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Preface

This is essentially a book on linear algebra. But the approach is somewhat
unusual in that we emphasise throughout the geometric aspect of the
subject. The material is suitable for a course on linear algebra for mathe-
matics majors at North American Universities in their junior or senior year
and at British Universities in their second or third year. However, in view
of the structure of undergraduate courses in the United States, it is very
possible that, at many institutions, the text may be found more suitable at
the beginning graduate level.

The book has two aims: to provide a basic course in linear algebra up
to, and including, modules over a principal ideal domain; and to explain
in rigorous language the intuitively familiar concepts of euclidean, affine,
and projective geometry and the relations between them. It is increasingly
recognised that linear algebra should be approached from a geometric
point of view. This applies not only to mathematics majors but also to
mathematically-oriented natural scientists and engineers.

The material in this book has been taught for many years at Queen
Mary College in the University of London and one of us has used portions
of it at the University of Michigan and at Cornell University. It can be
covered adequately in a full one-year course. But suitable parts can also be
used for one-semester courses with either a geometric or a purely algebraic
flavor. We shall give below explicit and detailed suggestions on how this
can be done (in the “Guide to the Reader™).

The first chapter contains in fairly concise form the definition and most
elementary properties of a vector space. Chapter 2 then defines affine and
projective geometries in terms of vector spaces and establishes explicitly the
connexion between these two types of geometry. In Chapter 3, the idea of
isomorphism is carried over from vector spaces to affine and projective
geometries. In particular, we include a simple proof of the basic theorem of
projective geometry, in §3.5. This chapter is also the one in which systems
of linear equations make their first appearance (§3.3). They reappear in
increasingly sophisticated forms in §§4.5 and 4.6.

Linear algebra proper is continued in Chapter 4 with the usual topics
centred on linear mappings. In this chapter the important concept of
duality in vector spaces is linked to the idea of dual geometries. In our
treatment of bilinear forms in Chapter 5 we take the theory up to, and
including, the classification of symmetric forms over the complex and real
fields. The geometric significance of bilinear forms in terms of quadrics is
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Preface

taken up in §§5.5-5.7. Chapter 6 presents the elementary facts about
euclidean spaces (i.e., real vector spaces with a positive definite symmetric
form) and includes the simultaneous reduction theory of a pair of symmet-
ric forms one of which is positive definite (§6.3); as well as the structure of
orthogonal transformations (§6.4). The final chapter gives the structure of
modules over a polynomial ring (with coefficients in a field) and more
generally over a principal ideal domain. This leads naturally to the solution
of the similarity problem for complex matrices and the classification of
collineations.

We presuppose very little mathematical knowledge at the outset. But the
student will find that the style changes to keep pace with his growing
mathematical maturity. We certainly do not expect this book to be read in
mathematical isolation. In fact, we have found that the material can be
taught most successfully if it is allowed to interact with a course on
“abstract algebra”.

At appropriate places in the text we have inserted remarks pointing the
way to further developments. But there are many more places where the
teacher himself may lead off in new directions. We mention some exam-
ples. §3.6 is an obvious place at which to begin a further study of group
theory (and also incidentally, to introduce exact sequences). Chapter 6
leads naturally to elementary topology and infinite-dimensional Hilbert
spaces. Our notational use of & and Z (from Chapter 2 onwards) is
properly functorial and students should have their attention drawn to these
examples of functors. The definition of projective geometry does not
mention partially ordered sets or lattices but these concepts are there in all
but name.

We have taken the opportunity of this new edition to include alternative
proofs of some basic results (notably in §§5.2, 5.3) and to illustrate many
of the main geometric results by means of diagrams. Of course diagrams
are most helpful if drawn by the reader, but we hope that the ones given in
the text will help to motivate the results and that our hints on the drawing
of projective diagrams will encourage the reader to supply his own.

There are over 250 exercises. Very few of these are routine in nature. On
the contrary, we have tried to make the exercises shed further light on the
subject matter and to carry supplementary information. As a result, they
range from the trivial to the very difficult. We have thought it worthwhile
to add an appendix containing outline solutions to the more difficult
exercises.

We are grateful to all our friends who helped (wittingly and unwittingly)
in the writing of this book. Our thanks go also to Paul Halmos for his
continuing interest in the book, an interest which has now resulted in the
appearance of this new edition.

K. W. Gruenberg
AL

April 1977 Weir
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Guide to the Reader

This book can be used for linear algebra courses involving varying
amounts of geometry. Apart from the obvious use of the whole book as a
one year course on algebra and linear geometry, here are some other
suggestions.

(A)

(B)

(By)

(By)

©

One semester course in basic linear algebra

All of Chapter 1.

§2.1 for the definition of coset and dimension of coset.
§3.3.

Chapter 1V, but omitting §§4.2, 4.7, 4.8.

One semester course in linear geometry

Prerequisite: (A) above or any standard introduction to linear alge-
bra.

All of Chapter II.
§§3.1-34.
Then either (B,) or (B,) (or, of course, both if time allows):

§84.7, 4.8.
Chapter V up to the end of Proposition 12 (p. 118).

§§5.1-5.4 (see Note 1, below; also Notes 2, 3, for saving time);
§5.6 but omitting Proposition 10; §5.7 to the end of Proposition 12.
§§6.1, 6.3, 6.4 to the “orientation” paragraph on p. 144.

One year course in linear algebra

The material in (A) above.

Chapter V but omitting §§5.5-5.7.

Chapter VI but omitting the following: §6.1 from mid p. 127 (where
distance on a coset is defined); §6.2; §6.3 from Theorem 2 onwards;

ix



Guide to the Reader

§6.4 from mid p. 144 (where similarity classes of distances are
defined).

Chapter VII, but omitting §7.6.
Notes

1. §§5.1-5.3 can be read without reference to dual spaces. In particular,
the first proof of Proposition 4 (p. 93) and the first proof of Lemma
4 (p. 97) are then the ones to read.

2. The reader who is only interested in symmetric or skew-symmetric
bilinear forms can ignore the distinction between L and T. This
will simplify parts of §5.2, and in §5.3 the notion of orthosymmetry
and Proposition 6 can then be omitted.

3. In §5.3, the question of characteristic 2 arises naturally when skew-
symmetric forms are discussed. But the reader who wishes to assume
20 in the fields he is using can omit the latter part of §5.3.



CHAPTER 1

Vector Spaces

There are at least two methods of defining the basic notions of geo-
metry. The one which appears more natural at first sight, and which
is in many ways more satisfactory from the logical point of view, is the
so called synthetic approach. This begins by postulating objects such
as points, lines and planes and builds up the whole system of geometry
from certain axioms relating these objects. In order to progress beyond
a few trivial theorems, however, there must be sufficient axioms. Un-
fortunately, it is difficult to foresee the kind of axioms which are re-
quired in order to be able to prove what one regards as ‘“fundamental”
theorems (such as Pappus’ Theorem and Desargues’ Theorem). This
method is very difficult as an introduction to the subject.

The second approach is to base the geometry on an algebraic founda-
tion. We favor this approach since it allows us to “build in” enough
axioms about our geometry at the outset. The axioms of the synthetic
geometry now become theorems in our algebraic geometry. Moreover,
the interdependence of the algebraic and geometric ideas will be seen to
enrich both disciplines and to throw light on them both. (For an intro-
duction to the synthetic approach the reader may consult [4], [9].)

1.1 Sets

We shall not define the basic notion of set (or collection, or aggregate)
which we regard as intuitive. Further, we shall assume that the reader
is familiar with the simplest properties of the set Z of integers (positive,
negative and zero), the set Q of rational numbers, the set R of real
numbers, the set C of complex numbers and the set F, of integers
modulo a prime p.

As a shorthand for the statement ““z is an element of the set S” we
shall write x € §. If S and T are two sets with the property that every
element of § is an element of 7', we write S = T and say ‘S is contained
in 7’ or that ‘S is a subset of 7"’; equivalently, we also write 7'>.8 and
say “T contains 8. Note that according to this definition S<8. We

1



2 LINEAR GEOMETRY CHAP. I

shall say that the sets S and T are equal, and write S=7, if S<T and
SoT. If the set S consists of the elements z, y,... then we write
S8={xz,y,...}. Thus, forexample, z € § if, and only if, {x} =S. Strokes
through symbols usually give the negative: for example, #, ¢, ¢ stand
for, respectively, ‘‘is not equal to”, “is not contained in’’, “is not an
element of .

If S and T are given sets then a mapping (or function) f of § into T is
a rule which associates to each element s in § a unique element sf in T'.
In these circumstances we shall often write f: S -~ T or f: s — sf. The
element sf is called the image of the element s under f. (It is often also
written as f(s) or &’ or f,, whichever is the most convenient notation for
the purpose at hand.) The set of all sf as s varies in § is the image of
S under f, or simply the image of f, and is denoted by Sf. If Sf=T then
we say that f is a mapping of S onto T'; if the images under f of any two
distinct elements of S are distinct elements of 7', then f is a one—one
mapping. (The above definition of mapping seems to involve the
undefined notion of “rule’’. A more sophisticated definition can be
given in terms of the ‘“‘graph” of f which is the set of all ordered pairs
(s, f) for s in 8. The definition can thus be thrown back on the basic
concept of set.)

The notation sf for the image is particularly suitable if mappings are
to be combined ; more specifically, if f is a mapping of S into 7T and if g is
a mapping of 7 into U, then the product fg is the mapping of S into U
defined by the equation s(fg)=(sf)9. In other words fg stands for
“apply first f, then g”’. If one uses the functional notation, then (fg)(s)
=g(f(s)).

On the other hand, there is a situation in which the index notation f,
for the image is better than sf. This occurs when we are interested in
“listing” the elements of the image of § under f. It is then usual to
refer to S as the sef of indices, to call f, the s-term of f, to write f in the
alternative form (f,);cs and to call f a family rather than a mapping.
As s runs through the set S of indices the terms f; run through the
image of S under f. It is important to realize that some of the terms
will be repeated unless the mapping f is one—one.

If an arbitrary non-empty set S is given then we can always “list” the
elements of § by using the identity mapping lg, which sends eachelement
of 8 into itself.

We mention two familiar examples of this notation:

1. If I is the set of all positive integers, then (f}), ., is a sequence.

2. If I is the finite set {1, 2, .. ., n}, then (f));<; is an n—tuple.

If we take note of the natural ordering of the integers, then the se-
quences and n-tuples above are called ordered sequences and ordered n-
tuples respectively.
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DreriNiTION. Suppose that (M), is a family where each M, is itself
a set. We define the intersection MN(M,:i € I) of this family to be the
set of all elements which belong to every M, (i € I); also, the union
U(M;: ¢ € I) is the set of all elements which belong to at least one of the
sets M, (i € I). Observe that, for this definition to make sense, I cannot
be empty.

The intersection and union of the sets M,, . . ., M, are usually denoted
byMn...NnM,and M, VU ... UM, respectively.

If we are simply given a (non-empty) set 8 whose elements M are
sets, then we index S by means of the identity mapping and use the
above definition. The intersection MN(M: M € S) is therefore the set of
all elements which belong to every set M in § and the union U(M: M €8)
is the set of all elements which belong to at least one set M in S.

EXERCISES

1. Let S, T be sets, f a mapping of § into 7', g a mapping of T into S, and
denote by 1g, 1, respectively, the identity mappings on § and 7. Prove
that (i) fg=15 implies that f is one—one; and (ii) gf=1, implies that f is
onto 7. Show that if (i) and (ii) hold, then ¢ is uniquely determined by f.
(In this case we write g=f~! and call g the nverse of f.)

2. The population on an island is greater than the number of hairs on the
head of any one inhabitant. Show that if nobody is bald then at least
two people have the same number of hairs on their heads.

3. If f, g, h are mappings of S into T', T into U, U into V, respectively, show
that (fg)h=F(gh).

1.2 Groups, Fields and Vector Spaces

We assume that the reader is to some extent familiar with the concept
of a vector in three dimensional euclidean space. He will know that
any two vectors can be added to give another vector and any vector can
be multiplied by a real number (or scalar) to give yet another vector.
The primary object of this book is to generalize these ideas and to study
many of their geometrical properties. In order to axiomatize the addi-
tion of vectors we introduce the concept of a group, and in order to
generalize the notion of scalar we define a general field. The reader who
is meeting these abstract ideas for the first time may find it helpful at the
beginning to replace the general field F in our definition of a vector
space by the familiar field R of real numbers and to accept the other
axioms as a minimum set of sensible rules which allow the usual manipu-
lations with vectors and scalars. The subsequent sections have more

geometric and algebraic motivation and are not likely to cause the same
difficulty.



4 LINEAR GEOMETRY CHAP. I

DErFINITION. Let G be a set together with a rule (called multiplica-
tion) which associates to any two elements a, b in G a further element ab
in G (called the product of a and b). If the following axioms are satisfied
then @ is called a group:

G.1. (ab)c=a(bc) for all a, b, c in G;

G.2. there exists a unique element 1 in G (called the identity) such
that al=1a=a for all ¢ in G;

G.3. for each element a in G there exists a unique element ¢~! in @
(called the inverse of a) such that a a~'=a"la=1.

A subset of G which is itself a group (with respect to the same rule of
multiplication as @) is called a subgroup of G. Note that, in particular,
G is a subgroup of @ and so also is {1}, called the trivial subgroup of G.

We shall see that the order of the elements a, b in the product ab is
important (see exercises 2, 3 below). This leads to a further definition.

DEerFINITION. A group G is commutative (or abelian) if
G.4. ab=ba for all a, b in G.

It is only a matter of convenience to make use of the words “multipli-
cation”, ‘“product”, “inverse” and “identity” in the definition of a
group. Sometimes other terminologies and notations are more useful.
The most important alternative is to call the given rule “addition”, and
to replace the product ab by the sum a +b, the identity 1 by the zero 0
and the inverse a~! by the negative —a (minus ¢). When this notation
and terminology is used we shall speak of G as a group with respect to
addition ; while if that of our original definition is employed we shall say
that @ is a group with respect to multiplication.

The following are important examples of groups:

1. The integers Z form a commutative group with respect to addition.
The set Z* of non-zero integers, however, is not a group with respect to
multiplication.

2. The sets Q, R, C, F, are commutative groups with respect to
addition. The set of non-zero elements in each of these sets is a commuta-
tive group with respect to multiplication.

3. If § is the set of all points in three dimensional euclidean space,
then the rotations about the lines through a fixed point O of S may be
regarded as mappings of § into 8. These rotations form a group with
respect to (mapping) multiplication. (The rigorous definitions of these
concepts will be given in Chapter VI.)

4. The set of all permutations of a set S (i.e., all one—one mappings of
S onto S) is a group with respect to (mapping) multiplication.

DEerFINITION. Let F be a set together with rules of addition and mul-
tiplication which associate to any two elements z, y in F a sum z+y
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and a product zy, both in F. Then F is called a field if the following
axioms are satisfied:

F.1. F is a commutative group with respect to addition;

F.2. the set F'*, obtained from F by omitting the zero, is a commuta-
tive group with respect to multiplication;

F.3. z(y+2)=2y+2z and (y+2)x=yxr+2z forall z, y, zin F.

The fields that we shall mainly have in mind in this book are the
fields Q, R, C, F, listed in example 2 above.
We are now ready to define the basic object of our study.

DEFINITION. Let F be a given field and V a set together with rules
of addition and multiplication which associate to any two elements a, b
in Vasuma+bin ¥V, and to any two elements z in F, a in V a product
zain V. Then V is called a vector spaee over the field F if the following
axioms hold:

V.1. V is a commutative group with respect to addition;

V.2. z(a+b)=za+xb,

V3. (x+y)a=za+ya,

V4. (zy)a=2x(ya),

V.5. la =a where 1 is the identity element of F,
forall z,yin Fand alla,bin V.

We shall refer to the elements of V as vectors and the elements of F as
scalars. The only notational distinction we shall make between vectors
and scalars is to denote the zero elements of V and F by 0y and 0 res-
pectively. Since 20, =0 for all zin ¥ and 0pa=0, for all ¢ in V (see
exercise 7 below) even this distinction will almost always be dropped
and Oy, 05 be written simply as 0.

The following examples show how ubiquitous vector spaces are in
mathematics. The first example is particularly important for our pur-
poses in this book.

1. Let F be a field and denote by F* the set of all n-tuples

(%15 ..., x,) where z,,..., z,€ F. We define the following rules of
addition and multiplication:

(xp‘ : "xn)+(y1’ ] yn) = (x1+y1’ v "xn+yn)’
x(xl""’xn) = (xxh"'axxn)

forall z, zy,...,2,, y1,..., Y, in F.
With these rules F* is a vector space over F.

2. If F is a subfield of a field E, then E can be regarded as a vector
space over F in the following way: E is already a group with respect
to addition and we define the product of an element a of E (a “vector’)
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by an element x of F (a ‘‘scalar’) to be za, their ordinary product
as elements of E. It is important to note that the elements in F
now have two quite distinct parts to play: on the one hand, as ele-
ments of F, they are scalars; but on the other hand, as elements of the
containing field £, they are vectors.

We mention some special cases: F is always a vector space over F;
R is a vector space over Q; C is a vector space over R and also over Q.

3. The set F[X] of all polynomials in the indeterminate X with co-
efficients in the field F is a vector space over F.

4. The set of all Cauchy sequences with elements in @ is a vector
space over Q.

EXERCISES

1. Extend rule G.1 to show that parentheses are unnecessary in a product (or
sum) of any finite number of elements of a group.

2. Show that the rotation group of example 3 is not commutative.

3. Show that the permutation groups of example 4 are not commutative if S
contains more than two elements.

4. Show from the axioms that a field must contain at least two elements.
Write out the addition and multiplication tables for a field with just two
elements.

5. Let V be a vector space over the field F. Show that any finite linear
combination 2@, 4 T0y+ - - - +2,a,=> J_, x,a;, where the x’s are scalars
and the a;’s are vectors, can be written unambiguously without the use of
parentheses.

6. If a, b € V show that the equation v+b=a has a unique solution v in V.
This solution is denoted by a—b.

7. Show that 0za=0, for alla in V and 20, =0, for all z in F. Show further
that (—1)a= —a forevery ain V. (For the first equation use (0r+0z)a=
0.a and exercise 6.)

1.3 Subspaces

DEFINITION. A subset M of a vector space V over F is called a sub-
space of V if M is a vector space over F in its own right, but with respect
to the same addition and scalar multiplication as V.

Observe that a vector space contains, by definition, a zero vector and
so a subspace can never be empty. In order to check that a (non-
empty) subset M is a subspace, we need only verify that if a, b € M and
ze F,thena+be M and zae M. (In verifying that M is a subgroup
of V with respect to addition we use the fact that (—1)a= —a.)
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Our definition clearly ensures that V is a subspace (of itself). At the
other extreme, the set {0,} is a subspace, called the zero subspace, and
we usually write this simply as 0,. It is also clear that Oy is contained
in every subspace of V.

We shall base our construction of subspaces on the following simple
proposition.

ProposITION 1. The intersection of any family of subspaces of V is
again a subspace of V.

PROOF. Put M =N (M,:ieI). Since 0, € M, for each ¢, M is not
empty. Ifa,be M and x € F, then a+b € M, and xza € M, for each 1;
thusa+be M and zae M.

DerintTION. If 8 is any set of vectors in V then we denote by [S] the
intersection of all the subspaces of ¥V which contain S. (There is
always at least one subspace containing S, namely V itself, and so this
intersection is defined.) The subspace [S] is the “least’ subspace con-
taining S, in the sense that if K is any subspace containing S, then K
contains [S]. We say that [S] is the subspace spanned (or generated)
by S.

This definition of [S] may be referred to as the definition “from
above”. Provided that S is not empty there is an equivalent definition
“from below”: We form the set M of all (finite) linear combinations
x,8;+ - -+ +x,8,, where z; € F and s, €8. It is immediately seen that
M is a subspace of V; that M contains §; and, in fact, that any sub-
space K of V which contains § must contain all of M. Hence M =[S].

It might be expected that the union of several subspaces of V would
be a subspace, but it is easily shown by means of examples that this is
not the case. We are thus led to the following definition.

DEriniTION. The sum (or join) of any family of subspaces is the sub-
space spanned by their union. In other words, the sum of the sub-
spaces M, (¢ € I) is the least subspace containing them all. The sum
is denoted by + (M,: i € I) or simply +(M,). The sum of subspaces
M,,..., M,is usually written M, + M,+ --- + M,.

DeriniTiON. If M N N =0 we call M + N the direct sum of M and N,
and write it as M @® N. More generally, the sum of the subspaces
M, (i el) is direct, and written @(M,: ¢ e I) if, for each j in I, we
have +(M;:1e1l,i # j)Nn M; = 0.

Note that the condition above on the subspaces M, is stronger than
the mere requirement that M, N M, = 0 for all i#j (see exercise 7).
IfveM,®D--- P M, then v can be written uniquely in the form
v=my+ --- +m,, where m;e M, fori=1,...,r.
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EXERCISES

1. If M is a subspace of V, show that the zero vector of M is the same as the
zero vector of V.

2. Show that the set of all polynomials f(X) in F[X] satisfying f(x;)=0
(¢t=1,...,r) for given z,, ..., z, in F is a subspace of F[X]. Show that
the set of all polynomials of degree less than n (including the zero poly-
nomial) is a subspace of F[X].

3. If the mnelementsa;; (1=1,...,m;j=1,..., n)liein a field F, show that
the set of all solutions (x4, ..., z,) in F™ of the linear equations

ZaUXJ'=0 (i:l,...,m)
i=1

is a subspace of F".

4. Give precise meaning to the statement that M N N is the “greatest’ sub-
space of V contained in both M and N.

5. Give an example of two subspaces of a vector space whose union is not a
subspace.

6. Prove that v € M + N if, and only if, » can be expressed in the form m+n
where m e M, n € N; and

ve +(M;:vel) if, andonlyif, v =m; +---4+my

1 ir
for some ¢, in I and m;, in M; (k=1,...,7).
7. Consider the following subsets of F2: M consists of all (z, 0, 0); M, con-
sists of all (0, z, 0); and M, consists of all (z, z, y), where z, y € F. Show

that M,, M,, M, are subspaces of F?3 which satisfy M; N M ;=0 for all
1#j; that F3=M,+ M,+ M3; but that F3 is not the direct sum of M,,

2 M 3
8. Prove the last statement made before these exercises.

9. If V is a vector space over F,, prove that every subgroup of V with
respect to addition is a subspace.

1.4 Dimension

The essentially geometrical character of a vector space will emerge as
we proceed. Our immediate task is to define the fundamental concept
of dimension; and we shall do this by using the even more primitive
notion of linear dependence.

DerintTIoN. If S is a subset of a vector space V over a field F, then
we say that the vectors of S are linearly dependent if the zero vector of
V is a non-trivial linear combination of distinct vectors in §; i.e., if there
exist scalars x,, ..., x, in F, not all 0, and distinet vectors s, ..., s, in
8§ such that z;8,+ -+ +,8,=0. (In these circumstances we shall
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sometimes say that the set S is linearly dependent.) If the vectors of 8
are not linearly dependent then they are linearly independent. The vec-
tor v is said to be linearly dependent on the vectors of 8 if v is a (finite)
linear combination of vectors in §.

The connexions between these three concepts are given in the follow-
ing proposition.

ProrposiTiOoN 2. (1) If a4, ..., a, where r>2 are linearly dependent,
then one of the a, is linearly dependent on the rest.

(2) If by, .. ., b, are linearly independent, but v, b,,. . ., b; are linearly
dependent, then v is linearly dependent on b4,. . ., b,.

PROOF. (1) Wearegiventhat z,a,+ --- +z,0,=0forsomex,, ..., x,
in F, not all zero. Suppose that x;+# 0; then we may multiply by ;!
and express a; as a linear combination of the remaining a,’s.

(2) We are given zv+y,b,+ - -+ +yb,=0 for some z, y,,...,¥, in
F, not all zero. Since by, ..., b, are linearly independent, x cannot be
zero. We multiply by 2~ and express v as a linear combination of the
by’s.

DEFINITION. A basis (or base) of a vector space V is a set of linearly
independent vectors in ¥ which also span V.

DEFINTTION. A vector space which can be spanned by a finite num-
ber of vectors is called finite dimensional; otherwise it is said to be
infinite dimensional.

We shall confine our attention in almost all of this book to finite
dimensional vector spaces and, in fact, from Chapter II onwards we
make a convention to this effect. The reader will see, however, that
many of the results (and most of the definitions) do not need this
restriction.

ProposiTiON 3. Any finite dimensional vector space contains a basis.

PROOF. Suppose thata,, ..., a,span V. Ifthese vectors are linearly
dependent and r > 2, then by Proposition 2 (1) one of these g, is linearly
dependent on the rest. If this vector is discarded then the rest still
span V. Continuing in this way we either arrive at a basis or at a
single vector a, where a is linearly dependent. This means that a=0.
Hence V=0 and V is spanned by the empty set.

All the remaining results in this section depend directly on the follow-
ing fundamental result.

ExcHANGE LEMMA. Ifa,, ..., a,span Vand if by, ..., b are linearly
independent in V, then s<r and, by renumbering the a;’s if necessary,
by, ....b,a11,...,0, span V.



10 LINEAR GEOMETRY CHAP. I

PROOF. We use induction on k to prove that b,, ..., b, @y, ..., a,
span V (so long as k<s). When k=0 this is given (in the sense that no
b;’s appear). Assume the statement for k=4 —1 and consider the case
k=h. Thenb,=yb,+ - +y,_1bp_1+2,a,+ - - - +x,a,, and the linear
independence of the b,’s ensures that at least one z; is non-zero. By
renumbering the vectors a,, .. ., a,, if necessary, we may suppose that
z,#0. Now we can solve for a, as an element of

(b1, b apiy, - -yal =M,

say, where M contains b,,...,b,_3,a,,,,...,a, and also a,. Hence
M=V, by the induction hypothesis. The result now follows by in-
duction.

THEOREM 1. Let V be a given finite dimensional vector space.

(1) Any two bases of V have the same number of elements.

(2) The following statements concerning the finite subset S of V are
equivalent:

(1) S is a basis of V,

(if) S s @ minimal spanning set of V,

(iii) S is @ maximal linearly independent set in V.

(3) Any set of linearly independent vectors in V can be extended to give
a basis of V.

PROOF. (1) By the Exchange Lemma,if{a,, ..., a}and{b,,..., by
are bases of V, then s<r and r<s.

(2) If{b,, ..., b}is a basis, then the inequality s <r of the Exchange
Lemma shows that this basis is a minimal spanning set. Thus (i) im-
plies (ii). If{a,, ..., a,} is a basis, then this same inequality shows that
this basis is a maximal linearly independent set. Thus (i) implies (iii).
If S is a minimal spanning set, then by the proof of Proposition 3, §
must be linearly independent. This shows that (i) implies (i). Finally,
if S is a maximal linearly independent set, then by Proposition 2 (2), §
is a spanning set, and so (iii) implies (i).

(3) Suppose that {a,, ..., a,} is a basis and b4, ..., b, are the given
linearly independent vectors. Then by the Exchange Lemma, re-
numbering if necessary, b, ..., b, a;,,, ..., a, span V. But this span-

ning set contains r vectors and so is a basis by part (2) of the theorem.
We are now in a position to give the promised definition of dimension.

DeriniTioN. Let V be a finite dimensional vector space over the
field . The number of elements in a basis of V is the dimension of V
(over F) and is written dimV, or simply dim V if the field of scalars F
is understood.
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We have the following immediate corollaries of Theorem 1.

CoroLLARY 1. If K is a subspace of V, then any basis of K can be
extended to a basis of V.

CoroLLARY 2. If K tis a subspace of V then there always exists at
least one subspace M such that

M®K=17V.

The following result will have important applications in the geometry
which we introduce in the next chapter.

THEOREM 2. Let M and N be finite dimensional subspaces of a vector
space.

(1) If M<N, then dimM <dimN and dimM =dimN implies M =N.

(2) Both M+ N and MNN are finite dimensional and

dim (M + N) +dim (MAN)=dim M + dim ¥

PROOF. Part (1) is an immediate consequence of Theorem 1. To
prove part (2), we may suppose, using Theorem 1, Corollary 1, that
{a), ..., a}is a basis of MNN, {a,,...,a,,b;,...,b} is a basis of M
and that {a,, ..., a,, ¢, ..., ¢} is a basis of N. It is clear that M + N
is spanned by a,, ...,a,, by, ..., b, ¢;,...,¢, and it only remains to
prove that these vectors are linearly independent.

Suppose that

10+ - T8+ Y b+ rydbstzie + - 20 = 0,

where the z;’s, y;’s and z;’s are in F. Thus, in an obvious shorthand,
we suppose that a+b+¢=0. Then ¢= —(a+5b) is an element of
MNN. But the as and ¢;’s are linearly independent and so the z,’s
are zero. Now the a;’s and b,;’s are linearly independent and so all the
z;’s and y;’s are zero.

EXERCISES

1. If a set 8 of vectors contains O then S is linearly dependent.

2. If a set S of vectors is linearly independent then so is every subset of S
(including, by convention, the empty set).

3. The vectors vy, v, . . . are linearly independent if, and only if, v;, v,, . . ., v,
are linearly independent for all > 0.

4. If §;, 8,, S5 are three sets of vectors such that every element of S, is
linearly dependent on S, and every element of S, is linearly dependent on
83, then every element of S, is linearly dependent on Sj.

5. Check the sets {1 — X, X(1—-X), 1-X2%}, {1, X, X2, ... }for linear depen-
dence in F[X].
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6. Prove that the vectors (1,0, 0), (0,1, 0), (0,0, 1), (1, 1, 1) are linearly
dependent in F® but that any three of them are linearly independent.

7. Show that 1, ¢ form a basis of C over R (where ¢2= —1). Prove also that
R is infinite dimensional over Q. (Hint: A finite dimensional vector
space over Q is enumerable.)

8. Show that 1, X, X2, ... form a basis of F[X] over F.

9. Let ¢; be the n-tuple whose i-term is 1 and whose other terms are all 0
(¢=1,...,n). Show that e, ..., e, form a basis of F". We call this
the standard basis of F™.

10. Prove that a vector space V is finite dimensional if, and only if, there is a
finite maximum for the lengths & of all possible chains of subspaces

My>M,> --- 2> M,

where M,_,# M, for each t=1,..., k. Show further that if there is
such a maximum, then it is precisely dim V.

11. If {a,, ..., a,} is a basis of V and if A4, is the one-dimensional subspace
spanned by a; (t=1,...,n), then V=4, ® --- D A4,.

12. Find an example which shows that the subspace M of Theorem 1,
Corollary 2, is not necessarily unique.

13. If V is a finite dimensional vector space, prove that the sum M + N is
direct if, and only if, dim (M + N)=dim M +dim N. More generally,
show that the sum M,+-.-+M, is direct if, and only if, we have
dim (M, +---+M,)=dim M, + - .- +dim M,.

1.5 The Ground Field

If V is a vector space over a field ¥, then we often refer to ¥ as the
ground field. Tt is clear that the definition of a vector space depends
on the particular field chosen as ground field. In the case where V has
finite dimension n over F we shall show that, as an abstract vector
space, V is effectively the same as the vector space F*. To be more
precise we need a definition.

DeriniTION. Let V and V' be two vector spaces over the same
field F. A one-one mapping f of ¥V onto V' which preserves addition
and multiplication by scalars is called an isomorphism of V onto V’.
If such an isomorphism exists then we say that V and V'’ are tsomorphic
or that V is isomorphic to V'.

The mapping f satisfies the rules:

(1) (a+b)f=af+bf,

(2)  (aa)f=2(af)
foralla,bin V and all z in F.

THEOREM 3. If V and V' are vector spaces over F of finite dimension
n, then V and V' are isomorphic. In particular, V and F" are isomorphic.
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PROOF. Let {a,,...,a,}and{a,’, ..., a,’} be bases over F for V and
V’, respectively. Then each v in ¥ can be expressed uniquely in the
form

V= 20,4 -+ T4,
where x,, ..., z, € F. The mapping f which takes
2@+ +xa,in Vtoza) + - +z,a,in V'

satisfies conditions (1) and (2) above. It is clearly one-one and onto V’
and so is an isomorphism of ¥ onto V.

We remark that the isomorphism constructed in the proof of Theorem
3 is by no means unique as it depends on our choice of bases for V and V",

An important special property of the vector space F*, not shared by
general vector spaces, is that F™ has a built-in natural basis, the stan-
dard basis {e,, ..., e,}, where ¢; is the n-tuple whose i-term is 1 and
whose other terms are all 0 (cf. exercise 9 of the previous section).

When an ordered basis (a,, ..., a,) of V is given there is a unique
isomorphism f of V onto F™ such that a,f=e¢, for i=1, ..., n, viz., the
mapping

2101+ - -+ X, = (2, ..., X,).

Conversely, if an isomorphism f of V onto F" is given, then there is a
unique ordered basis (a,, .. ., a,) of V such that a,f=e¢, for all i. The
mapping f is a rule which associates to any vector v=z,a,+ - - - +z,a,
a coordinate row (x4, . . ., ,) and so we call f a coordinate system of V. It
is clear that there is a one-one correspondence between coordinate
systems f of V and ordered bases (a,, . . ., a,) of V defined by the rule

frxya + - vz, — (g, ..., 7,).

Theorem 3 deals with the relationship between finite dimensional
vector spaces over the same field. We must now mention briefly a
subtler question: what happens to a vector space if we restrict or extend
the ground field ?

If the field E contains the field F then any vector space V over E
can be regarded as a vector space over F, simply by ignoring the scalars
in £ which are not in F. Let us, for the moment, distinguish these
vector spaces by writing them as Vg, V. respectively. It is important
to note that, although V; and V, consist of exactly the same vectors,
their dimensions will usually be different. For example, if V is a
vector space of dimension # over C, then the vector space Vg, obtained
by restricting the ground field to R in this way, has dimension 2n.

There is another method of restricting the ground field. If ¥ has
dimension n over K then we may pick a basis {a,, .. ., a,} of ¥;. The
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set of all vectors z,a, + - - - +x,a, where the z,’s belong to F is a vector
space Uy over F of the same dimension n. This second method is in
fact more useful from our point of view, but it has the severe disadvan-
tage of not being unique. In particular, if V¢ is a non-zero vector space
over C, we shall not expect to be able to find a unique subset Uy of
“real vectors” in V. The fact that we can do so for the vector space C*
itself is due to the circumstance that C* has a standard basis.

In our study of geometry we shall frequently be interested in vector
spaces over R and C. Let U be a given vector space of dimension n
over R. We now show how to construct, in a unique way, a vector
space U, over C, also of dimension n, which contains an isomorphic
copy of U.

We recall that C is the set of all ordered pairs (x, y) where z, y € R,
subject to the rules

(@ y)+ @, y) = @+, y+y),
@ 9@, y) = (@' —yy', zy’ +yz'),
and that R is identified with the set of all ordered pairs (z, 0). We may
then write (0, 1)=1 and (z, y) =2 +1y.
We define U, to be the set of all ordered pairs (a, b) where a, b € U,
subject to the rules
(@, b)+(a’, b') = (a+a’,b+b"),
(x, y)(a, b) = (za—yb, xb+ya),
and we identify U with the set of all ordered pairs (a, 0) operated upon
by the scalars (z, 0). If we write (a, b) =a +1b, the second rule becomes
( +1y)(a+1ib) = za—yb+i(xb+ya).

The reader will immediately verify that U, is in fact a vector space
of dimension n over C. We shall refer to U, as the complexification
of U.

EXERCISES

1. The vector space V over Q spanned by 1, 7 is a subspace of C, where C is
regarded as a vector space over Q. In fact, V is even a subfield of C.
(It is called the field of Gaussian numbers.)

2. Show that, in the notation used above, neither V nor Uy is a subspace of

Ve (E#F).

3. Prove that an n-dimensional vector space over F, is finite and consists of
exactly p" elements. Show further that the number of distinct ordered
bases is (p"—1)(p"—p)---(p"—p"~'). How many distinct bases are
there ?



CHAPTER II

Affine and Projective Geometry

NoTEe: Except where we state the contrary, all vector spaces considered in
the remainder of this book are assumed to be finite dimensional.

2.1 Affine Geometries

In this chapter we shall introduce two different (but closely related)
geometrical languages. The first of these, the language of affine geo-
metry, is the one which appeals most closely to our intuitive ideas of
geometry. In this language the subspaces of a vector space of dimen-
sions 0, 1 and 2 are called “points”, “lines’” and ‘‘planes”, respectively.
But we cannot limit these words to describe only subspaces: otherwise
V would have only one point, namely the zero subspace, and every line
and plane in V would contain this point. Our intuition suggests that
we introduce the concept of “translated” subspace.

DeriniTioN. If @ is any fixed vector in V and M is a subspace of V,
then a + M denotes the set of all vectors @ +m where m runs through M,
and is called a translated subspace (or coset) in V.

For the sake of brevity we shall frequently use the word “coset”
rather than the more descriptive term ‘“‘translated subspace™.

LeMMA 1. The following statements are equivalent:
(1) e+ M=b+ M,

(2) bea+ M,

(3) —a+be M.

PROOF. If a4+ M=b+M, then b=b+0ca+M. In other words,
—a+b=m for some m in M. Thus (1) implies (2) and (2) implies (3).

Ifnow —a+b=me M,thenb+M=(a+m)+ M =a+ (m+M). But
any vector in m+ M is of the form m+m' where m, m’' € M and so
m+M < M. Similarly —m+ M < M, which implies that M < m + M.
Hence M =m + M and we have shown that (3) implies (1).

As an immediate consequence we see that if the cosets a + M, b+ M
have any vector ¢ in common, then they coincide (with ¢ + M).
15
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Levmma 2. Ifa+ M =b+ N then M=N.

PROOF. If a+M=b+ N, then b=b+0ca+M and so a+ M=
b+ M by Lemma 1. Thus b+ M =b+ N, from which the result follows.

We may thus say unambiguously that M is the subspace belonging to
the coset a+ M.

We base our construction of cosets on the following result.

PROPOSITION 1. The tntersection of any family of cosets in V is either
a coset tn V or s empty.

PROOF. Let (S;);c; be a given family of cosets and suppose that
ceMS;. By Lemma 1, each S; is of the form ¢ + M, where M, is the sub-
space belonging toS;. Thus NS;=MN(c+ M) =c+ M, which is a coset
by Proposition 1 of Chapter I (p. 7).

DerINITION. The join of a family (8S;);; of cosets in V is the inter-
section of all the cosets in ¥ which contain every S;. We denote this
join by J(S;: ¢ € I), or simply by J(S,).

For two cosets we more often use the notation §; J §,. Then clearly
(S, J85)d83=8,J(85J83)=J(8:,85,83). (Seealsoexercise 1, below.)

It follows from Proposition 1 that J(S;) is itself a coset in V and, of
course, J(3;) is the least coset in V containing every S,.

Since a coset is a subspace if, and only if, it contains 0 (Lemma 1) we
see that the definitions we have given of the join of subspaces (p. 7)
and the join of cosets are consistent with each other.

The join of the family (S;), as we have defined it, seems to depend on
the containing vector space V, but if § is any coset in ¥ which contains
everyS;, ¢ € I, then J(S;) is also the smallest coset in S containing every
S;. Thus J(S;) could equally well be defined as the intersection of all
the cosets in S containing every S;, ¢ € 1.

In view of Lemma 2 we may make the following definition.

DerintTioN. The dimension of the coset a + M is the dimension of
the subspace M and we write dim(a + M)=dim M.

DErFINITION. Let V be a vector space over F and let S be a coset in
V. The set of all cosets in § is the affine geometry on S and will be deno-
ted by (S). The dimension of Z(S), written dim 7(S), is dim 8.
The elements of &7(S) of dimensions 0, 1, 2 are called points, lines, planes,
respectively, and the elements of .27 (S) of dimensionidim S — 1 are called
hyperplanes in 27(8S) (or sometimes hyperplanes in S).

If the coset § is contained in the coset 7' then /(S) is said to be a
subgeometry of o/ (T).
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We note that according to our definition of affine geometry the points
are sets, each consisting of just one vector. In other words, we distinguish
between a vector v and the point {v} that it determines. A little care
with the notation is required if the reader thinks in terms of the intui-
tive concept of ‘‘position vector of a point”. It is also well to remember
that lines, as we have defined them, are not the same as ‘‘segments”:
they do not need to be “produced’” and do not require the qualifying
adjective ‘‘straight’.

We shall frequently use the familiar notation P, @, R, etc., for points,
but reserve O for the point {0,}. The line joining distinct points P,
Q is written as PQ. We also use the adjectives “‘collinear”’, “concur-
rent”, “coplanar”, etec., in their usual sense.

The reader is encouraged to draw pictures or diagrams of the geo-
metrical configurations he encounters. These are often an invaluable
aid to thought but they must never, of course, be allowed to substitute

as a proof!

EXERCISES

1. Given cosets Sy, ..., S,, prove that every possible way of inserting paren-
theses in S; J - - -J 8, gives the same result, namely J(S,, ..., S,).

2. If S is a coset, prove that [S], the subspace spanned by 8, is precisely S J 0.

3. Let V be a vector space over a field F and S a coset in V. If a,, .. ., a, lie
in 8§ and x,,...,x, are scalars such that z;+ ---+z,=1, prove that
a,+ -+ +x0,€8.

4. If a non-empty subset S of ¥ has the property of exercise 3 for all r, show
that S is a coset in V.

5. If F has at least three elements and S is a non-empty subset of V satisfying
the condition of exercise 3 for r=2, show again that § is a coset. By con-
sidering 7 (F,2) show that this condition on the field F is necessary.

6. Prove that the set of all solutions (z, y, z) in R3 of the linear equations
X—-Y+Z=1, X+Y+2Z=2,is a coset in R? of dimension 1.

2.2 Affine Propositions of Incidence

In the previous chapter we found a simple relationship between the
dimensions of the intersection and join of two subspaces (Theorem 2 (2)).
In the case of cosets, however, the situation is complicated by the fact
that their intersection may be empty. We have the following criterion.

ProrosiTioN 2. Let S and T be cosets in V and M, N the subspaces
belonging to S, T respectively. Then S N T is empty if, and only if,

dim(SJ T) = dim(M +N)+1.
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This result is an immediate consequence of the following two lemmas.
Lemma 3. (a+M)J (b+N)=a+[—a+b]+M+N.

PROOF. (a-+M)J (b+ N)isa coset containing @ and b and so is of the
form a+ P=b+ P for some subspace P (Lemma 1). Then P certainly
contains [—a+b6] (Lemma 1), and also M and N. But the join of
a+M, b+ N is the least coset containing them both. Hence

P=[—-a+bl+M+N.

Lemma 4. (a+ M) N (b+N) s not empty if, and only if, —a+bd
belongs to M + N.

PrROOF. We have a+m=>5b+mn if, and only if, —a+b=m—n.

In order to express the fundamental propositions of incidence in
affine geometry we need a more delicate notion than that of empty
intersection. For example, in the intuitive three dimensional geometry
with which we are familiar, the join of two lines without common points
is a plane if the lines are “‘parallel” and is the whole space if the lines
are ‘“‘skew’.

DeriNiTION. The cosets a+ M, b+ N are said to be parallel if
M < NorN < M.
Note that our definition implies that a point is parallel to each coset.

It is clear from this definition that if the coset S is contained in the
coset 7' then § and 7' are parallel (argue as in the proof of Lemma 2).
On the other hand, if § and 7" are parallel and neither one contains the
other, then they have no points in common. For, if ceS N T then
S=c+M,T=c+NandsoM < Nor N < MimpliesS < Tor T < S,
respectively.

A convenient method of indicating in a diagram that two lines are
parallel is to draw them with arrow-heads (though the direction of the
arrows is immaterial).

S S

Figure 1. Parallel lines

The fundamental result which incorporates all the propositions of
incidence in affine geometry can now be stated.
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THEOREM 1. Let 8 and T be cosets in the vector space V.
(1) If S < T, then dim S <dim T and dim S =dim 7 implies S=T.
(2) If S N T is not empty, then

dim(SJ T)+dim(S N T} = dim S +dim 7.

(3) Assuming S N T is not empty, S and T are parallel if, and only if,
one contains the other.
Assuming S N T is empty, S and T are parallel if, and only if,

dim(SJ 7') = max(dim 8, dim 7") + 1.

PROOF. Let M and N be the subspaces belonging to § and 7 respec-
tively.

In parts (1) and (2) we choose ¢ in SN T and then 8 = ¢+ M,
T=c¢c+N, 8JT =c+(M+N), SNT =c+(MnNN). Bothresults
now follow from Theorem 2 of Chapter I (p. 11).

We have already proved the first part of (3). On the assumption
that S N T is empty, Proposition 2 above and Theorem 2 (1) of Chapter
I show that dim(SJ T')=max(dim M, dim N)+1 if, and only if,
M4+N=Nor M+N=M,ie.,if, and only if, M < Nor N < M.

We now state the propositions of incidence in dimensions two and
three. There are, of course, propositions of incidence for affine geo-
metries of all dimensions and their proofs depend only on Theorem 1.
We shall merely establish here two of the following propositions and
leave the reader to prove the others.

Propositions of Incidence in A (V), where dim V =2.
2.1 The join of two distinct points is a line.
2.2 The intersection of two non-parallel lines ts a point.

Propositions of Incidence in oZ(V), where dim V =3.
3.1  The join of two distinct points is a line.
3.2  The intersection of two non-parallel planes is a line.
3.3 The join of two lines with a point of intersection is a plane.
3.4 The intersection of two coplanar non-parallel lines is a point.
3.5 The join of two distinct parallel lines is a plane.
3.6 The join of a point and a line not containing it is a plane.
3.7 The intersection of a plane and a line not parallel to it is a point.

PROOF OF 2.2: Let S, T be non-parallel lines in the affine plane &7(V).
Since S# T', dim (S J T') > dim S =1 by Theorem 1 (1) (applied to S and
8 J T), and hence dim(§ J 7') = 2 (because dim V =2). Now 8 N 7T can-
not be empty, otherwise § and 7 would be parallel by Theorem 1 (3),
and so by Theorem 1 (2) dim(S N T)=1+1-2=0.
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PROOF OF 3.5. If S, T are distinct parallel lines, then S N T is
empty and dim(S J T')=max(1, 1)+ 1=2.

We shall say that two lines § and 7' are skew if they have empty inter-
section and are not parallel. Thus, by 2.2, skew lines cannot be co-
planar.

EXERCISES

1. Show that the affine geometry .27(F,2) has just four points and six lines
(parallel in pairs).

2. If 8, T are skew lines in an affine geometry of dimension three, show that
there is a unique plane Pg containing S and parallel to 7', and a unique
plane P, containing T' and parallel to 8. Show also that Pg and P, are
parallel.

3. If 8, T are two cosets and if K is the set of all zs+ yt where z, y are scalars
such that x+y=1, se Sand ¢t e T, show that K contains every line joining
a point of S to a point of 7. In the case of exercise 2 above, show that K
is not a coset. (This explodes what looks like a plausible definition of the
join of cosets “from below’.)

4. If a,, ..., a, are vectors in V, prove that
Jay,...,a)=a,+[a;—a,;1=2, ..., 7]
Deduce that J(a,,...,a,) has dimension r—1 if, and only if, a;—a,,
1=2, ..., r, are linearly independent.

2.3 Affine Isomorphisms

If S, T are cosets of the same dimension in a vector space V, then
there is an intuitively obvious sense in which the affine geometries
& (8), o/ (T) are equivalent: any construction or result that is possible
in the one is automatically also valid in the other.

DeriniTioN. If A, A’ are affine geometries, and « is a one—one map-
ping of A onto A’ such that

S < T if, and only if, Se © T«

for all S, T in A, then o is called an isomorphism of A onto A’. If such
an isomorphism exists, we say A, A’ are isomorphic (or that A is iso-
morphic to A’).

We may express the condition on o in the definition of isomorphism
by saying that « and a~! preserve inclusion. But if our intuitive idea
of isomorphism is correct then we shall expect an isomorphism to pre-
serve not only inclusions but also intersections, joins, dimensions and
parallelism. This we state more formally as follows.
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ProrosiTION 3. Let A, A’ be affine geometries and « an isomorphism
of A onto A'.

If (S)); 1 18 a family of elements of A, then

(1) (NS))e=MN(S;) #f NS, is not empty, and

(2) J(Sy) e=J(S;ex).

Further,

(3) dim Se=dim 8, for each S in A, and

(4) the elements S, T of A are parallel if, and only if, Se, T are parallel.

PROOF. The coset MS;=C is the largest coset contained in every S,,
1 € I this means that C is the coset uniquely determined by the two
conditions (i) C < §; for each ¢ in I, and (ii) if 7' < 8, for each ¢ in I,
then 7' < C. It follows that C« is the largest coset contained in every
S, 1 €1, i.e., Ca=8e. This has established (1). Part (2) follows
by a similar argument since J(S;) is the smallest coset containing every
S,iel.

For part (3) we consider chains of the form

C=0,>2C;> ... 20

where each C; is a coset and C,;,, #C, for ¢=0,..., k—1. The length
of this chain is k and one sees immediately from Theorem 1 (1) that the
length of the longest such chain is precisely dim C.

Part (4) is now a direct consequence of Theorem 1 (3) and parts (1),
(2) and (3).

We remark that the above proof serves also to show that the inter-
section and join of cosets, as well as coset dimension and parallelism
can all be expressed solely by the use of the inclusion relation < on
cosets.

There is an analogue for affine geometries of Theorem 3 of Chapter 1.

THEOREM 2. Any two affine geometries of the same dimension over the
same field are isomorphic.

PROOF. Let A=A (a+ M), A=</ (a’+ M') where a+ M, a’ + M’ are
cosets of the same dimension in vector spaces ¥V, V. Theorem 3 of
Chapter I shows that there is an isomorphism f of M onto M’. The

mapping
ol —(T-a)f+a,

where T’ € A, carries A onto A’ and has inverse mapping

o T > (T"—-a')f ' +a,
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where T" € A”. Since o and «~? clearly preserve inclusion, « is an iso-
morphism of A onto A’. (We shall return to a study of these isomor-
phisms in the next chapter.)

In view of this theorem we shall often speak of “affine geometry of
dimension n (over F)”.

