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Chapter II.

DETERMINANTS.

By Laenas Gifford Weld,

Professor of Mathematics in the State University of Iowa.

Art. 1. Introduction.

As early as 1693 Leibnitz arrived at some vague notions

regarding the functions which we now know as determinants.

His researches in this subject, the first account of which is

contained in his correspondence with De L'Hospital, resulted

simply in the statement of some rather clumsy rules for elimi-

nating the unknowns from systems of linear equations, and
exerted no influence whatever upon subsequent investigations

in the same direction. It was over half a century later, in

1750, that Gabriel Cramer first formulated an intelligible and
general definition of the functions, based upon the recognition

of the two classes of permutations, as presently to be set forth.

Though Cramer failed to recognize, even to the same extent

as Leibnitz, the importance of the functions thus defined, the

development of the subject from this time on has been almost

continuous and often rapid. The name " determinant" is due

to Gauss, who, with Vandermonde, Lagrange, Cauchy, Jacobi,

and others, ranks among the great pioneers in this development.

Within recent years the theory of determinants has come
into very general use, and has, in the hands pi such mathema-

ticians as Cayley and Sylvester, led to results of the greatest

interest and importance, both through the study of special

forms of the functions themselves and through their applica-

tions.*

* A list of writings on Determinants is given by Muir in Quarterly Journal

of Mathematics, 1881, Vol. XVIII, pp. 110-149.
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Art. 2. Permutations.

The various orders in which the elements of a group may

be arranged in a row are called their permutations.

Any two elements, as a and b, may be arranged in two

orders : ab and ba. A third, as c, may be introduced into each

of these two permutations in three ways : before either element,

or after both ; thus giving 3X2 = 6 permutations of the three

elements. In like manner an additional element may be intro-

duced into each of the permutations of i elements in (z'-f- 1)

ways: before any one of them, or after all. Hence, in

general, if Pt denote the number of permutations of i ele-

ments, Pi+1 = (Y-f- i)P
{
. Now, />

3
= 3 X 2 X 1=3!; hence

P
t
= 4 X 3 ! = 4 ! ; and, n being any integer,

Pn = n(n — i){n — 2) . . . 1 = n !

.

That is, the number of permutations of 11 elements is n !.

For all integral values of n greater than unity, n ! is an

even number.

If the elements of any group be represented by the differ-

ent letters, a, b, c, . . ., the alphabetical order will be considered

as the natural order of the elements. If represented by the

same letter with different indices, thus

:

alt a2 , a3 , . .

.

; or thus : a', a", a'", .

.

.,

the natural order of the elements is that in which the indices

form a continually increasing series.

Any two elements, whether adjacent or not, standing in

their natural order in a permutation constitute a permanence

;

standing in an order which is the reverse of the natural, an

inversion. Thus, in the permutation daecb, the permanences

are de, ae, ab, ac ; the inversions, da, dc, db, ec, eb, cb.

The permutations of the elements of a group are divided

into two classes, viz.: even or positive permutations, in which

the number of inversions is even ; and odd or negative permu-

tations, in which the number of inversions is odd.
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When the elements are arranged in the natural order the

number of inversions is zero—an even number.

Thus, the even or positive permutations of the elements

a lt av a, are

while the odd or negative permutations are

a
3

<?
2 «,, a, a, a

t , a, «, a,.

Art. 3. Interchange of Two Elements.

It will now be shown that if, in any permutation of the

elements of a group, two of the elements be interchanged the

class of the permutation will be changed.

Let q and s be the elements in question. Then, represent-

ing collectively all the elements which precede these two by

P, those which fall between them by R, and those which follow

by T, any permutation of the group may be written

PqRsT.

Of the elements R, supposed to be r in number, let represent

h the number of an order higher than q,

i " " " " " lower "
q,

j " " " " " lower " s,

k ' " " higher " s.

It is evident that no change in the order of the elements qRs

can affect their relations to the elements of either P or T.

Then, passing from the order PqRsT to the order

PRqsT

changes the number of inversions by (k — i) ; and passing from

this to the order
PsRqT

again changes the number of inversions by (J — k) ± I, the

i PJUS I sign being used as q is of \ , ?^eJ [ order than s.

\ minus ( (
nigner

)

The total change in the number of inversions due to the inter-

change of the two elements in question is, therefore,

h - i+j - k ± i.
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But since i=r — h and k = r —j, this may be written

2(^+7 — *o ± j-

which is an odd number for all admissible values of h,j, and r.

Hence, the interchange of any two elements in a permutation

changes the number of inversions by an odd number, thus

changing the class of the permutation.

Art. 4. Positive and Negative Permutations.

Of all the permutations of the elements of a group, one

half are even and one half odd.

To prove this, write out all the permutations. Now choose

any two of the elements and interchange them in each permu-

tation. The result will be the same set of permutations as

( even )

before, only differently arranged. But each i
Q^^ > permuta-

tion of the old set has been converted into an I even f one in

the new. Hence, in either set, there are as many even permu-

tations as odd ; that is, one half are even and one half odd.

Prob. i. Classify the following permutations:

(i)dcdea; (2) 111 v 1 11 iv; (3) knimlj;
(4) a" a? a' a™ a'"; (5) fieyZad- (6)52413;
(7) x^x^x.x^^x,; (8) F. Tu. M. Th. W.; (9) jx k v iX.

