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PRET ACE.

Tre first edition of my Algebra was received with unex-
pected favor. Almost immediately after its publication, it was
adopted as a text-book in half a dozen colleges, besides nu-
merous academies and schools; and the most flattering testi-
monials were received from every part of the country. I
have thus been stimulated to increased exertions to render it
less unworthy of public favor. Every line of it has been sub-
jected to a thorough revision. The work has been read by
several successive classes in the University, and wherever im-
provement seemed practicable, alterations have been freely
made. I have also availed myself of the suggestions of sev-
eral professors in other colleges. This edition will accord-
ingly be found to differ considerably from the preceding. Al-
terations, more or less important, have been made on nearly
every page. Among these may be mentioned the addition of
Continued Fractions, the Extraction of the Roots of Numbers,
Elimination by means of the Greatest Common Divisor, and a
large collection of Miscellaneous Examples

It is believed that this treatise contains as much of Algebra
as can be profitably read in the time allotted to this study in
most of our colleges, and that those subjects have been se-
lected which are most important in a course of mathematical
study. These materials I have endeavored to combine, so as
to form a consistent treatise. 1 have aimed to cultivate in the
mind of the student a habit of generalization. and to lead him to
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reduce every principle to its most general form. At the same
time; I have been solicitous not to discourage the young begin-
ner, who frequently finds it much more difficult to comprehend
a general than a particular proposition. Accordingly, many
of the Problems have been twice stated. I first give a simple
numerical problem, and then repeat the same problem in a
more general form. I have labored to develop, in a clear
and intelligible manner, the most important properties of equa-
tions, and have bestowed great pains upon the selection of
examples to illustrate these properties. Throughout the work
I have endeavored to render the most important principles so
prominent as to arrest attention; and I have reduced them, as
far as practicable, to the form of concise and simple rules. It
is believed that, in respect of difficulty, this treatise need not
discourage any youth of fifteen years of age who possesses
average abilities, while it is designed to form close hahits of
reasoning, and cultivate a truly philosophical spirit in more

mature minds. .
As the chief advantage to be expected from the study of the

Mathematics arises from the student’s own efforts to master the
difficulties of the subject, it has been thought inexpedient to
publish a Key to this treatise. The pupil should receive suf-
ficient assistance from his teacher to prevent discouragement ;
but to solve all the problems for a pupil, without the necessity
of effort on his part, is to render the study of Algebra well-nigh
valueless.
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ALGEBRA.

SECTION 1

PREL{MINARY DEFINITIONS AND NOTATION.

(Article 1.) WaaTever is capable of increase or diminution
or will admit of mensuration, is called magnitude or quantity.

A sum of money, therefore, is a quantity, since we may in-
crease it or diminish it. “A line, a surface, a weight, and other
things of this nature, are quantities ; but an idea is not a quantity.

(2.) Mathematics. is the science of quantity, or the science
which investigates the means of measuring quantity. The
operations of the mind, therefore, such as memory, imagina-
tion, judgment, &c., are not subjects of mathematical investi
gation, since they are not quantities.

(8.) Mathematics is divided into pure and mired. Pure
mathematics comprehends all inquiries into the relations of
magnitude in the abstract, and without reference to material
bodies. It embraces numerous subdivisions, such as Arith-
metic, Algebra, Geometry, &c.

In the mixed mathematics these abstract principles are ap-
plied to various questions which occur in nature. Thus, in
Surveying, the abstract principles of Geometry are applied to
the measurement of land ; in Navigation, the same principles
are applied to the determination of a ship’s place at sea; in
Optics, they are employed to investigate the properties of
light; and in Astronomy, to determine the distances of the
heavenly bodies. )

(4.) Algebra is that branch of mathematics which enables us,
by means of letters and other symbols, to abridge and generalize
the reasoning employed in the solution of all questions relating
‘o numbers.

N



2 PRELIMINARY DEFINITIONS AND NOTATION.

Arithmetic is the art o1 science of numbering. It treats of
the nature and properties of numbers, but it is limited to cer-
tain methods of calculation which occur in common practice.
Algebra is more comprehensive, and has been called by New-
ton, Universal Arithmetic.

(5.) The following are the main points of dlﬂ'erence between
Arithmetic and Algebra.

First, the operations of Algebra are more general than those
of Arithmetic. In Arithmetic we represent quantities by par-
ticular numbers, as 2, 5, 7, &c., which numbers always retain
the same value. The results obtained, therefore, are applicable
only to the particular question proposed. Thus, if it is re-
quired to find the interest of a thousand dollars for three
months at six per cent., the question may be solved by Arith-
metic, and we obtain an answer, which is applicable only to.
this problem,

But in the solution of a general Algebraic problem we em
ploy letters, to which any value may be attributed at pleasure.
The results obtained, therefore, are equally applicable to all
questions of a particular class. Thus, if we have given the
sum and difference of two quantities, we may obtain by means
of Algebra a general-expression for the quantities themselves.
This result will always be found true, whatever. may be the
magnitude of the quantities. Hence Algebra is adapted to the
investigation of general principles, while Arithmetic is confined
to operations upon particular numbers.

