forms ax?+ 2bxy+cy?, a’z+by.

6. Prove that (ab’—a’b)x?+(ac’—a’c)xy+ (be’—b’c)y? is the Jacobian
of the forms ax?+ 2bxy 4 cy?, a’x? + 2b'xy +-c'y*.

7. Prove the result of Example 1 by considering the Jacobian of the
forms ax+by, a’z+b’y.

8. Prove that Y (b,c,—b,c,)(axz+hy+gz) is the Jacobian (and so a
covariant) of the three forms
ax®+by?+c2t 4 2fyz 4 2g9zx+ 2hxy, a,x+byy+c 2, a,z+byy+cyz.

Examples 9-12 are exercises on § 2.6.

9. Prove the result of Example 3 by first showing that ab—h? is an
invariant of ax?+ 2hxy + by?.

10. Prove the result of Example 2 by considering the joint-invariant
of ax?42hxy+by? and (a’xz+b'y)%

11. Prove that abc+ 2fgh—af*—bg®—ch?, i.e. the determinant

A=|a h g}
h b f
g f ¢

is an invariant of the quadratic form ax?-+ by?+ cz%+ 2fyz -+ 2gzx+ 2hxy,
and find two joint-invariants of this formand of the forma’z?+ ...+ 2h’zy.
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Note. These joint-invariants, usually denoted by 9, @’,
O = a’A+b'B+c’'C+2f'F+29'G+2h'H,
O’ = ad’'+bB’+4cC’'+2fF’'+29G'+2hH’,
where 4, A’,... denote co-factors of a, a’,... in the discriminants A, A’,
are of some importance in analytical geometry. Compare Somerville,
Analytical Conics, chapter xx.

12. Find a joint-invariant of the quadratic form
ax?+by?+ c2?+ 2fyz+2gzx + 2hay
and the linear form lz+my-+nz. What is the geometrical significance
of this joint-invariant ?

Prove that the second joint-invariant, indicated by ®’ of Example 11,
is identically zero.

13. Prove that

12 lm m? | = (Im'—1U'm)3.
22U Im'+lU'm 2mm’
e Um’ m’?
14. Prove that
Ju du u
ozt  oxloy oxtoy?
o'u o'u o*u
oxloy oxtoy® oxoy®
u ot ou

ox%oy? 5;8—3/—3 53;‘
is a covariant of a form » whose degree exceeds 4 and an invariant of a
form u of degree 4.
Hint. Multiplication by the determinant of Example 13 gives a
determinant whose first row is [ = IX+4+mY, y = 'X+m'Y]
otu tu u
0X%0x® 0XoYox? 0Y?0x%

o 0 )2
Compare §2.2: here (lg;: +1 @ —<5» and so on.

X
A multiplication of the determinant just obtained by that of Example
13 will give a determinant whose first row is

o'u Mu ot
oX* 8X%Y 0XWY*
Hence x = MX multiplies the initial determinant by |M|®.
15. Prove that ace+2bcd —ad?—bie—c3, i.e.

a b ¢
b ¢ d
c d e

is an invariant of (a, b, ¢, d, e,)(z, y)*.
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16. Prove that

Ugr Uzy Uy
Vex  Vxy Uy
Weg Wry Wyy

is a covariant of the forms u, v, w.
Hint. The multiplying factor is | M |2
3. Properties of invariants
3.1. Invariants are homogeneous forms in the coeffi-
cients. Let /(a,,..., a,,) be an invariant of
U = (Agyeeey Bpy)(Lgseee, Tp)Ee
Let the transformation x = MX change « into
(Agseees Ap)(Xyyenes XK.
Then, whatever M may be,
I(4,,..., 4,,) = |M|*1(ay,..., a,), (1)
the index s being independent of M.
Consider the transformation
2, =AX,, z,=2AX,, .. =z,=2AX,
wherein |M| = A"
Since u is homogeneous and of degree k in x,,..., z,, the values
of A4,,..., 4,, are, for this particular transformation,
a N, ..., @, Ak,
Hence (1) becomes
L(ayX%,..., a, X*¥) = An8](a,,..., @,,). (2)
That is to say, I is a homogeneoust function of its arguments
ay,..., 4, and, if its degree is ¢, A*¢ = A3, a result which proves,
further, that s is given in terms of £, ¢, and n by
s = kqg/n.
3.2. Weight: binary forms. In the binary form
ayxk+ka, 2k y+...4a, y*
the suffix of each coefficient is called its weigHT and the
weight of a product of coefficients is defined to be the sum of

t The result is a well-known one. If the reader does not know the result, a
proof can be obtained by assuming that I is the sum of I,, I,,..., each homo-
geneous and of degrees ¢,, ¢s,..., and then showing that tho assumption con-
tradicts (2).
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the weights of its constituent factors. Thus aja¥ aj... is of weight
pt2v+....

A polynomial form in the coefficients is said to be ISOBARIC
when each term has the same weight. Thus a,a,—a} is isobaric,
for a,a, is of weight 0+2, and af is of weight 2x 1; we refer
to the whole expression aya,—a? as being of weight 2, the
phrase implying that each term is of that weight.

3.3. Invariants of binary forms are isobaric. Let
I(ay,..., @;) be an invariant of
k
N
U = kL a kY (3)

7l (k—)!

and let I be a polynomml of degree ¢ in a,,..., a;. Let the
transformation x = MX change u into

2 o A, XETY (4)
Then, by §3.1 (there being now two variables, so that n = 2),
I(Ay,..., Ay) = | M|l (ay,..., a;) (3)

whatever the matrix M may be.
Consider the transformation

x=X, y =AY,
for which |M| == X. The values of 4,..., 4, are, for this parti-
cular transformation,
Qg WA, ey @A, L, @R AR,

That is, the power of X associated with each coefficient A s equal
to the weight of the coeffictent. Thus, for this particular trans-
formation, the left-hand side of (5) is a polynomial in A such
that the coefficient of a power X is a function of the a’s of
weight w. But the right-hand side of (5) is merely

AL (aqy,..., a;), (6)
since, for this particular transformation, || = A. Hence the
only power of X that can occur on the left-hand side of (5) is
A¥a and its coefficient must be a function of the a’s of weight
1kq. Moreover, since the left-hand and the right-hand side of
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(5) are identical, this coefficient of At*¢ on the left of (5) must
be I(ay,..., a;).
Hence I(ay,..., a;) is of weight 4kq.

3.4. Notice that the weight of a polynomial in the a’s must
be an integer, so that we have, when I(a,,..., a;) is a polynomial
invariant of a binary form,

I(4,,..., 4;) = | M |2 1(ay,..., @), (7)
s = kg,
and 1kq = weight of a polynomial = an integer.

Accordingly, the s of (7) must be an integer.

3.5. Weight: forms in more than two variables. In .he
form (§1.3) X

Z a'a,ﬁ ..... l\k_"B' /\,xaxgmxﬁ (8)

the suffix A (corresponding to the power of z, in the term) is
called the weight of the coefficient a,p ) and the weight of
a product of coefficients is defined to be the sum of the weights
of its constituent factors.

Let I(a) denote a polynomial invariant of (8) of degree ¢ in
the a’s. Let the transformation x = MX change (8) into

k! o« YB A
ZA""B ..... A&_!'ET/“XIXW”X"' (9)
Then, by §3.1, I(4) = | M|k ](a) (10)
whatever the matrix M may be.

Consider the particular transformation

=Xy . z,,=X,, z,=2AX,

for which |M| = A. Then, by a repetition of the argument of
§3.3, we can prove that I(a) must be isobaric and of weight
kq/n. Moreover, since the weight is necessarily an integer, kg/n
must be an integer.