Prob. 2. Derive the formula for the number of permutations of

n elements taken m at a time. (Ans. n\/{n — m)\.)

Prob. 3. How many combinations of m elements arranged in the

natural order may be selected from a group of n elements? (Ans.
n\/m\(n — *»)!.)

Prob. 4. Show that o! = 1.

Art. 5. The Determinant Array.

Assume n % elements arranged in n vertical ranks or columns,

and n horizontal ranks or rows, thus

:

a; a,"

.

. . « «
a' a," . . . a ™

a' a" n <"'
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Ins this array all the elements in the same column have the

same superscript, and those in the same row the same subscript.

The columns being arranged in order from left to right, and

the rows likewise in order from the top row downward, the

position of any element of the array is shown at once by its

indices. Thus, «/" is in the third column and the fifth row

of the above array.

The diagonal passing through the elements a/, a",

.

. . a„ln)

is called the principal diagonal of the array ; that passing

through a„', «„_,", . . . «/"', the secondary diagonal. The posi-

tion occupied by the element a
x

' is designated as the leading

position.

Art. 6. Determinant as Function of tf Elements.

The array just considered, inclosed between two vertical

bars, thus :

a
x

a
t

. . . a

a' a" .

^

(«)

an a„

is used in analysis to represent a certain function of its rc
2
ele-

ments called their determinant.* This function may be defined

as follows

:

Write down the product of the elements on the principal

diagonal, taking them in the natural order ; thus :

in («>a: a, a,

This product is called the principal term of the determinant.

Now permute the subscripts in this principal term in every

possible way, leaving the superscripts undisturbed. To such of

the n ! resulting terms as involve the even permutations of the

subscripts give the positive sign ; to those involving the odd

*This notation was first employed by Cauchy in 1815. See Dostor's

Theorie des determinants, Paris, 1877.
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permutations, the negative sign. The algebraic sum of all the

terms thus formed is the determinant represented by the

given array.

Art. 7. Examples of Determinants.

Applying the process above explained to the array of four

elements gives

«/«," = *,'*," -a:a,". (1)

As an example of a determinant of nine elements, with its ex-

pansion, may be written

—
1 « / ~ a ~ hi

1 « 1 ~ " ~ "1
1 « ' « "„ "/

z= -\- a, a^ a, -\- a, a
3

a, -\- a, a^ a,

a„ a„ a„ s, I r, " s, I" 'l\

It is evident, from the mode of its formation, that each term

of the expansion of a determinant contains one, and only one,

element from each column and each row of the array.

It follows that every complete determinant is a homoge-

neous function of its elements. The degree of this function,

with respect to its elements, is called the order of the deter-

minant. Thus, (1) and (2) are of the second and third order

respectively.

The definition of a determinant given in the preceding

article is once more illustrated by the following example of a

determinant of the fourth order with its complete development

:

a, b
t
c

l
<f,

a, b, c, d,

a, b
3
c

%
d

%

«4 b
t
c
A
d

t

+ «,W. — *J>-fA — <*AcA + a,*M
+ aA^A — apsA — "AcA + aAcA,
+ aAcA - <*ACA> — «

3VX + "AcA
+ aAcA — aAcA - aAcA + aAcA,
+ aAcA ~ aAcA — aAcAi + aAcA
+ aAcA — aAcAi — aAcA, + <*AcA>

\ (3)
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It will be noticed that, in this case, the columns are ranked

alphabetically instead of by the numerical values of a series of

indices.

Art. 8. Notations.

Besides the notations already employed, the following is

very extensively used :

«...

This is called the double-subscript notation ; the first subscript

indicating the rank of the row, the second that of the column.

Thus the element «23 is in the second row and the third column.

The letters are sometimes omitted, the elements being thus

represented by the double subscripts alone.*

Instead of writing out the array in full, it is customary,

when the elements are merely symbolic, to write only the prin-

cipal term and enclose it between vertical bars. This is called

the umbral notation. Thus, the determinant of the «th order

is written

I a' a' 1

. . . a„c«)

or, using double subscripts,

i ®nn \

These last two forms are sometimes still further abridged to

(«) and

respectively.

Prob. 5. Write out the developments of the following determi-

nants:

(1)

* Leibnitz indicated the elements of a determinant in this same manner,

though he made no use of the array.

«. b
x
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(5) I «//= (6) p p p

DETERMINANTS

; (7)

?VV"
P ' q'

t>" q" r"

f>'"q'"r'"

[Chap. II.

(8) a b c

a ji y
x y z

(9) I

11, 22
] ; (10)

I

a U2 I ; (11) I

l m,n,
| ; (12) |

aua„a„att \
.

Prob. 6. How many terms are there in the development of the

determinant
|
a™

|
?

In the above determinant tell the signs of the terms :

(1) «,W'W«,Tl
; (*) *>,'WXXTi

;

( 3 ) a
6w'Vxxvi

-

Prob. 7. Show that in the expansion of any determinant, all of

whose elements are positive, one half the terms are positive and one

half negative.

Prob. 8. In determinants of what orders is the term containing

the elements on the secondary diagonal (called the secondary term)

positive ?

Prob. 9. What is the order of the determinant whose secondary

term contains 10 inversions ? 36 inversions ?

Prob. 10. In the expansion of a determinant of the «th order,

how many terms contain the leading element ?

Art. 9. Second and Third Orders.