Secondly, Algebra enables us to solve a vast number of
problems, which are too difficult for common Arithmetic.
Some of the problems in Sections VII and VIIL may be
solved by Arithmetical methods; but others can not thus be
resolved, particularly such problems as are given in Sections
XIL, XIV., &c.

Thirdly, in Arithmetic all the different quantities which en-
ter into a problem are blended together in the result, so as to
- leave no trace of the operations to which they have been sub-
jected. From a simple inspection of the result, we can not
tell whether it was derived by multiplication or division, invo-
lution or evolution, or what connection it has with the given
quantities of the problem. But in a general Algebraic solu-
tion, all the different quantities are preserved distinct from each
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other, and we see at a glance how all the data of the problem
are combined in the result. Illustrations of this remark will
be found in Section VII., &ec.

Fourthly, the ope.-ations of élgebra are often far more con-
ctse than those of Arithmetic. Thus, although some of the
problems in Sections VII. and VIII. may be solved Arith-
metically, these solutions are generally much more tedious
than the Algebraic. This advantage which is possessed by
"Algebra is partly due to the representation of the unknown
quantities by letters, and their introduction into the operations
as if they were already known, and partly to the fact that the
operations of multiplication, division, &c., are at first merely
tndicated, and are not actually performed until an Algebraic
expression has been reduced to its simplest form.

Finally, perhaps the most striking difference between Arithi-
metic and Algebra springs from the use of negative quantities,
which give rise to many peculiar results.

‘The full purport of these remarks will be best apprehended
after the student has made some progress in the study of Al-
gebra. ' : :

(8.) A definition is the explanation of any term or word. It
is essential to a perfect definition that it distinguish the thing
defined from every thing else. Thus, if we say that man is a
biped, it is an imperfect definition of man, because there are
many other bipeds.

(7.) A theorem is the statement of some property, the truth
of which is required to be proved. Thus the principle that
the sum of the three angles of any triangle is equal to two
right angles, is a theorem,’the truth of which is demonstrated
by Geometry.

(8.) A problem is a question requiring something to be done.
Thus, to draw one line perpendicular to another is a problem.
Theorems and problems are both known by the general term
of propositions.

(9.) A determinate problem is one which admits of a certain
or definite answer. An indeterminate problem commonly ad-
mits of an indefinite number of solutions; although when the
answers are required in positive whole numbers, they are.in
some cases confined within certain limits, and in others the
problem may be impossible. '
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(10.) The solution of a problem is the process by which we
obtain the answer to it. A numerical solution is the obtaining
an answer in numbers. A geometrical solution is the obtaining
an answer by the principles of geometry. A mechanical so-
lution is one which is gained by trials.

(11.) The principal symbols employed in Algebra are the
followmg

‘The sign + (an erect cross) is named plus, and is employed
to denote the addition of two or more numbers. Thus, 543
signifies that we must add 8 to the number 5, in which case
the result is 8. In the same manner, 1146 is equal to 17;
14410 is equal to 24, &c.

We also make use of the same sign to connect several num-
bers together. Thus, 74549 signifies that to the number 7
we must add 5 and also 9, which make 21.

So, also, the sum of 84+5+13+11+1+43+10 is equal to 51.

(12.) In order to generalize numbers we represent them by
letters, as a, b, ¢, d, &c. Thus the expression a-+b signifies
the surn of two numbers, which we represent by « and b, and
these may be any numbers whatever. In the same manner,
m-+n-+p-+2z signifies the sum of the numbers represented by
these four letters. If we knew, therefore, the numbers repre-
sented by the letters, we could easily find by arithmetic the
value of such expressions.

The first letters of the alphabet are commonly used to rep-
resent known quantities, and the last letters those which are
unknown.

(13.) The sign — (a horizontal line) is called minus, and in-
dicates that one quantity is to bé subtracted from another.
Thus, 85 signifies that the number 5 is to be taken from the
number 8, which leaves a remainder of 3. In like manner,
12—7 is equal to 5, and 20—14 is eqval to 6, &c.

Sometimes we may have several numbers to subtract from
a single one. Thus, 16—5—4 signifies that 5 is to be subtract-
ed from 16, and this remainder is to be further diminished by
4, leaving 7 for the result. In the same manner, 50—1—38—5
—7—9 is equal to 25. So, also, a—b signifies that the number
designated by a is to be diminished by the number designated
by b.

Quartities preceded by the sign + are called positive quan
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tities; those preceded by the sign —, negative quantities.
When no sign is prefixed to a quantity, +-is to be understood.
Thus, a+b—c is the same as +a+b—c.

(14.) The sign X (an inclined cross) is employed to denote
the multiplication of two or more numbers. Thus, 83X 5 signi-
fies that 3 is to be multiplied by 5, making 15. In like man-
ner, aX b signifies @ multiplied by &; and aXbXc signifies the
continued product of the numbers designated by a, b, and ¢,
and so on for any number of quantities.

