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Preface

Linear algebra has two aspects. Abstractly, it is the study of vector spaces over
fields, and their linear maps and bilinear forms. Concretely, it is matrix theory:
matrices occur in all parts of mathematics and its applications, and everyone work-
ing in the mathematical sciences and related areas needs to be able to diagonalise
a real symmetric matrix. So in a course of this kind, it is necessary to touch on
both the abstract and the concrete aspects, though applications are not treated in
detail.

On the theoretical side, we deal with vector spaces, linear maps, and bilin-
ear forms. Vector spaces over a fié{dare particularly attractive algebraic ob-
jects, since each vector space is completely determined by a single number, its
dimension (unlike groups, for example, whose structure is much more compli-
cated). Linear maps are the structure-preserving maps or homomorphisms of vec-
tor spaces.

On the practical side, the subject s really about one thing: matrices. If we need
to do some calculation with a linear map or a bilinear form, we must represent it
by a matrix. As this suggests, matrices represent several different kinds of things.
In each case, the representation is not unique, since we have the freedom to change
bases in our vector spaces; so many different matrices represent the same object.
This gives rise to several equivalence relations on the set of matrices, summarised
in the following table:

Equivalence Similarity Congruence Orthogonal
similarity
Same linear map Same linear map Same bilinean Same self-adjoint
oa:V—-W oa:V -V formbonV | a:V —V w.rt.

orthonormal basis

A =Q AP A=P AP | A=PTAP A =P~ 1AP
P,Q invertible P invertible P invertible P orthogonal

The power of linear algebra in practice stems from the fact that we can choose
bases so as to simplify the form of the matrix representing the object in question.
We will see several such “canonical form theorems” in the notes.



These lecture notes correspond to the course Linear Algebra Il, as given at
Queen Mary, University of London, in the first sememster 2005-6.
The course description reads as follows:

This module is a mixture of abstract theory, with rigorous proofs, and
concrete calculations with matrices. The abstract component builds
on the notions of subspaces and linear maps to construct the theory
of bilinear forms i.e. functions of two variables which are linear in
each variable, dual spaces (which consist of linear mappings from the
original space to the underlying field) and determinants. The concrete
applications involve ways to reduce a matrix of some specific type
(such as symmetric or skew-symmetric) to as near diagonal form as
possible.

In other words, students on this course have met the basic concepts of linear al-
gebra before. Of course, some revision is necessary, and | have tried to make the
notes reasonably self-contained. If you are reading them without the benefit of a
previous course on linear algebra, you will almost certainly have to do some work
filling in the details of arguments which are outlined or skipped over here.

The notes for the prerequisite course, Linear Algebra |, by Dr Francis Wright,
are currently available from

http://centaur.maths.gmul.ac.uk/Lin Alg I/

| have by-and-large kept to the notation of these notes. For example, a general
field is calledKK, vectors are represented as column vectors, linear maps (apart
from zero and the identity) are represented by Greek letters.

| have included in the appendices some extra-curricular applications of lin-
ear algebra, including some special determinants, the method for solving a cubic
equation, the proof of the “Friendship Theorem” and the problem of deciding the
winner of a football league, as well as some worked examples.

Peter J. Cameron
September 5, 2008
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Chapter 1

Vector spaces

These notes are about linear maps and bilinear forms on vector spaces, how we
represent them by matrices, how we manipulate them, and what we use this for.

1.1 Definitions

Definition 1.1 A field is an algebraic system consisting of a non-emptyl§et
equipped with two binary operatioas(addition) and (multiplication) satisfying
the conditions:

(A) (K,+) is an abelian group with identity element O (calle=to);
(M) (K\ {0},-) is an abelian group with identity element 1;

(D) thedistributive law
a(b+c) =ab+ac

holds for alla,b,c € K.

If you don’t know what an abelian group is, then you can find it spelled out in
detail in Appendix A. In fact, the only fields that | will use in these notes are

e Q, the field of rational numbers;

e R, the field of real numbers;

e C, the field of complex numbers;

o I"p, the field of integers mo@, wherep is a prime number.

I will not stop to prove that these structures really are fields. You may have seen
Fp referred to adp.
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Definition 1.2 A vector space \bver a fieldK is an algebraic system consisting
of a non-empty se¥ equipped with a binary operatiof (vector addition), and
an operation of scalar multiplication

(a,v) e KxVm—aveV
such that the following rules hold:
(VA) (V,+) is an abelian group, with identity element O (#e¥o vectoy.
(VM) Rules for scalar multiplication:

(VMO) Foranyac€ K, veV,thereis a unigue elemeave V.

(VM1) ForanyacK, u,veV, we havea(u+Vv) = au+av.

(VM2) For anya,be K, veV, we havela+b)v=av+bw.

(VM3) For anya,be K, veV, we havelab)v = a(bv).

(VM4) For anyv €V, we have ¥ = v (where 1 is the identity element &).

Since we have two kinds of elements, namely elemenis ahd elements of
V, we distinguish them by calling the elementskocalarsand the elements of
V vectors

A vector space over the field is often called aeal vector spaceand one
overC is acomplex vector space

Example 1.1 The first example of a vector space that we meet isBhelidean
planeR?. This is a real vector space. This means that we can add two vectors, and
multiply a vector by a scalar (a real number). There are two ways we can make
these definitions.

e Thegeometriadefinition. Think of a vector as an arrow starting at the origin
and ending at a point of the plane. Then addition of two vectors is done by
theparallelogram law(see Figure 1.1). The scalar multi@eis the vector
whose length iga| times the length o¥, in the same direction & > 0 and
in the opposite direction i < 0.

e Thealgebraicdefinition. We represent the points of the plane by Cartesian
coordinategx,y). Thus, a vectov is just a pair(x,y) of real numbers. Now
we define addition and scalar multiplication by

(X17Y1)+(X27YZ) = (X1+X2>y1+YZ)»
axy) = (axay).
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Figure 1.1: The parallelogram law

Not only is this definition much simpler, but it is much easier to check that
the rules for a vector space are really satisfied! For example, we check the
law a(v+w) = av+aw. Letv = (x1,y1) andw = (x2,¥2). Then we have

a(v+w) = a((x1,y1) + (x2,y2)
= a(Xy+X2,y1+Y2)
= (ax +ax,ay; +ay)
= (ax,ay) + (%, ay2)
= av+aw

In the algebraic definition, we say that the operations of addition and scalar

multiplication arecoordinatewisethis means that we add two vectors coordinate
by coordinate, and similarly for scalar multiplication.

Using coordinates, this example can be generalised.

Example 1.2 Let n be any positive integer ard any field. LetV = K", the set
of all n-tuples of elements oK. ThenV is a vector space oveék, where the
operations are defined coordinatewise:

(al,ag,...,an)+(b1,b2,...,bn) = (a1+b1,a2+b2,...,an+bn),
c(ai,a,...,a,) = (Cay,Cap,...,Can).

1.2 Bases

This example is much more general than it appeavery finite-dimensional vec-
tor space looks like Example 1.Bere’s why.

Definition 1.3 LetV be a vector space over the fiékd and letv, ..., Vv, be vec-
torsinV.
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(&) The vectors/,Vo,...,V, arelinearly independentf, whenever we have
scalarscy, Co, . . ., Cp Satisfying
C1V1+CoVo+ - +CaVp =0,
then necessarilgy =co=---=0.

(b) The vectoryy,vo, ..., vy arespanningf, for every vectow € V, we can find
scalars, Cp, ... ,Ch € K such that

V=C1V1+CoV2+ -+ CnVn.
In this case, we writ¥/ = (v1,Vo,..., V).
(c) The vectoryy,vs,...,Vv, form abasisfor V if they are linearly independent

and spanning.

Remark Linear independence is a property dist of vectors. A list containing
the zero vector is never linearly independent. Also, a list in which the same vector
occurs more than once is never linearly independent.

| will say “Let B = (v1,...,Vy) be a basis fov” to mean that the list of vectors
V1,...,Vqh is a basis, and to refer to this list Bs

Definition 1.4 LetV be a vector space over the fidkd We say thaV is finite-
dimensionalf we can find vectorsy, v, ..., vy € V which form a basis fov.

Remark In these notes we are only concerned with finite-dimensional vector
spaces. If you study Functional Analysis, Quantum Mechanics, or various other
subjects, you will meet vector spaces which are not finite dimensional.

Proposition 1.1 The following three conditions are equivalent for the vectors
Vi,...,Vy Of the vector space V ovél:

(@) wi,...,vnhis abasis;

(b) wi,...,vnhis a maximal linearly independent set (that is, if we add any vector
to the list, then the result is no longer linearly independent);

(¢) w,...,vyis a minimal spanning set (that is, if we remove any vector from
the list, then the result is no longer spanning).

The next theorem helps us to understand the properties of linear independence.
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Theorem 1.2 (The Exchange Lemma)LetV be a vector space ovEr. Suppose
that the vectorsy. .., v, are linearly independent, and that the vectoks w. , w,
are linearly independent, where mn. Then we can find a number iwith<i <m
such that the vectorgy...,v,,w; are linearly independent.

In order to prove this, we need a lemma about systems of equations.

Lemma 1.3 Given a systemx{

apX1+aiXe+ - +amXm = 0,
apiXy+agXo+ -+ amXm = O,

aniXy+anpXe+---+anmXm = 0

of homogeneous linear equations, where the number n of equations is strictly less
than the number m of variables, there exists a non-zero solgtion. ., xy) (that
IS, X1, . ..,Xm are not all zero).

Proof This is proved by induction on the number of variables. If the coefficients
ai1,a1,...,an Of xq are all zero, then puttingg = 1 and the other variables zero
gives a solution. If one of these coefficients is non-zero, then we can use the
corresponding equation to expressin terms of the other variables, obtaining

n— 1 equations il — 1 variables. By hypothesisi—1 < m—1. So by the
induction hypothesis, these new equations have a non-zero solution. Computing
the value ofx; gives a solution to the original equations.

Now we turn to the proof of the Exchange Lemma. Let us argue for a contra-
diction, by assuming that the result is false: that is, assume that none of the vectors
w; can be added to the listy, . .., vy) to produce a larger linearly independent list.
This means that, for alj, the list(v1,...,vy,w;) is linearly dependent. So there
are coefficientgs,...,cy,d, not all zero, such that

C1V1+ -+ CnVn+dw = 0.

We cannot havel = O; for this would mean that we had a linear combination of
vi,...,Vn equal to zero, contrary to the hypothesis that these vectors are linearly
independent. So we can divide the equation througt, land takew; to the other

side, to obtain (changing notation slightly)

n
Wi = agiVy+8ziV2 + -+ 8niVh = ) ajiVj.
=1
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We do this for each value o&=1,...,m.
Now take a non-zero solution to the set of equaticsbove: that is,

m

ajixi=0
2
forj=1,...,n.

Multiplying the formula forw; by x; and adding, we obtain

n m
X1W1 + - - +XmWm = Z (Zam)vj =0.
=1 \iS

But the coefficients are not all zero, so this means that the vegtars. ., wn)
are not linearly dependent, contrary to hypothesis.

So the assumption that ng can be added tdvy,...,v,) to get a linearly
independent set must be wrong, and the proof is complete.

The Exchange Lemma has some important consequences:

Corollary 1.4 LetV be a finite-dimensional vector space over a fi€ldrhen
(a) any two bases of V have the same number of elements;

(b) any linearly independent set can be extended to a basis.

The number of elements in a basis is calleddimeensiorof the vector space
V. We will say “ann-dimensional vector space” instead of “a finite-dimensional
vector space whose dimensiomis We denote the dimension & by dim(V).

Proof Let us see how the corollary follows from the Exchange Lemma.

(@) Let(v1,...,Vn) and(ws,...,Wy) be two bases fov. Suppose, for a con-
tradiction, that they have different numbers of elements; sayntkatn, without
loss of generality. Both lists of vectors are linearly independent; so, according to
the Exchange Lemma, we can add some vewtdo the first list to get a larger
linearly independent list. This means that...,v, was not a maximal linearly
independent set, and so (by Proposition 1.1) not a basis, contradicting our assump-
tion. We conclude thah = n, as required.

(b) Let (v1,...,vn) be linearly independent and létvy,...,wny) be a basis.
Necessarilyn < m, since otherwise we could add one of tieto (1, ..., Wn) to
get a larger linearly independent set, contradicting maximality. But now we can
add somaws to(v1,...,Vn) until we obtain a basis.
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Remark We allow the possibility that a vector space has dimension zero. Such
a vector space contains just one vector, the zero vector 0; a basis for this vector
space consists of the empty set.

Now letV be ann-dimensional vector space oVEr This means that there is a
basisvy, Vo, ..., Vv, for V. Since this list of vectors is spanning, every vestarV
can be expressed as

V=_C1V1+CoVo+---+ChVp

for some scalarss, Cy,...,Cc, € K. The scalarg;,...,c, are thecoordinatesof
v (with respect to the given basis), and t@ordinate representatioaf v is the
n-tuple

(€1,Cp,...,Cn) € K",

Now the coordinate representation is uniqueor suppose that we also had
V= CjV1+ ChVo+ -+ + CVi

for scalarsy, ¢, . .., c,. Subtracting these two expressions, we obtain

0= (c1—Cc))Vi+(Co—ChH)Vo+ -+ (Cn— CH)Vn.
Now the vectors/,Vo...,Vv, are linearly independent; so this equation implies
thatc; —¢; =0,c,—¢, =0, ...,ch—C, =0; that is,

/ /
C1=C, C=C, ... Ch=Ch

Now it is easy to check that, when we add two vector¥ jnwe add their
coordinate representations &' (using coordinatewise addition); and when we
multiply a vectorv € V by a scalarc, we multiply its coordinate representation
by c. In other words, addition and scalar multiplicatiorMriranslate to the same
operations on their coordinate representations. This is why we only need to con-
sider vector spaces of the forfK', as in Example 1.2.

Here is how the result would be stated in the language of abstract algebra:

Theorem 1.5 Any n-dimensional vector space over a fiElds isomorphic to the
vector spacé".

1.3 Row and column vectors

The elements of the vector spdk8 are all then-tuples of scalars from the field
K. There are two different ways that we can represent-tuple: as a row, or as
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a column. Thus, the vector with components 1, 2 ai3dcan be represented as a
row vector
1 2 -3
or as acolumn vector L
2
-3
(Note that we use square brackets, rather than round brackets or parentheses. But
you will see the notatio(il, 2, —3) and the equivalent for columns in other books!)
Both systems are in common use, and you should be familiar with both. The
choice of row or column vectors makes some technical differences in the state-
ments of the theorems, so care is needed.
There are arguments for and against both systems. Those who prefer row
vectors would argue that we already usey) or (x,y,z) for the coordinates of
a point in 2- or 3-dimensional Euclidean space, so we should use the same for
vectors. The most powerful argument will appear when we consider representing
linear maps by matrices.
Those who prefer column vectors point to the convenience of representing,
say, the linear equations

2Xx+3y = 5,
4x+5y = 9

2 3| |xX| _|5
4 5|yl |9
Statisticians also prefer column vectors: to a statistician, a vector often represents

data from an experiment, and data are usually recorded in columns on a datasheet.
| will use column vectors in these not&o we make a formal definition:

in matrix form

Definition 1.5 Let V be a vector space with a bafis= (v1,Vo,...,Vp). If v=
C1V1 + CoVo + - - - 4 CpVp, then thecoordinate representatioof v relative to the
basisB is

C1
Me=| 7
Cln
In order to save space on the paper, we often write this as
Me=[c1 G ... wn'.

The symbolT is read “transpose”.
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1.4 Change of basis

The coordinate representation of a vector is always relative to a basis. We now
have to look at how the representation changes when we use a different basis.

Definition 1.6 LetB= (v1,...,vy) andB = (v},...,Vv,) be bases for the-dimensional
vector spac® over the fieldK. Thetransitition matrix Pfrom B to B is then x n
matrix whosejth column is the coordinate representat[dﬁg of the jth vector

of B’ relative toB. If we need to specify the bases, we wikgg.

Proposition 1.6 Let B and Bbe bases for the n-dimensional vector space V over
the fieldK. Then, for any vector & V, the coordinate representations of v with
respect to B and Bare related by

Vs =PV

Proof Let pjj be thei, j entry of the matri¥P. By definition, we have

n
Vi= Zl Pij Vi
1=
Take an arbitrary vectare V, and let

Ve=I[C1,....,cn] ", Vg =[d1,....dn] .

This means, by definition, that

n n
v=Socqvi=Y djV.
2,0M= 2 4V

Substituting the formula fov’j into the second equation, we have

Reversing the order of summation, we get

Now we have two expressions feas a linear combination of the vectoks By
the uniqueness of the coordinate representation, they are the same: that is,

n
G = Z pij d;.
=
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In matrix form, this says

C1 dy
=Pl [,
Cnh dn
or in other words
Vs =P Vg,

as required.

In this course, we will see four ways in which matrices arise in linear algebra.
Here is the first occurrencenatrices arise as transition matrices between bases
of a vector space.

The next corollary summarises how transition matrices behave.|Hiemotes
theidentity matrix the matrix having 1s on the main diagonal and Os everywhere
else. Given a matri, we denote by?~! theinverseof P, the matrixQ satisfying
PQ= QP =1. Not every matrix has an inverse: we say tRais invertible or
non-singularif it has an inverse.

Corollary 1.7 Let B B',B” be bases of the vector space V.

(@) BBg=1.
(b) Ryg=(Rep) .
(c) B =P Py g
This follows from the preceding Proposition. For example, for (b) we have
Vg =P [V]g, Vg = Py g [VB,
SO
Vs = PegP B [V]B-

By the uniqueness of the coordinate representation, wefay€y g =|.

Corollary 1.8 The transition matrix between any two bases of a vector space is
invertible.

This follows immediately from (b) of the preceding Corollary.

Remark We see that, to express the coordinate representation w.r.t. the new
basis in terms of that w.r.t. the old one, we need the inverse of the transition matrix:

[V] B = PB_JJ-D;/ [V]B.
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Example Consider the vector spa&, with the two bases

(D =-(EE)

The transition matrix is
1 2
PB,B’ = |:1 3:| )

whose inverse is calculated to be

3 -2
e = {—1 1 }

So the theorem tells us that, for any € R, we have

] =x[5] v ]3] - - []+oxem 3]

as is easily checked.

1.5 Subspaces and direct sums

Definition 1.7 A non-empty subset of a vector space is callesubspacdf it
contains the sum of any two of its elements and any scalar multiple of any of its
elements. We writ®) <V to mean U is a subspace of”.

A subspace of a vector space is a vector space in its own right.
Subspaces can be constructed in various ways:

(@) Letvy,...,vh €V. Thespanof (vi,...,Vvn) is the set
{Cav1+CoVo+ -+ CyVp i Cp,...,Ch € K}.

This is a subspace &f. Moreover,(v1,...,Vy) IS @ spanning set in this
subspace. We denote the spawvpf.. v, by (vi,...,Vn).

(b) LetU; andU, be subspaces ®. Then

— theintersection Y NU, is the set of all vectors belonging to bdth
andUo;

— thesum Y + Uy is the set{u; + uy : us € Up,up € Uy} of all sums of
vectors from the two subspaces.

BothU; NU, andU; + U, are subspaces df.



14 CHAPTER 1. VECTOR SPACES

The next result summarises some properties of these subspaces. Proofs are left
to the reader.

Proposition 1.9 Let V be a vector space OVE.

(a) Forany\,...,vy €V, the dimension dfvy, . ..,V,) is at most n, with equal-
ity if and only if v, ..., Vv, are linearly independent.

(b) For any two subspaces;ldnd U, of V, we have
dim(U;NUz) +dim(U1 +Uy) = dim(U1) 4+ dim(Uy).

An important special case occurs wHepnU, is the zero subspad®}. In
this case, the suitd; + U, has the property that each of its elements hasique
expression in the formy + up, for u; € U anduy € U,. For suppose that we had
two different expressions for a vectgrsay

V=U; +Up = Uj + Up, Uz, U; € Ug,Up, U5 € Uy,

Then
U — Uy = U5 — Up.

Butu; — U] € U, andu, — up € Uy; so this vector is itd; NU,, and by hypothesis
it is equal to 0, so thaty = U] anduy = U,; that is, the two expressions are
not different after all' In this case we say thad{ + U, is thedirect sumof the
subspaceld; andU,, and write it asJ; & U,. Note that

dim(U; ®Uz) = dim(Uy) + dim(Uy).

The notion of direct sum extends to more than two summands, but is a little
complicated to describe. We state a form which is sufficient for our purposes.

Definition 1.8 LetU4,...,U; be subspaces of the vector spaceWe say thav
is thedirect sumof Uy, ...,Uy, and write

V=Ua.. au,

if every vectorv € V can be written uniquely in the form= u; + - - - + u, with
ueUfori=1,....r.

Proposition 1.10 IfV =U1 & --- d Uy, then
(@) dim(V) =dim(Uq) +--- +dim(Uy);

(b) if B is a basis for Yfori=1,...,r,then B U---UB is a basis for V.
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Matrices and determinants

You have certainly seen matrices before; indeed, we met some in the first chapter
of the notes. Here we revise matrix algebra, consider row and column operations
on matrices, and define the rank of a matrix. Then we define the determinant of
a square matrix axiomatically and prove that it exists (that is, there is a unique
“determinant” function satisfying the rules we lay down), and give some methods
of calculating it and some of its properties. Finally we prove the Cayley—Hamilton
Theorem: every matrix satisfies its own characteristic equation.