Also, the fact that F**! contains cosets of dimension n which do not
contain 0 shows that we can find an isomorphic copy of any affine
geometry of dimension n over F in another affine geometry o/(V) and
so that the copy does not contain 0.

There is an important point concerning our definition of isomorphism
for affine geometries which has so far remained in the background. To
say that A is an affine geometry means that A =./(S) for some coset S
in some vector space V over a field F. If A’ is another affine geometry,
then A’ = .o7(8’) where S’ is a coset in a vector space V' over a field F’.
Even if A and A’ are isomorphic there is no a priori reason for F’ to
coincide with F. If, for example, dim; ¥V =dim . V'=1 and « is any
one—one mapping of F onto F’, then o gives rise to an isomorphism of
2/(V) onto &Z(V'). We shall see in the next chapter (§ 3.5) that, in
higher dimensions, if 2/(V) and &/(V’) are isomorphic, then the fields
F and F’ are not only related by a one—one correspondence but have
exactly the same algebraic structure.

2.4 Homogeneous Vectors

We shall prove some fundamental theorems of affine geometry by
means of what are called ‘“homogeneous vectors”. The method is
really one of the tools of projective geometry (to be introduced shortly),
but we hope that our present use of it will serve to pave the way for the
less familiar notions of projective geometry.

Let S be a plane in an affine geometry 2/(V) of dimension 3 over F,
and suppose S does not contain the zero vector 0,. If P is a point on 8,
then any non-zero vector p in OP will be called a homogeneous vector for
P. In other words, OP=[p]. The mapping P — OP is a one—one
mapping of S onto the set of all lines through O not parallel to S.
Further, three points P, @, R of § are collinear if, and only if, OP, 0@,
OR are coplanar. This follows at once from the propositions of inci-
dence 3.2 and 3.6.

LeMMA 5. Given three distinct collinear points P, @, R in S, a homo-
geneous vector p for P, and any two non-zero scalars x, y, then there exist
homogeneous vectors q, r for @, R, respectively, such that p=xq+yr.
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prooF. If q,, r, are any homogeneous vectors for @, R then p, ¢,, 7o
are linearly dependent since OP, 0@, OR are coplanar. But ¢, 7,
are linearly independent since OQ #OR. Hence, by Proposition 2 (2)
of Chapter I (p. 9), p==09,+¥oro for some non-zero scalars z,, y,.
We now put ¢ = (xo/x) go and = (yo/y) ro.

Lemma 5 allows us to simplify the constants appearing in arguments
using homogeneous vectors.

DrriniTION. If 4, B, C are three non-collinear points then the con-
figuration consisting of these three points and their three joins is called
the triangle ABC.

We shall say that the two triangles ABC, A'B'C’ are in perspective
from a point P if the seven points P, A, B, C, A’, B, C' are distinct and
if the three lines AA’, BB’, CC' are distinet and meet at P. We then
refer to P as the center of perspective of the triangles.

THEOREM 3. (DESARGUES’ THEOREM FOR THE AFFINE PLANE.) If
ABC, A’ B'C’ are two coplanar triangles in perspective from a point P, and
if the pairs of corresponding sides intersect in points L, M, N, then L, M,
N are distinct and collinear and the line LM N is distinct from the six sides
of the triangles. (Cf. Fig. 2)

PROOF. We may assume that the plane S of the triangles ABC,
A’B’'(” is contained in an affine geometry o7(V) but does not contain 0.
We choose any homogeneous vector p for P and use Lemma 5 to find
homogeneous vectors a, a’; b,b"; ¢, ¢’ for A, A’; B, B'; C, (", respectively
such that
a =p+a, b =p+b, ¢ =p+ec.

Then &' —¢’=b—c=1, say, where [ # 0 since OB#0C. Now ! lies in the
planes OBC, OB’'C’ and so lies in the line OL where L=BC N B'C',i..,
lis a homogeneous vector for L. Similarly ¢’ —a'=c—a=m is a homo-
geneous vector for M, and a’ —b’=a —b=n is a homogeneous vector for
N. Butl+m+n=0and so OL, OM, ON are coplanar. This implies
that L, M, N are collinear. It follows at once from the linear inde-
pendence of a, b, ¢ that L, M, N are distinct and none of the points 4,
B, C lies on the line LMN.

The simplicity of this proof is due to the use of homogeneous vectors.
But this is not the main reason for employing them. Their real signi-
ficance is that their use in the proof points the way to further results
not included in the original version of the theorem. For example, if
AA’, BB, CC’ are parallel instead of being concurrent, then we may
still take a non-zero vector p in the line through O parallel to 44’, BB,
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Figure 2

CC’" and argue precisely as before. In proving Lemma 5 we only used
the fact that OP, 0Q, OR are coplanar. In this case we use the fact
that p, OA, 04’ are coplanar. The conclusion of the theorem is un-
altered. In these circumstances we shall still say that the triangles are
in perspective. This configuration is illustrated in Figure 3. We have
labelled the arrow-heads (of the parallel lines) with the letter P to
remind us that in the general configuration (cf. Fig. 2) these three lines
meet in P. Here the point P has been ‘“‘pushed to infinity”’.

Again, if BC is parallel to B’'C’ and CA is parallel to C'4’, there are
no points L, M, but the non-zero vectors [, m, n exist just as before. In
this case [{], [m] are parallel to S and so [n], which lies in the plane of
[?] and [m] (since I+ m +n=0), is also parallel to 8. This shows that
AB is parallel to 4'B’.

The two results we have just deduced are important affine theorems
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which cannot be inferred directly from the affine form of Desargues’
Theorem. Their place will be clarified as soon as we establish the con-
nexion between affine and projective geometry.

TueoreEM 4. (Pappus’ (arrFINE) THEOREM.) Two triads of points
4, B, C; A', B, C" are taken on two distinct coplanar lines (possibly
parallel). If the intersections BC' N B'C,CA’ " C'A, AB' N A'B are
points L, M, N, respectively, then L, M, N are collinear. (Cf. Fig. 4)

PROOF. We remark first that the points of a triad are, by definition,
distinct. If the lines A BC, A’ B'C’ intersect in a point P, we shall as-
sume in our proof that the seven points P, 4, B,C, A, B, C’ are distinct.
But the reader will find it trivial to check that the theorem is also true
without this restriction.

The plane S containing 4 BC and 4’ B’C’ may be assumed to lie in an
affine geometry .«/(V) but not to contain 0.
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Figure 4

In the case where ABC N 4’B’C’ is a point P, we choose a homo-
geneous vector p for P; otherwise we choose a non-zero vector p in the
line through O parallel to ABC, A’B’C’. In either case we may then
find homogeneous vectors a, b, a’, b' for 4, B, A’, B’ respectively so that
b=p+a and b'=p+a’ (Lemma 5). We may also find homogeneous
vectors ¢, ¢’ for C, (' respectively of the form c=p+za, ¢'=p+ya’,
where z, y are scalars.

Now p+a+a’=n, say, is a linear combination of @ and &’, and also
of a’ and b (and therefore cannot be 0, since 04 #OB’). Hence n lies
in the planes OAB’, OA’'B and is a homogeneous vector for N. Simi-
larly p+za+ya’=m is a homogeneous vector for M. Finally,

zyn—m = x(y—1)b+ (x —1)¢/,
and
yxn—m = y(x—1)b"+ (y — 1)c.
Since xy=yx for all scalars z, y, it follows that l|=xzyn —m is a homo-

geneous vector for L. The linear dependence [ + m — xyn = 0 shows that
OL, OM, ON are coplanar and thus L, M, N are collinear.

The method of proof gives the further result that if BC" is parallel
to B'C and if CA" is parallel to C'4, then A B’ is parallel to 4’ B. (Draw

your own picture!)
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THEOREM 5. (THE HarRMONIC CONSTRUCTION IN THE AFFINE PLANE.)
Given two distinct points A, B in an affine plane 8, and a point G on AB.
We choose any point C in S but not on AB and also any point D on GC
distinct from G and C. If E=AD N BC, F=BDNCA and H=
EF N AB are points, then H is independent of the choice of C and D.

C

F

B H
Figure §

PROOF. As before we assume that S is contained in an affine geo-
metry &/(V) and does not contain 0,. We then take homogeneous
vectors, a, b, ¢, g for A, B, C, G respectively. Since 04, OB, OG are
coplanar we have g=xa + yb, for some scalars , y. We may then take a
homogeneous vector d for D of the form g+ zc=za + yb+ zc, for some
scalar z. If we now put e=yb+zc=d—xa and f=xa+zc=d—yb, we
see immediately that e, f are non-zero vectors and are homogeneous
vectors for E, F respectively. But then A=xa—yb is a homogeneous
vector for H. Comparing ¢ and A gives the result.

DerFintTiON. The point H of Theorem 5 is called the harmonic con-
jugate of G with respect to 4 and B. We also express the relationship
between the four points by saying that (4, B; G, H) is a harmonic range.

Again we have a situation where the proof yields further results. It
is assumed in the statement of Theorem 5 that the points E, F, H all
exist: i.e., that none of the line pairs AD, BC; AC, BD; EF, AB are
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parallel. But for certain choices of C and D some of these pairs may
indeed be parallel. Nevertheless, the vectors e, f, b always exist—
thus [e] is always the intersection of the planes 04D, OBC, etec. Our
proof therefore yields a construction for H even in certain situations not
covered by the statement of the theorem. Let us interpret these cases
in geometrical language.

D
Figure 6

Suppose that 4D is parallel to BC but that BD N CA is a point F.
Then our proof supplies H as the intersection (if it exists) of AB with
the line through F parallel to 4D (cf. Fig. 6); similarly, if £ exists but
not F. The vector A fails to give a point H on 4 B if, and only if, [A] is
the line through O parallel to 4 B.

To examine this construction in more detail it is convenient to
revert to the situation where a, b are the actual vectors (and not just
homogeneous vectors) for the points 4, B. In other words we assume
that A={a} and B={b}. The points of 4B are then precisely all the
points of the form {xa +yb} where z, y belong to the underlying field ¥
and x +y=1 (cf. Lemma 3 (p. 18) in the case M =N =0). We refer to
{xa+1yb}, where x+y=1, as the point dividing A, B in the ratio y:zx.
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(Notice the inverted order of z and y in this ratio.) In particular, if
the underlying field contains }, we refer to {}(a+0b)} as the mid-point
of 4, B.

Now suppose that G'={za+yb} where x+y=1. Then the harmonic
conjugate H={h} is given by k= (xa—yb)/(x—y) provided only that
x#y. Thus every point G of 4 B, excluding the mid-point (if it exists),
possesses a unique harmonic conjugate H, and we have another classical
definition of the harmonic range in which “G' and H divide 4, B inter-
nally and externally in the same ratio””. Of course, the ideas of “inter-
nal” and “external” do not make sense unless the field F has some
notion of order and so it is only safe for us to use this notion of sub-
division if ¥ is Q or R.

It is tacitly assumed in Theorems 3, 4 and 5 that the affine geometries
in question contain enough points for the configurations they describe
to exist. An affine plane over F, contains only four points and so we
must obviously assume that the ground field contains at least three
elements. This will give enough points for all three theorems provided
we allow parallel lines. For the general cases we must assume that the
ground field contains at least four elements.

EXERCISES

1. If H is the harmonic conjugate of G with respect to A, B we write
H=(A, B):G. Show then that G=(4, B):H and also, if G#H, that
B=(G, H): A.

2. Show that (4, B): A=A and (4, B): B=B.
3. Prove that, in the notation of Theorem 5, G=H, if, and only if, 22y =0.

4. Prove that in an affine plane over Fg, each line contains three distinct
points and that each of these is the mid-point of the other two.

5. Let A BC be a triangle in »/(R2) and denote by A’, B, (", respectively, the
mid-points of B, C; C, A; 4, B. Show that the “medians” 44’, BB’,
CC’ are concurrent. If the same configuration is taken in .o/(F;2), show
that the medians are parallel.

2.5 Projective Geometries

The incidence properties of affine geometry forcefully suggest that we
need some notion of “points at infinity”. The gap is filled by a new
concept, that of projective geometry.

DEriniTION. Let V be a vector space over F. The set of all sub-
spaces of V is the projective geometry on V and will be denoted by 2(V).
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The relationship between affine and projective geometries is stated
in Theorem 7, at the beginning of the next section. The reader is
urged to look now at the statement of that theorem and in particular at
part (6) since he will then appreciate the motivation for the following
definition.

DeriniTioN. If M is a subspace of a vector space V, the projective
dimension of M is defined to be dim M —1 and will be denoted by
pdim M. The dimension of the geometry Z(V), written pdim Z(V),
will be pdim V. The elements of (V) of projective dimensions 0, 1, 2
are called projective points, projective lines, projective planes, res-
pectively. An element of (V) of projective dimension pdim V —1 is
called a hyperplane in (V). (It isnecessarily a hyperplane in V as pre-
viously defined, and also a subspace.)

If M is a subspace of V, then (M) is called a subgeometry of (V).
I particular, if M is a projective point, then 2(M) consists only of the
two elements 0, M. Moreover, the point M is determined by any non-
zero vector m in M, i.e., [m]= M : such a vector is called a homogeneous
vector for M.

In many geometrical considerations there is a natural emphasis on
the concept of point. Curves and surfaces, for example, are usually
thought of as consisting of the points lying on them. In these circum-
stances the higher dimensional elements of our projective geometry, the
lines, planes, etc., are also considered as sets of points. To make
matters precise we introduce a definition.

DeriniTioN. The projective space determined by the projective
geometry Z(V) is the set of all the projective points in Z(V).

Each non-zero element 7' of Z(V) gives rise to a subset of the projec-
tive space, namely the set of all projective points in 7. But the zero
subspace (of projective dimension —1) contains no projective points
and hence yields the empty subset of projective space. Thus, for
example, if two projective lines M, N are such that M N N =0, then
M, N have no projective points in common. More generally, two
elements M, N of (V) have no projective points in common if, and
only if, M N N =0, or equivalently, if, and only if, pdim (M N N)= —1.
Such elements of Z(V) are called skew.

Throughout the rest of this book, when it is clear from the context
that we are discussing projective geometry, we shall omit the adjective
“projective’’ before the words point, line and plane.

As in affine geometry, we shall frequently write P, @, R, etc. for
points; PQ for the line joining the distinct points P, @; and use the
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familiar terms ‘“‘collinear”, ‘‘concurrent”, ‘“‘coplanar’, etc., in their
natural meaning.

For comparison with the affine case we state below the propositions
of incidence in projective geometries of dimensions two and three.

Propositions of Incidence in P(V), where pdim V=2,
2.1 The join of two distinct points is a line.
2.2 The intersection of two distinct lines is a point.

Propositions of Incidence in P(V), where pdim V =3.
3.1 The join of two distinct points is a line.
3.2  The intersection of two distinct planes is a line.
3.3  The join of two distinct intersecting lines is a plane.
3.4 The intersection of two distinct coplanar lines is a point.
3.5 The join of a point and a line not containing it is a plane.
3.6 The intersection of a plane and a line not contained in it is a point.

The reader will see at once that the statements of these propositions
are much simpler than those for the corresponding affine propositions
although, as we shall see (in § 2.6) the latter may be deduced from the
former. The proofs are also much simpler as they all follow from Theo-
rem 2 of Chapter I. For example, 2.2: We are given distinct lines
M and N so that pdim M =pdim N =1 and pdim(M + N)>1. Hence
pdim(M + N) = 2 and consequently

pdim(M N N) = pdim M + pdim N — pdim(M +N) = 0.

We have seen, in connexion with affine geometry, how to express
joins, intersections and dimensions of cosets by using only the inclusion
relation < on the cosets (see the remark immediately following Propo-
sition 3). The proofs of these results apply equally well when restricted
to subspaces. We conclude that sums, intersections and projective
dimensions of subspaces are all definable solely in terms of <.

The notion of an isomorphism of projective geometries is defined
exactly as for affine geometries:

DEFINITION. A one—one mapping = of a projective geometry P onto
a projective geometry P’ is called an isomorphism if it satisfies the con-
dition that

M < N if and only if, M#» < N=

forall M, Nin P. If such an isomorphism exists, we say that P and P’
are tsomorphic (or that P is isomorphic to P').

It is clear that an isomorphism of projective geometries preserves
intersections, sums and projective dimensions. There is again an
analogue of Theorem 3 of Chapter I.
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THEOREM 6. Any two projective geometries of the same dimension
over the same field are isomorphic.

For if f is an isomorphism of V onto V’, then the mapping
m: M — Mf
is clearly an isomorphism of Z(V) onto Z(V’).

It follows that we may talk of “projective geometry of dimension n
(over F)”.

EXERCISES

1. If P is a point in a three dimensional projective geometry and L, M are
skew lines not containing P, prove that there exists a unique line through
P intersecting L and M.

2. If #(V) is a four dimensional projective geometry and L, M, N are
mutually skew lines not lying in a hyperplane in Z(V), prove that L inter-
sects M + N in a point. Hence show that there is a unique line in (V)
intersecting L, M and N.

3. Let P be a point and L a line in a given projective geometry #(V). If P
does not lie on L show that @ — P@, where @ is a point of L, is a one—one
mapping of the points of L onto the lines in P+ L that go through P.

4. Prove that every line in #(F,?) has p+1 points on it. Deduce from this
that the total number of points in #(F,®) is p?+p+1. How many lines
are there? (Use exercise 3.)

5. Let V be an n+ 1-dimensional vector space over F,. If u, v are non-zero
vectors, write 4 ~v whenever [#]=[v]. Prove that ~ is an equivalence re-
lation on the set of non-zero vectors and deduce that the number of
points in (V) is 14+p+--- +p™

6. Prove the following theorem in projective geometry of dimension 3, using
only the propositions of incidence: If ABC, A’B’'C’ are two triangles, in
distinct planes, which are in perspective from a point P, then the pairs of
corresponding sides BC, B'C’; CA, C'A’; AB, A’ B’ intersect in collinear
points.

2.6 The Embedding of Affine Geometry in Projective Geometry

The fundamental connexion between affine and projective geometry
is given in

THEOREM 7. (THE EMBEDDING THEOREM.) If H is any hyperplane
in P(V) and c is any vector of V not in H, then the mapping

o S — [S]
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of (c+ H) into P(V) has the following properties:

(1) ¢ ¢8 a one—one mapping;

(2) the image of A (c+ H) under ¢ is the subset A of P(V) consisting
of all subspaces of V which are not contained in H;

(3) § « T if, and only if, [S] < [T] for all 8, T in L (c+ H);
of (Si)ie; ts a family of cosets in ¢+ H, then

(4) [NS81=N[8,] +f NS, is not empty, and

(8) [J(8y)]= +[8,];

(6) dim 8=pdim [S] for all cosets 8 in c+ H;

(7) S and T are parallel in oZ(c+ H) if, and only if, one of the sub-
spaces [S1 N H, [T] N H contains the other.

PROOF. (1) If S=a+ M e A (c+ H), then [S]=[a]l+ M and ¢+ H=
a+ H (by Lemma 1). If xza+m=a+h, then (x—1)a=h—~m € H where
a¢ H (since c¢ H), and so =1 and h=m. Hence [S] N (c+H)=8.
This shows that the mapping ¢ is one-one and also, incidentally, that
the inverse of ¢ is the mapping Sp — (S¢) N (¢ + H).

(2) If P is a subspace of ¥V not contained in H, then P+ H=V,
since H is a hyperplane in V, and so

dim(P N H) = dim P+dim H—-dim V = dim P-1,.

In other words, P N H is a hyperplane in P.

Let ¢t be a vector in P, not in H. Then it follows immediately by
counting dimensions that P=[t{]@® (P N H). Since H+[{]=V, it
follows in particular that c is of the form yt+% and so ytec+H. We
put a=ytand M =P N H. Then P=[a]+ M, where a+ M € &(c+ H).
This shows that ¢ is onto A.

(8) If[8] < [T]then[S] N (¢c+ H) <= [T] N (¢c+ H), which is precisely
§ < T by the last remark in the proof of (1).

(4) If e NS, then S;=e+ M, for each ¢ in I. Hence

NS, = e+MNM; and thus [NS,] = [e]+NM,.
Further,
N8 = N(el+M,) = [e]+NM,,
for if we+m;=ye+m,, then (x—y)e=m;—m, e H, so that x=y and

m,=m;.
1(5) (@ =J(S;)J 0= J(8,;J 0)= J({8S;]), since each of these sub-

b
'~

spaces is the least coset containing 0 and S, for each 4 in I; and
J[8:]) = +[84],

as J and + are equivalent for subspaces.
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(6) If S=a+ M, then dim [S]=dim M + 1, since [a] " M =0. Hence
pdim [§]=dim §.

(7) fS=a+ M, then [S]n H=M. For if za+m=»h we must have
=0, m=h. The result now follows at once from the definition of
parallel cosets.

The above proof can easily be visualized in the case when dim ¥V =3.
Figure 7 illustrates the connexion between a point {a} of &7(c + H) and
its image [a] in #(V); while Figure 8 shows the images of two parallel
lines.

Figure 7

Theorem 7 illustrates a situation frequently encountered in geometry.
The set A is linked by a one-one mapping ¢ to the geometry .« (c + H).
All the geometrical notions present in ./ (c + H), such as inclusion, inter-
section, join, dimension and parallelism, can be carried over to A by
means of . In this way A itself may be regarded as an affine geometry
and there are, in fact, many situations where it is more fruitful to focus
attention on A rather than on &/(c + H). We are thus led to the follow-

ing definition.
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[81] =[]+ L

—

Figure 8

DerFINITION. Let S be a coset in a vector space V over a field F. A
set A together with a one—one mapping ¢ of 2Z(8) onto A is called an
affine geometry.

There is an analogous generalization of projective geometry.

DeriniTiON. Let V be a vector space over a field #. A set P to-
gether with a one—one mapping ¢ of Z(V) onto P is called a projective
geomelry.

The important thing to remember when one uses these generalized
geometries is that any geometrical statement for A or P must always be
interpreted in terms of the corresponding geometrical statement for
2 (S) or (V) by using the link ¢ or i, respectively. Of course, if A or

P, as sets, already have a geometrical structure in their own right, then
we must be careful not to confuse this with the one carried over from
(S) or (V) by the use of ¢ or i.

Strictly speaking, neither .«/(S) nor #(V) is a geometry in this general-
ized sense. But, naturally, they both become so if we use the identity
mapping as our link.
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The set A of Theorem 7 together with ¢ is thus an affine geometry.
But A, as a subset of #(V), already has some geometrical structure.
The language we introduced in Z(V), and in particular the definition
of projective dimension, were chosen precisely so that the geometrical
structure of A, as a subset of Z(V), fits exactly the structure carried over
by ¢ from o7 (c + H): this is the content of parts (3), (4), (5), (6) of Theo-
rem 7.

Now A, as a set, is determined once H is chosen: it is simply the set-
theoretical complement of Z(H)in Z(V). But the affine geometry on A
depends on ¢. How does it change with ¢? Suppose ¢’ is another vec-
tor not in H and ¢’ the corresponding mapping 8" — [S'] of (¢’ + H)
onto A. Then ¢'¢p ! is a one—one mapping of .&/(c¢’ + H) onto o/ (c + H)
and, by part (3) of Theorem 7, ¢’p ! is actually an isomorphism. Thus
the geometrical notions carried over to A by ¢ and ¢’ are exactly the
same. Strictly speaking, the geometries (A, ¢) and (A, ¢’) are distinct
but we may identify them and shall refer to A itself as the affine geometry
in P(V) determined by H.

There is no concept of parallelism in projective geometry but the ex-
istence of parallelism in A, as an affine geometry, enables us to introduce
a suggestive terminology to be used when discussing A as part of the pro-
jective geometry (V). For any element M of Z(V) lying in A we
shall call M N H the hyperplane at infinity in M, or in P(M). Observe
that H itself is the hyperplane at infinity in V (and only in V). For ex-
ample, if M is a projective line not contained in H, then M N H is the
point at infinity in the line M ; if NV is a projective plane not contained in
H, then N N H is the line at infinity in the plane V.

Part (7) of Theorem 7 shows that the elements Sp, T'¢ of A are parallel
if, and only if, Sp N H contains T N H or vice versa; in other words,
if, and only if, the hyperplane at infinity in Sp contains, or is contained
in, the hyperplane at infinity in T'¢. Thus, in particular, two lines
M, N are parallel in A if, and only if, as projective lines in Z(V) they
have the same point at infinity; a line and plane are parallel in A if, and
only if, the point at infinity on the line lies on the line at infinity in the
plane.

To sum up then, we may say that projective geometry is “little more”
than affine geometry. Theorem 7 allows us to use either kind of geo-
metry to study the other. For example, the reader may easily deduce
the propositions of incidence in A or .&/(c + H) from those in Z(V). This
procedure is more illuminating than the use of Theorem 1 and indeed
supersedes it; though, of course, Theorem 1 can now be deduced from
Theorem 2 of Chapter I (cf. exercise 2 below).

The link between projective and affine geometry also enables us to
draw pictures of projective configurations. Suppose that € is a con-
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figuration in a projective plane #(V). We choose any projective line
H and take the ‘“‘cross-section’ of € with ¢+ H (where, of course,
¢ ¢ H). This cross-section yields a picture of an affine configuration
which is actually the image of € under the mapping ¢~ of Theorem 7.
Different cross-sections may well give us pictures that look quite
different, but they all represent the same projective configuration €.
We would naturally choose a picture in which as little as possible of € is
lost off the paper. For example, if € is the projective triangle 4 BC,
then the natural picture is Figure 9a, which is obtained by choosing H
not to contain 4, B, or C. The other two pictures in Figure 9 illustrate
respectively the cases where H contains B (but not 4 or C') and when
H=BC.

A B A B 7A
’ ] j
c B c c
(a) (b) (c)

Figure 9

As a more elaborate example, suppose € is the plane projective
configuration shown in Figure 10a. If we choose the line EG to be the
line at infinity, then € becomes the affine configuration pictured in
Figure 10b (called a parallelogram).

E
A R B
A
B F
D c G D " c
(a) (b)
Figure 10
EXERCISES

1. If Z(V) is a four-dimensional projective geometry, show that two planes
of Z(V) may intersect in a point. Hence show that, if A is the affine
geometry in #(V) determined by a hyperplane, two non-parallel planes in
A may have their complete intersection “‘at infinity”’.
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2. Let A be the affine geometry in #(V) determined by a hyperplane. In-
terpret Theorem 1 for A and prove it using only Theorem 7 and Theorem 2
of Chapter I.

3. Determine the number of lines in an affine plane over the field F,. (Em-
bed the affine plane in a projective plane and use exercise 4 of §2.5.)

2.7 The Fundamental Incidence Theorems of Projective Geometry

We shall now see that the theorems of Desargues and Pappus, as well
as the Harmonic Construction, are essentially projective theorems: the
statements are simpler than for the corresponding affine theorems, and
moreover (by taking the hyperplane at infinity appropriately), each pro-
jective theorem leads to several affine theorems, each of which would re-
quire separate treatment in affine geometry.

DeriNITION. Let ABC, A'B'C’ be two triangles whose six sides are
distinct. If L=BC N B'C', M=CANC'A", N=AB N A’'B’ are dis-
tinet collinear points and the line LM N is distinct from the sides of the
triangles, we shall say that the triangles have LM N as axis of perspective.

THEOREM 8. (DESARGUES’ THEOREM AND CONVERSE.) The iri-
angles ABC, A'B'C’ have a center of perspective P if, and only f, they
have an axis of perspective LMN .

Note that the planes A BC, A’ B'C’ may, or may not, be distinct. The
direct part of the theorem is proved in essentially the same way as
Theorem 3 (there being an obvious interpretation of Lemma 5 for pro-
jective geometry). ]

The natural projective picture of Desargues’ configuration is that of
Figure 2. Observe that Figure 3 is obtained from this by taking P to
be at infinity. What is the affine picture we get by letting LMN be
the line at infinity ?

PROOF of the converse. Since L, M, N are distinct and collinear, we
may choose homogeneous vectors I, m, n for L, M, N, respectively, such
that l+m+n=0 (Lemma 5). If we then choose a, b, ¢ for 4, B, C,
respectively, we find that

l = Y1b +2:C
m = .0 + 25
n = x30+ Ygb

il

and so (23 +%3)a+ (Y +¥1)b + (21 +25)c=0.

But a, b, ¢ are linearly independent since 4, B, C are not collinear,
and hence x, + 3 =y;+ 9, =2, +2,=0. None of these scalars can vanish
because we have assumed that LM N is distinct from the sides of the tri-
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angle ABC. Thus we can find homogeneous vectors (again denoted by
a, b, c) for A, B, C such that I=b—c, m=c—a,n=a~>b.
Similarly we find a’, b’, ¢’ for 4°, B’, ', respectively, such that

l=b—-¢,m=c¢c—-a,n=a-"b,

and therefore p=a—a’'=b—b"=c—c’#0 is a homogeneous vector for a
point P on AA’, BB and CC’. Finally, A4’, BB’ and CC" are distinct
because we have assumed that the intersections BC N B'C’, ete., are
points.

TurorEM 9. (Pappus’ THEOREM.) If two triads of points, 4, B, C;
A’, B, C’ are taken on two distinct coplanar lines and the intersections
BC' N BC,CA' NnC'A, AB N A'B are points L, M, N, respectively,
then L, M, N are collinear.

The proof follows exactly the same pattern as that of Theorem 4.
(Cf. Fig. 4.)

The above two theorems play a centrally important role in the syn-
thetic foundations of projective geometry. Desargues’ Theorem can
always be deduced in a three dimensional projective space from the
axioms of incidence 3.1-3.6 (p. 31), even if the planes of the triangles co-
incide (cf. exercise 3 below). On the other hand, there exist so called
non- Desarguesian projective planes in which the axioms 2.1 and 2.2 (p.
31) are satisfied but Desargues’ Theorem is not true. Clearly, such a
non-Desarguesian plane cannot be embedded in any three dimensional
projective space.

In all the work we have done so far, with the exception of one point
in the proof of Pappus’ Theorem, we have not used the commutative
law of multiplication xy =yx in the ground field ¥. A set F with rules
of addition and multiplication satisfying all the axioms of a field, but
with the possible exception of the commutative law of multiplication,
is called a division ring. All our work on vector spaces and projective
geometries can be extended to the case where F is a division ring, and
all our theorems proved—except Pappus’ Theorem. The method we
used to establish Pappus’ Theorem shows at once that it is true (for
all configurations) in such a projective plane over a division ring if, and
only if, the division ring is in fact a field.

There are two considerably deeper results which we mention without
proof. The first is that Desargues’ Theorem is true in a projective plane
(defined synthetically by the propositions of incidence) if, and only if,
this projective plane is a projective plane over a division ring (defined
algebraically). The second is an algebraic theorem due to Wedderburn
which states that a division ring with only a finite number of elements
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is a field. Combining these results gives a fascinating purely geometri-
cal theorem: The truth of Desargues’ Theorem in a finite projective
plane implies the truth of Pappus’ Theorem. (Consult [1], [6].)

TreEOREM 10. (THE HaARMONIC CONSTRUCTION.) Given two distinct
points A, B in a projective plane M and a point G on AB. We choose
any point C in M but not on AB and also any point D on GC distinct from
Gand C. Then E=AD N BC, F=BDNCA and H=EF N AB are
points and H is independent of the choice of C and D.

The proof is almost identical to the one given for Theorem 5. (Cf.
Fig. 5.)

DeriniTioN. The point H is called the karmonic conjugate of G with
respect to 4, B. We also say that (4, B; G, H) is a harmonic range.

For the harmonic construction in the projective plane it is no longer
necessary to assume that the ground field has more than two elements.
It is also clear that the exceptional cases where E, F or H failed to
exist in the affine plane are not exceptions here. Observe that, on the
affine line determined by choosing H as the point at infinity on 4 B, the
mid-point of 4, B—if it exists—is the harmonic conjugate of H with
respect to 4, B (cf. exercise 8, below).

The only subtle question remaining is the condition for a point G to
coincide with its own harmonic conjugate. In fact G =H if, and only
if, 2zy =0 (exercise 3, § 2.4).

In an abstract field ¥ we write 2 for the element 1+1. Now it is
possible that 2=0 (e.g., in F,). A field in which 2=0 is called a field of
characteristic 2.

We see that there are just two cases:

(1) if F is a field of characteristic 2, then G'=H for all ¢ on 4 B;

(2) if F is not a field of characteristic 2, then G'=H only for G=A4 or
G=B. (For then 2xy=0 implies xy=0.)

DEeriniTION. The configuration consisting of four coplanar points
A, B, C, D, no three of which are collinear, and their six joins, is said
to be a (complete) quadrangle. The points A, B, C, D are the vertices
and their joins are the sides of the quadrangle. The intersections of the
three pairs of opposite sides AD N BC=E, BDNCA=F,CD N AB=
¥ are called the diagonal points, and they are the vertices of the diagonal
point triangle of the given quadrangle. (Cf. Fig. 10a.)

Our remarks above combine to give a proof of the following result.

TueoreEM 11. (Fano’s THEOREM.) If P(V)isa 2-dimensional pro-
jective geometry over a field F, then the diagonal points of every complete
quadrangle in P(V) are collinear if, and only if, F has characteristic 2.
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We have seen above that the harmonic construction is valid in a pro-
jective geometry over the field F,. If the planes ABC, A'B'C’ in
Desargues’ Theorem (Theorem 8) are assumed to be distinct then there
is no need to restrict the ground field; but if we try to draw the config-
uration of Desargues’ Theorem in a projective plane over F,, then by
Fano’s Theorem one at least of the triads 4, B,C; A’, B, C" must be
collinear. Thus for the plane form of Desargues’ Theorem we must
assume that the ground field contains at least three elements.

EXERCISES

1. If two tetrahedra A,A4,A,4,, B,B,B,B; are in perspective from a point
P then the six points of intersection 4,4, N B;B;=P,,, 0<i<j<3, are
coplanar.

2. Deduce four different affine theorems from Theorem 8.

3. Given two coplanar triangles A BC, A’ B'C’ in perspective from a point P.
Take any line through P not in the plane of the triangles and any points
Q, R on this line so that P, Q, R are distinct. Find a triangle A" B"C” in
perspective with A BC from @ and in perspective with 4’B’'C’ from E.
Hence deduce Desargues’ Theorem for the given coplanar triangles by
using Desargues’ Theorem for non-coplanar triangles (cf. § 2.5, exercise 6).

4. Let A;B,C;, i=1, 2, 3, be three triangles, any two of which are in per-
spective, the center of perspective of 4,B,C; and A4,B,C; being P,,.
Assume P,;, P;,, P,, are distinct collinear points and that 4,4,4,;,
B,B,B,;, C,C,C; are triangles. Prove that A;BC,, i=1, 2, 3 have a
common axis of perspective L, and that any two of 4,4,4,, B,B,B;,
C,C,C; are in perspective, the three centers of perspective lying on L.

5. By considering the triangles B'BN, C'CM show that the converse of
Desargues’ Theorem can be deduced from the direct theorem in the two-
dimensional case.

6. Show that Pappus’ Theorem can be deduced from Desargues’ Theorem
in the case where the two triads are in perspective.

7. Using the notations of Theorem 9 (Pappus’ Theorem) and assuming that
A, B,C, A’, B’, C’ are distinct from P=ABC N A'B'C’, prove that the
line LM N contains P if, and only if, A4’, BB’, CC' are concurrent.

8. Let A, B be distinct points on an affine line L. By embedding L in a
projective line, verify that there exists a point on L having no harmonic
conjugate with respect to 4, B if, and only if, the ground field is not of
characteristic 2.

9. Draw a complete quadrangle and join the pairs of diagonal points. Mark
in all the harmonic ranges in your diagram.

10. Prove that the diagonals of a parallelogram bisect each other. (Cf.
Fig. 10b.)



CHAPTER III

Isomorphisms

3.1 Affinities

If 8, 8" are cosets in vector spaces V, V' over fields F, F’, respectively,
we shall often consider mappings f of § into 8’ with the following
property: for any coset 7' in 8, the image set 7'f is a coset in §". In
such a case the mapping

T—1Tf
of Z(8) into &/(8’) induced by f will be denoted by Z(f).

Clearly, if f, g are two such mappings for which the product fg is

defined then
A(fg) = () (9)-

It is important to note that f and /(f) are logically distinct: the
former acts on vectors and the latter acts on cosets. On the other hand
we see that f may be regained from /( f) merely by restricting &/(f) to
the cosets consisting of one vector: explicitly,

{v}L(f) = {v'} if, and only if, of ="

Occasionally we shall find it convenient to write v &Z(f) instead of
{3 (f).
If a is a vector in V then the translation
ly:v—>v+a
induces a mapping
ALt): T —>T+a,
where T'is a cosetin V. We shall refer to o7 (t,) as a translation in (V).
If S is a coset in V, the restrictions of £, and &/(¢,) to S and Z(8S), res-
pectively, will still be denoted by the same letters.

DeriniTiON. If S=a+ M, §'=a'+ M’ are cosets in vector spaces
V, V' over the same field F and if g is an isomorphism of the subspace
M onto the subspace M’, then a mapping of the form

tSi(t—a g ta’)

will be called an affinity of 2Z(S) onto &7 (S').
42
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It is obvious that an affinity is a particular kind of isomorphism—in
fact, the isomorphism constructed in proving Theorem 2 of Chapter 11
(p. 21) was an affinity. We shall prove later that any isomorphism of
affine geometries over different fields is as near to an affinity as one
could possibly expect (see Theorem 5). For affine geometries over the
same field, affinities are the most natural isomorphisms to study.

Let us denote ¢_, g t,. by . If s is any vector in S then

h = tosts o la
=1t _oGts_agsa> Dby the linearity of g,

=159,
where 8’ =(s—a)g+a’=sh. It follows that
g=1tht_g.

But s was an arbitrary element of S and thus ¢ is uniquely determined
by A.

When § is a subspace it is natural to choose s=0 and to express %
uniquely in the form g ¢, where s’ = 0h.

It is easy to verify that the product of two affinities, where defined,
is again an affinity. Forif a=./ ({_;g¢,) is an affinity of .2/(S) onto
&/(8’), then an affinity of /(8’) onto 7(S”) can be written in the form
o' =4 (t_s g ty) so that the product aa’ is L (¢_; g g't,).

In order to introduce coordinates in an affine geometry o/(9) it is
natural to attempt to use a basis in the underlying vector space V.
But even if the geometry .27(S) contains the point O (corresponding to
the zero vector), there is no geometrical feature to distinguish this from
any other point and so there is no purely geometrical notion which
exactly corresponds to that of basis.

DEriniTION. Let A be an affine geometry of dimension n>1 and
let Py,..., P,, @ be n+1 points of A whose join has the maximum
dimension n. Then the ordered (» -+ 1)-tuple (P,,..., P,, @) is called
a frame of reference for A, with origin Q.

We recall from Chapter I (p. 13) that the space F™ has a standard
basis {e,. .., e,} where ¢, is the ordered n-tuple (0,...,0,1, 0,...,0)
with i-term equal to 1 and all the other terms equal to 0 (i=1,..., n).
If we denote the points {¢;} by E, and the point {(0, ..., 0)} by O then
(B1;- . ., By, O) is the standard frame of reference for o7 (F™) with origin O.

The following result is a stronger form of Theorem 2 of Chapter II.

Tueorem 1. If (P, ..., P,,Q)and (P,,..., P,’, Q) are frames of
reference for affine geometries A, A’, respectively, defined over the same
Jield, then there is a unique affinity « of A onto A’ such that Pia= P, for
i=1,...,nand Qu=Q'.
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PROOF. We may suppose that A=o/(a+ M) and A'=f(a’+ M)
where a+ M, a’+ M’ are cosets in vector spaces V, V', respectively,

over the same field. Let the points P,,..., P,, @, P,,..., P/, @
have vectors p;, ..., P, ¢, P1's .. ., D, ¢, Tespectively.
Any affinity « which satisfies Qo =@’ is expressible in the form
=gt ,9t,)

where g is an isomorphism of M onto M'. If also Pa=P, for
t=1,...,nthen gtakes p,—gintop,’—¢ fori=1,...,n. By the defini-
tion of frames of reference, the vectors p,—q (=1, ..., n) form a basis
of M and the vectorsp,"— ¢’ (i=1,. . .,n) form a basis of M’ (cf. exercise 4
of § 2.2, p. 20). Thus by Theorem 3 of Chapter I (p. 12) there is one
and only one such isomorphism g and so there is one and only one such
affinity .

D=erintTION. If A is an affine geometry of dimension = over a field
F then an affinity o of A onto &/(F") is an affine coordinate system for A.

It is clear from Theorem 1 that there is a one-one correspondence
between the frames of reference (P,,..., P,, @) for A and the affine
coordinate systems o for A, given by

Po=E, (i=1,...,n), Qo = 0.
This affinity o takes the point X ={g+ >x(p;—q)} of A to the point
{(zy, ..., z,)} of L (F"). We shall say that (z,,. .., x,) is the coordinate

row of X with respect to the given frame of reference (or, with respect
to the given affine coordinate system).

EXERCISES

1. If « is an affinity of o7(S) onto 27(S’) and T is a coset contained in S,
prove that the restriction of « to &7(7') is also an affinity.

2. Prove that the inverse of the affinity &/(t_, gt,.)is the affinity &7(t_,. g1 ¢,).

3. Given a=2/(t_, gt,): L(a+M)—> /(a+ M), prove that the following
two properties are equivalent:
(i) S« is parallel to S for every coset S contained in a+ M ;
(ii) Ng=N for every subspace N of M.
(An affinity with either of these properties is called a dilatation. Cf. exercises
9 of § 3.2 and 1 of § 3.4, where these mappings are discussed further.)

3.2 Projectivities

Let V and V' be two vector spaces over the same field. If fis a map-
ping of Vinto V' such that, for every subspace M of V, the image set Mf
is always a subspace of V', then f induces a mapping

M > Mf
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of (V) into #(V’'). We shall denote this by Z(f) and stress that, as in
the analogous affine case, f acts on vectors while Z(f) acts on subspaces.

DerINiTION. If fis an isomorphism of V onto V' then Z(f) is called
a projectivity of #(V) onto #(V’). In particular, if V'=V, then Z(f)
is called a collineation of Z(V).

It is clear that if f and g are two mappings for which Z(f), #(g) and
the product fg are defined, then 2(fyg) is also defined and

P(fg) = P(f)P(9)-

Further, if 2(f) and £(g) are projectivities, so is Z(f)Z(g).

A projectivity is clearly an isomorphism of the projective geometries.
We shall find in § 3.5 that the most general isomorphism of Z(V) onto
P(V'), when the ground fields are distinct, is as close to being a pro-
jectivity as is possible (see Theorem 6).

If f is an isomorphism of V onto V' and 2z any non-zero scalar, then
g=zf is the isomorphism defined by the rule vg=z2(¢f) for all v in V.

ProrosiTiON 1. Two tsomorphisms f, g of V onto V' induce the same
projectivity P(f)=2P(g) if, and only if, there exists a non-zero scalar z
such that g =zf.

PROOF. If g=2zf then Mf= Mg for any subspace M of V and so
P(f)=2(g).

Conversely, suppose that Z(f)=2(g); then ag=z,(af) where 2, is a
non-zero scalar possibly depending on the vector a.

Assume first that V=[a]. Then

(ag)

x(2q(af))
(wz,)(af)
(2,7)(af)

2q(za)f, for any xin F.

(za)g

Il

it

In other words z,, =z, for any non-zero z in F.
Assume that dim V >2. If a, b are linearly independent vectors in
V then af, bf are linearly independent in V', so the equation

(a+b)g = ag+ by,
which is equivalent to
za+b(a+b)f = za(af) + zb(bf)’
yields

R = 2y = Zg4p
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If @ and b are linearly dependent we may use the above argument for
the one-dimensional case to show that z,=z,. Alternatively, and this
argument has an application later (pp. 57, 122), we may find a vector
¢ in V not linearly dependent on a or b, and deduce that z, =z, z,=z,
whence z,=2,. This establishes the result.

We turn now to the problem of introducing coordinates.

DeriNiTION. If P is a projective geometry of dimension n over the
field F then a projectivity = of P onto Z(F™*1) is a projective (or homo-
geneous) coordinate system for P.

We look for a frame of reference in P which will determine = uniquely.
Let us write e, for the (n + 1)-tuple (0, ..., 1,..., 0) with ¢-term equal
to 1 and all other terms equal to 0 (¢=0, ..., n). (Note that the ¢-term
isin the (¢ + 1) position here, since we number from 0 to n.) If 4,7 =[e,]
for i=0,...,n then the (ordered) (n+ 1)-tuple (4,,..., 4,) is often
called the (ordered) simplex of reference for the given coordinate sys-
tem .

Suppose that the simplex (4,,..., 4,) is given. We attempt to
reconstruct = as follows: Let a,, ..., @, be any homogeneous vectors
for Ay, ..., A,, respectively (i.e., [a;]=4;for¢=0,...,n). Then there
is a unique isomorphism f of V onto F**1! taking a, to ¢; for each i, and
the projectivity == 2(f) certainly takes A4, to [e] for each i. Unfor-
tunately there is an ambiguity in the choice of each a; (except in the
very special case where the ground field ¥ has only two elements 0, 1),
because each homogeneous vector may be multiplied by an arbitrary
non-zero scalar in #. When n =0 the ambiguity is “absorbed” when
we take Z(f) (cf. Proposition 1). When n=>1, however, we need a
further point to “‘stiffen up” our simplex of reference.

DeriniTION. Let P be a projective geometry of dimension n>1
and suppose that (4,, ..., 4,, U) is an ordered (n + 2)-tuple of points
in P such that the sum (join) of every subset consisting of (n+1) of
these points is of the maximum dimension n. Then (4,,..., 4,, U)
is called a frame of reference for P with unit point U and simplex
(4g,. .., Ay).

For example, in a 2-dimensional projective geometry any triangle
may be taken as triangle of reference, and any point, not on any of the
sides of the triangle, as unit point. In a three-dimensional projective
geometry we may take any tetrahedron as tetrahedron of reference, and
any point, not on any of the faces, as unit point.

The ordered basis (a,,. . ., a,) of V is said to determine the frame of
reference (A, ..., 4,, U) for (V) if 4;=[a,] for ¢=0,...,n and
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U=[ag+ --- +a,]. The standard basis of F"*! determines the stan-
dard frame of reference for P(F"+*1), viz., (E,, ..., E,, E) where E,=[e,]
fori=0,...,nand E=[(1, 1,..., 1)].

Lemma 1. Evwery frame of reference for P(V) is determined by at least
one ordered basis of V. Two ordered bases (ay, . . ., a,), (bg, ..., b,) of V
determine the same frame of reference if, and only if, there exists a non-

zero scalar z such that b,=za, for t=0, ..., n.

PROOF. Consider the frame of reference (4,, ..., 4,, U). Let u be
a homogeneous vector for U (i.e.,[u]=U) and let ¢,, ..., c, be any
homogeneous vectors for 4, ..., A,, respectively. Then (¢, ..., ¢c,)

is an ordered basis of V and u=xz,cq+ --- +x,c, where x;#0 for
t=0,...,n. If we put a,=z¢; then [a,]=4; (:=0,...,n) and
u=ag+ - - +a,.

If (ay, ..., a,), (b, ..., b,) determine the same frame of reference,
then b,=z4a,(1=0,...,n) and by+---+b,=2(ag+---+a,). Hence
2p0g+ - - - + 2,8, =204+ - - - +2a, from which it follows, by the linear in-
dependence of aq, . . ., a,, that zg=--. =2,=2.

THEOREM 2. If (4,,...,4,,U), (4y,..., 4, , U') are frames of
reference for projective geometries P, P’ over the same field, then there
exists a unique projectivity w of P onto P’ such that

Am =4y fori=0,...,n and Un = U’
PROOF. We consider geometries P=2(V), P'=2(V’). By Lemma 1

there exist ordered bases (a, ..., a,), (a,, ..., a,’) determining the
given frames of reference. By Theorem 3 of Chapter I (p. 12) there is
an isomorphism f of ¥ onto V' such that a,f = a,” for =0, ..., n and

consequently (ay+--- +a,)f=a,’+ - +a,’. The projectivity 2(f)
clearly satisfies the requirements of the theorem.

Now suppose that Z(g) is another such projectivity. Then the
ordered bases (a,f, ..., a,f), (ag, - .., a,g) of V' determine the same
frame of reference (4,',..., 4,’, U’). Hence, by Lemma 1, a,g=za,f
for each i. Therefore g=2zf and so Z(f)=2%(g) by Proposition 1.

By Theorem 2 there is a one-one correspondence between frames of
reference (4, . .., 4,, U) for P and projective coordinate systems = for
P given by

Am =E, fori=0,...,n and Un = E.

If P is a point in the geometry P and Pm=[(z,, . . ., z,)], then we say
that (x,, ..., x,) is a projective (or homogeneous) coordinate row of the
point P with respect to = (or with respect to the frame of reference cor-
responding to ).
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EXERCISES

. If (f) is a projectivity, prove that 2(f) " 1=2(f"1).
. When the ground field is R, we define the centroid of the affine points

. 1
g, - - -, &y, to be the point por | (@g+ - - - +a,). Show that Theorem 2

yields the following affine theorem:

Given a real affine geometry of dimension (n+1) and (n+1) linearly
independent lines 4,, . . ., 4, through the point O together with a further
line U through O which is not linearly dependent on any = of the 4’s.
Then there exist hyperplanes cutting A,, ..., 4,, U in (n+1) distinct
points and their centroid, respectively; and any two such hyperplanes
are parallel. (The cases n=1, 2 are easily visualized.)

Let P be a projective plane and 7 a collineation having a line L of fixed
points (i.e., X7 =X for all points X on L). If = is not the identity map-
ping, prove that there exists a point 4 (possibly on L) such that 4, P
and Pr are collinear for every point P in P.

(Such a collineation = is called a central collineation. The line L is the
axis and the point A4 is the center. Cf. also §3.7.)

. Let P be a projective plane and suppose that we are given a line L, dis-

tinct points P, P' not on L and a point 4 on PP’ but distinct from P and
P’. Prove that there exists one, and only one, central collineation = of
P with axis L, center 4 and such that Pr= P’. (For the definitions see
immediately above.)