Simple rules will now be given for writing out the expan-

sions of determinants of the second and third orders directly

from the arrays by which they are represented.

To expand a determinant of the second order, write the

product of the elements on the principal diagonal minus the

product of those on the secondary diagonal, thus

:

= ad — be.

Likewise,

a

c

~9
— 2

5| = -3 + 10

il

The following method is applicable to determinants of the

third order:*

* This method was first given by Sarrus, and is often called the rule of Sarrus;

sec Finck's Elements d'Algebre, 1846, p. 95.
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Beneath the square array let the first two rows be repeated in

order, as shown in the figure.

Now write down six terms, each

the product of the three ele-

ments lying along one of the

six oblique lines parallel to the

diagonals of the original square.

Give to those terms whose ele-

ments lie on lines parallel to -

the principal diagonal the posi-

tive sign ; to the others, the -

negative sign. The result is

the required expansion. Ap-

plying the method to the determinant just written gives

I «,V. I
= «iVs + aAc

i + «sV2 — «,*/. — fliV. — aAc*-

After a little practice the repetition of the first two rows will

be dispensed with.

The above methods are especially useful in expanding

determinants whose elements are not marked with indices, or

in evaluating those having numerical elements. No such sim-

ple methods can be given for developing determinants of higher

orders, but it will be shown later that these can always be

resolved into determinants of the third or second order.

Prob. ii. Develop the following determinants:

(i)

(4)

(7)

a h g
h b f
g f c

x, y, i

x, y, i

i cos a
cos oe i

(5)

(8)

Prob. 12. Evaluate the following:

(i) i 2 3

3 i 2

2 3 I

(*) — 2 — 2

O — 2

12 2

o
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Art. 10. Interchange of Rows and Columns.

Any term in the development of the determinant
|
a™\ may-

be written
ah «i ay ... a? ',

in which hij. . ./is some permutation of the subscripts 1,2, 3,. . .n.

Designate by u the number of inversions in hij . . . I. Also, let

v be the number of interchanges of two elements necessary to

bring the given term into the form

± a « a,«*> a^ . . . a„«>,

in which the subscripts are arranged in the natural order, while

pqr ... t is a certain permutation of the superscripts ', ", '",
. .

.

(B)
.

This permutation is even or odd according as v is even or

odd. But u and v are obviously of the same class ; that is,

both are even or both odd. Hence the permutations hij . . . I

and pqr . . . t are of the same class ; and the term will have the

same sign, whether the sign be determined by the class of the

permutation of the subscripts when the superscripts stand in

the natural order, or by the class of the permutation of the

superscripts when the order of the subscripts is natural.

It follows that the same development of the determinant

array will be obtained if, instead of proceeding as indicated in

Art. 6, the superscripts of the principal term be permuted, the

subscripts being left in the natural order, and the sign of each

of the resulting terms written in accordance with the class of

the permutations of its superscripts.

Passing from one of these methods of development to the

other amounts to the same thing as changing each column of

the array into a row of the same rank, and vice versa. Hence,

a determinant is not altered by changing the columns into cor-

responding rows and the rows into' corresponding columns.

Thus

:

a'

(»)

, («)

a, a
t

a.' a„

aK an
(") <») n («) («)
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Whatever theorem, therefore, is demonstrated with reference

to the rows of a determinant is also true with reference to the

columns.

The rows and columns of a determinant array are alike

called lines.

Art. 11. Interchange of Two Parallel Lines.

If any two parallel lines of a determinant be interchanged,

the determinant will be changed only in sign.

For, interchanging any two parallel lines of a determinant

array amounts to the same thing as interchanging, in every

term of the expansion, the indices which correspond to these

lines. Since this changes the class of each permutation of the

indices in question from odd to even or from even to odd, it

changes the sign of each term of the expansion, and therefore

that of the whole determinant.

It follows from the above that if any line of a determinant

be passed over m parallel lines to a new position in the array

the new determinant will be equal to the original one multi-

plied by (— i)
M

.

The element a^ may be brought to the leading position

by passing the kxh. row over the (k — i) preceding rows, and

the ^th column over the (s — t) preceding columns. This

being done the determinant is multiplied by

(- I)
4 " 1

. (- i)-« = (- i)**

which changes its sign or not according as (/£+ *) is odd or

even.

The position occupied by ak
is)

is called a positive position

when {k -+- s) is even ; a negative position when (k -j-s) is odd.

Art. 12. Two Identical Parallel Lines.

A determinant in which any two parallel lines are identical

is equal to zero.

For the interchange of these two parallel lines, while it
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changes the sign of the determinant, will in no way alter its

value. The value then, if finite, can only be zero.

Art. 13. Multiplying by a Factor.

Multiplying each element of a line of a determinant by a

given factor multiplies the determinant by that factor.

Since each term of the development contains one and only

one element from the line in question (Art. 7), then multiply-

ing each element of this line by the given factor multiplies

each term of the development, and therefore the whole deter-

minant, by the same factor.

It follows that, if the elements of any line of a determinant

contain a common factor, this factor may be canceled and written

outside the array as a factor of the whole determinant ; thus :

an . . m «„• . . . ain = m
\
a„ a„

a„ . . m ati . . . atn

«„, . . m ani . . . ann

A determinant in which the elements of any line have a

common ratio to the corresponding elements of any parallel

line is equal to zero. For this common ratio may be written

outside the array, which will then have two identical lines. Its

value is therefore zero (Art. 12).