2.1 Matrix algebra

Definition 2.1 A matrix of sizem x n over a fieldK, wherem andn are positive
integers, is an array witim rows andn columns, where each entry is an element
of K. For 1<i<mand 1< j <n, the entry in row and columnj of Ais denoted
by Aij, and referred to as thg, j) entry ofA.

Example 2.1 A column vector inK" can be thought of asrax 1 matrix, while a
row vector is a Ix n matrix.

Definition 2.2 We define addition and multiplication of matrices as follows.

(a) LetA andB be matrices of the same sigex n overK. Then the suni\+ B
is defined by adding corresponding entries:

(A+B)ij = Aij +Bjj.

(b) LetA be anmx n matrix andB ann x p matrix overK. Then the product
AB is them x p matrix whose(i, j) entry is obtained by multiplying each

15



16 CHAPTER 2. MATRICES AND DETERMINANTS

element in theth row of A by the corresponding element in t column
of B and summing:

(AB)ij = 3 AuByj.
=1

Remark Note that we can only add or multiply matrices if their sizes satisfy
appropriate conditions. In particular, for a fixed valuenpfve can add and mul-
tiply nx n matrices. It turns out that the sit,(K) of nx n matrices ovei is
aring with identity. this means that it satisfies conditions (A0)—(A4), (M0)—(M2)
and (D) of Appendix 1. The zero matrix, which we denote@yis the matrix
with every entry zero, while the identity matrix, which we denotd pig the ma-
trix with entries 1 on the main diagonal and 0 everywhere else. Note that matrix
multiplication is not commutativeBA is usually not equal téB.

We already met matrix multiplication in Section 1 of the notes: recall that if
Ps g denotes the transition matrix between two bases of a vector space, then

PspPr g’ = Pep-

2.2 Row and column operations

Given anm x n matrix A over a fieldK, we define certain operations éncalled
row and column operations.

Definition 2.3 Elementary row operationghere are three types:

Type 1 Add a multiple of thgth row to theith, wherej # 1.
Type 2 Multiply theith row by a non-zero scalar.
Tyle 3 Interchange theh andjth rows, wherg # i.

Elementary column operatiofi$here are three types:

Type 1 Add a multiple of thgth column to thath, wherej # i.
Type 2 Multiply theith column by a non-zero scalar.

Tyle 3 Interchange thgh andjth column, wherg #1i.

By applying these operations, we can reduce any matrix to a particularly sim-
ple form:
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Theorem 2.1 Let A be an nx n matrix over the field. Then it is possible to
change A into B by elementary row and column operations, where B is a matrix
of the same size satisfying B- 1 for 0 <i <r, for r < min{m,n}, and all other
entries of B are zero.

If A can be reduced to two matrices B antiti®th of the above form, where
the numbers of non-zero elements are r an@spectively, by different sequences
of elementary operations, then=rr’, and so B=B'.

Definition 2.4 The number in the above theorem is called thenk of A; while
a matrix of the form described f@ is said to be in theanonical form for equiv-
alence We can write the canonical form matrix in “block form” as

I o
>[5 ]

wherel; is anr x r identity matrix andO denotes a zero matrix of the appropriate
size (thatisr x (n—r), (m—r) xr,and(m—r) x (n—r) respectively for the three
Os). Note that some or all of the§¥s may be missing: for example,ri=m, we
just havelly,  O].

Proof We outline the proof that the reduction is possible. To prove that we al-
ways get the same value gfwe need a different argument.

The proof is by induction on the size of the matAx in other words, we
assume as inductive hypothesis that any smaller matrix can be reduced as in the
theorem. Let the matriA be given. We proceed in steps as follows:

e If A= O (the all-zero matrix), then the conclusion of the theorem holds,
with r = 0; no reduction is required. So assume #at O.

e If A11 # 0, then skip this step. K11 = 0, then there is a non-zero element
Ajj somewhere i\, by swapping the first anidh rows, and the first anfth
columns, if necessary (Type 3 operations), we can bring this entry into the
(1,1) position.

e Now we can assume that; # 0. Multiplying the first row byAl‘ll, (row
operation Type 2), we obtain a matrix wit; = 1.

e Now by row and column operations of Type 1, we can assume that all the
other elements in the first row and column are zero. Fégjf# 0, then
subtractingds j times the first column from thith gives a matrix withA; ; =
0. Repeat this until all non-zero elements have been removed.
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e Now letB be the matrix obtained by deleting the first row and columA.of
ThenB is smaller tharA and so, by the inductive hypothesis, we can reduce
B to canonical form by elementary row and column operations. The same
sequence of operations applieddmow finish the job.

Example 2.2 Here is a small example. Let

1 2 3
A=l s g

We haveA;; = 1, so we can skip the first three steps. Subtracting twice the first
column from the second, and three times the first column from the third, gives the
matrix

1 0 0]
4 -3 —6]°
Now subtracting four times the first row from the second gives
1 0 0]
0 -3 —6]°

From now on, we have to operate on the smaller matri@ —6], but we con-
tinue to apply the operations to the large matrix.

Multiply the second row by-1/3 to get
1 0 O]
0 1 2
Now subtract twice the second column from the third to obtain
(1 0 O]
0 1 0
We have finished the reduction, and we conclude that the rank of the original
matrix A is equal to 2.

We finish this section by describing the elementary row and column operations
in a different way.

For each elementary row operation onrarowed matrixA, we define the cor-
respondingelementary matriky applying the same operation to the nidentity
matrix!. Similarly we represent elementary column operations by elementary ma-
trices obtained by applying the same operations tartlkem identity matrix.

We don’t have to distinguish between rows and columns for our elementary
matrices. For example, the matrix

O o
oOFr N
= O O
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corresponds to the elementary column operation of adding twice the first column
to the second, or to the elementary row operation of adding twice the second
row to the first. For the other types, the matrices for row operations and column
operations are identical.

Lemma 2.2 The effect of an elementary row operation on a matrix is the same as
that of multiplying on the left by the corresponding elementary matrix. Similarly,
the effect of an elementary column operation is the same as that of multiplying on
the right by the corresponding elementary matrix.

The proof of this lemma is somewhat tedious calculation.

Example 2.3 We continue our previous example. In order, here is the list of
elementary matrices corresponding to the operations we appl&dkere 2x 2
matrices are row operations whilex33 matrices are column operations).

1 -2 0] [1 0 -3 10 0
o 1 o/,|]0 1 0 ,[_14 cl)][é _5/3], 01 -2
o 0 1| |0 0 1 00 1

So the whole process can be written as a matrix equation:

1 -2 010 -3][1 0 O
[é —f/s] {_14 ﬂA 0 1 of|o1 0f|0 1 -2|=B,
0 0 1f[0 0 1]|0 0 1

or more simply

1 -2 1
1 0 }
Al0O 1 -2|=B,
[4/3 -1/3 0 0 1
where, as before,
1 2 3 1 00
A:L 5 6}’ B:[o 1 o}

An important observation about the elementary operations is that each of them
can have its effect undone by another elementary operation of the same kind,
and hence every elementary matrix is invertible, with its inverse being another
elementary matrix of the same kind. For example, the effect of adding twice the
first row to the second is undone by adding times the first row to the second,

so that L
1 2" |1 -2
0 1 |10 1|

Since the product of invertible matrices is invertible, we can state the above theo-
rem in a more concise form. First, one more definition:
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Definition 2.5 Them x n matricesA andB are said to bequivalentf B = PAQ,
whereP andQ are invertible matrices of sizes x mandn x n respectively.

Theorem 2.3 Given any nmx n matrix A, there exist invertible matrices P and Q
of sizes nx m and nx n respectively, such that PAQ is in the canonical form for
equivalence.

Remark The relation “equivalence” defined above is an equivalence relation on
the set of alimx n matrices; that is, it is reflexive, symmetric and transitive.

When mathematicians talk about a “canonical form” for an equivalence re-
lation, they mean a set of objects which are representatives of the equivalence
classes: that s, every object is equivalent to a unique object in the canonical form.
We have shown this for the relation of equivalence defined earlier, except for the
uniqueness of the canonical form. This is our job for the next section.

2.3 Rank

We have the unfinished business of showing that the rank of a matrix is well de-
fined; that is, no matter how we do the row and column reduction, we end up with
the same canonical form. We do this by defining two further kinds of rank, and
proving that all three are the same.

Definition 2.6 Let A be anm x n matrix over a fieldK. We say that theolumn
rank of A is the maximum number of linearly independent columngoivhile
therow rankof A is the maximum number of linearly independent row&ofWe
regard columns or rows as vectorsifi' andK" respectively.)

Now we need a sequence of four lemmas.

Lemma 2.4 (a) Elementary column operations don’t change the column rank
of a matrix.

(b) Elementary row operations don’t change the column rank of a matrix.
(c) Elementary column operations don’t change the row rank of a matrix.

(d) Elementary row operations don’t change the row rank of a matrix.

Proof (a) This is clear for Type 3 operations, which just rearrange the vectors.
For Types 1 and 2, we have to show that such an operation cannot take a linearly
independent set to a linearly dependent setyibe versastatement holds because

the inverse of an elementary operation is another operation of the same kind.
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So suppose that, ..., v, are linearly independent. Consider a Type 1 oper-
ation involving addingc times thejth column to theth; the new columns are
Vi, ..., Vn, Wherev, = v for k # i, while vi = v; + cv;. Suppose that the new vec-
tors are linearly dependent. Then there are scalars.,a,, not all zero, such
that

= a1V1+"‘+ai(Vi+CVj)+"'+ajVj+"'+anVn
= aVi+--+gVi+---+(aj +Cq)Vvj+ - +anvn.

Sincevs,. ..,V are linearly independent, we conclude that
a=0,...,4=0,...,a+¢cg=0,...,an =0,

from which we see that all tha, are zero, contrary to assumption. So the new
columns are linearly independent.
The argument for Type 2 operations is similar but easier.

(b) Itis easily checked that, if an elementary row operation is applied, then the
new vectors satisfy exactly the same linear relations as the old ones (that is, the
same linear combinations are zero). So the linearly independent sets of vectors
don’t change at all.

(c) Same as (b), but applied to rows.
(d) Same as (a), but applied to rows.

Theorem 2.5 For any matrix A, the row rank, the column rank, and the rank are
all equal. In particular, the rank is independent of the row and column operations
used to compute it.

Proof Suppose that we reduéeto canonical fornB by elementary operations,
whereB has rank. These elementary operations don’t change the row or column
rank, by our lemma; so the row ranksAandB are equal, and their column ranks
are equal. But it is trivial to see that, if

i o
>[5 9]

then the row and column ranks Bfare both equal to. So the theorem is proved.

We can get an extra piece of information from our deliberations.Alle¢ an
invertible n x n matrix. Then the canonical form & is justl: its rank is equal
to n. This means that there are matriégandQ, each a product of elementary
matrices, such that

PAQ=I,.
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From this we deduce that
A=PHQ =P 'Q}
in other words,
Corollary 2.6 Every invertible square matrix is a product of elementary matrices.

In fact, we learn a little bit more. We observed, when we defined elementary
matrices, that they can represent either elementary column operations or elemen-
tary row operations. So, when we have writt@ras a product of elementary
matrices, we can choose to regard them as representing column operations, and
we see thaA can be obtained from the identity by applying elementary column
operations. If we now apply the inverse operations in the other order, they will turn
A'into the identity (which is its canonical form). In other words, the following is
true:

Corollary 2.7 If A is an invertible nx n matrix, then A can be transformed into
the identity matrix by elementary column operations alone (or by elementary row
operations alone).

2.4 Determinants

The determinant is a function defined on square matrices; its value is a scalar.
It has some very important properties: perhaps most important is the fact that a
matrix is invertible if and only if its determinant is not equal to zero.

We denote the determinant function by det, so thatAleis the determinant
of A. For a matrix written out as an array, the determinant is denoted by replacing
the square brackets by vertical bars:

det[l 2} _ ‘1 2"

3 4 3 4

You have met determinants in earlier courses, and you know the formula for
the determinant of a 2 or 3x 3 matrix:

a b a b c
d‘:ad—bc, d e f|=aei+bfg+cdh—afh—bdi—ceg
g h i

Ouir first job is to define the determinant for square matrices of any size. We do
this in an “axiomatic” manner:
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Definition 2.7 A function D defined om x n matrices is @eterminantf it satis-
fies the following three conditions:

(D1) For 1<i < n, Dis alinear function of théh column: this means that, X
andA’ are two matrices which agree everywhere excepittheolumn, and
if A” is the matrix whoséth column isc times theith column ofA plusc’
times theth column ofA’, but agreeing witlA andA’ everywhere else, then

D(A”) = cD(A) + ¢ D(A).

(D2) If A has two equal columns, thé&(A) = 0.

(D3) D(lyh) = 1, wherely is then x n identity matrix.
We show the following result:
Theorem 2.8 There is a unique determinant function or n matrices, for any n.

Proof First, we show that applying elementary row operationé teas a well-
defined effect oiD(A).

(a) If B is obtained fromA by addingc times thejth column to theth, then
D(B) =D(A).

(b) If B is obtained fromA by multiplying theith column by a non-zero scalar
c, thenD(B) = cD(A).

(c) If Bis obtained fromA by interchanging two columns, th&(B) = —D(A).

For (a), letA’ be the matrix which agrees within all columns except thih,
which is equal to thgth column ofA. By rule (D2),D(A’) = 0. By rule (D1),

D(B) = D(A) +cD(A') = D(A).

Part (b) follows immediately from rule (D3).
To prove part (c), we observe that we can interchangéthend jth columns
by the following sequence of operations:

e add theith column to thejth;
e multiply theith column by—1;
e add thejth column to theth;

e subtract theth column from thejth.



24 CHAPTER 2. MATRICES AND DETERMINANTS

In symbols,
(Gi,¢j) — (i, ¢j+Gi) — (=G, ¢j +¢i) — (cj, ¢ +Gi) — (Cj, ).

The first, third and fourth steps don’t change the valu®pfvhile the second
multiplies it by —1.

Now we take the matrid and apply elementary column operations to it, keep-
ing track of the factors by whicB gets multiplied according to rules (a)—(c). The
overall effect is to multiplyD(A) by a certain non-zero scalerdepending on the
operations.

e If Alis invertible, then we can reduck to the identity, so thatD(A) =
D(I) =1, whenceD(A) = ¢ L.

e If Ais notinvertible, then its column rank is less tharSo the columns oA
are linearly dependent, and one column can be written as a linear combina-
tion of the others. Applying axiom (D1), we see tii4{A) is a linear com-
bination of valueD(A'), whereA’ are matrices with two equal columns; so
D(A") = 0 for all suchA’, whenceD(A) = 0.

This proves that the determinant function, if it exists, is unique. We show its
existence in the next section, by giving a couple of formulae for it.

Given the unigueness of the determinant function, we now denote it k¥)det
instead ofD(A). The proof of the theorem shows an important corollary:

Corollary 2.9 A square matrix is invertible if and only det A) # 0.

Proof See the case division at the end of the proof of the theorem.
One of the most important properties of the determinant is the following.
Theorem 2.10 If Aand B are n< n matrices oveK, thendet AB) = det A) det(B).

Proof Suppose first thaB is not invertible. Then d¢B) = 0. Also, ABis not
invertible. (For, suppose théAB) ! = X, so thatX AB=|. ThenX Ais the inverse
of B.) So detAB) = 0, and the theorem is true.

In the other caseB is invertible, so we can apply a sequence of elementary
column operations t@ to get to the identity. The effect of these operations is
to multiply the determinant by a non-zero factofdepending on the operations),
so thatcdetB) =1, orc = (det(B)) 1. Now these operations are represented by
elementary matrices; so we see tB& = |, whereQ is a product of elementary
matrices.
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If we apply the same sequence of elementary operatiofB,tave end up with
the matrix(AB)Q = A(BQ) = Al = A. The determinant is multiplied by the same
factor, so we find thatdet AB) = det(A). Sincec = detB))~1, this implies that
det AB) = det(A)detB), as required.

Finally, we have defined determinants using columns, but we could have used
rows instead:

Proposition 2.11 The determinant is the unique function D okm matrices
which satisfies the conditions

(DY) for1<i < n, Disalinear function of the ith row;
(D2) if two rows of A are equal , then(®) = 0;
(D3) D(Iy) = 1.

The proof of uniqueness is almost identical to that for columns. To see that
D(A) =det(A): if Ais notinvertible, theD(A) = det(A) = 0; but if Ais invertible,
then it is a product of elementary matrices (which can represent either row or
column operations), and the determinant is the product of the factors associated
with these operations.

Corollary 2.12 If AT denotes the transpose of A, thiet(AT) = det(A).

For, if D denotes the “determinant” computed by row operations, theiglet
D(A) = det(A"), since row operations oA correspond to column operations on
AT

2.5 Calculating determinants

We now give a couple of formulae for the determinant. This finishes the job we
left open in the proof of the last theorem, namely, showing that a determinant
function actually exists!

The first formula involves some background notation.

Definition 2.8 A permutationof {1,...,n} is a bijection from the se{l,...,n}

to itself. Thesymmetric group sSconsists of all permutations of the 4t ..., n}.
(There aren! such permutations.) For any permutatore S,, there is a number
sign(n) = +1, computed as follows: writg as a product of disjoint cycles; if
there arek cycles (including cycles of length 1), then sign = (—1)" . A
transpositions a permutation which interchanges two symbols and leaves all the
others fixed. Thus, it is a transposition, then sign) = —1.
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The last fact holds because a transposition has one cycle of sizer?-ad
cycles of size 1, sa— 1 altogether; so sign) = (-1)" Y = 1,

We need one more fact about signsxifs any permutation and is a trans-
position, then sigfwt) = — sign(r), wherert denotes the composition afand
T (apply firstt, thenxn).

Definition 2.9 Let A be ann x n matrix overK. Thedeterminanbf A is defined
by the formula

de(A): ;SIQI’(H’)AM A27r Amr

/4SS

Proof In order to show that this is a good definition, we need to verify that it
satisfies our three rules (D1)—(D3).

(D1) According to the definition, déd) is a sum ofn! terms. Each term, apart
from a sign, is the product efelements, one from each row and column. If
we look at a particular column, say tité, it is clear that each product is a
linear function of that column; so the same is true for the determinant.

(D2) Suppose that theh and jth columns ofA are equal. Let be the transpo-
sition which interchangeisand j and leaves the other symbols fixed. Then
n(t(i))==(j)andx(z(j)) = =(i), whereasr(t(k)) = m(k) fork #1, j. Be-
cause the elements in tit andjth columns ofA are the same, we see that
the productA;z(1)Azz(2) - - Anz(n) @NAALzr(1)PAorc(2) ** Anzr(n) @re equal.
But signzt) = —S|gn(zt) So the corresponding terms in the formula for
the determinant cancel one another. The elemen& o&n be divided up
into n!/2 pairs of the form{z, 77}. As we have seen, each pair of terms in
the formula cancel out. We conclude that(@et= 0. Thus (D2) holds.

(D3) If A=y, then the only permutation which contributes to the sum is the
identity permutation: for any other permutatior satisfiesz(i) # i for
somei, so thatAjz) = 0. The sign oft is +1, and all the termsy, ;) = A
are equal to 1; so dgk) = 1, as required.

This gives us a nice mathematical formula for the determinant of a matrix.
Unfortunately, it is a terrible formula in practice, since it involves working out
n! terms, each a product of matrix entries, and adding them up widgnd —
signs. Forn of moderate size, this will take a very long time! (For example,
10! = 3628800.)

Here is a second formula, which is also theoretically important but very inef-
ficient in practice.
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Definition 2.10 Let A be ann x n matrix. For 1< i, j < n, we define thei, j)
minor of Ato be the(n— 1) x (n— 1) matrix obtained by deleting théh row and

jth column ofA. Now we define théi, j) cofactorof A to be(—1)*} times the
determinant of théi, j) minor. (These signs have a chessboard pattern, starting
with sign+ in the top left corner.) We denote tiig j) cofactor ofA by Kij (A).
Finally, theadjugateof A is then x n matrix Adj(A) whose(i, j) entry is the(j,i)
cofactorK;ji (A) of A. (Note the transposition!)

Theorem 2.13 (a) For j <i<n, we have
n
det(A) = i;Au Kij (A).
(b) For1<i<n, we have
n
det) = 3 Aikis(A)

This theorem says that, if we take any column or rowApfmultiply each
element by the corresponding cofactor, and add the results, we get the determinant
of A.

Example 2.4 Using a cofactor expansion along the first column, we see that

123 56‘ ‘23' ’23‘
4 5 6| = —4 +7
7 8 10 '8 10 8 10 5 6
(5-10—6-8) —4(2-10—3-8)+ 7(2-6—3-5)
= 2+16-21
- -3

using the standard formula for ax2 determinant.

Proof We prove (a); the proof for (b) is a simple modification, using rows instead
of columns. LetD(A) be the function defined by the right-hand side of (a) in the
theorem, using thgth column ofA. We verify rules (D1)—(D3).