. Let ABC, A’ B'C’ be two triangles in perspective from a point P. Let

L=BCNBC, M=CAnNCA', N=ABn A’'B’. By the previous
exercise there exists a central collineation = with axis LM, center P and
satisfying Cw=C". Deduce that L, M, N are collinear.

(This exercise shows that the truth of Desargues’ Theorem in a pro-
jective plane is closely linked to the existence of sufficiently many central
collineations. This fact is of importance in the study of non-Desar-
guesian projective planes. Cf. remarks on page 39. For further informa-
tion the reader should consult [3], [6].)

. If L, L’ are distinct coplanar lines, 4 is a point on neither line and

P —> P’ is the mapping of the points of L onto those of L’ defined by
P'=AP N L', prove that there exist central collineations = such that
Pr=P' for all Pon L.

(The mapping P — P’ yields, in an obvious way, an isomorphism of
(L) onto #(L’). Such an isomorphism is called a perspectivity and 4 is
its center.)

. Let = be a collineation of a projective plane P which takes a line L in P

into a distinct line L. Use the uniqueness part of Theorem 2 to show that
the induced projectivity of (L) onto #(L') is a perspectivity if (and
only if) the point L N L' is left fixed by 7.

. Show that a projectivity of the line (L) onto the distinct coplanar line

P(L') can always be expressed as a product of two perspectivities.
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Prove, further, that a collineation on (L) can always be written as
a product of three perspectivities.

9. Using exercise 3 of § 3.1, prove that an affinity o of o&/(a+ M) onto
(a+ M) is a dilatation if, and only if, the uniquely determined vector
space isomorphism associated with « is #1,,, for some non-zero scalar 2.
Show, further, that a dilatation (other than the identity) is a translation
if, and only if, it does not fix any point. (Cf. also exercise 1 of § 3.4.)

10. Let V and V' be non-zero vector spaces over a division ring D (cf. p. 39)
and let f be an isomorphism of ¥ onto V’. If z is a non-zero element of
D show that the mapping

zf: v — 2(vf)

is an isomorphism if, and only if, zz=zz for every z in D.

Show that the unigueness part of Theorem 2 cannot be extended to
geometries P, P’ over a division ring D which is not commutative. (We
remarked on page 39 that the truth of Pappus’ Theorem in a projective
plane over D is sufficient to ensure that D is commutative. This exer-
cise gives another such criterion.)

11. Let z, x be elements of a division ring D such that zx # zz and let M, N
be the subspaces of D® spanned by {(1, 0, 0), (0, 1, 0)}, {(1, 0, 0), (0, 0, 1)},
respectively. If g is the isomorphism of M onto N defined by (1, 0, 0)g=
(2,0,0) and (0, 1, 0)g=(0, 0, z), show that the projectivity 2(g) leaves
[(1, 0, 0)] fixed but is not a perspectivity (cf. exercise 7).

3.3 Linear Equations

One of the great advantages of coordinates is that they allow the use
of equations. The following theorems show the relationship which
exists between linear equations and the geometrical objects we have
been studying.

THEOREM 3. The set of all solutions (z,, . . ., x,) in F™ of the linear
equations

DX, =b (i=1,...,m) (1)
j=1

with all a;, b, in F, is either empty or is a coset of dimension n—r in F™,
where r is the maximum number of linearly independent rows (a,,, . . ., a,),
1=1,...,m.

If c=(cy, ..., ¢c,) is any solution of the equations (1) then (by the

linearity) = (z,, .. ., z,) is a solution of the linear equations
n
DaX, =0 (i=1,...,m) (2)
=1

if, and only if, z+c¢ is a solution of the equations (1). The proof of
Theorem 3 reduces therefore to the proof of
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THEOREM 4. The set of all solutions (z,, . .., x,) in F" of the (homo-
geneous) linear equations (2) is a subspace of F™ of dimension (n—r)
where r is the maximum number of linearly independent rows (ayy, . . ., ay,),
1=1,...,m.

It is convenient to introduce the subspace of F'* spanned by the rows
(@1, - -5 @), (t=1,...,m). We call this subspace the coefficient space
of the system of equations (1) or (2). The number r appearing in the
statements of Theorems 3 and 4 is the dimension of the coefficient space.

PROOF OF THEOREM 4. If r=0 then the theorem is true since then
every element of F" is a solution. We suppose therefore that one of
the coefficients a,; is non-zero. By suitably renumbering the equations
and variables, if necessary, we may assume that a,; #0. We shall
write L, for 3%_, a;;X;, i=1,...,m. If now L,"=L,, but

L/ = Li—(ay/ay;)L,

for 1=2,..., m, then the system L,’=0 (1=1, ..., m) has exactly the
same set of solutions and the same coefficient space as the system
L,=0(=1,...,m). Thisfollows at once from the fact that every L,
is a linear combination of the L;, and every L, is a linear combination of
the L.

We reduce the equations step by step in this way (with suitable re-
numberings, if necessary) until a “truncated triangle” of equations is
obtained, say

by X+ +61,Xn = 0,
b22X2+ e +b2an =0, (3)

+bssXs+ e +bsan =0,

where b,;, by, . .., by, are non-zero. Since the dimension of the co-
efficient space is unaltered at each step, we see that s=». Equations
(3) are now solved by giving X, ,, ..., X, arbitrary values in ¥ and
solving uniquely for X,, X,_,,..., X, in turn, starting with the last
equation and working upwards.

If r=n, the only solution is (0, 0, ..., 0); but if r <=, the solutions
are of the form

ZTrp1lry1t oo + Ty

where, for each j=7+1,...,n, a; is a row of which the last (n—r)
terms are (0,...,0,1,0,...,0) with 1 as the (j—r)-term. These a; are

therefore linearly independent and the result follows.

Our method of proving these theorems is less satisfactory, from the
point of view of elegance and speed, than others to be given later, but
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it does have the advantage of illustrating the most effective practical
method of solving linear equations.
Theorem 3 has the following partial converse.

ProposiTiON 2. Every coset in F™ is the set of all solutions of a
suitable system of equations (1).

PROOF. By the reduction already given of Theorem 3 to Theorem 4
we need only prove our proposition when the given coset is actually a
subspace M of F™.

We define M* to be the set of all (y,, ..., y,) in F* satisfying

for all (x,,...,2,) in M. If we interpret M as a coefficient space we
see that M* is a subspace of F™ of dimension »—dim M.
The subspace M1! consisting of all (2, .. ., 2,) in F* satisfying

for all (y4, . . ., ¥,) in M* clearly contains M. But M*'' has dimension
n—(n—dim M)=dim M and so M** =M (by Theorem 2(1) of Chapter
I (p. 11)).

If the rows (a;y, ..., a;,), 1=1, ..., m, span M* then M is the solu-
tion space of the equations (2).

There is a natural interpretation of these results for an affine or a
projective geometry for which a coordinate system is given.

If A is an affine geometry with a coordinate system « and S an ele-
ment of A, then by Proposition 2, S« is the set of all solutions of a suit-
able system of linear equations (1). It is usual to say that the equations
(1) are a set of equations for S in the given coordinate system. There is a
similar terminology for projective geometries.

EXERCISES

1. A single equation a,X, + - - - +a,X, =b, with not all a,=0, defines a hyper-
plane in .2/ (F™) which is also a hyperplane of #(F") if, and only if, 6=0.

2. Prove Desargues’ Theorem by taking 4 BC as triangle of reference and P as
unit point.

3. Prove Pappus’ Theorem by taking PAA’ as triangle of reference and N as
unit point.

4. Prove exercise 1 of § 2.7 by taking 4,4, 4,4, as tetrahedron of reference
and P as unit point.



52 LINEAR GEOMETRY CHAP. III

5. Reinterpret the proof of Theorem 10 of Chapter II (the Harmonic Con-
struction) by taking ABC as triangle of reference. When G is distinct
from A and B (and the ground field is not a field of characteristic 2) then
EFG may be taken as triangle of reference and D as unit point. Show
that then A, B, C have coordinate rows (—1, 1, 1), (1, —1, 1), (1, 1, —1),
respectively.

6. In the notation of the Embedding Theorem of Chapter II (p. 32), choose a
basis {a,, . . ., a,} of V such that a,=c and [a,, ..., a,]=H. What are the
equations of H and ¢+ H? Show that the affine point with coordinates
(1, z,, ..., »,) is mapped by ¢ to the projective point with homogeneous
coordinates (1, zy,...,x,), and that the coset in ¢+ H defined by the
equations

n
Z a; X, =b, ¢=1,...,m,
i=1
is mapped by ¢ onto the subspace with equations
n
> aX; =bX, i=1,...,m.
i=1

7. Let 7 be a projective coordinate system of #(V) and H the hyperplane
with equation X,=0. If Ais the affine geometry determined by H and P
is a point in A with projective coordinate row (z,, . . ., z,), prove that

P — (%o, . . ., Za[o)

is an affine coordinate system of A. Identify the origin of the correspond-
ing affine frame of reference.

3.4 Affine and Projective Isomorphisms

In view of the fundamental theorem about the embedding of affine
geometries in projective geometries it is natural to expect that affine
and projective isomorphisms are closely related.

Suppose that #(V), #(V’) are projective geometries, not necessarily
over the same field, and that = is an isomorphism of Z(V) onto #(V’).
We may choose any hyperplane H in #(V) and the corresponding hyper-
plane H'=Hnm in (V') as hyperplanes at infinity and so obtain two
affine geometries A, A’, respectively (p. 36). The restriction « of = to
A is immediately seen to be an isomorphism of A onto A’.

Conversely, a given isomorphism « of A onto A’ may be extended in
one and only one way to an isomorphism = of #(V) onto Z#(V’), as
follows. We define Pm= Po forany Pin A. Since H is the only hyper-
plane in #(V) not contained in A, and similarly for H’', we must set
Hr=H'. 1If M is any subspace of H then all the elements P of A which
have M as hyperplane at infinity (i.e., P N H= M) are parallel and have
the same dimension. (Such elements P certainly exist, for if ¢ ¢ H
then P=[c]+ M has M as hyperplane at infinity.) The corresponding
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elements Pa of A’ are again all parallel and have the same dimension;
as such they all have the same hyperplane at infinity M’. We are thus
forced to define M7= M'. It only remains to show that the one—one
mapping = so defined, and its inverse =1, preserve inclusion.

Since 7 extends « it is clear that = preserves inclusions among the
elements of A. Suppose that M, N are subspaces of H and that P, ¢
respectively have M, N as hyperplanes at infinity. Then M c N if,
and only if, P and @ are parallel and dim P <dim ¢. By our definition,
M=n< Nr if, and only if, Pa and Qo are parallel and dim Pe < dim Qe.
Since « is an isomorphism it follows that M < N if, and only if, M7 < N=.

If M is a subspace of H and @ is an element of A with hyperplane at
infinity N=Q N H, then M < @ if, and only if, M <N. From this it
now follows that M < @ if, and only if, Mm< Qm.

Suppose now that #(V), #(V’) are defined over the same field F and
that = is a projectivity. In other words 7= =2(f) where f is an iso-
morphism of V onto V' taking H onto H'. The geometries (A, ¢),
(A’, ¢’) are linked to geometries &/(c+ H), &/(¢c'+ H') where ¢, ¢’ are
arbitrary elements of V, V' not in H, H’, respectively. By multiply-
ing f by a suitable non-zero scalar, if necessary, we may assume that ¢f
lies in ¢’+ H'. We may then assume without loss of generality that
¢’=cf. We wish to prove that the affine isomorphism « of A onto A’
determined by = (as explained above) is here an affinity. This amounts
to proving that the induced mapping pag’ ~! of o/ (c + H) onto &/ (¢’ + H')
is an affinity. We shall do this by showing that pagp’~?! is the restric-
tion to 7 (c+ H) of the affinity 7 (f) (cf. exercise 1 of § 3.1).

In the notation of the Embedding Theorem (p. 32), if S € o/ (c + H),

Sf =8 implies [S]f = [§'],
because f is a linear isomorphism. But f maps ¢+ H onto ¢'+H'.
Also S=[S]N (¢c+H) and 8'=[S'1 N (¢’ + H'). Thus
8f = 8 if, and only if, [S]f = [S'].
This is just another way of saying that
S (f) =8 if, and only if, Spa = 8¢,

ie., pa = (f)¢’, as required.

Suppose, finally, that a projective isomorphism = induces an affinity
o of A onto A’. Then pagp’ ! is of the form </ (t_.g ¢.) where g is an
isomorphism of H onto H'. We may extend g uniquely to an isomor-
phism f of ¥ onto V' taking ¢ onto ¢’ (by the rule (xc+h)f=xc’ + hg).
The projectivity 2(f) now clearly restricts to the affinity « and so we
must have Z(f)=.

Recapitulating, we have proved the following result.
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ProrosiTioN 3. Let V, V' be vector spaces over fields F, F’, respec-
tively, and let H, H' be hyperplanes in P(V), P(V') determining affine
geometries A, A’, respectively. Then any projective isomorphism = of
P(V) onto P(V') for which Hm = H' restricts to an affine isomorphism « of
A onto A’. Conversely, any affine isomorphism « of A onto A’ is the
restriction of just one such projective isomorphism .

If F=F'then m is a projectivity if, and only if, o is an affinity.

ExERCISE

1. Let P be a projective plane and A the affine plane determined by H as
line at infinity. If = is a collineation of P leaving H invariant (i.e., Hr=
H) and « is the affinity of A obtained from = by restriction (according to
Proposition 3), prove that « is a dilatation if, and only if, = is a central
collineation with H as axis. Prove, further, that « is a translation if, and
only if, = in addition has its center on H. (Cf. exercises 3 and 9 of § 3.2.)

3.5 Semi-linear Isomorphisms

Let V, V' be vector spaces over fields F, F', respectively and let o be
an isomorphism of &/(V) onto 2/(V’). We also assume in the first
place that 0,«=0,.. For convenience we write va =o' for all v in V.

When dim V >1 we can choose a non-zero vector a in V and then,
since o« is an isomorphism taking the line [a]=a J 0, onto the line
a’ J 0y.=[a’], « induces a one—one mapping of the points of [a] onto the
points of [a’]. In other words, o defines a one—-one mapping

(ix—>a
of F onto F' by the rule

!

(xa) = z'a

for all x in F.

Clearly, from this definition, 0;' =0 and 1; =1, but as far as we
can tell at this stage the mapping { depends on the choice of the non-
zero vector a. In fact, when dim ¥V =1, an arbitrary one—one mapping
of V onto V' induces an isomorphism.

When dim V > 2, however, we can deduce much more about both
« and .

Our first task is to show that { does not depend on the choice of the
vector ¢ in V. Suppose that a, b are linearly independent vectors in V
and that

(xb)/ — :L‘”b'

forallzin F. Itis clear that 0;” =0; =0z and so we may assume that
x#0;. Now the line xa J zb is parallel to a J b and so, since « preserves
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parallelism, z'a’ J "0’ is parallel toa’ J b’. But this implies immediately
that x" =2’ as required. If @ and b are linearly dependent then we
choose a third vector ¢ not on [a]. By the above argument, the map-
pings of F' onto F’ determined by a, ¢ and by b, ¢ are the same, hence
also those by «a, b.

We may now say (when dim V > 2) that there is a unigue mapping
(. x — z’ of F onto F’ such that

(xa) = 2'a’ (1)

forall zin F and alla in V.

If a and b are again linearly independent vectors in V then « carries
the parallelogram a, 0y, b, @+ b into the parallelogram a’, 0y., b’, a’ + b’
and so

(@+b) =a'+b'. (2)

Let us now show that (2) is true for all @, b in V. Since it is clearly
true if @ or b is the zero vector, this only leaves the case where a, b are
linearly dependent and non-zero. Choose a third vector ¢ not on [a].
Then we may apply the rule to the pairs (a+b, c), (a, b+¢), (b, ¢), so
that

(a+06) +¢

a’ +(b+c)
— al +bl + C',
from which
(a+bd) =a' +¥,

as required.

We may deduce two further properties of the mapping { from the
rules (1) and (2).

First, choose any a'#0,. and any z, ¥y in F. Then

(z+y) o' = ((z+y)a)

(za+ya) (by the vector space axiom V.3,
applied to V)

(za)’ + (ya)’

xlal + ylal

= (' +y')a” (by V.3, applied to V")

and consequently
(x+y) =2 +y (3)
forall z, y in F.
Finally, we invoke axiom V.4 which states that

(zy)a = z(ya)
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forallz,yin F and alle in V. Thus

(xy)a' = '(ya) = 2'(y'a’) = (x'y')a’
and so
(zy) =2y (4)
forall z, y in F.

DEeFINITION. A one-one mapping { of a field F onto a field F’ is
called an tsomorphism if

(x+y)l = z{+yL,
(@y)f = (@0)(yd)
for all x, y in F. If F=F’ then { is called an automorphism of F.

DerintTioN. Let V, V' be two vector spaces over fields F, F’, res-
pectively. If fis a one—one mapping of ¥ onto ¥’ and { is a one—one
mapping of ¥ onto ¥’ where f and { are related by the rules

(@+b)f = af+bf,
(za)f = (zf)(af)

forall @, bin V and all x in ¥, then f is called a semsi-linear i.somorphism
of V onto V' with respect to {.

We see from the proof of rules (3) and (4) given above, that the
mapping { in the definition of a semi-linear isomorphism is necessarily
an isomorphism of F onto F’ (provided only that Vf contains a non-
zero vector).

It is immediately obvious from the definition that the mapping <Z( f)
induced by a semi-linear isomorphism f is an affine isomorphism. As
a partial converse we have the following fundamental theorem.

THEOREM 5. Let A= (a+ M), A'=x(a’+ M') be affine geometries
over fields F, F', respectively, and let « be an isomorphism of A onto A'.
If dim A =1 then there is a one—one mapping of F onto F'.
If dim A > 2 then there is an isomorphism { of F onto F' and a semi-
linear isomorphism g of M onto M’ with respect to { such that
a = (59 ta)-
The isomorphism { and the semi-linear isomorphism g are both uniquely
determined by o.
PROOF. Very little remains to be proved. The mapping
A (tg) o (b g0)

is an affine isomorphism of &7 (M) onto &Z(M’) taking 0, onto 0, and
80, by the above argument, is induced by (i) a one—one mapping of ¥
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onto F' when dim A=1 and (ii} a semi-linear isomorphism g when
dim A>2.

The uniqueness of g is proved in exactly the same way as in the case
when « is an affinity (cf. p. 43). But once g is known, { is uniquely
determined by the argument given above.

Before we prove the corresponding theorem for projective geometries
we remark that there is an analogue of Proposition 1 for semi-linear iso-
morphisms provided that dim ¥V >2. If fis a semi-linear isomorphism
of V onto V' with respect to { and 2’ is any non-zero scalar in F’ then
the reader will verify that the mapping g=2'f defined by the rule

vg = 2'(2f)
for all v in V, is again a semi-linear isomorphism of ¥V onto V’ with
respect to the same isomorphism . The proof already given for
Proposition 1 when dim V > 2 shows that the semi-linear isomorphisms
Jand g of V onto V' induce the same projective isomorphism 2(f)=
#(g) if, and only if, g=2'f for some non-zero scalar z’ in F".

THEOREM 6. Let P=P(V), P'=P(V’) be projective geometries over
fields F, F’, respectively and let 7 be an tsomorphism of P onto P’,

If pdim P=1 then there is a one-one mapping of F onto F'.

If pdim P> 2 then there is an tsomorphism { of F onto F' and a sems-
linear isomorphism f of V onto V' -with respect to { such that

= P(f).

The isomorphism { is uniquely determined by = and the semi-linear iso-
morphism f is determined by w to within an arbitrary (non-zero) scalar
multiple in F'.

PROOF. Choose a hyperplane H in (V) and a vector ¢ of V not in
H. Let H'=Hnm and ¢’ be any non-zero vector in [c]7. The iso-
morphism = induces a mapping

B: S —[8lr N (¢’ +H')

of o/(c+ H) onto o/(¢' + H’) and this is an affine isomorphism (by part
(3) of the Embedding Theorem, p. 32).

If pdim P=1 then dim /(c + H)=1 and so the first part is immediate
from Theorem 5.

If pdim P> 2 then dim &/(c+ H)>2 and so there exists & field iso-
morphism { of F onto F’ and a semi-linear isomorphism g of H onto H’
with respect to { such that 8=/(t_,g¢,). We extend g uniquely to a
semi-linear isomorphism f of ¥V onto V’ by the rule

(zc+Rh)f = (20)c’ + hy.
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Then the projective isomorphism Z(f) induces 8. But = also induces
B. Hence #(f)== by Proposition 3.

We recall that the fields we are mainly interested in are F, (p prime),
Q, Rand C. It is easy to show that F, and Q each have only one auto-
morphism, namely the identity. Let { be an automorphism of R.
The positive elements of R are precisely the non-zero elements which
are squares and so { preserves the natural order in R. Since { acts as
the identity on the subfield Q of rational numbers, { preserves Dedekind
sections and so is the identity on R. Thus the semi-linear isomorphisms
are simply linear isomorphisms if the ground field F is F,, Q or R.
On the other hand € obviously has the automorphism x + iy — z— iy
which is not the identity. Surprisingly, C has a very large number

of automorphisms—in fact 22°° where X, is the first transfinite cardinal.

EXERCISES

1. Prove that the identity mapping is the only automorphism of each of the
fields Q and F, for any prime p. Show further that there are only two
automorphisms of C that fix all the real numbers: the identity mapping
and the conjugation mapping x+1iy — x—1y.

2. If { is an automorphism of the field ¥, prove that the mapping

g: (xl’ AR xn) g (xlg; RS} xnl)
is a semi-linear isomorphism of F* onto itself with respect to {.

3. If { is the conjugation mapping of exercise 1 and if g is defined as in exer-
cise 2 in the case F =C, show that a point P of #(C") is fixed under #(g) if,
and only if, P is a real point, i.e., P has a homogeneous vector in R".

4. Let V be a real vector space and Vg, its complexification (cf. § 1.5, p. 14).
If f is an isomorphism of ¥ onto V and we define g: V¢, — V , to be the
mapping

a+ib — af —ibf

prove that g is a semi-linear isomorphism of V, onto ¥V, with respect
to {:z+iy — x—1y.

5. Let « be an isomorphism of .2/(¥V) onto .2/(V’) and «’ one of &/(V’) onto
& (V"). Suppose that dim V >2 and that «, o' determine semi-linear
isomorphisms ¢, g’ and field automorphisms , {’, respectively (according
to Theorem 5). Prove that aa’ determines the semi-linear isomorphism
g9’ with respect to '

3.6 Groups of Automorphisms

In our discussion of isomorphisms (whether of vector spaces, affine
geometries or projective geometries) we have not so far assumed that
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the image space coincides with the original. We shall now investigate
what happens to our results when we do impose this restriction. The
most notable difference is that it now always makes sense to multiply
isomorphisms.

More precisely, let X be any one of the following objects: a vector
space V, an affine geometry A, a projective geometry P or a field F.
Then Aut X shall denote the set of all automorphisms of X, i.e., the set
of all isomorphisms of X onto X. The identity mapping 1, belongs to
Aut X and if a, b € Aut X then ab and a~! € Aut X. Moreover, map-
ping multiplication satisfies the associative law. Hence Aut X is
actually a group with respect to multiplication. (It is a subgroup of
the group of all permutations of X : ef. Chapter I, p. 4.)

The results of this chapter may now be reinterpreted as statements
concerning the structure of the groups Aut V, Aut A and Aut P. That
is the aim of this section.

We observe immediately that in Aut A there are two important sub-
groups: the subgroup Af A consisting of all affinities of A onto A,
called the affine group on A, and the subgroup Tr A consisting of all
translations in A. In Aut P there is the subgroup Pr P consisting of all
collineations of P, called the projective (or collineation) group on P.

The group Aut V is usually called the general linear group on V. Tt
is a subgroup of the group of all semi-linear isomorphisms of ¥ onto V.
We shall denote this latter group by S(V).

We now need to introduce a new concept.

DErinITION. A mapping 8 of a group @ into a group @ is a homo-
morphism if

(ab)8 = (ab)(b0)

for every a, b in G. If 0 is also one—one and onto @’ then 8 is an iso-
morphism of G onto G,

In this definition we have written ¢ and @' multiplicatively. It will
be clear how the definitions must be phrased if other notations are
used. Sometimes, in fact, one group is given with respect to addition
and the other with respect to multiplication. We have a case of this
at hand. If Tr V denotes the group of all translations ¢, in V (a € V),
then the mapping

a—ti,
is an isomorphism of the additive group V (see axiom V.1, p. 5) onto
Tr V. This follows from the equation
tarp = taty

If the homomorphism is not one—one we require some measure of the
“shrinkage’” when we go from @ to the image G#.
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DeriNITION. The kernel of the homomorphism 6 of @ into G’ is the
set of all elements a in G such that af =1 (the identity element of @’).

ProposiTiOoN 4. The kernel of 6 is a subgroup of G.
We leave the proof as an exercise. But we remark that not every
subgroup need be a kernel. (See exercise 4, below.)

ProposITION 5. Let V be a vector space of dimension >3 over a field
F and let o, i, 0 be the homomorphisms

F* % Aut V% Aut (V) > AutF

where ¢: z — z1, 4. f — P(f) and for any = in Aut P(V), w6 is the auto-
morphism of F determined by m according to Theorem 6. Then
(i) @ s one—one;
(ii) o has kernel F*p and maps AutV onto the projective group Pr 2(V);
(iii) 6 has kernel Pr P(V) and maps AutP(V) onto AutlF.

PrROOF. Clearly ¢ and ¢ are homomorphisms. Moreover (i) is trivial
and (ii) is immediate from Proposition 1.

To see that 6 is a homomorphism, we choose two projective auto-
morphisms and use Theorem 6 to represent them in the form 2(f),
P(f') where f, f’ are semi-linear isomorphisms of V onto V with respect
to ¢, {’, respectively. Then 2(f) #(f')=2(ff') and

(@a)(ff') = (@a)f)f" = (@)(@/)f = @) aff),
so that ff’is semi-linear withrespectto {{’. Hence 6is a homomorphism.
Finally, let { be an arbitrary element in AutF. Choose an ordered
basis (@, ..., a,) of V. Then the mapping
g: Ty + -+ 2y = (@:0)ar + -+ (@ah)ay
is a semi-linear isomorphism of V onto V with respect to {. Hence {
is the image under 6 of #(g).

The reader may be familiar with exact sequences of groups. Using
this notion, Proposition 5 amounts to the statement that the sequence
of groups

(1} — F* % Aut V % Aut (V) 2> Aut F — {1}
is exact.

In order to describe efficiently the relations between the groups
associated with an affine geometry we need the following concept.

DEFINITION. A group G is said to be the split product of the ordered
pair of subgroups (H, K) if
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(1) every element in G can be uniquely written in the form Ak, with
hin H, kin K and
(2) hk — b is a homomorphism (of G onto H with kernel K).

ProrosiTION 6. Let V be a vector space of dimension > 2 over a field
F.

(i) Aut (V) is the split product of (S, T) where S is isomorphic to
S(V) by means of the isomorphism f— L(f) and T =Tr (V) is iso-
morphic to the additive group V, the isomorphism being v — S (t,).

(ii) Af (V) is the split product of (L, T) where T is as before and L
is 1somorphic to Aut V, by means of the isomorphism f — < (f), restricted
to Aut V.

The non-trivial part of this proposition is the proof of condition (1)
for a split product in part (i): this follows from Theorem 5. The rest
we leave as an exercise for the reader.

In view of the Embedding Theorem (p. 32), we expect some kind of
relationship between Aut Z(V) and Aut A. We may read this off from
Proposition 3 above (p. 54).

THEOREM 7. Let H be a hyperplane in P(V) and let A be the affine
geometry in P(V) determined by H. Let (Aut P(V))y and (Pr P(V)),
be the subgroups of Aut P(V) and Pr P(V) whose elements leave H in-
variant. Then the mapping p: m — o defined in Proposition 3 is an
tsomorphism of (Aut P(V))y onto Aut A and p restricts to an isomorphism
of (Pr Z(V))y onto Af A.

PROOF. The fact that p: 7 — o preserves multiplication is immediate
from the definitions. The rest of the theorem is immediate from
Proposition 3. (Note again that in each of these statements the hardest
part to prove is that the isomorphisms are onto.)

It is intuitively obvious that two isomorphic geometries will have
isomorphic groups of automorphisms. We can make this quite ex-
plicit: If « is an isomorphism of an affine geometry A onto an affine
geometry A’ then the mapping

@ — oc‘lqvoc

is an isomorphism of Aut A onto Aut A’

We may make use of the fact that A and «/(H) are isomorphic to
deduce that (Pr #(V))y is isomorphic to Af .«/(H). The reader should
note, however, that the isomorphism here depends on the choice of coset
¢+ H and is no longer “natural”.
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EXERCISES
1. Given fields ¥, F’ and a mapping ¢: F — F’ such that
(@+yle = zp+yp,
(zy)p = (zp)(ye)

for all z, y in F; prove that ¢ is either an isomorphism of F onto Fg or
2p=0;., for all z in F.

2. If V is a vector space over ¥ and dim V =1, prove that Aut V is isomorphic
to F*.

3. If V is a vector space of dimension » over F,, prove that Aut V is finite
and that its order (i.e., the number of its elements) is

(P"—D(@p"—p)...(p"—p" ™).

(Use exercise 3 of § 1.5 and Theorem 3 of Chapter 1.)
Calculate the orders of Aut (V) and Aut Z(V).

4. Let G be the group of permutations of the set {1, 2, 3}. If 7 is the permu-
tation defined by 17 =2, 27 =1, 37 =3, show that the subgroup {1, 7} of G
cannot be the kernel of a homomorphism of G into another group. (If K
is a kernel in a group G then z~'yx € K for all y in K and all z in G.)

3.7 Central Collineations

It is perhaps surprising that the question of whether a given projec-
tive isomorphism is, or is not, a projectivity can already be decided by
looking only at the effect it has on a single line.

LemMma 2. If 7 is a projective isomorphism whose restriction to a
given line is known to be a projectivity, then m is itself a projectivity.

PROOF. Let P=2(V). If pdim V=1 the result is obvious. If
pdim ¥ =2 then ==2(f) where f is a semi-linear isomorphism with
respect to {. Let g be the restriction of f to the given line L. Then
P(g)=P(h) for some linear isomorphism » of L. By the argument of
Proposition 1, g==zh for some non-zero scalar z. This implies that g
is linear. But ¢ is semi-linear with respect to { and so {=1 as re-
quired.

As a particular case we see that any projective automorphism =
which has a line of invariant (or fixed) points (i.e., P7= P for all points
P on some line L) is a collineation.

DeriNiTION. Let P be a projective geometry of dimension n> 2.
Then any automorphism 7 of P which has a hyperplane H of invariant
points is called a central collineation.

If H and K are distinct hyperplanes of invariant points for a col-
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x1y and yl, respectively, for some scalars ,y. Since H N K#0 we
must have x=y. But then since P is the join of H and K, = =% (x1) is
the identity collineation. Thus a central collineation = which is dis-
tinct from the identity collineation has a unique hyperplane of in-
variant points which we call the hyperplane of =.

If 7 has an invariant point A outside its hyperplane then every line
through 4 contains at least two invariant points and so is left invariant
by #=. Thus 4, P, Pr are collinear for any point P. We shall call a
point 4 with this last property a center of .

Prorosition 7. A central collineation w which ts distinct from the
wdentity has one and only one center A (possibly on the hyperplane of =)
and A is an invariant point for .

PROOF. Suppose that 7=2%(f) where f is an element of Aut ¥V and
that Pm = P for every point P of the hyperplane H of V. By multi-
plying f by a suitable non-zero scalar we may assume that the restric-
tion of fto H is the identity mapping 1,. Let ¢ be a vector of V not in
H; then any vector of V can be expressed uniquely in the form xc+ %
where x € F and k€ H. By our assumption

(xc+h)f—(xc+ k) = x(cf—c).

If ¢f =c then of course f is the identity mapping on all of V. If ¢f#c
we may put a=cf—c#0. The point A=[a] is then a center as re-
quired.

If 4 and B are two distinct centers then Pr= P for all points P not
on AB. ButifC is an arbitrary point on A B and L is a line through C
distinct from 4B, then every point of L other than C is left invariant
by m. Hence C itself is left invariant by = and so = is the identity col-
lineation, contrary to hypothesis.

Finally, if 4 is the center of , then every line through 4 is left in-
variant by 7 and so A is left invariant by .

We could have defined a central collineation as one which has a center
(see exercise 10, § 4.6, p. 83). The definition we chose is easier to
handle although admittedly not so natural as far as terminology is
concerned.

We recall from exercise 3 on page 44 that a dilatation of an affine
geometry A is an affinity « of A onto A such that S« is parallel to S for
every S in A.

ProrosiTioN 8. Inthe notation of Proposition 3, « is a dilatation of A
if, and only if, = is a central collineation with hyperplane H. Further,
a s a translation if, and only if, = has center on H. (Note that a=1, if,
and only if, m=1gy,.)
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PROOF. (1) It follows directly from the definition that « is a dilatation
if, and only if, § and S« have the same hyperplane at infinity for every
Sin A. But the construction of 7 from « given in the proof of Proposi-
tion 3 shows that this is equivalent to the condition that M7= M for
every subspace M of H.

(2) If o is a translation (other than the identity) then « has no in-
variant points. This implies that the invariant points of =, including
the center, lie on H.

Conversely, suppose that 7 154, and has center on H. Then «
has no invariant points (Proposition 7). The result now fullows from
exercise 9 of § 3.2. (The reader may prefer to verify that the mapping
pap~! of &/(c+ H) onto itself is indeed a translation.) We may also
argue that if P and @ are two distinct points of A then the points P,
@, Qa, Pa (in this order) are the vertices of a parallelogram (which is
“flat” if PQ contains the center). But this is clearly a “‘geometrical”
condition for « to be a translation.

A general collineation may be very different from a central collinea-
tion and in fact may not have any invariant points at all! Nevertheless
we may prove the following striking result.

THEOREM 8. Any collineation of a projective geometry P of dimension
n = 2 can be expressed as a product of n (or fewer) central collineations of P.

We shall need

Lemma 3. Given a subspace M of V and vectors p, q neither of which
lies in M, then there exists an automorphism f of V such that pf=q and
that f is the identity mapping on a hyperplane H of V containing M.

PrROOF. Let {a,, ..., a,} be a basis of M (which is empty if M =0).

Suppose first that M +[p]=2M +[g]. There exist linearly indepen-
dent vectors by, ..., b, such that {a;, ..., a, p, by, ..., b is a basis of
V (Theorem 1 (3), of Chapter I, p. 10). Since M +[p]=M +[q],
{ay,...,a, ¢, by, ..., by is then also a basis. Hence there exists a
unique automorphism f such that a;f=q; for i=1,...,r, b,f=5b; for
j=1,...,s and pf=g¢ (Theorem 3 of Chapter I, p. 12).

If, on the other hand, M +[p]# M +|q], then M +[p]+|[q] is a direct
sum and we can complete its basis {a,, . . ., a,, p, ¢} to a basis of V by
vectors b,, ..., b,_,. Here we define an automorphism f by a,f=a, for
t=1,...,7 b;f=b; for j=1,...,5—1, pf=q and ¢f=p. The hyper-
plane fixed elementwise by fis [a,, ..., a,, by,...,b,_1, p+q].

Proor oF THEOREM 8. For each = in Pr Z(V) we consider the sub-
spaces M on which 7 acts as the identity; and we define m(xr) to be the
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maximum of the dimensions pdim M for all such #. We shall prove
that = can be written as a product of pdim ¥V —m(wxr) (or fewer) central
collineations.

The proof is by induction on the integer i(z) =pdimV — m(=). When
#(m)=0, = is the identity mapping which we regard conventionally as
a product of no central collineations. When i(7)=1, = is a central
collineation. Suppose the result established for all = with i(w) <% and
consider a collineation with i(7)=k%.

Let M be a subspace whose points are left invariant by = and with
pdim M =m(n). If P is any point not in M, then P= also is not in M.
The collineation 7 may be written = = %(g) where the restriction of ¢ to
Mis 1, If P=[p]and ¢=pg then, by Lemma 3 above, there exists
an automorphism f, such that f; restricts to the identity mapping on
M, q=pf, and 7, =2(f,) is a central collineation. It follows that
f1 71 g restricts to the identity mapping on M +[¢] and hence, by the in-
duction hypothesis, Z(f, ! g) is a product 7, - -m, of central collinea-
tions. Thus P(g)=2P(f,)P(f, ! 9)=m7y- - -m,, as required.

If 7 is a central collineation of Z(V) with center A then the restric-
tion of 7 to any hyperplane M of V is a projectivity of M onto Mx. If
4 is not on M then this projectivity is called a perspectivity of M onto
Mm with center A. It is clear that if P is any point of M then the
corresponding point Pr is the intersection of M= and the line AP.
Conversely, it is quite easy to show that if two distinct hyperplanes
M, M’ in V are given, together with a point 4 not on M or M’ and a
hyperplane H through M N M’ but distinct from M and M’, then there
is a unique central collineation 7 with center 4, hyperplane H and such
that Mnm=M'.

In the foundations of classical projective geometry these perspec-
tivities played the most important role. It is clear from Theorem 8
that a study of perspectivities leads to the general theory of projec-
tivities, but that the projective isomorphisms induced by semi-linear
isomorphisms, as distinct from linear isomorphisms, cannot be con-
structed in this way. As we pointed out earlier (page 58), the field R
of real numbers has only the identity automorphism and so this distinc-
tion is vacuous in the truly classical case. The projective isomorphisms
which arise over the complex numbers involving automorphisms of €
other than the identity and the conjugacy automorphism are strictly
“pathological” from the algebraic point of view.



CHAPTER IV
Linear Mappings

4.1 Elementary Properties of Linear Mappings

Our study of vector spaces in Chapter I involved only a single space
at a time, except when we discussed isomorphisms. We must now look
at relations between different spaces, possibly even of different dimen-
sions. For this we need a generalization of the notion of isomorphism.

DerFiniTION. If V and V' are vector spaces over the same field F,
then a mapping f of V into V' is called a linear mapping (or homomor-
phism) if

L.1. (a+b)f=af+bf,

L.2. (za)f=xz(af),
foralla,bin V and all x in F.

We sometimes wish to emphasise the linear nature of an isomorphism
f of V onto V' and shall then refer to f as a linear isomorphism. We
also recall that an isomorphism of V onto V itself is called a (linear)
automorphism of V (cf. § 3.6, p. 59).

The most important objects associated with a linear mapping f of
V into V' are the image Vf and a certain subset of V called the kernel
of f.

DEeFINITION. The kernel of f is the set of all vectors a in V such that
af =0, and will be denoted by Ker f.

We leave the reader to prove that Vfis a subspace of V' and Ker f is
a subspace of V. Further, f is one—one if, and only if, Ker f={0}. At
the other extreme, f is the zero mapping 0 if, and only if, Ker f=V.

THEOREM 1. Let f be a linear mapping of the vector space V. Then
for any subspace M of V such that

V=MPKerf

the restriction of f to M is an isomorphism of M onto Vf.
Moreover,
dim Vf = dim V —dim (Ker f).
66
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PROOF. We recall from Chapter I, Theorem 1, Corollary 2 (p. 11)
that there always exist subspaces M such that V=M @ Ker f. Any
vector v in V is uniquely expressible in the form v=a+5b where a € M
and beKerf By the definition of Kerf, vf=af and so Vf=Mf.
Further, af =0 implies that a € M N Ker f={0}. Thus the restriction
of f to M is an isomorphism of M onto Mf=Vf.

The last part now follows immediately from Theorem 2 of Chapter I

(p. 11).

COorROLLARY. If f is a linear mapping of V into V', then any two of
the following conditions imply the third:

(1) f is one—one;

(2) fisonto V',

(3) dim ¥V =dim V".

PROOF. (1) is equivalent to dim V=dim Vf and (2) is equivalent to
dim Vf=dim V.

Suppose again that f: V — V’islinear, K =Ker fand a,b e V. Then
af=bf if, and only if, —a+b € K, i.e., if, and only if, @ and b lie in the
same cosetof K (cf§2.1). Itiseasytoseethatifuca+ Kandveb+ K,
then u+ve(a+b)+K and zu e xza+ K for any scalar z. We may
therefore define unambiguously an “addition” of cosets by setting
(e+K)+(b+K)=(a+b)+ K; and a “scalar multiplication” by setting
z(a+ K)=za+ K. If V/K denotes the set of all cosets of K, it is a
simple matter to check that these definitions of addition and scalar
multiplication make V/K into a vector space over F. Moreover, the
mapping p: a — a+ K of V onto V/K is linear and its kernel is precisely
K

Since f has the same effect on all the elements of a single coset
of K, we may define a mapping p’ of the space V/K by setting
(@a+ K)p'=af. Then p’is linear and has image Vf. It is also one—one:
if (a+K)p' = (b+K)p' then af=bf and hence —a+be K so that
a+K=b+K. We have now proved

ProrositioNn 1. Every linear mapping f of V into V' can be factored
in the form f=pp’, where p is the linear mapping a — a+XKer f of V onto
V/Ker f and p’ is an isomorphism of V/Ker f onto V.

We observe that Theorem 1 can be expressed in a similar manner.
If ¢ is the mapping

g:a+b-—>a
for @ in M, b in Ker f, and ¢’ is the restriction of f to M, then f=qq'.

Since there are in general many “direct complements’ M for Ker fin V,
the factorization in this case is not unique. Despite this disadvantage
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we shall find more use in this book for Theorem 1 than for Proposition 1.
The real significance of Proposition 1 is that the construction involved
can be carried out in a much more general context than ours.

It is frequently necessary to consider more than one linear mapping
at a time. It is then important to know that the set of all linear map-
pings (of a vector space into another) can itself be given the structure
of a vector space.

Let Z:(V, V'), or L(V, V') when the ground field F is understood,
denote the set of all linear mappings of V into V'. Iff, ge L(V, V'),
we shall denote the mapping

a— af+ag
by f+g¢; and for  in F, the mapping

a — x(af)
by zf. We leave, as an exercise, the verification that f+g¢ and zf are
themselves linear mappings (of V into V') and that, relative to these
definitions of addition and scalar multiplication, #(V, V') is a vector
space over F.

Iffe £(V, V')and g e L(V’, V"), then the mapping fg of V into V"
is again linear. (We recall that a(fg)=(af)g for all @ in V.) Further,
if f and g are one—one (or isomorphisms) then fg is also one—one (or an
isomorphism). The commutative law of multiplication fg=gf need
not hold even if both products fg, gf are defined (see exercises 2, 4, 5,
below).

In the special case where V=V', Z(V, V) may be given more struc-
ture than just that of a vector space. For here the product fg of any
two elements is always defined (and is an element of #(V, V)). The
following rules are easily checked:

AL (fgh=F(gh),
A2. f(g+h)=fg+fh,
A3. (f+g)h=fh+gh,
A4, x(fg)=(zf)g =f(%g),
forallf, g, hin Z(V, V)and all z in F.

DeriniTION. Let A be a vector space over a field ¥ together with a
rule (called multiplication) which associates with any two elements a, b
in 4 an element ab, also in 4 (and called the product of @ by b). If the
above axioms A.1 to A4 hold for all f, ¢, A in 4 and all z in F, then A
is called a linear algebra over the field F.

We recall that we have been assuming from Chapter II onwards
that our vector spaces are finite dimensional. It is clear, however,
that all the definitions given in this section (but not all the results!)
are quite independent of this restriction.

Thus Z(V, V), even in the infinite dimensional case, is an example
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of a linear algebra over F. Another example is F[X], the set of all
polynomials in X over F (with the ordinary multiplication of poly-
nomials). A third important example arises if £ is a field containing

F:

then ¥ is a linear algebra over F, where the algebra multiplication

is the given multiplication in £ (cf. example 2 on p. 5).

EXERCISES

We drop the convention about finite dimensionality in exercises 1, 2, 4 and 9.

1.
2.

Prove that f(X) — f(X)? is a one—one linear mapping of F,[X] into itself.

If D denotes the operation of differentiation and J denotes the operation
of “integration from 0 to X, show that D and J are linear mappings of
Q[X] into Q[X]. Prove that D is onto Q[ X] but is not one-one, and J is
one-one but not onto Q[X]. (This shows that the corollary to Theorem 1
is false for infinite dimensional spaces.) Find JD— DJ.

. Let V be the vector space of all polynomials in X over a field F of degree

less than n (including the zero polynomial). If D denotes the differen-
tiation operator applied to V, show that KerD+ VD is not the whole
space V provided n>2.

. If D is the differentiation operator on F[X] and m is the linear mapping

f(X) — Xf(X), prove that mD — Dm is the identity mapping.

. If (ay, ..., a,) is an ordered basis of U and if by, ..., b, are any vectors

in V, show that there is one, and only one, linear mapping f: U — V such
that a,f b, t=1,.

Let (eq, eg) be the standard basis of F? and let f and g be the linear
mappings of F? into F2 which take (e,, e;) to (e;, 0) and (0, e,), respec-
tively. Show that fg=0 but that gf=g.

. If U, V have ordered bases (u,,. .., #,), (v, ..., v,), respectively, show

that there is a linear mapping f;; defined by
Uefi; = 8v; fore, b =1,....m;j=1,...,n

(Here 6, is the “Kronecker delta’ : its value is 1 if k=17 and 0, otherwise.)
Show that the mn mappings f;; form a basis of Z(U, V).

. Let f be a linear mapping of V into V’. If there exists a linear mapping

g of V' into V such that either fg=1, or gf=1,., show that f is an iso-
morphism of V onto V' with inverse f~'=g. (Use exercise 1 of § 1.1
(p. 3) and Theorem 1, Corollary (p. 67).)

. Vector spaces Vo, V,,..., V,,, are given together with linear mappings
fiVi— V., for i=0,1,..., n. Suppose that V,=V,,,=0 and for
1=0,...,n—1, Kerf, ,,= Vft (In these circumstances we say that
the sequence

f1 T2 fn-1
0 V, V, s Vo 0

is exact.) Prove that

i Ydim ¥V, = 0.
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9. Let f be a linear mapping of V into V satisfying f2=f. Show that if M
is the image of f and K is the kernel of f, then V=M @ K. Hence show
that f is the projection of ¥V onto M with kernel K (cf. the paragraph
following Proposition 1).

10. Let 7 be a non-identity central collineation of #(V) with hyperplane H
and center 4. Suppose that m=2(f), where the automorphism f is
chosen so that f restricts to the identity mapping on H. Prove that
H=Ker(f—1) and A=V (f-1).

(An automorphism f of V which restricts to the identity mapping on a
hyperplane is called an elementary transformation of V. If f#1, then the
hyperplane of fixed vectors of f is necessarily Ker(f—1). Note also that,
by Theorem 8 of Chapter III, p. 64, every automorphism of V can be
written as a scalar times a product of elementary transformations. See
also exercise 10 of § 4.6.)

11. If f is a non-identity elementary transformation with hyperplane H (for
definitions see immediately above), show that the equation

(v+H)f = of +H

defines (unambiguously) an automorphism f of V/H. Prove that the
central collineation £(f) has center on H if, and only if, f is the identity
mapping on V/H. .

(An elementary transformation f for which f equals the identity, is
called a transvection of V. Cf. the characterization of translations given
in Proposition 8 of § 3.7, p. 63.)

4.2 Degenerate Affinities and Projectivities

If f is a linear mapping of ¥ into V' then there is an induced mapping
HA(f) of (V) into &/(V’) and an induced mapping Z(f) of (V) into
P(V') (defined on pages 42, 44, respectively). When f is not one—one
the mappings &Z(f) and Z(f) also fail to be one—one. We shall stretch
our usual terminology and refer to these mappings as degenerate
affinities and projectivities; but an affinity or projectivity without this
qualifying adjective is always understood to be non-degenerate.

If f has kernel K # {0} then every subspace of K is mapped onto {0}
and so in particular every projective point in K (there may be only
one!) is mapped onto {0}. In terms of the more classical notion of
projective space (defined in § 2.5, p. 30), a point [v] not in K has image
point [9f ], but a point [v] in K has no image point. In this case there-
fore f does not define a mapping of the underlying projective spaces.
Nevertheless, the discussion of such mappings Z(f) can be reduced to
the case of a projectivity by using Theorem 1. For if M is any sub-
space of V such that M @ K =V, then the restriction of 2(f) to the
subgeometry (M) is clearly a projectivity of #(M). Alternatively,
we may use Proposition 1 to deduce that #(p’) is a projectivity of
P(V|K).
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It is clear from the definitions of &7(f) and Z(f) that they preserve
inclusion in the following sense:

S<T implies Sf<Tf.

&Z(f) also preserves parallelism, but may transform non-parallel cosets
into parallel ones. Both &7(f) and 2(f) preserve joins because f itself
does: more precisely, if (@, + M,);.; is a family of cosets, then

(Ja+M:ie)f = Jaf+ M f:iel).

For, if each a,+ M, is actually a subspace (i.e., a; € M,), then this rela-
tion is an immediate consequence of the definition ‘“from below’ of the
join (sum) of subspaces given in Chapter 1 (p. 7); while the general
result follows from this case together with the identity

Ja,+M:iel) = a,+I(ay—ay), M;iiel)

(cf. Lemma 3, p. 18). Neither &/(f) nor Z(f) however, need preserve
intersections (cf. exercise 1 below).

EXERCISES

1. Let f be the linear mapping (z, y, z) — (0, z+¥, 0) of F? into itself and let
M=[(1,0,0)], N=[(0,1,0)]. Show that (M N N)f+Mf N Nf.

2. If f and g are linear mappings such that 2(f)=2(g), prove that g=zf for
some non-zero scalar z.

3. If g is a linear mapping of V into itself such that 2£(g)%2=Z(g), prove that
there exists a linear mapping f of V into itself such that 2( f)=2(g) and
f?=f. Describe all such ‘‘projections” £(g) when pdim V=3. (Cf.
exercise 9, §4.1.)

4. Let f be a linear mapping of V into V and, for any scalar z, let £, =
Ker(f—=z1). If E.#{0} we call x an eigenvalue of f and E, the corres-
ponding eigenspace. The non-zero elements of K, are called eigenvectors.

Let 2(f) be a (possibly degenerate) collineation. Show that a point [v]
is an invariant point of 2(f) if, and only if, v is an eigenvector of f. Prove
further that two distinct eigenspaces of f have no points in common.