A determinant having a line of zeros is equal to zero.

Art. 14. A Line of Polynomial Elements.

A determinant having a line of elements each of which is

the sum of two or more quantities can be expressed as the

sum of two or more determinants.

Let a
t

{b-b/ + b/' ±...) *,... =A (1)

*, (*,- K +K ± • • • ) c

*. (h- 1>; + b:' ± . . . ) c.

be such a determinant. Then, if
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any term of the expansion of the determinant A is

± ah BiCj . . . = ± ah bt cj . . . =F ah b/ Cj . . .

± ah b," cj . , . ± . . .
(2)

The terms in the expansion of A are obtained by permuting
the subscripts h, i,j, ... of ah B{ Cj . . . . But permuting at

the same time the subscripts of the terms in the second mem-
ber of (2), and giving to each term thus obtained its proper

sign, there results

A=
I
aiBf,

.

. .
J
=

I

a,V, •••
I

-
I
aftc%

. . .
| + | aft'c, . . .

| ± . .
.

,.

which proves the theorem.

Art. 15. Composition of Parallel Lines.

If each element of a line of a determinant be multiplied by
a given factor and the product added to the corresponding ele-

ment of any parallel line, the value of the determinant will not

be changed ; thus:

. «,

*"n\ ^ni t*«3 '

This wiil appear upon resolving the second member into

two determinants (Art. 14), one of which will be the given de-

terminant, while the other, upon removal of the given factor,

will vanish because of having two identical lines.

In like manner any number of parallel lines may be com-

bined without changing the value of the determinant, care

being taken not to modify in any way the elements to which

are added multiples of corresponding elements from other

parallel lines. For example,
|
au „ |

is equivalent to

«„ (la
tt + au - ma

lt + . . .) alt . . . ain

fo.+AO («M-R«..) .
. . (a,„+Aa, n)

— w(a„ + A«
18) + . . .)

«l (^«.+ am — man 3+ • • •) ««s •••««»



46 DETERMINANTS.

Art. 16. Binomial Factors.

[Chap. II.

A determinant which is a rational integral function of a

and of b, such that if b is substituted for a the determinant

vanishes, contains {a — b) as a factor. For example,

A = a' — />
s a — q a-\-r

b* —f b — q b + r

p q r

is divisible by (a — b).

To prove this, let the expansion of any such determinant

be written in the form

A = m
a -J- m x

a -J- **,«' -)-...,

the coefficients m
a , mlt ;«,, . . . being independent of <z. Now

when £ is substituted for a the determinant vanishes. Hence,

o = m, -f- >«,£ + ;/z
s
£

2
-j- . . .

Subtracting this from the preceding gives

A = mla - b) + m,{a' - b*) + . . .

This being divisible by (a — b), the theorem is proven.

Prob. 13. Prove the following without expansion :

(1) — X
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Prob. 14. Prove that

1 x — a y —b
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row of the array (Art. 7). If, therefore, in selecting the ele-

ments for any term, any other element than a/ be taken from

the first column, the one taken from the first row must be zero.

Hence, the only terms which do not vanish are those which

contain the element a/.

Moreover, in the terms of the expansion of (1) which do

not vanish, a/ is multiplied by (n — 1) elements chosen one

from each column and each row of

a, a,

(«)

(2)

There are (n — 1)! such terms, any one of which may be

written ± a/a/'a/" . . . a/M)
; the sign being determined by the

class of the permutation of the n subscripts 1, ?",_/, . . . /. But

since this is of the same class as the permutation of the {n — 1)

subscripts i,j, . . . I, the sign of any term, ± a^a/'aj" . . . «/">,

of the expansion of (1) is the same as the sign of the corre-

sponding term, a/'a/" . . .«/">, of the expansion of (2). Hence,

,<»)
(3)«, o

a' a'

. . .0

(«)

un dn («)

a„" an'"...aW

The determinant (2) is called the co-factor or complement
of the element a/ in the determinant (n)

|. It is obtained

from this determinant by deleting the first column and the
first row.

The co-factor of any element ak
(s) maybe found in the same

manner upon transposing this element to the leading position.

But by this transposition the sign of the determinant will be
changed or not according as at® occupies a negative or a posi-

tive position (Art. n). Hence, to find the co-factor of any
element a™ of the determinant

|

«,<*>
|, delete the row and the

column to which the element belongs, giving the resulting

determinant the i P0Slti
.

ve
\ s ign when (k + s) is j

even
( negative j

& v ~ ;
| odd
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The co-factor thus obtained is represented by the symbol
A <*) •

the sign-factor of which, (- if+% is intrinsic, i.e., included in

the symbol itself, which is accordingly written as positive.

The co-factors of the various elements of \a
il
ana it \

are as

follows

:

A u =
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group. In all of them, then, there are «X(« — i) ! or n\ dif-

ferent terms of the determinant, which is the whole number.

Hence,

|
a «

|
= a,'A k

' + ak"A t
" + . . . + a^Af\ (i)

Similarly (Art. 10),

, («) = a^A^ -\-a^A^ + . . . + «„<M„ (S)
. (2)

Any determinant may, by means of either (i) or (2), be re-

solved into determinants of an order one lower. Since, in

these formulas A k
', . . . A k

w or A^, . . . AJS) are themselves

determinants, they may be resolved into determinants of an

order still one lower in the same manner. By continuing the

process any determinant may ultimately be expressed in terms

of determinants of the third or second order, which may be

easily expanded by methods already given (Art. 9).