(D1) ltis clear thaD(A) is a linear function of theth column. Fok # j, the co-
factors are linear functions of théh column (since they are determinants),
and soD(A) is linear.
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(D2) If the kth andlth columns ofA are equal, then each cofactor is the determi-
nant of a matrix with two equal columns, and so is zero. The harder case is
when thejth column is equal to another, say tkta. Using induction, each
cofactor can be expressed as a sum of elements dfttheolumn times
(n—2) x (n—2) determinants. In the resulting sum, it is easy to see that
each such determinant occurs twice with opposite signs and multiplied by
the same factor. So the terms all cancel.

(D3) Suppose thak= 1. The only non-zero cofactor in thgh column isKjj (1),
which is equal tq—1)!*detl,_1) = 1. SoD(l) = 1.

By the main theorem, the expressiD(A) is equal to ddiA).

At first sight, this looks like a simple formula for the determinant, since it is
just the sum oh terms, rather than! as in the first case. But each term is an
(n—1) x (n—1) determinant. Working down the chain we find that this method
is just as labour-intensive as the other one.

But the cofactor expansion has further nice properties:

Theorem 2.14 For any nx n matrix A, we have
A-Adj(A) = Adj(A) - A= detA) -I.

Proof We calculate the matrix product. Recall that fhg) entry of Adj(A) is
Kii (A).
Now the(i,i) entry of the produch- Adj(A) is

S Ak(Ai(AKi = 3 AKi(A) = detA),
k=1 k=1

by the cofactor expansion. On the other hand #f j, then the(i, j) entry of the
product is

S Ak(Adi(A) = 3 ARKK(A).
k=1 k=1

This last expression is the cofactor expansion of the matrixhich is the same
of A except for thejth row, which has been replaced by titie row of A. (Note
that changing thgth row of a matrix has no effect on the cofactors of elements in
this row.) So the sum is dgt’). But A’ has two equal rows, so its determinant is
zero.

ThusA-Adj(A) has entries déf) on the diagonal and O everywhere else; so
itis equal to deftA) - 1.

The proof for the product the other way around is the same, using columns
instead of rows.
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Corollary 2.15 If the nx n matrix A is invertible, then its inverse is equal to
(detA)) "t Adj(A).

So how can you work out a determinant efficiently? The best method in prac-
tice is to use elementary operations.

Apply elementary operations to the matrix, keeping track of the factor by
which the determinant is multiplied by each operation. If you want, you can
reduce all the way to the identity, and then use the fact thét)detl. Often it is
simpler to stop at an earlier stage when you can recognise what the determinant is.
For example, if the matriXA has diagonal entries, . .., a,, and all off-diagonal
entries are zero, then dé} is just the produca; - - - a,.

Example 2.5 Let

Subtracting twice the first column from the second, and three times the second
column from the third (these operations don’t change the determinant) gives

1 0 O
4 -3 -6
7 -6 -11

Now the cofactor expansion along the first row gives

-3 -6

detA) = ‘—6 ~11

‘ =33-36=-3.

(At the last step, it is easiest to use the formula for the determinant of 2 2
matrix rather than do any further reduction.)

2.6 The Cayley—Hamilton Theorem
Since we can add and multiply matrices, we can substitute them into a polynomial.

For example, if
0 1
SR
then the result of substitutingyinto the polynomiak? — 3x+ 2 is

2 [-2 3] [o =3] 2 o] [o O
A 3A+2I_[_6 7]+{6 _9%[0 > =1o0 ol
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We say that the matriA satisfies the equatiorf x 3x+ 2 = 0. (Notice that for
the constant term 2 we substituteld)2

It turns out that, for everm x n matrix A, we can calculate a polynomial equa-
tion of degreen satisfied byA.

Definition 2.11 Let A be an x n matrix. Thecharacteristic polynomiabf A is
the polynomial
ca(x) = det(xl — A).

This is a polynomial irx of degreen.

0 1
=% 3

X -1
2 x-3

Indeed, it turns out that this is the polynomial we want in general:

For example, if

then

ca(X) = =Xx(Xx—3)+2=x2—3x+2.

Theorem 2.16 (Cayley—Hamilton Theorem)Let A be an rx n matrix with char-
acteristic polynomial g(x). Then g(A) = O.

Example 2.6 Let us just check the theorem for2 matrices. If
a b
St

Xx—a —b
—-c x—d

then

’ — x? — (a+d)x+ (ad— bo),

and so

_ [a®+Dbc ab+hbd a b 10
CA(A)_{achcd bc+d2]_(a+d) {c d}+(ad—bc) [O 1}

after a small amount of calculation.
Proof We use the theorem
A-Adj(A) = detA) - 1.
In place ofA, we put the matrixl — A into this formula:

(xI —A) Adj(xI — A) = det(xl — A)l =ca(X)I.
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Now it is very tempting just to substitute = A into this formula: on the
right we haveca(A)l = ca(A), while on the left there is a factokl — A = O.
Unfortunately this is not valid; it is important to see why. The matrix (xtj- A)
is ann x n matrix whose entries are determinants(of- 1) x (n— 1) matrices
with entries involvingx. So the entries of Adkl — A) are polynomials irx, and if
we try to substituté\ for x the size of the matrix will be changed!

Instead, we argue as follows. As we have said,(Rldf- A) is a matrix whose
entries are polynomials, so we can write it as a sum of powexsigfes matrices,
that is, as a polynomial whose coefficients are matrices. For example,

X+1 X »[1 0 0 2 1 0
{3x—4 x+2]_x [o o}”[s 11*[—4 2]'

The entries in Adjxl —A) are(n—1) x (n— 1) determinants, so the highest
power ofx that can arise is" 1. So we can write

Adj(xl —A) =x"1B,_1 +X""?B_+--- +XxBy + B,
for suitablen x n matricesBy,...,B,_1. Hence
ca(x)l = (xI—A)Adj(xI —A)

= (XI—A) X" 1B,_1+X"?By_o+---+XxBy 4 Bg)
= X'Bn_14+ X" (—AB,_1+Bn_2)+--- +X(—ABy + Bg) — AB.

So, if we let
ca(X) = X"+ Cn_1X" 14+ 4 C1X+ Co,

then we read off that

Bn—l = I )
—ABn-1 + Bn2 = cpaal,
—-AB1 + By = «cl,
—ABy = col.
We take this system of equations, and multiply the firsABythe second by
A1 .. and the last bp? = |. What happens? On the left, all the terms cancel

in pairs: we have
A"Bp_1+A"(—AB,_1+Bn_2) + -+ +A(—AB; +Bg) + | (—ABg) = O.
On the right, we have
A" AV 4 A+ el = ca(A).

Soca(A) =0, as claimed.
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Chapter 3

Linear maps between vector spaces

We return to the setting of vector spaces in order to define linear maps between

them. We will see that these maps can be represented by matrices, decide when
two matrices represent the same linear map, and give another proof of the canon-
ical form for equivalence.

3.1 Definition and basic properties

Definition 3.1 LetV andW be vector spaces over a fiekl A function o from
V toW is alinear mapif it preserves addition and scalar multiplication, that is, if

o o(v1+V2) = a(vy)+ a(vo) forall vi,vo € V;

e a(cv) =co(v)forallveV andc e K.

Remarks 1. We can combine the two conditions into one as follows:
o (C1v1 + CoVo) = Cror (V1) 4 Coo (Vo).

2. In other literature the term “linear transformation” is often used instead of
“linear map”.

Definition 3.2 Let @ : V — W be a linear map. Thienageof « is the set
Im(a) = {weW:w= ¢(v) for someveV},
and thekernelof o is

Ker(ar) ={veV:oa(v)=0}.
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Proposition 3.1 Let : V — W be a linear map. Then the imageafs a sub-
space of W and the kernel is a subspace of V.

Proof We have to show that each is closed under addition and scalar multiplica-
tion. For the image, itv; = a(v1) andw, = a(v2), then

W1 +Wp = (X(V]_) + OC(VZ) = OC(V1+V2),

and ifw = o (v) then
cw=ca(V) = a(cv).

For the kernel, ife(v1) = a¢(v2) = 0 then
(V1 +V2) = (V1) + a(v2) =0+0=0,

and ifa(v) = 0 then
o(cv) =ca(v) =c0=0.

Definition 3.3 We define theank of « to bep(a) = dim(Im(c)) and thenullity

of a to bev(a) = dim(Ker(c)). (We use the Greek letters ‘rho’ and ‘nu’ here to
avoid confusing the rank of a linear map with the rank of a matrix, though they
will turn out to be closely related!)

Theorem 3.2 (Rank—Nullity Theorem) Let o : V — W be a linear map. Then
p(a)+v(a)=dim(V).

Proof Choose a basig, U, ..., uq for Ker(e), wherer = dim(Ker(a)) = v(«).
The vectorsly, ..., Uq are linearly independent vectors\f so we can add further
vectors to get a basis f&f, sayuy, ..., ug, Vs, .., Vs, Whereq+s=dim(V).

We claim that the vectora(vy),..., a(vs) form a basis for Infec). We have
to show that they are linearly independent and spanning.

Linearly independent: Suppose tlatx(vy) + - - - + Ccsa(Vs) = 0. Thena(cyvy +
-+ +CsVs) = 0, so thatcyv + - - - + CsVs € Ker(a). But then this vector can
be expressed in terms of the basis for (¢er.

C1V1+ -+ CeVs = AgUp + - - - + agUg,
whence
—a]_Ul—--'—aqu+C1V1+"'+CsVS:0'

But theus andvs form a basis fo¥, so they are linearly independent. So
this equation implies that all thes andcs are zero. The factthat = --- =
cs = 0 shows that the vectors(vs, ..., a(vs) are linearly independent.
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Spanning: Take any vector in [m), sayw. Thenw = a(v) for somev € V.
Write v in terms of the basis for:

V:alul+“'+aqu+C1V1+"'+CsVs
for someay,...,aq,Cy,...,Cs. Applying o, we get

w = o(v)
= apor(uy) +---+aqa(ug) +croe(vy) + - - - + Cs0(Vs)
= CW1+---+ CWs,

sincea(u;) =0 (asu; € Ker(a)) anda(vi) = w;. So the vectorsy, ..., Ws
span Infa).

Thus, p(a) = dim(Im(x)) = s. Sincev(a) = q andg+s= dim(V), the
theorem is proved.

3.2 Representation by matrices

We come now to the second role of matrices in linear algetiray represent
linear maps between vector spaces

Let @ : V — W be a linear map, where diivi) = mand dim(W) = n. As we
saw in the first section, we can talleandW in their coordinate representation:
V = K™andW = K" (the elements of these vector spaces being represented as
column vectors). Legy, ..., ey be the standard basis fd@r(so thatg is the vector
with ith coordinate 1 and all other coordinates zero), &nd.., f, the standard
basis foV. Then fori = 1,...,m, the vectora(g) belongs toN, so we can write
it as a linear combination df, ..., f,.

Definition 3.4 The matrix representing the linear mep V — W relative to the
baseB = (ey,...,ey) forV andC = (fy,..., fy) for W is then x m matrix whose
(i, ]) entry isaj, where

n
ae) = ajif
=1
forj=1,...,n

In practice this means the following. Takee ) and write it as a column vector

gy ay - ani]T. This vector is theth column of the matrix representirg
So, for example, iln=3,n=2, and

(X(e]_) = f1+ f2, (X(ez) = 2f1+5f2, 05(63) = 3f1— fz,
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then the vectors(g) as column vectors are

ate) = 1] ate)= 2] ate=| 3],

and so the matrix representifigis

1 2 3
1 5 -1}
Now the most important thing about this representation is that the actian of
is now easily described:

Proposition 3.3 Leta : V — W be a linear map. Choose bases for V and W and
let A be the matrix representing. Then, if we represent vectors of V and W as
column vectors relative to these bases, we have

o (V) = Av.

Proof Letey,...,eynbethe basis fov, andfq,..., fy for W. Takev= zi”;lcia €
V, so that in coordinates

C1
Cm
Then

m m n

OC(V) = i;CiOC(Q) = i;jZlCiaji fj,

so thejth coordinate ofx(v) is 3{! ; ajiCi, which is precisely thgth coordinate in
the matrix produchv.

In our example, iff = 2e; +3e, +4e3=[2 3 4]', then

w-n-[1 3 3] 3| -3

Addition and multiplication of linear maps correspond to addition and multi-
plication of the matrices representing them.
Definition 3.5 Let @ and be linear maps fror to W. Define their sunw + 3

by the rule
(0+B) (V) = (V) +B(V)
forallve V. Itis easy to check that + 3 is a linear map.



3.3. CHANGE OF BASIS 37

Proposition 3.4 If a and B are linear maps represented by matrices A and B
respectively, thew + 3 is represented by the matrix-AB.

The proof of this is not difficult: just use the definitions.

Definition 3.6 Let U,V,W be vector spaces ovét, and leta : U — V andf :
V — W be linear maps. The produftx is the functiond — W defined by the
rule

(Bor)(u) = B(e(u))

for all ue U. Again it is easily checked thgta is a linear map. Note that the
order is important: we take a vector U, applya to it to get a vector iV, and
then applyp to get a vector iW. Sof8a means “applyx, thenf”.

Proposition 3.5If ¢ : U —V andp :V — W are linear maps represented by
matrices A and B respectively, thBx is represented by the matrix BA.

Again the proof is tedious but not difficult. Of course it follows that a linear
map is invertible (as a map; that is, there is an inverse map) if and only if it is
represented by an invertible matrix.

Remark Letl =dim(U), m=dim(V) andn=dim(W), thenAismx|, andB
is n x m; so the producBA is defined, and is x |, which is the right size for a
matrix representing a map from &dimensional to am-dimensional space.

The significance of all this is that the strange rule for multiplying matrices is
chosen so as to make Proposition 3.5 hold. The definition of multiplication of
linear maps is the natural one (composition), and we could then say: what defini-
tion of matrix multiplication should we choose to make the Proposition valid? We
would find that the usual definition was forced upon us.

3.3 Change of basis

The matrix representing a linear map depends on the choice of bases we used to

represent it. Now we have to discuss what happens if we change the basis.
Remember the notion dfansition matrixfrom Chapter 1. 1B = (v, ...,Vm)

andB’ = (v},..., V) are two bases for a vector spatgthe transition matri¥s g

is the matrix whosgth column is the coordinate representation/pfn the basis

B. Then we have

Vs = PVg,
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where|[v|g is the coordinate representation of an arbitrary vector in the IBasis
and similarly forB’. The inverse oRs g is Py g. Let pjj be the(i, j) entry of
P=hsp.

Now letC = (wy,...,wn) andC’ = (wj,...,w}) be two bases for a spavé,
with transition matrixQc ¢ and invers@c c. LetQ = Qc o and letR= Qc/ ¢ be
its inverse, with(i, j) entryrj;.

Let o be a linear map fronV to W. Thena is represented by a matrik
using the baseB andC, and by a matrixd’ using the baseB’ andC’. What is the
relation betweer andA’?

We just do it and see. To gét, we have to represent the vectors/) in the
basisC'. We have .

Vi = lei Vi,
1=

ath) = 3 pya(v)

= Pij AW
i;kzl e
m n n
= Pij Al kW] -
i;k;gl |
This means, on turning things around, that

(A)ij = i iflkAkipij,

k=1i

SO

so, according to the rules of matrix multiplication,
A =RAP=Q AP

Proposition 3.6 Leta : V — W be a linear map represented by matrix A relative
to the bases B for V and C for W, and by the matrixefative to the bases’Bor

V and C for W. If P= PR3 g and Q= R- ¢ are the transition matrices from the
unprimed to the primed bases, then

A =Q AP

This is rather technical; you need it for explicit calculations, but for theoretical
purposes the importance is the following corollary. Recall that two matAieesl
B are equivalent iB is obtained fromA by multiplying on the left and right by
invertible matrices. (It makes no difference that we dai¢- PAQ before and
B = Q AP here, of course.)
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Proposition 3.7 Two matrices represent the same linear map with respect to dif-
ferent bases if and only if they are equivalent.

This holds because

e transition matrices are always invertible (the inverségg is the matrix
Py g for the transition in the other direction); and

e any invertible matrix can be regarded as a transition matrix: for, ihthe
matrix P is invertible, then its rank ig, so its columns are linearly inde-
pendent, and form a basi for K"; and thenP = Bs g, whereB is the
“standard basis”.

3.4 Canonical form revisited

Now we can give a simpler proof of Theorem 2.3 about canonical form for equiv-
alence. First, we make the following observation.

Theorem 3.8 Leta : V — W be a linear map of rank + p(a). Then there are
bases for V and W such that the matrix representing, in block form,

o9

Proof As in the proof of Theorem 3.2, choose a basis .., us for Ker(«), and

extend to a basisy, ..., Us,Vv1,...,V for V. Thena(vi),...,a(v) is a basis for
Im(e), and so can be extended to a basis1),...,a(v),Xy,...,% for W. Now

we will use the bases

Vi, .., Vi, Vri1 = U1, ..., Vias=Ws for V,

w1 =0o(V1),...,.Wr = @(Vy),Wr11=Xq,...,Wrps=Xs for W.

We have

(Vi) = w ifl1<i<r,
710 otherwise;

so the matrix ofx relative to these bases is

5 o

as claimed.
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We recognise the matrix in the theorem as the canonical form for equivalence.
Combining Theorem 3.8 with Proposition 3.7, we see:

Theorem 3.9 A matrix of rank r is equivalent to the matrix

59

We also see, by the way, that the rank of a linear map (that is, the dimension
of its image) is equal to the rank of any matrix which represents it. So all our
definitions of rank agree!

The conclusion is that

two matrices are equivalent if and only if they have the same rank.

So how many equivalence classesrok n matrices are there, for givenandn?
The rank of such a matrix can take any value from 0 up to the minimumaoid
n; so the number of equivalence classes isfmim} + 1.



Chapter 4

Linear maps on a vector space

In this chapter we consider a linear mapfrom a vector spac¥ to itself. If
dim(V) = n then, as in the last chapter, we can represebl ann x n matrix
relative to any basis fov. However, this time we have less freedom: instead of
having two bases to choose, there is only one. This makes the theory much more
interesting!

4.1 Projections and direct sums

We begin by looking at a particular type of linear map whose importance will be
clear later on.

Definition 4.1 The linear mapr : V — V is aprojectionif 72 = & (where, as
usual,z? is defined byr?(v) = n(x(v))).

Proposition 4.1 If £ :V — V is a projection, then \& Im(x) & Ker(x).

Proof We have two things to do:

Im(x) 4+ Ker(z) = V: Take any vector € V, and letw = z(v) € Im(x). We
claim thatv—w € Ker(x). This holds because

n(v—w) = (V) — t(w) = 7(V) — (n(v)) = m(v) — 72(v) = 0,

sincen? = . Nowv = w- (v—w) is the sum of a vector in lix) and one
in Ker(r).

Im(z)NKer(xm) = {0}: Takev € Im(x) "Ker(x). Thenv= x(w) for some vector
w; and
0=r(v) = n(x(W)) = 72(W) = T(W) =V,

as required (the first equality holding becauseKer(x)).

41
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It goes the other way too: WY = U @& W, then there is a projectiom:V — V
with Im(z) =U and Kefr) =W. For every vectov € V can be uniquely written
asv=u-+w, whereu € U andw € W; we definer by the rule thatr(v) = u. Now
the assertions are clear.

The diagram in Figure 4.1 shows geometrically what a projection is. It moves
any vectow in a direction parallel to Ker) to a vector lying in Infr).

(V) Ker(r)

Figure 4.1: A projection

We can extend this to direct sums with more than two terms. First, notice that
if 7 is a projection and’ = | — & (wherel is the identity map, satisfyingv) =v
for all vectorsv), thenz’ is also a projection, since

(@) =(-rm?=l-2n+n’=l-2n+n=-n=n,

andr + 7' = |; alsonn’ = n(l — x) = = — n? = O. Finally, we see that Kér) =
Im(z'); soV = Im(z) @ Im(x’). In this form the result extends:

Proposition 4.2 Suppose thaty, o, . .., T, are projections on V satisfying
(@) m+m+---+m =1, where | is the identity transformation;

(b) mim; =0Ofori#j.

ThenV=U; dU> @ --- ®Uy, where Y = Im(m).

Proof We have to show that any vectercan beuniquelywritten in the form
V=uUi+Ux+---+U, Wherey e U fori =1,...,r. We have

V=1(V) =m (V) + m2(V) + -+ A (V) = U+ U2+ +Ur,
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whereu; = 7i(v) € Im(m) fori=1,...,r. So any vector can be written in this
form. Now suppose that we have any expression

v=uj U+ Uy,

with uf e U fori=1,...,r. Sinceu; € U; = Im(m), we haveu, = 7(v;) for some
vi; then

7 (uf) = 7 (W) = m(v) = uj.
On the other hand, for # i, we have

[

mi(Uj) = mmj(vj) =0,

sincenimj = O. So applyingr; to the expression for, we obtain

mi (V) = mi(up) + () + -+ m (Up) = m () = U,
since all terms in the sum except tile are zero. So the only possible expression
is given byu; = m;(v), and the proof is complete.

Conversely, iV =U10U>& - - - U;, then we can find projections, o, . ..,
satisfying the conditions of the above Proposition. For any vectoV has a
unique expression as

V=U+Ux+---+U

with u; € Uj fori =1,...,r; then we definer;(v) = u;.
The point of this is that projections give us another way to recognise and de-
scribe direct sums.