4.3 Matrices

If V and V' are vector spaces over F and f is a linear mapping of V
into V', then we may find “coordinates’ of f as follows.

Choose ordered bases (v,, .. ., v,), (v, ..., v,”) of V, V', respectively.
Then the equations

n
vf = Z a,v/, t=1,...,m,
i=1

define the set of coefficients a;; in F uniquely.
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DEFINITION. A rectangular array of elements of ¥ with m rows and
n columns is called an m x n matriz. For fixed F, m, n the set of all
such matrices is denoted by Fm*™

The matrix

Q11 Qg2 (4TH
Qg1 Qg2 Aan
A1 amz amn

is often written (a;;). The element a,; is called the (¢, j)-term of the
matrix.

The i-th row of the matrix (a,;) appearing in the above equations is
the coordinate row of v,f with respect to the ordered basis (v,’, . .., v,).
We say that (a;;) is the matriz of f with respect to the ordered bases (v;),
(v;") and write

(@) = (f; (), (v)")),

or, when there is no risk of confusion, (a;;) = (f).

Once the ordered bases (vq, ..., v,), (vy,...,v,")of V, V' are given,
the mapping f-— (f)=(a;;) is a one-one mapping of Z(V, V') onto
Fmxn (cf. § 4.1 exercise 6). We now define three operations on matrices
to conform with this one—one mapping.

DerFintTION. If (0;), (b;;) € F™*" then
(1) (ayy) + (byy) = (@ +byj);

(2) z(ay;)=(zay;), for z in F.

If (a;;) e F™*", (b)) € F"*? then

(3) (ay)(bj) =(cy;) € F™*?, where

n
Cye = z Wsb k-
i=1

In view of parts (1), (2) of the definition, the one—one mapping of
ZL(V, V') onto Fm*™ preserves the operations of addition and multi-
plication by scalars and hence F™*" is a vector space over F. As such
it is isomorphic to £(V, V’). The matrix corresponding to the zero
mapping is called the zero matriz and will be denoted by 0.

Observe that F!*" is naturally isomorphic to F"*. We shall identify
these two spaces.

The rule of multiplication for matrices gives
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ProrosiTioN 2. If fe L(U, V), ge L(V, W) and (u), (vy), (wy)
are ordered bases of U, V, W, respectively, then

(fs (w), (0Ng; (), (wi)) = (fg; (ws), (wi));
or, more loosely,
(f)g) = (f9).
PROOF. If uf= 37, a,w; and v,g= >F_, byw,, then
b n P
u(fg) = z Z aybpwy = Z CixWy-
k=1 j=1 k=1

Certain properties of matrices now follow immediately from the
corresponding properties of linear mappings. For example, the
associative law

(AB)C = A(BC)
of matrix multiplication follows from the associative law which is true
for mappings in general. (Of course the matrices 4, B, C must be
“conformable’’ for multiplication, i.e., the number of columns of 4, B
must equal the number of rows of B, C, respectively.)

We denote by I, or by I if no confusion is possible, the n x n matrix
(84;) (where §;; is the Kronecker delta (cf. exercise 6 § 4.1),i.e.,  has I’s
down the ‘““diagonal” i=j and 0’s elsewhere. If V has ordered basis
(@y, ..., a,) then I is the matrix (1y; (@), (a;)) of the identity mapping
1, on V. Therefore it is clear that if 4 € F**™ and B € F"*? then

Al = A and IB = B.

I is usually called the identity matrix.

A more striking example of the use of Proposition 2 is the following.
If A=(f; (u), (v)), where f is an isomorphism of U onto V, then we
may define

A7 = (715 (), (w)).

AAr'=I=4"1*4

and so we call 4~ an inverse of A.
The matrix 4! seems to depend on the particular isomorphism of
which it is the matrix (not to mention the spaces U, V and the bases

(w;), (v;)), but in fact such an inverse, if it exists, is necessarily unique.
For if

By Proposition 2,

LA=1 or AR=1
we have
LAAY'=1TA"1' or A" *AR=A41'1
from which
L=A"1" or R=A4"".
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DEFINITION. A square matrix A is snvertible (or non-singular) if
there exists a (necessarily square) matrix A ~! satisfying

AA1'=A14 =1.
Then A1 is called the inverse of A.

ProposITION 3. A square matrix A is invertible if, and only if, A is
the matrix of an isomorphism.

The “if” part was established above and the “‘only if”’ part we leave
as an exercise.

EXERCISES

1. If A, B are square matrices such that A B=1, prove that A, B are both
invertible and that each is the inverse of the other. (Cf. exercise 7,
§4.1.)

2. Let E,, denote the m x n matrix with all terms zero except the (s, j)-
term, which is 1 (¢=1,...,m; j=1,...,n). Prove that these E,’s
form a basis of Fm*". We call this the standard basis of F™*™".

(Cf. exercise 6 of §4.1. Observe also that if m=1 and we identify
F1*n with F™ then the standard basis in the above sense coincides with
the standard basis {e,, . . ., e,} of F™ as defined earlier: exercise 9 of § 1.4.)

3. Let V be the vector space of all polynomials in F[X] of degree less than
n (including the zero polynomial). If D is the differentiation operator
applied to V, find the matrix

(Ds (13 X’ M Xn—l)s (1: -X) MR Xn_l))'

4. Let A be a square matrix such that A*¥=0 for some positive integer k.
(Such a matrix 4 is called nilpotent.) Prove that I — A is invertible with

inverse
I+ A+A%4 .. -+ AF 1L

4 3 0
<0 I 0)
3 0 -2

with coefficients in F, and let V be the subspace of F,?*® spanned by
all the powers of 4 (including 4°=1). Find dimg, V when p equals 2, 3
and 5.

5. Let A be the matrix

6. If f is the mapping of C into R%*?2 given by

) . a b
fra+ib— (—b a)’

prove that f is a one—one linear mapping of real vector spaces and that

(zy)f = (=f)(yf)

forallx, y in C. (Thus, in particular, f is an isomorphism of the field C.)



§44 LINEAR MAPPINGS 75

7. Let D be the subset of C2*2 consisting of all matrices of the form

(-7 2)

where #, y € C and the bar denotes complex conjugation. Prove that D
is a linear algebra over R but not over C (cf. p. 68). Show further that
D is a division ring but is not a field (cf. p. 39). (D is called the real
quaternion algebra.)

8. If A=(a;) e F**", let At denote the sum of the diagonal elements of
A:ie.,
At = @y + - +appe

{We call At the trace of A and ¢ the trace mapping.) Prove that ¢ is a
linear mapping of F"*" onto F and verify that

(AB) = (BA)t
for all A, B in Fr*n,

9. If f is a linear mapping of F*** into F such that
(AB)f = (BA)f

forall 4, Bin Fr*" prove that f=ut for some z in F and where ¢ denotes
the trace as in the last exercise. (Consider the effect of f on the standard
basis of F"*" defined in exercise 2 above.)

10. (1) Let H be a hyperplane in the n-dimensional projective geometry Z(V)
and = a collineation leaving H invariant. Choose an ordered basis
(vg, ..., v;) of V so that H=[v,,...,v,]. Show that there exists an
automorphism f of V such that »=2(f) and

l1 a, a3 -+ a,
0
(fs (@), (v))) = | O 4
0
where a,, ..., a, € F and 4 is an invertible n x n matrix.

(2) Show that the set of all such matrices (f) is a group @ isomorphic to
(Pr #(V))u (in the notation of Theorem 7, Chapter II1, p. 61).
(3) Let g denote the restriction of f to H and let a=>}_, aw,. Show

that the mapping
gta—(f)

is an isomorphism of Af.</(H) onto G.

11. In the notation of exercise 10 (3) above, find the subgroup of G which
corresponds to the group of dilatations of &/(H). Hence prove Propo-
sition 8 of Chapter III, p. 63:

4.4 The Rank of a Linear Mapping

We have seen that matrices arise naturally in describing linear
mappings. They also arise when there is a change of basis.
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Let (a,,...,a,) and (b, ..., b,) be two ordered bases of V. Then
we may express each a, as a unique linear combination of the b,’s:

m
a¢= Zp“bl, i=1,...,m,
i=1

or, in terms of the notation introduced above,
P = (p;) = (1y; (@), (by).
This shows at once that P is invertible with inverse
Pt = (1y; (b)), ().

If the vector v has coordinate rows = (2, ..., Zn), ¥=U1 - - -> Ym)
with respect to the ordered bases (a;), (b;), respectively, then we easily
prove

y = zP.

ProrositioN 4. If fe L(V, V') has matrices A, B with respect to
two pairs of bases of V, V', then there exist invertible matrices P, @ such
that B=P A Q.

PROOF. Let A=(f; (v), (v;)) and B=(f; (a), (as)). If we put
P=(1,; (a,), () and @=(1y.; (v;), (a,)), then B=P A Q.

Given a linear mapping f of V into V' we naturally wish to choose
bases of V and V' yielding as simple a matrix for f as possible.

Turorem 2. If fe Z(V, V'), then we can choose ordered bases
(@), (@) of V, V' such that

(i (@ @ = (5" o)
where r=dim Vf.

PROOF. If we choose an ordered basis (ai, ..., a,) of V such that
(@,1,...,a,) is an ordered basis of Ker f, then, by Theorem 1,
(@rf, - .-, a,f)is an ordered basis of Vf. Put a/=a;f, j=1,...,r, and
extend (a,’,...,a,’) to an ordered basis (a,’,...,a,) of V'. The

matrix (f; (@), (a,')) has then the required form.

DeriNiTION. If fe Z(V, V'), we call dim Vf the rank of f.

Observe that the rank of f is at most dim V; and that it equals dim V
if, and only if, f is one—one.

In order to give Theorem 2 a purely matrix formulation we introduce
a further definition.
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DeFINITION. The maximum number of linearly independent rows
of a matrix A4 is called the row rank of A. The maximum number of
linearly independent columns of A4 is the column rank of A.

CoROLLARY. If A€ F™*", then there exist invertible matrices P, Q
such that

I, 0
rde= (0 0)
where r is the row rank of A.

PROOF. The result follows from Proposition 4 and Theorem 2 since
the rank of a linear mapping equals the row rank of any matrix rep-
resenting it.

DEeriNiTION. Two matrices 4, B in F™*" are called equivalent if
there exist invertible matrices P, ¢ such that B=P 4 Q.

We check that this is indeed an equivalence relation. The above
corollary shows that A, B are equivalent if, and only if, they have the
same row rank.

In order to clarify the connexion between the rows and columns of a
matrix we introduce the transpose of a matrix.

DerINITION. The transpose A! of the m x n matrix 4 is the nxm
matrix whose (7, j)-term is the (j, 7)-term 4. In other words, A® is
obtained from 4 by interchanging the rows and columns. The matrix
A is symmetric if At=A.

It follows at once from the definition that (4 + B)!=A!+ B!, and
(xd)t=xA' We also have the less obvious

ProrosiTion 5. (4 B)!=Bt At
The proof is left as an exercise.

From the symmetry of the matrix P4 @ = (ér g)

it is easy to prove

THEOREM 3. The row and column ranks of a matrix are equal.
For we have
row rank of 4 = row rank of P4 @
= row rank of @t At P!
= row rank of A4
= column rank of 4.

DeriniTiON. The rank of a matrix A is its row, or column, rank. It
will be denoted by r(4).
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We give an alternative proof of Theorem 3, independent of the theory
of linear mappings.

Let r, ¢ be the row and column ranks of 4. Without loss of generality
the first » rows of A are linearly independent and so all the rows of 4
are linearly dependent on the first . In other words there exist scalars
z,, such that

T
a;; = zx,kak,- for 1 =1,...,mandj=1,...,n.
K=1

This may be written

Ty ee. Xy\ [Qyy oo Qg
A — le . .. xzr a21 LY azn s
Ty v Xpe) \Bpy o Gy

from which it is clear that each column of 4 is linearly dependent on
the columns of (z;,); but there are only r of these, and so c<r. The re-
verse inequality can be proved by a similar argument and so c=r.

ProrosiTION 6. If A, B F"*" then
(1) r(A+ B)<r(4)+r(B);
(2) r(AB)=r(BA)=r(A) if B 1is invertible;
(3) r(AB)<min (r(4), r(B)); and
(4) r(AB)=r(A)+r(B)—n.
PROOF. These results all follow quickly if 4, B are interpreted as
matrices of linear mappings f, g of V into V. We shall only prove (4).
Let h be the restriction of the mapping g to the subspace Vf. Then
Ker h=Ker g, and so, by Theorem 1,
dim Vf—dim Vfk < dim V —dim Vyg.
But Vfh=Vfg, by the definition of &, so that

r(f)=r(fg) < n—r(g),
which is a reformulation of the statement (4).

If we are given a linear mapping f of V into itself and (a;) an ordered
basis of V, then we are naturally interested in the matrix

A4 = (f; (@), (a)).

We shall refer to 4 as the matriz of f with respect to the ordered basis (a;).
The problem of finding (a;) so that A has as simple a form as possible is
considerably more difficult than the equivalence problem we solved in
Theorem 2. We shall consider this question in detail in the last
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chapter, but we note here that if B=(f; (b;), (b)) and P=(1y; (a,), (b)),
then B=P~' 4 P.

DeriNiTION. Two matrices 4, B in F**" are called simslar if there
exists an invertible matrix P such that B=P~1 4 P.

The reader may check that similarity is an equivalence relation on
Frx. The problem to be studied in the last chapter may therefore be
stated in matrix terms as follows: given a square matrix 4, to find the
simplest matrix similar to 4.

EXERCISES

1. IfAe Fr**and if # A y'=0 for all z in F**™ and y in F1*" show that
A=0.
IfSe Fr*™ and if x S 2¢=0 for all z in F**"ghow that §= —8t. (Such
a matrix § is called skew-symmetric.)

2. If F is a field which is not of characteristic 2 and if A € F**", show that
the linear mapping x — x4 has the property (zd)(xA4)'=x «* for all x in
Frif, and only if, 4 A*=1. What can be deduced about 4 if F is a field
of characteristic 2? (A square matrix A for which A 4¢=1 (and so
necessarily 4'4 =1 by exercise 1 of § 4.3) is called an orthogonal matrix.)

3. If S € F**" show that the matrices I +8, I —8 commute. If F is not of
characteristic 2 and if 7 — S8 is invertible, show that

A=T+8)I-8)"' = I-8) (I+8)

is orthogonal (exercise 2) if, and only if, § is skew-symmetric
(exercise 1).

4. If A e F**", B¢ F**? show that
rank AB > rank A +rank B—n.

5. Show that a matrix C in F™*? has rank r if, and only if, C can be ex-
pressed as a product C=A B where 4 € F"*", Be F'*? and 4, B both
have rank ». What does this become if r=11?

4.5 Linear Equations

The system of linear equations
n
Z a;X; =b, i=1,...,m
i=1

may be written in the convenient notation
AX =P

where X stands for the n x 1 matrix (X, ..., X,)" and b for the mx 1
matrix (b, ..., b,)¢5
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In this notation it is clear, for example, that if A is invertible then
the equations have the unique solution 4 ~1b. (As a practical method
of finding the inverse 4 ~* of a given invertible matrix 4, one may solve
the equations 4 X =b with “indeterminates” b by the method of suc-
cessive elimination explained in § 3.3 and thus exhibit 4~ in the form
X=A4"1.)

We wish to give an alternative proof of Theorem 4 of Chapter ITI
(p. 50) using Theorem 1 of the present chapter. In order to do this
we transpose the above matrix equation (with b=0) and find

Xt At = 0t
We may now interpret 4° as the matrix of a linear mapping f of F™
into F™ (referred to the standard bases). The kernel of f is then pre-
cisely the set of all solutions (z,, . . ., #,) and by Theorem 1 it has dimen-
sion (n—r) where r is the rank of f. But r is the row rank of 4°¢ (cf.
the proof of the corollary to Theorem 2) and so r is the column rank of 4.
This is the same as the row rank of A (Theorem 3) and so Theorem 4 of
Chapter III is proved again.
We shall meet another proof in the next section.

4.6 Dual Spaces

Since F may be regarded as a one-dimensional vector space over F,
the set Z(V, F) is a special case of Z(V, V') and is thus a vector space
over F.

DerFiniTION. We write V*=9%(V, F) and call this the dual space of
V. The elements of V* are called linear forms on V.

The following important, but simple, result is a special case of
exercise 6, § 4.1.

THEOREM 4. Given an ordered basis (a,,...,a,) of V, there is a

unique ordered basis (eq, . . ., e,) of V* such that
ae; = 0.

DEFINITION. (ey, ..., e,) is called the dual basis of (a,, ..., a,). We
shall adopt the notation e;=a'.

Observe that if v has coordinate row (x,,...,z,) with respect to
(ay, ..., a,) and fis a linear form with coordinate row (y,, . . ., y,) with
respect to the dual basis (a?, . .., a"), then of =x,y, + - - - +x,y,.

CororLLARY 1. The vector spaces V, V* have the same dimension.

COROLLARY 2. If v is a non-zero vector in V then there is an element
Jin V* such that vf+£0.



§4.6 LINEAR MAPPINGS 81

For any fin V* vin V, of is a scalar in F. If fis fixed as v runs
through V, the values vf define the function f: v — uf. If, however, v
is fixed and f runs through V*, the values yf define the function

v f— of.
It is easily shown that v is a linear form on V*; in other words, : is a
mapping of V into V**.

THEOREM 5. The mapping ¢ is an isomorphism of V onfo V**.

PROOF. Since
(@+b): f— (a+b)f = af +bf,
(@a): f— (za)f = x(af),
the mapping ¢ is linear. It is one-one by Corollary 2, Theorem 4.
Finally, dim ¥V =dim V*=dim V**, by Corollary 1, Theorem 4, and so,
by Corollary 1, Theorem 1, Vi= V**,

Since the isomorphism : does not depend on any choice of basis of V
but is uniquely defined as soon as V is known, we shall frequently
identify v with v and thus identify V with V**,

Although V and V* are isomorphic (since they have the same finite
dimension), there is in general no such unique isomorphism of ¥ onto
V*. (The next chapter is largely concerned with a study of the iso-
morphisms of V onto V*.) There does, however, exist a natural
one-one mapping of the subspaces of ¥ onto those of V*.

DeriniTION. If M is a subspace of V then M° shall denote the set of
all fin V* such that af=0 for all a in M. We call M° the annihilator
of M and o the annihilator mapping.

It follows at once that M° is a subspace of V*. Further, in terms of
the identification introduced above, if P is a subspace of V* then P° is
the set of all @ in V such that af=0 for all fin P.

THEOREM 6. The mapping M — M° is a one—one mapping of the
subspaces of V onto the subspaces of V* and has the following properties:
(1) dim M°=dim V —dim M;

(2) M°°=M;

(3) M <N if, and only if, M°> N°;
(4) (M +N)°=M° N N°;

(5) (M N N)°=M°+ N°,

PROOF. Let (a,,...,a,) be an ordered basis of M and extend it to
an ordered basis (a,,...,a,) of V. Let (a%,..., a") be the dual basis.
Now fe M° if, and only if, a,f=---=a,f=0. If f=x,0a'+ - +z,a"
this means precisely that x;=--.=2,=0. Hence M° is the subspace

[er+1,...,a"] of V*. This gives (1).
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By definition, af=0 for all fin M° and all @ in M, so that M < M°°.
But by (1) applied to M° (using the identification ¢), we have

dim M°° = dim V*—-dim M° = dim M,

whence M°°=M.

If M°=N°, then M°°=N°°, i.e., M =N, by (2). Further, if P is a
subspace of V'*, then P=(P°)°. We have thus shown that the mapping
M — M° is one—one and onto the set of all subspaces of V*. Tt re-
mains to check the properties (3), (4), (5).

(3) Clearly M = N implies M°> N°; and M°> N° implies M°°< N°°,
i.e., M<N, by (2).

(4) We have (a+b6)f=0 for all a in M, b in N, if, and only if, af =0,
bf=0 for all @ in M, b in N, and this is exactly (4).

(5) Applying (4) to M°+ N°, we see that

(M°+N°)° = M°NN*°=MNN,
by (2), whence M°+ N°=(M N N)°.
The first and most immediate application of Theorem 6 is to give

yet another proof of Theorem 4 of Chapter III.
We have the equations

n
D agX; =0, i=1,...,m.
i=1

If V is the vector space F™ and the coefficient space is M, then the solu-
tion space is isomorphic to M°. Property (1) of Theorem 6 now gives
the required result.

EXERCISES

The definition of the dual space V* and of the mapping « apply equally well
when V is infinite dimensional.
We drop our convention of finite dimensionality in exercises 1, 3, 5 and 6.

1. Show that if x € F then the mapping p(X) — p(«) is a linear form on F[X].

2. Show that the mapping f;: (z,, ..., x,) = #; is a linear form on F" and
that (fy, ..., f,) is the dual basis of the standard basis of F".

3. If S is any subset of ¥ and 8° is the set of all fin V* such that sf=0 for
all s in 8, prove that S° is a subspace of V* and that §°=M° where M is
the subspace of V spanned by S.

4. If (M,),¢, is a family of subspaces of a vector space V, prove that
i) (+(M:iel)’=N(ML:iel),
(i) (N(M;:iel)’ = +(M°:iel).
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5. If V= F[X] show that the equations
¥f, =8; (,j=012...)

define elements f,, fi, fa, . . - of V* and that the subspace they span is
strictly smaller than V*.

6. If V = F[X] show that the mapping ¢ of ¥ into V** is linear and one—one.
Assuming that {fo, f1, f2, - - .} can be extended to a basis of V*, prove that
¢ i8 not onto V**,

7. f fe #(U, V)and h e L(V, F) then fhe (U, F). Hence the equation
hft=fh defines a mapping f* of V* into U*. Show that fte Z(V*, U¥)
(ft is called the transpose of f). Show that if U**, V** are identified
with U, V by the isomorphism of Theorem 5, then (f*)* is identified with
f. Hence prove that the mapping f— ft is a one-one mapping of
L(U V), onto Z(V*, U*). Show also that (f+g9)t=ft+g', (zf)'=2zf"
and (fg)'=g'f".

8. If A is the matrix of f in #L(U, V), with respect to the ordered bases
(uy), (v,), show that A*is the matrix of f (see exercise 7) with respect to
the dual bases of (v,), (u,), respectively.

9. Let V=Fr*"and ¢{: V — F denote the trace mapping defined in exercise
8 of §4.3. Show that the mapping

fs: 4 — (AB)},
where 4, Be V, is a linear form on V. Show further that
B—f5
is an isomorphism of ¥V onto V*. (Use the standard basis of F**".)

10. Let 4 be a subspace of the vector space V and let f be a semi-linear iso-
morphism (with respect to ) of V onto itself for which Af=4. Show
that the equation

(v+A4)f = of+4

defines unambiguously a semi-linear isomorphism f of V/A4 onto itself
with respect to the same automorphism {.

Suppose that dim ¥V >3 and that ==2(f) is a projective isomorphism
of Z(V) onto itself for which a center exists, i.e., there is a point A =[a]
such that 4, P, Pn are collinear for every point P in Z(V). Show that
the induced mapping 2(f) is the identity mapping on #(V/A4). Hence
show that

(i) fis linear, i.e., 7 is a collineation;
(ii) of=2v+ya (v in V), where z is a fixed scalar and v — y is a linear
form on V;
(iii) either = is the identity collineation or = has a hyperplane H of
fixed points where H is the kernel of v — y (so that, in either case,
7 is a central collineation).

4.7 Dualities

The annihilator mapping M — M° gives us a one—one mapping of
P(V) onto P(V*). It is a natural link between the two geometries
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although, of course, it is not an isomorphism. Indeed, it is almost the
opposite: the mapping and its inverse both reverse the inclusion rela-
tion (Theorem 6, (3)). This has important consequences for the geo-
metry #(V). The most immediate is the ‘“principle of duality”
(Theorem 7, below), which essentially “doubles” the theorems at our
disposal without our having to do any extra work.

A proposition B in n-dimensional projective geometry over the field
F is a statement involving only the subspaces of the geometry and in-
clusion relations between them. It is usually phrased in terms of
intersections, joins and dimensions. We define the dual proposition B*
to be the statement obtained from B by changing < to > throughout
and hence replacing intersection, join and dimension r by join, inter-
section and dimension n — 1 —r, respectively.

Similarly, if € is a configuration in an n-dimensional projective geo-
metry over F then the dual configuration €* is obtained from € by re-
versing all inclusion signs and hence replacing intersection, join and
dimension r by join, intersection and dimension »—1—7r, respectively.

For example, when n =2 and € is a complete quadrangle, viz., the con-
figuration consisting of four points, no three of which are collinear, and
the six lines joining them in pairs, then the dual configuration is a
complete quadrilateral and consists of four lines, no three of which are
concurrent, and their six points of intersection.

We note that P =P** and €=C** for all propositions P and all
configurations €.

THEOREM 7. (THE PrINcIPLE OF DuaLity.) If B is a proposition
which s true in all n-dimensional projective geometries over a given field
F, then B* is also true in all n-dimensional projective geometries over F.

PROOF. Let Z(V) be a projective geometry over F of dimension n
and suppose that the conditions of the proposition B* are satisfied in
2(V). Then, by Theorem 6, the conditions of proposition B**=R are
satisfied in Z(V*). Hence, by our hypothesis, the conclusions of
are true in #(V*). Again by Theorem 6, the conclusions of B* are
true in Z(V).

The importance of the annihilator mapping suggests the following
concept.

DeriNiTION. If § is a one—one mapping of Z(V) onto Z(W) such
that
McN if and only if, MSé> NS

for all M, N in 2(V), then & is called an anti-isomorphism of P(V)
onto Z(W).
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It is obvious that the mapping product éo: #(V) — P(W) — P(W*)
is then an isomorphism of Z(V) onto Z(W*). If dim V>3 we may
apply Theorem 6 of the last chapter (p. 57) and deduce that §o = 2(f),
where f is a semi-linear isomorphism of V onto W*. We may write
this equally well as 8=2(f)o, where now o denotes the annihilator
mapping from #(W*) onto Z(W) (using Theorem 5 to identify (W **)
with 2(W)).

DErFintTION. If f is a linear isomorphism of ¥ onto W* then Z(f)o

is called a duality of (V) onto #(W). A duality of (V) onto itself
is called a correlation of (V).

Thus, for example, a correlation of a 3-dimensional projective geo-
metry maps points to planes and planes to points and maps lines to
lines.

Let f be a linear mapping (not necessarily an isomorphism) of V
into V*. If (a,) is an ordered basis of V and (¢') denotes, as usual, the
dual basis of V*, then we call

4 = (f; (@), (@)

the matriz of f with respect to (a,).
We wish to calculate how 4 changes when we switch to a new basis

(b)) of V. Let
R = (1y;(a), (b)) and S = (13+; (a¥), (¥')).
Then, if
B = (f; (b)), (b)),
we have
B=R148.
So it remains to find the relation between R and S.

If 2= (z,) is the coordinate row of v in V with respect to (a;) and
p=(p;) is the coordinate row of & in V* with respect to (a), then

vh = > x,p; = zp.
If y, ¢ are the coordinate rows of v, k referred to (b;), (b), respectively,
then
y=xR and g¢q = pSsS.
But

xpt = vh = yq'
and so

zpt = xRS*p!
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for all z, p. We deduce that RS‘=1I, whence R~ '=8¢ Thus we
have proved

ProrosiTiOoN 7. If fe L(V, V*) and A, B are the matrices of f with
respect to two ordered bases of V, then

B=S8*48
Jor some invertible matrix S.

DEeFINITION. Two matrices A, B in F**" are called congruent if
there exists an invertible matrix 8 such that B=S%4 S.

It is simple to check that congruence is an equivalence relation on
Frxm. We shall be much concerned in the next chapter with the
problem of finding the simplest matrix to represent a given linear
mapping of V into V*. Proposition 7 shows that this is essentially
the same as searching for the simplest matrix congruent to a given one.

ExXERCISES

1. Show that the dual of Desargues’ Theorem in the projective plane is the
converse. What is the dual of Desargues’ Theorem in a three dimensional
geometry ?

2. Find the dual of exercise 1, § 2.7 (p. 41).

3. The configuration € consisting of all the points on a line is called a range
of points. Describe the plane dual and the three-dimensional dual of €
(called a pencil of lines and a pencil of planes, respectively).

Find the three-dimensional dual of the configuration consisting of all
points on a projective plane.

4.8 Dual Geometries

In the last section we viewed the annihilator mapping as a connexion
between the geometries Z(V) and Z(V*). It can also be regarded in
another way. The definition of generalized projective geometry given
in Chapter II (p. 35) shows that the set of all subspaces of V together
with the mapping o is a projective geometry. We shall denote this
geometry by 2*(V) and call it the dual geometry of Z(V).

The first thing to note is that #(V) and 2*(V) are identical as sets;
but their geometrical structures are very different. Here is one of the
cases mentioned on p. 35 where care must be taken to say in exactly
which context the inclusion, intersection, join and dimension are to be
understood. For example, if M, N are subspaces of V then their inter-
section and join as members of the geometry #(V)are M "N, M+ N,
respectively, but their intersection and join as members of 2*(V) are
M+ N, M NN, respectively. If M has projective dimension r as
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member of (V) then M has projective dimension n — 1 —r as member
of #*(V) (where pdim V =n).

It is clear that a correlation of (V) may be interpreted as a pro-
jectivity of (V) onto #*(V); and more generally, a duality of 2(V)
onto (W) may be regarded as a projectivity of (V) onto 2*(W).

In the terminology of exercise 3 of § 4.7, a range of points is a projec-
tive space of dimension one, i.e., the set of all points on a projective
line. If pdim V=2 then a range of points in Z*(V) is the set of all
lines through a fixed point of 2(V), i.e., a pencil of linesin (V). When
pdim V =3 a range of points in #*(V) is the set of all planes through a
fixed line in 2(V), i.e., a pencil of planes in (V). This makes precise
what is meant by saying that a pencil of lines or a pencil of planes isa
one-dimensional projective space. One can apply to them all the
familiar theory of one-dimensional projective geometry.

The relationships between the subspaces of #(V) and 2*(V) can
often be most easily discussed in terms of the “dual coordinates”. Let
(4o, ..., 4y, U) be a frame of reference for Z(V) and (ay, . . ., a,) any
basis determining it (in the sense that [a;,]= A4, for all i and [J a,]=U':
cf. p. 46). Then the dual basis (a°,...,a") determines a frame of
reference for 2(V*) and this, using the link o, yields a frame of reference
(4o, ..., 4., U’) for Z*(V). Note that, by the last part of Lemma, 1
of Chapter 111 (p. 47), the frame (4,’, ..., 4,’, U’) is uniquely deter-
mined by (4,, ..., 4,, U).

DeriniTioN.  We call (4, ..., 4,", U’) the dual frame of reference
of (4o,...,4,, U).

It is possible to give a geometric construction of (4,,..., 4,’, U 9,
as opposed to the algebraic one used above. For each i=0,...,n,

we know that (4,')°=[a’] and from this we see immediately that
A= @ (4;:j#1), ie., 4/ is the hyperplane face of the simplex oppo-
site 4;. The construction of U’, on the other hand, is somewhat more
involved (see exercise 1 below).

Let us examine how the dual coordinates of a point P in 2*(V) may
be found. Since P° is a point in Z(V*) (by the definition of PHVY),
we know that P is a hyperplane in (V). By Proposition 2 of Chapter
III (p. 51), P is determined by a single homogeneous linear equation
PoXo+ - +p, X, =0 with respect to the frame (4, ..., A4,, U).
Therefore poa®+ - - - + p,a" is a homogeneous vector for P° and con-
sequently P, as a point in 2*(V), has projective coordinate row
(Pos - - -» pn) With respect to (4,/,..., 4,’, U’). This fact is frequently
expressed by saying that the hyperplane P has dual coordinates
(Po> - - -, pa) With respect to (4,, ..., 4,, U).

Finally, here is a simple example to illustrate the use of dual
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coordinates. Suppose that pdim V=2 and that A, L are a point and
line in Z(V), 4 not lying on L. We should like to prove that the map-
ping P — AP is a projectivity of the range of points on L onto the pencil
with vertex 4. Take as triangle of reference A BC where B, C are dis-
tinct points of L (and some suitable point as unit point). Then the
point P of L has coordinates (0, p,, p,), say, and the corresponding line
AP has equation p,x; —p;2,=0. The dual coordinates of AP are
(0, ps, —p1). The linear nature of the mapping

(P1; P2) — (P2, —P1)
establishes the fact that P — AP is a projectivity.

ExErocisEs
1. Let (4o, ..., 4,, U) be a frame of reference for the projective geometry
P(V) and (4, ..., 4,, U’) the dual frame of reference. We have seen

that 4, is the hyperplane face of the simplex (4, ..., 4,) opposite A4,.
(1) If n=1 show that U’ (which is a point) is the harmonic conjugate of
U with respect to 4,, 4,.
(2) Assume that n>2 and let U, be the point 4,U N 4,’. Show that
(dgy---y An_1, U,) is a frame of reference for the subgeometry #(4,’)
and that the dual frame of reference is

(A N A, ... A, /AU NAY).

(3) Give an inductive construction for U’ in terms of the frame of
reference (A, ..., 4,, U).

2. A pencil of lines L with vertex 4 in a projective plane M is given; a point
B not in M is also given.  Show that the mapping L — L J B is a pro-
jectivity of the given pencil of lines onto the pencil of planes with axis 4 B.

3. Two coplanar pencils with distinct vertices 4, B, and a projectivity of one
pencil onto the other, are given. Show that the points of intersection of
pairs of corresponding lines are collinear if, and only if, 4B is a self-
corresponding line. (Cf. exercise 7 of § 3.2.)

4. In a projective plane two distinct lines L, M are given. If X - X'isa
projectivity of L onto M, show that all the intersections PQ" N P'Q (for
P+#Q', P'#Q, P+#Q) lie on a fixed line (called the cross-axis of the pro-
jectivity). [Hint: If R, R'# L N M consider the pencils RX’, R'X as X
varies on L; use exercise 3 above to show that the points RX' N R'X lie
on a line Np. Finally show that N, is independent of R.]

5. Deduce Pappus’ Theorem from exercise 4.



CHAPTER V

Bilinear Forms

5.1 Elementary Properties of Bilinear Forms

DEerFINITION. Let V be a vector space over a field F. A bilinear
form o on V is a mapping of the ordered pairs of vectors of V into F
such that

B.1. o(za+yb, ¢)=xo(a, ¢)+yo(b, ¢),
B.2. g(a, b+ yc)=zxo(a, b) +yo(a, ¢),

for all vectors a, b, ¢ in V and all scalars x, y in F.

We express condition B.1 by saying that ¢ is linear in the first
variable and condition B.2 by saying that ¢ is linear in the second
variable.

In this chapter we shall be concerned with the structure of V as a
vector space with a given bilinear form ¢. Under these circumstances
we shall speak of V, or more exactly of (V, o), as a bilinear space.

DEFINITION. An isomorphism of the bilinear space (V, o) onto the
bilinear space (V’, ') is a linear isomorphism f of V onto V' which
satisfies

a(a, b) = o’ (af, bf)

for all @, b in V. If such an isomorphism f exists we shall say that
(V, o) and (V’, o’) are isomorphic.

If (V, o) and (V, ¢') are isomorphic then o and o' are said to be
congruent.

If f is a linear mapping of V into V we denote by o’ the bilinear form
obtained from ¢ by the rule

Uf(a: b) = o(af, bf)

for all @, bin V. Therefore o and ¢’ are congruent bilinear forms on V
if, and only if, there exists an automorphism f of V such that o= (o"),
or o'=0’"". The reader will easily verify that congruence is an
equivalence relation on the set Z(V) of all bilinear forms on V.

89
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We obtain a natural vector space structure on #Z(V) if we define
g+ 7 and zo as follows:

(o + 7)(a, b) = ofa, b)+ 7(a, b),
(xo)(a, b) = x ofa, b)

for any o, 7 in #(V) and any x in F.

Suppose that an ordered basis (a,, . . ., a,) of V is given and that the
vectors a, b have coordinate rows x=(xy,...,%,;), ¥y=U1 -, Yn),
respectively, with respect to this ordered basis. Then, by the bilinear-
ity of o,

o(a, b) = > sxy;,

where s;;=o0(a;, a;). If S is the n x n matrix (s;;), we may rewrite this
equation in matrix form as

ala,b) = z Syt
We call S the matrix of ¢ with respect to (a4, . . ., a,) and shall use the
notation (o; (a;))=S8. The polynomial > s,X,Y; is called the bilinear
polynomial of o with respect to (ay,...,a,;). The following result is

now immediate from the definitions.

ProrosiTiON 1. Let (ay, ..., a,) be an ordered basis of V over F.
(1) The mapping o — (o; (a;)) is a linear isomorphism of ZB(V) onto
ann.

(2) The mapping o — > ofa,, a;)X,Y; ts a linear isomorphism of B(V)
onto the vector space of all bilinear polynomialsin X,, ..., X,; Y, ..., Y.

Suppose that o, o/ are congruent bilinear forms on V and (a,, . . ., a,)
is an ordered basis of V. Let 8=(s;;)=(0; (a;)), T =(t;)=(o’; (a;)) and
a,f=>. puti (t=1,...,n). By the definition of o/ and the bilinearity

of o,
bty = (Z Z pikpilskl)’
kT

ie., T=PS8 Pt where P=(p;;). Thus S, T are congruent matrices in
the sense of § 4.7 (p. 86). Conversely, if o, 7 are bilinear forms such
that (o; (@), (7; (@;)) are congruent matrices, then o, r are congruent.
This follows by reversing the above argument. We have therefore
established

ProposiTiON 2. Let (ay,...,a,) be an ordered basis of V. The
bilinear forms o, T are congruent if, and only if, the matrices (o; (a;)),
(7; (a;)) are congruent.

CorOLLARY. The matrices of a fixed bilinear form o with respect to
all ordered bases of V form a complete congruence class.
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PROOF. Given two ordered bases (a,, ..., a,), (b;,...,b,) there is a
unique f in AutV such that

by=af t=1,...,n).

Now (¢’; (a)))=(o; (b)), by the definition of o, while (o'; (a))),
(o; (a;)) are congruent by Proposition 2. Thus the matrices of o with
respect to all ordered bases lie in a single congruence class. To prove
that we obtain the whole class, we take any matrix 7' congruent to
(o; (@,)). By Proposition 1, T'=(7; (a,)) for some bilinear form 7 and
by Proposition 2, 7=o' for some automorphism f of V. Hence
T =(o; (b)) where by=a,f i=1, ..., n).

The following definition is now unambiguous.

DerFINITION. Let o be a bilinear form on a vector space V. If
(ay, . .., a,) is any ordered basis of V then the rank of o is the rank of
(0; (@)). If ranko<n we say that o is degenerate and if ranko=n we
say that o is non-degenerate.

We shall now describe a fundamental connexion between the theory
of bilinear forms and the theory of linear mappings. The most satis-
factory treatment of bilinear forms is based on a full exploitation of this
relation.

Let o belong to #Z(V). Since o is linear in the second variable, the
mapping

b — o(a, b)
is a linear form on V. If we denote this form by ag, then, since o is
linear in the first variable, g is a linear mapping of V into the dual space
V*. Conversely, if f is any element of £(V, VV*), we may define a
bilinear form o on V by the rule

a(a, b) = b(af).

If we interchange the roles of the two variables we can define an
element ¢ of Z(V, V*) by the rule

a(a, b) = a(bg),
ie.,
bo: a — ofa, b).
ProposiTioN 3. The mappings ¢ — g, 0 — & defined by the equations
a{a, b) = b(ag)
of(a, b) = a(bs)

(for all a, b in V), are linear isomorphisms of B(V) onto L(V, V*).
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PROOF. The mapping f— o, constructed above, is the inverse of
o — ¢ and hence ¢ — ¢ is one—one and onto Z(V, V*). The linearity
follows immediately from the definitions of ¢+ 7 and xo.

If (a,, . . ., a,) is again an ordered basis of V and s;;=o(a,, a;) then
g Q5 —> Sy
and so a,g is the linear form > s;,a’. Thus the matrix

(g5 (a1), (@)

is simply (s;;). (Observe that the corollary to Proposition 2 is now an
immediate consequence of Proposition 3 and Proposition 7 of Chapter
IV (p. 86)).

In exactly the same way we see that

(65 (@), (@) = (s;)".

In view of the equality of row and column ranks for a matrix (Theo-
rem 3 of Chapter IV, p. 77), the ranks of ¢ and & are both equal to the
rank of o.

EXERCISES

In the first three exercises the vector spaces in question are not assumed to be
finite dimensional. The definitions for an infinite dimensional vector space of a
bilinear form o and of the mappings g, & are exactly as given above.

1. Consider the following properties of a bilinear form o:

(i) o(a, b)=0 for all b implies a=0;

(ii) o(a, b)=0 for all a implies b=0.
Prove that (i) is equivalent to ¢ being one—one and (ii) is equivalent to &
being one—one.

If V is finite dimensional show that (ii) is also equivalent to ¢ being onto
V*

(Thus in the case of a finite dimensional vector space V, each of these
conditions is equivalent to the nou-degeneracy of 0. For general V it is
usual to take (i) and (ii) together as defining the non-degeneracy of o.)

2. Let (s;;) be a given family of elements in a field F, indexed by the set of all
ordered pairs of non-negative integers. Prove that there is one and only
one bilinear form on F[X] such that

olX, X') = s
for all 4, j >0 (where X°=1).
3. If o is the bilinear form on F[X] such that
U(X" XJ) = 81+1, 5

for all 7, >0 (Kronecker delta), prove that ¢ is one—one but that & is not
one-one. (Cf. exercise 1 above.)
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4. If o € B(V) and fe L(V, V), prove that
() = faf!
where f* is the transpose of f, as defined in exercise 7 of § 4.6 (p. 83).

5.2 Orthogonality

DeriniTION. If o is a bilinear form on a vector space V and if
o(a, b) =0 then we say that a, b (in that order) are orthogonal, or that a
s orthogonal to b (with respect to o). Two subsets 4, B of V are
orthogonal if a, b are orthogonal for every ain 4, b in B.

If M is any subspace of ¥V then we denote by M*@ the set of all
vectors b in V such that o(M, b)=0 (i.e., for which o(a, b)=0 for all
a in M); and by M7 the set of all vectors @ in V such that o(a, M)=0.
If the bilinear form o is understood we shall often write | for | (¢) and

T for T (o).

From the definitions we see that M < N implies both M+>N' and
MT7>S5NT. Moreover, since o is bilinear we see that M+ and M7 are
always subspaces of V. Clearly also 0+=0T=7.

The crucial result for us is the following.

ProrosiTiON 4. If 0 is a bilinear form on the vector space V and M is
any subspace of V, then

(1) dim M +dim M*=dim V+dim (M N V7),

(2) dim M +dim MT=dim V +dim (M N V1),

PROOF. We first give a proof in terms of coordinates. To simplify
the argument we may choose an ordered basis (a,, ..., a,) of ¥V which

extends an ordered basis (a,,...,a,) of M. Let b have coordinate
row y=(y4, .- -, Y¥,) with respect to (a,,..., a,) and let A be the mxn
matrix (o(a;, a,)) (¢=1,...,m;j=1,...,n). (4 consists of the top m

rows of the matrix § defined in the previous section.) Now b e M* if,
and only if, a(a;, b)=0 for 7=1,...,m. Thus be M* if, and only if,
o(a;, b)=0 for i=1,...,m. Thus b € M! if, and only if, y is a
solution of the linear equation Ay=0.

The argument now boils down to finding the row rank of 4. In order
to do this we go back to our choice of basis for M and insist (as we may)
that (ay, ..., a,) extends an ordered basis (a,,1,...,8,) of M N VT,
By the definition of VT this implies that the last (m-7) rows of A are
all zero. Suppose that there is a linear relation

xio(ay, a;))+ - +xo(@,a) =0 (j=1,...,n)
among the first » rows. It follows that

o(®a,+---+xa,a;) =0 (j=1,...,n)
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from which z,a,+ .- +x,a,€ V7. By our choice of basis this gives
2, =%y=- - - =2,=0and so the first r rows of 4 are linearly independent.
We may now appeal to Theorem 4 of Chapter III (p. 50) which shows
that there are (n—r) linearly independent solutions of the equation
Ayt=0 and so the dimension of M* is (n—7). In other words

dim M* = dim V — (dim M ~dim (M N VT))

from which equation (1) follows.

The other equation is proved in the same way.

We shall give another, and in some ways more instructive, proof of
Proposition 4. It exploits the link between |, T and the annihilator
mapping o of §4.6. The fact that there should be such a link is
perhaps made most obvious by the observation that V! =Ker &: for V+
consists of all b in V¥ such that a(bg)=0 for all @ in V. Similarly
VT=Kerg.

LEmMMA 1. M1Y9=(Mg)° and MTO=(M&)°.

PROOF. The vector b lies in (Mg)° if, and only if, bf=0 for all f in
Mg, i.e., for all f=ag with a in M. By the definition of g this is
equivalent to o(a, b)=0 for all @ in M, ie., to b € M. The second
part is proved in exactly the same way.

SECOND PROOF OF PROPOSITION 4. By Lemma 1, M! = (Mg)°.
dim (Mg)° = dim V —dim Mg,
by Theorem 6 (1), Chapter IV (p. 81), and
dim Mg = dim M —dim (M n Ker o),
by Theorem 1, Chapter IV (p. 66). Hence by substitution,
dim M+ = dim V -dim M +dim (M N V),

Now

as required.
If we put M=V in (1) or (2) we have the
CoroLLARY. dim V! = dim V7.

Since rankg=dim ¥V —-dim V7 and ranké=dim V-dim V+ (by
Theorem 1 of Chapter IV (p. 66)), this corollary gives a matrix-free
proof of the fact that the ranks of ¢ and & are equal.

Our discussion so far has shown that the mappings | and T have
very similar properties. In the following lemma and in Theorem 1 we
exhibit a direct relationship between them. Theorem 1 also brings out
forcefully the connexion between |, T on the one hand and the
annihilator mapping on the other.
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LEMMA 2. M < M*'T and M < M™ for every subspace M of V.

PROOF. If a is any vector in M and b is any vector in M+, then, by
the definition of M+, o(a, b)=0. But this implies that a is an element
of (M*)™ and thus M = M*7. The other inclusion is proved similarly.

THEOREM 1. Let ¢ be a non-degenerate bilinear form on a vector
space V. Then the mappings | (o), T (o) are one-one mappings of the
set of all subspaces of V onto itself and have the following properties:

(1) dim Mt =dim V —-dim M =dim M7;
(2) MT=M=MT;
(3) M <N if, and only if, M* > N1,
M <N if, and only if, MTDNT;
(4) (M+N)'=M'nN N,
(M+N)Y'=M"NNT,;
(5) (M N N)*=M*+ N4,
(MNNT=M"+NT.
PROOF. The non-degeneracy of ¢ implies that V7=0= V! and so (1)
is an immediate consequence of Proposition 4.
By Lemma 2, M < M*T and by (1) dim M*"=dim M, whence (2)
holds.

The rest of the proof is entirely analogous to the proof of Theorem 6
of Chapter IV (p. 81).

If o is a bilinear form on a vector space V and M is a subspace, we
shall denote by o,, the restriction of o to M.

DerFintTiON. If 04 is degenerate (or non-degenerate) then we say
that M is a degenerate (or non-degenerate) subspace of V with respect to o.

Lemma 3. The following three conditions are equivalent:
(1) M is a non-degenerate subspace of V with respect to o;
(2) M N M+*@=0
B) M M@=0.

PROOF. By definition, M*“»’=M N M*® and M"=M N M™@
so that conditions (2) and (3) are equivalent by Proposition 4, Corollary.
By the remarks following that corollary they are also both equivalent
to the condition that o, should have maximum rank dim M, i.e., to
condition (1).

CoroLLarY. If V=M @ V* and we assume V+=VT, then M is a
non-degenerate subspace of V with respect to a.

PROOF. We verify condition (2) of the lemma. If be M! then
o(M,b)=0. But o(Vt,b)=0 because Vi=V7, and therefore
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o(M+ Vi, b)=0. Hence be V:. We have thus shown that MLt< T+
which implies that M N M+ =0.

The following result is of basic importance for the structure theorems
of § 5.4.

ProrosITION 5. Let o be a bilinear form on the vector space V. If
M s a non-degenerate subspace of V with respect to o then

V=M®PM and V=MOPM.

PROOF. We shall confine our attention to | : the argument for T
is exactly the same. By Lemma 3, M N M+ =0 and so we only have to
show that M + M+1=V. For thisit suffices to prove dim M + dim M+ =
dim V. Now M NV'eMNM and M N M"=0, by Lemma 3.
Hence the required dimension equality follows from Proposition 4.

EXERCISES

1. If 8 is a subset of V and S* is the set of all b in V such that o(S, b)=0,
prove that St is a subspace and that S*=[S}*.

2. If o € (V) show that (Ker g)*=V and that (MT)g=M° N Vo.
3. Let V be the vector space F* and let o be the bilinear form on ¥ whose

matrix with respect to the standard basis (e,, .. ., ¢,) is
1100
00 0 0
1 000
01 0 0f.

If M=[e,,e,], prove that (i) M N M+£0, (ii)) M N V*+=0 and (iii)
dim M*=3. Show further that V=V* V7.

(Note that (ii) and (iii) together show that Proposition 4 (1) fails if
V+* replaces V7.)

4. If there exists a subspace M of V such that M*! is a non-degenerate sub-
space with respect to o, prove that o is non-degenerate.

5. Let p be the bilinear form on F" defined by p(x, y)=xy’ for all z, y in F™.
We shall refer to p as the standard bilinear form on F".
Find the matrix of p with respect to the standard ordered basis
(e, ..., e,) of F (p. 13). Prove that | (p)=T(p) and that p is non-
degenerate.

6. Let z, y be non-zero elements of F™.
(i) Use exercise 5 to show that z*® and y*® are hyperplanes in F".
(ii) Show that, if 21 = ¢+ then [z]=[y].
Interpret these two results in the language of Theorem 4 of Chapter III
(p. 50).
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5.3 Symmetric and Alternating Bilinear Forms

As we saw in the last section, orthogonality is not in general a sym-
metric relation. It is precisely in this case, however, that the concept
of orthogonality is of greatest importance.