ExampLEs XIV B

Examples 2-4 are the extensions to covariants of results already
proved for invariants. The proofs of the latter need only slight modi-
fication.
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1. If C(a,z) is a covariant of a given form «, and C(a, z) is a sum of
algebraic forms of different degrees, say

C(a,z) = Cy(a,z)"1+...+C,(a, x)"r,
where the index = denotes degreo in the variables, then each separate
term C(a,x)® is itsclf a covariant.
HinT. Since C(a,x) is a covariant,
C4,X) = |[M|*C(a,x).
Put z,¢,..., z,t for z,,..., z, and, consequently, X, ¢,..., X . ¢ for X,,..., X,,.
The result is 3 C(A4, X)Tr i — M| S C)a, x)Pr .
T T

Each side is a polynomial in ¢ and we may cquate coefficients of like
powers of ¢.

2. A covariant of degree w in the variables is homogeneous in the
coefficients.

Hint. The particular transformation
2, = AX,, .., x, =AX,
gives, as in §3.1, C(alk, X)® = AnC(a, z)@,
i.o. A-®C(alk, x)® = A®(C(a, )™
This proves the required result and, further, shows that, if C is of degree
q in the coefficients a, A — ()@

or kg = ns+w.

3. If in a covariant of a binary form in z,y we consider z to have
weight unity and y to have weight zero (22 of weight 2, etc.), then a
covariant C(a,z)™, of degree ¢ in the coefficients a, is isobaric and of
weight 3(kq+ o).

HinT. Consider the particular transformation, x = X, y = AY and
follow the line of argument of § 3.3.

4. If in a covariant of a form in zy,..., z, we consider x,..., ,_; t0
have unit weight and z,, to havo zero weight (x, z, z,, of weight 2, etc.),
then a covariant C(a,z)%®, of degree ¢ in the coefficients @, is isobaric
and of weight {kq -+ (n— 1)w}/n.

Hint. Compare § 3.5.

3.6. Invariants of a covariant. Let u(a,2)X be a given
form of degree k in the n variables x,,..., ,. Let C(a,x)” be
a covariant of u, of degree w in the variables and of degree ¢
in the coefficients a. The coefficients in C(a,x)® are not the
actual a’s of u but homogeneous functions of them.

4702 B b
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The transformation x = MX changes u(a,z) into u(4,X)
and, since C is a covariant, there is an s such that
C4,X)® = |M|*C(a,x)=.
Thus the transformation changes C(a,z)® into |M|-*C(4, X)=.
But C is a homogeneous function of degree ¢ in the a’s, and
80 also in the A’s. Hence
Cla,z)® = |M|=C(A,X)™ = C(4|M|-%, X)=. (11)
Now suppose that I(b) is an invariant of »(b,z), a form of
degree w in n variables. That is, if the coefficients are indi-
cated by B when v is expressed in terms of X, there is a ¢ for

which [(B) = | MI(b). (12)

Take v(b,z) to be the covariant C(a,z)®; then (11) shows
that the corresponding B are the coefficients of the terms in
C(4|M|-, X).

If 1(b) is of degree r in the b, then when expressed in terms
of a it is I;(a), a function homogeneous and of degree rq in the
coefficients a. Moreover, (12) gives

L(A|M |~y = | M |'](a),
or, on using the fact that I, is homogeneous and of degree rq
0 the a, (M- T(4) == |} (a).
That is, I,(a) is an invariant of the original form wu(a, x).
The generalities of the foregoing work are not easy to follow.

The reader should study them in relation to the particular
example which we now give; it is taken from §2.5.

u(a, x)? = ay23+ 3a, 2%+ 3a, xy*+az 3
has a covariant
Cla,x)? = (aya,—0a3)x?+(aya3—a; ay)xy+(a, az—a3)y®
Being the Hessian of u, this covariant has a multiplying factor
| M |2; that is to say,
(Agd,—ADNX2+... = | M |¥(aya,—a})x®+...},
4, 4 A, \?
or (aga,—ad)x?+... = {—0 —2——(-——1—) }X2+..., (11a)
A ||\ M
which corresponds to (11) above.
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But if x = MX changes the quadratic form

by x24-2b, xy+ b, y*
into By X*4+2B, XY+ B,Y?,
then By By— B2 = | M |*(byb,—b3). (12a)

Take for the b’s the coefficients of (11a) and we see that
| M|~4{(Ag A, —A3N(A, Ag—A3)— LA, A3— A Ay)%
= | M [*{(ayay,—a})(a, a3—a3)— (@ a3—a, a,)%),
which proves that (9) of §2.5 is an invariant of the cubic
ay 23+ 3a, x%y+ 3a, 2y +agys.

3.7. Covariants of a covariant. A slight extension of the
argument of § 3.6, using a covariant C(b, x)® of a form of degree
w in n variables where § 3.6 uses I(b), will prove that C(b, )™
gives rise to a covariant of the original form u(a, x).

3.8. Irreducible invariants and covariants. If /(a) is an
invariant of a form u(a, )%, it is immediately obvious, from the
definition of an invariant, that the square, cube,... of I(a) are
also invariants of ». Thus there is an unlimited number of
invariants; and so for covariants.

On the other hand, there is, for a given form u, only a finite
number of invariants which cannot be expressed rationally and
integrally in terms of invariants of equal or lower degree.
Equally, there is only a finite number of covariants which can-
not be expressed rationally and integrally in terms of invariants
and covariants of equal or lower degree in the coefficients of u.
Invariants or covariants which cannot be so expressed are called
irreducible. The theorem may then be stated

‘The number of irreducible covariants and invariants of a given
form is finite.’

This theorem and its extension to the joint covariants and
invariants of any given system of forms is sometimes called the
Gordan-Hilbert theorem. Its proof is beyond the scope of the
present book.

Even among the irreducible covariants and invariants there
may be an algebraical relation of such a kind that no one of
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its terms can be expressed as a rational and integral function
of the rest. For example, a cubic u has three irreducible co-
variants, itself, a covariant @, and a covariant H; it has one
irreducible invariant A: there is a relation connecting these

four, namely, Au? = G24-4H3

We shall prove this relation in §4.3.

4. Canonical forms

4.1. Binary cubics. Readers will be familiar with the device
of considering ax®- 2hxy—+by? in the form aX%4-b, Y2, obtained
by writing

h \? h?
ax?+ 2hry+by* = a(x+ ay) + (b — Z)yz
and making the substitution X = z+(hja)y, ¥ =y. The
general quadratic form was considered in Theorem 47, p. 148.

We now show that the cubic
ao2*+3a, %Y+ 3a, vy*+ay y? (1)

may, in general, be written as pX3+4¢Y3; the exceptions are
cubics that contain a squared factor.

There are several ways of proving this: the method that
follows is, perhaps, the most direct. We pose the problem

‘Is it possible to find p, ¢, «, B so that (1) is identically
equal to ple+eyP+q+ByP?’ (2)

It is possible if, having chosen « and B, we can then choose
p and ¢ to satisfy the four equations

ptq = a,, pa+qﬁ = Ay, } (3)
pat+-gp? = a,, pad4-gp = aj.

For general values of a,, a,, a,, a; these four equations cannot
be consistent if « = 8. We shall proceed, at first, on the
assumption « 7% 8.

The third equation of (3) follows from the first two if we can
choose P, @ so that, simultaneously,

@t Pay+Qay = 0, o+Pat@Q =0, B+PB+Q =0,
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The fourth equation of (3) follows from the second and third
if P, @ also satisfy

ay+ Pay+Qa, = 0, a(e?+Pat@Q) =0, BB+ PB+Q) = 0.

That is, the third and fourth equations are linear consequences
of the first two if «, B are the roots of

£+ Pt+Q = 0,
where P, @ are determined from the two equations
a,+ Pa,+Qa, = 0,
a;+ Pa,+Qa, = 0.
This means that «, B are the roots of
(@oa,—a3)t?+(a; ay—ay ag)t+(a, ag—aj) = 0
and, provided they are distinct, p, ¢ can then be determined

from the first two equations of (3).
Thus (1) can be expressed in the form (2) provided that

(@, a,—a,a;)2 —4(aya,—ai)(a, a;—a3) (4)

is not zero, this condition being necessary to ensure that « is
not equal to B.