4.2 Linear maps and matrices

Leta :V — V be a linear map. If we choose a bagis...,v, for V, thenV can
be written in coordinates d§", anda is represented by a matri say, where

n
(X(Vi) = Z ajivj.
=1

Then just as in the last section, the actiorxadnV is represented by the action of
AonK": o(v) is represented by the produkt. Also, as in the last chapter, sums
and products (and hence arbitrary polynomials) of linear maps are represented by
sums and products of the representing matrices: that is, for any polynbjal
the mapf (o) is represented by the matrixA).

What happens if we change the basis? This also follows from the formula we
worked out in the last chapter. However, there is only one basis to change.
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Proposition 4.3 Let a be a linear map on'V which is represented by the matrix A
relative to a basis B, and by the matrix wlative to a basis B Let P=Ps g be
the transition matrix between the two bases. Then

A =P AP
Proof This is just Proposition 4.6, sind@andQ are the same here.

Definition 4.2 Two n x n matricesA andB are said to beimilar if B= P 1AP
for some invertible matri®.

Thus similarity is an equivalence relation, and

two matrices are similar if and only if they represent the same linear
map with respect to different bases.

There is no simple canonical form for similarity like the one for equivalence
that we met earlier. For the rest of this section we look at a special class of ma-
trices or linear maps, the “diagonalisable” ones, where we do have a nice simple
representative of the similarity class. In the final section we give without proof a
general result for the complex numbers.

4.3 Eigenvalues and eigenvectors

Definition 4.3 Let a be a linear map oW. A vectorv €V is said to be an
eigenvectornf o, with eigenvaluel € K, if v# 0 ando(v) = Av. The set{v:
a(v) = AV} consisting of the zero vector and the eigenvectors with eigenvalue
is called theA-eigenspacef «.

Note that we require that# O; otherwise the zero vector would be an eigen-
vector for any value oft. With this requirement, each eigenvector has a unique
eigenvalue: for ifa(v) = Av = uv, then(A —u)v =0, and so (since # 0) we
haved = u.

The nameeigenvaludas a mixture of German and English; it means “charac-
teristic value” or “proper value” (here “proper” is used in the sense of “property”).
Another term used in older books is “latent root”. Here “latent” means “hidden”:
the idea is that the eigenvalue is somehow hidden in a matrix representaryl
we have to extract it by some procedure. We’'ll see how to do this soon.
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Example Let

A= 5

The vectow = {31 satisfies

= w2 2[]

S0 is an eigenvector with eigenvalue 2. Similarly, the veater E] is an eigen-

vector with eigenvalue 3.
If we knew that, for example, 2 is an eigenvalueAgfthen we could find a

corresponding eigenvectorﬂ by solving the linear equations

[ -6 6] [x] 5[ X

|—12 11] |y|  “|y]°

In the next-but-one section, we will see how to find the eigenvalues, and the fact
that there cannot be more thamof them for am x n matrix.

4.4 Diagonalisability

Some linear maps have a particularly simple representation by matrices.

Definition 4.4 The linear mapx onV is diagonalisablef there is a basis o¥
relative to which the matrix representingis a diagonal matrix.

Suppose thaty, ...,V is such a basis showing thatis diagonalisable. Then
o(vi) = ajv; fori = 1,...,n, wherea; is theith diagonal entry of the diagonal
matrix A. Thus, the basis vectors are eigenvectors. Conversely, if we have a basis
of eigenvectors, then the matrix representing diagonal. So:

Proposition 4.4 The linear mapx on V is diagonalisable if and only if there is a
basis of V consisting of eigenvectorsoof
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Example The matrix{é ﬂ is not diagonalisable. It is easy to see that its only

eigenvalue is 1, and the only eigenvectors are scalar multiplgls 00
cannot find a basis of eigenvectors.

]". Sowe

Theorem 4.5 Leto : V — V be a linear map. Then the following are equivalent:
(a) ais diagonalisable;
(b) V is the direct sum of eigenspacesnf

() a=Mm+---+ A, Wwhereldy, ..., A are the distinct eigenvalues of,
andmy,...,m are projections satisfying; +--- +m = | and mj; = O for

i .

Proof Let A1,...,Ar be the distinct eigenvalues of, and letviq,...,vim be a
basis for thel;-eigenspace aoft. Thena is diagonalisable if and only if the union
of these bases is a basis ¥r So (a) and (b) are equivalent.

Now suppose that (b) holds. Proposition 4.2 and its converse show that there
are projectionsrs, ..., my satisfying the conditions of (c) where [m) is the A;-
eigenspace. Now in this case it is easily checked Thand 5 Aim; agree on every
vector inV, so they are equal. So (b) implies (c).

Finally, if &« = ¥ Aim, where ther; satisfy the conditions of (c), thevi is the
direct sum of the spaces (m), and Im(7;) is the Ai-eigenspace. So (c) implies
(b), and we are done.

Example Our matrixA = { is diagonalisable, since the eigenvectors

— 6
-12 11

{3} and {2] are linearly independent, and so form a basisRoindeed, we see

4 3
that
-6 6|3 4] [3 4/(2 O
—-12 11| (2 3| |2 3||0 3}’
so thatP~1APis diagonal, wher® is the matrix whose columns are the eigenvec-
tors of A.

Furthermore, one can find two projection matrices whose column spaces are
the eigenspaces, namely

9 -6 -8 6
Pl:[lZ —8]’ PZZ[—lz 9}'
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Check directly thaP? = P, P2 = P, PIP, = PPy =0,Py + P =, and P, + 3P, =
A

This expression for a diagonalisable mat#iin terms of projections is useful
in calculating powers of, or polynomials inA.

Proposition 4.6 Let

be the expression for the diagonalisable matrix A in terms of projectipsatP
isfying the conditions of Theorem 4.5, that¥s, ;R =1 and RP; = O for i # |.
Then

(a) for any positive integer m, we have

r

A" = _Z)L{“P.;

(b) for any polynomial {x), we have

f(A) = 3 1R,

Proof (a) The proofis by induction om, the casen= 1 being the given expres-
sion. Suppose that the result holds o=k — 1. Then

A = ACIA

(&) ()

When we multiply out this product, all the terrRs> are zero for # j, and we
obtain simplyz{zl/li"‘l/liﬁ, as required. So the induction goes through.

(b) If f(x) =Y anx™, we obtain the result by multiplying the equation of part
(a) byan and summing ovem. (Note that, fom = 0, we use the fact that

that is, part (a) holds also fon=0.)
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4.5 Characteristic and minimal polynomials

We defined the determinant of a square matiXNow we want to define the de-
terminant of a linear mag. The obvious way to do this is to take the determinant
of any matrix representing. For this to be a good definition, we need to show
that it doesn’t matter which matrix we take; in other words, thatAl¢t= detA)

if AandA’ are similar. But, ifA’ = P~1AP, then

det P~1AP) = det P~ !) det(A) detP) = det(A),
since detP~1)detP) = 1. So our plan will succeed:

Definition 4.5 (a) Thedeterminantdet o) of a linear mapx : V — V is the
determinant of any matrix representiig

(b) Thecharacteristic polynomial g(x) of a linear mapx : V — V is the char-
acteristic polynomial of any matrix representiag

(c) Theminimal polynomial m(x) of a linear mapa : V — V is the monic
polynomial of smallest degree which is satisfiedday

The second part of the definition is OK, by the same reasoning as the first
(sinceca(X) is just a determinant). But the third part also creates a bit of a problem:
how do we know thadx satisfies any polynomial? The Cayley—Hamilton Theorem
tells us thatca(A) = O for any matrixA representingx. Now ca(A) represents
ca(o), andca = ¢ by definition; socy(a) = O. Indeed, the Cayley—Hamilton
Theorem can be stated in the following form:

Proposition 4.7 For any linear mapa on V, its minimal polynomial g(x) di-
vides its characteristic polynomial,£x) (as polynomials).

Proof Suppose not; then we can dividg(x) by my(x), getting a quotieng|(X)
and non-zero remainde(x); that is,

Ca(X) = Me(X)q(X) + 1 (X).

Substitutinga for x, using the fact thaty (o) = mg () = O, we find thatr (o) =
0. But the degree afis less than the degree of,, so this contradicts the defini-
tion of my as the polynomial of least degree satisfiecbby

Theorem 4.8 Let a be a linear map on V. Then the following conditions are
equivalent for an elemerit of K:

(@) A is an eigenvalue af;
(b) A is aroot of the characteristic polynomial of,

(c) A is aroot of the minimal polynomial af.
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Remark: This gives us a recipe to find the eigenvaluesxoftake a matrixA
representingx; write down its characteristic polynomieA(x) = det(xl — A); and
find the roots of this polynomial. In our earlier example,

x—09 -0.3
-01 x-—-07

‘ — (x—0.9)(x—0.7) —0.03=x*—1.6x+0.6 = (x— 1) (x—0.6),

so the eigenvalues are 1 an@é0as we found.

Proof (b) implies (a): Suppose that, (1) =0, that is, dgfAl — ) = 0. Then
Al — a is not invertible, so its kernel is non-zero. Pick a non-zero vectior
Ker(Al — o). Then(Al —a)v=0, so that(v) = Av; that is, A is an eigenvalue
of «.

(c) implies (b): Suppose that is a root ofmy(x). Then(x—A) divides
Mg (X). But my(x) dividescy(X), by the Cayley—Hamilton Theorem: g8 — A
dividescy (x), whencel is a root ofcy(X).

(a) implies (c): LetA be an eigenvalue oA with eigenvectorv. We have
a(v) = Av. By induction, aX(v) = AXv for any k, and sof (a)(v) = f(A1)(V)
for any polynomialf. Choosingf = my, we havemy () = 0 by definition, so
my (A)v = 0; sincev # 0, we havamy (A) = 0, as required.

Using this result, we can give a necessary and sufficient conditiom forbe
diagonalisable. First, a lemma.

Lemma 4.9 Letw,...,V; be eigenvectors @f with distinct eigenvalues, ..., A,.
Theny,...,v; are linearly independent.

Proof Suppose thaty,...,V; are linearly dependent, so that there exists a linear
relation
Civi+---+cv =0,

with coefficientsc; not all zero. Some of these coefficients may be zero; choose a
relation with the smallest number of non-zero coefficients. Supposeitba0.

(If c; = 0 just re-number.) Now acting on the given relation withusing the fact
thato(vi) = A;v;, we get

CiAVvi+---+ Ay, = 0.
Subtractingl; times the first equation from the second, we get
Cz()tz — ll)Vz + -+ C (lr — ll)Vr =0.

Now this equation has fewer non-zero coefficients than the one we started with,
which was assumed to have the smallest possible number. So the coefficients in
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this equation must all be zero. That@gAi — A1) = 0, soc; = 0 (sincel; # A1),
fori=2,...,n. This doesn’t leave much of the original equation, otily; = 0O,
from which we conclude that; = 0, contrary to our assumption. So the vectors
must have been linearly independent.

Theorem 4.10 The linear mapx on V is diagonalisable if and only if its mini-
mal polynomial is the product of distinct linear factors, that is, its roots all have
multiplicity 1.

Proof Suppose first that is diagonalisable, with eigenvaluds, ..., A;. Then
there is a basis such thatis represented by a diagonal matbxvhose diagonal
entries are the eigenvalues. Now for any polynoniiaf («) is represented by
f(D), a diagonal matrix whose diagonal entries &f&;) fori =1,...,r. Choose

f(X) = (X—A1) - (X—A).

Then all the diagonal entries dfD) are zero; sd (D) = 0. We claim thatf is

the minimal polynomial otx; clearly it has no repeated roots, so we will be done.
We know that eacl; is a root ofmy (x), so thatf (x) dividesmy(x); and we also
know thatf (o) = 0, so that the degree dfcannot be smaller than that wi,. So
the claim follows.

Conversely, we have to show thatni, is a product of distinct linear factors
thena is diagonalisable. This is a little argument with polynomials. £et) =
[1(x— 4i) be the minimal polynomial ofx, with the rootsA; all distinct. Let
hi(x) = f(X)/(x—Ai). Then the polynomial$y,...,h have no common factor
except 1; for the only possible factors dre- A;), but this fails to dividen;. Now
the Euclidean algorithm shows that we can write the h.c.f. as alinear combination:

1:_2hi(x)ki(x).

Let Ui = Im(hij(ar). The vectors irlJ; are eigenvectors ak with eigenvaluel;;
for if u € U;, sayu = hj(a)v, then
(o= Aihui = (o = Aihhi(a) (v) = f(a)v=0,

so thata(v) = Ai(v). Moreover every vector can be written as a sum of vectors
from the subspacds;. For, givenv € V, we have

v=I|v= ilhi(a)(k.-(oc)v),

with hi(a)(ki(a)v) € Im(hij(a). The fact that the expression is unique follows
from the lemma, since the eigenvectors are linearly independent.
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So how, in practice, do we “diagonalise” a mat#ixthat is, find an invertible
matrix P such thaP~1AP= D is diagonal? We saw an example of this earlier. The
matrix equation can be rewritten A® = PD, from which we see that the columns
of P are the eigenvectors 8f So the proceedure is: Find the eigenvalue&,@nd
find a basis of eigenvectors; then Rbe the matrix which has the eigenvectors as
columns, and the diagonal matrix whose diagonal entries are the eigenvalues.
ThenP~AP=D.

How do we find the minimal polynomial of a matrix? We know that it divides
the characteristic polynomial, and that every root of the characteristic polynomial
is a root of the minimal polynomial; then it's trial and error. For example, if the
characteristic polynomial i&— 1)2(x— 2)3, then the minimal polynomial must be
one of (x— 1)(x— 2) (this would correspond to the matrix being diagonalisable),
(x—1)?(x—2), (x—1)(x—2)?, (x—1)%(x—2)?, (x—1)(x—2)3 or (x—1)?(x—2)3.

If we try them in this order, the first one to be satisfied by the matrix is the minimal
polynomial.

For example, the characteristic polynomial At {é ﬂ is (x—1)?; its

minimal polynomial is notx — 1) (sinceA # 1); so it is (x — 1)2.

4.6 Jordan form

We finish this chapter by stating without proof a canonical form for matrices over
the complex numbers under similarity.

Definition 4.6  (a) AJordan block Jn,A) is a matrix of the form

A 1 0 --- 0
oxr 1 --- 0
O 0 0 -+ A

that is, it is ann x n matrix with A on the main diagonal, 1 in positions
immediately above the main diagonal, and 0 elsewhere. (Wel{dké ) to
be the 1x 1 matrix[A].)

(b) A matrix is inJordan formif it can be written in block form with Jordan
blocks on the diagonal and zeros elsewhere.

Theorem 4.11 Over C, any matrix is similar to a matrix in Jordan form; that

is, any linear map can be represented by a matrix in Jordan form relative to a
suitable basis. Moreover, the Jordan form of a matrix or linear map is unique
apart from putting the Jordan blocks in a different order on the diagonal.
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Remark A matrix overC is diagonalisable if and only if all the Jordan blocks
in its Jordan form have size 1.

Example Any 3 x 3 matrix overC is similar to one of

A 0 O A 1 0 A 1 0
O u O, (O A O, |0 A 1},
0 0 v 0 0 u 00 2

for someA, u, v € C (not necessarily distinct).

b
mial is x* — 2ax+ (a4 b?), so that the eigenvalues ovErarea+ bi anda— bi.
ThusA is diagonalisable, if we regard it as a matrix over the complex numbers.
But over the real number#\ has no eigenvalues and no eigenvectors; it is not
diagonalisable, and cannot be put into Jordan form either.

We see that there are two different “obstructions” to a matrix being diagonal-
isable:

Example Consider the matri>{_a g} , with b # 0. Its characteristic polyno-

(a) The roots of the characteristic polynomial don't lie in the fi&ldWe can
always get around this by working in a larger field (as above, enlarge the
field fromR to C).

(b) Even though the characteristic polynomial factorises, there may be Jordan
blocks of size bigger than 1, so that the minimal polynomial has repeated
roots. This problem cannot be transformed away by enlarging the field; we
are stuck with what we have.

Though it is beyond the scope of this course, it can be shown that if all the roots
of the characteristic polynomial lie in the fieil then the matrix is similar to one
in Jordan form.

4.7 Trace

Here we meet another function of a linear map, and consider its relation to the
eigenvalues and the characteristic polynomial.

Definition 4.7 The trace Tr(A) of a square matriA is the sum of its diagonal
entries.
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Proposition 4.12 (a) For any two nx n matrices A and B, we havig¢(AB) =
Tr(BA).

(b) Similar matrices have the same trace.
Proof (a)

n n

Tr(AB) = Z\(AB)“ =

n

> AijBii,

i=1j=1

by the rules for matrix multiplication. Now obviously (BA) is the same thing.
(b) Tr(P~1AP) = Tr(APP1) = Tr(Al) = Tr(A).

The second part of this proposition shows thaty ifV — V is a linear map,
then any two matrices representinghave the same trace; so, as we did for the
determinant, we can define theace Tr(a) of o to be the trace of any matrix
representingy.

The trace and determinant of are coefficients in the characteristic polyno-
mial of c.

Proposition 4.13 Let o : V — V be a linear map, wherdim(V) = n, and let ¢,
be the characteristic polynomial of, a polynomial of degree n with leading term
X,

(@) The coefficient of'xt is — Tr(«), and the constant term {s-1)"det{ ).

(b) If a is diagonalisable, then the sum of its eigenvalue$rigx) and their
product isdet( ).

Proof LetA be a matrix representing. We have

X—a11 —a2 ... —&un
Cu(X) = detxl —A)— | ~%1 X~z ... —an
—an1 —an2 ... X—ann

The only way to obtain a term i®"™1 in the determinant is from the product
(x—a11)(X—ap2) - - (Xx— ann) of diagonal entries, takinga; from theith factor
andx from each of the others. (If we take one off-diagonal term, we would have
to have at least two, so that the highest possible powenafuld bex"2.) So the
coefficient ofx"~ is minus the sum of the diagonal terms.

Puttingx =0, we find that the constant termdg(0) = det( —A) = (—1)"det(A).

If o is diagonalisable then the eigenvalues are the roatg ©f):

Ca(X) = (X—A1)(X—A2) -+ (X— An).

Now the coefficient ok 1 is minus the sum of the roots, and the constant term
is (—1)" times the product of the roots.



54

CHAPTER 4. LINEAR MAPS ON A VECTOR SPACE



Chapter 5

Linear and quadratic forms

In this chapter we examine “forms”, that is, functions from a vector spate

its field, which are either linear or quadratic. The linear forms comprise the dual
space olV; we look at this and define dual bases and the adjoint of a linear map
(corresponding to the transpose of a matrix).

Quadratic forms make up the bulk of the chapter. We show that we can change
the basis to put any quadratic form into “diagonal form” (with squared terms only),
by a process generalising “completing the square” in elementary algebra, and that
further reductions are possible over the real and complex numbers.

5.1 Linear forms and dual space

The definition is simple:

Definition 5.1 LetV be a vector space ov&. A linear formonV is a linear map
fromV to K, whereK is regarded as a 1-dimensional vector space Bvehat is,
itis a function fromV to K satisfying

f(vi+v2) = f(v1)+ f(vo), f(cv) =cf(v)
for all vi,vo,v €V andc € K.

If dim(V) = n, then a linear form is represented by & h matrix overk,

that is, arow vectorof lengthnoverK. If f =[a; a ... an], thenforv=
X1 X2 ... Xi]' we have
X1
X2
f(v):[al d ... an] . = a1X1 + axXo + - - - 4+ anXn.
Xn

55
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Conversely, any row vector of lengttrepresents a linear form d".

Definition 5.2 Linear forms can be added and multiplied by scalars in the obvious
way:
(fi+ f2)(v) = fa(v) + f2(v),  (cf)(v) =cf(v).
So they form a vector space, which is called thal spaceof V and is denoted
by V*.
Not surprisingly, we have:
Proposition 5.1 If V is finite-dimensional, then so is'Yanddim(V*) = dim(V).

Proof We begin by observing that, {f/1,...,v,) is a basis fo, anday, ..., an
are any scalars whatsoever, then there is a unique linearf mégh the property
thatf(vi) =a fori=1,...,n. Itis given by

f(Civi+---+CnVn) = @1C1 + -~ +anCn,

in other words, it is represented by the row vecter a, ... ap], and its
action onK" is by matrix multiplication as we saw earlier.
Now let fi be the linear map defined by the rule that

oy 1 ifi=,

filv) = {o ifi £ .
Then (fy,..., fy) form a basis foV*; indeed, the linear fornf defined in the
preceding paragraph & f1 + --- + a,fn. This basis is called thdual basisof

V* corresponding to the given basis Mr Since it has elements, we see that
dim(V*) =n=dim(V).

We can describe the basis in the preceding proof as follows.

Definition 5.3 The Kronecker deltaj for i, j € {1,...,n} is defined by the rule

that L i
- ifi=j,
5”_{0 ifi £ j.

Note thatd;; is the(i, j) entry of the identity matrix. Now, ifvy,...,vy) is a basis
for V, then thedual basisfor the dual spac¥* is the basig fi, ..., fn) satisfying
fi(vj) = Gij.

There are some simple properties of the Kronecker delta with respect to sum-
mation. For example,
n
bijai = a;
2

for fixed j € {1,...,n}. This is because all terms of the sum except the ferm)
are zero.
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5.1.1 Adjoints

Definition 5.4 Leta :V — W be a linear map. There is a linear map: W* —
V* (note the reversal') defined by

(o (F))(v) = Fe(v)).
The mapa* is called theadjoint of o.