DEerFinITION. A bilinear form o on a vector space V will be called
orthosymmetric if

o(a,b) = 0 is equivalent to o(b,a) = 0
foralla, bin V.

Itis clear that | (o) = T (o) for an orthosymmetric bilinear form. On
the other hand if | ()= T (o), then the equality of [a]* and [a]™ shows
that o(a, b) =0 if, and only if, o(b, @) =0. Thus the condition of ortho-
symmetry is equivalent to | (o)= T (o).

If we define 7(a, b) = o(b, a), then = is clearly a bilinear form on ¥ and
the condition | (¢0)= T (o) is equivalent to | (¢)= | ().

Lemma 4. If o, 7 are bilinear forms on V such that | (o)= | (1),
then o =zt for some non-zero scalar z.

PROOF. The condition | (¢)= | (7) implies that [a]X®@ =[a]*® for
all @ in ¥ and hence that

o(a,b) = 0 if, and only if, r(a,b) = 0 foralla,bin V. (1)

This condition in turn implies that T (¢)=T(r). We may therefore
choose an ordered basis (a,, . . ., a,) of V such that (a,,,, ..., a,) is an
ordered basis of V7@ = V7™, Now consider the matrices S = (a(a;, a;)),
T =(7(a;, a;)) defined as in §5.1. In each case the last (n—r) rows
consist of zeros. We may also verify that the first » rows of § and 7'
are linearly independent (cf. the first proof of Proposition 4). For, if

zyo(ay, a;)+ - - +wo(a,a) =0 (j=1,...,n)
then
o+ -+x,a,,a) =0 (j=1,...,n)
would imply that z,a, + - - - +2,a, € VT, whence ;= -- =2,=0 by

our choice of basis for V. The same proof applies to 7.
Let us interpret condition (1) in terms of coordinates: it reads

z8y =0 if,andonlyif, 2Ty =0 forallz, yin Fr. (2)
Let p denote the “standard’ bilinear form on F* defined by
plx, y) = xy*
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(cf. exercise 5 of § 5.2). Then (2) implies that
[x S]*® = [x T]*» for all  in F™
and hence (exercise 6 of § 5.2) we have

[x 8] =[x T] forall zin F™

In particular, if (e, ..., e,) is the standard basis of F* (p. 13) we have
618 = ZlelT,
e,S = zeT,

and (e1+ -+ - +e)S = z(e;+ - - +e,)T,

where 24, ..., z,, z are non-zero scalars. (Recall that ¢S, ¢,T are the

i-th rows of 8, T, respectively.) It follows that
(21804 - - +zrer)T = z(e; + - +€,.)T,

and the linear independence of the first r rows of T' allows us to deduce
that z; =2,=- .. =2,=2. Bearing in mind the fact that the remaining
rows of S and T are zero, we have 8§ =27 and so o =27, as required.

A more illuminating and faster way of proving Lemma 4 is as follows:

SECOND PROOF OF LEMMA 4. By Lemma 1 of the previous section
(p- 94), M+ 9= (Mg)° and M*"=(Mz7)°. Thus Mg= Mz for all sub-
spaces M of V. In the language of § 4.2 this means that the (possibly
degenerate) projectivities #(g), #(7) are equal. Let K be the common
kernel of ¢ and 7 and let M be any subspace such that M @ K=1V.
By Theorem 1 of Chapter IV (p. 66), the restrictions of g and 1 to M are
isomorphisms and so we may apply Proposition 1 of Chapter 111 (p. 45)
to see that g =z for some non-zero scalar z. Hence o =27 by Proposi-
tion 3.

The lemma shows that if ¢ is orthosymmetric, then
a(a, b) = za(b, a)
for all @, b in V and some non-zero scalar z. This implies that
a(a, b) = za(b, a) = z%0(a, b)

foralla, bin V. If there are any vectors a, b in V such that o(a, b)#0
we deduce that z=1 or — 1.

DEeriniTION. If 0(02, b)=0(b, @) for all @, b in V, then o is called a
symmetric bilinear form and (V, o) a symmetric (or sometimes an orthog-
onal) space.
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If o(a, b)= —o(b, a) for all a, b in V, then o is called a skew-symmetric
bilinear form and (V, o) a skew-symmetric space.

We have therefore proved

ProrosiTiON 6. A bilinear form is orthosymmetric if, and only if, it
18 etther symmetric or skew-symmetric.

Suppose that o is a skew-symmetric bilinear form. Then
o(a, a) = —o(a, a)
for all @ in V. In other words
20(a,a) = 0

forallain V.

If we assume that the ground field is not of characteristic 2 then
20 (cf. p. 40). We can therefore find an inverse of 2 in F (axiom
F.2, p. 5) and deduce that

ol@,a) = 0

forallain V.

On the other hand if F is a field of characteristic 2, then the notions
of symmetric and skew-symmetric bilinear forms coincide and we can-
not deduce that o(a, @) vanishes.

DEeriNITION. If 0(0, @) =0 for all a in V then ¢ is called an alter-
nating bilinear form and (V, o) an alternating (or symplectic) space.

If ¢ is alternating, then for any a, b in V

0 = ola+b,a+b) = ola, a)+a(a, b)+a(b, a)+a(b, b)
whence
a{a, b) = —a(b, a)

i.e., o is skew-symmetric.

We may summarize as follows:

(1) If the ground field is not of characteristic 2 then an alternating
space is exactly the same as a skew-symmetric space.

(2) If the ground field is of characteristic 2 then an alternating space
is a special kind of symmetric space.

Suppose now that o is a symmetric bilinear form on V. We may
define a mapping g of V into F by

g(a) = o(a, a)
forallain V.
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If (ay, ..., a,) is an ordered basis of V, o(a;, a;)=s;; and a=3 za,,
then, by the bilinearity of o,

q(a)=o(a, a)= Z 83T 5.
The homogeneous polynomial

fXy oo, X)) = ZSHXin
is called the quadratic polynomial of o with respect to the ordered basis
(@y,...,a;). Of course this polynomial is obtained from the (sym-
metric) bilinear polynomial 3s,,X,Y; by setting ¥V,=X,,i=1,..., n.
The function ¢ satisfies the relations

q(za) = 2%q(a), (3)

q9(a+b)—g(a)—q(b) = 20(a, b), (4)
foralla, bin V.

In studying symmetric bilinear forms in later sections we shall
usually make the simplifying assumption that the field F' is not of
characteristic 2 and then equation (4) shows at once that ¢ is uniquely
determined by q. We can thus refer to f(X,, ..., X,) as the quadratic
polynomial of q (with respect to (ay, ..., a,)).

It is, however, interesting to note that when F is of characteristic 2,
equation (4) becomes

g(a+b) = g(a)+q(b)
for all @, bin V. In other words, ¢ is a homomorphism of the additive
group V into the additive group ¥. If we interpret ¢(a) as a ‘“‘squared
length” we may say in more geometric language that the conclusion of
Pythagoras’ Theorem is true for any triangle in V! In this case the
quadratic polynomial of o with respect to (a,,...,a,) is a “sum of
squares’’, i.e.,
f(Xb ] Xn) = zsiiXi2'

Since s; =q(a;) it still makes sense to refer to f(X,,..., X,) as the
quadratic polynomial of ¢, although here ¢ does not determine the
bilinear form o uniquely.

When there is no restriction on the ground field ¥, we make the
following

DEFINITION. A mapping q of V into F is called a quadratic form on
Vif

Q.1. q(za) = z%q(a),
forallain V and «z in F, and

Q2. g(a+b)—qg(a)—q(b) = ¢(a, b)
defines a bilinear form ¢ on V.
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Clearly such a ¢ is symmetric and moreover g(a, a)=2g(a). Hence
if F is not of characteristic 2, g(a)=}¢p(a, a), i.e., ¢ is the “squared
length” in the symmetric space (V, 3p). But if F is of characteristic 2,
then ¢ is both symmetric and alternating and we regard our space as
a refinement of an alternating space (V, ¢) in which a squared length is
also given. (The interested reader should consult [5]; also exercises 8, 9
below.)

EXERCISES

1. Prove that a bilinear form is symmetric or skew-symmetric if, and only if,
its matrix with respect to any one ordered basis is symmetric or skew-
symmetric. (Recall that a matrix A is symmetric if A=A4%; it is skew-
symmetric if A= —A4*.)

2. Prove that a bilinear form ¢ is symmetric if, and only if, g=4.

3. Show that o is orthosymmetric if, and only if, M < ML for all subspaces
M.

4. If #* (V) denotes the set of all symmetric bilinear forms on V and &~ (V)
the set of all skew-symmetric ones, prove that #+(V) and #~(V) are sub-
spaces of Z(V) and if F is not of characteristic 2 then

BY) = BHV)D B (V).

5. Prove that ¢q: x — 2% is a quadratic form on C, viewed as a two-dimen-
sional real vector space (where the bar denotes complex conjugation).
Show further that, when g is restricted to the multiplicative group C*, it
is a group homomorphism of C* into R*. What is the kernel and what is
the image ?

6. If D is the real quaternion algebra as given in exercise 7 of § 4.3 (p. 75),
prove that

: ry —> T+ Yy
q: —j =z Yy

is a quadratic form on D and that ¢ restricted to D* is a group homo-
morphism of D* into R*. Find the quadratic polynomial of ¢ with res-
pect to the ordered basis

G969y Cd

7. Let V be a vector space over F, and ¢ a quadratic form on V with associ-
ated bilinear form . Prove that g is a linear form on VX,
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8. Let (ay, ..., a,) be an ordered basis of V and ¢ a quadratic form on V.
We define the matrix of ¢ with respect to (a,, ..., a,) to be (g;;), where
% = g(a),

0 = pla, a)) if i #j,
where o is the bilinear form associated with 9. Prove that

q(@a 4 - - +2a,) = z G125

isy

(Use induction on n. Observe that the result is valid irrespective of
whether F is of characteristic 2 or not.)

9. Let 2(V) be the set of all quadratic forms on V. If ¢q, ¢’ € 2(V) and
x € F, verify that the mappings

q+q': a—>qla)+q'(a),
zq: a— z q(a)
are both quadratic forms on V and that 2(V) is a vector space over F
with respect to this addition and multiplication by scalars.

Using also the notation of exercise 4, let « be the mapping ¢ — ¢ of
Z* (V) into 2(V) defined by g(a)=o(a, a) for all @ in V; and let B be the
mapping g —> @ of 2(V) into #* (V) defined by gp(a, b) =q(a+b) —gq(a) —q(b)
foralla,bin V. Show that (1) «, 8 are linear mappings; (2) «f=2(1g+),
Ba=2(1g); (3) if F is not of characteristic 2 then «, B are isomorphisms;
(4) if F is of characteristic 2 then Ker o =Image 8 and Ker f=Image o.

5.4 Structure Theorems

We saw in § 5.2 that a non-degenerate subspace M of V has M* as
direct complement, i.e., V=M @ M*. In this section we shall use
this fundamental result to gain information about the structure of
alternating and symmetric spaces.

TaeorEM 2. If (V, o) is an alternating space, then

V=L@ @L®V,

where L,, ..., L, are mutually orthogonal non-degenerate two-dimen-
stonal subspaces and s =% (rank o).

pPROOF. If (b, ¢)=0 for all b and ¢, then V = V* and we are finished.
So suppose a(b, ¢)# 0 for some b, cin V. Then b, ¢ must be linearly in-
dependent, and we assert that L=[b,c] is non-degenerate: for if
v=xb+yc lies in L, then o(b, v)=0 and o(c,v)=0 yield y=x=0.
Hence, by Proposition 5, V=L @ L* and the direct sum decomposition
of V follows by induction on dim V. Finally, 2s=dim ¥V —dim V+ and
thus 2s =rank o by the corollary to Proposition 4.
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CoroLLARY 1. A non-degenerate alternating space must have even
dimension.

Each subspace L,;in Theorem 2 has an ordered basis (b,, c;) such that
a(b;, ¢,)=x,#0. Then with respect to (b, (1/x;) ¢;), the restriction of o
to L, has matrix

01
(=1 o).

CoROLLARY 2. There exists an ordered basis with respect to which o
has matrix

Hence Theorem 2 yields

where n 18 the number of rows and s is the number of blocks

0 1
(=1 o).

It is easily seen that a matrix 4 = (ay,) is the matrix of an alternating
bilinear form if, and only if, a,;= —a; whenever ¢ #j and a, =0 for all ¢.
We call such a matrix an alternating matriz. Corollary 2 shows that
every n x n alternating matrix of rank 2s is congruent to the matrix 4, .

This solves the congruence problem for alternating matrices for any
ground field (cf. p. 86).

CoroLLARY 3. Tuwo alternating bilinear forms on the same space are
congruent if, and only if, they have the same rank.

We now turn to the structure of symmetric spaces.

THEOREM 3. Let o be a symmetric, but not alternating, bilinear form
on the vector space V. Then

V=4,@  --®4,®V"

where A, ..., A, are non-degenerate mutually orthogonal one-dimen-
sional subspaces. Moreover r=rank o.
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The reader should observe that if F is not of characteristic 2 then an
alternating symmetric bilinear form is zero. Thus the condition that
o should not be alternating is only relevant to the special case where F
is of characteristic 2.

PROOF. The last assertion of Theorem 3 follows from the corollary
to Proposition 4. The direct sum decomposition will be proved by an
induction on dim V.

Since o is not alternating there must exist @ in V such that o(a, a) # 0.
Then A =[a] is a non-degenerate subspace and hence V=4 @ A by
Proposition 5. If the restriction of o to A* is either zero or is not
alternating the theorem follows by induction. (By the remark above,
the proof ends here if F is not of characteristic 2.)

Suppose then that the restriction of ¢ to 4* is alternating and not
zero. Thus we can find vectors b, ¢ in A+ such that o(b, c)#0. We
note that a(a +b6, a+b)=o(a, a)#0 and so [a +b] is non-degenerate.

Consider the vector v=xa+c. Then

a(v, v) = x%0(a, a)
and
a(a+b,v) = xo(a, a)+ o(b, c).
If = —-o0(b, ¢)/o(a, a), the vector v lies in [a+b]* and o(v, v)#0.

Thus V=[a+b] @ [a+b]* where [a+b] is non-degenerate and o is not
alternating on [a +b]t. The proof can now be completed by induction.

Theorem 3 has a corollary for matrices. If 4 = (a;;) is a square matrix,
then 4 is called diagonal if a;;= 0 whenever ¢#j5. We shall later use the
notation

A = dlag (alla s ann)
when 4 is diagonal.

CoRrOLLARY. A symmetric matriz which is not alternating is congruent
to a diagonal matrix.

PROOF. Let V = F" and let ¢ be the bilinear form on ¥V such that

(05 (&) = A.
By Theorem 3 we can find vectors a4, . . ., a, such that
V=la,]® - ®a]® V*
with o(a;, a;)=0for ¢ #j. Ifa, .., ...,a, are chosen to form a basis of

Vi, then
B = (o;(ay,...,a,))
is diagonal.



§5.4 BILINEAR FORMS 105

The congruence problem for symmetric matrices is still unsolved
except for certain special fields. The above corollary reduces the
problem to the case of diagonal matrices, but the final solution depends
essentially on the structure of the underlying field. However, the
classification of the symmetric bilinear forms over the complex num-
bers and over the real numbers is easy and will be given below. More-
over, the reader will find the classification over finite fields in exercise
11.

ProposiTioN 7. If 018 a symmetric bilinear form on a complex vector
space V, then there exists an ordered basis of V with respect to which o has

matrix
I, 0
0 0/,

PROOF. By the corollary to Theorem 3, there exists an ordered basis
(ay, ..., a,) such that

where r is the rank of a.

(0; (@) = diag (%1, ...,2,,0,...,0),
with #,#0,9=1,...,r. Lety?=x,"1,¢=1,...,r. Then

I, 0
(U;(!/1“1,~-,?/rar, ar+15""an)) = (OT O)

The reader should note that the only property of C we use in the
proof is that every complex number has at least one square root.

CoroLLARY. Two symmetric bilinear forms on a complex vector space,
or two symmetric matrices tn C"*", are congruent if, and only if, they have
the same rank.

Now let (V, o) be an n-dimensional real symmetric space and suppose
that (a,, ..., a,) is an ordered basis for which

(0; (@) = diag (®y,..., %, 0,...,0).

We may assume (a4, . . ., @,) so ordered that z,, . . ., z, are positive and
Zpiy,- .-, Tpyqare negative, wherep+g=r. Ifwereplacea,,...,a,by
1 1
\/x_lal’ R \/;5;%
and @,,;,..., @y, , by
1 1

g/ N //
p+1s ’ P+q
v Tp+1 '\/—xp+q
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then the matrix of o with respect to the new basis is
diag (1,...,1, =1,..., —=1,0,...,0)
—_—— ————

? q
In order to prove the theorem of Sylvester that the integers p and ¢
so defined are invariants of (V, o) we shall introduce a new notion.

DEFINITION. A real-valued symmetric bilinear form o is posttive
semi-definite if g(a) = o(a, @) > 0 for all a. If further g(a) =0 implies a =0
then o is positive definite. In these circumstances we shall also say that
the quadratic form ¢ is positive semi-definite or positive definite. The
definition of negative semi-definite and negative definite bilinear forms
(and quadratic forms) is similar.

ProrosiTiON 8. Let (V, o) be a real symmetric space. If

V=pPpear

where the restriction of o to P is positive definite and the restriction of o
to Q is negative definite, then dim P and dim Q are invariants of (V, o).

PROOF. If M is a positive definite subspace and N is a negative semi-
definite subspace then clearly M N N=0. Thus

dim M +dim N < dim V.
But in particular N =@ @ V* satisfies this inequality and so
dim M < dim V—(dim ¥V —dim P) = dim P.

Hence p=dim P is the maximum dimension of all the positive definite
subspaces of V, and as such is an invariant. Finally, ¢=dim @ is also
an invariant because ¢ =r—p where r is the rank of o.

DEFINITION. p —q is the signature of o.

ProrosiTiON 9. If o is a symmelric bilinear form on a real vector
space V, then there exists an ordered basis of V with respect to which o

has matrix
I, 0 0
0o -1, 0
0o o0 of,

where p +q ts the rank of o and p — q is the signature of o.

CorOLLARY. (SYLVESTER’'S “Law oF INERTIA”.) Two symmetric
bilinear forms on a real vector space are congruent if, and only if, they have
the same rank and same signature.
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Sylvester’s Law implies that there are essentially (i.e., to within
isomorphism) n+ 1 distinct non-degenerate real symmetric spaces of
dimension n. We remark that the “space time’’ of relativity has rank
4 and signature 2.

The next chapter will be devoted to the study of the positive definite
spaces—the so called euclidean spaces.

So far in this section we have only considered orthosymmetric bilinear
forms. There is a generalization of Theorem 3 which is true for arbi-
trary non-alternating bilinear forms provided only that we assume that
the ground field has more than two elements.

THEOREM 4. Let o be a non-alternating bilinear form on a vector
space V over a field F containing more than two elements. Then

V=4,® -4,V
where Ay, . .., A, are non-degenerate one-dimensional subspaces and

o(d, A;)) =0 forall 1 <i<j<r
Moreover r= rank o.

PROOF. As in Theorem 3 we argue by induetion on dim V.

Because o is not alternating, there must exist a vector a in V such
that o(e, a)#0. By Proposition 5, V=[a] @ [a]*. If the restriction
of o to [a]* is either zero or is not alternating, the theorem follows by
induection.

Suppose then that the restriction of o to [a]* is alternating and not
zero. Our task, as before, is to find a vector b in V so that [a+b] is
non-degenerate and o is not alternating on [a+b]*. We may find
vectors b, ¢ in [a]* such that o(b,c)#0. Let v=xa+c. We try to
satisfy the following three conditions:

(i) o(a+b,a+b) = o(a, a)+a(b, a) #0,
(ii) a(a+b, v)=x(o(a, a)+ o(d, a))+a(b, ¢)=0,
(iii) o(v, v)==z%(a, a)+xa(c, a)#0.

Let us now assume that o(b, a)=0. Then condition (i) is automati-
cally satisfied, (ii) is satisfied by taking x= — o(b, ¢)/o(a, @) and (iii) is
then equivalent to o(b, ¢)#o0(c, @). Since F contains more than two
elements, we may satisfy all three conditions in this case by replacing
b, if necessary, by a suitable scalar multiple zb.

If o(b, @) # 0 but o(c, @) =0 we may interchange the roles of b and ¢
(since a(c, b)= —o(b, ¢) # 0) and prove the result in the same way.
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Finally, let us assume neither o(b, a) nor o(c, @) is zero. If b =b+yc,
then
a(b’,c) = ofb,c) £ 0
and
a(b’, a) = a(b, a)+ya(c, a).
We choose y= —o(b, a)/o(c, @) so that o(b’,a)=0. Then we may
argue as above with b replaced by &’. This completes the proof.

Theorem 4 has a natural interpretation in terms of matrices.

DeriniTION. If A =(a;) is a square matrix, then A4 is called (lower)
triangular if a;;=0 whenever i <j (i.e., if all terms above the diagonal
are zero).

CoroLLARY. If A is a non-alternating matriz in F"*", where F
contains more than two elements, then A is congruent to a (lower) triangu-
lar matrix.

Theorem 4 is false when F' =F,: cf. exercise 7 below.

EXERCISES

1. Let (V, o) be a non-degenerate two-dimensional symmetric space over a
field which is not of characteristic 2. If there is a non-zero vector a in
V such that o(a, a) =0, prove that there exists a unique b in ¥ such that
a(b, b)=0 and o{a, b)=1. Is the condition on the field necessary ?

2. Prove that the quadratic forms of exercises 5, 6 of § 5.3 (p.101) are both
positive definite.

3. If ¢ is positive semi-definite and o(c, ¢) =0 show that o(a, ¢)=0 for all a.

4. Define the signature of a real symmetric matrix and give a matrix inter-
pretation of the corollary to Proposition 9.

5. All polynomials in this exercise have real coefficients.
(i) If

f(Xy, o Xp) = Z a; XX

$,i=1

where a;;=a;; for all 4, j and a,,#0, show that the transformation de-
fined by

Y, =an X +a X+ + a3, X5,
Y, =X,, 1=2,...,n

leads to an equation
J&y oo X)) = an Y2+ f/(Ya, .., X)),

where f’ is another quadratic polynomial.
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10.

11.

@) If X,=Y,-7, and X,=Y,+7Y, show that X, X,=Y 27
and solve for Y,, Y, in terms of X,, X,.

(iii) Use steps of the above kind to reduce the following quadratlc
polynomials to sums of squares and find the rank and signature in each
case.

(1) X, X+ X, X5+ X, X,

(2) X,244X, X, +3X,2+2X,X,—X,%,

(3) X\2—6X X, +4X , X;+9X,2—9X X, +4X,%

If ¢ is a quadratic form on the vector space V over a field of characteristic
2, prove that V has a basis {a,, . . ., a,} such that

n
(@10, + - - - +2,a,) = (Z q(a,)xiz) +Z1%g+ Ty + - 0 F Ty 1Tas-
i=1

(Use exercise 8 of § 5.3 and Theorem 2.)

1 00
(101)
01 0

is not congruent to a triangular matrix if the ground field is F,.

. Show that the matrix

. If F is a finite field, show that F contains a field F, isomorphic to F,

for some prime p. Prove also that every field E contained in F must
contain p” elements for some r. (Cf. also exercise 10 of § 7.3, p. 162.)

. Let F be a finite field and F* the multiplicative group of non-zero ele-

ments. Show that x — 22 is a homomorphism of F* into itself with
kernel {+1, —1}. Denote the image by S*. Prove that §*=F* if, and
only if, F is of characteristic 2.

If F is not of characteristic 2 and z is any element not in 8*, prove that
every element of F'* either lies in S* or has the form zs for some s in S*.

Let F be a finite field not of characteristic 2 and suppose S* and z have
the same meaning as in exercise 9. Assume that z cannot be written as
a sum of two squares. Prove that §={0} U S*, the set of all squares in
F, is a field (using the last part of exercise 9) and that the number of
elements in S is 4(¢+ 1), where ¢ is the number of elements in . Deduce
(using exercise 8) that this is impossible.

(Exercises 9 and 10 yield the result that every element in a finite field
can be written as a sum of two squares.)

Let o be a symmetric, but not alternating, bilinear form of rank r on the
vector space V over the finite field F. Using Theorem 3 and the result
stated immediately before this exercise, show that there exists an ordered
basis of V with respect to which ¢ has matrix

I,_., 0 0O
((I)r 8) or (O ' z 0),
0 0 0

where z is a non-square in F.
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5.5 Correlations

If o is a non-degenerate bilinear form on V then we deduce from
Lemma 1 (p. 94) that | (0)=%(g)o and T (¢)=2(6)o. In other words,
1 (o) and T (o) are correlations of (V). This fact summarises (1), (3),
(4), (5) of Theorem 1 on page 95 (and (2) simply means that | ~1=T
and T ~!= |). Since the mappings o — g, 0 — & of Proposition 3
(p- 91) are onto Z(V, V*), any correlation of Z(V) is of the form | (o)
(and also of the form T (o).

In view of Lemma 4 (p. 97) we may define a polarity to be a correla-
tion | (o) for which ¢ is symmetric and a null-polarity to be a correla-
tion | (o) for which o is alternating. In either case it is usual to refer
to M* as the polar of M with respect to | .

There are no null-polarities in even dimensional projective geo-
metries and essentially only one in each odd dimensional projective
geometry (Theorem 2, Corollaries 1 and 3 (p. 103)). The geometry of
polarities is, by contrast, considerably richer as we shall see in the next
section.

If f is an element of Z(V, V*) with non-zero kernel, then Z(f) is a
degenerate projectivity in the sense of § 4.2 and we refer to Z(f)o as a
degenerate correlation. Any degenerate correlation is of the form | (o)
(or T (o)), where o is a degenerate bilinear form, and will be called a
degenerate polarity if ¢ is symmetric or a degenerate null-polarity if o is
alternating.

EXERCISES

1. Let | be a (possibly degenerate) correlation. Show that | is a polarity
or a null-polarity if, and only if, M < M+! for every subspace M; and that
| is a null-polarity if, and only if, P < P+ for every point P.

2. Describe the degenerate null-polarities of projective geometries of dimen-
sions 2 and 3.

3. Let | be a null-polarity of a projective geometry of dimension 3. If
P,, P,, P;, P, are the vertices of a tetrahedron 7T show that the planes
Pt P,t, Pgt, P,* are the faces of a tetrahedron which is both inscribed
and circumscribed to 7'.

4. Let | be a null-polarity of a projective geometry of dimension 3. If P,

@ are given distinct points such that P < @, prove that the line L joining
P and @ satisfies the relation L=L*. What is the configuration of all
lines through a given point P with this property ?

What is the configuration of all lines L such that L< L*, when | isa
degenerate null-polarity ?

(For any null-polarity, degenerate or otherwise, the set of all lines L
such that L< L* is called a linear complex.)
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5. Let A be the affine geometry in (V) determined by a hyperplane H and
let | be a polarity of (V). We consider the subset B of A obtained by
omitting all elements of A which contain the point H+. ILet |’ be the
restriction of | to B. We call | ' the affine polarity (of A) determined by

Prove that | ' is a one—one mapping of B onto B and that | isthe only
polarity of #(V) which determines [ ’.
(We call H* the center of | ’. Note that the center need not lie in A.)

6. Let A be the affine geometry in (V) determined by a hyperplane H and
let | be a degenerate polarity of (V). We consider the subset B of A
obtained by omitting the elements M for which M*<H. Show that
B=Aif, and only if, V! € A and that B is empty if, and only if, V+=H.

When B is not empty we denote by |’ the restriction of | to B and
call |’ the degenerate affine polarity (of A) determined by |. Prove that
|’ is a mapping of B into A and that | is the only degenerate polarity of
P(V) which determines | ’.

5.6 Projective Quadrics

All vector spaces in this section are over fields which are not of characteris-
tic 2.

DEeriNiTION. If 0 i8 & symmetric bilinear form on a vector space V
then the set of all points [a] of Z(V) for which o(a, @)= 0 is a (projective)
quadric and is denoted by @(o). When pdim V =2 a quadric in #(V)
is called a conic.

Since @(c) =@(z0) for any non-zero scalar z it is clear from Lemma 4
(p- 97) that there is a mapping | (o) —>Q(o). In fact, if | (o) is a
given polarity (possibly degenerate) then Q(o) is the set of all points P
of #(V) for which P < PL®,

Lemma 5. The image of a projective quadric under a projectivity is
again a projective quadric.

PROOF. Let g be a linear isomorphism of V onto V'. If o is a sym-
metric bilinear form on V then the equation

a’'(ag, bg) = o(a, b)

for all @, b in V, defines a symmetric bilinear form ¢’ on V’. Then
o(a, a)=0 if, and only if, o'(ag, ag)=0. In other words [a] € Q(o) if,
and only if, [a]%(g) € Q(d’).

Let 7 be a projective coordinate system for 2(V) and (a,, ..., a,)
an ordered basis of V which determines 7 (as on page 46). Sup-
pose f(X,,..., X,) is the quadratic polynomial of o with respect to
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(@g, . ..,a,). Then Qo) is the set of all points whose projective
coordinates with respect to = satisfy the equation

f(Xo, ..., X,) = o.

This is called the equation of Q(o) with respect to m. (By Lemma 1 of
Chapter III, f(X,, ..., X,) is determined by ¢ and = to within a non-
zero scalar multiple.) If S=(o; (a,;)), then the matrix form of the
equation is

X8Xt=0

where X =(X,, ..., X,). Note that, by Lemma 5, the set Q(o)r is a
quadric in Z(F"+1). Its equation with respect to the standard co-
ordinate system coincides with the equation of @(o) with respect to .

By Theorem 3, Corollary, there always exists a projective coordinate
system with respect to which (o) has equation

do X2+ - +d,X,2 =0,

where dy - - - d,#0. (If 0=0 this equation reads 0=0.)

Consider, for example, the quadrics on a projective line. If o has
rank 2 then Q(o) is either empty or consists of two distinct points.
(Here we use the assumption that the field F is not of characteristic 2.)
If ¢ has rank 1 then Q(o) consists of a single point and if o has rank 0
then @(o) consists of all the points on the line.

In the special case of the projective line we can recognize the rank of
o from the set of points ¢(o), even if (o) is empty. More generally, if
@(o) is a quadric in Z(V) where pdim V >2 we can recognize V! as
follows. 1If L is any line in (V) then the common points of ¢(o) and
(L) form the quadric ¢(c,). Now the point [a] lies on V' if, and only
if, [a] lies on @(o) and o, has rank less than 2 for every line L through
[@]. (Because of this behavior the points of V! are often called the
“singular’ points of @(c) and given the ‘“multiplicity” 2.) We can
therefore define the rank of (o) unambiguously to be the rank of o (i.e.,
dim V —dim V1) and say that Q(o) is degenerate if, and only if, o is
degenerate.

In view of the fact that a quadric may be empty we must not expect
always to be able to recapture | (o) from @(o). It can be shown that if
Q(o) contains at least one point outside V* (e.g., if @(o) is a non-empty
non-degenerate quadric) then | (o)is the only polarity determining ¢(o).
(See exercises 3, 7, 16 where the outlines of a proof are given.)

It is possible to meet this difficulty in another way if one is prepared
to extend the ground field and make a corresponding extension of the
bilinear form o. We shall sketch this for the case of a real space.

Let V, be the complexification of the real vector space V (p. 14)
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and o a symmetric bilinear form on V. The extended form o’ must be
bilinear over C and so is given by

d'(a+1b, c +id) = ofa, c)—o(b, d) +1i(o(a, d)+ (b, ¢))
foralla,b,c,din V.

We choose an ordered basis (aq, . - ., a,) of V so that (o; (a,)) is dia-
gonal. Now (a,, ..., a,) is also an ordered basis of ¥, and

(05 (a) = (03 (an)

by definition. Thus @(o) and the extended quadric @(¢’) have the
same equation

doXo2+ - +d,X,2 = 0.

Clearly Q(o’) contains all the points for which X, =v/d, and X, = +iVd,
where0<p<g<r, X;=0for0<s<r,s#p, qand X,is arbitrary for¢>r.
Conversely, any (homogeneous) quadratic polynomial f(X,,..., X,)
which vanishes for all such points is easily seen to be a scalar mul-
tiple of doX o2+ ---+d,X,2. In other words Q(¢’) determines | (o)
uniquely.

We end this section with a simple result which shows the essentially
geometrical character of a quadric.

ProrosiTioN 10. The tmage of a projective quadric under a projective
isomorphism is a projective quadric of the same rank.

PROOF. Let = be a projective isomorphism of #(V) onto Z(V’).
The special cases where pdim V equals 0 or 1 are obvious and so we may
assume by Theorem 6 of Chapter III (p. 57) that = =2(g) where g is a
semi-linear isomorphism of V onto V' with respect to {. If ois a sym-
metric bilinear form on V then the equation

o'(ag, bg) = a(a, b){

for all @, b in V, defines a symmetric bilinear form ¢’ on ¥’ of the same
rank as o. Just as in Lemma 5 we see that = maps (o) onto Q(o’).

ExERCISES
1. Show that the equation aX,?+2h X,X,+bX,2=0 defines an empty
quadric in 2(R?) if, and only if, A2 < ab.

2. Describe the degenerate polarity of a quadric of rank 1 on a line L.
If the quadric @(c) on L consists of a pair of distinct points 4, B
show that (4, B; P, P*®)is a harmonic range for every point P on L.

3. Show how a (possibly degenerate) polarity on a line can be reconstructed
from its quadric provided the quadric is not empty. (Use exercise 2.)
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4. Describe the four types of degenerate conic in #(R3). Show that in
three of these cases the degenerate polarity can be reconstructed from
the conic.

5. If @ is a non-degenerate conic in a projective plane P and if 4 is a point
on @, show that every line of P through A, other than the polar line 4+,
intersects @ in two points.

Deduce that there is a one~one mapping of @ onto the points of any
line in P.

6. Show that all the points of 2(Q?) on the conic with equation

X324+ X,2-2X,2=0
are of the form

[(m?+2mn—~n?, —m24+2mn+n2, —m?—n?)]

where m, n are integers. (Use exercise 5 and note that the point
(1, 1, 1) lies on the conic.)

7. Let @(o) be a non-empty non-degenerate conic. If P is a point not on
show (by means of exercise 5) that there are at least two lines through
P which have points of intersection with . Use exercise 3 to give a
construction for the polar line P+ of P.
Give a construction for P when P lies on Q.

8. Let @(o) be a non-degenerate conic containing three distinct points
Ay, Ay, E and let A, be the pole of AyA,, i.e., the point (4,4,)Y .
Show that if 4,4,4, is taken as triangle of reference and £ as unit point
then the equation of @ is X X,— X,2=0.

9. Aline L is a tangent to the conic @(o) if o, is degenerate. Show that L
is a tangent to a non-degenerate conic @ if, and only if, L =A" for some
point 4 on Q. Find the tangent to the conic XX, — X,2=0 at the point

(62, 0‘1” (Pz)‘

10. (See exercise 9.) If @ is a non-empty non-degenerate conic and L a
tangent to ¢ at the point A, we regard L as a set of points and define a
mapping ¢, of ¢ into L as follows: Ap,=4; and if P is any point of @
distinct from A then Py, is the intersection of L with the tangent at P.
Show that ¢; is a one—-one mapping of Q onto L. If M is any other tan-
gent to ¢ show that the mapping ¢, ~1¢,, yields a projectivity of L onto
M.

This example shows that a non-empty non-degenerate conic can be re-
garded as an abstract one-dimensional projective space by means of the
link ¢, and that this space is essentially independent of L.

11. An element M of (V) is tangent to a quadric (o) if o, is degenerate. A
line L is a generator of Q(o) if o, =0.

Let @(c) be a non-degenerate quadric in #(C*). Show that a line L
cuts (o) in a pair of distinct points if, and only if, L and L' are skew;
that L is a tangent line, but not a generator if, and only if, L N L* is a
point; and that L is a generator if, and only if, L= L*. If M is a tangent
plane, show that the intersection of Q(c) and #(M) is a pair of generators
which intersect in the point M*.
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12. Show that a non-degenerate quadric @(o) in Z(R*) has no points if the
signature of o is +4; has points but no generating lines if the signature
of ¢ is +2; has generating lines if the signature of ¢ is 0.

13. Show how to choose a frame of reference for a projective geometry of
dimension 3 so that three given skew lines have equations

Xo=X,=0; X, =X;=0; Xo— X, =X, —X5=0.

Show that the lines meeting these three lines are generators of the
quadric X,X;—X,X,=0 and cut the three lines in projective ranges of
points.

14. If a non-degenerate quadric § in a projective geometry of dimension 3
contains one generator L show that every plane through L cuts @ in L
and another generator. Show that a coordinate system can be chosen
with respect to which @ has equation X X;— X, X,=0 and L has equa-
tions X,=X,=0.

15. Let | (o) be a polarity of an n-dimensional projective geometry P. A
simplex of reference (A, ..., 4,) is called self-polar if, for each ¢, the
polar hyperplane 4,* of 4, is the join of all the other vertices 4,, j#1.

Interpret the proof of Theorem 3 (in the case where ¢ is a non-degene-
rate symmetric bilinear form and F is not of characteristic 2) as the
construction of a self-polar simplex of reference.

16. Let 2(V) be a projective geometry of dimension » and let (o) be a
quadric in #(V) containing at least one point outside Vt. If P is a
point not on @ show that there exist n lines through P each of which
intersects ¢ and whose join is V. Give a construction for the polar
hyperplane P+ of P. (Note that the polar hyperplane of P may not
have any intersections with @.)

Show also how to construct the polar of an arbitrary point of .

17. Let o be a degenerate symmetric bilinear form on V and let M be a sub-
space of V such that V=M @ V+. If the quadric @(o) contains at least
one point outside V* show that §(s,) is a non-empty non-degenerate
quadric and that (o) consists of all the points on the lines joining the
points of V! to the points of @(oy). If P is a point in M show that

Pl — Pplloy) @ Vi

5.7 Affine Quadrics

All vector spaces in this section are over fields which are not of charac-
teristic 2.

If ¢ is a symmetric bilinear form on V then the projective quadric
@(o) consists of all points [a] of (V) for which o(a, a)=0. The set of
all points {a} of .&7(V') which satisfy o(a, @) =0 is called the representative
cone of @ and written C(Q). It is clear that if @ is not empty then C(Q)
is “generated’ by lines of &7(V) through the point O. For example, if
Q is a (non-empty) non-degenerate conic in Z(V) then C() is a cone
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with vertex O in the classical sense. If @ is a pair of (projective) lines
then C(Q) is a pair of (affine) planes through O.

The classical definition of ellipses, hyperbolas and parabolas as conic
sections suggests that we consider the points in a coset ¢+ H (c ¢ H)
which lie on C(Q). Now

a(c+h, c+h) = a(h, k)+20(c, h)+o(c, c)
may be written in the form
g(h)+U(R)+2

where g is a quadratic form on H, ! is a linear form on H and z is a
scalar. Thus the “section” of C(Q) by the coset ¢+ H is the set of all
points {c + A} where

q(h)+1l(h)+2z = 0 (heH).

DErINITION. Let M be a subspace of V. If ¢ is a quadratic form on
M, ! a linear form on M and z a scalar, then the set of all points {a} in
(M) for which

g(@)+l@)+z = 0
is an affine quadric in S (M).
We note immediately that the image of an affine quadric in /(M)

under a translation in /(M) is again an affine quadric: for if m is a
fixed element of M, then

g(m+a)—q(m)—q(a) = L(a)
defines a linear form /; on M and so

g(a) +l{a) + =z

q(m +a) —g(m) —1,(a) +l(a) +z
= qm+a)+l'(m+a)+72,
wherel’ = -1, and 2z’ = ¢(m)—1(m)+2z since l;(m) = 2q(m).

We may now define unambiguously an affine quadric tn &/ (c+ M) to
be the image of a quadric in 2/(M) under the translation by c.

Thus the representative cone C(Q) and all its cross-sections by the
elements of /(1) are examples of affine quadrics.

If ¢ is a one—one mapping of an affine geometry 2/(S) onto a set A
then we regard A as an affine geometry by means of the link ¢ (as on
p- 34). An affine quadric in &/(S) is carried over by ¢ onto a set of
points in A which we call an affine quadric in A. In particular if A is
the affine geometry in (V) determined by the hyperplane H (linked to
& (c+ H) by the mapping ¢ of the Embedding Theorem (p. 32)) and
if @ is a projective quadric in Z(V), then the set of points in A obtained
from @ by omitting its points at infinity (if any) is an affine quadric '’
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in A. We note at once that there may be several different projective
quadrics @ which yield the same affine quadric @' in this way. In
other words there may not be a unique way of ‘“completing” an affine
quadric @’ in A to a projective quadric @ in #(V). We shall return to
this question in Proposition 13.

Our definitions ensure that any translation carries an affine quadric
onto an affine quadric. In fact we have the counterpart of Proposition
10 of the previous section, the proof being almost the same.

PropositioN 11. The image of an affine quadric under an affine
tsomorphism is an affine quadric.
(The question of the rank of an affine quadric will be considered later.)

If « is an affine coordinate system for any affine geometry A of
dimension » over a field F then an affine quadric in A is the set of all
points whose coordinates with respect to « satisfy an equation

90Xy, ..., X)) =0

where g is a polynomial in F[X,, ..., X,]of degree <2. In this way the
discussion of affine quadrics in A may be reduced to the discussion of
affine quadrics in &7 (F™), or in any other convenient affine geometry of
dimension n over F.

If H is a hyperplane in a vector space V of dimension n+ 1 over F,
then the affine geometry A determined by H in &(V) is a suitable model
for all affine geometries of dimension » over F. Let (a4, ..., a,) be an
ordered basis of H and extend it to an ordered basis (ay, . . ., a,) of V.
This induces a coordinate system of .&/(V) in which the hyperplane H
has equation X, =0 and the coset a, + H has equation X,=1. We now
obtain a coordinate system of .2/ (a, + H) and also one of A by assigning
to the point {a, +z,a, + - - - +@,a,} of &/ (a,+ H) and the corresponding
point [a,+x,a, + - - - +,a,] of A the coordinate row (z,, ..., z,).

If f(X,, ..., X,) is a quadratic polynomial with coefficients in F
(i.e., a homogeneous polynomial of degree 2 or the zero polynomial),
then the equation f(X,,..., X,)=0 defines a projective quadric  in
2(V) that determines the affine quadric @' in A with equation

f(L, Xy, ., X,) = 0.

(Equivalently, f(X,, ..., X,)=0 defines the representative cone C(Q)
in &/(V) whose section by a,+ H is the affine quadric with equation
fa,X,,...,X,)=0)

If g(X,,..., X,) is an arbitrary polynomial in F[X,,..., X,] of
degree <2 we may define a quadratic polynomial f(X,, ..., X,) by the
rule

f(XO’ SRR Xn) = on g(Xl/XOv SRR Xn/XO)



118 LINEAR GEOMETRY CHAP. V

from which follows f(1, X,,..., X,)=¢(X,,..., X,). Thus there is
always at least one quadric @ in Z(V) that is a completion of a given
quadric @’ in A.

In view of these observations we may prove

ProrosIiTION 12. Ghiven an affine quadric in an n-dimensional affine
geometry A, then a coordinate system for A can be chosen with respect to
which the quadric has an equation of one of the following two types:

di X2+ +d, X2 +dy = 0, (1)
X, +d X2+ +d,X,2=0 2)
(where some, or all, of the d;’s may be zero).

PROOF. Let A be the affine geometry determined by the hyperplane
H in (V) and let @(o) be a quadric in (V) that determines the given
affine quadric @' in A,

(i) If Ht ¢ H we choose any vector a, in H* but not in H and any
ordered basis (a,, . .., a,) of mutually orthogonal vectors for H (using
Theorem 3 on p. 103). The equation of @ is then of the form

d0X0+ .. +ann2 = 0

which gives equation (1) when we substitute X,=1.

(ii) If Ht<H then certainly V*<H and so Proposition 4 (p. 93)
gives dim H+dim H*=dim V+dim V4, ie., dim Vi=dim H{-1.
Let 4 be any point in H* but not in V*. Any line L through 4 not in
H = A* intersects ¢ in just one other point, say B. (Cf. the discussion
of quadrics on a line, p. 112. See also exercise 5 of § 5.6.) The restric-
tion of o to L is non-degenerate and so, by Proposition 5 (p. 96),
V=L@® L*. We choose arbitrary homogeneous vectors a,, a, for B,
A, respectively, and express L* as direct sum [a,] D---PD[a,] of
mutually orthogonal 1-dimensional subspaces (again using Theorem 3).
The equation of @ in the resulting coordinate system for #(V) is of the
form

XX +dXo?2+ - +d, X,2=0
which yields (2) if we substitute X, = 1.

Many of the properties of an affine quadric @' in A are most easily
understood in terms of a projective quadric @ completing @' in Z(V).
It is essential therefore to find out just when @ is uniquely determined
by @'.

ProposiTioNn 13. Let A be the affine geometry determined by the hyper-
plane H in (V). If Q' is an affine quadric in A which is not contained
i any hyperplane of A, then there is one and only one quadric Q in Z(V)
whose tntersection with A is @Q'.
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PROOF. We have seen above that there is always at least one quadric
@ completing @’. What has to be done now is to show that the points
of @ in H are determined by @’. We do this by proving that a point
P of H does not lie on @ if, and only if, there is a line through P meeting
@' in exactly two points.

If P lies on @ then any line L through P which meets @’ in two points
contains three points of ¢ and so L lies entirely on . The ground
field F contains at least three elements and therefore L contains at
least four points, three of which lie on ¢'. Conversely, if P does not
lie on @ then P1@ cannot be the whole of ¥ and so must be a hyper-
plane. By our hypothesis on @', we may choose a point, say M, on @’
but not in this hyperplane. Then PM meets ¢ in just one point other
than M (cf. the discussion of quadrics on a line, p. 112). This point
must clearly lie on @',

For any quadric @' not contained in a hyperplane we define the rank
of @' to be the rank of the corresponding projective quadric @ and say
that @’ is degenerate if, and only if,  is degenerate.

The most obvious case not covered by Proposition 13 is when @’ is
the set of all points of a hyperplane. Suppose this hyperplane has
equation X;=0. We obviously cannot distinguish between the sets
of points defined by the equations X, =0 and X,2=0. A projective
quadric completing ¢’ must then be either XX, =0 or X,%2=0.

The determination of all affine quadrics in A which are contained in
a hyperplane is not difficult (see exercise 7, below). We mention that
there are only two cases where a non-empty non-degenerate quadric Q
determines a quadric @' which is contained in a hyperplane:

(1) @ is a pair of points on a projective line, one of which is the point
(hyperplane) at infinity H.

(2) (V) is a projective plane over the field F; and @ is a non-degen-
erate conic cutting the line at infinity in two points, so that @’ consists
of just two points. (There are exactly three conics @ determining @’
in this case. Cf. exercise 8, below.)

We may obviously exclude these two cases by assuming that our
geometry has dimension » > 2 and that Q' contains at least three points.
This would allow us for example to refer to the point H* (where H is the
hyperplane at infinity and | is the polarity determined by @, cf.
exercise 16 of § 5.6) as the center of Q" and to call @' a paraboloid if this
center lies in H (i.e., lies on §)). If we consider Proposition 12 in the
non-degenerate case (i.e., the d,’s are all non-zero), then equation (1)
defines a quadric with center at the origin (0, 0, . . ., 0) and equation (2)
defines a paraboloid through the origin whose center is the point at
infinity on the X ,-axis (i.e., the line joining the origin and (1, 0, . . ., 0)).
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EXERCISES

1. If @ is the affine conic in A determined by a non-degenerate projective
conic @ in Z(R?), then @’ is called an ellipse, a parabola or a hyperbola
according as the intersection of @ with the line at infinity is empty, con-
sists of one point or consists of two points. (The empty conic is thus an
ellipse.) Show that an affine conic with equation

@13 X,2 42015 X, X o+ 095X 5% +200: X1 4+ 2005 X 5+ 000 = 0,
where the 3 x 3 matrix (a,;) is invertible, is an ellipse, parabola or hyperbola
according as a,,a4,— @, is positive, zero or negative, respectively.

2. Show that the affine polarity of o7 (R?) (see exercise 5 of § 5.5) which sends
the point (x,, ;) # (0, 0) into the line x, X, +2,X,+1=0 has empty conic.
(This polarity is the product of a reflexion in the origin followed by the
polarity with conic X2+ X,2=1.)

3. If Q(o) is a projective quadric in Z(V) contained in a hyperplane of Z(V),
show that ¢)(o) is precisely the set of all points in V. (Hint: consider

the lines which meet @(o) but do notliein H.) (Note that this gives all the
projective quadrics of Z(V) that determine the empty quadric in A.)

4. What are the possible ranks of the quadrics described in exercise 3 when
(i) F=R, (ii) F=C, (iii) F=F,?

5. If @ is a non-empty non-degenerate quadric in 2 (V) contained in a pair of
hyperplanes show that either (i) pdim V=1 and @ consists of two points
or (ii) the ground field is F3, pdim V=2 and @ consists of four points.

6. Use exercise 5 above and exercise 17 of § 5.6 to find all the degenerate pro-
jective quadrics that are contained in a pair of hyperplanes.

7. Use exercises 3, 5, 6 to find all the affine quadrics in A that lie in a hyper-
plane of A.

8. If F=F; and @’ is an affine conic in A consisting of two points, show that
@’ has three “‘completions” to #(V) all of which are non-degenerate.

5.8 Sesquilinear Forms

We have seen that to every non-degenerate bilinear form on V there
are associated two correlations | (o), T (o) of (V). On the other hand,
we know from § 4.7 that a correlation is but a special case of an anti-
automorphism. We shall now show that there exists a generalization
of bilinear form that gives rise to anti-automorphisms in the same way
that bilinear forms yield correlations.