Multiplication is also frequently indicated by placing a point
between the successive letters. Thl* a.b.c.d signifies the
same thing as aXbXeXd. :

Generally, however, when numbers are represented by let-
ters, their multiplication is indicated by writing them in suc-
cession without the interposition of any sign. Thus, a b sig
nifies the same thing as @.b or axb; and a b ¢ d is equivalent
toa.b.c.d,or axbxecXd.

It must be remarked that the notation a. b or a b is seldom
employed except when the numbers are desigmated by letters.
If, for example, we attempt to represent the product of the
numbers 5 and 6 in this manner, 5.6 might be confounded
with an integer followed by a decimal fraction; and 56 would
be read fifty-siz, according to the common system of nota
tion. -

The multiplication of numbers may, however, be expressed
by placing a point between them, in cases where no ambiguity
can arise from the use of this symbol. Thus, 1.2.3.4 is
sometimes used to represent the continued product of the num-
bers 1, 2, 3, 4.

(15.) When two or more quantities are multiplied together,
each of them is called a factor. Thus, in the expression 7X5,
7 is a factor, and s0 is 5. In the product abc there are three
factors, a, b, c.

When a quantity is represented by a letter, it is called a
literal factor, to distinguish it from a numerical factor, which
is represented by an Arabic numeral. Thus, in the expression.
5ab, 5 is a numerical factor, while @ and b are literal factors.

(16.) The character = (a horizontal line with a point above
and below) shows that the quantity which precedes it is to be

- divided by that which follows.



] ' PRELIMINARY DEFINITIONS AND NOTATION.

Thus, 24+ 6 signifies that 24 is to be divided by 6, making 4.

So, also, a=b is a d vided by b.

enerally, however, the division of two numbers is indi-
cated by writing the dividend above the divisor, and drawing
a line between them.

Thus, 24--6 and a--b are usually written 5 and .

(17.) The sign = (two horizontal lines) when placed be
tween two quantities, denotes that they are equal to each
other.

Thus, 7+46=13 signifies that the sum of 7 and 6 is equal to
18. So, also, $1=100 cents, is read one dollar equals one
hundred cents; 3 shillifs=36 pence, is read three shillings
are equal to thirty-six pence. In like manner, a=b signifies
that @ is equal to b; and a+b=c—d signifies that the sum of
the numbers designated by a and b is equal to the difference
of the numbers designated'by ¢ and d.

- (18,) The symbol > is called the sign of inequality, and
when placed between two numbers, denotes that one of them

is greater than the other, the opening of the sign bemg turned .

toward the greater number.

Thus, 83<5 signifies that 3 is less than 5, and 11>>6 denotes
that 11 is greater than 6. So, also, a>b shows that a is
greater than b, and c<d shows that ¢ is less than d.

(19.) The coefficient of a quantity is the number or letter
prefixed to it, showing how often the quantity is to be taken.

Thus, instead of writing a+a+a+a+a, which represents
five a’s added together, we write 5a, where 5 is the coefficient
of a. In like manner, 10ab signifies ten times the product of
e and b. The coeflicient may be either a whole number or a

fraction. Thus, 3a signifies three fourths of . When no co-.

efficient is expressed, 1 is always to be understood. Thus, 1@
and a signify the same thing. ‘

The coefficient may be a letter as well as a figure. In the
expression mz, m may be considered as the coeflicient of z,
because z is to be taken as many times as there are units in 7.
If m stands for 5, then mz is 5 times .

In 4az, 4 may be considered as the coefficient ot az, or 4a
aay be considered as the coefficient of z.

(20.) The products formed by the successive multiplication of
the same number by itself are ralled the powers of that number,
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Thus, 2X2=4, the second power of 2.
2X2X2=8, the third power.
2X2X2X2=16, the fourth power, &c.

So, also, 3x3=9, the secend power of 3.

83X 3x8=27, the third power, &c.

Also, aX a=aa, the second power of a.
aXaXa=aaa, the third power, &c. .

In generalf any power of a quantity is designated by the
number of factors which form the product.

(21.) For the sake of brevity, powers are usually expressed
by writing the root once, with a number above it at the right
hand, showing how many times the root is taken as a factor
This number is called the exponent of the power.

Thus, instead of

aa, we write a’, where 2 is the exponent of the power.

aaa, “ a°, where 3 is the exponent of the power.
aaaa, “ a',where 4 is the exponent of the power.
aaaaa, “  a', where 5 is the exponent of the power, &¢..

When no exponent is expressed, 1-is always understood.
Thus, @' and a signify the same thing.

Exponents may be attached to figures as well as letters
Thus, the product of 3 by 3 may be written 3°, which equals 9

“ 3x3%X3 “ 3, “ 27
“ 3X3x3x3 “ 8, o« 81
“ 8X3xX3x3X3  « 3, ¢ 243

(22.) A root of a quantity is a factor, which, multiplied by
itself a certain number of times, will produce the given quan-
tity.