We may readily see what cubics are excluded by the pro-
vision that (4) is not zero. If (4) is zero, the two quadratics

agx*+2a, y+a, y?,
a, x?+2a, xy+az y*
have a common linear factor;} hence
a2+ 2a, xy+a,y?, a, 23+ 3a, 2%+ 3a, 2y +az y®
have a common linear factor, and so the latter has a repeated
linear factor. Such a cubic may be written as X2Y, where X
and Y are linear in z and y.
t The reader will more readily recognize the argument in the form
agz?+2a,x+a, = 0, a,z*+2a,z+a; = 0
have a common root ; hence
apx?+42a,x+4a, = 0, ayx3+3a, 22+ 3a,x+ay = 0

have a common root, and so the latter has a repeated root. Every root common
to F(x) = 0 and F’(x) = 0 is a repeated root of the former.
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4.2. Binary quartics. The quartic
(a01'-‘)a4)(x5 y)4 (5)
has four linear factors. By combining these in pairs we may
write (5) as the product of two quadratic factors, say
ay 2%+ 2h'xy+b'y?, a"x?+ 2h"xy+b"y>. (6)
Let us, at first, preclude quartics that have a squared factor,
linear in z and y. Then, by a linear transformation, not neces-
sarily real, we may write the factors (6) in the formst

X412, aX?4-28XY Y2
By applying Theorem 48, without insisting on the transforma-
tion being real, we can write these in the forms
X++X3  AXIFAXE (1)
Moreover, since we are precluding quartics that have a squared
linear factor, neither A; nor A, is zero, and the quartic may be
written as ) Xi4 Oy FA)XEXEHA XY,
or, on making a final substitution
X =X, Y =MX,,
we may write the quartic as
X4+ 6mX2Y24- Y4 (8)
This is the canonical form for the general quartic. A quartic

having a squared factor, hitherto excluded from our discussion,
may be written as X2(A; X242, Y?).

4.3. Application of canonical forms. Relations among
the invariants and covariants of a form are fairly easy to detect
when the canonical form is considered. For example, the cubic

u = a3+ 3a, 2%+ 3a, xy*4-a,y®
is known (§2.5) to have
a covariant H = (aya,—a?)22+ ... [(8) of §2.5],
a covariant G = (afa;—3a,a, a,+2a})x*+... [(10) of §2.5],
and an invariant
A = (aga3—a, a,)*—4(aya,—a3)(a, az—aj).

t We have merely to identify the two distinct factors of a’z®-+ 2h'zy +b'y?
with X+¢Y and X —1Y.
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Unless A = 0 the cubic can, by the transformation X = x+ay,
Y = x4 By of §4.1, be expressed as

u = pX34-qY3.

In these variables the covariants H and G become

H, = pgXY, G, = p*qX?—pg’Y?,
while A, = pPg2.

It is at once obvious that
A u? = G3+4H3
Now, |M| being the modulus of the transformation x = MX,
H, = |M|2H, G, = |M PG, A, = |M|SA.

The factor of H is |M|? because H is a Hessian. The factor |[M|? of @
is most easily determined by considering the transformation r = AX,
y = AY, which gives 4y = ayA%,..., 43 = a3 A3, so that

(A2A;—34,4, 4,4 243)X3+...
= A{(a2ay—3aga, a4 2a})sPA-34- ...}
= A{(aja;—3aya,a,+ 2a)x’+...},
and the multiplying factor is A8, or | M |°.
The factor |[M|® of A may be determined in the same way.

Accordingly, we have proved that, unless A = 0,
Au? = G2+ 4H3. (9)

If A = 0, the cubic can be written as X?Y, a form for which
both G and H are zero.

5. Geometrical invariants

5.1. Projective invariants. Let a point P, having homo-
geneous coordinates z, y, z (say areal, or trilinear, to be definite)
referred to a triangle 4 BC in a plane m, be projected into the
point P’ in the plane »’. Let 4’ B’C’ be the projection on =" of
ABC and let z’, ¥, 2’ be the homogeneous coordinates of P’
referred to A’B’C’. Then, as many books on analytical geo-
metry prove (in one form or another), there are constants l, m, n
such that

x =z, y = my’, z = nz.
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Let X, Y, Z be the homogeneous coordinates of P’ referred
to a triangle, in ', other than A’ B’C’. Then there are relations

2 =MX+p Y+v 4,
Y = X+p,Y+v, 2,
Z' = A3X+/J«3Y+V3Z.

Thus the projection of a figure in = on to a plane =’ gives

rise to a transformation of the type
=10, X+4+mY+n Z,
y=0LX+m,Y4n,2, (1)
z=ULX+mY+n, Z,

wherein, since x = 0, y = 0, 2 = 0 are not concurrent lines,

the determinant (I, m, ny) is not zero.

Thus projection leads to the type of transformation we have
been considering in the earlier sections of the chapter. Geo-
metrical properties of figures that are unaltered by projection
(projective properties) may be expected to correspond to in-
variants or covariants of algebraic forms and, conversely, any
invariant or covariant of algebraic forms may be expected to
correspond to some projective property of a geometrical figure.

The binary transformation

x=0LX+m7Y, y=1X+m,Y, (2)
may be considered as the form taken by (1) when only lines
through the vertex C of the original triangle of reference are
in question; for such an equation as ax?+ 2hxy—+by® = 0 corre-
sponds to a pair of lines through C; it becomes

AX24+2HXY+ BY? = 0,

say, after transformation by (2), which is a pair of lines through
a vertex of the triangle of reference in the projected figure.

We shall not attempt any systematic development of the
geometrical approach to invariant theory: we give merely a few
isolated examples.

The cross-ratio of a pencil of four lines is unaltered by pro-
jection: the condition that the two pairs of lines

ax?+2hxy +by?, a’'x?+2h'xy+b'y?
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should form a harmonic pencil is ab’+a’b—2hh’ = 0: this repre-
sents a property that is unaltered by projection and, as we
should expect, ab’4-a’b—2hh’ is an invariant of the two alge-
braic forms. Again, we may expect the cross-ratio of the four

lines axt+ 4bx34- 6cxy?+ 4dxy®+-eyt = 0

to indicate some of the invariants of the quartic. The condition
that the four lines form a harmonic pencil is

J = ace+2bcd—ad?*—b2e—c* = 0

and, as we have seen (Example 15, p. 181), J is an invariant
of the quartic. The condition that the four lines form an equi-
harmonic pencil, i.e. that the first and fourth of the cross-ratios
1 1 1
py o l=p, = 1=, L.
p 1—p p p—l
(the six values arising from the permutations of the order of the

lines) are cqual, is
I = ae—4bd-3c? = 0.

Moreover, I is an invariant of the quartic.

Again, in geometry, the Hessian of a given curve is the locus
of a point whose polar conic with respect to the curve is a pair
of lines: the locus meets the curve only at the inflexions and
multiple points of the curve. Now proper conics project into
proper conies, line-pairs into line-pairs, points of inflexion into
points of inflexion, and multiple points into multiple points.
Thus all the geometrical marks of a Hessian are unaltered by
projection and, as we should expect in such circumstances, the
Hessian proves to be a covariant of an algebraic form. Simi-
larly, the Jacobian of three curves is the locus of a point whose
polar lines with respect to the three curves are concurrent; thus
its geometrical definition turns upon projective properties of
the curves and, as we should expect, the Jacobian of any three
algebraic forms is a covariant.