DreriniTION. Let V, V' be vector spaces over fields F, F', respect-
ively, and { a mapping of F onto F’'. Then a mapping f of V into
V' is semi-linear with respect to { if

L1, (a+b)f = af+bf,

L(0).2. (za)f = (20)(af),

foralla, bin V and all x in F.
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If Vf=0 the mapping { plays no role. But if Vf#0 we may prove
exactly as before (p. 55) that

(x+y) = x{+yl,
(xy)l = (®{)(y?)

for all z, y in F. It follows that { is an isomorphism of F onto F’ (cf.
exercise 1 of § 3.6 (p. 62)).

Let f be a semi-linear mapping of V into V* with respect to an auto-
morphism { of F. We define a mapping o by the rule

o(a, b) = b(af)

foralla,bin V. Since af € V*, o is linear in the second variable, but is
semi-linear with respect to { in the first variable. Explicitly,

B({).1. o(xa+yb, ¢) = (x{) o(a,-c)+ (yL) a(b, c),
B.2. o(a,xb+yc) = xo(a, b)+y o(a, c),

foralla, b,cin V and all z, y in F. Such a mapping o is called a left
sesquilinear form with respect to .

We may interchange the two variables and define a mapping = by the
equation

7(a, b) = a(bf).

Then 7 is called a right sesquilinear form with respect to {. The theory
of these is exactly like that of the left sesquilinear forms. We shall
consider only the latter and shall usually omit the qualifying adjective
“left”. Clearly, a sesquilinear form with respect to the identity map-
ping is the same as a bilinear form.

It is worth noting that if o is a left sesquilinear form with respect to
{ then o{~1! is a right sesquilinear form with respect to {~. (As usual,
o{~1 denotes a mapping product: thus (ol !)(a,bd) = o(a, b){"1.)
More generally, if o is semi-linear with respect to ¢ in the first variable
and semi-linear with respect to n in the second variable, then on~! is
left sesquilinear with respect to é7~! and of~? is right sesquilinear with
respect to n£~1. As far as ‘“‘orthogonality’’ properties are concerned
these forms would give no further generality.

Let o be a (left) sesquilinear form with respect to {. Then we define
o just as before by the equation

o(a, b) = b(ag)

and check that ¢ is a semi-linear mapping with respect to { of ¥ into
V*. In order that the companion mapping ¢ should take V into V* we
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must use the form o{~?1, which is right sesquilinear with respect to {2,

and set
a(a, b){~! = a(bs)

for all @, bin V. Then ¢ is semi-linear with respect to { 1.

The notion of orthogonality with respect to ¢ and the mappings | (o),
T (o) are defined exactly as in the bilinear case. Al the results of § 5.2
remain true for sesquilinear forms. Moreover the proofs are precisely
as before. In establishing the sesquilinear version of Proposition 4 one
needs the extension of Theorem 1, Chapter IV (p. 66), to semi-linear
mappings, but this is quite obvious. We then define the rank of o to be
dim V —dim V! and say that ¢ is non-degenerate if V'+=0. Theorem
1 now gives the relationship between the anti-automorphisms | (¢) and
T (o) in the non-degenerate case. If we assume that pdim V =2 then
any anti-automorphism of (V) is of the form 2(f) o, where fis a semi-
linear isomorphism (p. 85) and so can be expressed as | (o) or T (o) in
view of the extended Lemma 1.

The question of orthosymmetry for sesquilinear forms is more subtle.
The condition | (o)= T (o) is equivalent to #(g)= () as before. We
now need to assume that ranks>2. Then arguing as in Lemma 4
(p- 97), we deduce g=26 for some z2#0. (Note that we now invoke
Proposition 1 of Chapter III (p. 45) for semi-linear isomorphisms: the
validity of this has already been remarked upon (p. 57).) Two things
now follow: first of all, {={"1, i.e., {2=1, the identity mapping on F;
and secondly

o(a, b) = 2(o(b, a)l) = 2(z{)o(a, b)
shows that z(z()=1, the identity element of F.
If o(a, @) =0 for all a then we shall see below (Lemma 6) that o is

actually alternating. Suppose now, however, that o(c,c)=w#0 for
some ¢. Then w=2z(w{) and so if we write

7(a, b) = (wl) o(a, b)
for all a, b, we have
7(a, b) = 7(b, a){
for all a, b.

DerFINITION. A sesquilinear form o with respect to ( is called
hermitian if

a(a, b) = atb, a)l
for all @, b. (If 0 #0 this implies that {2=1.)

LeEMMA 6. If the sesquilinear form o satisfies o(a, a)=0 for all a in V,
then o 1s bilinear (and hence alternating).
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PROOF. Foranye,bin V,
0 =o(a+b,a+b) = o(a, b)+a(b, a)
and hence, for all z in F,
zo(a, b) = o(a, 2b) = —o(xb, a) = — (x{)a(b, a) = (x{)o(a, b).
If 0 #0 we conclude x =z{ and so ¢ is bilinear.
To sum up, we have proved

ProPOSITION 14. An orthosymmetric sesquilinear form of rank =2
is either alternating or is a scalar multiple of a hermitian form.

The lemma shows that if we wish to extend the structure theorems
of § 5.4 to sesquilinear forms we need only consider forms that are not
alternating. Theorem 3 is true for (non-alternating) hermitian forms and
Theorem 4 1is true for arbitrary (but non-alternating) sesquilinear forms.
The proofs of both theorems are unchanged up to the point where o is
assumed to be non-zero and alternating on [a]*. But this implies that
the automorphism of the restriction of o to [a]*, and so also of o itself,
is the identity mapping. Thus ¢ is bilinear and we are genuinely back
in the situations of the earlier theorems.

We have held back till now the obvious remark that for the fields F,,
(p any prime), @ and R all sesquilinear forms are necessarily bilinear
(because the only automorphism of each of these fields is the identity
mapping). The field € has one non-identity automorphism of outstand-
ing importance: this is complex conjugation. It is the only non-
identity automorphism of € that leaves all the real numbers fixed (cf.
exercise 1, § 3.5, p. 58). When hermitian (but not bilinear) forms on
complex vector spaces are under consideration it is usual to make the
convention that the relevant automorphism is complex conjugation
(denoted by = — Z).

If o is a hermitian form on the complex vector space W (with respect
to complex conjugation) then by the generalized version of Theorem 3
there exists an ordered basis (a,, . . ., a,) such that o(a;, a;)=0 for ¢ #.
Under what circumstances can we choose the basis so that in addition
ala, a;)=1for all i We look for scalars z,, . . ., x, such that

o(xay, 1) = Zawo(ay, o) = 1.

These can be found if, and only if, each o(a,, ;) is real and positive.

But this implies that o(a, @) is real and positive for all non-zero vectors
ain W.

DEerFINITION. A hermitian form o on a complex vector space W with
respect to complex conjugation is called positive definite if a(a, a) > 0 for
all non-zero vectors a in W,
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Let V be a real vector space and V, its complexification. Ifcisa
bilinear form on ¥V we may extend o to a mapping o, by the rule

ol@+1ib, c+id) = o(a, c)+o(b, d)+i(a(a, d)— (b, ¢))

for all a+¢b, c+id in Vi, The reader may check that o, is a ses-
quilinear form on V., (with respect to complex conjugation). We
shall call o, the complexification of o.

The above discussion shows that o, is positive definite if, and only
if, the real form ¢ is positive definite.

The reader should compare the extension o, with the extension ¢’
used in § 5.6 (p. 113). Of course ¢’ is bilinear, but the property of
positive definiteness is lost in the passage from o to o’.

EXERCISES

Notation. If A=(a;,) is a matrix with elements a,; in F and if { is an
automorphism of F, then A{ denotes the matrix (a;,{).

1. Let o be a sesquilinear form with respect to { on V and (a,,...,a,) an
ordered basis of V. Define the matrix S of o with respect to (ay, ..., a,)
as for bilinear forms. Prove that if

= (T, %), Y= Y- Yn)
are the coordinate rows of a, b with respect to (a,, ..., a,), then
a(a, b) = (x{)Sy'.
2. Show that S is the matrix of a hermitian form if, and only if,
8 = (8y)°

for some automorphism { satisfying {2=1. (We call such a matrix §
hermitian.)

3. If ¢ is an alternating bilinear form on the real vector space ¥ show that
g, is 7 times a hermitian form on Vg, (2= —1).

4. Let o be a sesquilinear form on V with respect to { and f a linear auto-

morphism of V. If (a;) is an ordered basis of V and

(f; (@) = P, (o5(a)) =8,
prove that f satisfies
o(af, bf) = o(a, b)
if, and only if,
S = (PSP
(We call such a mapping f an automorphism of the sesquilinear space
(¥, 0).)



CHAPTER VI

Euclidean Geometry

6.1 Distances and Euclidean Geometries

DeriniTiON. If V is a real vector space and o is a positive definite
bilinear form on V, then (V, o) is called a euclidean space.

For any vectors a, b in a euclidean space (V, o) we define
la] = +Vo(a,a), d(a,b) = [a—b]

and call |a| the length (or norm) of a, d(a, b) the distance from a to b.

Then d has the following basic properties: Foralla, b, cin V,

D.1. d(a, d) = d(b, a);

D.2. d(a, b) = 0 and d(a, b) = 0 if, and only if, a = b;

D.3. d(a, c) < d(a, b)+d(b, c) (the triangle inequality);

D.4. d(a+c,b+c) = d(a, d);

D.5. for any real x, d(za, zb) = |z| d(a, b);

D.6. d(a+b, 0)2+d(a—b, 0)2 = 2(d(a, 0)2+d(b, 0)?)

(the parallelogram law).

D.1, D.2, D.4 and D.5 are all obvious; D.3 is proved below and D.6
follows from an easy calculation which we leave to the reader. The
reason for calling D.6 the parallelogram law is plain: the affine points
a, 0, b, a+b are the vertices of a parallelogram and D.6 asserts that the
sum of the squares of the two diagonals equals the sum of the squares
of all four sides.

DeriniTioN. Let V be a real vector space and d a mapping of the
ordered pairs of vectors of V into R. If d satisfies D.1-D.6, then d is
called a distance on V.

We remark in passing that a mapping d which satisfies D1, D.2, D.3
is called a metric on V and (V, d) is a meiric space. If the metric d
also satisfies D.4 and D.5 then (V, d) is called a normed space and the
mapping @ — |a| where |a| =d(a, 0) is its norm. (Cf. exercises 1, 2
below.)

125
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LemMma 1. (ScEWARZ’S INEQUALITY.) For all a, b in the euclidean
space (V, a),
|o(a, &) < [a] [|B].

Equality holds if, and only if, a and b are linearly dependent.

PROOF. Theresultis clear whena=0. Soassume ||a| #0. Wehave
o(xa—b, xa—b) = |al|%x% — 20(a, b)x + ||b||2, and since the left-hand side
is never negative, the substitution z=o(a, b)/|a||? gives o(a, b)?<
l|a||2]|6]|2. Further, equality holds if, and only if, b=za.

PROOF OF D.3. Foranya,bin V,

|a+b||2 = o(a+b,a+bd)
]+ ]2 +20(a, 5
lal?+ [b2+2]a [6], by Lemma 1,
= (lal + o]
Thus || +b| < |a|| + ||b]|, which is equivalent to D.3.

I IA

In addition to the distance between two vectors in a euclidean space
we may also introduce the angle between them.

Let cos 6 be defined for all real 6 as the sum of the series

62 64
1-— a + ? —

and recall from real analysis the fact that cos is a strictly decreasing
mapping of the closed interval [0, ] onto the closed interval [ -1, 1].
Thus we may find a unique 6 in [0, 7] satisfying the equation

cos 0 = o(a, b)/|al |b]

for any given non-zero vectors a, b in (V, o) (because the right-hand side
is in [—1, 1], by Lemma 1). The real number 6§ is called the angle
between a and b. Note that the special case §==/2 explains the ter-
minology of § 5.2!

Every positive definite bilinear form determines a distance. Con-
versely, suppose a distance d is given on the real vector space V. If
we set o(a, a) =d(a, 0)® and

20(a, b) = o(a+b, a+b)-o(a, a)—a(b, b),

then it may be shown (cf. exercises 4, 5 below) that o is a positive
definite bilinear form on V so that (V, o) is a euclidean space. We shall
also write this as (V, d). It is therefore immaterial whether we use a
positive definite bilinear form or a distance to define euclidean space.
If o is a positive definite bilinear form on V, then we know from
Proposition 9 of Chapter V (p.106) that ¥V has an ordered basis (a,, . . ., a,)
such that the matrix of o with respect to (a,, . . ., a,) is I,, the identity
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matrix. This basis clearly consists of mutually orthogonal vectors of
length 1. We call such a basis a cartesian basis of (V, o). If d is the
distance determined by o and a=3 %@, b=> y,a,, then

d(a) b) = + \/(xl_yl)2+ M (xn_'yn)z'
If the vectors a, b are non-zero then the angle § between them is given by

TiY1t -+ TnYn
+V @2+ 2R+ )
Let (V', o') be a second euclidean space, also of dimension %, and d’

the corresponding distance. If fis a linear isomorphism of V onto V’,
then it is easy to verify that the condition

o(a, b) = o'(af, bf)
for all @, b in V, is equivalent to
d(a’ b) = dl(af’ bf)

for all @, bin V. Hence f is an isomorphism of (¥, ¢) onto (V’, ¢') if,
and only if, f preserves distances. Moreover, f has this property if,
and only if, f maps any cartesian basis of (V, o) onto a cartesian basis
of (V', o).

Consider now a coset S=a+ M in a real vector space V and suppose
d is a distance on M. We define a mapping, also denoted by d, of the
ordered pairs of vectors of S into R by

cos 0 =

d(a+m,, a+my) = d(my, my).

This definition is independent of @ because distance is invariant under
translations (D.4). We shall call this new mapping a distance on the
coset S. It is clear that d yields a mapping of the ordered pairs of
points of &/(S) into R, namely

({u}, {v}) — d(u, v).
We also denote this mapping by d and call d({u}, {v}) the distance
between the points {«} and {v}.

Observe that a bilinear form on M could not have been extended
unambiguously in this way. This is the reason for preferring the notion
of distance to that of bilinear form in geometrical contexts. Note also
that if the distance d on M coincides with the restriction to M of a
distance d’ on V, then d’ and d also coincide on S.

DEeriniTION. A real affine geometry o/(S) together with a distance
d on /(S) is called a euclidean geometry and will be denoted by .27(S8, d).

If T is a coset contained in 8, the restriction of d to .« (7) is a distance
on &/(T) and (T, d) is said to be a subgeometry of <Z(8S, d).
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We may introduce angles in a euclidean geometry as follows. Given
a point A in the euclidean geometry 2/ (S, d) and two further points B,

C, both distinet from A, we define the angle BQC to be the angle be-
tween the vectors b — a and ¢ — a where a, b, ¢ are the vectors for 4, B, C,
respectively.

Now let L, L’ be two lines in &/(8, d). Through any point 4 on L
we take the line L” parallel to L’ and choose points B, C on L, L”, re-

spectively, both distinet from 4. As B and C vary, so BQC takes just
two values in [0, ] and the sum of the two values is 7. We shall call
the value in [0, 7/2] the angle between L and L’. Thus the cosine of
the angle between L and L’ is given by |a(u, u')|/|«| [%'|, for any
u# 0 in the subspace belonging to L and any »’'# 0 in the subspace be-
longing to L’. (Here o is the bilinear form giving the distance d.)

An isomorphism « of a euclidean geometry 7(S, d) onto a euclidean
geometry 2/(S’,d’) is an isomorphism of affine geometries that pre-
serves distance, i.e.,

d(u, v) = d'(uc, va)

for all w, vin S.

ProrosiTioN 1. An isomorphism of euclidean geometries is an
affinity whose underlying linear isomorphism is an isomorphism of
euclidean spaces.

PROOF. Suppose dim S>2 and that M, M’ are the subspaces be-
longing to the cosets S, §’, respectively. By Theorem 5 of Chapter 111
(p. 56), a=.7(t_,g t,,), Where g is a semi-linear isomorphism of M
onto M’. Since R has only the identity isomorphism (cf. p. 52), ¢
must be linear. Hence « is an affinity and g is an isomorphism of
euclidean spaces.

It only remains to prove the proposition when dim § equals 0 or 1.
The former case is trivial. Assume that b is a non-zero element of M
and that aa=a’, (@a+b)a=a’+b". Then (a+xb)a=a'+x'b" where
x — ' is a one—one mapping of R onto R. But « preserves the dis-
tances between a, a +b and a +zb so that

|¢] = |2'| and [|z—1| = |2’ —1].
This implies that ' =z and so completes the proof.

In order to define coordinate systems for euclidean geometries we
must first impose a natural euclidean structure on R". We use the
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unique bilinear form o, on R" for which the standard basis (e, .. ., e,)
is a cartesian basis of (R", 05). Explicitly, we define

oo((Tys - - o5 Zy), (Y15 - - - Yn)) = TyY1+ -+ Y,

and denote the corresponding distance by d,,.

DerFiNiTION. If.27(S, d)is a euclidean geometry of dimension n, then
a euclidean isomorphism « of &7(8, d) onto &/ (R", d,) is called a euclidean
coordinate system for o/ (S, d).

The euclidean frame of reference corresponding to the coordinate
system « is the ordered (n+ 1)-tuple of points (P,,..., P,, @) where
Pa={e},i=1,...,n and Qa={(0, ..., 0)} (cf. p. 43).

If M is the subspace belonging to S we may express the condition

for (P, ..., P,, @) to be a frame of reference in a different way. Let
P1s - - -» Pa» q be vectors for the points Py, . . ., P,, @, respectively. Then
(Py, ..., Py, Q) is a euclidean frame of reference if, and only if,
(p1~¢, ..., Po—q) is a cartesian basis of M (cf. exercise 4 of § 2.2,
p. 20).

ExERcISES

1. Define a mapping d of the ordered pairs of vectors of the real vector space
V by setting d(a, a)=0 for all a and d(a, b)=1 whenever a#b. Verify
that (V, d) is a metric space but not a normed space.

2. Let a=(x,,...,2,), b=(yy, ..., y,) be elements of R" and define
dy(a, b) = (|Jzy—yy|?+ - - + (20— ya|P)V/?

where p>1 is a real number. Show that d, satisfies all the rules D.1 to
D.5, but satisfies D.6 if, and only if, p=2. (Minkowski’s inequality

(Z |xi+?/¢|”)”” < (Z |xi|”)”” + (Z l?li|”)1“’
(for p > 1) may be assumed.)

3. Let a, b be vectors in the euclidean space (¥, d) and z, y real numbers such
that x+y=1. Prove that

d(za+yb, a): d(b, za+yb) = |y|:|=|.
(Observe that this is consistent with our remark on p. 29.)

4. Let d be a mapping into R of the ordered pairs of vectors in the real vector
space V. Define a mapping ¢ by

o(a, b) = Hd(a+b, 0)2—d(a, 0)2—d(b, 0)2).
If d satisfies rule D.6 (p. 125), prove that
o(a; +ay, b) = o(ay, b)+o(ay, b)



130 LINEAR GEOMETRY CHAP. VI

and deduce that
a(ra, b) = ro(a, b)
for every rational number 7.
(Similar results apply to the second variable. Hence o is a bilinear

mapping of V regarded as a vector space over Q. Note that V is neces-
sarily infinite dimensional over Q if V' #0.)

5. Using the same notation as in exercise 4, assume now that d satisfies all
the rules D.1-D.6. Prove that, for fixed @, bin V,

x — o(za, b)

is a continuous real function. Deduce from this and exercise 4 that o is a
bilinear form on the real vector space V.

6. Let ABC be a triangle in a euclidean plane with distance d. Prove that

S
2d(A4, B) d(4, C) cos BAC = d(A4, B)*+d(4, C)2—d(B, C).

7. If d(a, ¢)=d(a, b) +d(b, ¢) show that a, b, ¢ are collinear in (8, d).
If ¢ is a one-one mapping of the points of .27(S, d) onto the points of
(8', d') which preserves distance, show that ¢ induces a euclidean iso-
morphism of &/(8S, d) onto (S, d').

6.2 Similarity Euclidean Geometries

We have constantly used the embedding of affine geometry in pro-
jective geometry. If our embedded geometry is euclidean, we naturally
hope to find an interpretation of the euclidean structure in projective
geometrical terms.

Let us recall some facts from § 2.6. Suppose H is a hyperplane in
the real projective geometry Z(V) and A is the set of subspaces of V
not contained in H. Choose ¢ to be any vector not in . Then every
coset of H can be written uniquely in the form zc+ H, for x in R. To
each z in R* (the non-zero real numbers) we associate the mapping
@z S —[8] of & (xc+ H) onto A. Then (A, ¢.) is an aftine geometry
in the generalized sense and all these geometries, for varying non-zero
z, have the same basic geometric operation of inclusion. This is
equivalent to the fact that, for all  in R*, ¢,¢, " is an affine isomor-
phism of .«/(c+ H) onto /(xc+H). Thus all the geometries (A, ¢,)
could be identified and A itself viewed unambiguously as an affine
geometry.

Now suppose d is a distance on H. Then each coset zc+ H has on
it a distance which we shall denote by d,. We thus obtain a family of
euclidean geometries .27(xzc+ H,d,) and are naturally interested in
knowing whether each ¢ ¢, ! preserves distance.
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Choose a,=c+h; and ag=c+hyin c+ H. Then a; ¢, ' =xc+2h,
for :=1, 2 and hence

dr(a1919: 71, Aoprp,7Y) = || d(hy, ho) = || dy(ay, ag)-

It follows that ¢ ¢, ! is nearly, but not quite, a euclidean isomor-
phism : it distorts distance by the constant factor |z|. Our calculation
suggests the following useful generalization of euclidean geometry.

DeriniTION. Two distances d, d' on an affine geometry 2/(S) are
called similar if d’ = rd for some positive real number 7.

Similarity is an equivalence relation on the set of all distances on
oZ(S). We shall denote the class containing d by (d).

DeriNiTION. Let S be a coset in the real vector space V and D a
similarity class of distances on /(S). The affine geometry /(S) to-
gether with D is called a similarity euclidean geometry and will be de-
noted by &/(8S, D).

If T is a coset contained in S, the restriction of all the distances in D
to «Z(T) is a similarity class of distances on & (7T). We call &/(T, D)
a subgeometry of 2/(8S, D).

It is clear that a euclidean geometry (S, d) gives rise to a similarity
euclidean geometry 27(S, (d)).

We now introduce a generalization just as we did for projective and
affine geometries. Let ¢ be a one-one mapping of some o/(S) onto a
set A. Ifd is a distance on .Z(S) then ¢ enables us to define a distance
d, on A: we simply set

do(Pe, Qp) = d(P, Q)

for all points P, @ in &Z(S). If D is a similarity class of distances on
&/(8) then D, denotes the corresponding class on A.

The affine geometry (A, ¢) together with a similarity class of distances
D, is called a similarity euclidean geometry and will be denoted by
(A, Dy).

We naturally view 2/(S, D) itself as a geometry in this generalized
sense by taking ¢ to be the identity mapping.

An isomorphism o of the similarity euclidean geometry </(S, D) onto
the similarity euclidean geometry 2/(S’, D’) is an affine isomorphism
such that, for any d in D, the mapping d’ defined by

d'(ue, va) = d(u, v)
is a distance in D’.

Returning to the embedding situation discussed above, we have a
family of similarity euclidean geometries &7 (xc + H, (d,)), one for each x
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in R*. Our calculation may be interpreted as showing that each
19, ! is a similarity euclidean isomorphism and so the distance
classes (d,),, and (d,),, on A are equal. If D is the distance class of
d on H then we also denote by D this unique distance class on A, and
we shall refer to (A, D) as the similarity euclidean geometry in P(V)
determined by the hyperplane H and the distance class D.

We must now ask what it means projectively to be given a distance
class D on o&/(H). If d and d' are distances arising from positive
definite bilinear forms o and o', respectively, then it is easy to check
that, for any r> 0, d’=rd if, and only if, o’ =r%6. Hence the bilinear
forms associated with D all determine the same polarity of Z(H). The
quadric of this polarity is, of course, empty.

DEerFiNITION. A polarity of a real projective geometry is called
definite if the corresponding quadric is empty.

Prorosition 2. The real polarity | (o) is definite if, and only if, the
bilinear form o is either positive definite or negative definite.

PROOF. The “if” part is obvious. Assume therefore that o(v, v)#0
for all non-zero vectors v.

If there exist vectors @ and b such that o(a, @) > 0 and o(b, b) < 0, then
a(a, b)2—o(a, a)o(b, b) > 0 and therefore the equation

o(Xa—-b, Xa—b) = 0,
ie.,
a(a, @) X2 —20(a, b)X +a(b, b) = 0,

has real roots. If x is one such root, then we must have b= za, whence
a(b, b) =x%s(a, a) =0, which is a contradiction. Hence o is either
positive definite or negative definite.

It follows from Proposition 2 above and Lemma 4 of Chapter V
(p- 97) that a definite polarity | determines a unique similarity class
of distances D. Hence our similarity euclidean geometry (A, D) is
determined in P(V) by H and the definite polarity | of P(H). We also
use the notation (A, | ) for (A, D). Moreover, every similarity eucli-
dean geometry is isomorphic to such a geometry (A, |).

We can define in (A, D) ratios of distances by means of the class D.
We may also define angles in exactly the same way as for euclidean
geometry since the expression for cos 8 is unaltered when d is multi-
plied by an arbitrary positive scalar. Both these notions may be in-
terpreted in Z(V) by using the so-called cross-ratios (cf. exercises 5, 6
below).

Suppose that L, L" are linesin (A, | )and that the angle between them
is /2. This case may be interpreted without cross-ratios. By the
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definition given on page 128, this means that the points at infinity on
the two lines are orthogonal with respect to | ,i.e., (LN H)*>L N H.
More generally, we call the elements M, M’ of (A, | ) perpendicular if
one of M N H, (M’ n H)* contains the other.

EXERCISES

1. Let Ay, A, Ay, A3 be distinct collinear points in a projective geometry
P(V) over an arbitrary field F. Choose homogeneous vectors such that
[ag)=4,, [a;]=4,, [as+a,]=4, and [za,+a,]=A;. Show that z is
uniquely determined by the points 4,4, 4,, 4,, A; (in that order). The
scalar x is called the cross-ratio of the quadruple and will be written
CI‘(AO, Al; A27 AS)

If 7 is a collineation of 2(V) prove that

er(Agm, Aym; Agm, Agm) = er(do, Ay Ay, 43)
and deduce that if B;=[y;a,+24a,], ¢=0, 1, 2, 3, are distinct points, then

(Y022 — Y220) (Y1723 — Ya?1)
cr(B,, B,; B,, B;) =
(Bo. By: Ba. By) (Y023 — Ya2o) (Y122 — Ya?1)
When F is not of characteristic 2 show that
cr(dg, Ay; Ay, Ay) = er(dy, 4,5 A3, 4,)

if, and only if,
cr(Ag, A5 4y, 43) = —1

and that this is precisely the condition for (4,, 4,; A,, A;) to be a har-
monic range (see p. 40).

2. Let Z(V) be a real projective geometry and (A, D) the similarity euclidean
geometry in (V) determined by H and the distance class D on &/(H).
If A,, A,, A, are distinct collinear points in (A, D) and 4, is the point at
infinity on the line 4,4, prove that

|cr(A0, 4,; 4,, Aa)l = d(4,, Aj)/d(A,, A,)
for every d in D.

3. Let r be a given positive real number and C a point in a euclidean geo-
metry &7(S,d). We define the sphere with center C of radius r to be the
set of all points P satisfying d(P, C)=r. Find the equation of this sphere
with respect to a euclidean coordinate system and deduce that it is an
affine quadric. Show also that the quadric is non-degenerate and that
its center is C.

If d’' is a distance similar to d, then the quadric is still a sphere with
center ' in Z(8, d’) but possibly of different radius. We may therefore
define a set of points in a similarity euclidean geometry 7(S, D) to be a
sphere if the set is a sphere in 2/(S, d) for any d in D.

4. Let (A, 1) be the similarity euclidean geometry determined in (V) by
H and the definite polarity | = | (¢). If @() is a projective quadric
prove that Q(z) N A is a sphere if, and only if, @(r) contains more than
one point and | (r4)= | (o).
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5. Let (A, 1) be a similarity euclidean geometry as in exercise 4. Given
points A;, 4,, B,, B,, where A,# A, and B, # B,, describe a purely pro-
jective geometrical method of calculating the ratio d(4,, 4,)/d(B,, B,).
(Use exercises 2 and 4.)

6. Let H be aline in a real projective plane #(V) and | (o) a definite polarity
in #(H). Complexify V and extend o to o’ asin § 5.6 (p. 113). Then the
quadric ¢(¢’) consists of two points I and J. (These are called the
“circular points at infinity” for the similarity euclidean plane (A, | ).)

Given a point 4 in #(V) but not in H, show that a coordinate system
of (V) may be chosen so that A has coordinates (1, 0, 0) and in the corres-
ponding coordinate system of #(V (,), I and J have coordinates (0, 1, ¢),
(0, 1, —1), respectively.

Using this coordinate system, prove the following result: If B and C
are points of (V) distinct from each other and from 4, let B'=4AB N H
and C"’=A4C N H. Then the real part of er(I,J; B’, (') is cos 26, where

A\
0 is the angle BAC in the similarity euclidean plane (A, | ).

7. Let (A, 1) be the 3-dimensional similarity euclidean geometry deter-
mined by H and | in (V). Given a plane M and a point P not in M,
prove that there is a unique line through P perpendicular to M. This
line is called the normal to M through P. Show that all the normals to
M are parallel.

If M’ is a second plane, then M’ is perpendicular to M if, and only if,
every normal to M is perpendicular to every normal to M’.

6.3 Euclidean Quadrics

We call an affine quadric in a euclidean geometry a euclidean quadric.
In § 5.7 (Proposition 12) we saw how to choose an affine coordinate
system for which the equation of a given affine quadric reduces to one
of two simple types. In this section we shall show that the same reduc-
tion can be achieved by a suitable choice of euclidean coordinate system.

We begin by considering two symmetric bilinear forms o, 7 on the
same real vector space V and suppose that o is positive definite. (In
the discussion up to Lemma 2 the ground field could be quite arbitrary
and we need only assume that o is non-degenerate.) Our first aim is to
find a basis of V whose vectors are mutually orthogonal with respect to
o and T simultaneously.

We may define unambiguously a linear mapping f of V into V by
means of the equation

a(af, b) = 7(a, d) (1)

for all @, bin V. This may be seen quite simply in terms of matrices:
for if 8, T are the matrices of o, 7, respectively, with respect to an
ordered basis (vy, ..., ,) of V, then the matrix 4 of f must satisfy

AS =T or A=T8"?
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because § is invertible. Alternatively we may note that, as ¢ is non-
degenerate, the mapping ¢ defined on p. 91 is an isomorphism and
f=1¢~!. From the symmetry of ¢ and = we deduce

G(Gf, b) = 0‘((1, bf) (2)

foralla,bin V.

Conversely, if a symmetric bilinear form ¢ and a linear mapping f
satisfying equation (2) are given, then we may define a symmetric
bilinear form + on ¥ by means of equation (1).

DErFINITION. A linear mapping f satisfying equation (2) is called o-
symmelric.

Since (V, o) is a euclidean space we observe that a linear mapping f
is o-symmetric if, and only if, it has a symmetric matrix with respect to
any cartesian basis of (V, o). (See also exercise 1 below.)

It is helpful to interpret the mapping f in terms of the projective
geometry (V). When ¢ and = are both non-degenerate they deter-
mine polarities whose product | (7) ] (o) is a collineation which is
precisely Z(f). Our problem is to find a simplex which is self-polar
with respect to | (o) and | (r) simultaneously. (Cf. exercise 15 of
§ 5.6.) The vertices of such a simplex must be fixed points of Z(f).
This leads to the following concept (cf. exercise 4 of § 4.2).

DeriniTION. Let V be a vector space over an arbitrary field F and
f a linear mapping of ¥ into V. A non-zero vector a of V is an eigen-
vector of f if [a]f < [a]. In other words, a is an eigenvector of f if
a+#0 and there exists a scalar z in F such that af=za. The scalar
corresponding to such a vector a is called an eigenvalue of f. We call
Ker(f—x1) the eigenspace of f corresponding to  and shall write this
as E_(f) or as E, when f is understood.

Lemma 2. Let (V, o) be a (non-zero) euclidean space. If f is a
a-symmetric mapping of V into V then f has eigenvectors in V.

Our proof depends on the following important general fact.

PropositioN 3. If f is a linear mapping of the (non-zero) complex
vector space W into itself, then f has eigenvectors in W.

PROOF. Since W is finite dimensional there is a least positive integer
r such that f7 is linearly dependent on =1, ..., f, 1y, say
fr=ofrt+ - +ely.
If we put
m(X) = X"—¢, X7 1— ... —¢,



136 LINEAR GEOMETRY CHAP. VI

then we may express this dependence by writing
m(f) = 0.

The equation m(X)=0 always has a complex root x and we have the
corresponding factorization

m(X) = (X —z) n(X) (3)

in C[X]. Substituting f in equation (3) and using rules A.1 to A.4 in
the linear algebra £ (W, W) (cf. p. 68), we obtain

(f—=ln(f) = 0.

Now f-=z1 cannot be an isomorphism as otherwise n(f)=0. This
would contradict the minimal character of the degree of m(X). Hence
there exists a non-zero vector ¢ in W such that cf=zc.

PROOF OF LEmMMA 2. Extend f to the complexification V, of V
by the rule (u+iv)f=uf+1i(yf). Clearly the extended f is a linear
mapping of V¢, into V(,. By Proposition 3 there exists an eigenvector
c¢=a+1b with eigenvalue x. We have to show that x is real.

Consider the extended bilinear form ¢ on V, as defined in § 5.6
(p. 113). The equation

o (wf, w') = o'(w, wf)
is now true for all w, w’" in V,. Hence, in particular,
G,(afa ¢) = 0/(67 Cf)

wherec=a—1b. Butcf=xc and so ¢f =Z¢ (where Z denotes the complex
conjugate of ). Therefore

Zo'(C, ¢) = zo'(C, ¢),
where o'(¢, ¢) =0(a, @)+ a(b, b)) > 0. This implies that x is real.

The equation ¢f=xc now gives af=xa and bf=ab. Since ¢ is non-
zero, either a or b is an eigenvector of fin V.

Lemma 3. If f is a o-symmetric mapping on V, then
[alf < [a] implies [a]f < [a]"
PROOF. If b €[a]t, then
a(a, bf) = o(af, b) = xo(a,b) = 0
and so bf € [a]*.
ProrosiTiON 4. If (V, 0) is a euclidean space and f is a o-symmetric

linear mapping of V into V then there is a cartesian basis of (V, o) con-
sisting entirely of eigenvectors of f.
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PROOF. By Lemma 2 we can find an eigenvector a, of f. Since o
is positive definite we may choose a, so that o(a,, a,)=1. The sub-
space [a,] is non-degenerate with respect to ¢ and therefore

V = [a,] D [a,]*”

(by Proposition 5, Chapter V, p.96). Our proposition now follows by
Lemma 3 and induction on the dimension of V.

THEOREM 1. If o and + are symmetric bilinear forms on the real
vector space V and o is positive definite, then there exists a cartesian basis
of (V, o) whose vectors are mutually orthogonal with respect to 7.

PROOF. Let f be the o-symmetric linear mapping determined by o, 7
according to equation (1) above. Then by Proposition 4, (V, o) has a
cartesian basis (a,, - . ., a,) such that

af =za; for i=1,...,n
Thus
(2, a;) = o(a,f, a;) = zo(ay, a;) = 2,y

and so a4, . . ., a, are mutually orthogonal with respect to 7.
As we might expect, Theorem 1 may be expressed in terms of matrices.
Recall from p. 134 that if o, 7 have matrices 8, T, respectively, then f

has matrix A =T 8-!. The cartesian basis vectors of Theorem 1 may
be obtained by finding their coordinate rows ¢, which satisfy

cd = zc;
or equivalently
CiT = xiCiS.

The scalars z; can be found by using the routine method of solution given
for linear equations in § 3.3. Those who are familiar with determinants
will recognize that the scalars z; are also given by the condition

det (T'—x,8) = 0
or det (4 —z,1) = 0.

They are naturally called the eigenvalues of the matrix 4.
As in the proof of Theorem 1, the rows c; satisfy

cSct = 8; and ¢,Tct = x,5;;
In other words, if the matrix P has rows ¢,, ..., ¢,, then
PSPt=1 and PTP = diag (x;,...,%,)

(see p. 104). Thus Theorem 1 may be regarded as a result about the
simultaneous reduction of two matrices to diagonal form.
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As an illustration of these comments consider the symmetric matrices

2 21 3 4 2
S=12 5 2], T=\|4 9 4).
1 2 1 2 4 2

The required eigenvalues are the roots of the equation
3—2X 4-2X 2-X

4—-2X 9-5X 4-—-2X
2—X 4-2X 2-X

which, by simple row operations, gives

1-X 0 0
0 1-X 0
2—X 4-2X 2-X

=O’

ie., (1-X)?)(2—-X)=

Corresponding to the root 1 the matrix equation (X,, X,, X )(T'—S)
=0 yields X;+2X,+X;=0. One solution is d;=(1, —1,1). We
check that d, S d,!=2 and so we ‘“‘normalize” d, by dividing by V/2 and

setting ¢, = (1, =1, 1).

\/_
We require another solution d, which is also S-orthogonal to d,, i.e.,
dy,S d,'=0. Thus d, satisfies X; +2X,+ X;=0 and X —-X,=0. We

may take do=(1, 1, —3). Asd,S d!=2 we set 02—\/_ (1,1, —3).
Corresponding to the root 2 we solve (X,, X,, X, }(T -28)=0, i.e.,
—X,=0and —X,=0. So we may take c3=(0, 0, 1).
It follows as above that if

1/vVz —1/vV2  1/V2
P=1yvz 1/vV2 -3v2)
0 0 1
then PS Pt=1I and P T P'=diag (1, 1, 2).

THEOREM 2. Given a euclidean quadric in an n-dimensional euclidean
geometry, then a euclidean coordinate system can be chosen with respect to
which the quadric has an equation of one of the two types:

d; X%+ +d, X,2+dy, =0 (4)
X, +d X2+ - +d,X,2=0 (5)

(where some, or all, of the d;’'s may be zero).
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PROOF. Our theorem differs from Proposition 12 of Chapter V only
in the fact that the required coordinate system must be euclidean. Our
proof is a refinement of the proof of the earlier proposition.

Let Z(V) be an n-dimensional real projective geometry, H a hyper-
plane in Z(V) and o a positive definite bilinear form on H. We may
suppose our euclidean geometry to be «(c+ H, d) for some ¢ not in H
and d the distance determined by ¢. The given quadric, say E, is the
cross-section by o (c + H) of a suitable projective quadric @(7) in (V).
(Cf. p. 116.)

Our aim is to find an ordered basis (aq, . . ., a,) of V adapted to  and
such that ay € ¢+ H and (a,, . . ., a,) is a cartesian basis of (H, o). For
then ag+ay, ..., 4 +a,, & will be vectors for a euclidean frame of
reference of (c+H,d). If f(X,, ..., X,)=0 is the equation of Q(r)
then f(1, X,,..., X,)=0 is the equation of R with respect to this
euclidean frame of reference.

In the following argument we shall write | for | (7).

(i) If H-¢H, we may find a vector a, in H* Nnc+H. Choose a
cartesian basis (a4, ..., a,) of (H, o) with the property that r(a;, a;)=0
whenever i#j (i,j=1,...,n). (Such a basis exists by Theorem 1.)
The equation of @ is then of the form

doX o2+ - +d, X2 = 0.

Substituting X,=1 yields the equation of R in the form (4).

(ii) If H-<H, then V'<H and dim V!=dim H* -1 (cf. the proof of
Proposition 12, p. 118). Let (@, y, .. .,a,) be a cartesian basis of V*.
By Proposition 5 of Chapter V (p. 96) we can, first of all, extend this
to a cartesian basis (a;, @,, 4, . . -, a,) of H' and then write H =H* ® M,
where M =(H*)*. By Theorem 1 above, M has a cartesian basis
(ag, . . ., @,) whose vectors are mutually orthogonal with respect to .
Therefore (a,, ..., a,) is a cartesian basis of H such that r(a;, a;)=0
whenever i #j (¢,j=1,..., n).

Let K=[a,,...,a,]. We assert that K' is not contained in H.
For K=V+@® M, so that K*=M*. On the other hand, H=H* ® M
implies that 7, is non-degenerate (Lemma 3, Corollary, p. 95) and so
V=M D M* (Proposition 5, p. 96).

Choose a line L in K* containing [@,] and not contained in H. Then
L meets Q in one further point [a,], where a, € ¢+ H. The equation of
Q in the coordinate system determined by (ay, .. ., a,) is

XX, +d, X2+ +d,X,2 =0,
for suitable scalars dy, ..., d,. Putting X,=1 yields the equation of

R in the form (5).
(To prove (ii) the reader may find it more instructive to consider
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first the case where 7 is non-degenerate. For then [a,]=H*™ and
K =[a,]*' are uniquely determined once = is given. In the general
case one can find a subspace N which has (V") ag hyperplane at
infinity ; then ¥V = V1" @ N and one can treat the restriction of = to
N as above.)

EXERCISES

1. Suppose o is a symmetric bilinear form on a vector space V and f a linear
mapping of Vinto V. If(a,,...,a,)is an ordered basis of V and S, 4 are
the matrices of o, f with respect to this basis, prove that f is o-symmetric
if, and only if, AS=8A4".

2. If a is a given non-zero vector in a complex vector space V and fis a linear
mapping of V into V, prove that there exists a polynomial p(X) such that
ap(f) is an eigenvector of f.

(Consider the vectors af?, t=0, 1, 2, ... and proceed as in the proof of
Proposition 3.)

3. If V is a complex vector space and f, g are commuting linear mappings of
Vinto V (i.e., fg = gf), use exercise 2 to show that there exists a common
eigenvector for f and g. Show that there exists a basis with respect to
which the matrices of f and g are both triangular.

4. Let o, 7 be symmetric bilinear forms on a real vector space V and let o
be positive definite. Assume the theorem of analysis that the real
valued (continuous) function a — 7(a, a) (@ € V) attains a maximum =z,
at some point @, on the (compact) sphere o(a, a)=1. Show that z,0—7
is positive semi-definite and use exercise 3 of §5.4 to prove that
[a,]*9 < [a4]*™. Hence prove Theorem 1.

6.4 Euclidean Automorphisms

It follows from Proposition 1 that an automorphism of a euclidean
geometry .7 (a+ M, d) (i.e., an isomorphism of the geometry onto itself)
is an affinity whose unique underlying linear automorphism is an auto-
morphism of the euclidean space (M, d). Our aim is now to determine
the structure of such an automorphism of (M, d).

We prefer to change the notation and work with a euclidean space
(V,o0). As usual, ¥V, denotes the complexification of ¥ and as in
§ 5.6 (p. 113) we extend o to a bilinear form ¢’ on Vi, Ifc=a+1ib, we
shall write ¢ =a — b and of course use the bar over scalars to denote com-
plex conjugation. We observe that o'(¢, ¢)=o0(a, a)+ a(b, b) and thus
a’(¢,¢)>0 for all c£0. (Cf. §6.5, p. 146.)

Let f be an automorphism of (V, ¢): so f is a one—one linear mapping
of V onto V such that

a(af, bf) = o(a, b)



§6.4 EUCLIDEAN GEOMETRY 141

for all a, bin V. We extend fto V, by the rule

(a+1b)f = af +i(bf)

and leave the reader to check that the-extended f is an automorphism
of the bilinear space (V,, ¢’).

LeMmA 4. Every eigenvalue of f is of the form € for some real 6
satisfying —m<0<m.

PROOF. Let c=a +1b be an eigenvector of f with given eigenvalue x:
¢f =xc. Then &f =7t and hence

a'(ef, ¢f) = o' (F, xc) = xxd'(C, c);
while
Ul(éfs Cf) = 0"(6, c)
because f preserves ¢’. Since ¢#0, o’(¢, ¢)> 0 and hence zr=1. Thus

x = ¢' for some real number 8 which may be chosen to satisfy —w < 8 <.

LeEMMA 5. To each eigenvector c of f with non-real eigenvalue e there
corresponds a two-dimensional subspace T of V such that Tf=T and a
cartesian basis (u, v) of (T, or) such that

(f; (u, 0)) = (
PROOF. Let c=a+1tb. Then
a'(c, ¢)=0'(¢f, ¢f) = €*%'(c, ¢)
and therefore o’(c, ¢) =0 because ¢?? # 1 (as €' is not real). But

a'(c, ¢) = ofa, a)—a(b, b) + 2ta(a, )

cos § —sinéf
sin 6 cos 0)

whence
a(a, a) = o(b, b)
and
a(a, b) = 0.
From this last equation it follows that a and b are linearly indepen-

dent. Now if u=ra, v=rb where r?c(a, a)=1, and 7 is the subspace
spanned by w, v, then (u, v) is a cartesian basis of (7T, o). Finally,

(re)f = e(rc)
gives
uf +i(vf) = (cos 6+ sin 0)(u+1v)
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which shows that 7'f = T and yields the required matrix of f with respect
to (u, v).

Lemma 6. If Mf=M, then (M*)f=M".
PROOF. For any a in M and b in M* we have af = € M and so
oa, bf) = alaf =2, b) = 0.
Thus (M*)f < M* and equality follows because f is one—one.
THEOREM 3. Let f be an automorphism of the euclidean space (V, o).

Then there exists a cartesian basis of (V, o) with respect to which f has
matrix

A4,
A,
‘A
I
—1I,
where
4. = [ 0, —sin 6,
k sin 6, cos 6,
(0< |0 <m) for k=1,...,r. The integersr, s, t and also the real num-
bers |0,|, ..., |8, (not necessarily distinct) are invariants of f.

PROOF. Let ¢ be an eigenvector of f with eigenvalue €. If ¢! is
real then we set M =[c]. If ¢ is not real then we set M =17 as in
Lemma 5. In either case V=M @ M* (by Proposition 5 of Chapter
V, p-96) and Mf=M, M‘f=M* (by Lemma 6). The existence of a
cartesian basis as required for our theorem now follows by induction
on dim V.

We recall from p. 135 the definition of the eigenspace £ as Ker (f —x1).
It is clear that s=dim £, and t=dim E_; so that s and ¢ are invariants
of f. If f now denotes the extended automorphism of ¥V, and €? is a
non-real eigenvalue of f then || occurs among |6,|, ..., |6,| and is re-
peated exactly m times where m is the dimension over C of the eigen-
space o in V.

Let f be an arbitrary linear mapping of V into ¥V and A4 the matrix
of f with respect to a cartesian basis (a,, ..., a,) of (V,os). Then f
satisfies the condition

o(af, bf) = o(a, b)
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for all @, b in V (and hence is one—one) if, and only if,
AAt =1,

i.e., if, and only if, 4 is orthogonal. (Cf. exercise 2 of § 4.4, p. 79.)
Theorem 3 therefore yields the following

CoroLLARY. If 4 isan orthogonal matriz, then there exists another orth-
ogonal matrix P such that P~*A P is of the form displayed in Theorem 3.

PROOF. Let f be the automorphism of (V, o) whose matrix with
respect to the cartesian basis (a,,...,a,) is A. By Theorem 3 there
exists a cartesian basis (by, ..., b,) such that B=(f; (b)) has the re-
quired form. Then B=P~*4 P where P=(1y; (a,), (b,)).

Let us now consider the special case of Theorem 3 when dim V =2.
Here we have two possibilities:
(i) the matrix of f is
cos 0 —sin 0
sin 0 cos 0
where —7<6<x;or
(ii) the matrix of f is

z 0
0y
where x=+1,y=—lorz=—-1,y=+1.

In case (i), if we take any non-zero vector a and calculate the angle ¢
between a and af, we find

_ ola, af) _
cos @ = o@ ) cos 6.

Since ¢ € [0, 7] by definition,

=10 if >0
(p=—0 if 6 <o0.

In any event, the angle between any non-zero vector and its image is
constant. We call f a rotation through the angle 8. Note that the auto-
morphisms 1, and — 1, are included as rotations (when 6 equals 0 and
o, respectively). In case (ii) fis said to be a reflexion (‘‘in the X-axis”
if y=—1, “in the Y-axis” if x= —1).

These considerations suggest the following

DEriNiTION. Let f be an automorphism of the euclidean space
(V,o). If E_,, the eigenspace corresponding to — 1, has even dimen-
sion we call f a rotation; while if £ _, has odd dimension we say f is a
reflexion.
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Let us assume for the moment an elementary knowledge of deter-
minants. Theorem 3 shows that det f, the determinant of f, is +1 or
~1 according as dim £ _, is even or odd. Thus fis a rotation if, and
only if, det f= + 1.

Consider now the set of all automorphisms of (V, ¢). This is ob-
viously a subgroup (with respect to multiplication) of Aut V. It will
be denoted by Aut(V, o) and is called the orthogonal group on (V, o).

The mapping f — det fof Aut(V, o) into R* (actually onto {+1, —1})
is a homomorphism of groups. The kernel is precisely the set of all
rotations and this is therefore a subgroup, called the rotation group on
(V,o0). We say that two cartesian bases (a;), (b;) of (V, o) have the
same orientation if the euclidean automorphism a; — b;, for all 7, is a
rotation. In view of the fact that the rotations form a group, this
defines an equivalence relation on the set of all cartesian bases of (V, o).
There are, of course, just two equivalence classes. We orient (V, o) by
assigning to the space one of these two classes.

Suppose we now form the similarity class of distances D=(d) and
look at the set of all f in Aut V that preserve D (in the natural sense
that to every d in D there corresponds d' in D such that d(af, bf)=
d'(a, b) for all @, b in V). This set is easily seen to be a subgroup of
Aut V and will be written Aut(V, D).

Our definition of similarity euclidean isomorphism and Proposition 6
of Chapter III, p. 61, immediately show that Aut .2/(V, D), the group
of all similarity euclidean automorphisms of &/(V, D), is the split
product of (G, T'), where T is the group of all translations and @ is iso-
morphic to Aut(V, D).

If fe Aut (V, D) and d € D, then

d(af, bf) = r d(a, b)

for some uniquely determined positive real number r. This shows
that (1/r)fe Aut(V,d) and thus Aut(V, D) is the split product of
(Aut(V, d),P), where P is the group of all linear automorphisms 71 with
r a positive real number.