For example, let it be required to develop the determinant

A =
I

a
i
b, c, dt I

. Applying formula (1), letting k—i, gives

A = a. K c, d,
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Prob. 19. Develop the following determinants:

(1) I
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Similarly, p and s being different superscripts,

a/^w + a^A^ + . . . + ai»Al» = o.

Art. 20. Cauchy's Method of Development.

It is frequently desirable to expand a determinant with

reference to the elements of a given row and column.

Let the determinant be A ==
|
a^n)

\ , and the given row

and column the /ith and pth respectively. Then is A k
(/,) the

co-factor of ah
{p\ the element at the intersection of the two

given lines. The co-factor of any element ak
(s) of A h

ip) will be

designated by Bk
{s)

, this being a determinant of the order

{n — 2). The required expansion may now be obtained by
means of the following formula, due to Cauchy

:

in which k = 1, 2, . . . h — 1, A -(- 1, . .. k, and $ = 1, 2, .. ./ — i,

/ + 1, . . . n, successively.

To prove this, consider that Bt
{s)

is the aggregate of all

terms of the expansion of A which contain the product

ah{p)ak
[s)

. These terms are included in ak
mA h

w
. Now, every

term in the expansion which does not contain ah
ip) must contain

some other element ah
ls) from the Ath row and also some other

element ak
w from the pth. column, and thus contains the prod-

uct a,^ak
(pK But this product differs from «A(% (s) only in the

order of the superscripts
; and is, therefore, in the expansion of

A, multiplied by an aggregate of terms differing in sign only

from that multiplying a,^a^\ Hence, — Bk
® is the coefficient

of a^> ak
(p) in the required expansion.

In the formula ahlp)A k
ip) gives (n — 1) ! terms of A. There

are also (« - 1)' such aggregates as — a^a^B^, each con-
taining (n— 2) ! terms. The formula therefore gives

(« — 1) ! + (« — i)
J
(n - 2) ! = n ! terms, which is the complete

expansion.

When the expansion is required with reference to the ele-



Art. 20.] CAUCHY S METHOD OF DEVELOPMENT. 53

merits of the first column and the first row the formula, written

explicitly, becomes

|«
W| = a/A/- aJa/'B," - a^a^'B,'" - ... - «,'«w/|W

— an a i
-»« — «» «i ^>k

— au'a™B*\ (2)

in which B£s) has intrinsically the sign (— i)
k+s

.

Cauchy's formula is particularly useful in expanding deter-

minants which have been bordered ; such as

-Q = o «, u„ u.

W
3 «.l «33 «93

(3)

Applying formula (2) to this determinant gives

-Q =

+ »,«,

<^
S j ^23
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— I — X

i - y
X o

I — z

I

-I

y
i —i

; (5)
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Prob. 25. Show that Cauchy's formula may be written

SAJ =
|

«,<">| =«A
«-njr -2aioi Si

6'

J

ip) dahw da^

Art. 22. Raising the Order.

Since, in the expansion of the determinant (1) of Art. 17
the elements a

t
', . . . a„' do not appear, these may be replaced

by any quantities whatever, as Q, . . . T, without changing the

value of the determinant ; thus:

a/ o o . . . o

Q a," <" . . .
«,<">

#„
(«>

Similarly,

«/ O O

«,' «," O

^3 "3

o

o

-*« w« tc»
. (II)

r««"a.

-<»)

. (»)

w« . . . ttM

0/0 o . . . o

0«," o ... o

R L a,'". . . a*>

T NaH'"...a™

in which Q, R, . . . T and L, . . . iVare any quantities whatever.

Finally,

a,' o . . . o

G *,"• o o

s Af . . .^ir" o

T N ... C *<">

a
l

a' a

. . . o

. . . o

o

o

an±T" o

(»-l)/Y (")-
*•»—

I

MM

that is, if all the elements on one side of the principal diagonal

are zeros the determinant is equal to its principal term, and

the elements on the other side of this diagonal may be replaced

by any quantities whatever.

By what precedes,

(«)

a ' a (B)un . . . un
1

I O . . . O

Q a/ ... a™

Ta'.. a <*>
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Hence, a determinant of the nth order may be expressed

as a determinant of the order (n -+- i) by bordering it above

by a row (to the left by a column) of zeros, to the left by a

column (above by a row) of elements chosen arbitrarily, and

writing i at the intersection of the lines thus added. By con-

tinuing this process any determinant may be expressed as a

determinant of any higher order.

Prob. 26. If all the elements on one side of the secondary diag-

onal are zeros, what is the value of the determinant ?

Prob. 27. Develop the determinant

Prob. 28. A determinant in which ak

a h g u o

h b f v o

g f c w o

u v w o t

o o o t s

w ,.(*>

said to be skew-symmetric. Prove that every skew-symmetric deter-

minant of odd order is equal to zero.

Art. 23. Solution of Linear Equations.

Of the many analytical processes giving rise to determinants

the simplest and most common is the solution of systems of

simultaneous linear equations. Thus, solving the equations

a/x' + <V = Ki , I

by the methods of ordinary algebra gives

:

a
x

*-, - a//f,x X

In the notation of determinants these are written :
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numerator of the fraction giving the value of x' is formed from

this denominator by replacing each coefficient of x' by the

corresponding absolute term. Similarly for x".