The symbol v~ is called the r&dical sign, and when pre-
fixed to a quantity denotes that its root is to be extracted,
Thus, J .

¥9, or simply /9, denotes the square root of 9, which is 3.

$764 denotes the cube root of 64, which is 4.

¥16 denotes the fourth root of 16, which is 2.

So, also,

¥ a, or simply va, is the square root of a.

¥ a denotes the third or cube root of a. -

¥ a denotes the fourth root of a.

¥ a denotes the nth root of a, where » may represent any
number whatever.
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The number placed over the radical sign is called the 1ndsx
of the root. Thus, 2 is the index of the square root, 8 of the
cube root, 4 of the fourth root, and « of the nth root. The in-
dex of the square root is usvally omitted. Thus, instead of
¥/ab, we usually write v'ab.

(23.) When four quantities are proportional, the proportion
is expressed by points, as in arithmetic. Thus, a:b::c:d,
signifies that @ has to b the same ratio which ¢ has to d.

(24.) A vinculum ——, ar a parenthesis (), indicates that
several quantities are to be subjected to the same operation.

Thus, a+b+cXd, or (a+b+c)Xd, denotes that the sum of
a, b, and c is to be multiplied by d. But a+b+cXd, denotes
that ¢ only is to be multiplied by d.

When the parenthesis is used, the sign of multiplication is
generally omitted. Thus, (a4-b+4-c)Xd is the same asg (a+b
+c)d, or d(a+b+c).

(25.) Three dots . are sometimes employed to denote
therefore or consequently.

A few other symbols are employed in algebra, in addition to*
those here enumerated, which will be explained as they occur.

(26.) Every number written in algebraic language, that is,
by aid of algebraic symbols, is called an algebraic quantity, or
an algebraic ezpression

Thus, 3a is the algebraic expression for three times the
number a.

4a’ is the algebraic expression for four times the square of
the number a.

7a’b* is the algebraic expressmn for seven times the third
power of a multiplied by @he fourth power of

(27.) An algebraic quantity, not composed of parts which
are separated from each other by the sign of addition or sub-
traction, is called a monomial, or a quantity of one term, o1
simply a term. .

Thus, 2a, 5bc, and 7zy* are monomials.

(28.) An algebraic expression, which is composed of several -
terms, is called a polynomal.

Thus, a+2b+4-5¢—d is a polynomial.

A polynomial consisting of two terms only, is usually called
8 binomial; one consisting of three terms is called a trinomial.

Thus, 8¢+-5b is a binomial. and a+8bc+=zy is a trinomial.
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(29.) The numerical value of an algebraic expression is the
result obtained when we attribute paruculnr values to the
letters.

Suppose the expression is 2a’h.

If we make a=2 and b=3, the value of this expression will
be 2X2X2X3=24.

If we make a=4 and b=3, the value of the same expression
will be 2X4Xx4X3=96. ’

The numerical value of a polynomial is not affected by
changing the order of the terms, provided we preserve their
respective signs

The expressions a’+2ab+b*, a*+b’+2ab, b*+2ab+a’, have
all the same numerical value.

Thus, if a=5 and =2, the value of a* will be 25, that of
2ab will be 20, and b* will be 4; and if these numbers are-

added together, their sum will be the same in whatever order
they are placed. Thus, :

- 25 25 20 20 4 4

. 20 4 25 4 25 20
4 20 4 25 20 25

49 49 49 49 49 49

(80.) Each of the literal factors which compose a term is
called a dimension of this term; and the degree of a term is
the number of these factors or dimengions. A numerical co-
efficient is not counted as a dimension.

Thus, 3a is a term of one dimension, or of the first degree.

Sab is a term of two dimensions, or of the second degree.

6a’bc* is a term of six dimensions, or of the sixth degree.

In general, the degree, or the number of dimensions of a
term, is equal to the sum of the exponents of the letters con-
tained in the term.

Thus, the degree of the term 5ab’cd” is 1+2+1+3 or 7;

that is, this term is of the seventh degree.

(31.) A polynomial is said to be homogeneous when all its

terms are of the sake degree.

Thus, 2a—8b+-c, is of the first degree and homogeneous.
84’—4ab+b*, is of the second degree and homogeneous
2a'+38a’c—4c'd, is of the third degree and homogene

ous.
—2ab+-c, is not homogeneous. -
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(82.) Like or similar terms are terms compesed of the same
letters affected with the same exponents.

Thus, 3ab and 7ab are similar terms.

5a’c and 3a’c are also similar terms.

But 3ab* and 4a’b are not similar ; for, although they contain
the same letters, the same letters are not affected with the
same exponents.

(83.) The reciprocal of a quantity is the quotient arising
from dividing a unit by that quantlty ‘

Thus, the reciprocal of 2 is } ; the reciprocal of a is 1.

(34.) A few examples are here subjoined, to exercise the
learner on the preceding definitions and remarks.