Finally we propose to describe the automorphism group of a simi-
larity euclidean geometry in projective geometrical terms. We shall
use the following

DerFintTioN. If (V) is a projective geometry over an arbitrary
field, | (o) is a polarity of (V) and 2(f) is a collineation such that

L(@)2(f) = Z(f) L(o)
then Z(f) is said to preserve | (o).
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LeMMA 7. Let | be a definite polarity of the real projective geometry
P(H) and let D be the corresponding distance class on H. Then a collin-
eation P(g) of P(H) preserves | if, and only if, g preserves D.

PROOF. We recall the notation o introduced on p. 89. We also
use the notation d? in the same way and denote by D¢ the set of all d?
for d in D.

If M is any subspace of H, then M©“" is the set of all vectors b such
that ¢9(M, b)=0. Hence M*©")g is the set of all vectors bg such that
o(Mg, bg)=0. This means that M1 g=(Mg)*®>. We thus have the
general formula

1(@)2(g) = Z(g) L(0).

We conclude that #(g) preserves | (o) if, and only if, | (¢9)= | (o).
This in turn is equivalent to D?= D, as required.

ProposITION 5. Let (A, ) be the similarity euclidean geometry in
P(V) determined by H and the definite polarity | of P(H). Denote by
(Pr P(V))y., the subgroup of the projective group Pr P(V) whose elements
restrict to collineations of P(H) preserving | . Then the isomorphism
of (Pr P(V))y onto Af A (defined in Theorem T of Chapter 111, p. 61)
restricts to an isomorphism of (Pr P(V))y, onto Aut(A, 1).

PROOF. Let 2(f)be an element of (Pr 2(V)), and let g be the restric-
tion of f to H. By Lemma 7, P(g) preserves | if, and only if, g pre-
serves D. By our definition of the distance class D on A this means
precisely that the restriction of Z(f) to A is an automorphism of (A, D).

EXERCISES

1. Show that +1 is always an eigenvalue of a rotation in an odd dimensional
euclidean space.

2. If L and L’ are two non-parallel lines in a euclidean plane «/(V, d) show
that there are exactly four automorphisms which leave the point L n L’
fixed and take L onto L'.

Show that two of the underlying automorphisms of the euclidean space
(V, d) are rotations and compare their angles.

3. Exhibit a homomorphism of the additive group R onto the group of rota-
tions of a 2-dimensional euclidean space and identify the kernel of your
homomorphism.

4. Show that a reflexion of a 2-dimensional euclidean space has a line of
fixed points. Show that a reflexion of a 3-dimensional euclidean space
which has a fixed point other than the origin, must have a whole plane of
fixed points.
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6.5 Hilbert Spaces

DEriniTiOoN. If W is a (finite dimensional) complex vector space and
o a positive definite (hermitian) form on W, then (W, o) is called a
Hilbert space.

Hilbert spaces arise naturally from euclidean spaces: for whenever
(V, 0) is a euclidean space and we construct the complexification o,
of o (cf. p. 124) then (V (), o) is a Hilbert space.

We have already used Hilbert spaces in the last two sections. For
whenever we used the bilinear extension ¢’ of o to V., we could have
employed o, in a suitably modified, but essentially similar, argument.
There is a precise connexion between ¢’ and o, If v=a+1b, let us
denote by v the vector a —ib. Then v — 7 is a semi-linear auto-
morphism of V¢, and o) (u, v)=0"(%, v) for all u,vin Vi, If fis an
automorphism of (V, o), then the natural extension of f:

(a+1b)f = af + ibf,

is an automorphism of (V,, o) (cf. exercise 4 of § 5.8, p. 124).

Let (W, o) be a Hilbert space. For a in W we may define ||a| (the
length or norm of a) and d(a, b) (the distance from a to b) exactly as in
a euclidean space. The rules D.1-D.6 all hold but, of course, in D.5
we take z in € and interpret |x| as + VzZ. Every mapping d satisfying
D.1-D.6 arises in this way (cf. exercise 2 below).

We have already remarked in § 5.8 (p. 123) that W possesses an
ordered basis (a,, . . ., ;) with respect to which the matrix of ¢ is I,,.
As in the euclidean case, we call (a,, . . ., a,) a cartestan basts of (W, o).
A linear automorphism f of W is an automorphism of (W, o) if, and
only if, the matrix P of f with respect to a cartesian basis satisfies
P Pt=], (Such a matrix is called unitary.) The set of all automor-
phisms of (W, o) forms the unitary group Aut(W, o).

Both Theorems 1 and 3 have natural complex analogues. We state
these explicitly.

THEOREM 1H. If o, 7 are hermitian forms on the complex vector space
W and o is positive definite, then there exists a cartesian basis of (W, o)
whose vectors are mutually orthogonal with respect to .

The proof proceeds as for Theorem 1 but here Proposition 3 makes
Lemma 2 redundant.

TaEOREM 3H. If f is an automorphism of the Hilbert space (W, o),
then there exists a cartesian basis all of whose vectors are eigenvectors of f.
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Again the proof is (this time, considerably) simpler than that of the
euclidean result: our theorem follows directly from Proposition 3 and
the complex analogue of Lemma 6.

The above definition of Hilbert space is one of the few in this book
that does not generalize immediately to the infinite dimensional case.
A basic property (automatically satisfied for finite dimensional Hilbert
spaces) is that of completeness: if ||a,, —a,| — 0 as m, n — oo, then there
exists a vector a such that |a—a,| — 0asn — co. Infinite dimensional
Hilbert spaces are of crucial importance in many branches of mathe-
matics and particularly in functional analysis. See for example [2], [8].

EXERCISES
In the following exercises (W, o) denotes a Hilbert space.
1. Rewrite the proofs of Lemmas 2 and 4 using o, instead of ¢’.
2. Prove that
4o(a, b) = |a+b|%>— |a—b||2+i|a—1ib|2—i]|a+1b|?

foralla, bin W.

(If d is a mapping which satisfies the rules D.1-D.6 of § 6.1, p. 125 as
modified on p. 146 of this section and if we write |a—b| =d(a, b) then the
above equation may be used to define a positive definite hermitian form o
(cf. exercises 4, 5 of § 6.1).)

3. Let  be a sesquilinear form on W with respect to complex conjugation,
Show that the equation

olaf,b) = r(a,b) foralla,bin W

defines a linear mapping f of W into W. Deduce that there exists a
cartesian basis of (W, o) with respect to which = has a triangular matrix.

4. If f, g are linear mappings of W into W such that fg=gf, show that there
exists a cartesian basis of (W, o) with respect to which the matrices of f
and g are both triangular. (Cf. exercise 3 of § 6.3.)

5. Let f be a linear mapping of W into W. Show that the equation
olaf*, b) = o(a, bf)

for a, b varying in W, defines a linear mapping f* of W into W. Verify
also that
) fo = f;
(i) (F+9)F = f*+g*;
(i) (fg)* = g*f*;
(iv) (zf)* = zf*;
(v) (f=zly* = f*—z1.

6. Let the linear mapping f of W into W satisfy f f* =f*f (in the notation of
the previous exercise). We call such an f a normal mapping on W.
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Prove

() Jlwf] = |wf*| forallwin W;

(i) if w is an eigenvector of f with eigenvalue z, then w is an eigenvector
of f* with eigenvalue z;

(iii) if [w]f < [w] then [w]*f < [w]*.

Deduce the following

THEOREM. If f is a normal mapping on the Hilbeit space (W, o) then
there exists a cartesian basis all of whose vectors are eigenvectors of f.

Observe that f is o-symmetric if, and only if, f*=f and f is an automor-
phism of (W, o) if, and only if, f f*=1. These mappings are often referred
to in the literature as hermitian and unitary mappings, respectively, and
are special cases of normal mappings. The reader should compare the
above result with Proposition 4, p. 136 (from which we deduced Theorem 1)
and Theorem 3H, p. 146.



CHAPTER VII

Modules

7.1 Rings and Modules

In Chapter IV we encountered the problem of finding the similarity
classes of square matrices. An illuminating way of dealing with this
problem is in terms of modules. These arise when we reconsider the
notion of vector space by allowing the “‘scalars’ to lie in a set having a
more general algebraic structure than that of a field.

DeriniTiOoN. Let R be a set together with rules of addition and
multiplication that associate to any two elements z, y in R a sum z+y
and a product zy, both in B. Then R is called a ring if the following
axioms are satisfied:

R.1. R is a commutative group with respect to addition;
R.2. (zy)z = x(yz) forallz,y,zin R;
R.3. z{y+z) = zy+=2z and

(x+¥y)z = xz+yz, forallz, y, zin R.

The ring R is commutative if

R4. 2y = yr forallz,yin R.

A subset of R that is itself a ring (with respect to the same rules of
addition and multiplication as R) is called a subring of R.

If R contains an element 1 # 0 such that

zl = lx = x forall xin R,

then 1 is necessarily the only element with this property. We call 1
the identity element of R.

Obviously, every field F is a ring. So are Z and F[X] and it is with
these that we shall be primarily concerned. All our rings will therefore
be commutative and possess an identity element. (Note, however, that
L(V, V) is an example of a ring that is commutative if, and only if,
dim ¥V =1; and that the subring mZ, of all integers divisible by m, has
an identity if, and only if, m= + 1.)

149
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The definition (given on p. 5) of a vector space may now be re-
peated word for word but using a commutative ring R with identity
instead of the field F. We write this out for convenience.

DEerFINITION. Let R be a given commutative ring with identity and
M a set together with rules of addition and multiplication which asso-
ciate to any two elements a, b in M a sum a+b in M, and to any two
elements z in R, a in M a product za in M. Then M is called a module
over the ring R or an R-module if the following axioms hold:

M.1. M is a commutative group with respect to addition;
M.2. z(a+b) = za+xb,
M.3. (z+y)a = za+ya,
M.4. (xy)a = z(ya),
M.5. 1la = a where 1 is the identity element of R,
for all z, y in R and all @, b in M.

The following are examples of modules:

1. If Ris a field, then an R-module is the same as a vector space
over R.

2. If A4 is a commutative group with respect to addition, we may
define na for any n#0 in Z and a in 4 by the rule

na = ea+---+a)
i

where e= + 1 according as n= + |n|. If we also set 0a=0, then 4 is
a Z-module. Hence every commutative group may be regarded as a Z-
module.

3. Let R be a subring of the commutative ring § and let 1 be an iden-
tity element for both R and 8. Then 8 is an R-module if we define the
product of the module element @ in 8 by z in R to be za, their product
as elements of the ring §. (Cf. example 2, p. 5.) In particular, R
is a module over R.

4. Let R be a commutative ring with identity and denote by E" the
set of all n-tuples (a,, ..., a,) where a,€ R for ¢t=1,...,n. If we de-
fine addition and multiplication by ‘‘scalars’ term by term (as for the
vector space F™ on p. 5), then R" is a module over E.

5. (The crucial example for the similarity problem.) Let V be a
vector space over a field F and f a linear mapping of V into V. If

P(X) = coe X"+, XP 14 - +e,
is an arbitrary element of F[X] we may form

p(f) = coft+eifr 14 -+l
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which is an element of the linear algebra Z(V, V). The following
simple rules are satisfied:

If p(X)+q(X) = r(X), then p(f)+q(f) = r(f); (1)
if p(X)g(X) = s(X), then p(f)e(f) = s(f). @)

The first rule is immediate and the second is true because the powers
of f commute with the elements of F. These rules may be summarized
by saying that the mapping p(X) — p(f) is a homomorphism of the
linear algebra F[X] into the linear algebra Z(V, V).

We define a product p(X)a for any a in V by the rule

p(X)a = ap(f).

Rules (1), (2) above now show that the additive group V with this
multiplication is a module over F[X]. We shall write this module as
V, to distinguish it from the vector space V. (In checking axiom M.4
we need the commutativity of F[X]. We could equally well write
a p(X) for p(X) a, but prefer to maintain our convention of writing
‘“scalars’ on the left and linear mappings on the right.)

One essential way in which an R-module may differ from a vector
space is as follows. Ifza=0 (x € R, a € M) and = # 0, then we may not
be able to deduce that a is zero. For example F, is a Z-module in
which pl1=0.

For a less trivial illustration we return to the situation of example 5.
Since £(V, V) has finite dimension over F, there is a smallest positive
integer r such that f7 is linearly dependent on f7~1, fr=2, ..., 1,: say

Y e
If we put
m(X) = X"—¢, X1 —... —¢,
thenm(f)=0. Thusm(X)ae = am(f) = Oforallain V. Similarly, if
a is a given non-zero vector in V, there is a smallest positive integer s
such that af* is linearly dependent on afs~1, ... a: say
aft = diafs~1+ .- +da.
If we put
my(X) = X°—d X571 — ... —d,
then a m,(f)=0. Thusm,(X)a = a m,(f) = 0. The polynomial m(X)

is called the minimum polynomial of f; and m(X) is called the minimum
polynomial of f at a.

DEeriniTION. Let S be a subset of the R-module M. The set a(S)
of all z in R such that 28 =0 is called the annihilator of S.
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If §={a}, we write a(a) for a(S) and call this the annihilator of a.
If a(a) # 0 we call a a torsion element. If every element in M is a torsion
element we say M is a torsion module. If 0 is the only torsion element,
M is said to be torsion-free.

Our remarks above have shown that m(X) belongs to the annihilator
a(V,) and that V, is a torsion module. On the other hand, every
vector space is torsion-free; so is the module F[X]", where F is a field
(cf. example 4).

In order to examine annihilators in more detail we need a further
notion.

DEerFINITION. Let R be a commutative ring. A subgroup a of the
additive group R is called an ideal of R if rx € a whenever r € R and
zE€a.

It follows at once from the definitions that the annihilator a(S) is an
ideal of the ring E. Note also that {0} and R are ideals of R.

If z is any fixed element of R then the set Rz of all r« for r in R is
clearly an ideal of R. Such an ideal is called principal. In particular
R is a principal ideal provided R has an identity element.

ProposiTioN 1. If R is a commutative ring with identity then R is a
Jield if, and only if, {0} and R are the only ideals of R.

PROOF. Suppose that R is a field and that z is a non-zero element in
an ideal a of B. For any r in R the element r 71z = risin a and so
a=R.

Conversely, take any x# 0 in R and consider the principal ideal Ex.
Since =1z € Rr, Rx+#{0} and so by hypothesis Rx=R. Thus yx=1
for some y in R, i.e.,  has an inverse. It now follows easily that the
non-zero elements in R form a group with respect to multiplication
and hence R is a field.

Proprosition 2. Ewvery ideal of Z or F[X] is principal.

PROOF. Let a be a non-zero ideal of F[X]and p any non-zero element
in a of smallest degree. Any ¢ in a can be written in the form

q = up+v,

where degree v < degree p. Since up €a, v€a and so v = 0 by our
choice of p. Hence a=I[X] p.
The proof for Z is similar but uses absolute values instead of degrees.

In view of the proof of Proposition 2 we see that the annihilator
a(V,) is simply the set of all multiples of the minimum polynomial m(X),
i.e., the principal ideal F[X]m(X); and also that a(a)= F[X] m,(X).
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ExXERCISES

1. Let V be the vector space F? and f the linear mapping of V into V whose
matrix with respect to the standard basis is

1 2

2 4)
Ifa,=(1,0),a,=(0, 1), a;=(2, —1), a,=(1, 2) find m, (X) fori=1, 2, 3, 4
and also m(X).

2. Show that m,(X) divides m(X) for all @ in V. Hence show that if x is an
eigenvalue of f, then m(x)=0.

3. Show that all the subrings of Z are ideals of Z.

4. If 4 is a commutative group and a is an element of finite order k, prove that
Zk=a(a), where A is viewed as a Z-module.
If a(d)="Zt and A is finite of order s, prove that ¢ divides s. (One
calls ¢t the exponent of 4.)

7.2 Submeodules and Homomeorphisms

We define a submodule in exactly the same way as a subspace and
now assert: the whole of § 1.3 (p. 6) remains true for modules over a ring.

A module that can be generated by a finite number of its elements is
said to be finitely generated. If it can be generated by a single element
it is called cyclic.

If we regard a commutative group 4 as a Z-module then the sub-
modules of A are just the subgroups of 4. If R is a commutative ring
with identity and R is regarded as an R-module (cf. example 3 above),
then the submodules of R are the ideals of B. In particular, the cyclic
submodule of R generated by the element « is the principal ideal Rz.
In accordance with the notation introduced in § 1.3 we write [«]= Rx.

It is easy to characterize the submodules of V,. If M is a submodule,
then M must be a subspace of V (because F < F[X])and Mf < M (be-
cause vf = Xv). But conversely, any subspace M such that Mf < M is
clearly a submodule of ¥,. The submodules of V, are usually called
the invariant subspaces of f or the f-invariant subspaces. Observe that
an invariant subspace of dimension 1 is generated by an eigenvector of
f. 1f Sis a subset of V then we shall write the submodule of ¥, genera-
ted by § as [§]; (to distinguish it from the subspace [S] spanned by 8).

ProrosiTiON 3. If M =[a]is a cyclic F{X]-module whose annihilator
a(M) is generated by the non-zero polynomial p(X) of degree s, then M is a
vector space over F of dimension s.
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PROOF. The ‘“‘vectors” a, Xa, ..., X*~la are linearly independent
over F (by the definition of p(X)) and the vectors X*a, X**!a, ... arein
turn seen to be linearly dependent on them. Thus a, Xa,..., X*"1a

form a basis of M over F.

In particular we see that [a]; is a subspace of V' of dimension equal
to the degree of m,(X).

For any commutative ring R with identity we may define a homo-
morphism or R-homomorphism of one R-module into another in exactly
the same way as a linear mapping (cf. p. 66). Isomorphisms, auto-
morphisms and the kernel of a homomorphism are all defined as before.

If K is a submodule of a module M we may introduce the cosets of
K and turn the set of all cosets M /K into an R-module just as was done
for vector spaces (p. 67). Proposition 1 of § 4.1 remains true for
modules. The interesting new feature is that this construction can be
carried out when M = R and K is an ideal of R. Then R/K is a cyclic
module, generated by 1+ K, where 1 is the identity of E. We assert
that every cyclic module arises in this way:

ProposiTioN 4. If M is a cyclic R-module, then M 1is isomorphic to
Rla(M).
PROOF. Let M =[a] and consider the mapping
frx—2xa
of Ronto M. Clearly fis an R-homomorphism and the kernel is a(a).

Now a(a)=a(M) and hence the result follows from the module version
of Proposition 1 of § 4.1 (p. 67).

The reader will easily see that Proposition 3 above can be deduced
from this result. It also follows that a torsion-free cyclic B-module is
isomorphic to R itself.

DerINITION. Iff, g€ L(V, V), we say f, g are similar if there exists
a linear automorphism e of V such that g=e~'fe.

Observe that f, g are similar if, and only if, their matrices (with res-
pect to the same ordered basis) are similar (cf. p. 79).

ProposttioN 5. Iff,ge L(V, V), then V,, V, are isomorphic if, and
only if, f, g are similar.

prOOF. (i) If there is an F[X]-isomorphism e of V, onto V,, then e
is a linear isomorphism of ¥ onto V and also

(p(X) v) e = p(X) (ve)
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for all v in V and all p(X) in F[X]. In other words,
(v p(f))e = (ve)p(9),
for all vin V and all p(X) in F[X]. Hence

p(g) = e 'p(f)e
and in particular

g=-¢e1fe
(i1) If g=e~'fe, where ¢ is a linear automorphism of V, then
gn — e—lfn e

for all n>0 and so
p(g) = e 'p(f)e.

Hence, by reversing the argument in (i), we see that e is an isomorphism
of V, onto V,.

EXERCISES

1. Let R be a commutative ring with identity and suppose that zy =0 always
implies that at least one of x and y is 0. (We call such a ring an integral
domain: cf. also the end of § 7.3.)

Prove that, if M is a finitely generated torsion module over R, then
a(M)+#£0.

2. Prove that M =Q/Z is a torsion module over Z but that a(M)=0.
(This shows that finite generation is necessary in exercise 1.)

3. If R is an integral domain (see exercise 1) and M is a module over R,
prove that the set of all torsion elements in M forms a submodule.
This result is false without the integral domain property: if R=Z/[6],
show that (2, 0), (0, 3) are torsion elements in R2 but that their sum is not
a torsion element.

7.3 Direct Decompositions

Our aim is to determine completely the structure of finitely generated
F[X]-modules.

THEOREM 1. Let F be a field and M a finitely generated F[X]-module.
Then M can be decomposed into a direct sum of cyclic submodules
M =(a,]D - DIlal
where a(a,) < a(a;) < - - - <a(ay) and a(a,) # F[X].
The idecls a(a), i=1, ..., k, are uniquely determined by M.

We remark that if M is the zero module then the theorem is trivially
true (with &k = 0).
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DerintTiON. The ideals a(a;), i=1, ..., k, are called the invariant
Jactors of M. The monic generators of these ideals are also frequently
called the invariant factors of M.

PROOF. We note that if b,,..., b, generate M, then so do
by, ..., b_1, bi+qb,,

where ¢; € F[X] and 1< j<l—1. Let k be the smallest number of
elements needed to generate M.

(a) Suppose first that we can find a set {b,, ..., b,} of generators
among which no non-trivial relation holds: i.e., such that

mlbl""‘ R +mkbk = 0
implies m;=---=m;=0. Then

M =[b]D- - D I[bil

and a(b;) =0 foreachi. The first part of the theorem is now established.

(b) Assume next that every system of k generators gives at least one
non-trivial relation. Then there is one such system {b,,...,b,} for
which a relation

m1b1+ s +mkbk =0
holds with a non-zero coefficient m; of minimum degree. We may

suppose that 1 =k.
We prove first that

m; is a multiple of m, forj = 1,..., k—1. (1)
For if
m; = My +7;
where degree r; < degree m,, then
meby+ - +rbi+ - - +my (b +4¢b,) = 0,

from which we deduce that r,=0.
We contend also that

if nby + -+ - +mb, = 0 then n, is a multiple of m,.
For if
ny = gyt (i)

where degree r < degree m,, then by subtracting ¢ times the first rela-
tion from the second we obtain

(ny—qgmy)by+---+rb, =0,
whence r=0.
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If we define
@ = qibi+ -+ g 1be_ 1+ by

then (i) shows that

myay, = 0. (iii)
If M’ denotes the submodule of M generated by b, ..., b,_, then
M= M ®[a) (iv)

This follows since the relation
b+ by e = 0

implies that n, is a multiple of m, (by (ii)) and so n,a, =0 (by (iii)).
The first part of our theorem may now be proved by induction on %.
We can express M’ as a direct sum

(] D - Dax-1]

where a(a;)< -+ - <a(a,_,).
It only remains to prove that

a(@,_1) < a(ay). (v)

We proved under (i) that if we have a relation between k generators
involving m, as a coefficient, then all coefficients are divisible by m,,.
If now z € a(a,,_,) then za,_,=0 and so za, _, +m,a,=0. Hence m,
divides z.

In order to prove the uniqueness part of the theorem we suppose that
r of the ideals a(a;) are zero (0 <r <k) and define

Ml = [a1]® te @[ar]’
M, =[a,]D - Dlal

We assert that M, consists of all the torsion elements of M and thus is
uniquely determined by M. Forif a=p,a,+-- - +p.a, and if ga=0
where ¢ is a non-zero element of F[X], then it follows from the direct
decomposition that ¢p,=:--=¢p,=0 and hence p,=.--=p,=0.
Therefore a € M,.

Using the decomposition M =M, @ M, we can write any a in M in
the form a=a, +a, where a, € M, and a, € M,. The mapping a — a,
is a homomorphism of M onto M, with kernel M, and so M /M, is iso-
morphic to M;. Thus M, is determined by M to within isomorphism.
(Note that we have not shown that the submodule M is uniquely deter-
mined by M : cf. exercise 9 below.)

The proof of the uniqueness of the invariant factors of M is now re-
duced to the special cases where M is either a torsion module or is
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torsion-free. The former case is postponed till we prove Theorem 2.
Let us therefore assume that

M =[a,]D - Dla]

where a(a;) =0 for each 7. Our aim is to show that the integer k is
uniquely determined by M.

Distinct elements by, . . ., b, of M are called linearly independent over
F[X] if every relation

mby+---+mb, =0 (m e F[X])
implies that each m, is zero. The mapping

P+ -+ P —> (P15 - - -5 Pi)

is an F[X]-isomorphism of M onto F[X]* and so preserves linear inde-
pendence over F[X]. Let F(X) denote the field of quotients f(X)/g(X)
where f(X), g(X) e F[X] and g(X)#0. Then the linear independence
of elements of F[X]* is equivalent to their linear independence as
elements of the containing vector space F(X)* (for any common
denominators can be multiplied out). It follows that & is the maximum
number of linearly independent elements of M over F[X] and as such
is an invariant of M.

ProrosiTioN 6. Let M be a cyclic F[X]-module whose annihilator
a(M) is generated by the non-zero polynomial p. If py, ..., p, are the
distinct monic irreducible factors of p, then

M = [a:] D - - D lanl,
where a(a;) is generated by a power of p; (1=1,...,n).

Let M =[a] and suppose that p=st, where s, ¢ are relatively prime.
If b=t a, then a(b)=[s]: for ¢ b = 0 implies ¢ ¢ € a(a) and so p divides
gt i.e., sdivides ¢g. Similarly, if c=sa, a(c) = [t].

Since s and ¢ are relatively prime we have

us+vt = 1

for some u, v in F[X] (cf. exercise 3 below). This implies immediately
that [a]=[b]+[c]. Further, since any element of [b] N [c] is annihilated
by s and ¢, we must have [b] N [c]=0 and so [a]=[b] @ [¢]. The result
now follows by induction on » (the number of distinet irreducible factors

of p).

THEOREM 2. Let F be a field and M a finitely generated F[X]-module
whose annihilator a(M) is generated by the non-zero polynomial m. If
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D1, - - ., Dy are the distinct monic irreducible factors of m, then M may be
expressed as the direct sum

M=K1®"'@Kt

where K, is the submodule of all elements in M annihilated by some power

of pi.
Each submodule K; may be expressed as a direct sum

K, =[a,]®D - - Dla,]

where a(a;) < a(ag) < - - - < a(ay,).
The ideals a(ay;) (i=1,...,t;5=1,..., k) are uniquely determined
by M.

DerFiniTioN. The ideals a(ay;) (or frequently also their monic gene-
rators) are called the elementary divisors of M.

We note as a consequence of the uniqueness of the elementary divi-
sors that the submodule [a;;] cannot be decomposed further into the
direct sum of proper submodules. Such a submodule is called inde-
composable. The decomposition of M corresponding to the elementary
divisors is into as many cyclic summands as possible while the de-
composition corresponding to the invariant factors is into as few as
possible.

PROOF. By applying first Theorem 1 and then Proposition 6 we may
decompose M into a direct sum of eyclic submodules each of which is
annihilated by some power of an irreducible factor of m. The set K, of
all “vectors” annihilated by some power of p, is therefore the direct
sum of those cyclic submodules that are annihilated by some power of
p;.  We may number these submodules

(@], - - o5 [ ],
where
a(ay) = [pMv] and g 2mp> - 2,
Since the submodules K; are uniquely determined by M, it is suffi-
cient in proving the uniqueness of the elementary divisors to consider

the case where m is a power of an irreducible polynomial, say of p.
Then

M =[a,]D - Dlay]

where
a(a;) = [pm] and n,zny=--- =n.

Thus a(M) = [p™].
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We shall now argue by induction on n,. The mapping @ — pa is an
F[X)-homomorphism of M into M. Let N be the kernel. Then

k
Z ga; € N
i=1

if, and only if, ¢; is a multiple of p™ 1, for j=1,..., k. Hence N is
the direct sum of k cyclic submodules each of which has annihilator
[p]. By Proposition 3 we see that

dimzN = k (degree p)

and so k is uniquely determined by M. Now p™ ~! generates a(pM)
and so by the induction hypothesis, the integers

n—lzn—12 - 2n,~-1>0
are determined uniquely. Finally, the sequence
Ny 2 Mg =+ =Ny > Ny = - =Ny =1
is uniquely determined by M.

The last part of Theorem 1 now follows since the invariant factor
a(a;) of Theorem 1 is generated by []; p,", where the product is taken
over all ¢ for which n;; is defined.

ProposiTioNn 7. Two finitely generated modules over F[X] are iso-
morphic if, and only if, they have the same invariant factors.

Two finitely generated torsion modules over F[X] are isomorphic if,
and only if, they have the same elementary divisors.

This result is an immediate consequence of Theorems 1 and 2 to-
gether with Proposition 4.

Theorems 1 and 2 are also true for modules over Z and thus give the
complete structure of finitely generated commutative groups. Our proofs
go over word for word provided only that we use the absolute value of
an integer instead of the degree of a polynomial and replace monic
irreducible polynomials by positive prime numbers.

The results of this section may be generalized as follows. Let R be
a commutative ring with identity in which xy =0 implies either x =0
or y=0 (or both). Such a ring is called an integral domain. The con-
struction leading from the ring of integers Z to the field of rationals Q
may be applied to R to yield a field, called the field of quotients of E.
(For example, F(X) is the field of quotients of F[X].) An integral do-
main R in which every ideal is principal is called a principal ideal domain.
We shall see in exercises 1 to 4 below that such a principal ideal domain
is a unique factorization domain, i.e., any non-invertible element may be
expressed as a product of irreducible factors and this factorization is



§7.3 MODULES 161

essentially unique. This fact allows us to replace F[X] by R in the
statement of Theorem 2 (where p,, . . ., p, are only determined to within
invertible elements). Then Theorems 1 and 2 are true for finitely genera-
ted modules over an arbitrary principal ideal domain. (Cf. exercises 7, 8.)

EXERCISES

The ring R in Exercises 1-8 is assumed to be a principal ideal domain.
1. Given an ascending chain of ideals of R
a, <ca, < ---

show that their union a, is an ideal of R. Deduce that the chain
terminates, i.e., there is an integer n such that

a, =a,,, forallr > 0.

2. Given two non-zero elements y, z in R, we say that y divides z if there
exists in R an element z such that z=zy, i.e., if Rz< Ry. If y divides 1
then y is said to be invertible. An element z is called irreducible if it is not
invertible and if z=xy implies that x or y is invertible.

Prove that Rz= Ry if, and only if, z and y are related by an equation
z=gy where z is invertible. Using this and exercise 1, show that any
non-zero non-invertible element of R can be expressed as a product of a
finite number of irreducible elements.

3. Given s, t in R, show that [d]=[s]+[t] if, and only if, d satisfies the
following two conditions:
(i) d divides s and ¢;
(ii) any element which divides s and ¢ must also divide 4.
An element d satisfying (i) and (ii) is called a greatest common divisor of
sand f. Ifd is another greatest common divisor of s and ¢, then d’ =ed
where e is invertible. Moreover, d =us+ vt for suitable u, v in R.

4. Use exercise 3 to show that, if p, ... p,=¢, ... ¢,, where each p, and each
g; is irreducible, then r=s and, with a suitable renumbering of ¢4, . . ., ¢,
p;=e.q,;, where each ¢, is invertible.

(Let R be any integral domain. We define invertible and irreducible
elements as was done in exercise 2. If R is such that every non-zero,
non-invertible element can be written as the product of a finite number
of irreducible elements and if this expression is unique to within order
and multiplication by invertible elements, then R is called a unigue
factorization domain. Exercises 2 and 4 together show that every
principal ideal domain is a unique factorization domain.)

5. We define the length of a non-zero element x in R as follows: if z is inver-
tible,  has length 0; if z=p, ... p, where each p, is irreducible, then z
has length . (This definition is unambiguous by exercise 4 and applies
to every non-zero element of R by exercise 2.)

Show that if y divides z and the lengths of y and 2 are equal, then 2
also divides y.
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6. Let d5£0 be a greatest common divisor of s and ¢ and suppose d=us+ vt
(cf. exercise 3). Show that the inverse of the matrix

i ) = (%)

If an R-module M is generated by elements a and b where the relation
sa+th=0 is satisfied, prove that M is also generated by a’=va—ub and
b’ = (s/d)a+ (t/d)b where the relation db’ =0 is satisfied.

7. In part (b) of the proof of Theorem 1 assume that
mbi+ - +mb, =0

is a relation in which m, is a non-zero coefficient of mintmum length (as
defined in exercise 5 above). Use exercises 5 and 6 to adapt the proof
of Theorem 1 to the case of an arbitrary principal ideal domain.

8. State and prove the generalization of Theorem 2 to a finitely generated
module over a principal ideal domain.

9. Let B, C' be commutative groups with respect to addition and let 4
be the set of all ordered pairs (b, ¢) where be B, ceC. Define

b, )+ (b, ¢') = (b+b', c+c)

and show that 4 is a commutative group with respect to this addition.
If B=Z,C=F, and a,=(1,0), a;=(0, 1), a;"=(1, 1), show that

A4 =[a,]D[az] and A =[a,'] Dla,].
(This gives an example where the direct decomposition of Theorem 1 is
not unique.)

10. If F is a finite field, deduce from Theorem 2 that the additive group of ¥
is of the form F, ® - -- @ F, for some prime number p. Hence F has
p* elements for some k. (Cf. exercise 8 of § 5.4.)

11. Let F* denote the multiplicative group of the finite field # with ¢ ele-
ments. Show that there is an integer m such that
(i) 2™ = 1 for all z in F*,
(i) there is an element of F* of order m.
Deduce that F* is cyclic and that every element of F is a root of the
polynomial X?—X.

12. (i) If F is a field containing F, and £ is the subset of all elements x that
satisfy 2" =, then F is a field and contains F,.

(i) If the field F has p* elements and m is a positive divisor of £,
prove that there is one and only one field £ with p™ elements contained
in F. (Use (i) and exercise 11.)

(iii) With F as in (ii), show that any field contained in F has p™
elements where m divides k.

(We mention also that for every prime p and every positive integer &
there does exist a field with p* elements and any two such fields are iso-
morphic. These facts (which are not difficult to prove: see, e.g., the last
chapter of G. Birkhoff and S. MacLane: A Survey of Modern Algebra
(Macmillan)) together with the results of exercises 10, 11 and 12 con-
stitute the whole elementary theory of finite fields.)
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13. If G is a finite group of order p,™...p™ where p,, ..., p, are distinct
prime numbers, then a subgroup of G of order p;™ is called a Sylow p;-
subgroup of G. Show that a finite commutative group has exactly one
Sylow p-subgroup for each prime p dividing its order, and that the group
is the direct sum of its Sylow subgroups.

14. Let f belong to £(V, V) and let m(X) be the minimum polynomial of f.
If ¢ is a non-zero scalar, show that the minimum polynomial of ¢f is
¢'m{X /c), where r=degree m(X).

If the elementary divisors of f are (X —ux;)™, 1=1,...,¢;j=1,..., &,
prove that the elementary divisors of ¢f are (X —cx;)™s with the same
range of ¢ and of j.

7.4 Equivalence of Matrices over F[X]

Theorem 1 shows that finitely generated torsion-free F[X]-modules
have many of the properties of vector spaces. If E is such a module,
then E can be written as a direct sum of, say, » cyclic submodules, each
isomorphic to F[X]. The number » is an invariant of E, called the
rank of E. It plays a role very similar to the dimension in vector space

theory. Every minimal set of generators {v;,...,v,} is a maximal
linearly independent set (but not conversely!) and E=[v;] D - - P [v,].
For obvious reasons we shall call {v,, ..., v,} a basis of E. Given any

F[X]-module M and any mapping g of {v,, ..., v,} into M, then g can
be uniquely extended to an F[X]-homomorphism of E into M, viz.

D1Vt F PV > P1(V19) + -+ D(V,9).

We may now assert that the whole of § 4.3 applies unchanged to
finitely generated torsion-free F[X]-modules. So does the first part of
§ 4.4, including Proposition 4. But Theorem 2 fails and it is now our
intention to find a substitute for this in the present theory.

Let g be a homomorphism of the torsion free F[X]-module E of rank
m into the torsion-free F[X]-module E’ of rank n. Suppose there
exist ordered bases (¢;), (¢;') of E, E’ so that

;e () = (o )

where D is the diagonal matrix

d,(X)

d(X)
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and (i) d; divides d;,,,2=1,...,¢t=1, (ii) d,#0. Thus dye,’, ..., dse,’
generate the image Eg. If d,,...,d; are (non-zero) constants but
d, ., has degree =1, then

E'/Eg = [es+1’+E’g]@ @[en'+Eg]
and
[des1]1= - 2[d]20=---=0
t
n.._.

are the invariant factors of £'/Eg. But these are independent of (e;),
(¢,). We conclude that all matrices of the above form that represent g
must give the same chain of ideals in F[X]; and so the elements d;(X)
are determined by ¢ to within non-zero constant multiples.

Now we ask: does g always have a matrix of this form and if so how
can it be calculated? The answer is essentially contained in our
proof of Theorem 1.

Let (v;), (v,") be any ordered bases of E, E’, respectively, and suppose

(9 (»), (v))) = C.

We restrict attention to the ordered bases of E that can be constructed
from (v;) by moves of the following two types:

(i) an interchange of two generators;

(ii) the addition of a multiple of one generator to another.

Let us call a move of either type an elementary move. Similarly, we
only allow ordered bases of E’ that are obtainable from (v;') by elemen-
tary moves. Observe that an elementary move on (v;) changes C by
either an interchange of two rows or the addition of a multiple of one
row to another. An elementary move on (v;’) changes the columns of
C in a similar manner.

Now b,=v,/+Eg, j=1, ..., n, generate E’'/Eg and the rows of (' are
the coefficients in m relations satisfied by b,, ..., b,. This is the link
with Theorem 1.

We may obviously assume that g # 0. Among all the allowed
ordered bases of £ and E’ choose a pair (;), (u;") so that the corres-
ponding matrix of g has a non-zero term, say d,, of minimum degree.
Without loss of generality, d; can be taken in the (1, 1) position. Then
the argument under (b) in the proof of Theorem 1 shows that every term
in the first row and first column is divisible by d, and hence, by further
elementary moves, we obtain a matrix in which d, is the only non-zero
term in the first row and first column. An induction on n now yields
a matrix for g of the required form.

Summing up, we have proved the following result.
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ProposiTION 8. Let (v;), (v,) be ordered bases of the torsion-free F[X]-
modules E, B’ of ranks m, n, respectively. If g is a homomorphism of E
into E', then there exist ordered bases (e;), (e;') obtained from (v), (v,),
respectively, by elementary moves and such that

, D 0
@ (e, €N = (5 o)

where D is the diagonal matrix

d, 0 )
( o 4
and

(i) d, divides d, ,,1=1,...,t-1,
(ii) d,#0.
Moreover, if s is the largest index 1 for which [d,]= F[X] then

[des1]12 - 2[d]>0=--- =0
—

n—t
are the invariant factors of E'|Eg.

Proposition 8 solves the equivalence problem for matrices with co-
efficients in F[X] (cf. § 4.4). In the next section we shall use this to
solve the similarity problem for matrices over F.

Proposition 8 remains true when F[X] is replaced by Z: cf. the
penultimate paragraph of § 7.3.

EXERCISES

1. Let (¢, ..., ¢,) be an ordered set of generators of an F[X]-module M.
Prove that there exists an ordered set of generators (a,, .. ., @;), obtain-
able from (c,, ..., ¢;) by elementary moves (i.e., moves that consist of
either an interchange of two generators or the addition of a multiple of
one generator to another) and such that

M=[a,]D - DIal,
where a(a,)< - - - <a(a).
(Reexamine the decomposition part of the proof of Theorem 1. If
!>k, we obtain a(a, ,,)="--- =a(a;)=F[X] and thus a,,,= - - - =a,=0.)

2. Let E be a torsion-free F[X]-module of rank n and § a submodule. Given
an ordered basis (v;} of E, prove (by using exercise 1) that there exists an
ordered basis (¢;), obtainable from (v;) by elementary moves, such that

8 = [dlel] @D [dnen]’
where d, ..., d, lie in F[X] and d,,, divides d; for t=1,...,n—1.
Thus 8 is finitely generated and its rank is at most n.
3. Let X and 8 be as in exercise 2. Prove that
(i) S has rank » if, and only if, E/S is a torsion module;
(ii) there exists a submodule 7' so that E=8 @ T if, and only if, E/S
is torsion-free.
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4. If 8 is the subgroup of Z* generated by the elements (11, —10, —4, —~7),
(3, —4, 2, 5), (3, —4, —4, —7) show that Z*/§ is isomorphic to

Z D Z/6] ® Z/[2].

7.5 Similarity of Matrices over F

Let f be a linear mapping of the vector space V into V. We shall use
the direct decompositions of V, given by Theorems 1 and 2 to find
bases of V for which the matrices of f are as simple as possible.

The invariant factors and the elementary divisors of V, are usually
called the invariant factors and elementary divisors of f.

Lemma 1. If V, is a cyclic module with generator a, say, then V has
an ordered basts with respect to which f has matriz

0 1
0 1
B = ‘ . bl
0 1
ds d2 dl
where my(X) = X6 —d, X571 — .- —d,.
PrOOF. Take the ordered basis (a, af, . . ., af*~*) of Proposition 3.

THEOREM 3. V has an ordered bastis with respect to which f has matrix

(Bl O )
o B
where each B, is of the form B of Lemma 1.

The matrix of Theorem 3 is often called a rational canonical matrix of
f. The result is a consequence of the decomposition of Theorem 1.

If we suppose that the minimum polynomial m(X) can be factorized
in F[X] into linear factors, then a simpler matrix can be chosen for f.
(This will be true—for all f—when F=C.)

Lemma 2. If V, is a cyclic module [a];, where m,(X)= (X —=x)", then
there is an ordered basis of V for which f has matrix

x 1 0
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PrROOF. It follows from the definition of the polynomial m,(X) that
a, (X —z)a,...,(X~z)""'a are linearly independent. Writing now

v,=(X~-2)"ta, i=1, ..., n, we have
(X—2)y, =244, t=1,...,0—1,
and
(X —2a), = 0.
Thus

’t)lf = xvl + '02

vn—lf = LUy _ 1+
vnf = Xy,
ie.,

(f; (@), (v)) = C.
Theorem 2 and Lemma 2 now give immediately

THEOREM 4. If the minimum polynomial of f is
(X—:L'l)sl CERE (X—xt)s‘

then an ordered basis of V may be chosen with respect to which f has matriz

4, 0
( 0 . At)

where, for each i, 4, 18 a square matrix

c, 0
0o O,k‘)

and, for each j, Cy; is the ny; x n;; matrix

1 0
z, 1
z, 1
0 x;

The matrix of f given in Theorem 4 is called a Jordan (or classical) can-
onical matriz of f. Note that we have used the notation of Theorem 2:
thus the elementary divisors of f are

(X—z)w,e=1,...,8,5=1,..., k.
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Let 4 =(a;;) be an arbitrary matrix in F*** Then for any vector
space V of dimension » over ¥ and any ordered basis (v, ..., v,) of V,
4 determines (as usual) the linear mapping f by the equations

n
v f = z av;, 1=1,...,n
i=1

Any two modules V, obtained in this way from A are isomorphic
(Proposition 5, p. 154). We may therefore define the minimum poly-
nomial, the invariant factors and the elementary divisors of the matriz A
relative to F to be those of f. (Cf. exercise 3.)

It follows from Proposition 7 that two square matrices have the
same invariant factors (or the same elementary divisors) if, and only if,
they are similar. In the special case F=C, every square matrix is
similar to a Jordan canonical matrix.

There remains the problem of how to calculate the invariant factors
(or elementary divisors) of a given matrix or linear mapping.

Suppose (vy, ..., v,) is an ordered basis of V and (f; (v;), (v;)) = (a;;)-
Then

(P1(X), .., Pa(X)) = 011 () + - - +0,0,(f),

is a module homomorphism of F[X]* onto V, with kernel S, say.
Write £ = F[X]" and let ¢; be the n-tuple all of whose terms are 0 except
the i-term, which is 1. Then (eq, . . ., ¢,) is the “‘standard basis” of £.
If

n
Yy, = Xej— Z ae;, t=1,...,m,
i=1

and S’ is the submodule generated by y,, ..., y,, then clearly S’ < S.
Moreover, the subspace W of E/S’ spanned by e;+8',...,¢,+8'
satisfies X W< W and hence is a submodule. But e¢;+8’,...,¢,+8’
generate £/8’ as F[X]-module and so W=E/[S". Thus every element
e of E can be written in the form

e = thei—ky,
where y €8’ and z,,...,2z,€ F. The image of e in V is > z;v;, which
is zero if, and only if, z;=-- - =2,=0. Hence §'=8. We now have

ProposttioN 9. If (f; (v;), (v;))=A and 8 is the submodule of F[X]*
generated by the rows of the matriz XI,— A, then the modules F[XT*/S
and V; are isomorphic.

This result, together with Proposition 8 gives an explicit method of
calculating the invariant factors of f (or 4).
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We conclude this section with a result needed at the end of § 7.6. If
fe LV, V), wedefine a linear mapping f* of V*into V* (the transpose of
f) by the equation

vief') = (f)p,
where p € V* and v e V. (This is a special case of a situation studied
in exercise 7, § 4.6, p. 83.)

ProrosiTioN 10. V; is isomorphic fo (V*)..

PrROOF. Let V,=[a,]; P -+ @ [a,], be the decomposition accord-
ing to Theorem 1 and write M,=[a,],. If

N, = N(Mp:j+#1),
then
(my+ - Fm)vi+ - ) = My + - M

(where m; € M;, v; € N;) and therefore the subspace of V* spanned by
the N/’s is their direct sum. But dim N,=dim M, for all ¢ and thus
V*=N,® --- @ N,. By the definition of f* and because all M, are
f-invariant, all N, are f:-invariant. Thus

(VE)p = (N))p @ -+ @ (Ny)pt

and we show that this is the invariant factor decomposition of (V*),.

If v e Ny, then v=0if, and only if, Mp=0. Hence » € a(N,) if, and
only if, M{pv)=0 for all v in Ny, i.e., if, and only if, (pM;v=0 for all v
in N, i.e,, if, and only if, pM,;=0. Thus a(N,)=a(M,). Finally, since
M; is a cyclic F[X]-module and dim M,=dim N,, it follows that N, is
also cyclic (Proposition 3).

Thus we see that V, and (V*) have the same invariant factors and
hence, by Proposition 7, they are isomorphic.

ExERCISES
1. Let (v,, ..., v,) be an ordered basis of the vector space V over C and f be
the linear mapping that takes v; to vy, ... v,_; tov, and v, tov,. Find a

rational canonical matrix and a Jordan canonical matrix for f.

2. If 4 is an n x n matrix over a field F satisfying A"=0, A"~ 10, find the
rational and Jordan canonical matrices similar to 4.

3. If K is a field containing a field ¥ and 4 € F**" show that the invariant
factors and minimum polynomial of 4 as n x n matrix over F are the same
as the invariant factors and minimum polynomial of 4 as n x n matrix
over K.

Find the elementary divisors of (0 1)

2 0
(i) as element of Q%*2;
(ii) as element of R2*2,
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4. If A € F***, prove that A4!is similar to 4. (Use Proposition 10 and exer-
cise 8 of § 4.6, p. 83. For another method of proof see the next exercise.)

5. If B is the matrix of Lemma 1 and if

ds—y ds_p - d, -1
di_g dy_g --- d; —1 0
P = . . . . . . . . . .
d -1 0 ... 0
-1 0 0 ev... 0

show that PB= BtP. Deduce from Theorem 3 that any square matrix is
similar to its transposed matrix.

7.6 Classification of Collineations

Let f be a linear mapping of V into V and suppose that the elementary

divisors of f are (X —x,)™s, i=1,...,¢;9=1,..., k,, where
Ry 2 Nyg 2 -0 2 Ny
To each eigenvalue z; there corresponds the k;-tuple (n,,, ..., ny,) and

we define the set of all these,

{(nll’ MR n1k1)> LR ] (ntl’ . "ntk‘)}’

to be the Segre symbol of f. We stress the fact that the Segre symbol
is defined only for linear mappings whose minimum polynomials fac-
torize in F[X] into linear factors. Of course, if F =C, then this is true
for all linear mappings of V into V.

The importance of the Segre symbol lies in the classification of col-
lineations. If the elementary divisors of f are (X —;)™s;, then the
elementary divisors of ¢f are (X —cz;)™s, for any c#0in F. Hence the
Segre symbols of f and ¢f are the same. We may therefore define un-
ambiguously the Segre symbol of Z(f) to be that of f.

Let f be an automorphism of V. If we call the configuration of
f-invariant subspaces of 2(V) the invariant configuration of the collinea-
tion Z(f), then we may say that the geometrical character of Z(f) is
summarized by being given its invariant configuration. The precise
meaning of this statement is the content of the next result.

THEOREM 5. Let V be a vector space over F and suppose that f, g are
automorphisms of V whose minimum polynomials are products of linear
factors in F[X). Then the collineations P(f), P(g) have the same Segre
symbol if, and only if, there is a collineation of P (V) mapping the invariant
configuration of P(f) onto the invariant configuration of 2(g).
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PROOF. (i) Suppose the Segre symbols are the same and let the
elementary divisors of f, g be (X —ux;)", (X—y,)"s, respectively.
Suppose

t

t
Vf=®KU Vg:@Lt:
151 =1
where, for each 7, K, is the submodule of ¥, consisting of all elements
annihilated by some power of X —x,; and L, similarly for X —y,in V.
If f,, g, are the restrictions of f, ¢ to K,, L,, respectively, then the Segre
symbol of both f; and g, is {(n,y, - . ., g, )}-

Since f; and (z;/y,)g; have the same elementary divisors, there is a
module isomorphism e; of K, onto L,. Clearly, e¢; must map the in-
variant configuration of 2(f) onto the invariant configuration of
P((%:/y)g:) = P(g,). If eis the result of combininge, . . ., ¢, then e is an
isomorphism of V; onto V.

Now any submodule M of V, has a direct decomposition

M=MnE)D - @ MnK)

where M N K, is the set of all elements of M annihilated by some power
of (X —z;). There is a similar decomposition for any submodule of V.
It follows that e maps the invariant configuration of Z(f) onto that of
Z(g) and thus Z(e) is the required collineation.