This definition takes a bit of unpicking. We are givenV — W and asked to
definea* : W* — V*. This means that, to any elemen& W* (any linear form on
W) we must associate a linear foigr= o*(f) € V*. This linear form must act on
vectorsv € V to produce scalars. Our definition says théat f ) maps the vector
to the scalarf (x(v)): this makes sense becausg) is a vector inW, and hence
the linear formf € W* can act on it to produce a scalar.

Now «*, being a linear map, is represented by a matrix when we choose bases
for W* andV*. The obvious bases to choose are the dual bases corresponding to
some given bases @ andV respectively. What is the matrix? Some calculation
shows the following, which will not be proved in detail here.

Proposition 5.2 Leta :V — W be a linear map. Choose bases B forV, and C for
W, and let A be the matrix representingrelative to these bases. Let Bnd C*
denote the dual bases of\and W* corresponding to B and C. Then the matrix
representingx* relative to the basesCand B' is the transpose of A, that is,’A

5.1.2 Change of basis

Suppose that we change base¥ iftom B = (vi,...,Vn) to B’ = (V},..., V), with
change of basis matri® = B; g. How do the dual bases change? In other words,
if B* = (f1,..., fn) is the dual basis oB, and(B')* = (f1,..., f}) the dual basis

of B, then what is the transition matrég: g)-? The next result answers the
question.

Proposition 5.3 Let B and Bbe bases for V, and*Band (B')* the dual bases of
the dual space. Then

P ) = (Pde) -

Proof Use the notation from just before the PropositionPH- Py g has(i, j)
entry pij, andQ = Pg- (g)+ has(i, j) entryq;j, we have

n
Vi =Y Pk
&

ai fi,

M s

i =
|

1
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and so

&
I
—

(V)

o) (5

n
> GG i
=

I
h ==

™M= M=

q kj Pki-

il

Now qj is the(j,k) entry ofQT, and so we have
1=Q'P

whenceQ" =P~1, sothatQ = (P~1) " = (PT) %, as required.

5.2 Quadratic forms

A lot of applications of mathematics involve dealing with quadratic forms: you
meet them in statistics (analysis of variance) and mechanics (energy of rotating
bodies), among other places. In this section we begin the study of quadratic forms.

5.2.1 Quadratic forms

For almost everything in the remainder of this chapter, we assume that
the characteristic of the fiel& is not equal ta2.

This means that 2 0 in K, so that the element/2 exists inK. Of our list of
“standard” fields, this only excludé®, the integers mod 2. (For example s,
we have ¥2=3.)

A quadratic form as a function which, when written out in coordinates, is a
polynomial in which every term has total degree 2 in the variables. For example,

a(X,Y,2) = X2+ 4xy+ 2xz— 3y* — 2yz— 7

is a quadratic form in three variables.
We will meet a formal definition of a quadratic form later in the chapter, but
for the moment we take the following.
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Definition 5.5 A quadratic formin n variablesx,, ..., X, over a fieldK is a poly-

nomial
n n
Z > ajXX
i=1j=1

in the variables in which every term has degree two (that is, is a multiptexpf
for somel, j).

In the above representation of a quadratic form, we see that if, then the
term inxjXj comes twice, so that the coefficientxgk; is aj; + aji. We are free to
choose any two values f@j andaj; as long as they have the right sum; but we
will always make the choice so that the two values are equal. That is, to obtain a
termcxx;j, we takea; = aji = ¢/2. (This is why we require that the characteristic
of the field is not 2.)

Any quadratic form is thus represented bgyammetricmatrix A with (i, j)
entrya;j (that is, a matrix satisfying\ = AT). This is the third job of matrices in
linear algebra: Symmetric matrices represent quadratic forms.

We think of a quadratic form as defined above as being a function from the
vector spacé&" to the fieldK. It is clear from the definition that

X1
q(X, ..., %)) = V' Ay, wherev =
Xn

Now if we change the basis f&f, we obtain a different representation for the
same functiom. The effect of a change of basis is a linear substitwienPV on
the variables, wherB is the transition matrix between the bases. Thus we have

viAv= (PV)TAPV) = (V)T (PTAP)V,
so we have the following:

Proposition 5.4 A basis change with transition matrix P replaces the symmetric
matrix A representing a quadratic form by the matrixA&P.

As for other situations where matrices represented objects on vector spaces,
we make a definition:

Definition 5.6 Two symmetric matrice8, A’ over a fieldK arecongruentif A’ =

PT AP for some invertible matri®.

Proposition 5.5 Two symmetric matrices are congruent if and only if they repre-
sent the same quadratic form with respect to different bases.
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Our next job, as you may expect, is to find a canonical form for symmetric
matrices under congruence; that is, a choice of basis so that a quadratic form has
a particularly simple shape. We will see that the answer to this question depends
on the field over which we work. We will solve this problem for the fields of real
and complex numbers.

5.2.2 Reduction of quadratic forms

Even if we cannot find a canonical form for quadratic forms, we can simplify them
very greatly.

Theorem 5.6 Let g be a quadratic form in n variables x..,x,, over a field
K whose characteristic is n@. Then by a suitable linear substitution to new
variables y,...,yn, We can obtain

0=C1y7+Cay5+ " + Cn¥i

forsomeg,...,ch e K.

Proof Our proof is by induction om. We call a quadratic form which is written

as in the conclusion of the theoratiagonal A form in one variable is certainly
diagonal, so the induction starts. Now assume that the theorem is true for forms
in n— 1 variables. Take

5

M=

ad(X1,...,%n) = ajj XiX;,

i=1]
whereajj = aji fori # j.

Case 1: Assume thah; # 0 for somd. By a permutation of the variables (which
is certainly a linear substitution), we can assume ghat~ 0. Let

n
y1=X1+ ;(ali/all)xh
i=
Then we have
n
ally% = a11X% +2 %alixlxi + q/(Xz, ... ,Xn),
i=

whered is a quadratic form iy, ..., X,. That s, all the terms involving; in g
have been incorporated inamy%. So we have

q(Xl7 ,Xn) = ally%—i_q//(xz""?)(n)?
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whereq” is the part ofg not containing«; minusd'.
By induction, there is a change of variable so that

n
qd' (X0, ..., %) = S GiYZ,
n i; 1Y

and so we are done (takimmg = a11).

Case 2: All a; are zero, busjj # O for some # j. Now
xij =7 (06 +x))2 = (% —xj)?),

so takingX, = 3(x +Xj) andx] = 3(x —x;), we obtain a new form fog which
does contain a non-zero diagonal term. Now we apply the method of Case 1.

Case 3. All &;j are zero. Nowq is the zero form, and there is nothing to prove:
takec; =---=c,=0.

Example 5.1 Consider the quadratic formx,y,z) = X% + 2xy+ 4xz+ y? + 42°.
We have

(X+Y+22)? = X2+ 2xy+ 4xz+ > + 427 + dyz,

and so
q = (Xx+y+22)%—4yz

= (X+Y+22°—(y+2°+(y—2)°
= C+V—w,

whereu = x+Yy+ 2z, v=y—z w=Yy+z Otherwise said, the matrix representing
the quadratic form, namely

>

I
N R
ORr PR
A ON

is congruent to the matrix

o

A =

O O rF
ol o]
o

Can you find an invertible matri® such thaP ' AP = A’?
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Thus any quadratic form can be reduced to the diagonal shape
oXe+ -+ X3

by a linear substitution. But this is still not a “canonical form for congruence”.
For example, if;1 = X1 /c, thenaax? = (01¢?)y3. In other words, we can multiply
any ¢ by any factor which is a perfect squareln

Over the complex numbefS, every element has a square root. Suppose that

o,...,0; 0, andoy 1 = --- = opn = 0. Putting
_Ja)x forl<i<r,
Yi= Xi forr+1<i<n,
we have

" Sa——

We will see later that is an “invariant” ofg: however we do the reduction, we
arrive at the same value of

Over the real numbelR, things are not much worse. Since any positive real
number has a square root, we may supposeathat.,os >0, s 1,..., 01t <0,
andos;t+1,---,0n = 0. Now putting

(V/06)X% for1<i<s,
yi = { (vV—0i)x fors+1<i<s+t,
Xi fors+t+1<i<n,
we get
q:x%+~--+x+sz—x§+1—---—x§+t.
Again, we will see later thag andt don’'t depend on how we do the reduction.
[This is the theorem known &ylvester’s Law of Inertig

5.2.3 Quadratic and bilinear forms

The formal definition of a quadratic form looks a bit different from the version we
gave earlier, though it amounts to the same thing. First we define a bilinear form.

Definition 5.7 (a) Letb:V xV — K be a function of two variables froi
with values inK. We say thab is abilinear formif it is a linear function of
each variable when the other is kept constant: that is,

b(,Wi +Wy) = bV, wy) +b(vwa),  b(v,cw) = ch(v,w),

with two similar equations involving the first variable. A bilinear folmis
symmetridf b(v,w) = b(w,v) for allvwe V.
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(b) Letg:V — K be a function. We say thatis aquadratic formif

— g(cv) =c?q(v) forallce K, veV;
— the functionb defined by

b(v,w) = 3(a(v-+w) —q(v) — q(w))

is a bilinear form orV/.

Remarks The bilinear form in the second part is symmetric; and the division
by 2 in the definition is permissible because of our assumption that the character-
istic of K is not 2.

If we think of the prototype of a quadratic form as being the funck@rthen
the first equation say&x)? = ¢>x?, while the second has the form

3 ((x+y)? = —y?) =xy,

andxy is the prototype of a bilinear form: it is a linear functionxfvheny is
constant, andice versa

Note that the formuld(x,y) = %(q(x+y) —q(x) —q(y)) (which is known as
thepolarisation formuld says that the bilinear form is determined by the quadratic
term. Conversely, if we know the symmetric bilinear fobgrthen we have

2q(v) = 4q(v) — 2q(v) = q(v+V) —q(v) — q(v) = 2b(v,V),

so thatq(v) = b(v,v), and we see that the quadratic form is determined by the
symmetric bilinear form. So these are equivalent objects.

If bis a symmetric bilinear form ok andB = (v1,...,Vy) is a basis folV,
then we can represehtby then x n matrix A whose(i, j) entry isajj = b(vi,V;).
Note thatA is a symmetric matrix. It is easy to see that this is the same as the
matrix representing the quadratic form.

Here is a third way of thinking about a quadratic form. Mtbe the dual
space oV, and leto. : V — V* be alinear map. Then fare V, we havex(v) € V*,
and soo (V) (w) is an element oK. The function

b(v,w) = a(v)(w)

is a bilinear form orV. If a(v)(w) = a(w)(v) for all vyw € V, then this bilinear
form is symmetric. Conversely, a symmetric bilinear fdogives rise to a linear
mapa :V — V* satisfyingo (v) (w) = a(w)(v), by the rule thatx(v) is the linear
mapw — b(v,w).
Now givena : V — V*, choose a basiB for V, and letB* be the dual basis
for V*. Thena is represented by a matrirelative to the basd3 andB*.
Summarising:
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Proposition 5.7 The following objects are equivalent on a vector space over a
field whose characteristic is n@t

(a) a quadratic formonV;
(b) a symmetric bilinear form onV;
(c) alinear mapa : V — V* satisfyingo(v)(w) = a(w)(v) forall vw e V.

Moreover, if corresponding objects of these three types are represented by ma-
trices as described above, then we get the same matrix A in each case. Also, a
change of basis in V with transition matrix P replaces A byAP.

Proof Only the last part needs proof. We have seen it for a quadratic form, and
the argument for a bilinear form is the same. So supposecthdt — V*, and

we change fronB to B’ in V with transition matrixP. We saw that the transition
matrix between the dual bases\ri is (PT)~1. Now go back to the discussion

of linear maps between different vector spaces in Chapter &.: ¥ — W and

we change bases M andW with transition matrice$ andQ, then the matrix

A representingx is changed taQ XAP. Apply this with Q = PT)~1, so that
Q1=P', and we see that the new matrix@s AP, as required.

5.2.4 Canonical forms for complex and real forms

Finally, in this section, we return to quadratic forms (or symmetric matrices) over
the real and complex numbers, and find canonical forms under congruence. Re-
call that two symmetric matrice& andA’ are congruent i = P AP for some
invertible matrixP; as we have seen, this is the same as saying that the represent
the same quadratic form relative to different bases.

Theorem 5.8 Any nx n complex symmetric matrix A is congruent to a matrix of
the form

Il O

© 0

for some r. Moreover, & rank(A), and so A is congruent to two matrices of this
form then they both have the same value of r.

Proof We already saw thak is congruent to a matrix of this form. Moreover, if
P is invertible, then so i®', and so
r =rankP" AP) = rank(A)

as claimed.
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The next result iSylvester's Law of Inertia

Theorem 5.9 Any nx n real symmetric matrix A is congruent to a matrix of the
form

s O O
O -t O
0 O O

for some &. Moreover, if A is congruent to two matrices of this form, then they
have the same values of s and of t.

Proof Again we have seen thatis congruent to a matrix of this form. Arguing
as in the complex case, we see thatt = rank(A), and so any two matrices of
this form congruent té\ have the same values &f-t.

Suppose that two different reductions give the vakjeands/,t’ respectively,
with s+t = s +t' = n. Suppose for a contradiction thek s. Now letq be the
guadratic form represented By Then we are told that there are linear functions
Y1,.-.,Yn @ndz, ..., z, of the original variablesy, . .., x, of g such that

A=t s = bt BBy

Now consider the equations

Y1:0,~--7YS:0725’+1207---2n:0

regarded as linear equations in the original variables..,x,. The number of
equations is+ (n—s) = n— (s —s) < n. According to a lemma from much ear-

lier in the course (we used it in the proof of the Exchange Lemma!), the equations
have a non-zero solution. That is, there are valueg of ., x,, not all zero, such

that the variabley;, ... ,ysandzy, 1,...,z, are all zero.

Sincey; = --- = Y5 = 0, we have for these values
q= —yzs+1_"'_yﬁ§ 0.
But sincezy, 1 =--- =z, =0, we also have

qg=2%+--+2 >0.

But this is a contradiction. So we cannot hae s. Similarly we cannot have
s < seither. So we must hawe= g/, as required to be proved.
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We saw thas—+t is the rank ofA. The numbes—t is known as thsignatureof
A. Of course, both the rank and the signature are independent of how we reduce
the matrix (or quadratic form); and if we know the rank and signature, we can
easily recoves andt.

You will meet some further terminology in association with Sylvester’s Law of
Inertia. Letq be a quadratic form in variables represented by the real symmetric
matrix A. Letq (or A) have ranks+t and signatures—t, that is, haves positive
andt negative terms in its diagonal form. We say thdor A) is

positive definitéf s=n (andt = 0), that s, ifq(v) > O for all v, with equality
only if v=0;

positive semidefinité t = 0, that is, ifg(v) > 0 for all v;

negative definitéf t = n (ands = 0), that is, ifq(v) < 0 for all v, with
equality only ifv = 0;

negative semi-definiié s= 0, that is, ifq(v) < 0 for all v;

indefiniteif s> 0 andt > 0, that is, ifq(v) takes both positive and negative
values.



Chapter 6

Inner product spaces

Ordinary Euclidean space is a 3-dimensional vector spaceRveut it is more
than that: the extra geometric structure (lengths, angles, etc.) can all be derived
from a special kind of bilinear form on the space known as an inner product. We
examine inner product spaces and their linear maps in this chapter.

One can also define inner products for complex vector spaces, but things are
a bit different: we have to use a form which is not quite bilinear. We defer this to
Chapter 8.

6.1 Inner products and orthonormal bases

Definition 6.1 An inner producton a real vector spagéis a functionb:V xV —
R satisfying

e bis bilinear (that isp is linear in the first variable when the second is kept
constant andice versy;

e b is positive definitethat is,b(v,v) > 0 for all v € V, andb(v,v) = 0 if and
only if v=0.

We usually writeb(v,w) asv-w. An inner product is sometimes calleddat
product(because of this notation).

Geometrically, in a real vector space, we define/ = |v|.|w| cosf, where|v|
and|w| are the lengths of andw, and®@ is the angle betweanandw. Of course
this definition doesn’t work if eithev or w is zero, but in this case-w = 0. But
it is much easier to reverse the process. Given an inner proditwe define

V| =v/V-V

67
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for any vectow € V; and, ifv,w # 0, then we define the angle between them to be

0, where
V- W

coy = .
[V].|w|

For this definition to make sense, we need to know that
—|V].w| <v-w < V. [wl

for any vectors/,w (since co® lies between-1 and 1). This is the content of the
Cauchy-Schwarz inequality

Theorem 6.1 If v,w are vectors in an inner product space then
(V-W)2 < (v-v)(w-w).

Proof By definition, we havev+ xw) - (v+xw) > 0 for any real numbex. Ex-
panding, we obtain
X2(W- W) + 2X(V- W) + (V- V) > 0.
This is a quadratic function ir Since it is non-negative for all reg| either it has
no real roots, or it has two equal real roots; thus its discriminant is non-positive,

that is,
(V-W)% — (v-V)(w-w) <0,

as required.
There is essentially only one kind of inner product on a real vector space.

Definition 6.2 A basis(vy,...,Vy) for an inner product space is callecthonor-
malif vi - vj = g;j (the Kronecker delta) for £i, j <n.

Remark: If vectorsvy,..., vy, satisfyy; - vj = §ij, then they are necessarily lin-
early independent. For suppose tbat + - - - + cpv, = 0. Taking the inner product
of this equation withy;, we find thatc; = 0, for alli.

Theorem 6.2 Let- be an inner product on a real vector space V. Then there is an
orthonormal basigvs,...,vy) for V. If we represent vectors in coordinates with
respect to this basis, sayv[x; X2 ... Xi]  andw=[y1 yo» ... ya]'
then

V-W=X1Y1+XoY2 + - - - + XnYn-
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Proof This follows from our reduction of quadratic forms in the last chapter.
Since the inner product is bilinear, the functigfv) = v-v = |v|? is a quadratic
form, and so it can be reduced to the form

A=)+ G~ = K

Now we must have = nandt = 0. For, ift > 0, then thes+ 1st basis vectovs, 1

satisfiesvs; 1 - Vs 1 = —1; while if s+t < n, then thenth basis vectow, satisfies
Vh - Vp = 0. Either of these would contradict the positive definitenesg.oNow

we have

g(X1,---,%n) :x%+---+xﬁ,

and by polarisation we find that

b((xla"'axn)v(yl7"'7yn)) :XlY1+"‘+Xnyn,

as required.

However, it is possible to give a more direct proof of the theorem; this is
important because it involves a constructive method for finding an orthonormal
basis, known as th@ram—-Schmidt process

Letw,...,w, be any basis fo¥. The Gram—-Schmidt process works as fol-
lows.

e Sincew; # 0, we havewn; -wj > 0, that is, : then

|vi| =1, thatis,vy -v; = 1.

wp| > 0. Putvy =wy/|wy

e Fori=2,...,n, letw, =w; — (v1-w;)vi. Then
VoW =V Wi — (Vo -Wj)(vy-vy) =0
fori=2,...,n.
e Now apply the Gram—Schmidt process recursivelp®, ..., w;,).

Since we replace these vectors by linear combinations of themselves, their inner
products withv; remain zero throughout the process. So if we end up with vectors
Vo,...,Vn, thenvy-vi =0fori=2,...,n. By induction, we can assume thatvj =

gj fori,j=2,...,n; by what we have said, this holdsiibr j is 1 as well.

Definition 6.3 The inner product ofR" for which the standard basis is orthonor-
mal (that is, the one given in the theorem) is calleddtaandard inner produobn
R".
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Example 6.1 In R3 (with the standard inner product), apply the Gram—Schmidt
process tothe vectors, =[1 2 2] ,wo=[1 1 0",wz=[1 0 0.

To simplify things, | will write (a1, a,,a3) instead of a; a as]'.

We havew; -w; = 9, so in the first step we put

W, = wp—vi=(33,-3),
R

Now we apply Gram—Schmidt recursivelywg andwj. We havew, -w, =1,

sov, =W, = (4,3, —%). Thenv,-wy = £, so

Y

2
4= wh— 2vp = (

Ol
Ol
©OIN

).

b

1IN

Finally,vx/é V\/é = g, SOV3 = %V\/é — (%’ _
Check that the three vectors we hav
basis.

).

und really do form an orthonormal

Y

f

@ o
O wi

6.2 Adjoints and orthogonal linear maps

We saw in the last chapter that a bilinear form\ois the same thing as a linear
map fromV to its dual space. The importance of an inner product is that the
corresponding linear map is a bijection which maps an orthonormal bagisoof

its dual basis ifv*.

Recall that the linear mag : V — V* corresponding to a bilinear forimon
V satisfieso(v)(w) = b(v,w); in our case(v)(w) = v-w. Now suppose that
(V1,...,Vn) is an orthonormal basis &, so thatv; - vj = §j. Then, ifo(vi) = fj,
we havefi(vj) = dij; but this is exactly the statement thi, ..., f) is the dual
basis to(vy, ..., Vn).

So, on an inner product spa¢ewe have a natural way of matching pwith
V*.