The difficulty of solving systems of linear equations by the

ordinary processes of elimination increases rapidly as the num-
ber of equations is increased. The law of formation of the

roots explained above is. however, capable of generalization,

being equally applicable to all complete linear systems, as will

.now be shown.

Let such a system be written

«,V -f «/V + .

a;x' + al'xf' + . -f a^x™ — K

a„'x' + a„"x"+ . . . +'«, MjpM — K

(I)

Now form the determinant of the coefficients of these

•equations ; thus

:

D =

a'a' . a.

(«)

i

(»)

.a,
(a)

and let Atf1 be the co-factor of «A
W in this determinant. The

function

w

is equal to D when/ = ^ (Art. 18) ; to zero when p and s are

different superscripts (Art. 19). Then, multiplying the given

equations by A®, Af\ . . . A® respectively, the sum of the

resulting equations is a linear equation in which the coefficient

of x{s)
is equal to D, while those of all the other unknowns

vanish. The sum is, therefore,

DxP = M« + k^ + . . . + KnAJ*\ (2)

But the second member of this equation is what D becomes

upon replacing the coefficients a,
is)

, a<
s
\ . . . a}s) of the unknown

jr(t
- by the absolute terms k, , /c, , . . . k„ in order. Hence,



58 DETERMINANTS. [Chap. U,

x» = . a

a, . . . a.

(s -I)KM
(i -i)

/f,«.

M-i)

(H-i)

. a (»)

(«)

.
(«-i)Kna

(s+i)
. . a <«)

. («)

. a («>

a„ «„ . («)

(3).

This result ma}' be stated as follows :

(a) The common denominator of the fractions expressing-

the values of the unknowns in a system of n linear equations

involving n unknown quantities is the determinant of the

coefficients, these being written in the same order as in the-

given equations. (&) The numerator of the fraction giving the

value of any one of the unknowns is a determinant, which may
be formed from the determinant of the coefficients by sub-

stituting for the column made up of the coefficients of the

unknown in question a column whose elements are the absolute

terms of the equations taken in the same order as the coeffi-

cients which they displace.

Prob. 29. Solve the following systems of equations :

(1) 3x + 5y=2i, 6x + 2y=i$;

37 _1 \
x

(2)
7

2X ,1^
(3) 3* + J

7 + 2Z = 50, x + 2y - 32 = 15, 2.X+2J'- 32 = 25;

(4) - + -=/, -+- = ?, ~+ ~ = r;
y z z x x y

(5) T+f+-:+^3579 5 7 9 11
2I44r

w . x y ,
z ui x

, y ,
z

1 = 1744, b—--\ = 1472.
7 9 11 13 9 11 13 IS

Prob. 30. Show that the three right lines

y = x -f- 1, y = — 2.x -\- 16, y

intersect in a common point.

3*

Art. 24. Consistence of Linear Systems.

When the number of given equations is greater than the
number of unknowns their consistency with one another must
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obviously depend upon some relation among the coefficients.

This relation will now be investigated for the case of (n + i)

linear equations involving n unknowns. Let the equations be

+ ... + «,<">*« =/c1) "I
«, x'

+ «, (»M«) V

a,l+l'x + . . . + a&zf* - Kn+l .

If the above equations are consistent the values of the unknowns
obtained by solving any n of them must satisfy the remaining

equation. Solving the first n equations by the method of the

preceding article, substituting the values of x' , x", . . . xw thus

obtained in the last equation, and clearing of fractions, the

result reduces to (Art. 18)

(>o

a„ («)

M.

= o,

which is the condition to be fulfilled by the coefficients in order

that the given equations may be consistent.

Hence the condition of consistency for a set of linear equa-

tions involving a number of unknowns one less than the number

of equations is that the determinant of the coefficients and

absolute terms, written in the same order as in the given equa-

tions, shall be zero. This determinant is called the resultant*

or eliminant of the equations. Thus the equations

x -\-y — z — o, x —y~\-s= 2, — x-\-y + £ = 4, x-\-y-\-z = 6

are consistent, for the reason that

I
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Art. 25. The Matrix.

Assume r linear equations involving n unknowns, r being

greater than n. as follows :

a„'x' + . . • + a™*(«M») ^«i

tfrV + • • + «r
W^ = Kr . j

The consistency of these equations requires that every deter-

minant of the order {n + i), formed by selecting (n + i) rows

from the array whose elements are the coefficients and abso-

lute terms written in order, shall be zero.

If the elements of the array fulfill this condition the fact is

expressed thus

:

a,' ...«„' ...ar
' =o;

(n)
. .a

K

<«)
. a («>

Kr

the change of rows into columns being purely arbitrary. The

above expression is called a rectangular array, or a matrix.

Art. 26. Homogeneous Linear Systems.

Let the equations of the given system be both linear and

homogeneous ; thus :

«/#'+. . . + a^x™ = o,

«„'*'+...+ *„<•>*<"> = o.

(I)

Representing the determinant of the coefficients by E, the

general solution, as given by the formula (3) of Art. 23, is

*w = o/£.