Ezamples in which words are to be converted into algebraic

symbols.
.- Ez. 1. What is the algebraic expression for the following
statement 7 - The second power of g, increased by twice the
product of a and b, diminished by ¢, and increased by d, is
equal to seventeen times f.

Ans. a’+2ab—c+d=11f.

Ez. 2. The quotient of three divided by the sum of z and
four, is equal to twice b diminished by eight.

Ez. 3. One third of the difference between six times z and
four, is equal to the quotient of five divided by the sum of a
and b.

Ez. 4. Three quarters of = increased by five, is equal to
three sevenths of b diminished by seventeen.

Ez. 5. One ninth of the sum of six times z and five, added
to one third of the sum of twice z and four, is equal to the
product of a, b, and c.

Ez. 6. The quotient arlsmg from dividing the sum of @ and

" b by the product of ¢ and d, is equal to four times the sum of e,
f, & and h.

(85.) Ezamples in which the algebraic signs are to be trans-

lated into common language.
z+a z d .
Ez. 1

b T atd
Ans. The quotient arising from dividing the sum of z and a
by b, increased by the quotient of z divided by ¢, is equal to
the quotient of d divided by the sum of ¢ and &.
Ez. 2. 7a*+(—c) X (d+e)=g+h.
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How should the preceding example be read, when the first

parenthesis is omitted ?
at+g ,6—4m__ A

Ez. 3. 3+b—c+ 3 TTa
Ez. 4. 4V ab—25=p— 2b+fl
Ez. 5. 2avbi—ac=>5(h+d+z).

Vv5b+38vc_

“oat1 - oetE

(36.) Find the value of the following expressions, when a=
6, b=5’ and c=4.

Ez. 1. a*+3ab—c.

Ans. 36+90—16=110.
Ez. 2. a’X (a+b)—2abec. ,
Ans. 156. °

a.
Ez. 3. a+3c+c'.
Ans. 28
2bc
Ez. 4. e+

Ez. 5. vb*—ac+v2ac+c'.
- Ez. 6. 83/c+2av2a+b+2c.
Ez. 7. (3vc+24)v2a+b+2c.

) ax! 3
Ez. 8. In thg expression 7——_i—, let a=3, b=8, c=2,
_ and z=6; what is its numerical value?
Ez. 9. What is the value of \/5/z+5+y+ vz+ vy, when
-z=9 and y=41
Ez. 10. What is the value of 2*—4z*+72*—6z, when =31
Ez. 11. What is the value of 5(z*+") +4zy, when 2=4 and
=61
Ez. 12. What is the value of v10+z— ¥/10+z, when z-—6?

Ez. 13. What is the value of 22°+ V2z'+1, when z=2"1
Ez. 14. What is the value of 2z—7/z, when z=811



SECTION IL

ADDITION.

(87) Addition is the connecting of quantities together by
means of their proper signs, and incorporating such as can be
united ‘into one sum.

It is convenient to distinguish three Cases.

CASE L
When the quantities are similar and have the same signs. -

RULE.

Add the coeflicients of the several quantities together, and to
their sum annex the common letter or letters, prefixing the com-
mon sign.

Thus, the sum,of 8z and 5a is obviously 8a. So, also, —38a
and —5a make —8a; for the minus sign before each of the
terms shows that they are to be subtracted, not from each
other, but from some quantity which is not here expressed ;
and if 8a and 5z are to be successively subtracted from the
same quantity, it is the same as subtracting at once 8a.

. EXAMPLES.
8¢ —3ab 243z a—22" 2+ y
5¢ —6ab 5b+7z  4a—3z"  5a+2
Ta ~ ab b+2z . 8a—52' 9a+3y
a —"7ab 4b+-3z 7a— 2 4a+6y"

16z —17ab

The learner must continually bear in mind the remark of

Art. 13, that when no sign is prefixed to a quantity, plus is al.
ways to be understood. . .
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CASE IL
(88.) When the quantities are similar, but have different
signs. :
RULE.

Add all the positive coefficients togethcr and also all those
that are megative; subtract the least of these results from the
greater ; to the difference annex the common letter or letters, and
prefix the sign of the greater sum.

Thus, instead of 7a—4a, we may write 3a, since these two
expressions obviously have the same value.

Also, if we have 5a—2a-3a—a, this signifies that from 5a
we are to subtract 2a, add 3a to the remainder, and then sub-
tract a from this last sum, the result of which operation is 5a.
But it is generally most convenient to take the sum of the pos-
itive quantities, which in this case is 8a; then take the sum of
the negative quantities, which in this case is 8a ; and we have
8a—38a or 5a, the same result as before.

EXAMPLES.

—8e¢  6z+5ay, 2ay— 7T —2'z —6a'+2b

+7a —8z+42y — ay+ 8 a'z 2a'—38b

+8a z—6ay 2ay— 9 —3a'z —5a'-8b

- a . 22+ ay  3ay—11 Ta'z 4a’—2b
+1la 6z+2ay C :

CASE IIL
(39.) When some of the quantities are dissimilar.