Recall too that we defined tlagljointof o : V — V to be the map™ : V* — V*
defined byo*(f)(v) = f(a(v)), and we showed that the matrix representirig
relative to the dual basis is the transpose of the matrix represemtretative to
the original basis.

Translating all this to an inner product space, we have the following definition
and result:
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Definition 6.4 LetV be an inner product space, amdV — V alinear map. Then
theadjointof a is the linear mam* : V — V defined by

Proposition 6.3 If « is represented by the matrix A relative to an orthonormal
basis of V, them* is represented by the transposed matrix A

Now we define two important classes of linear map¥on

Definition 6.5 Let @ be a linear map on an inner product spsice
() a is self-adjointif o* = «.

(b) « is orthogonalif it is invertible anda* = a1

Proposition 6.4 If o is represented by a matrix A (relative to an orthonormal
basis), then

(d) «a is self-adjoint if and only if A is symmetric;

(b) «a is orthogonal if and only if AA= 1.

Part (a) of this result shows that we have yet another equivalence relation on
real symmetric matrices:

Definition 6.6 Two real symmetric matrices are calledgthogonally similarif
they represent the same self-adjoint map with respect to different orthonormal
bases.

Then, from part (b), we see:

Proposition 6.5 Two real symmetric matrices A and @e orthogonally similar
if and only if there is an orthogonal matrix P such thdtzAP~1AP=PTAP.

HereP~1 = PT becaus® is orthogonal. We see that orthogonal similarity is a
refinement of both similarity and congruence. We will examine self-adjoint maps
(or symmetric matrices) further in the next section.
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Next we look at orthogonal maps.

Theorem 6.6 The following are equivalent for a linear mapon an inner prod-
uct space V:

(a) ais orthogonal;
(b) o preserves the inner product, that 8(v) - (W) = v-w;

(c) o maps an orthonormal basis of V to an orthonormal basis.

Proof We have
a(v) - o(w) = v-a*(a(w)),

by the definition of adjoint; so (a) and (b) are equivalent.

Suppose thatvy, ..., Vvn) is an orthonormal basis, that i, vj = &j. If (b)
holds, thero(vi) - ot (vj) = dij, so that(a(vy),...,a(vn) is an orthonormal basis,
and (c) holds. Converesely, suppose that (c) holds, aneH&t x;vi andw = 5 y;v
for some orthonormal basisy, . ..,Vn), so thatv-w= Y xjy;. We have

a(v)-aw) = (Y xam)) (Y viem)) =3 xy,
sincea(vi) - a(vj) = &; by assumption; so (b) holds.

Corollary 6.7 « is orthogonal if and only if the columns of the matrix represent-
ing « relative to an orthonormal basis themselves form an orthonormal basis.

Proof The columns of the matrix representiagre just the vectorg(vy), ..., a(vn),
written in coordinates relative ta, ..., Vv,. So this follows from the equivalence

of (a) and (c) in the theorem. Alternatively, the condition on columns shows that
ATA =1, whereA is the matrix representing; soa*« = |, anda is orthogonal.

Example Our earlier example of the Gram—-Schmidt process produces the or-
thogonal matrix

12 2
3 3 3
2 1 _2
3 3 3
2 2 1
3 3 3

whose columns are precisely the orthonormal basis we constructed in the example.
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Symmetric and Hermitian matrices

We come to one of the most important topics of the course. In simple terms, any
real symmetric matrix is diagonalisable. But there is more to be said!

7.1 Orthogonal projections and orthogonal decom-
positions

We say that two vectorgw in an inner product space aoethogonalif v-w = 0.

Definition 7.1 LetV be a real inner product space, doch subspace of. The
orthogonal complemendf U is the set of all vectors which are orthogonal to
everything inU:

Ut ={weV:w-u=0forallucU}.

Proposition 7.1 If V is an inner product space and U a subspace of V, with
dim(V) = n anddim(U) = r, then U* is a subspace of V, ardtim(U+) =n—r.
Moreover, V=U @ U+,

Proof Proving thatU is a subspace is straightforward from the properties of
the inner product. Ifwy,w, € UL, thenwy-u=w,-u=0 for all u € U, so
(wy+Wy)-u=0 for allu € U, whencew; +w, € U+. The argument for scalar
multiples is similar.

Now choose a basis ftt and extend it to a basis fot. Then apply the Gram—
Schmidt process to this basis (starting with the elements of the badik)fdo
obtain an orthonormal basfs, ...,v,). Since the process only modifies vectors
by adding multiples of earlier vectors, the firstectors in the resulting basis will
form an orthonormal basis fdy. The lastn —r vectors will be orthogonal to
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U, and so lie inJ*; and they are clearly linearly independent. Now suppose that
we U+ andw= S GiVi, where(vy, ..., Vy) is the orthonormal basis we constructed.
Thenci=w-v;=0fori=1,...,r; sowis a linear combination of the last—r
basis vectors, which thus form a basiélf. Hence dinfU-) = n—r, as required.

Now the last statement of the proposition follows from the proof, since we
have a basis fov which is a disjoint union of bases for andU .

Recall the connection between direct sum decompositions and projections. If
we have projectionB;, ..., whose sum is the identity and which sati§f{; =
Ofori # j, then the spac¥ is the direct sum of their images. This can be refined
in an inner product space as follows.

Definition 7.2 LetV be an inner product space. A linear napV — V is an
orthogonal projectionf

(a) ris a projection, that isg? = «;

(b) = is self-adjoint, that isg* = & (wherer*(v) -w=v- (w) for all vw € V).

Proposition 7.2 If & is an orthogonal projection, thelker() = Im(7)~.

Proof We know thatv = Ker(r) & Im(x); we only have to show that these two
subspaces are orthogonal. So takeKer(r), so thatz(v) = 0, andw € Im(x),
so thatw = z(u) for someu € V. Then

V-w=V-7(Uu) =7"(vV)-u=m(v)-u=0,
as required.

Proposition 7.3 Let my,...,m be orthogonal projections on an inner product
space V satisfyingy +---+m =1 and mzj; = O for i # j. Let Uy = Im(m)
fori=1,....r. Then

V=UagU& - -aU,

and if uy € Uj and y € Uj, then yand y; are orthogonal.

Proof The fact thatV is the direct sum of the images of the follows from
Proposition 5.2. We only have to prove the last part. So takendu; as in the
Proposition, say; = 7 (v) anduj = mj(w). Then

Ui - Uj = (V) - 73 (W) = 77" (V) - 7 (W) = V- 7 (7} (W)) =0,
where the second equality holds singes self-adjoint and the third is the defini-
tion of the adjoint.

A direct sum decomposition satisfying the conditions of the theorem is called
anorthogonal decompositioof V.

Conversely, if we are given an orthogonal decompositiol ofhen we can
find orthogonal projections satisfying the hypotheses of the theorem.
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7.2 The Spectral Theorem

The main theorem can be stated in two different ways. | emphasise that these two
theorems are the same! Either of them can be referred to &ptetral Theorem

Theorem 7.4 If o is a self-adjoint linear map on a real inner product space V,
then the eigenspaces afform an orthogonal decomposition of V. Hence there
is an orthonormal basis of V consisting of eigenvectorsxofMoreover, there
exist orthogonal projectionsy, ..., m; satisfyingmy +---4+m =l and mimrj = O
fori # j, such that

o=Mm+- -+ A,

wherel,, ..., A; are the distinct eigenvalues of

Theorem 7.5 Let A be a real symmetric matrix. Then there exists an orthogonal
matrix P such that PLAP is diagonal. In other words, any real symmetric matrix
is orthogonally similar to a diagonal matrix.

Proof The second theorem follows from the first, since the transition matrix from
one orthonormal basis to another is an orthogonal matrix. So we concentrate on
the first theorem. It suffices to find an orthonormal basis of eigenvectors, since
all the rest follows from our remarks about projections, together with what we
already know about diagonalisable maps.

The proof will be by induction om = dim(V). There is nothing to do ifi = 1.

So we assume that the theorem holds(for 1)-dimensional spaces.

The first job is to show thak has an eigenvector.

Choose an orthonormal basis; thens represented by a real symmetric ma-
trix A. Its characteristic polynomial has a rdobver the complex numbers. (The
so-called “Fundamental Theorem of Algebra” asserts that any polynomialover
has a root.) We temporarily enlarge the field fréto C. Now we can find a
column vectow € C" such thatAv = Av. Taking the complex conjugate, remem-
bering thatA is real, we haveé\v = Av.

lfv=[zz 2 --- z]',thenwe have

Mz +|zP+ - +z®) = Av'v
= (AV)'v
= Vv'Av
= v (L)
= Azl +1zl+ -+ [z,

s0(A —A)(|z2|2+ |22+ - - +]|zn|?) = 0. Sincevis not the zero vector, the second

factor is positive, so we must haxe= A, that is,A is real.
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Now sincea has a real eigenvalue, we can choose a real eigenvecamd
(multiplying by a scalar if necessary) we can assumelthat 1.

Let U be the subspace" = {ucV :v-u=0}. This is a subspace &f of
dimensiom — 1. We claim thaix : U — U. For takeu € U. Then

v-o(u)=o*(V)-u=a(v)-u=Av-u=0,

where we use the fact thatis self-adjoint. Sax(u) € U.

So « is a self-adjoint linear map on thg — 1)-dimensional inner product
spaceJ. By the inductive hypothesi&) has an orthonormal basis consisting of
eigenvectors ofr. They are all orthogonal to the unit vectgrso, addingv to the
basis, we get an orthonormal basis¥grand we are done.

Remark The theorem is almost a canonical form for real symmetric relations
under the relation of orthogonal congruence. If we require that the eigenvalues
occur in decreasing order down the diagonal, then the result is a true canonical
form: each matrix is orthogonally similar to a unique diagonal matrix with this

property.

Corollary 7.6 If « is self-adjoint, then eigenvectors afcorresponding to dis-
tinct eigenvalues are orthogonal.

Proof This follows from the theorem, but is easily proved directlyx(f/) = Av
anda(w) = uw, then

AV-w=qa(V) - W= a"(V)-W=V-o(W) = uv-w,
so, if A # u, thenv-w=0.
Example 7.1 Let

10 2 2
A=1|2 13 4
2 4 13
The characteristic polynomial &fis
x—10 -2 -2
—2 x—13 -4 |=(x—9)?(x—18),
-2 —4 x-13

so the eigenvalues are 9 and 18.
For eigenvalue 18 the eigenvectors satisfy

10 2 27 [x 18x
2 13 4| |y| =|18y],
2 4 13| |z 182
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so the eigenvectors are multiples[df 2 Z]T. Normalising, we can choose a
unit eigenvectof: 2 2]'.
For the eigenvalue 9, the eigenvectors satisfy

10 2 2 X Ox
2 13 4| |y| =19/,
2 4 13| |z 9z

that is,x+ 2y+ 2z = 0. (This condition says precisely that the eigenvectors are
orthogonal to the eigenvector far= 18, as we know.) Thus the eigenspace is 2-
dimensional. We need to choose an orthonormal basis for it. This can be done in
many different ways: for example, we could cho¢ée 1/v/2 —1/v/2]" and
[—4/3v2 1/3v2 1/3y/2]". Then we have an orthonormal basis of eigenvec-
tors. We conclude that, if

1/3 0 —4/3y/2
P= [2/3 1/vV2  1/3y2 } ,
2/3 —-1/vV2 1/3V2

thenP is orthogonal, and

18

0
P'AP=|0 9
0 0

© O O

You might like to check that the orthogonal matrix in the example in the last
chapter of the notes also diagonaliges

7.3 Quadratic forms revisited

Any real quadratic form is represented by a real symmetric matrix; and, as we
have seen, orthogonal similarity is a refinement of congruence. This gives us a
new look at the reduction of real quadratic forms. Recall that any real symmetric
matrix is congruent to one of the form

s O O
o - Of,
O O O

where the numbersandt are uniquely determined+-t is the rank, and—t the
signature, of the matrix (Sylvester’s Law of Inertia).
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Proposition 7.7 The rank of a real symmetric matrix is equal to the number of
non-zero eigenvalues, and the signature is the number of positive eigenvalues mi-
nus the number of negative eigenvalues (counted according to multiplicity).

Proof Given areal symmetric matrik, there is an orthogonal matrixsuch that
PTAP is diagonal, with diagonal entrigk, ..., Ay, say. Suppose that, ..., As

are positive As.1,...,Asit are negative, and the remainder are zero. Léte a
diagonal matrix with diagonal entries

VM, 1\ A 1N = Asi1, - 1/ =i, 4, L

Then
s O O
(PD)'APD=D'P'APD= |0 —I; O
O O O

7.4 Simultaneous diagonalisation

There are two important theorems which allow us to diagonalise more than one
matrix at the same time. The first theorem we will consider just in the matrix
form.

Theorem 7.8 Let A and B be real symmetric matrices, and suppose that A is
positive definite. Then there exists an invertible matrix P such thafP= | and
PTBP is diagonal. Moreover, the diagonal entries of BP are the roots of the
polynomialdet xA— B) = 0.

Proof A is areal symmetric matrix, so there exists an invertible ma&yiguch
thatP,' AR, is in the canonical form for congruence (as in Sylvester’s Law of Iner-
tia). SinceA is positive definite, this canonical form mustkehat is,P, AR = 1.
Now considerP; BP = C. This is a real symmetric matrix; so, according to
the spectral theorem (in matrix form), we can find an orthogonal mBirsuch
thatP, CR, = D is diagonal. MoreoveR, is orthogonal, s&, P, =1.
LetP =P;P. Then

PTAP=P, (P AR)P, =P, IP, =1,

and
P'BP=P, (P BR)P, =P,/ CR =D,

as required.
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The diagonal entries dD are the eigenvalues @&, that is, the roots of the
equation ddixl —C) = 0. Now we have

det(P, ) det(xA— B) det(P;) = det P, (xA—B)P;) =detxP] AR — P, BR) = det(xl —C),

and detP;" ) = det(P;) is non-zero; so the polynomials ¢ef\— B) and detxl —C)
are non-zero multiples of each other and so have the same roots.

You might meet this formula in mechanics. If a mechanical systemmicas
ordinatesxy, ..., Xy, then the kinetic energy is a quadratic form in the velocities
X1,...,%n, and (from general physical principles) is positive definite (zero veloc-
ities correspond to minimum energy); near equilibrium, the potential energy is
approximated by a quadratic function of the coordinates. ., x,. If we simulta-
neously diagonalise the matrices of the two quadratic forms, then we camsolve
separate differential equations rather than a complicated system wattiables!

The second theorem can be stated either for linear maps or for matrices.

Theorem 7.9 (a) Leta andf be self-adjoint maps on an inner product space
V, and suppose that = Ba. Then there is an orthonormal basis for V
which consists of vectors which are simultaneous eigenvalues &md 3.

(b) Let A and B be real symmetric matrices satisfying-ABA. Then there is
an orthogonal matrix P such that both"RP and P BP are diagonal.

Proof Statement (b) is just a translation of (a) into matrix terms; so we prove (a).
LetA1,..., 4, be the distinct eigenvalues aof By the Spectral Theorem, have
an orthogonal decomposition

V=Ui®&---oU,

whereU; is the Aj-eigenspace ofk.
We claim that mapsU; to U;. For takeu € U;, so thata(u) = Aju. Then

a(B(u) = Bla(u) = B(Aiu) = 4B (u),

so B(u) is also an eigenvector at with eigenvalued;. Hencef(u) € U;, as
required.

Now f is a self-adjoint linear map on the inner product spga¢end so by the
spectral theorem agaib; has an orthonormal basis consisting of eigenvectors of
B. But these vectors are also eigenvectors gince they belong to;.

Finally, since we have an orthogonal decomposition, putting together all these
bases gives us an orthonormal basi¥ afonsisting of simultaneous eigenvectors
of a andf.
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Remark This theorem easily extends to an arbitrary set of real symmetric ma-
trices such that any two commute. For a finite set, the proof is by induction on
the number of matrices in the set, based on the proof just given. For an infinite
set, we use the fact that they span a finite-dimensional subspace of the space of
all real symmetric matrices; to diagonalise all the matrices in our set, it suffices to
diagonalise the matrices in a basis.
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The complex case

The theory of real inner product spaces and self-adjoint linear maps has a close
parallel in the complex case. However, some changes are required. In this chapter
we outline the complex case. Usually, the proofs are similar to those in the real
case.

8.1 Complex inner products

There are no positive definite bilinear forms over the complex numbers; for we
always haveiv) - (iv) = —v-v.

But it is possible to modify the definitions so that everything works in the same
way overC.

Definition 8.1 A inner producton a complex vector spateis amap:V xV —
C satisfying

(a) bis a linear function of its second variable, keeping the first variable con-
stant;

(b) b(w,v) = b(v,w), where denotes complex conjugation. [lt follows that
b(v,v) e RforallveV.]

(c) b(v,v) > 0forallveV, andb(v,v) = 0if and only ifv= 0.

As before, we writb(v,w) asv-w. This time,b is not linear as a function of
its first variable; in fact we have

b(v1+ Vv2,w) = b(vy, W) + b(va,w), b(cv,w) = Th(v,w)

for vi,vo,vyw €V andc € C. (Sometimes we say thétis semilinear(that is,

“ %”-Iinear) as a function of its first variable, and describe it agsquilinear form
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(that is, “1%-Iinear”. A form satisfying (b) is calletHermitian, and one satisfying
(c) is positive definite Thus an inner product is a positive definite Hermitian
sesquilinear form.)

The definition of an orthonormal basis is exactly as in the real case, and the
Gram-Schmidt process allows us to find one with only trivial modifications. The
standard inner product (with respect to an orthonormal basis) is given by

V-W=X1y1+ -+ XnYn,

wherev=1[x; ... )] ,w=[y1 - yn].

The adjoint ofa : V — V is defined as before by the formula
o (V) - W=V-a(w),

but this time there is a small difference in the matrix representation:isf rep-
resented b (relative to an orthonormal basis), then its adjairitis represented
by (A) . (Take the complex conjugates of all the entrieéjand then transpose.)
So

e a self-adjoint linear map is represented by a masatisfyingA = (A) "
such a matrix is calletlermitian

e a map which preserves the inner product (that is, which sati_ea‘(eﬁs-
a(w) =v-w, or a* = o~ 1) is represented by a matrixsatisfying(A) T =
A~1: such a matrix is callednitary.

8.2 The complex Spectral Theorem

The spectral theorem for self-adjoint linear maps on complex inner product spaces
is almost identical to the real version. The proof goes through virtually unchanged.

The definition of an orthogonal projection is the same: a projection which is
self-adjoint.

Theorem 8.1 If  is a self-adjoint linear map on a complex inner product space
V, then the eigenspacesaform an orthogonal decomposition of V. Hence there
is an orthonormal basis of V consisting of eigenvectorsxofMoreover, there
exist orthogonal projectionsy, ..., m satisfyingmy +---+m =l and mizr; = O
fori # |, such that

o=Mm+ -+ Ak,

whereAq, ..., A; are the distinct eigenvalues of
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Theorem 8.2 Let A be a complex Hermitian matrix. Then there exists a unitary
matrix P such that PAP is diagonal.

There is one special feature of the complex case:

Proposition 8.3 Any eigenvalue of a self-adjoint linear map on a complex inner
product space (or of a complex Hermitian matrix) is real.

Proof Suppose that is self-adjoint andx(v) = Av. Then
AV-V=V-o(V) = a*(V)-V=o(V) - V= AV-V,

where in the last step we use the fact that) - w = cv- w for a complex inner
product. SQA —A)v-v=0. Sincev+# 0, we haves-v+# 0, and soL = A; that is,
A isreal.

We also have a theorem on simultaneous diagonalisation:

Proposition 8.4 Leta and 8 be self-adjoint linear maps of a complex inner prod-
uct space V, and suppose thg = fa. Then there is an orthonormal basis for
V consisting of eigenvectors of bathand 3.

The proof is as in the real case. You are invited to formulate the theorem in
terms of commuting Hermitian matrices.

8.3 Normal matrices

The fact that the eigenvalues of a complex Hermitian matrix are real leaves open
the possibility of proving a more general version of the spectral theorem. We saw
that a real symmetric matrix is orthogonally similar to a diagonal matrix. In fact,
the converse is also true. ForAfis a realn x n matrix andP is an orthogonal
matrix such thaP ' AP = D is diagonal, the® = PDP', and so

A" =PD'P" =PDP" = A

In other wordsa real matrix is orthogonally similar to a diagonal matrix if and
only if it is symmetric.

This is not true for complex Hermitian matrices, since such matrices have real
eigenvalues and so cannot be similar to non-real diagonal matrices.

What really happens is the following.

Definition 8.2 (a) Leta be alinear map on a complex inner-product space
We say thatx is normalif it commutes with its adjointoeo* = o* .
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(b) Let A be annx n matrix overC. We say tha# is normal if it commutes
with its conjugate transposgA' = A' A,

Theorem 8.5 (a) Leta be a linear map on a complex inner product space V.
ThenV has an orthonormal basis consisting of eigenvectardfand only
if o is normal.

(b) Let A be an rx n matrix overC. Then there is a unitary matrix P such that
P~1AP is diagonal if and only if A is normal.

Proof As usual, the two forms of the theorem are equivalent. We prove it in the
first form.

If a has an orthonormal basiss,...,V,) consisting of eigenvectors, then
a(vi) = Ay fori=1,....n, wherej; are eigenvalues. We see tlet(v;) = AiVi,
and so

aot (Vi) = ot a(vi) = Ailvi.