In view of their close connexion with the geometry of pro-
jection, the invariants and covariants we have hitherto been
considering are sometimes called projective invariants and co-

variants.
4702 cec¢
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5.2. Metrical invariants. The orthogonal transformation
x=0LX+mY+n Z,
y=ULX+m,Y+n,Z, (3)
z2=ULX4+mY+n,Z,

wherein (l;, my, n,), (ly, Mg, My), and (I3, m3, n3) are the direction-
cosines of three mutually perpendicular lines, is a particular

type of linear transformation. It leaves unchanged certain
functions of the coefficients of

ax?+by?+c2?+ 2fyz+ 2gza+ 2hay (4)

which are not invariant under the general linear transformation.
If (3) transforms (4) into

a, X24+by Y2tc, 224+ 2f, Y2+ 29, ZX +20, XY,  (5)

we have, since (3) also transforms x2+-y%+-22 into X24-Y2+ Z2,
the values of A for which (4) — A(@2+y%+2?) is a pair of linear
factors are the values of A for which (5) — A(X24-Y2%4Z2) is
a pair of linear factors. These values of A are given by

a—A h g | =0, a—A h g | =0,
k b—A f k, b—Xx fi
) f c—A g1 f ¢ —A

respectively. By equating the coefficients of powers of A in the
two equations we obtain

a+b+c = a,+b,4¢,,
A+B+C = A+ B,+C;, (A = bc—f? ete.),
A=A,

where A is the discriminant of the form (4). That is to say,
a+b+-c, be+ca+-ab—f*—g?—h? are invariant under orthogonal
transformation; they are not invariant under the general linear
transformation. On the other hand, the discriminant A is an
invariant of the form for all linear transformations.

The orthogonal transformation (3) is equivalent to a change
from one set of rectangular axes of reference to another set of
rectangular axes. It leaves unaltered all properties of a geo-
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metrical figure that depend solely on measurement. For

example, ORI 0
WO+ ui D) (A p+v2)}
is an invariant of the linear forms
e+ py+vz, Mr+p Y+ 2
under any orthogonal transformation: for (6) is the cosine of
the angle between the two planes. Such examples have but
little algebraic interest.

6. Arithmetic and other invariants

6.1. There are certain integers associated with algebraic
forms (or curves) that are obviously unchanged when the
variables undergo the transformation x = MX. Such are the
degree of the curve, the number of intersections of a curve with
its Hessian, and so on. One of the less obvioust of these arith-
metic invariants, as they are called, is the rank of the matrix
formed by the coordinates of a number of points.

Let the components of x be z, y,..., 2, » in number. Let m
points (or particular values of x) be given; say

(@pseees 21)s s Zppseees Zm)-

Then the rank of the matrix

[xl .o zl]
T - - 2y

is unaltered by any non-singular linear transformation
x = MX.

Suppose the matrix is of rank r (<< m). Then (Theorem 31)
we can choose r rows and express the others as sums of multiples
of these r rows. For convenience of writing, suppose all rows
after the rth can be expressed as sums of multiples of the first
r rows. Then there are constants Ay,..., A, such that, for any
letter ¢ of x,..., 2,

bk = Mg byte At (1)

1 This also is obvious to anyone with some knowledge of n-dimensional
geometry.
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The transformation X = M X has an inverse X = M-x or,

in full, say X — Cux"‘ +cln

Z =Cm (E—I— +Cnn
Putting in suffixes for particular points
(Xpeeos Zy)y oy (Xpyerrs Zyp),
and supposing that ¢ is the jth letter of «, y,..., 2z, we have

r+k Z Aqlc Tk
.
= (€5 Xyt i Zpin) — le\qk(cﬂ T+ 4-Cjy 2g)-
q:

By (1), the coefficient of each of ¢;,..., ¢;, is zero and hence
(1) implies T = M Tyt oA AT, 2)
Conversely, as we see by using X = M X where in the foregoing
we have used X = M-1x, (2) implies (1). By Theorems 31 and
32, it follows that the ranks of the two matrices

[xl .o zl], [Xl .o Zl]
Ly, - - 2n X, - . Z,

6.2. Transvectants. We conclude with an application to
binary forms of invariants which are derived from the con-
sideration of particular values of the variables.

Let (%4,9;), (%5, Y,) be two cogredient pairs of variables (z,y)
each subject to the transformation

x = IX+mY, y=1X4+m'Y, (3)
wherein |M| = Im’—I'm. Then

o .0 0 9 0 0
9 48l 2 _ 04wl
X mw ww Mal ™

are equal.

the transformation being contragredient to (3) (compare Chap.
X, §6.2).

o 0

If now the operators —-

oX,’ oY, oX,’ Operate on a function
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of X,, ¥}, X,, Y, and these are taken as independent variables,
we have

ERC
oX, oY, o, oX,

0 , 0
- (la_xl+l 5?—/_1)( d-‘:z 5./2)

0
9 e
( + 33/1)( dx2 Gz, T ayz)

= (Im'—1l'm) o9 0 i .
0x, 0y, Yy 0%,

(4)
Hence (4) is an invariant operator.

Let u,, v, be binary forms %, v when we put = z,, ¥y = y;;
Uy, V, the same forms u, v when we put x = 2,, y = y,; U;, )}
and U, ¥, the corresponding forms when u, v are expressed in
terms of X, Y and the particular values X, ¥; and X,, ¥, are
introduced. Then, operating on the product U, ¥;, we have

o 0 0 0o 0
(KﬁamﬂW”LN%%@mJ”’
o o 0 [0 0 o @
(53(—151"; ayax)(UV) | M| (axlé?]; 6y18x2)(12),

and so on. That is, for any integer 7,

aueY, . &l oV
X7 oYy  oXi-lay, oX,oYn T
0"uy 0", "uy ",
= M= 2= —— — ...
oxy dyy  0xy 10y, 9wy oYyt

These results are truc for all pairs (x,,y,) and (x,,y,). We
may, then, replace both pairs by (r,y) and so obtain the

theorem that
Fu v au av
A (5)
ox" oy oam~1oy dxoy 1
is a covariant (possibly an invariant) of the two forms » and v.
It is called the rth transvectant of « and v.
Finally, when we take » = u in (5), we obtain covariants of

the single form u.
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This method can be made the basis of a systematic attack
on the invariants and covariants of a given set of forms.

7. Further reading

The present chapter has done no more than sketch some of
the elementary results from which the theory of invariants and
covariants starts. The following books deal more fully with
the subject:

E. B. ErrioTT, An Introduction to the Algebra of Quantics (Oxford, 1895).

GraCE and Young, The Algebra of Invariants (Cambridge, 1902).

WEITZENBOCK, Invariantentheorie (Groningen, 1923).

H. W. Tur~NBuULL, The Theory of Determinants, Matrices, and Invariants
(Glasgow, 1928).

Exampres XIV ¢

1. Write down the most general function of the coefficients in
ay 23+ 3a, % + 3a, xy® +a, y* which is (i) homogeneous and of degree 2
in the coefficients, isobaric, and of weight 3; (ii) homogeneous and of
degree 3 in the coefficients, isobaric, and of weight 4.

HiNT. (i) Three is the sum of 3 and 0 or of 2 and 1; the only terms
possible are numerical multiples of a,a; and a, a,.

Ans. aaya;+4-fa, a,, where o, 8 are numerical constants.

2. What is the weight of the invariant

I = ae—4bd -+ 3c? of the quartic (a,b,¢,d, e)(z,y)4?
HinTt. Rewrite the quartic as (a,,..., @, (x, ¥)*.
3. What is the weight of the discriminant |a,,| of the quadratic form
Q11 T+ Qg T3+ 3 T3+ 2015 Ty Ty + 2093 Ty T3+ 204, T3 2, T

Hint. Rewrite the form as

2! 8
Z alﬁ!y!aa.ﬂ.vxfxn xf,

summed for a+B+y = 2. Thus a,; = a, g, ¢ %5 = T, 1.1-
4, Write down the Jacobian of ax?+ 2hxy + by?, a’x?*+2h’zy + b'y? and
deduce from it (§ 3.6) that
(ab’—a’b)*+ 4(ah’ —a’h)(bh’—b'h)
is a joint-invariant of the two forms.
6. Verify the theorem ‘When I is an invariant of the form

(@gsees T )T, )™,

/]
a°671+ + +na,,__, )I = 0,

2 )
(nala—a‘—) +(n——1)a,a—a—;+...+anaa“ 1)1 =0,
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in so far as it relates to (i) the discriminant of a quadratic form, (ii) the
invariant A (§4.3) of a cubic, (iii) the invariants I, J (§5.1) of a quartic.