RULE.

Collect all the like quantities together, by taking their sums or
differences as in the two former cases, and set down those that
are unlike, one after the other, with their proper signs.

Unlike quantities can not be united in one term. Thus, 2a
and 3b neither make 5a nor 5b. Their sum can only be writ
ton 2a+38b.
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EXAMPLES.
2zy -2z' 3z'y+2ax  2azr—220 2z —18y
'+ zy —2Yy'— ar' 3z —2ax 3zy +10z

z'— zy —3y'z+3ax’ - 5z’ —38z 2z'y+25y
4z’ —8zy  —82'y— ax 3z +100 12'y—xy
6z* — zy 8z* —120

(40.) When several quantities are to be added together, i
is most convenient to write all the similar terms under each
other, as in the following example.
Ez. 1. Add together
11bc+4ad—8ac+-bed
8ac +7bc—2ad-+4mn
2cd—8ab+5ac+ an
9an—2bc—2ad+5cd
These terms may be written thus:
115c+-4ad—8ac+5cd+an+4mn—3ab
7Tbc—2ad+-8ac+2cd+9an
—2bc—2ad+5ac+5cd .
Sum 16bc +5ac+12cd+10an+4mn—8ab.
Ez. 2. Add together the quantities
Tm+3n —14p
3a+9n —11lm
5p —4m+ 8n
11n—-20— m
Ans. 3a—2b—9m+31n—9p.

Ez. 8. Add together
4a’b + 8c*d—9m*n—6ab’
am*n— ab*+5¢'d +7a%
6m’n— 5c°d+4mn*—8ab’
Tmn*+ 6c’d—5m'n—6a’h
9¢’d —10ab®—8m*n+12a’
Ans. 17a°b+18c’d—12m*n—25ab*4-11mn".
Ez. 4. Add together
8b— a—6c—115d—9f
- 6c—5f— d+ 6c—3a
3a—2b—38c+ 2Te+11f-
8¢—1f+5b— 8c+8d
17c—6b—Ta— 2d—5e
Ans. --8a+6c—109d+31e—10f.
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Ez. 5. Add together °
- 2ab’+3ac’+ 9b*z— Bhy'+10ky
b’ —3z' — bz— 4ky’—15hy
S5ky — hy'—22ac*—10z* — 4ab*
19ac’—8b'z+ 9x* + 6hy + 2%y’
Ans. —9hy*+15ky—2ky* —9hy—4x’

(41.) It must be observed that the term addition is used in
a more extended sense in algebra than in arithmetic. In arith-
metic, where all quantities are regarded as positive, addition
implies augmentation. The sum of two quantities will there-
fore be numerically greater than either quantity. Thus the
sum of 7 and 5 is 12, which is numerically greater than either
borT.

But in algebra ‘we consider negatlve as well as positive
quantities ; and by the sum of two quantmes, we mean their
aggregate, regard being paid to their signs. Thus the sum
f +17 and —5 is 42, which is numerically less than either 7 °
or 5. So, also, the sum of +a and —b is a—b. In this case,
the algebraic sum is numerically the difference of the two
quantities.

This is one instance, among many, in which the same terms
are used in a much more general sense in the higher mathe-
matics than they are in arithmetic.

" Ez. 6. What is the sum of 8a%'c'+5a'b'c—"Taz+2ab'c*
- 8ab’c®—9az —4ab’c’—11a’b’c’—17a’b’c+ 6ax.
Ans.
Ez.7. What is the sum of 9a'—17a’z+ 5a’b’c*+4a’z+-8a’
-8a’b’c*+8a’+19a’b’c*— 2a’z— 11a*+4a’b’c’.
Ans.

Ez. 8. What is the sum of 5am’+13n—6zy’+4az + 6n

-2am’+17az+9zy'+3am’— 11az+Tn—8zy'.
Ans.

Ez. 9. What is the sum of 15a’y—4a’z+10am—13a’z—9am

tla'y+ l2am-—6a y+1la’z—b5a’y+14am—8a’z.
Ans.

Ez. 10. What is the sum of 21am’—3a’b+11zy*+16ag— 5«

+13ag—6am’+17a%--8zy*—9ag +19a’b—"Tzy’.
Ans.

. 3 .
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g SUBTRACTION.

(42.) Subtraction is the taking of one quantity from anoth-
er; or it is finding the difference between two quantities of
sets of quantities.

Let it be required to subtract 8—38 from 15.

Now 8—3 is equal to 5.

And 5 subtracted from 15 leaves 10. .

The result, then, must be 10. But, to perform the operation
on the numbers as they were given, we first subtract 8 from
15, and obtain 7. This result is too small by 3, because the
number 8 is larger by 8 than the number which was required
to be subtracted. Therefore, in order to correct this result,
the 3 must be added, and we have

15—84-8=10, as before.