Sinceaa* anda*a agree on the vectors of a basis, they are equat; issnormal.

Conversely, suppose thatis normal. Let

B=3lata’), y=g(a—o).

(You should compare these with the formubae: %(z+ 2),y= %(z—z) for the
real and imaginary parts of a quadratic form. The analogy is even closer, since
clearly we havex =  +ivy.) Now we claim:

e 3 andy are Hermitian.For
B = Y +a)=p,

Y* = }a(a* —OC) =7,
where we use the fact thata)* = ta™.
e By=1vpB. For
Br = (@ —aa'tota—(@)) = g(o?— (o)),
B = p(@taa —a'a— (@)= (P (o)),

(Here we use the fact thata* = a*«.)

Hence, by the Proposition at the end of the last section, there is an orthonormal
basisB whose vectors are eigenvectorsfoindy, and hence are eigenvectors of

o=p+iy.

Note that the eigenvalues @fandy in this proof are the real and imaginary
parts of the eigenvalues of.



Chapter 9

Skew-symmetric matrices

We spent the last three chapters looking at symmetric matrices; even then we
could only find canonical forms for the real and complex numbers. It turns out
that life is much simpler for skew-symmetric matrices. We find a canonical form
for these matrices under congruence which works for any field whatever. (More
precisely, as we will see, this statement applies to “alternating matrices”, but these
are precisely the same as skew-symmetric matrices unless the characteristic of the
field is 2.)

9.1 Alternating bilinear forms

Alternating forms are as far from positive definite as they can be:

Definition 9.1 LetV be a vector space ovét. A bilinear formb onV is alter-
natingif b(v,v) =0 forallve V.

Proposition 9.1 An alternating bilinear form b satisfiegWw, v) = —b(v,w) for all
v,weV.

Proof
0 = b(v+w,v+w) = b(v,Vv) + b(v,w) + b(w, V) 4 b(w, w) = b(v,w) 4 b(w, V)
for anyv,w € V, using the definition of an alternating bilinear form.

Now here is the analogue of the Gram—Schmidt process for alternating bilinear
forms.
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Theorem 9.2 Let b be an alternating bilinear form on a vector space V. Then
there is a basigu, ..., us,W1,...,Ws,7;,...,%) for V such that bu;,w;) = 1 and
b(wj,uj) =—1fori=1,...,sand l§x,y) = O for any other choices of basis vectors
xandy.

Proof If b is identically zero, then simply choose a ba&is ...,z,) and take
s=0,t =n. So suppose not.

Choose a pair of vectorsandw such thatc = b(u,w) # 0. Replacingw by
w/c, we haveb(u,w) = 1.

We claim thatu andw are linearly independent. For suppose that dw= 0.
Then

0 = b(u,cu+dw) = cb(u,u)+db(u,w) =d,
0 = b(w,cu+dw) = cb(w,u)+db(w,w) = —c,

soc=d = 0. We takeu; = uandw; = v as our first two basis vectors.

Now letU = (u,w) andW = {x € V : b(u,x) = b(w,x) = 0}. We claim that
V =U @&W. The argument just above already shows thatW = 0, so we have
to show thaV =U +W. So take a vector € V, and letx = —b(w, v)u+ b(u, v)w.
Then

b(u,x) = —b(w, v)b(u,u) + b(u,v)b(u,w) = b(u, V),
b(w, x) = —b(w,v)b(w,u) + b(u,v)b(w,w) = b(w, V)

sob(u,v—x) = b(w,v—x) = 0. Thusv—x & W. But clearlyx € U, and so our
assertion is proved.

Now b is an alternating bilinear form oW, and so by induction there is a
basis of the required form faW, say(up,...,Us,Wo,...,Ws, 73, ...,%). Putting in
u; andw; gives the required basis fof.

9.2 Skew-symmetric and alternating matrices

A matrix A is skew-symmetri AT = —A,

A matrix A is alternatingif A is skew-symmetric and has zero diagonal. If the
characteristic of the fiel& is not equal to 2, then any skew-symmetric matrix is
alternating; but if the characteristic is 2, then the extra condition is needed.

Recall the matrix representing a bilinear fobmelative to a basiévy, ..., vn):
its (i, j) entry isb(vi, vj).

Proposition 9.3 An alternating bilinear form b on a vector space ov€ris rep-
resented by an alternating matrix; and any alternating matrix represents an alter-
nating bilinear form. If the characteristic & is not2, we can replace “alternat-

ing matrix” by “skew-symmetric matrix”.
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Proof This is obvious since ib is alternating them;; = b(vj,vi) = —b(vi,vj) =
—ajj andajj = b(vj,vi) =0.
So we can write our theorem in matrix form as follows:

Theorem 9.4 Let A be an alternating matrix (or a skew-symmetric matrix over a
field whose characteristic is not equal 2p. Then there is an invertible matrix P
such that P AP is the matrix with s block _01 é on the diagonal and all other
entries zero. Moreover the number s is half the rank of A, and so is independent
of the choice of P.

Proof We know that the effect of a change of basis with transition m&tisto
replace the matri@ representing a bilinear form " AP. Also, the matrix in the
statement of the theorem is just the matrix represeriinglative to the special
basis that we found in the preceding theorem.

This has a corollary which is a bit surprising at first sight:

Corollary 9.5 (a) The rank of a skew-symmetric matrix (over a field of char-
acteristic not equal t@) is even.

(b) The determinant of a skew-symmetric matrix (over a field of characteristic
not equal ta2) is a square, and is zero if the size of the matrix is odd.

Proof (a) The canonical form in the theorem clearly has rask 2

(b) If the skew-symmetric matriXd is singular then its determinant is zero,
which is a square. So suppose that it is invertible. Then its canonical form has
s=n/2 blocks{_o1 (1)} on the diagonal. Each of these blocks has determinant 1,
and hence so does the whole matrix. SqEEAP) = detP)?det(A) = 1, whence
det(A) = 1/(det(P)?), which is a square.

If the sizen of Ais odd, then the rank cannot bgby (a)), and so d¢A) = 0.

Remark There is a function defined on skew-symmetric matrices called the
Pfaffian which like the determinant is a polynomial in the matrix entries, and
has the property that de&) is the square of the Pfaffian &€ that is, detA) =

(Pf(A))?.
For example,
0 a b ¢
0 a —a 0 d e
Pf{_a O] =a, Pf b -d 0 f =af —be+cd.
—-c -e —f O

(Check that the determinant of the second matrigais— be-+ cd)?.)
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9.3 Complex skew-Hermitian matrices

What if we play the same variation that led us from real symmetric to complex
Hermitian matrices? That is, we are working in a complex inner product space,

and if a is represented by the matrx then its adjoint is represented Kg, the
conjugate transpose At

The matrixA is Hermitian if it is equal to its adjoint, that is,,T!ﬁT =A. Sowe
make the following definition:

Definition 9.2 The complex x n matrix A is skew-Hermitianf A=A

Actually, things are very much simpler here, because of the following obser-
vation:

Proposition 9.6 The matrix A is skew-Hermitian if and onlyi& is Hermitian.
Proof Try it and see!

Corollary 9.7 Any skew-Hermitian matrix can be diagonalised by a unitary ma-
trix.

Proof This follows immediately from the Proposition preceding.
Alternatively, a skew-Hermitian matrix is obviously normal, and the Corollary
follows from our result about normal matrices (Theorem 8.5).

Since the eigenvalues of a Hermitian matrix are real, we see that the eigenval-
ues of a skew-Hermitian matrix are imaginary.



Appendix A

Fields and vector spaces

Fields

A field is an algebraic structur® in which we can add and multiply elements,
such that the following laws hold:

Addition laws

(FAO) For anya,b € K, there is a unique elemeat+ b € K.

(FA1) For alla,b,c € K, we havea+ (b+c) = (a+b) +c.

(FA2) Thereis an element©K such thab+0=0+a=aforallac K.
(FA3) Foranyae K, there exists-a € K such that+ (—a) = (—a)+a=0.
(FA4) For anya,b € K, we havea+b=b+a.

Multiplication laws

(FMO) For anya,b € K, there is a unique elemeab € K.
(FM1) For alla,b,c € K, we havea(bc) = (ab)c.

(FM2) There is an elementd K, not equal to the element 0 from (FA2), such
thatal = la=aforallac K.

(FM3) For anya € K with a # 0, there exista ! € K such thataa ! =
-1
a ra=1.

(FM4) For anya,b € K, we haveab = ba.
Distributive law

(D) For alla,b,c € K, we havea(b+c) = ab+ac.
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Note the similarity of the addition and multiplication laws. We say tfi&t+)
is anabelian groupf (FA0)—(FA4) hold. Then (FM0)—(FM4) say thaK \ {0}, )
is also an abelian group. (We have to leave out O because, as (FM3) says, 0 does
not have a multiplicative inverse.)
Examples of fields includ® (the rational numbersR (the real numbers);
(the complex numbers), arit), (the integers mog, for p a prime number).
Associated with any fielt& there is a non-negative integer calleddtsracter-
istic, defined as follows. If there is a positive integeuch that +1+---+1=0,
where there ara ones in the sum, then the smallest saahprime. (For ifn=rs,
with r,s> 1, and we denote the sumwbnes byn- 1, then

0=n-1=(r-1)(s-1);

by minimality of n, neither of the factors- 1 ands- 1 is zero. But in a field, the
product of two non-zero elements is non-zero.) If so, then this prime number is
the characteristic aK. If no suchn exists, we say that the characteristickois
zero.

For our important example®), R andC all have characteristic zero, whilg,
has characteristip.

Vector spaces

Let K be a field. Avector space \bverK is an algebraic structure in which we
can add two elements ®f, and multiply an element &f by an element oK (this
is calledscalar multiplicatior), such that the following rules hold:

Addition laws

(VAO) For anyu,v eV, there is a unique elemeat-ve V.

(VA1) For allu,v,w eV, we haveu+ (V+w) = (U+V) +W.

(VA2) Thereis an element@V such thav+0=0+v=avforallveV.
(VA3) For anyv eV, there exists-v € V such thav+ (—v) = (—v) +v=0.
(VA4) For anyu,veV, we haveu+v=v+u.

Scalar multiplication laws

(VMO) For anyac K, veV,thereis a unigue elemeave V.
(VM1) ForanyacK, u,veV, we havea(u+Vv) = au+av.
(VM2) For anya,be K, veV, we have(a+b)v=av+bv.
(VM3) For anya,be K, veV, we havelab)v = a(bv).



91

(VM4) ForanyveV, we have ¥=v(where 1is the element given by (FM2)).

Again, we can summarise (VA0)—(VA4) by saying th&t +) is an abelian
group.

The most important example of a vector space over a Keid the setk" of
all n-tuples of elements dK: the addition and scalar multiplication are defined
by the rules

(Ug,U2,...,Un) + (V1,V2,...,Vn) = (Up+Vi,Up+Vo,... Up+Vp),
a(vi,Vo,...,Vn) = (av,aw,...,av).

The fact thafk" is a vector space will be assumed here. Proofs are straightfor-
ward but somewhat tedious. Here is a particularly easy one, the proof of (VM4),
as an example.

If v=(V1,...,Vn), then

v=1(v,...,Vn) = (Iva,..., 1vy) = (V1,...,Vp) = V.

The second step uses the definition of scalar multiplicatioi"inand the third
step uses the field axiom (FM2).
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Appendix B

Vandermonde and circulant
matrices

TheVandermonde matrix §&1,ay, ..., a,) is then x n matrix

1 1 1

a% ag ag

ap a; ag
agfl a2nfl annfl

This is a particularly important type of matrix. We can write down its deter-
minant explicitly:

Theorem B.1

detV(ag,az,...,an)) = |_|(aj —a).

i<]

That is, the determinant is the product of the differences between all pairs of
parameterg;. From this theorem, we draw the following conclusion:

Corollary B.2 The matrix Mas,ay, ..., an) is invertible if and only if the param-
eters q,ap,...,a, are all distinct.

For the determinant can be zero only if one of the factors vanishes.

Proof To prove the theorem, we first regaad as a variable, so that the de-
terminantA is a polynomialf(x) of degreen—1 in x. We see thatf(g) =0

for 1 <i < n-—1, since the result is the determinant of a matrix with two equal
columns. By the Factor Theorem,

A=K(x—ar)(x—ag)---(X—an-1),
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whereK is independent of. In other words, the original determinantisa, —
ar)---(an—an—1). In the same way, all difference¢a; — &) for i < j are factors,
so that the determinant k& times the product of all these differences, whkge
does not contain any @, . .., a,, that is,Kg is a constant.

To find Ko, we observe that the leading diagonal of the matrix gives us a term
aa3---ah~1in the determinant with siga-1; but this product is obtained by
taking the term with larger index from each factor in the product, also giving sign
+1. SoKp = 1 and the theorem is proved.

Another general type of matrix whose determinant can be calculated explicitly
is thecirculant matrix whose general form is as follows:

ao a a ... an-1
an_1 ag a ... dn-2
C(ag,.--»@8-1)= |82 @1 & an3
al a a ... ag
Theorem B.3 Let C=C(ay,...,an_1) be a circulant matrix over the fiel@. Let
o = €M/ be a primitive nth root of unity. Then

(a) Cis diagonalisable;
(b) the eigenvalues of C alg!_jajwl¥, fork=0,1,...,n—1;
(c) detC) is the product of the eigenvalues listed in (b).

Proof We can write down the eigenvectors. Fo£ 0,1,...,n—1, let
w=[1 o ... o™ YT ThejthentryinCyis

an—j -I-an,jﬂwk_i_ o +an7j71w(n—1)k

= aowjk _|_ . _|_ an,j,]_(l)(n_l)k—f- an_ja)nk+ o s + anila)
wlk<a0 + alwk 4+ 4 an_la)(n_l)k>,

(n+j—1)k

using the fact thato" = 1. This isag+ a0+ - - - + a,_10" V¥ times thejth
entry invg. So
Cu = (a0 + 10" + -+ +an-10" )y,

as required.

Now the vectorsy,...,vh_1 are linearly independent. (Why? They are the
columns of a Vandermonde matik(1, @, ...,®" 1), and the powers of are
all distinct; so the first part of this appendix shows that the determinant of this
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matrix is non-zero, so that the columns are linearly independent.) Hence we have
diagonalised, and its eigenvalues are as claimed.

Finally, for part (c), the determinant of a diagonalisable matrix is the product
of its eigenvalues.

Example B.1 We have the identity

a b c
a®+b®+c3—3abc=|c a b|=(a+b+c)(a+wb+w’)(at+n®b+wc),
b c a

wherew = €271/3,
This formula has an application to solving cubic equations. Consider the equa-
tion
X3 +ax +bx+c=0.

By “completing the cube”, putting = x+ %a, we get rid of the square term:
y}+dy+e=0
for somed, e. Now, as above, we have
Y2 — 3uvy+ U2 + V2 = (y+ U+ V) (Y + ou+ 0?V)(y + 0u+ av),
so if we can findu andv satisfying—3uv=d andu®+ v® = g, then the solutions
of the equation arg = —u—v, y = —wu— 0?v, andy = —o’u— oV.
LetU = u® andV = V3. ThenU +V = eandUV = —d3/27. Thus we can find

U andV by solving the quadratic equatiad — ez— d3/27 = 0. Nowu s a cube
root ofU, and therv = —d/(3u), and we are done.

Remark The formula for the determinant of a circulant matrix works over any
field K which contains a primitivaith root of unity.
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Appendix C
The Friendship Theorem

TheFriendship Theoremstates:

Given a finite set of people with the property that any two have a

uniqgue common friend, there must be someone who is everyone else’s
friend.

The theorem asserts that the configuration must look like this, where we rep-
resent people by dots and friendship by edges:

The proof of the theorem is in two parts. The first part is “graph theory”, the
second uses linear algebra. We argue by contradiction, and so we assume that we
have a counterexample to the theorem.

Step 1. Graph theory We show that there is a numbersuch that everyone

has exactlyn friends. [In the terminology of graph theory, this says that we have
a regular graph of valenay.]

To prove this, we notice first that B, andP, are not friends, then they have
the same number of friends. For they have one common frigndny further
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friend Q of P, has a common frien® with P>, and conversely, so we can match
up the common friends as in the next picture.

Now let us suppose that there are two pedpland Q who have different
numbers of friends. By the preceding arguméhgndQ must be friends. They
have a common frien&. Any other persors must have a different number of
friends from eitherP or Q, and so must be the friend of eitheror Q (but not
both). Now if Sis the friend ofP but notQ, andT is the friend ofQ but notP,
then any possible choice of the common frien®ahdT leads to a contradiction.

So this is not possible; that is, either everyone eld&gdriend, or everyone else
is Q’s friend. But this means that we don’t have a counterexample after all.

So we conclude this step knowing that the number of friends of each person is
the same, sawn, as claimed.

Step 2: Linear algebra We prove tham= 2.

Suppose that there arepeopleP,...,P,. Let A be then x n matrix whose
(i,]) entry is 1 ifR andP; are friends, and is O otherwise. Then by assumption,
Ais ann x n symmetric matrix. Letl be then x n matrix with every entry equal
to 1; thenJ is also symmetric.

Consider the produddJ. Since every entry of is equal to 1, théi, j) entry
of AJ is just the number of ones in théh row of A, which is the number of
friends of B; this ism, by Step 1. So every entry &J is m, whenceAJ = mJ.
Similarly, JA=mJ. Thus,A andJ are commuting symmetric matrices, and so
by Theorem 7.9, they can be simultaneously diagonalised. We will calculate their
eigenvalues.

First let us consided. If j is the column vector with all entries 1, then clearly
Jj=nj, soj is an eigenvector af with eigenvaluen. The other eigenvalues df
are orthogonal tg. Now v- j = 0 means that the sum of the components &
zero; this implies thalv= 0. So any vector orthogonal fas an eigenvector af
with eigenvalue 0.

Now we turn toA, and observe that

AZ = (m—1)1 +J.
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For the(i, ) entry of A2 is equal to the number of peopik who are friends of
both B andPj. If i = j, this number ism, while if i # j then (by assumption)
itis 1. SoA? has diagonal entries and off-diagonal entries 1, so it is equal to
(m—1)l +J, as claimed.

The all-one vectolj satisfiesAj = mj, so is an eigenvector & with eigen-
valuem. This shows, in particular, that

mPj =A%) = (M= 1)1 +J)j = (m—1+n)j,

so thatn = m? —m+ 1. (Exercise: Prove this by a counting argument in the
graph.)

As before, the remaining eigenvectorsAfare orthogonal tg, and so are
eigenvectors of with eigenvalue 0. Thus, ¥ is an eigenvector oh with eigen-
valueA, not a multiple ofj, then

A=A =(Mm=-1I+J)v=(m-1)y,

soA?2=m—1,andA = +v/m—1.
The diagonal entries & are all zero, so its trace is zero. So if we feaindg
be the multiplicities of/m—1 and—+/m— 1 as eigenvalues &, we have

0=Tr(A)=m+fvm—-1+g(—vm—-1)=m+(f —g)vm—1.

This shows tham— 1 must be a perfect square, say- 1 = u?, from which we

see thamis congruent to 1 mod. But the trace equation is-@ m+ (f —g)u; this

says that G= 1 modu. This is only possible iti= 1. But thenm=2,n= 3, and

we have the Three Musketeers (three individuals, any two being friends). This
configuration does indeed satisfy the hypotheses of the Friendship Theorem; but
it is after all not a counterexample, since each person is everyone else’s friend. So
the theorem is proved.
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Appendix D

Who is top of the league?

In most league competitions, teams are awarded a fixed number of points for a
win or a draw. It may happen that two teams win the same number of matches and
so are equal on points, but the opponents beaten by one team are clearly “better”
than those beaten by the other. How can we take this into account?

You might think of giving each team a “score” to indicate how strong it is, and
then adding the scores of all the teams beaten by tEamsee how welll has
performed. Of course this is self-referential, since the scofie @épends on the
scores of the teams th@tbeats. So suppose we ask simply that the scofe of
should be proportional to the sum of the scores of all the teams beafen by

Now we can translate the problem into linear algebra. Tiet.., T, be the
teams in the league. Létbe then x n matrix whose(i, j) entry is equal to 1 iff|
beatsT;, and O otherwise. Now for any vectpx; x> ... xn]T of scores, the
ith entry of Axis equal to the sum of the scorggsfor all teamsT; beaten byT;.

So our requirement is simply that

x should be an eigenvector Afwith all entries positive.
Here is an example. There are six teams A, B, C, D, E, and F. Suppose that
A beats B, C, D, E;
B beatsC, D, E, F;
C beatsD, E, F;
D beatsE, F;
E beats F;

F beats A.
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The matrixAis ~ )
01 1110
0 01 111
0 00 111
0 00 0 1 1°
0 00 001
1 00 00O

We see that A and B each have four wins, but that A has generally beaten the
stronger teams; there was one upset when F beat A. Also, E and F have the fewest
wins, but F took A's scalp and should clearly be better.

Calculation with Maple shows that the vector

[0.7744 06452 04307 02875 01920 03856]T

is an eigenvector oA with eigenvalue 2085. This confirms our view that A is
top of the league and that F is ahead of E; it even puts F ahead of D.

But perhaps there is a different eigenvalue and/or eigenvector which would
give us a different result?