6. Show that the general cubic ax®4 3bx?y+ 3cxy®+-dy® can be re-
duced to the canonical form 4 X34 DY?3 by the substitution X = px-+qy,
Y = p’xz+q’'y, where the Hessian of the cubic is

(ac—b%)z?+(ad—be)ry +(bd—c?)y* = (pe+qy)(p'z+q'y).

Hint. The Hessian of AX34+-3BX2Y +3CXY2+4DY? reduces to
XY:ie. AC = B?, BD = C% Prove that, if A # 0, either B = C = 0
or the form is a cube; if A = 0, then B = C = 0 and the Hessian is
identically zero.

7. Find the equation of the double lines of the involution determined
by the two line-pairs

ax®+2hxy+by? = 0, a’z?*+2h'zy+by* = 0
and prove that it corresponds to a covariant of the two forms.

Hint. If the line-pair is @, z%+2h, xy+b, y? = 0, then, by the usual
condition for harmonic conjugates,

ab,+a, b—2hh, = 0, a’b,+a,b’—2h'h, = 0.

8. If two conics S, S’ are such that a triangle can be inscribed in S’
and circumscribed to S, then the invariants (Example 11, p. 180)
A, 0,0, A’ satisfy the relation 02 = 4A0’ independently of the choice of
triangle of reference.

Hint. Consider the equations of the conics in the forms

S = 2Fmn+2Gml+2HIm = 0,
S’ = 2f'yz+29"2x+ 2h'xy = 0.
The general result follows by linear transformation.

9. Prove that the rank of the matrix of the coefficients a,, of m linear

forms
Ay 2y 4.+ apz, (r=1,.,m)

in n variables is an arithmetic invariant.

10. Provethatif (,, y,,z,)are transformed into (X,, ¥}, Z,) by x = MX,
then the determinant |z, y, 2] is an invariant.

11. Prove that the nth transvectant of two forms
(@greeer @)@ Y)Y (Bgseee Ba)(2, y)"
is linear in the coefficients of each form and is a joint-invariant of the two
forms. It is called the lineo-linear invariant.

Ans. ayb,—na b, ;+in(n—1)ayb,_5+....
12. Prove, by Theorems 34 and 37, that the rank of a quadratic form
is unaltered by any non-singular linear transformation of the variables.



CHAPTER XV
LATENT VECTORS

1. Introduction
1.1. Vectors in three dimensions. In three-dimensional
geometry, with rectangular axes O¢,, 0Of,, and Of;, a vector
E = OP has components
(é‘l’ §21 63);
these being the coordinates of I with respect to the axes. The
length of the vector § is

Bl = J(E+E+E) (1)
and the direction-cosines of the vector are
6 & b
gl &l [E]

Two vectors, § with components (£, §,, £3) and v with com-
ponents (7,, 4, 15), are orthogonal if
LimtéamatEsms = 0. (2)
Finally, if e,, e,, and e; have components
(1,0,0), (0,1,0), and (0,0,1),
a vector § with components (£, £,, £3) may be written as
E=1¢et6e, 4858,
Also, each of the vectors e,, e,, e, is of unit length, by (1), and the

three vectors are, by (2), mutually orthogonal. They are, of
course, unit vectors along the axes.

1.2. Single-column matrices. A purely algebraical pre-
sentation of these details is available to us if we use a single-
column matrix to represent a vector.

A vector OP is represented by a single-column matrix § whose
elements are &, £,, £;. The length of the vector is defined to be

J(E3+£34-£3). (1)

The condition for two vectors to be orthogonal now takes a purely
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matrix form. The transpose §’ of § is a single-row matrix with
elements £, &,, &5 and

En=1[&, & &IX[m

Te
. M3
is a single-element matrix
(€1 m+E2m2tEams)-
The condition for § and » to be orthogonal is, in matrix notation,
E'n=0. (2)
The matrices e,, e,, e; are defined by
e = [1], e, = [0], e; = [0];
0 1 0
0 0 1

they are mutually orthogonal and
E={e+8e,1+65e

The change from three dimensions to » dimensions is im-
mediate. With n variables, a vector § is a single-column matrix

with elements & bgrn &
The length of the vector is DEFINED to be
B = V(3+£3+...+£3), (3)
and when |§| = 1 the vector is said to be a unit vector.
Two vectors § and 7 are said to be orthogonal when
§1 7]1+§2 7)2+"",“§n h = 0, (4)
which, in matrix notation, may be expressed in either of the two
formsy En=0 WE=0. (5)
In the same notation, when § is a unit vector
8¢ =1L

Here, and later, 1 denotes the unit single-element matrix.
Finally, we define the unit vector e, as the single-column
matrix which has unity in the rth row and zero elsewhere. With

t Note the order of multiplication; we can form the product AB only when
the number of columns of 4 is equal to the number of rows of B (cf. p. 73) and
hence we cannot form the products En’ or ng'.

4702 pd
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this notation the » vectors e, (r = 1,...,7) are mutually ortho-
onal and
g E=¢{1e 864168,

1.3. Orthogonal matrices. In this subsection we use x,
to denote a vector, or single-column matrix, with elements

Typy Lopyeees Lyype

THEOREM 59. Let X,,X,,..., X, be mutually orthogonal unit
vectors. Then the square matrix X whose columns are the n vectors
Xy, Xg,..., X, 28 an orthogonal matrix.

Proof. Let X' be the transpose of X. Then the product X’X is

Ty Xoyp o o o Ty X1 &y o v 0 Zyg o 0 0 Xy,
Loy « v o« Xyg - . .+ Xy,

xlr Lop « o - .‘Cn,

Tin Top + « « Ty Lpr » o o Tpg = o - Ty

The element in the rth row and sth column of the product is, on
using the summation convention,

xar xas'

When s = r this is unity, since X, is a unit vector; and when
s # r this is zero, since the vectors x, and x, are orthogonal.
Hence X'X = I,
the unit matrix of order n, and so X is an orthogonal matrix.
Aliter. (''he same proof in different words.)
X is a matrix whose columns are
Xiseeer Xgyeoes X
while X’ is a matrix whose rows are
b S
The element in the rth row and sth column of the product X'X
is x; x, (strictly the numerical value in this single-element

matrix).
Let r # 8; then x, x, = 0, since X, and X, are orthogonal.
Let r = ¢; then x; X, = X, X, = 1, since X, is a unit vector
Hence X'X = [ and X is an orthogonal matrix.
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CoroLLARY. In the transformation n = X'E, or E = X,
(X' = X-1let 4 =y, when § = x,. Theny, = e,.

Proof. Let Y be the square matrix whose columnsarey;,...,y,.
Then, since y, = X'x, and the columns of X are x,,..., X,,,
Y=XX=1
Since the columns of I are e,,..., e,, the result is established.

1.4. Linear dependence. As in § 1.3, x, denotes a vector

with elements
Lyps Lgpseees Ly

The vectors X,,..., X,, are linearly dependent if there are numbers
..y Uy, ot all zero, for which

LX 4.+, X, = 0. (1)
If (1)istrue only whenl,,..., [, are all zero, the vectors are linearly
indepencent.

LemMaA 1. Of any set of vectors at most narelinearly independent.