Again, let it be required to subtract c—d from a—b. It 18
plain, that if the part ¢ were alone to be subtracted, the re-
mainder would be :

a—b—ec.

But as the quantity actually proposed to be subtracted is
less than ¢ by d, too much has been taken away by d, and,
therefore, the true remainder will be greater than a—b—c by
d, and will hence be expressed by

) a—b—c+d, ’
where the signs of the last two terms are both contrary to
what they were given in the subtrahend.

(43.) Hence we deduce the following general

RULE.
Fonceive the signs of all the terms of the subtrahend to be
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5
changed from + to —, or from — to +, and then collect the
terms together, as inythe several cases of addition.

It is better in practice to leave the signs of the subtrahend
unchanged, and simply conceive them to be changed ; that is,
treat the quantities as if the signs were changed; for, other-
wise, when we come to revise the work to detect any error in
the operation, we might often be in doubt as to what were the
signs of the quantities as originally proposed.

) EXAMPLES. :
From 5a'—2b 5zy+8z—2 10 —8z—S8zy 4dar—2zy
Subtract 24'+5b 8zy—8z—7 —z+3 — zy 8azx—>5zy’
Remainder 8a’—7b 7T —Tz—2zy

From 5a+4b—2c+7d  From 1llzy+2y'—16z°
Take 8a+2b+ c+5d  Take — 4zy+6y*—18z
Remainder 2a-+2b—3c+2d
From 6aby—4zy+t-4zz From 2*+2zy+y°
Take —8aby4-5z2+43zy Take :c’—2xy+y’
Remainder 9aby— zz—"7zy
From 3a’+ az+-2z'—14a’z+19az’— 4z’ +5a’z’
Take 2a¢'—4az+ z*—15a’z+1laz*—15a°x*— 42"

Subtraction may be proved as in Arithmetic, by adding the
remainder to the subtrahend. The sum should be equal to the
minuend.

(44.) The term subtraction, it will be perceived, is used in
a more general sense in algebra than in arithmetic. In arith-
metic, where all quantities are regarded as positive, a number
is always diminished by subtraction. But in algebra, the dif-
ference between two quantities may be numerically greater
than either. Thus, the difference between +a and —b is a+bd

The distinction between positive and negative quantities
may be illustrated by the scale of a thermometer. The de
grees above zero are-considered positive, and those below zero
negative. From five degrees above zero to five degrees be
low zero, the numbers stand thus:

+5, +4, +8, +2, +1, 0, —1, —2, —3, --4, —35.

The difference between five degrees above zero and five
degrees below zero is tet degrees, which is numerically the
sum of the two quantities.
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(45.) In practice, it is often sufficient merely to indicate the
subtraction of a polynomial, without actually performing the
operation. This is done by inclosing the polynomial in a pa-
renthesis, and prefixing the sign —.

Thus, 5¢—3b-+4c— (3a—2b+8c)
signifies that the entire quantity 3a—2b+-8c is to be subtracted
from 5a—8b+4c. The subtraction is here merely indicated.
If we actually perform the operation, the expression becomes
5a—8b+-4c—3a+2b—8c,
or 2a— b—dc.

(46.) According to the preceding principle, polynomials may
be written in a variety of forms.

Thus, a— b— c+d
is equivalent to a— (b+ ¢—d),

or to a— b—(c—d),

or to a+ d—(b+c).

Transformations of this sort, which consist in decomposing
a polynomial into two parts separated from each other by the
- sign —, are of frequent use in algebra. It is recommended to
the student to write out polynomials like the above, contain
g both positive and negative terms, in all the possible modes,
including several terms in a parenthesis.

In the following examples, let the results all be reduced to
their simplest form.

Ez. 1. a+b—(2a—38b)— (5a+7b)—(—13a+2b)=.

Ez. 2. 87a—5f—(3a—2b—>5¢c)—(6a—4b+3h)=.

Ez. 3. 8a’zy—>5bz’y+17cxy’—9y*— (a’zy+3bz’ y—lscz:y’+
20y)=.

Ez. 4. 28az’—16a’z*+25a°z— 18a*— (18ax’+20a’z*—24a’z
—7a")=.

(47.) It has already been remarked, in Art. 5, that algebra
. differs from arithmetic in the use of negative quantities, and it
is important that the beginner should obtain clear ideas of their
nature. . -

In many cases, the terms positive and negative are merely
“elative. They indicate some sort of opposition between two
classes of quantities, such that if one class should be added, the
other ought to be subtracted. Thus, if a ship sails alternately
northward and southward. and the motion in one dirgction is.
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called positive, the motion in the opposite direction should be
considered negative.

Suppose a ship, setting out from the equator sails north-
ward 50 miles, then southward 27 miles, then northward 15
miles, then southward again 22 miles, and we wish to deter-
mine the last position of the ship. If we call the northerly
motion +-, the whole may be expressed algebraically thus:

+560—-274+15—22,
which reduces to +16. The positive sign of the result indi-

cates that the ship was 16 miles north of the equator.
Suppose the same ship sails again 8 miles north, then 35

miles south, the whole may be expressed thus:
+50—27+15—22+8—35,

which reduces to —11. The negative sign of the result indi-

cates that the ship was now 11 miles south of the equator.