That is, all the unknowns are equal to zero, and the equa-

tions have no other solution than this unless

E = o.
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But in this case the value of each unknown is obtainable

only in the indeterminate form o/o. The ratios of the un-

knowns may be readily obtained, however. For, dividing each

equation through by any one of these, as x(s
\ the system (i)

becomes

„'* 4- +«;
<•-!)"

,(*-.)
. (S+ii:

Us+i)

xv
4-/7 <">_ —

.

. M
*'W

h (2)

•+«.'(i -i)
^r

l(s-i)

7(s+l)_

-w + ...+«;M
,.{»)

Now the condition £ = o establishes the consistency of the

n equations (2) involving the (n — 1) unknown ratios (Art. 24),

(S-I)

rU)'

jr'

Hence, if .£ = O the given equations (1) are consistent ; that is,

the values of the above (« — 1) ratios obtained by solving any

(n — j) of them will satisfy the remaining equation. Any n

quantities having among themselves the ratios thus determined

will satisfy the given equations. Thus, if xj, x„", . . . x M are

n such quantities, so also are Xx„', A x
a
"

, . . . Xx (u)
,

A. being any

factor whatever.

The determinant E of the coefficients of the given homo-

geneous linear equations is called the resultant or eliminant of

the system.

When the number of equations is greater than the number

of unknowns the conditions of consistency are expressible in

the form of a rectangular array, as in Art. 25.

As an example, consider the five equations

2X — 3j 4- z — o, 4* — y — z = o, — ix + 3j 4- z = o,

x+y — z = o, 5^-57 + ^ = 0.

Dividing each of the first two equations by z and solving

x y
for the two unknowns - and - gives

z z

x

z

-1-3
1 — 1

2- 3

4- 1

y
z

2 — I

4 1

2 — 3

4— 1
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or x:y:z::2 = 3 : 5;

and any three quantities having these ratios will satisfy the

two equations, as 10, 15, and 25. That the third equation is

consistent with the first two is shown by the vanishing of the

determinant

2-3 1

4- 1 - 1

-7 3 1

If all the equations are consistent the determinant of the

.coefficients of any three of them must vanish ; that is,

2 4-
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Hence, when a determinant is equal to zero, the co-factors

of the elements of any line are proportional to the co-factors of

the corresponding elements of any parallel line.

Art. 28. Sylvester's Method of Elimination.*

Let it be required to eliminate the unknown from the two

-equations

ay -\- ay -f- a x
x -\- #„ = o,

by + b,x + b = o.

This will be done by what is called the dialytic method, the

invention of which is due to Sylvester. Multiplying the first

of the given equations by x, and the second by x and x'' suc-

cessively, the result is a system of five equations, viz.:

ay -\- ay -f- a x
x -f- aa

— o,
'

ay -j- &y + ay + a
t
x = o,

by -L- b
t
x + b

a
= o,

by + by -f b x - o,

by + by + by =o.
.

The eliminant of these five equations, involving the four

unknowns x, x', x3

, and x' is (Art. 24)

E = o a
3
a, a

t
a

a
- < >.

a
z
a

*
a

i
a

„
o

o o b, b
x
b

o b
t

b
x

b, o

b, b
t

b„ o o

'If the given equations be not consistent this determinant will

not vanish.

The above method is a general one. Thus, let the two

given equations be

amx
m + . . . + a

x
x + a„ = o,

bnx
n + + b,x + b = o.

Multiplying the first equation (« — 1) times in succession

by x, and the second (m — 1) times, (m -f- n) equations are

* Philosophical Magazine, 1840, and Crelle's Journal, Vol. XXI.



64 DETERMINANTS. [Chap. II.

obtained which involve as unknowns the first (m -\- n — i)

powers ot x. The eliminant of these equations is a determinant

of the order {m -f- n), which is of the wth degree in terms of

the coefficients of the equation of the mth degree, and vice

versa. The law of formation of the eliminant is obvious.

The same method may be used in eliminating one or both

the variables from a pair of homogeneous equations.

As an example, let it be required to eliminate the variables

from the equations

2x3 — $xy — gy* = o and 3^2 — "jxy — 6y' = o.

Dividing the first by y
3

, and multiplying by — ; the second
y

x
byy\ and multiplying by— twice in succession, there result,

X X X X
in all, five equations involving — , — , -r, and -r-.

y y y y
these four ratios gives

Eliminating

E~ 2 — 5 o

5 0-9
o 3-7
3-7-6

3-7

1;

the vanishing of which shows that the two given equations are

consistent.

Prob. 31. Test the consistency of each of the following systems
of equations:

(1) x+y+ 2Z=g, x+y — z—o, 2X — y + z =3, x— $y + 2z-

(2)x—y — 2z=o, x — 2y+z = o, 2X — $y — z = o;

(3) sx'y - x? = o, 8x'y + 8x/ - 5/ = o.

Prob. 32. Find the ratios of the unknowns in the equations

2X+y — 2z = o, 4W—y—4z = o, 2W + x — 5V + z = o.

Prob. 33. In the equations

ak'x' + . . . +«*<•>*« + ak
<" +"*(»+" = o, [* = 1, 2, . . . «]

prove that x' : . . . : x [(n) . x(n+i) .. M' : . . . : M {H)
: M<»+» , where
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(— i)
1 1M<-i>

is the determinant obtained by deleting the z'th column
from the rectangular array

M = «,™ 0,'

a,'... a,™ «,<"+»>

Prob. 34. From
lx + vy + P* _ Vx + my +Xz _ /**+^y+«*

^ ? r

deduce
*
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(3)

(4)

The result of such transformation is

(tf.Ai + «,A>. + 0.A. + «,A.K = °.