Proof. Let there be given n+k vectors. Let 4 be a matrix
having these vectors as columns. The rank r of 4 cannot exceed
n and, by Theorem 31 (with columns for rows) we can select r
columns of 4 and express the others as sums of multiples of the
selected r columns.

Aliter. Let x,,...,X, be any given set of lincarly independent
vectors; say

1
X, = Elxrse, (8 = 1,...,n). (2)
7=
The determinant |X| = |z,,| # 0, since the given vectors are

not linearly dependent. Let X, be the cofactor of z,,in X; then,
from (2),

n
ZIA,S x, = Xe, (r=1,.,n). (3)
P
Any vector X, (p > n) must be of the form
n -
Xp = 2 Zrp €
r=1

and therefore, by (3), must be a sum of multiples of the vectors

Xl,..., Xn.
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LeEmMA 2. Any n mutually orthogonal unit vectors are linearly
independent.

Proof. Let x,,...,Xx, be mutually orthogonal unit vectors.
Suppose there are numerical multiples &, for which
kx4 4k, x, = 0. (4)
Pre-multiply by x;, where s is any one of 1,...,n. Then
kyx,x, = 0,
and hence, since x, x, = 1, k, = 0.
Hence (4) is true only when

kl = e = kn = 0.
Aliter. By Theorem 59, X'X = I and hence the determinant
|X| = +1. The columns x,...,x, of X are therefore linearly

independent.

2. Latent vectors

2.1. Definition. We begin by proving a result indicated,
but not worked to its logical conclusion, in an earlier chapter.t

THEOREM 60. Let A be a given square matrix of n rows and
columns and A a numerical constant. The matrix equation

Ax = Ax, (1)
in which X 18 a single-column matrix of n elements, has a solution
with at least one element of X not zero if and only if A is a root of the
equation |A—XI| = 0. (2)

Proof. If the elements of x are &, £,,..., £, the matrix equation
(1) is equivalent to the » equations

jzlaiifj =2 (1= 1,.,n).

These linear equations in the n variables ¢,,..., ¢, have a non-
zero solution if and only if Ais a root of the equation [Theorem 11]

A —A Gy, e a, |=0, (3)
@y Qy—A . .. a,,
@ Apg - - + @up—A

and (3) is merely (2) written in full.
1 Chapter X, § 7.
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DEeFINITION. The rootsin A of |A—AI| = 0 are the latent roots of
the matrix A; when X is a latent root, a non-zero vector X satisfying

Ax = Ax
{8 @ LATENT VECTOR of A corresponding to the root A.

2.2. THEOREM 61. Let X, and X, be latent veclors that correspond
to two distinct latent roots A, and A of a matriz A. Then

(i) x,and x,arealways linearly independent, and
(il) when A ts symmetrical, X, and X, are orthogonal.

Proof. By hypothesis,

Ax, = A, X,, Ax, = A X, (1)
(i) Let k,, k, be numbers for which
k%, 4k, x, = 0. (2)

Then, since 4x, = A, X,, (2) gives
Ak, x, = —A(k,X,) = Ak, X,),
and so, by (1), A X, = kA X,
That is to say, when (2) holds,
k(A —2A)x, = 0.

By hypothesis X, is a non-zero vector and A, % A,. Hence
k, = 0 and (2) reduces to k,x, = 0. But, by hypothesis, X, is a
non-zero vector and therefore k, = 0.

Hence (2) is true only if &, == &, = 0; accordingly, x, and x,
are linearly independent vectors.

(ii) Let A" = A. Then, by the first equation in (1),

X, AX, = X A, X,. (3)
The transpose of the second equation in (1) gives
X, A" = A X},
and from th{s, since A’ = A,
X, Ax, = A X, X,. (4)
From (3) and (4), (A —=A)X; X, = 0,

and so, since the numerical multiplier A,—A}, # 0, X, x, = 0.
Hence x, and X, are orthogonal vectors.
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3. Application to quadratic forms
We have already seen that (cf. Theorem 49, p. 153):

A real quadraiic form E'AE in the n variables &,,..., £, can be
reduced by a real orthogonal transformation

= Xn
to the form MnEA i+ A, 0k,
wheretn A,,..., A, are the n roots of |A—AI| = 0.

We now show that the latent vectors of 4 provide the columns
of the transforming matrix X.

3.1. When 4 has =n distinct latent roots.

THEOREM 62. Let A be a real symmetrical matrix having n
distinct latent roots A,...,A,. Then there are n distinct real unit

latent vectors X,,..., X,, corresponding to these roots. If X is the
square matrix whose columns are X,..., X, the transformation

§=Xn
from variables £,,..., €, to variables v,,...,m, 18 a real orthogonal
transformation and

AL = A i+ mi+ .+ A, i

Proof. The roots A,,...,A, are necessarily real (Theorem 45)

and so the elements of a latent vector x, satisfying
Ax, = A X, (1)

can be found in terms of real numberst and, if the length of any
one such vector is k, the vector k-1x, is a real unit vector satis-
fying (1). Hence there are n real unit latent vectors x,,..., X,,, and
the matrix X having these vectors in its » columns has real
numbers as its elements.

Again, by Theorem 61, X, is orthogonal to x, when r -~ s and,
since each is a unit vector,

X; X, = Sra’ (2)

where §,, = 0 when r #sand §,, = 1 (r = 1,...,n). As in the

t When x, is a solution and a is any number, real or complex, ax, is also a
solution. For our present purposes, we leave aside all complex values of a.
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proof of Theorem 59, the element in the rth row and sth column
of the product X'X is §,,; whence

18>
XX=1
and X is an orthogonal matrix.
The transformation § = X9 gives

E'AE = n'X'AXn (3)

and the discriminant of the form in the variables 7,,..., n, is the
matrix X'AX. Now the columns of AX are 4x,,..., 4%, and
these, from (1), are A, X;,...,A, X,,. Hence

’

(i) the rows of X’ are Xj,..., X,
(ii) the columns of AX are A, x,,...,A, X,, and the element in
the rth row and sth column of X’'A4 X is the numerical value of

XA Xy = A Xp X, = A8

8 rs’

by (2). Thus X'AX has A,,..., A, as its elements in the principal

9 n

diagonal and zero elsewhere. The form #'(X'4X)n is therefore

A

3.2. When 4 has repeated latent roots. It is in fact true
that, whether |A—AI| = 0 has repeated roots or has all its
roots distinct, there are always n mutually orthogonal real unit
latent vectors X,,..., X,, of the SYMMETRICAL matrix A and, X being
the matriz with these vectors as columns, the transformation § = Xn
18 a real orthogonal transformation that gives

E'AE = Al 7]%+ "'+/\n 77121’
wherein A,,..., A, are the n roots (some of them possibly equal) of the
characteristic equation |A—AI| = 0.

The proof will not be given here. The fundamental difficulty
is to provet that, when A, (say) is a k-ple root of |4 —AI| = 0,
there are k linearly independent latent vectors corresponding
to A;. The setting up of a system of » mutually orthogonal unit
t Quart. J. Math. (Oxford) 18 (1947) 183-5 gives a proof by J. A. Todd;
another treatment is given, ibid., pp. 186-92, by W. L. Ferrar. Numerical

examples are easily dealt with by actually finding the vectors; see Examples
XV, 11 and 14.
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vectors is then effected by Schmidt’s orthogonalization processt
or by the cquivalent process illustrated below.

Let y,, ¥, Y3 be three given real linearly independent vectors.
Choose k, so that k, y, is a unit vector and let x, = k, y,. Choose
the constant « so that

X1 (Va1 ax,) = 0; (1)

that is, since X)X, = 1, « = —X;¥,.1
Since y, and x, are linearly independent, the vector y,+ax,
is not zero and has a non-zero length, I, say. Put

X, = I (Y, +axy).