In fact, there is a general theorem called Hegron—Frobenius theoremvhich
gives us conditions for this method to give a unique answer. Before we state it,
we need a definition.

Definition D.1 Let A be ann x nreal matrix with all its entries non-negative. We
say thatA is indecomposabld, for anyi, j with 1 <, j < n, there is a numben
such that thei, j) entry of AM is strictly positive.

This odd-looking condition means, in our football league situation, that for
any two teamd; andTj, there is a chaiffy,,..., Ty, with T, = Tj andT,, = Tj,
sich that each team in the chain beats the next one. Now it can be shown that
the only way that this can falil is if there is a collecti@rof teams such that each
team inC beats each team not@ In this case, obviously the teamsGroccupy
the top places in the league, and we have reduced the problem to ordering these
teams. So we can assume that the matrix of results is indecomposable.

In our example, we see that B beats F beats A, sa2he) entry in A? is
non-zero. Similarly for all other pairs. Sois indecomposable in this case.

Theorem D.1 (Perron—Frobenius Theorem)Let A be a nx n real matrix with

all its entries non-negative, and suppose that A is indecomposable. Then, up to
scalar multiplication, there is a unique eigenvecteeyx; ... xn]T for A with

the property that x> O for all i. The corresponding eigenvalue is the largest
eigenvalue of A.

So the Perron—Frobenius eigenvector solves the problem of ordering the teams
in the league.
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Remark Sometimes even this extra level of sophistication doesn’t guarantee a

result. Suppose, for example, that there are five teams A, B, C, D, E; and suppose
that A beats B and C, B beats C and D, C beats D and E, D beats E and A, and E
beats A and B. Each team wins two games, so the simple rule gives them all the
same score. The matrixis

>

|
PP OOO
P OOOR
coorr
oOorpro
PP oo

0

which is easily seen to be indecomposable; andsfthe all-1 vector, thedv =

2v, so thatv is the Perron—Frobenius eigenvector. So even with this method, all
teams get the same score. In this case, it is clear that there is so much symmetry
between the teams that none can be put above the others by any possible rule.

Remark Further refinements are clearly possible. For example, instead of just
putting the(i, j) entry equal to 1 ifT; beatsTj, we could take it to be the number
of goals by whichl; won the game.

Remark This procedure has wider application. How does an Internet search
engine like Google find the most important web pages that match a given query?
An important web page is one to which a lot of other web pages link; this can be
described by a matrix, and we can use the Perron—Frobenius eigenvector to do the
ranking.
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Appendix E

Other canonical forms

One of the unfortunate things about linear algebra is that there are many types
of equivalence relation on matrices! In this appendix | say a few brief words
about some that we have not seen elsewhere in the course. Some of these will be
familiar to you from earlier linear algebra courses, while others arise in courses
on different parts of mathematics (coding theory, group theory, etc.)

Row-equivalence

Two matricesA andB of the same size oveK are said to beow-equivalentif
there is an invertible matriR such thaB = PA. Equivalently,A andB are row-
equivalent if we can transform into B by the use of elementary row operations
only. (This is true because any invertible matrix can be written as a product of
elementary matrices; see Corollary 2.6.)

A matrix A is said to be irechelon formif the following conditions hold:

e The first non-zero entry in any row (if it exists) is equal to 1 (these entries
are called théeading oney

e The leading ones in rows lower in the matrix occur further to the right.

We say that is in reduced echelon fornf, in addition to these two conditions,
also

¢ All the other entries in the column containing a leading one are zero.
For example, the matrix
0 1 abo0Oc
0 00 O011d
0 000 O0OTO O

is in reduced echelon form, whatever the values,of. , e.
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Theorem E.1 Any matrix is row-equivalent to a unique matrix in reduced echelon
form.

Coding equivalence

In the theory of error-correcting codes, we meet a notion of equivalence which lies
somewhere between row-equivalence and equivalence. As far as | know it does
not have a standard name.

Two matricesA andB of the same size are said to beding-equivalenif B
can be obtained frorA by a combination of arbitrary row operations and column
operations of Types 2 and 3 only. (See page 16).

Using these operations, any matrix can be put into block f Ign g , for

some matriXA. To see this, use row operations to put the matrix into reduced ech-
elon form, then column permutations to move the columns containing the leading
ones to the front of the matrix.

Unfortunately this is not a canonical form; a matrix can be coding-equivalent
to several different matrices of this special form.

It would take us too far afield to explain why this equivalence relation is im-
portant in coding theory.

Congruence over other fields

Recall that two symmetric matricédsandB, over a fieldK whose characteristic is
not 2, arecongruentf B = PT AP for some invertible matri®. This is the natural
relation arising from representing a quadratic form relative to different bases.

We saw in Chapter 5 the canonical form for this relation in the cases &hen
is the real or complex numbers.

In other cases, it is usually much harder to come up with a canonical form.
Here is one of the few cases where this is possible. | state the result for quadratic
forms.

Theorem E.2 LetF, be the field of integers mod p, where p is an odd prime. Let
c be afixed element &%, which is not a square. A quadratic form g in n variables
overFFp can be put into one of the forms

R PE CA CEE N R o

by an invertible linear change of variables. Any quadratic form is congruent to
just one form of one of these types.



Appendix F

Worked examples

1. Let

1 2 4 -1 5
A=|1 2 3 -1 3].
-1 -2 0 1 3

(&) Find a basis for the row space/Af
(b) What is the rank of?

(c) Find a basis for the column spacefof

(d) Find invertible matrice® andQ such thatPAQis in the canon-
ical form for equivalence.

(a) Subtract the first row from the second, add the first row to the third, then
multiply the new second row by-1 and subtract four times this row from the

third, to get the matrix
1 2 4 -1 5
B=10 0 1 0 2.
O 00 O O

The first two rows clearly form a basis for the row space.
(b) The rank is 2, since there is a basis with two elements.

(c) The column rank is equal to the row rank and so is also equal to 2. By
inspection, the first and third columnsAfare linearly independent, so they form
a basis. The first and second columns are not linearly independent, so we cannot
use these! (Note that we have to go back to the orignhére; row operations
change the column space, so selecting two independent colunBhwadld not
be correct.)
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(d) By step (a), we havBA = B, whereP is obtained by performing the same
elementary row operations on thex3 identity matrixl|s:

1 0 O
P=]11 -1 0].
-3 4 1

Now B can be brought to the canonical form

o O o
oNeoNe
O O 9O

by subtracting 2, 4,-1 and 5 times the first column from the second, third, fourth
and fifth columns, and twice the third column from the fifth, and then swapping
the second and third columns;Ge= BQ (whenceC = PAQ), whereQ is obtained

by performing the same column operationsign

1 4 -2 1 3
0 0 1 0 O
Q=0 1 0 0 -2
0O 0 0 1 0
O 0 0 0 1

Remark: P andQ can also be found by multiplying elementary matrices, if
desired; but the above method is simpler. You may find it easier to write an identity
matrix afterA and perform the row operations on the extended matrix toRind
and to put an identity matrix undernedtand perform the column operations on
the extended matrix to fin@.

2. A certain country has political parties??1, ..., &,. At the
beginning of the year, the percentage of voters who supported the
party & wasx;. During the year, some voters change their minds; a
proportiona;; of former supporters of?; will support & at the end

of the year.

Letvbe the vectofx; X --- xn]T recording support for the par-
ties at the beginning of the year, aAdhe matrix whoséi, j) entry is
aij -

(a) Prove that the vector giving the support for the parties at the end
of the year isAv.
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(b) In subsequent years, exactly the same thing happens, with the
same proportions. Show that the vector giving the support for
the parties at the end afyears isA™v.

(c) Suppose that =2 and that

09 03
A:[o.l 0.7}

Show that, after a long time, the support for the parties will be
approximately 075 for #7; to 0.25 for .

(a) Lety; be the proportion of the population who suppg# at the end of
the year. From what we are given, the proportion suppotf)cat the beginning
of the year wax;, and a fractiors;; of these changed their support #6. So
the proportion of the whole population who support&gl at the beginning of the
year and%; at the end is;jX;. The total support fo”; is found by adding these
up for all j: that is,

n
Yi= ) aijXj,
=1

orV = Av, whereV is the vectorly; ... yn]' giving support for the parties at
the end of the year.

(b) Letvi be the column vector whosth component is the proportion of the
population supporting party’; after the end ok years. In part (a), we showed
thatvy = Avw, wherevp = v. An exactly similar argument shows that= Av_1
for anyk. So by inductionyy, = P™y = P", as required. (The result of (a) starts
the induction withm = 1. If we assume that,_; = A1y, then

Vi = Av_1 = A(A 1) = Ay,

and the induction step is proved.)
(c) The matrixP has characteristic polynomial

x—09 -03
—-0.7 x-07

’ = x?—1.6x+0.6 = (x—1)(x—0.6).

So the eigenvalues @&t are 1 and 6. We find by solving linear equations that

eigenvectors for the two eigenvalues r% and ! } respectively. As in the

-1
text, we compute that the corresponding projections are

b _ [075 075 n_|025 075
1= 1025 025/’ 2= 1-025 075 |°
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(Once we have founBy, we can find® asl — P;.) ThenP is diagonalisable:
A=P;+0.6P>.
From this and Proposition 4.6 we see that

A" = Py + (0.6)™P.

As m— o, we have(0.6)™ — 0, and soA — Py. So in the limit, ifvg = ; is

the matrix giving the initial support for the parties, wkh-y = 1, then the matrix
giving the final support is approximately

0.75 075] [x] _[0.75(x+y)] [0.75
0.25 025||y| [0.25x+y)| |0.25|"
As a check, use the computer with Maple to work Blitfor some large value
of m. For example, | find that

pl0 _ 0.7515116544 ([¥45465036
~10.2484883456 (2545349632

3. The vectorsy, Vo, v3 form a basis fov = R3; the dual basis of *
is f1, fo, f3. A second basis fov is given byw; = vi + Vo + V3, Wp =
2v1 + Vo + V3, W3 = 2V» 4 V3. Find the basis 0¥ * dual towy, w,, ws.

The first dual basis vectay; satisfiesgy(wi) = 1, g1(W) = gi(ws) = 0. If
01 = xfy +yfa+ 213, we find

X+y+z = 1,
2X+y+z = 0,
2y+z = 0,

givingx= —1,y=—2,z=4. Sog; = —f1 — 2fo + 4f3. Solving two similar sets
of equations givegy, = f1+ f — 2fz andgz = fo — fs.
Alternatively, the transition matrif from thevs to thews is

1 2 0
P=1[1 1 2|,
11 1

and we showed in Section 5.1.2 that the transition matrix between the dual bases
is

-1 1 0
PhHi=(-2 1 1
4 -2 -1

The coordinates of thgs in the basis of s are the columns of this matrix.
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4. TheFibonacci numbers fare defined by the recurrence relation

Fo=0, Fi=1 Frip=Fn+Faqforn>o0.

Let A be the matrix[g ﬂ . Prove that

Fr1 F
An: n—1 n ,
{ Fn Fnra

and hence find a formula fé,.

The equation fol, is proved by induction om. It is clearly true forn = 1.
Suppose that it holds far, then

AL AN A {Fn—l Fn } [O 1] _ { Fn Fn—l‘H:n] _ { Fn Fn+1} _
Fo P |11 Fori FntFna Forr Fni2

So the induction step is proved.

To find a formula forF,, we show thatA is diagonalisable, and then write
A= A11PL + AoP, whereP; and P, are projection matrices with sumsatisfying
PP = PP, = 0. Then we geAA" = A]'P + 1], and taking th€1,2) entry we
find that

F,= Cll]rj + Czlzn,

wherec; andc; are the(1,2) entries ofP, andP, respectively.

From here it is just calculation. The eigenvaluesfohre the roots of G=
det(xl — A) = x2 —x — 1; that is,A1, A2 = 3(1+£+/5). (Since the eigenvalues are
distinct, we know thaA is diagonalisable, so the method will work.) Now because
P+ P, =1, the(1,2) entries of these matrices are the negatives of each other; so
we haveF, = c(A{' — A}). Rather than find?, explicitly, we can now argue as
follows: 1= F; = ¢(A1 — A2) = ¢V/5, so that = 1/+/5 and

Fo— %5 <<1+2¢?s)”_ (1_{5)”) |

5. LetV;, be the vector space of real polynomials of degree at most

(a) Show that the function

f-g:/olf(x)g(x)dx

is an inner product o,.
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(b) Inthe case = 3, write down the matrix representing the bilinear
form relative to the basis, &, x2, x2 for V.

(c) Apply the Gram—Schmidt process to the badis, x?) to find
an orthonormal basis faf,.

(d) LetW, be the subspace df, consisting of all polynomialg (x)
of degree at mostwhich satisfyf (0) = f(1) =0. LetD : Wy —
W, be the linear map given by differentiatio® f)(x) = f'(x).
Prove that the adjoint dD is —D.

(a) Putb(f,g) = fol f(x)g(x)dx. The functionb is obviously symmetric. So
we have to show that it is linear in the first variable, that is, that

1 1 1
|00+ 20gae = [ hogdx [ g0 d
0 0 0
1 1
| (efongmax = ¢ [ f9gmdx
0 0

which are clear from elementary calculus.

We also have to show that the inner product is positive definite, that is, that
b(f, f) > 0, with equality if and only iff = 0. This is clear from properties of
integration.

(b) If the basis isf; = 1, fo = x, f3 = X2, f4 = x5, then the(i, j) entry of the
matrix representing is

=

1
i—1yj—1 4y
X XTrdx= —
/o 1

so the matrix is

DIFRPWIFENIFP =
TR NP WIRNI-
IR NIFPWI-
ENT[SY RS, [V T _T_
—
|

(c) The first basis vector is clearly 1. To makerthogonal to 1 we must
replace it byx+ a for somea; doing the integral we find that= —%. To makex?
orthogonal to the two preceding is the same as making it orthogonal tox, and
we replace it by? + bx+ c; we find that

1 1

§_|_?b_|_c — 07
1 1 1
__|__b+_c — 07

so thath = —1 andc = .



Now 1.1=1,(Xx—3) - (X—3) = 35, and(X® =X+ 2) - (¢ — X+ %) = 155 SO
the required basis is
N TP S R
23

(d) Integration by parts shows that
1
D@ = [ f(x)g0)dx
0

1
= 7008095~ [ F'0g0ax

where the first term vanishes because of the condition on polynomias ihhus,
by definition, the adjoint oD is —D.

6. Let A andB be real symmetric matrices. Is each of the following
statements true or false? Give brief reasons.

(a) If AandB are orthogonally similar then they are congruent.
(b) If AandB are orthogonally similar then they are similar.
(c) If AandB are congruent then they are orthogonally similar.
(d) If AandB are similar then they are orthogonally similar.

Recall thatA andB are similar ifB = P~tAPfor some invertible matri®; they
are congruent iB= P " AP for some invertible matri®; and they are orthogonally
similar if B= P~1AP for some orthogonal matriR (invertible matrix satisfying
P" = P~1). Thus itis clear that both (a) and (b) are true.

The Spectral Theorem says thatis orthogonally congruent to a diagonal
matrix whose diagonal entries are the eigenvalues\ ahdB are similar, then
they have the same eigenvalues, and so are orthogonally congruent to the same
diagonal matrix, and so to each other. So (d) is true.

By Sylvester's Law of Inertia, any real symmetric matrix is congruent to a
diagonal matrix with diagonal entries ;1 and 0. If we choose a symmetric
matrix none of whose eigenvalues is-11 or O, then it is not orthogonally similar
to the Sylvester form. For example, the matritesnd 2 are congruent but not
orthogonally similar. So (c) is false.

7. Find an orthogonal matriR such thatP~tAP andP~1BP are di-
agonal, where

A=

(RN TR g WY
el
e
R ORO
oOr OoOR
R ORO
Or O
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Remark A andB are commuting symmetric matrices, so we know that the ma-
trix P exists.

First solution We have to find an orthonormal basis which consists of eigenvec-
tors for both matrices.

Some eigenvectors can be found by inspectiow; K (1,1,1,1) thenAv; =
4v; andBvy = 2vp. If vo = (1,—1,1,—1) thenAw, = 0 andBw = —2v,. Any
further eigenvector = (x,y,z,w) should be orthogonal to both of these, that is,
X+y+z4+w=0=x—y+z—w. Sox+z=0andy+w= 0. Conversely, any such
vector satisfieg\v= 0 andBv= 0. So choose two orthogonal vectors satisfying
these conditions, safl,0,—1,0) and (0,1,0,—1). Normalising, we obtain the
required basis{1,1,1,1)/2, (1,—1,1,-1)/2,(1,0,—-1,0)/v/2,(0,1,0,-1)/v/2.
So

11 1
2 2 )2
1 .1 g 4
p_|2 2 V2
=1 1 _1
2 2 N
R

V2

Second solution Observe that botA andB are circulant matrices. So we know
from Appendix B that the columns of the Vandermonde matrix

1 1 1 1
1 i -1 i
1 -1 1 -1
1 - -1 i

are eigenvectors of both matrices. The second and fourth columns have corre-
sponding eigenvalues 0 for both matrices, and hence so do any linear combina-
tions of them; in particular, we can replace these two columns by their real and
imaginary parts, giving (after a slight rearrangement) the matrix

1 1 1 O
1 -1 O 1
1 1 -1 O
1 -1 0 -1

After normalising the columns, this gives the same solution as the first.
The results of Appendix B also allow us to write down the eigenvalues of
andB without any calculation. For example, the eigenvalueB afe

141=2, i—i=0, -1-1=-2, —i+i=0.
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Remark A more elegant solution is the matrix

1 1 1 1
111 -1 1 -1
211 1 -1 -1
1 -1 -1 1

This matrix (without the facto%) is known as aHadamard matrix It is ann x n
matrix H with all entries+1 satisfyingH "H = nl. It is known that am x n
Hadamard matrix cannot exist unlesis 1, 2, or a multiple of 4; however, nobody
has succeeded in proving that a Hadamard matrix of anyrsidieisible by 4
exists.

The smallest order for which the existence of a Hadamard matrix is still in
doubt is (at the time of writingh = 668. The previous smallest,= 428, was
resolved only in 2004 by Hadi Kharaghani and Behruz Tayfeh-Reziae in Tehran,
by constructing an example.

As a further exercise, show that, Hf is a Hadamard matrix of size, then

H H
H —H
constructed above is of this form.)

11 11
8. LetA_{1 2} andB_{1 0}

Find an invertible matri® and a diagonal matri® such thaP" AP =
| andP'BP = D, wherel is the identity matrix.

is a Hadamard matrix of sizen2 (The Hadamard matrix of size 4

First we take the quadratic form correspondind\t@nd reduce it to a sum of
squares. The form i& + 2xy+ 2y?, which is(x+Yy)2 +y?. (Note: This is the sum
of two squares, in agreement with the fact thas positive definite.)

1 1} :
, since

Now the matrix that transform, y) to (x+y,y) is Q= {0 1

o 3bl=1Y)

[x ¥1Q'Q m =X+ 2y+2y° =[x ylA m 7

Hence

sothatQ'Q=A.
Now, if we putP=Q 1 = {1 -1

0 1 ] , we see thaP'AP=P" (Q'Q)P=1.
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What abouf ' BP? We find that
oo |1 O]f2 171 -21] [1 o]
IDBP_{—ll 1 0/|0O 1| |0 -1 =D,
the required diagonal matrix. So we are done.

Remark 1: In generalitis not so easy. The reduction of the quadratic form will
give a matrixP; such thalPlTAPl =1, butin generaPlTBPl won't be diagonal;
all we can say is that it is symmetric. So by the Spectral Theorem, we can find an
orthogonal matrixP, such tha®;" (P BR)P, is diagonal. P, is the matrix whose
columns are orthonormal eigenvectorpfBP;.) Then becausk, is orthogonal,
we have

Py (P[AR)R, =P, IP =1,

so thatP = PP, is the required matrix.

Remark 2: If you are only asked for the diagonal matif and not the matrix
P, you can do an easier calculation. We saw in the lectures that the diagonal
entries ofD are the roots of the polynomial dgA— B) = 0. In our case, we have

x=1 x=1|_ > .
w_1 o2 |=X —1=(x—-1)(x+1),

so the diagonal entries @f are+1 and—1 (as we found).
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cubic equation, 95

data, 10
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indefinite, 66
inner product, 67, 81
standard, 69
integers modp, 90
intersection, 13
inverse matrix, 12, 29
invertible
linear map, 37
matrix, 12, 24, 29, 37

Jordan block, 51
Jordan form, 51

kernel, 33
Kronecker delta, 56
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row vector, 10, 15, 55
row-equivalence, 105

scalar, 4
scalar multiplication, 4
self-adjoint, 71
semilinear, 82
sesquilinear, 82
sign, 25
signature, 66, 78
similarity, 44

orthogonal, 71
skew-Hermitian, 88
skew-symmetric matrix, 86
spanning, 6
Spectral Theorem, 75, 82, 83
standard inner product, 69, 82
subspace, 13
sum, 13
Sylvester’s Law of Inertia, 62, 65, 77
symmetric group, 25

trace, 52, 99
transition matrix, 11
transposition, 25

unitary, 82, 83

Vandermonde matrix, 93, 114
vector, 4
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vector space, 4
complex, 4
real, 4

zero matrix, 16
Zero vector, 4