(fl,/„ + tf
2A>, + («,A. + «,A>, = o.

The vanishing of the determinant

*.A, + «.A* «,A. + fl.A

«*Ai + «,A» a»Ai + a„b.

is the condition that the equations (3) may be consistent ; that

is, the condition that they may have solutions other than

u
x
— o = u, (Art. 26). Now the equations (3) may be consist-

ent because of the consistency of the equations (1), in which

case the determinant

(5)

vanishes. Or, this condition failing, and the equations (1)

thus having no solution other than x
y
— o = x^, the equations

(3) will still be consistent if the equations (2) are so ; that is,

if the determinant

K K <
6
>

vanishes. The vanishing of either of the determinants (5) or

(6), therefore, causes the determinant (4) to vanish. It follows

that (5) and (6) are factors of (4) ; and since their product and

the determinant (4) are of the same degree with respect to

the coefficients an , . . . , 6U , . . . , they are the only factors.

Hence,

«,A. + «A «.A. + aJ™
«.A. + «>A, <*,Ai + «,A,

(7)

The above method is equally applicable to the formation

of the product of any two determinants of the same order.

Hence results the following general formula:

I an a-ii . . u„n I
"

I in bw . . . 6„„ I =
#11^11+ . . . -\-ci\ nb\ n awb?.\ + . . . +U\abin

Cttibn + . . . -\-dinb\n &l\0?l + • • +#2n*2n .

aubn\+ . . . +ambnn

u n \bii 4- • • +&nnbln (ln ^-i\ + . - . + &tinbm .... flnlPnl + . . . fflnn^n

(8)
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The process indicated by this formula may be described as

follows :
*

To form the determinant \pl<n \, which is the product of

two determinants \a
h„\ and \b

h„\, first connect by plus signs

the elements in the rows of both \ai>n
\

and

|

bua \
. Then place

the first row of \aun \
upon each row of \b

h „\ in turn and let

each two elements as they touch become products. This is

the first row of \p1>n \. Perform the same operation upon \bh„\

with the second row of \aun \
to obtain the second row of \pu„\;

and again with the third row of |fl,,K |to obtain the third row
of|/1>M |; etc.

Any element of this product is

Pi, = <*hK + aHdst + . . . + ajbm . (9)

When the two determinants to be multiplied together are

of different orders the one of lower order should be expressed

as a determinant of the same order as the other (Art. 22), after

which the above rule is applicable.

The product of two determinants may be formed by

columns, instead of by rows as above. In this case the result

is obtained in a different form. Thus the product of the de-

terminants (5) and (6) by columns is

«,A + *sA aJu + «J>»

Prob. 41. Form the following products :

(2)

(3)

(1)
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show that the product of two numbers, each the sum of four

squares, is itself the sum of four squares.

Art. 30. Product of Two Arrays.

The process explained in the preceding article may be ap-

plied to form what is conventionally termed the product of

two rectangular arrays. It will appear, however, that multi-

plying two such arrays together by columns leads to a result

radically different from that obtained when the product is

formed by rows.

Let the two rectangular arrays be

and
KAA*

The product of these by columns is

A = «,A. + *.A. «,A. + «=A, «.Ai + a»K
«iA» + ",A, «.A» + a,A, «i3*» + a,A
«.As -f a tlb„ a„b

ia + a„b„ a
ls
b
ls + aJ,

The determinant A is plainly equal to zero, being the prod-

uct of two determinants formed by adding a row of zeros to one

of the given rectangular arrays and a row of elements chosen

arbitrarily to the other.

In general, the product by columns of two rectangular

arrays having m rows and n columns, m being less than n, is a

determinant of the ntb order whose value is zero.

Multiplying together the above rectangular arrays by rows,

the result is

A' ; «.Ai + a>A, + ".A. «.A. + a
lt
b„ + a

iab„

0.A. + ambn + ajb„

anan
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formed from one of the arrays by deleting (n — m) columns,

each multiplied by the determinant formed by deleting the

same columns from the other array.

Art. 31. Reciprocal Determinants.

The determinant formed by replacing each element of a

given determinant by its co-factor is called the reciprocal of

the given determinant.* Thus, the reciprocal of

6 = is A^A,, . . . A
Y

A ixAM . . . A,

The product of these two determinants is

6.A= on^n+ . . . -\-amAi n anAii-\- . . .-\-ai nAi

"ai^n+ . . . -\-a^nAi n a^\Ai\-\- . . .-\-a inAi

. &iiAni-^-. . .-\-OinAnn

&2lAni-{-' . .-\~QlnAnn

aniAu+ . . . .-\-annAm aniAn-{-. . .-\-annAin - • • • 0ni^rn+. • --YannA

Each element on the principal diagonal of this product is

equal to 8 (Art. 18), while all the other elements vanish (Art.

19). Hence,

d. A = do.,
o d ..

-,(») = d", or <?"

0„ O . . . 8

That is, the reciprocal of a determinant of the nth order is

equal to its {n — i)
th power.

* The term reciprocal as here used has reference to the algebraic transforma-

tion concerned in the passage from point coordinates to line coordinates, called

reciprocation. The reciprocal of a determinant is also called the determinant

adjugate.