Then X, is a unit vector and, by (1), it is orthogonal to Xx,.
Now determine 8 and y so that

X (Y3 +BX;,+yX,) = 0 (2)
and X,(Y3-+BX; +yX,) = 0. (3)

That is, since x, and x, are orthogonal,

B = —X1¥s y = —X3¥;

The vector y,+B8x%,+yX, # 0, since the vectors y,, y,, y; are
linearly independent; it has a non-zero length /3 and with

Xy = Iy (ya+Bx,+vX,)
we have a unit vector which, by (2) and (3), is orthogonal to x,
and x,. Thus the three x vectors are mutually orthogonal unit
vectors.

Moreover, if y,, ¥,, ¥, are latent vectors corresponding to the
latent root A of a matrix 4, so that

Ay, = Ay, Ay, = Ay, Ay; = Ay,
then also
Ax, = Ax,, Ax, = AX,, Ax, == AX,4

and X,, X,, X, are mutually orthogonal unit latent vectors
corresponding to the root A.
1 W. L. Ferrar, Finite Matrices, Theorem 29, p. 139.

t More precisely, « is the numecrical value of the element in the single-entry
matrix —X{y,. Both x{x, and x|y, are single-entry matrices.
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4. Collineation

Let € be a single-column matrix with elements ¢,,..., ¢, and
so for other letters. Let these elements be the current coordinates
of a point in a system of n homogeneous coordinates and lct 4
be a given square matrix of order n. Then the matrix relation

y = 4x (1)
expresses arelation between the variable point x and the variable
point y.

Now let the coordinate system be changed from § to n by
means of a transformation

E =Ty,
where 7' is a non-singular square matrix. The new coordinates,
X and Y, of the points x and y are then given by
x = TX, y=TY.
In the new coordinate system the relation (1) is expressed by
TY = ATX
or, since 7' is non-singular, by
Y =T-ATX. (2)

The effect of replacing A4 in (1) by a matrix of the type T-1AT
amounts to considering the same geometrical relation expressed
in a different coordinate system. The study of such replace-
ments, 4 by 7-YAT, is important in projective geometry. Here
we shall prove only one theorem, the analogue of Theorem 62.

4.1. When the latent roots of 4 are all distinct.

THEOREM 63. Let the square matrix A, of order n, have n distinct
latent roots Ay,..., A, and let t,,..., t, be corresponding latent vectors.
Let T be the square matrix having these vectors as columns. Thent

(i) 7T is non-singular,

(if) T14T = diag(A,,..., A,).

Proof. (i) We prove that 7' is non-singular by showing that
t,,..., t, are lincarly independent.

+ The NoraTiON diag(A,,..., A,) indicates a matrix whose elements are
Apseess Ay, in the principal diagonal and zero everywhere else.
4702 Ee
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Let k..., k, be numbers for which
kyty+ kot ... 4k, t, = 0. (1)
Then, since At, = A, t,,
Al ty ookt ) = Akt tay)-
That is, since At, = A, t, forr = 1,...,n—1,
kl(Al_/\n)tl+"'+kn—l(’\n—1_‘An)tn—l = 0.
Since A,,..., A, are all different, this is
erkytytotc, 1k, 1 t,, =0, (2)

wherein all the numbers c,,...,¢, _; are non-zero.
A repetition of the same argument with n—1 for » gives

d, kl t 4 td, kpatyo =0,
wherein d,,...,d,_, are non-zero. Further repetitions lead, step
by step, to okt =0, o # 0.

By hypothesis, t, is a non-zero vector and therefore k; = 0.
We can repeat the same argument to show that a linear rela-

tion feytyt otk t, =0

implies k, = 0; and so on until we obtain the result that (1) holds
ly if

only 1 by =ky=..=k,=0.

This proves that t,,...,t, are linearly independent and, these
being the columns of 7', the rank of 7' is n and 7' is non-singular.
(ii) Moreover, the columns of A7 are

At LAt
Hencet AT = T xdiag(A,,...,A,)
and it at once follows that
T-1AT = diag(A,..., A,).

4.2. When the latent roots are not all distinct. If 4
is not symmetrical, it does not follow that a k-ple root of
|A—AI| = 0 gives rise to k linearly independent latent vectors.

t If necessary, work out the matrix product

tll tli tll x Al 0 0 .
t!l tll zi! 0 Ai O
0 0 A

ta tar la
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If it so happens that A has »linearly independent latent vectors
t,,..., t, and 7" has these vectors as columns, then, as in the proof
of the theorem,

T-1AT = diag(A,,...,A,)
whether the A’s are distinct or not.

On the other hand, not all square matrices of order » have n
linearly independent latent vectors. We illustrate by simple
examples.

(i) Let A= [a l].
0 «
The characteristic equation is (x—A)? = 0 and a latent vector x,
with components x; and z,, must satisfy AX = aX; that is,

QX +Ty = oy, axy = oy,

From the first of these, x, = 0 and the only non-zero vectors
to satisfy Ax = ax are numerical multiples of

Rt

(ii) Let A={[a 0].
0 o
A latent vector x must again satisfy Ax = ax. This now re-
quires merely
ar; == aly, ALy = oy,

The two linearly independent vectors

e

and, indeed, all vectors of the form x,e ,4x,e, are latent
vectors of 4.

5. Commutative matrices and latent vectors

Two matrices 4 and B may or may not commute; they may
or may not have common latent vectors. We conclude this
chapter with two relatively simple theorems that connect the
two possibilities. Throughout we take A and B to be square
matrices of order n.
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5.1. Let 4 and B have = linearly independent latent vectors
in common, say t,,...,t,. Let 7 be the square matrix having
these vectors as columns.

Then t,,..., t, are latent vectors of 4 corresponding to latent
roots A,,..., A, say, of 4; they are latent vectors of B correspond-
ing to latent roots p,,...,pu,, say, of B. Asin § 4.1 (ii), p. 210,

the columns of AT are At (r=1,.,n),
the columns of BT are pu,t, (r = 1,...,n),
and, with the notation
L = diag(A,,...,A,), M = diag(py,---» p0)»
AT = TL, BT =TM.
That is T-14T = L, TBT = M.
1t follows that
TAATTBT = LM = ML = T-'BTT-'AT,

so that TABT = T'BAT
and, on pre-multiplying by 7" and post-multiplying by 7'-1,
AB = BA.

We have accordingly proved

THEOREM'64. 7T'wo matrices of order n with n linearly indepen-
dent latent vectors in common are commutative.

5.2. Now suppose that AB = BA. Let t be a latent vector
of A corresponding to a latent root A of 4. Then At = At and

ABt = BAt = BAt = ABt. (1)

When B is non-singular Bt # 0 and is a latent vector of A4
corresponding to A. [Bt = 0 would imply t = B-1Bt = 0.]

If every latent vector of A corresponding to A is a multiple of
t, then Bt is a multiple of t, say

Bt = kt,

and t is a latent vector of B corresponding to the latent root
k of B.

If there are m, but not more than m,} linearly independent
latent vectors of 4 corresponding to the latent root A, say

t),..,t

seeey Ly

t+ By §1.4, m < n.
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then, since At, = At, (r = 1,...,m),
provided that k,,...,k,, are not all zero,

kl t1+"'+kmtm (2)
is a latent vector of A corresponding to A. By our hypothesis
that there are not more than m such vectors which are linearly
independent, every latent vector of A corresponding to A is of

the form (2).
As in (1), ABt, = ABt, (r=1,..,m)

so that Bt, is a latent vector of A corresponding to A; it is there-
fore of the form (2). Hence there are constants k,, such that

m
Bt, = > k,t, (r=1,.,m).
8=1
For any constants [,,...,[,,
» moom
B Z lrtr o= 2 lr Z ksrts =
r=1 r=1 8=1
Let 8 be a latent root of the matrix
1{ N kll . . . I"lm

ﬁl ( _’5";1 L k)

8= r=

k

Then there are numbers [,,...,1,, (not all zero) for which

km 1 mm

S ik, =0, (s=1,.,m)
r=1
and, with this choice of the [,

BS 1Lt =031,
r=1 8=1

Hence 0 is a latent root of B and 3 I t, is a latent vector of B
corresponding to 8; it is also a latent vector of A corresponding
to A. We have thus provedft

THEOREM 65. Let A, B be square mairices of order n; let |B| # 0
and let AB = BA. Then to each distinct latent root A of A corre-
sponds at least one latent vector of A which is also a latent vector
of B.

t For a comprehensive treatment of commutative matrices and their

common latent vectors see S. N. Afriat, Quart. J. Math. (2) 5 (1954; 82-85.