(i) Since f and e~!fe have the same Segre symbol (Proposition 5)
we may assume without loss of generality that #(f) and #(g) have the
same invariant configuration. Let

V, = ®@lay]

be the decomposition (according to Theorem 2) into indecomposable
submodules, where

afay;) = [(X —z;)"s].

By our hypothesis on #(f) and £(g), each [a,;] must be an indecompos-
able submodule of ¥, and hence is annihilated by some power of an
irreducible factor of the minimum polynomial of g. The uniqueness
part of Theorem 2 applied to ¥V, now shows that the numbers dimg[a;;]
which appear in the Segre symbol of f are precisely those which appear
in the Segre symbol of g. But two invariant points of a collineation
are joined by a line of invariant points if, and only if, they correspond
to the same eigenvalue. Since the collineations Z(f), Z#(g) have the
same invariant configuration this shows finally that the Segre symbols
of Z(f) and P(g) are the same.

The invariant configuration of a collineation has the important prop-
erty of being self-dual. This is the content of our final result.
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THEOREM 6. Given a collineation P(f) of P(V), there exists a correla-
tion of P(V) mapping the invariant configuration of P(f) onto itself.

PROOF. By Proposition 10, there is a module isomorphism g of V,
onto (V*);. We show that the correlation #(g)o has the required

property.
For any v in V we have
ofg = (Xv)g = X(vg) = vgf*.
Hence, for any v, win V,
(vf )(wg) = v(wgft), by the definition of f*,
= v(wfg), by the last equation.
Suppose M is f-invariant. Then for all » in (Mg)° and all w in M,

v(wfg) =0,
whence

(vf )(wg) = 0.

Thus (Mg)°f=(Mg)° and so (Mg)° is f-invariant. On the other hand,
if (Mg)° is f-invariant, then

(vf J(wg) = 0
for all v in (Mg)° and all w in M and therefore
v(wfg) = 0.

This shows that Mfg<(Mg)°*°=Mg and so Mf<M, ie., M is f-in-
variant.

Theorem 6 can often be used to discuss a given collineation without
reference to the theory of elementary divisors; and in fact can be used
when the Segre symbol is not defined so that Theorem 5 is not available.

Suppose, for example, that a collineation = of a 3-dimensional pro-
jective geometry P over a field F has precisely two invariant points 4,
B. Then we know at once that 7 has exactly two invariant planes P, @,
say. Clearly, the line L joining 4, B is an invariant line, as also is
P N Q. There are at most three possibilities:

(i) L does not lie in P or Q;
(ii) L lies in P, say, but not in @;

(iii) L = PN Q.

In case (i) L meets each of the planes P, @ in an invariant point. We
may suppose that LN P=A, L " @Q=B. By considering the res-
triction of 77 to P and using Theorem 6 again we see that there is just
one invariant line of 7 in P, viz. P N @; and similarly for ¢. Any in-
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variant line M which is not in P or @ must intersect P, @ in invariant
points and so M =L. The invariant configuration therefore consists
of two points 4, B, two planes P, @ and two lines AB, P N Q.

Case (ii). Since L meets ¢ in an invariant point we may suppose
that B lies on P N Q. Using Theorem 6 we see that there is just one
invariant line in @, viz. P N ¢. Any invariant line M which is not in
P or @ must intersect @ at the invariant point B; but then the join of
M and 4 would give a third invariant plane. Thus L and P N Q are
the only invariant lines.

Case (iii). Since P contains 4 and B, there are just two invariant
lines in P, viz. L and one other, say M, which meets L in an invariant
point. We may suppose that M N L=A. Similarly, there is an in-
variant line N in @ that cannot go through 4 as we should then have a
third invariant plane joining M and N. Thus N goes through B. We
at once check that L, M, N are the only invariant lines in this case.

We observe that if P is defined over the field € of complex numbers
(or more generally over any algebraically closed field) then by Propo-
sition 3 of § 6.3, p. 135, any collineation has invariant points. In par-
ticular the restriction of = to P N ¢ in the above example must have
invariant points so that case (i) cannot occur. All three cases do occur
for example over the field R of real numbers: the matrices

1 0 2 1 2 1
0 -1 2 1 2

-1 0 3

define collineations of Z(R*) of types (i), (ii) and (iii), respectively.
The reader should observe that the simplest matrices describing a
given collineation are obtained by choosing a simplex of reference so

that as many as possible of its vertices, sides, faces, etc. belong to the
invariant configuration.

EXERCISES

1. Find the Segre symbols and invariant configurations for the non-identity
collineations of an n-dimensional projective geometry over C when n=1,

2,3. (For n=1 there are two cases; for n =2 there are five; for n=3 there
are thirteen.)

2. Use Theorem 6 to find the invariant configurations for the non-identity
collineations of a real projective plane.

3. Find the invariant configuration of a collineation of a 3-dimensional pro-
jective geometry given that it has just three invariant points. (Assume
that the ground field has more than two elements.)
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4. Let P be a real projective geometry of dimension 3. Show that a collin-
eation of P without any invariant points has one, two or infinitely many
invariant lines.

5. Let F be a finite field with p®*! elements and let a be a generator of the
cyclic group F*. (See exercise 11 of § 7.3.) Prove that

fix—za

is an automorphism of F, viewed as a vector space over F,, and that f has
order p"*1—1. Deduce that Z(f) is a collineation of #(F) of order
14+p+---+pm

(Observe that 1+p+---+p" is the number of points in P(F) (cf.
exercise 5 of § 2.5, p. 32). Now, by Theorem 6 of Chapter II, p. 32, any
projective geometry P of dimension n over F, is isomorphic to Z(F).
Hence our exercise implies that there exists a collineation that permutes
all the points of P cyclically. In fact this result is true for all projective
geometries over F, because there exist fields with p"*! elements for all
n=>0.)



SOLUTIONS

§2.1

4. Let ¢ be an element of S and consider the set M = —c+8. Then M has
the property of exercise 3 and also contains the zero vector. Ifa,be M
and z, y € ¥ then (by hypothesis, with r=3)

za+yb = va+yb+{(1—z—y)0eM
and so M is a subspace.
5. Consider M=—c+8Sasin4. Ifaec M and x € F then
za = za+(l—z)0e M.
By hypothesis we can find non-zero scalars y, z for which y+2=1. Then
a+b = y(é a)+z(% b) eM

for any a, b in M.
The non-zero vectors in F,2 do not form a coset.

§ 2.6

2. Let P, @ be elements of A with hyperplanes at infinity M, N, respectively,
ie, M=PNnH, N=QnH.

TuEOREM 1. Let P, Q € A.
(1) If P< @, then pdim P< pdim @ and pdim P=pdim @ implies
@ If PAQeA, then

pdim(P +@Q) + pdim (P N Q) = pdim P + pdim Q.

(3) (i) Assuming P N Qe A; M <N if, and only if, P< Q.
(ii) Assuming PN Q¢ A; M <N +f, and only +f,

pdim(P+¢) = pdim @ +1.

ProoF: (1) and (2) are immediate by Theorem 2 of Chapter 1.
(3) (i). If P N Q € Athere exists a vector ¢ in P N @ but not in H and so

P=[c]+M, @ =I[c]+N.

(i) Pn@Q<cH, If McN then McPn@Qc P. Counting
dimensions gives M =P N Q and so *

dim(P+Q) = dim P+dim Q—dim M = dim Q+1.
175
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Conversely, if dim(P+@Q)=dim @+1 then dim(P N Q)=dim P—1.
But PN (PN@cPNH gives PNQcM, so that PN Q=M and
McN.

§3.2

. @ is any point not on L or PP’. Let B=L N PQ and §'=A4AQ n BP’.

Case (i): A not on L. If Po=PP' N L, Q,=QQ N L, then there is a
unique collineation taking (P, @, P,, &) to (P, @', Py, @) (Theorem 2).
Case (ii): 4 on L. If Cis any point on L different from 4 and B, there
is a unique collineation taking (P, @, 4,C) to (P',Q’, A, C). These
collineations are central as required.

Br must lie on PB and on LC’ and so Br=B’. Similarly, An=4".
Now (A B)r is a line through AB N LM, i.e., N lies on LM.

Draw any line M through L N L’ different from L and L’. Use exercise
4 to find a central collineation with axis M, center A and mapping L
onto L'.

Let P, @, R be distinct points on L and P’, @', R’ their images on L'.
We may assume that P, P’ are distinct from L N L’. Let then
Q"=PQ" N P'Q and R"=PR' n P'R. Consider the perspectivity of
L onto @"R" with center P’ and the perspectivity of @”R” onto L’ with
center P.

Last part. If zx#zz and if (2, x,, 23)f= (2,2, 242, x32), then P(f) is not
the identity collineation on #(D?): e.g., [(1, z, 0)] — [(z, z, 0)].

§3.5

. If  is an automorphism of Q, 1{=1 and so n{== for all n e Z (by

additivity). Further,

n(%{) = m{ gives %Z_::%L'
If { is an automorphism of € and R{=R, then
(@a+b)l = (al)+(i{)(bf) and (:{)* = —1.

So il= +1.
CIfz(zy, ..y %) =(Fys - - -, Fy) then |z| =1 and if 2z = €,
(X, ..., 2,) = e 9(Zy,..., Ty)
is a real n-tuple.
§3.6

. If 1g=0 then all zp=0. Assuming lp#0;if z+#0, then (xp)(z tp)=1p

implies xp#0.
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§4.1

. For given ¢, j

fu: Z Xylly, —> T,Y;.
If w,f= >, a;v; then f is uniquely expressed as 3, ;a,f;;.
If c ¢ H, every vector is uniquely expressible as xc+%. Now f is the

identity if, and only if, vf —v € H for all v, i.e., if, and only if, ¢f—c € H.
But [¢f —c] is the center of Z(f).

§ 4.2

. Ker f=Kerg. If f#0 and M is a direct complement in V to Ker f,

apply Proposition 1 of Chapter III (p. 45) to the restrictions of f, g to M.

. P(g?)=P(g) implies g=2¢2, by exercise 2. Put f=z2g.

If P is any subspace then Pf=(K + P) N M where K, M, respectively,
are the kernel and image of f. It is natural to call (f) the ‘“‘projection
from K onto M”.

§4.3

CIfd ?éj,0= (EkjEik)f= (EikEkj)f'_‘Eljf’ &ndEuf: (EUEj!)f: (EjiEU)f= Ejjf'

§ 4.4

. The given condition is (4 A¢—I)x*=0 for all z. Now z8zt=0 for all

is equivalent to s;=0, all ¢, and s;;= —s, all i#j. If F is not of charac-
teristic 2 this is equivalent to the skew-symmetry of S. Hence then
(A4t~ Dxt=0 for all = is equivalent to 2(4A4'—1)=0, ie., AAt=1.
But if F is of characteristic 2, (44— Izt=0 for all z is equivalent to
Skay2=1 for all <.

. If C=AB with r(4)=r(B)=r, then r(C)=r by Proposition 6 (3) and

exercise 4.
Conversely, if r(C)=r, then C is equivalent to

-

mxr

§4.6

. Lastpart. Letgbethelinear form p(X) — p(1). Ifp=a,fo+ -+ +afi

then X**+1p=0, a contradiction.

. Clearly .« is linear. If p(X).=0 then p(X)f,=0 for all ¢>0, where

Jos f1» - .. are the linear forms defined in exercise 5. Hence p(X)=0.
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There exists an element ¢ of V** mapping every element of the basis
of V* to 1. If p=p(X). where p(X) has degree =, then we obtain
frr19=P(X)fr+1=0, a contradiction.

(The reader who is familiar with the use of Zorn’s Lemma will easily
verify that the linearly independent subsets of V* containing { f,, f1, ...}
are inductively ordered by inclusion. A maximal subset of this collec-
tion is a basis of V*.)

7. To show that (f*)is 1dent1ﬁed with f amounts to proving (u)(f*)'= uf )L,
all win U. Now (w)(f*)!= ft(ui) (definition of transpose). If ke V
(Af ) (we) = u(hf*) (definition of ) and hft=fh. So (hft)(ui)=(uf)h= h(uf
i.e., fiud)=(uf)e.

§4.8

1. (1) The equation of U’ with respect to (4,, 4,, U) is X+ X,;=0. So
U’ is the point (1, —1) in (V).

2) If (ao,...,a,) determines (A,,..., 4,, U), then (a,...,a,_;)
determines (4, ..., 4,_1, U,). IfpoXo+ -+ +p,X,=0is the equation
of a hyperplane P of #(V), then poXo+ -+ +p,_1X,_,=0 is the equa-
tion of P N 4, with respect to (4y,..., 4,_;, U,).

(3) Whenn=1use (1). Inductivestep: U'=+(U' N 4,:¢=0,...,n).

§5.1

1. The statement o(a, b)=0 for all b is equivalent to ag=0. Thus (i) is
equivalent to g having kernel 0. Similarly for (ii).
The statement o(a, b) =0 for all ¢ is equivalent to b € (Vg)°. In the
finite dimensional case (Vg)°=0 if, and only if, Vg=V*.

§5.2
4. For any subspace N, Vt<N+. Hence V' < M* N (ML)t = 0.

§5.3

9. (4). Here ¢8=pBa=0 and so Image o < Ker 8, Image B8 < Ker «.
Let (a4, . . ., a,) be an ordered basis of V. If ga=0, let ¢ be the quad-
ratic form ¢(3 za;) =3, ., o(a;, a;)xx;. Then o=¢gp.
If g8=0, let o be the symmetric bilinear form

o> zay, 2 ym) = Zq(a’i)xiyl .

Then g=oc« (by exercise 8).

§5.4
ala+xc, a+zc) = o(a, a)+2zo(a, ¢) > 0 for all .

7. Let o be the bilinear form on F,? having the given matrix with respect to
the standard basis. Now o is non-degenerate and so, if we could
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triangularize o, there would be three vectors with o(a, a)#0. But if
a=(z, ¥, 2), o(a, a) = z(x+y) and so the only such vectors are (1, 0, 0),
(1,0, 1).

. There is a smallest positive integer p such that pl,=0 and p must be

prime. Then {mlz; m=0,1,..., p—1}is a subfield isomorphic to F,.
E is a finite dimensional vector space over F,,.

. Since F is finite, S* = F* if, and only if, the kernel is {1}; and this holds

if, and only if, 1=—1, i.e., 2=0.

If 1# —1, each element in S* is the image of exactly two elements in
F*, Thus the number of elements in F* is twice the number in S*.
Now {zs; s € S*} has empty intersection with §* and contains the same
number of elements as S*.

If z, y € S but x+y ¢ S then x, y must be non-zero and x +y =zs for some
s in S*. This contradicts the hypothesis on z. Hence x+y €8 and 8
is closed with respect to addition. In particular, (p—1)xe8,ie., —x€ 8.
Obviously, 8 is closed with respect to multiplication and S* is closed with
respect to inversion.

The number of elements in S is 1+ 4(¢—1)=4(g+ 1) and this cannot be
a power of p because ¢ is a power of p.

Let (o; (a4, .. ., a,))=diag(z,, ..., z,, 0,...,0). Each z, is either in S*,
say z;=y,%, or has the form z;=zy2 (exercise 9). Then o(y, ‘a,, y,”'a;)
=1lorz So we obtain an ordered basis (b,, . . ., b,) with respect to which
o has matrix diag(1,1,...,1,2,2,...,2,0,...,0). The z’s can now be
knocked off in pairs. Let 27 1=2,242,% (exercise 10). If
o(b, b) = ofb;, b)) = 2

put

b/ = 2;b,4+ 250,

b/ = —zub,+2,b;

and check that o(b;, b;/)=0(b,, b,)=1, o(b;, b,/) =0.

§5.5

. P,= P/ and so the vertices of the first tetrahedron lie on the faces of the

second. On the other hand,
Pyt 0 Pyt N\ Pyt = (Py+ Py+ Pt < (Py+ Py+ Pyt = Py+ P+ Py,

where the left-hand side is a vertex of the second tetrahedron and the
right-hand side a face of the first.

. Let | be a possibly degenerate null-polarity. If P< @ then we have

PcPin@t=L' But Pc Q' also implies Q< P! and so L< Lt
(In the non-degenerate case dim L= dim L* and so L=L!.) Assume
conversely that L< L!. Then for any points P, @ on L we have
Pc Lo Ltc@t.

The lines through P which satisfy L < L* are simply the lines through
Pin Pt. When | = | (o) and o is degenerate but not zero, V! is a line;
then P! is the plane P+ V! for any point P not on V1. The linear com-
plex in this case consists of V'* and all the lines meeting V-,
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B consists of the subspaces M of V for which both M and M* lie in A.
Hence |’ is a mapping of Binto B. Since |’ |’ isthe identity mapping
it follows that |’ is one-one and onto B.

Knowing only | ’ we try toreconstruct | . It will be sufficient to have
the image of each point in #(V): for then the formula (M +N)i=
M+ N Nt will yield the image of each element of (V). If there is a point
of Z(V) in A but not in B, then this point must be H and so its image
must be H. This has extended |’ to all points in A.

Now take a point P in H. Let L be a line so that L " H=P. For
any point @ P on L, @* is known and contains L!. As @ varies, we
obtain all hyperplanes @+ containing L* except for one: this exception
must be PL.

. B consists of the subspaces M for which M and M* are both in A.

If Ve A then Mt e A for all M (because M+>V+L). Thus B=A.
Conversely, if B=A then V € B and so ¥+ e A.

Assume Vi=H. Then M*>H for all M. Either M*=Hor M*=V
which would imply M<V'=H. In any case M ¢ B. Conversely,
assume B empty. For any point P in A, P*< H and thus P*=H be-
cause dim P! > dim V —1 (Proposition 4, p. 93). Now V may be ex-
pressed as the join Py+---+ P, of points P; in A and so finally
Vi=Pin...NnPt=H.

Clearly |’ is a mapping of Binto A. We wish toreconstruct | from
1’. We need only find P! for all points P (cf. solution to exercise 5,
above).

If Pe A but P¢ B, then Pr<H. But P! is a hyperplane or is V.
Hence P‘=H.

Consider a line L in #(V) and a variable point P on L. There are
three cases: (i) all P+ are distinct hyperplanes; (ii) one P! is V and all
the others are equal to a fixed hyperplane; (iii) all P*=V. (If | = | (o),
these cases occur according as Lg has dimension 2, 1 or 0, respectively.)
Since we know P! for every point P in A we can find P* for any point P
in H by choosing a line L as in exercise 5 which has P as its point at
infinity.

§5.6

. (1,1, 1) meets Xy=0at (1, —1,0). If m+n+#0, find the unique point,

other than (1, 1, 1), at which the line joining (1, 1, 1) and (m, =, 0) meets
the conic.

. Let A € Q(c). Since there are at least three lines through A, there is a

line L distinct from A+ and AP. Hence L meets Q in B# A (exercise 5)
and PB+# PA.

If AP=A"' then P* goes through A4 ; in the other case P! goes through
the harmonic conjugate of P with respect to the point pair AP N Q.
Similarly for BP.

If P €@, P*is the unique line cutting @ only at P.

By the last part of exercise 5, @(o) contains at least three points, say
Ay, Ay, E. Now use exercises 8, 9.
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12.

13.

14.

16.

If the signature is + 2, then the equation of the quadric in a suitable co-
ordinate system is
X2+ X2+ X,2—- X2 = 0.

If there were a generator, the plane X;=0 would have to meet it in a
point (or points) satisfying X2+ X2+ X,2=0.

Let the skew lines be 4, B, C. Choose distinct points 4,, 4; on 4 and
let the unique transversal from A4, to B, C meet B at 4, and the unique
transversal from A, to B, C meet B at A,. Choose a point U on C but
not on either of these transversals. Then 4, B, C have the required
equations with respect to the frame of reference (4,, 4,, 4,5, A3, U).
The transversal from (0, z, 0, y) on 4 meets B at (x, 0, y, 0) and C at

(%, 2,9, y).

Since L is a generator Li=L. If M is a plane containing L then the
point M'lieson L' = L. Now M N M'=M" and so o, hasrank 2, i.e.,
the conic @ N M is a pair of distinct lines through M* (one of which is L).
Any three distinct planes through L yield three skew lines 4, B, C which
are generators of . If we choose a frame of reference as in exercise 13
and with 4,4,=L then @ and L have the required equations.

(i) If n=1, the hypothesis forces ¢ to be non-degenerate (exercise 2) and
then we use exercise 3.

(ii) @ cannot be contained in a hyperplane. Suppose Q<H, H a
hyperplane. Take any point A on @ and any line L containing 4 but
L ¢ H. Then L meets  only in A and hence o, is degenerate. Thus
a(a, b)=0 for all b¢ H. Each vector in H can be written as a sum of
two vectors not in H. Therefore o(a,v)=0 for all » in V and thus
A< Vi So Q< Vi, a contradiction.

(i) As P¢@Q, Pt#V and so P! is a hyperplane. By (i), @ ¢ P*
and we can find 4 in @ such that 4 ¢ P+, ie., P & A*. Take H to be
any hyperplane containing 4 and P, and therefore distinet from A*.
Then the quadric @ N H satisfies the same condition in H as @ does in V
(AL@w £ H),

By induction on n, there exist n-1 lines through P, each meeting
@ N H and whose join is H. Now @ ¢ H by (ii) and so there exists a
point Bin @ not in H. Then PB meets Q and PB+H=1V.

(Remark. If the ground field is R, the quadric has equation

~ X2+ X2+ X2 =0

and P has coordinates (1, 0, 0), then the polar of P does not meet the
quadric.)

(iv) Let 4,,..., 4, be the points of  such that V=PA,+---+ P4,
(by (iii)). If PA, meets @ in a second point B,, define P, to be the har-
monic conjugate of P with respect to A, B;; if P4, meets @ only at 4,,
define P; to be A;. Then P;+ - --+ P, is a hyperplane contained in P*
and hence equals P*.

(v) Let Pe@. Ifo,isdegenerate for every line L through P, P< V.
If there is a line L containing P such that o; is non-degenerate, then L
certainly contains two points not on ¢. Hence L' is known by (iv).
Now P must be P+ L*.
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§5.7

3. Q(o) lies in the hyperplane H. Let A € Q(c) and B be any point not in
H. AB meets @ only at 4 and 80 o4, is degenerate. Thus 4 is orthog-
onal to B. But V is spanned by the points B not in H and so A< V+,

4. Rank 0 is always possible. Let V=M @ V* where dim M =rank o =
r>1 and @(o,) is empty. Choose coordinates so that ¢ has equation
aeXo®+ - +a, 1 X7 =0 (ao---a,_;#0).

(i) As long as a,,...,a,_, are all positive or all negative Q(o)) is
empty. Thus any r>1 is possible.

(ii) If r> 1, Q(oy) is not empty. Hence r=1.

(iii) If r>2, Qo)) is not empty. If r=2 and a,=a,, then Q(o,,) is
empty. Hence ris 1 or 2.

5. Let Q < H U K (H, K two distinct hyperplanes). Since ¢ is non-empty
and non-degenerate, Q¢+ H and Q¢ K by exercise 3. We may assume
pdim V' >1. Thus H N K contains points.

()@ N HN K is empty. For if Pis a point of Qin H N K and R is
any point not in H or K, PR meets @ only at P and so R< P! (where |_is
any polarity determining ¢). Thus P+=7V (cf. solution to exercise 3),
i.e., V+#0, a contradiction.

(ii) Let P be a point of @ in H. Then P*# K by (i) and so P N K,
H N K are hyperplanes in K. Any line through P, not in A and not in
P, must meet @ in one more point P’ and P'< K. HenceQ N K contains
all points in K that are not in H and not in PL.

(iii) If pdim V >2, (H N K) N (P N K) contains points. Let R be
one such. Choose any point R’ in K but not in H or Pt. Then R is the
only point of the line RR’ in H and also the only point of the line in P*.
Then @ contains all the points of RR’ except R (by (ii)). Since the
ground field contains at least three elements, @ contains the whole line
RR’, contrary to (i). Hence pdim V <2.

(iv) Let pdim V=2. Here H N K, P N K are points on the line K.
If K contains more than four points then by (ii) @ contains all the points
of K, a contradiction to (i). Hence K contains exactly four points, i.e.,
the ground field is (isomorphic to) F;. Furthermore, K (and similarly
H) contains just two points of @, so that @ consists of four points. (Cf.
exercise 5 of § 5.6.)

6. Let Q « HUK, H#K.

(i) We may assume Q¢ H and @ ¢: K, otherwise use exercise 3.

(ii) If 4 is a point in V*+, Be @ and 4 # B, then AB< Q.

(iii) V* « HN K. Forif Aisapointin V*notin H N K,say A¢ K,
then there is a point, say B, of ¢ not in H (by (i)) and AB< @ by (ii).
But 4 B contains points not in H U K, a contradiction.

(iv) Let V=M @ V4, so that @ N M is a non-degenerate quadric in
P(M). By (iii) and (i), M¢H and M¢K. So HNn M, K "M are
hyperplanes in M. Since @ is not contained in ¥+ (by (iii) and (i)) we
see by exercise 17 of § 5.6 that @ N M is not empty and so is one of the
two types of quadric given in exercise 5 above. We get @ from Q@ N M
by means of exercise 17 of §5.6: if Q N M is a pair of points then @
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consists of all the points on the hyperplanes H and K ; in the second case
@ consists of the points on four subspaces, two being hyperplanes in H
and two hyperplanes in K.

. Let A be determined by H in (V). Let @ be an affine quadric con-
tained in a hyperplane K of A and let @ be a projective quadric com-
pleting @'. Now QcH U K. If Q< H then @' is empty and if Q<K
then @’ consists of all the affine points in some subspace N of K (using
exercise 3). If  consists of all the points of H U K then @’ consists of
all the affine points of K. (Note that @=H U K and Q=K give the
same @'.) By exercise 6 there is only one further case: @' is the set of all
affine points in a pair of hyperplanes of K and the ground field is iso-
morphic to Fj.

. Over F; there exists a unique non-degenerate conic through any four
points, no three of which are collinear. (Thus X, X,+ X, X,+X,X,=0
is the unique non-degenerate conic through (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1,1, 1))

If a completion were degenerate it would be a line pair and so @
would contain 3 points. Let @ ={4, B}. There are 3 points on the
line at infinity and not on 4 B: any two of these together with 4, B give
a completion of Q'.

§6.1
. Take a=(1,0,...,0), b=(0,1,0,...,0). Then D.6 holds for e, b if,
and only if, 227=2, ie., p=2.
. Write |a| for d(a, 0). We are asked to prove that
o(a+b, c)—a(a, c)—a(b, c) = 0,
ie.,
la+b+c|—fa+b]2—[a+c|?—[b+c|?+]a]*+ 5]+ || = 0.
But
la+b+c|?+lla+b—c|® = 2]a+b]*+2]c|?,
la+b+cl®+ la—b+e|® = 2]a+c|*+2b]?,
2lal®+2[b—c|?® = [la+b—c|?+|a—b+c|?,
4[5]%+4fc|® = 2[b+c]>+2[b—c|>.
Adding these equations gives the result.
. We write |a| for d(a, 0). Then
ofza, b) = [za+b|*—|aa|?— b

It is clearly sufficient to show that  — |xa +b| is a continuous function
(for any given a, b in V). The triangle inequality shows that

| fza+b] - |ya+b] | < |oa—ya

z—y| la]. by D,

1A

and so [xa+b| — |ya+b| as z — .
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Take any « in R and any sequence (r;) of rational numbers so that
lim r,=z. Then

i
o(za, b) = lim o(ra, b)
= 'l:n: ro(a, b) (exercise 4)
= ia:::(a, b).
. Let u=b—c, v=a—b. Then

lutol® = (Juf+ 1o = Jul*+|[o]*+2]u] o]

Hence o(u, v) = |u| |v|| and, by Schwarz’s Inequality (Lemma 1), u, v
are linearly dependent. Thus a, b, ¢ are linearly dependent

Let S=a+M and 8 =a'+M’, where we choose a’=ap. Then ¢
induces a one-one mapping ¢ of M onto M':

v—> (a+v)p—a’.
Thus 0 =0 and ¢ preserves distance: if v, v, € M,

d(vy, vy) = d(a+vy, a+v,)
g'((“+01)¢, (@+vs)p)

7’1‘/” ”2‘/‘)-

By the first part (and its converse) ¢ maps lines to lines. Hence for
any v#0 in M and any z in R, (zv)y lies on the lme [v:ﬁ] say (xv)f =
z'(vp).  Since d(v 0)=d'(vy, 0 and d(xv, 0)=d'(x'(v§), 0), || =|’|.
Also d(zv, v)=d'(x vx/: ) and so |z—1| = |x —l] Thus z=2' and
V) =x(vy). Further, if u, v are arbitrary vectors in M, let w be the
mid-point of u, v, i.e., w=34(u+v). Then wy is the mid-point of uyf, vif.
Hence (u+v)= (2w)f=2(wy) =wp+vp. Thus ¢ is a linear mapping.

(I T

§6.2
. Let (a,, ..., a,) be a cartesian basis of (H, o). If Q(r) N A is a sphere,
then the equatlon of Q() (with respect to a projective coordinate system
determined by (a,, ..., n)) is X244+ X,2=k?X2 (cf. p. 117). If
P is the pomt [(0, z4, ..., z,)], then [(yo, Yiy oo os Yn )]CP“’) if, and only
if, z,y, + +xnyn—0 1. e if, and only if, [(0, yy, .. ., Yn)] = P+,

Conversely, we assume that | (ry)= (o) and so H*™ N H=0.
Thus V=H ® H*? and Q(+) has equation X,2+---+X,2=sX,%
Since @() has more than one point we must have s>0 and 80 Q(7) is a
sphere in A (as defined in exercise 3).

. There is a unique translation taking B; to 4,. Let it take B, to 4;.

Then d(B,, B,)=d(A4,, 4;). Take the sphere w1th centre A, and con-
taining 4,. This meets 4;4; in two points. Let 4, be one of them.
If A, is the point at infinity on 4,4,
d(4;. A2)/d(Blr B,) = d(Ay, A4)/d(A1, Ag) .
= |er(dg, 4,3 A5, 44)] by exercise 2.
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§6.3

. Let ¢ be a common eigenvector of f and g and let M be a subspace for
which V=M ®[c]. If mf is expressed as mf'+xc where m, mf' e M
and x € F, it is easy to check that f’ is a linear mapping of M into M
and (fg)'=f'g’. Now use induction on dim V.

§6.5

. The given equation is equivalent to f=1g~!. Let a, be an eigenvector
of f and without loss of generality assume o(a,, ¢,)=1. Now o(a,, b)=0
implies o(a, f, b)=0 and so r(a,, b)=0. We have W =[a,] @ [a,]* and
[@, ]} < [a,]*. Now use induction on dim W.

. As for exercise 3 of § 6.3 but with M =[c]* and o(c, ¢)=1.

5. The given equation is equivalent to b(af*s) =bf(ag) for all @, b, i.e., af*=

(fag))g~? for all @. Since ¢ is semi-linear with respect to complex con-
jugation this defines a linear mapping f*. (In the language of exercise 7,
§4.6, p. 83, f(ag) =a(ef") and so f*=gf'g1.)

(i olaf**, b) = o(a, bf*)

for all a, b; hence f**=f.
(ii), (iii) and (iv) are proved similarly; (v)isa consequence of (ii) and (iv).

(i) o(wf*, wf*) = o(w, wf*f) = olw, wff*) = o(wff*, w)

= O'(H/f, ’lL:f) = U(wf’ wf)

(ii) If w(f—x1)=0, then w(f—x1)*=0 by (i). Hence the result by (v)
of exercise 5.

(iii) If b e [w}*, o(wf*, b) =0 because [w]f* <[w] by (ii). So o(w, bf) =0,
as required.

§7.3

. If z is non-zero, non-invertible and not irreducible, z = zy, where z, y,
are non-zero and non-invertible. Hence Ry, is strictly between Rz and
E. Ify, is not irreducible, we obtain y, so that Ry, is strictly between
Ry, and R. By exercise 1, this process must terminate and hence z
has an irreducible factor.

Let z=2z,x,, where z, is irreducible. If 2, is non-invertible, z, =z,x,
where z, is irreducible. Again we obtain a strictly ascending chain of
ideals Rz< Rx,< Rx,<---. This can only terminate if there exists r
such that z, is irreducible. Then z=z,...2,_,x,, as required.

. If p is irreducible and p divides ab where ab+#0 and p does not divide a,
then p divides b. For if ab=cp and up+va=1, then b=upb+vab=
(ub + ve)p.
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11.

12.

Applying this result to p;---p,=q,- - -¢q,, we see that p, divides some
g;, say q;. Since p,, ¢, are both irreducible, p, =e,q;, for some inver-
tible element e,. Cancelling ¢, we obtain e;p,- - -p,=¢,---¢, and the
result now follows by an induction on min(r, s).

. In part (b) (i) of the proof of Theorem 1 we argue thus: If

[d] = [m;]+[m,] and d = um;+vm,,

put
b/ = vb;—uby,
, m m
b, = R—’b,-f—j‘bk.

Then [b;, b,]=[b/, b,'] and mb;+m;b,=db,’. Hence d has length >
length m,. Thus xd=m,, where x is invertible (exercise 5) and so m,
divides m,.

Part (b) (ii): Let d be a greatest common divisor of m,, n, and suppose
d=wum,+vn,. Then u times the first relation plus v times the second
yields

Z (um,; +vn;)b, +db, = 0

and so (again by exercise 5) m,=xd, where x is invertible. Thus m,
divides n,.

If m is the positive generator of the smallest invariant factor of the
multiplicative group F* viewed as a Z-module, then z™=1 for all z in
F* and there exists an element z, whose annihilator is Zm, i.e., whose
order is m.

Thus all elements of F are roots of X™*1—X. But this polynomial
has at most m+1 roots and F has at least m+ 1 elements. Therefore
g=m+1.

(i) E is closed under addition, subtraction, multiplication and inversion
by non-zero elements and £ contains 1, 2,..., p—1.

(ii) Let k=Im. Then p™—1 divides p*—1 and hence (by the same
argument) X?" -1 —1 divides X?*~1—1. Thus X*" —X divides X** - X.
By exercise 11, all the elements of F are roots of X?* — X and hence the
subset E consisting of the roots in F of XP" — X has exactly p™ elements.
This is a subfield by (i).

If B’ is a field with p™ elements contained in F, then all elements of £’
are roots of X*" — X and so E'=E.

(iii) By exercise 10, F is a k-dimensional vector space over F,. But
also ¥ is an m-dimensional vector space over F, and F is a vector space
over E, necessarily finite dimensional, say of dimension I. Hence F is
an ml-dimensional vecvor space over F, and thus mi=k%.

§74
. Let M=E/S and ¢;=v;+8. Every elementary move on (c,, ..., ¢,) is
obtained by an elementary move on (v,...,v,). Hence exercise 1

yields the result.
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§7.5

3. Apply elementary moves (over the smaller field F) to the rows and
columns of the matrix X1-—-A4 to obtain an equivalent matrix of the
form diag(d,, ..., d;) (as in Proposition 8). The invariant factors are
then [d;,,] - - - 2[d,] relative to F or to any field containing F. The
minimum polynomial is d, (to within a non-zero constant multiple).

The elementary divisors of
01
2 0

are (i) X2—2 relative to Q and (ii) X —V'2, X +V/'2 relative to R.

§7.6

4. Complexify and note that a real invariant line always contains a pair
of conjugate complex invariant points.
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point, 47
Coordinate system
for an affine geometry, 44
for a euclidean geometry, 129
(homogeneous) for a projective
geometry, 46
for a vector space, 13
Correlation, 85, 110, 120
degenerate, 110
Coset (translated subspace), 15ff
dimension of, 16
parallel, 18
space of, 67 154
subspace belonging to, 16
Cross-ratio, 132, 133 (exx. 1, 2, 5,
6)

Degenerate
affine polarity, 111 (ex. 6)
affine quadric, 119
affinity, 70
bilinear form, 91, 92 (ex. 1)
correlation, 110
null-polarity, 110
polarity, 110
projective quadric, 112
projectivity, 70
subspace (with respect to a bilinear
form), 92 (ex. 1), 95
Desargue’s Theorem
(affine), 23
(projective), 32 (ex. 6), 38, 41 (ex.
3), 48 (ex. 5), 51 (ex. 2), 86
(ex. 1)
converse of, 38
related to a division ring, 39, 40,
48 (ex. 5)
Determinant, 144
Dilatation, 44 (ex. 3), 49 (ex. 9), 54
(ex. 1), 63, 75 (ex. 11)
Dimension
of an affine geometry, 16
of a coset, 16
of a projective geometry, 30
of a vector space, 10ff
finite, 9ff
(Note the convention at the begin-
ning of Chapter 11, p. 15.)
projective, 30
Direct sum
of submodules, 155ff
of subspaces, 7, 8 (exx. 7, 8), 11, 12
(exx. 11-13), 95, 96, 102ff, 155{f

Distance
on a coset, 127
on a euclidean space, 125
on a Hilbert space, 146
on a vector space, 125
similar, 131
Division ring, 39, 49 (exx. 10, 11), 75
(ex. 7)
Dual
basis, 80
configuration, 84
frame of reference, 87, 88 (ex. 1)
geometry, 86ff
proposition, 84
self-, 171, 172
space, 80
Duality, 85
principle of, 84

Eigenspace, 71 (ex. 4), 135, 142, 143
Eigenvalue, 71 (ex. 4), 135, 137, 141ff
Eigenvector, 71 (ex. 4), 135ff, 140
(ex. 3), 141ff
Elementary divisors
of a finitely generated F[X]-
module, 159, 160
of a linear mapping, 166
of a matrix, 168, 169 (ex. 3)
Elementary move, 164, 165 (ex. 1, 2)
Elementary transformation, 70 (ex.
10)
Embedding Theorem, 32, 52 (ex. 6),
61, 116, 130
Equation
of affine quadric, 117ff
of euclidean quadric, 138ff
of projective quadric, 112ff
linear, 49ff, 79ff, 82
Equivalence of matrices, 77, 165
Exchange Lemma, 9
Exponent of commutative group, 153
(ex. 4)

Family, 2
Fano’s Theorem, 40
Field, 4, 5
of characteristic 2, 40 99ff (conven-
tions on pp. 111, 115)
of gaussian numbers, 14 (ex. 1)
of quotients, 160
finite (see Finite field)
ground, 12
Finite dimensional vector space, 9ff
(Note the convention at beginning
of Chapter 11, p. 15.)
Finite field, 109 (exx. 8-11), 162
(exx. 10-12), 174 (ex. 5)
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Finite geometr
(affine), 20 (ex. 1), 29, 38 (ex. 3)
(projective), 32 (exx. 4, 5), 40, 41,
119, 174 (ex. 5)
Form
bilinear (see Bilinear form)
hermitian, 122ff
linear, 80ff, 101 (ex. 7)
quadratic, 100ff
sesquilinear, 121f
Frame of reference
for an affine geometry, 43
for a euclidian geometry, 129
for a projective geometry, 46
for 2(V) determined by a basis of
V, 46
standard, for &7(F"), 43
standard, for #(Fn+1), 47
Function (see Mapping)

Gaussian number field, 14 (ex. 1)
Generator of a projective quadric, 114
(exx. 11-14)
Geometry
affine, 16ff (generalized), 35
affine, in #(V) determined by H,
36, 61, 130
“affine, of dimension n over F,” 22
euclidean 127ff
finite (see Finite geometry)
projective, 29ff (generalized), 35
“projective, of dimension n over
F,” 32
similarity euclidean, 131ff
similarity euclidean, determined in
Z(V) by H and D, 132
Greatest common divisor, 161 (exx.
3, 6)
Ground field, 12ff
Group, 4
abelian (commutative), 4, 150, 160,
163 (ex. 13)
affine, 59, 75
automorphism, 59
collineation (projective), 59
commutative (see Group, abelian)
general linear, 59
homomorphism of, 59
isomorphism of, 59
orthogonal, 144
permutation, 4, 62 (ex. 4)
projective (see Group, collineation)
rotation, 4, 144
unitary, 146

Harmonic
conjugate, (affine) 27, (projective) 40

constructive, (affine) 27, (projec-
tive) 40, 52 (ex. 5)
range, (affine) 27, (projective), 40,
113 (ex. 2), 133 (ex. 1)

Hermitian

form, 122ff, 124 (exx. 2, 3)

mapping, 147 (ex. 6)

matrix, 124 (ex. 2)
Hilbert space, 146ff
Homogeneous

(projective) coordinate row, 47

linear equations, 50

vector, 22ff, 30
Homomorphism

of groups, 59

of B-modules, 154

of vector spaces, 66
Hyperplane

in affine geometry, 16

of a central collineation, 63ff

at infinity, 36

in projective geometry, 30

Ideal, 152
principal, 152
annihilator, 151
Identity
element of group, 4
element of ring, 149
mapping, 2, 3 (ex. 1)
matrix, 73
Image, 2
Incidence propositions, (affine) 19,
(projective) 31
Indecomposable submodule, 159
Index notation, 2
Infinite dimensional vector space, 9,
11 (exx. 3, 5, 7, 8), 68, 69 (exx.
1, 2, 4, 9), 82 (exx. 1, 3, 5, 6), 92
(exx. 1, 2, 3), 130 (ex. 4), 147
Integral domain, 155 (exx. 1, 3), 160
Intersection
of cosets, 16
of sets, 3
of subspaces, 7
Invariant configuration, 170ff
Invariant factors
of linear mapping, 166
of matrix, 168, 169 (ex. 3)
of module, 156, 160, 165
Invariant subspace, 153
Inverse
of a group element, 4
of a mapping, 3 (ex. 1).
of a matrix, 73, 74
Isomorphism
of affine geometries, 20ff, 52ff
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Isomorphism—cont.

of bilinear spaces, 89

of euclidean geometries, 128, 130
(ex. 7)

of fields, 56

of groups, 59

of modules, 154

of projective geometries, 31, 52ff

of similarity euclidean geometries,
131

of vector spaces, 12

anti-isomorphism, 84

linear isomorphism, 66, 91

semi-linear isomorphism, 56

Join
of cosets, 16
(sum) of subspaces, 7
Jordan (classical) canonical matrix,

167
Kernel
of group homomorphism, 60, 62
(ex. 4)

of linear mapping, 66
of module homomorphism, 154
Kronecker delta, 69 (ex. 6), 73

Length
(norm) in euclidean space, 125
(norm) in Hilbert space, 146
of element in a principal ideal
domain, 161 (exx. 5, 7)
Line
in affine geometry, 16
at infinity, 36, 37
projective, 30
Linear algebra, 68, 136
Linear automorphism, 66
Linear combination, 6 (ex. 5)
Linear complex, 110 (ex. 4)
Linear dependence, 8ff
Linear equations, 49ff, 79ff, 82
Linear form, 80ff
Linear independence
over F, 9
over F[X], 158
Linear isomorphism, 12, 66, 91
Linear mapping, 66
commuting, 140 (ex. 3), 147 (ex. 4)
o-symmetric, 135, 140 (ex. 1)
similar, 154
trace of, 75 (exx. 8, 9), 83 (ex. 9)
transpose of, 83 (exx. 7, 8), 93 (ex.
4), 169
triangulable, 140 (ex. 3), 147 (ex. 4)

Mapping (function), 2
annihilator, 81, 94

hermitian, 147 (ex. 6)
inverse, 3 (ex. 1)
linear (see Linear mapping)
normal, 147 (ex. 6)
one—-one, 2
product of, 2
semi-linear, 120
unitary, 147 (ex. 6)
Matrix, 72ff
addition of, 72
alternating, 103
of bilinear form, 90
congruence of, 86, 103ff
diagonal, 104
equivalence of, 77, 165
hermitian, 124 (ex. 2)
identity, 73
inverse of, 73, 74
invertible (non-singular), 74
Jordan canonical, 167
of linear mapping, 72
multiplication of, 72
nilpotent, 74
non-singular (invertible), 74
orthogonal, 79 (exx. 2, 3), 143
of quadratic form, 102
rational canonical, 166
similarity of, 79, 166ff
skew-symmetrie, 79 (exx. 1, 3), 101
(ex. 1)
symmetric, 77, 101 (ex. 1)
transposed, 77
triangular, 108, 109 (ex. 7), 140 (ex.
3), 147 (ex. 4)
unitary, 146
zero, 72
Metrie, 125
Mid-point, 29
Minimum polynomial
of linear mapping, 151
of matrix, 168, 169 (ex. 3)
Minkowski’s inequality, 129 (ex. 2)
Module, 150
cyclic, 153
finitely generated, 153
torsion, 152, 155 (exx. 1, 2), 165

(ex. 2)
torsion-free, 152, 163, 165 (exx. 2,
3)

Nilpotent matrix, 74 (ex. 4)
Non-Desarguesian projective plane,
39, 48 (ex. 5)
Norm (length)
in euclidean space, 125
in Hilbert space, 146
Normal mapping, 147 (ex. 6)
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Normal to a plane, 134 (ex. 7)
n-tuple, 2

ordered, 2
Null-polarity, 110

Order
of (commutative) group, 153 (ex.
4)
of general linear group, 62 (ex. 3)
Orientation, 144
Origin of affine frame of reference,
43
Orthogonality, 93ff, 126, 137, 146
(anticipated, 51)
Orthosymmetry, 97, 101, (ex. 3), 122

Pappus’ Theorem, (affine) 25, (pro-
jective) 39, 40, 51 (ex. 3), 88 (ex.
5)
Paraboloid, 119
Parallel, 18
Parallelogram, 37, 64
law, 125
Pencil
of lines, 86 (ex. 3), 87
of planes, 86 (ex. 3), 87
Permutation, 4
Perpendicular, 133, 134 (ex. 7)
Perspective
axis of, 38
center of, 23
triangles in, from a point, 23
Perspectivity, 48 (exx. 6-8), 49 (ex.
11), 65
Plane
in affine geometry, 16
projective, 30
Point
in affine geometry, 16
at infinity, 36
projective, 30
Polarity, 110, 113 (exx. 2, 3, 4, 7, 8,
16, 17)
affine, 111 (exx. 5, 6), 120 (ex. 2)
definite, 132
Polynomials, vector space of, 6
Positive definite
hermitian form, 123
symmetric bilinear form, 106
Principal ideal, 152
domain 160, 161 (exx. 1-8)
Projection, 70 (ex. 9), 71 (ex. 3)
Projective geometry (see Geometry)
Projective space, 30
Projectivity, 45ff, 88
degenerate, 70ff
Pythagoras’ Theorem, 100

Quadrangle, 40, 84
Quadratic
form, 100, 101 (ex. 5-9)
polynomial, 100ff, 108 (ex. 5), 111ff,
117
Quadric
affine, 116ff
euclidean, 134ff
projective, 111ff
Quadrilateral, 84
Quaternion algebra (over R), 75 (ex.
7), 101 (ex. 6)

Radius of sphere, 133 (ex. 3)
Range of points, 86 (ex. 3), 87
Rank

of affine quadric, 119

of bilinear form, 91

of linear mapping, 76ff, 94

of matrix (including row and

column), 77

of projective quadric, 112

of sesquilinear form, 122

of torsion-free F[X]-module, 163
Rational canonical matrix, 166
Reflexion, 143, 145 (ex. 4)
Relativity, 107
Representative cone, 115
Ring, 149ff
Rotation, 143, 145 (exx. 1, 2, 3)

group, 4, 144

Scalar, 5
Schwarz’s inequality, 126
Segre symbol, 170
Self-polar simplex, 115 (ex. 15)
Semi-linear
isomorphism, 56
mapping, 120
Sequence, 2
ordered, 2
Sesquilinear form, 121ff
orthosymmetric, 122
Sets, 1
equality of, 2
Signature, 106, 108 (ex. 4)
Similarity
of distances, 131
of linear mappings, 154
of matrices, 79, 166ff
Simplex of reference, 46
Skew
elements in projective geometry, 30
lines in affine geometry, 20
Space
alternating (symplectic), 99, 102ff
bilinear, 89
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Space—cont.
coefficient, 50
of cosets, 67, 154
dual, 80
eigen, 71 (ex. 4), 135
euclidean, 107, 125ff
Hilbert, 146ff
metric, 125
normed, 125
orthogonal (symmetric), 98, 105ff
projective, 30
skew-symmetric, 99
symmetric (orthogonal), 98, 105ff
symplectic (alternating), 99, 102ff
vector, 5ff
Space time, 107
Sphere, 133 (exx. 3, 4)
Split product of groups, 60, 144
Standard basis
of F", 12 (ex. 9), 13
of Fmxn 74 (ex. 2)
of F[X]*, 168
Subgeometry
of affine geometry, 16
of euclidean geometry, 127
of projective geometry, 30
of similarity euclidean geometry,
131
Subgroup, 4, 59ff, 144ff
Sylow, 163 (ex. 13)
Submodule, 153ff
Subring, 149
Subspace, 6ff
belonging to a coset, 16
direct sum of, 7
invariant, 153
spanned (generated) by a set, 7
sum (join) of, 7
translated (see Coset)
Sylvester’s Law of Inertia, 106

Tangent to a projective quadric, 114
(exx. 9-11)

Torsion element, 152, 155 (ex. 3)

Torsion-free F[X]-module, 163, 165
(exx. 2, 3)

Torsion module (see Module)

Trace mapping, 75 (exx. 8, 9), 83 (ex.
9)

Translation
in affine geometry, 42, 49 (ex. 9),
54 (ex. 1), 63, 70 (ex. 11)
group (in A and in V), 59
in vector space, 42
Transpose
of linear mapping (see Linear
mapping)
of matrix, 77
Transvection, 70 (ex. 11)
Triangle, 23
diagonal point, 40
inequality, 125

Union of sets, 3

Unique factorization domain, 160,
161 (ex. 4)

Unit point of a projective frame of
reference, 46

Vector, 5
eigen (see Eigenvector)
homogeneous, 22ff, 30
Vector space, 5ff
dimension of, 10ff
finite dimensional, 9
infinite dimensional (see Infinite
dimensional vector space)

Wedderburn’s Theorem, 39

Zorn’s Lemma, 178 (solution of ex. 6
of § 4.6)



CORRECTION

Graduate Texts in Mathematics, Vol. 49
K. W. Gruenberg and A. J. Weir: Linear Geometry
Page 62, last two lines should read:

IfV H and X are two distinct hyperplanes of invariant points for a col-
lineation 7, then 7 = 2(f) where the restrictions of f to H and K are