4702 Ee2
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ExampLEs XV

1. Referred to rectangular axes Ozyz the direction cosines of 0X, OY,
0Z are (1, my,n,), (I, My, Ny), (ls, My, n3). The vectors OX, OY, OZ are
mutually orthogonal. Show that

l, m; n

l, mg n,
) ) I3 my mng
is an orthogonal matrix.

2. Four vectors have elements
(a,a,a,a), (b,—b,b,—b), (c0,—c,0), (0,d,0,—d).
Verify that they are mutually orthogonal and find positive values ot
a, b, ¢, d that make these vectors columns of an orthogonal matrix.

3. The vectors x and y are orthogonal and T is an orthogonal matrix.
Prove that X = 7'x and Y := Ty are orthogonal vectors.

4. The vectors a and b have components (1,2,3,4) and (2,3,4,5).
Find k, so that b, = b+ka
is orthogonal to .

Givenc = (1,0,0,1)andd = (0,0, 1, 0), find constants l,, m,, {,, m,, n,
for which, when ¢, = ¢+!,b,-+m,a, d; = d+1l,¢,+m,b,+n,a, the
four vectors a, b, ¢,, d, are mutually orthogonal.

5. The columns of a square matrix A are four vectors a,,...,a, and

A’A = diag(a}, o3, o, ).
Show that the matrix whose columns are
arla,..,ata,
is an orthogonal matrix.
6. Prove that the vectors with elements

(l,——2,3), (0,‘,—2), (0,0,l)
are latent vectors of the matrix whose columns are
(1,2,-2), (0,2,2), (0,0,3).

7. Find the latent roots and lateut vectors of the matrices

1 0 07, 1 0 0],
2 10 010
-2 2 3 -2 2 3

showing (i) that the first has only two linearly independent latent vectors;
(i) that the second has three linearly independent latent vectors
1, =(1,0,1), I, =(0,1,—-1), Iy = (0,0,1) and that k1K1, is a
latent vector for any values of the constants k; and k,.

8. Prove that, if x is a latent vector of A corresponding to a latent root
Aof A and C = TAT, then

CTx = TAx = ATx
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and 7'x is a latent vector of € corresponding to a latent root A of C. Show
also that, if x and y are linearly independent, so also are T'x and Tly.
9. Find three unit latent vectors of the symmetrical matrix

2 0 0
0 —3 1
0 1 -3

1 ) ( 1 1 )
0, <, 0 o
(1.0.0), ( RORCIE V2’ N2
and deduce the orthogonal transformation whereby
22— 3y2— 3224 2yz = 2X2—-2Y2— 422,

10. (Hordert) Find an orthogonal transformation from variables
x, y, z to variables .X, Y, Z whereby

2yz+-2zx4 2xy = 2X*—Y*— 22

11. Trove that the latent roots of the discriminant of the quadrat:c
form

in the form

2yz - 2zx+ 2y
are —1, —1, 2.

Trove that, corresponding to A = —1,
(1) (x,u.2) is a latent vector whenever & +y4-2z = 0O:
(ii) (1,--1,0) and (1,0, —1) are linearly independent and that
(1, —1,0) and (1 +k, -k, — 1) arc orthogonal when kb = —1}:

(1! 1 ) ( 112 )

() 2 (=729 - (o
are orthogonal unit latent vectors.

Prove that a unit latent vcctor corresponding to A = 2 is

c - ( 1 1 1 )
T \W3'V3 w3/
Verify that when T is «he matrix havinga,b, cascolumnsand x = TX,
where x = (r,%,2z) and X = (X,Y, Z),
2yz+42zx+2ry = —X2—-Y?4-222.
12. Prove thatz -= Z,y = Y,z = X is an orthogonal transformation.
With n variables x,,...,z,, show that

T, = Xa’ Lg = Xﬁ’ ey Ly = X N

K

where a, 3,.... k is & permutation of 1, 2,..., 7, is an orthogonal tran-forma-
tion.

13. Find an orthogonal transformation x = 7'X which gives
2yz+2zx = (Y3—Z3)V2.
14. Whenr = 1,2,3, 8 = 2,3,4 and

XAx =2 Y x,x,
r<s

t Example 11 is the same sum broken down into a step-by-step solution.
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prove that the latent roots of 4 are —1, —1, —1, 3 and that
(1,0,0,~1), (o0,1,—-1,0), (1,—1,—1,1), (L,1,L,1)
are mutually orthogonal latent vectors of 4.
Find the matrix 7' whose columns are unit vectors parallel to the above
(i.e. numerical multiples of them) and show that, when x = TX,
x'Adx = —X}]—-X3—-XJ+3X%.
15. Show that thereisan orthogonal transformationt x = TX whereby
2x, 23+ 20, x4 — 4z, 75+ 4,0y = V2(XT42X3—-2X3—X3).

16. A square matrix A, of order n, has n mutually orthogonal unit
latent vectors. Prove that A4 is symmetrical.
17. Find the latent vectors of the matrices

1 6 17, -2 -1 -35].
1 2 0 [ 1 2 1
0 0 3 3 1 6

18. The matrix A has latent vectors
(1,0,0), (1,1,0), (1,2,3)

corresponding to the latent roots A = 1,0, —1. The matrix B has the
same latent vectors corresponding to the latent roots p = 1,2,3. Find
the elements of A and B and verify that AB = BA.

19. The square matrices 4 and B are of ordcr n; 4 has n distinct latent
roots Ay,...,A, and B has non-zero latent roots ..., pu,, not necessarily
distinct; and AB = BA. Prove that thero is a matrix T for which

T-14T = diag(Ay,.nd,)s  T71BT = diag(y,e. pn)-

HINTS AND ANSWERS

2. a = b =}, ¢c = d = 1/¥2; these give unit vectors.

3. Work out X'Y.

4. k= -4l =—}tm=—kl,=3%m=0,n = —icf. §3.2.
6. A =1,2,3.

7. (i) A = 1,1, 3; vectors (0,1, — 1), (0,0,1).

9. A = 2,—2, —4; use Theorem 62.

12. x = TX gives x'Ix = X'T'ITX = X'T’TX. The given trans-
formation gives Y a? — 3 X?; therefore TVT = 1.
13. A = 0, 4+-4/2; unit latent vectors are
(l 1 L)
2’2" N2/

+ The actual transformation is not asked for: too tedious to be worth the
pains.

V2 N2 2’2’2/’
Use Theorem 62.



LATENT VECTORS 217
16. Let t,,..., t, be the vectors and 7' have the t’s as columns.
Asin §4.1, T-1AT = diag(A,,...,A,). But 771 = T" and so
T'AT = diag(A,,...,A,).
A diagonal matrix is its own transpose and so
T'AT = (T'AT) = 1T"A’'T and A4 =4"
17. (i) A = —1,3,4; veetors (3, —1,0), (1,1, —4), (2,1,0).

(ii) A = 1,2, 3; vectors (2, — 1, —1), (1,1, —1), (1.0, —1).
18. A=1TJ1 -1 01, B=11 1 07.
0 0 —% [0 2 %]
0 0 —1 0o 0 3

19. A has n linearly independent latent vectors (Theorem 63), which
are also latent vectors of B (Theorem 65). Finish as in proof of Theorem
64,
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