In this example we have considered the northerly motion +-
and the southerly motion — ; but we might with equal pro.
priety have considered the southerly motion +, and.the north-
erly motion —. It is, however, indispensable that we adhere
to the same system throughout, and retain the proper sign of
the result, as this sign shows whether the ship was at any time
north or south of the equator.

In the same manner, if we consider easterly motion +.
westerly motion must be regarded as —, and vice versa
And generally, when quantities which are estimated in diffe:
ent directions enter into the same algebraic expression, those
which are measured in one direction being treated as +, those
which are measured in the opposite direction must be regard-
ed as —.

So, also, in estimating a man’s property, gains and losses
being of an opposite character, must be affected with different
signs. Suppose a man, with a property of 1000 dollars, loses
300 dollars, afterward gains 100, and then loses again 400
dollars, the whole. may be expressed algebraically thus:

+1000—300+100—400,
which reduces to +400. The + sign of the result indicates
that he has now 400 dollars remaining in his possession. Sup-
pose he further gains 50 dollars and then loses 700 dollers
The whole may now be expressed thus:
+1000—3004-100—400450—"700,
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which reduces io —250. The — sign of the result indicates
.hat his losses exceed the sum of all his gains and the property
originally in his possession; in other words, he owes 250 dol-
lars more than he can pay, or, in common language, he .is 250
dollars worse than nothing.
_ This phraseology must not be regarded as wholly figurative ;
for, in algebra, a negative quantity standing alone is regarded
as less than nothing; and of two negative quantities, that
which is numerically the greatest is considered as the least;
for if from the same number we subtract successively num-
bers larger and larger, the remainders must continually di-
- minish. Take any number, 5 for example, and from it subtract
successively 1, 2, 8, 4, 5, 6, 7, 8, 9, &c., we obtain
5—1, 6—2, 56—3, 5—4, 5—5, 5—6, 5—1, 5—8, 5~9, &ec., or
reducing ’

4,3,21,0, —1, -2, —3, —4.
Whence we see that —1 should be regarded as smaller than
nothing ; —2 less than —1; —38 less than —2, &ec.

EXAMPLES.

1. From'8z’y*— 5zy+9a’m take 62"y~ 10zy+7a’m.

‘ Ans.

2. From 15a’bz—19p’q +1lazy — 25 take 17a’bz — 13p’g
+-9azy+7. Ans.

3. From 10az + 19a‘z'y — 6ab’ + 16gm take 4az-— 13a'z"y
+7ab’+-8gm. Ans.

4. From 1la'y — 14amn 4 9gm + 13a* take 15a’y+ Tamn
—12¢m—8a’. Ans.

5. From 13azy’—6my-+16a’bc+8a’ take 9azy®+2my+19a’he
~4a’. . Ans.

6. Frém 17a’c—11bm + 3:cy + 14amn’ take 15a 'c— 2lbm
-6zy’+8amn®. Ans.

7. From 35am’ —19bx+2'7y —1lav* take 15am® —7bz+3ly
~23av’. - Ans.

8. From 12ab*— 8cx — 4zy’ —7abc’ take 8ab’'— 6cz—5zy
—12abc’. Ans.

9. Fram 40a’ + 7b’c — 60® + 3az’y* take 12a® — 4b’c+5b
+4az’y’. Ans.

10. From 7az* —50amn-—3by +6m take 9az’ —2amn+3by’
~4m. Ans



SECTION IV.

MULTIPLICATION.

(48.) Multiplication is repeating the multiplicand as many
times as there are units in the multiplier.

When several quantities are to be multiplied together, the
result will be the same in whatever order the multiplication is
performed.

This may be demonstrated in the following manner:

Let unity be repeated five times upon a horizontal line, and
let there be formed four such parallel lines.

.

Then it is plain that the number of units in the table is equal
to the five units of the horizontal line, repeated as many times
as there are units in a vertical column ; that is, to the product
of 5 by 4. But this sum is also equal to the four units of a
vertical line repeated as many times as there are units in a
horizontal line ; that is, to the product of 4 by 5. Therefore,
the product of 5 by 4 is equal to the product of 4 by 5. For
the same reason, 2X3X4 is equal to 2X4X3, or 4X3X2, or
8X4X2, the product in each case being 24. So, also, if a, b,
and ¢ represent any three numbers, we shall have abc equal to
bea or cab.

It is convenient to consider the subject of multiplication un-

der thiee Cases. .
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GASE L

(49.) When ooth the factors are monomials.

From Article 14, it appears that, in order to represent the
multiplication of two monomials, such as 3abc and 5def, we
may write these quantities in succession without interposing
any sign, and we shall have

3abc5def.

But, according to the principle stated in the preceding ar-

ticle, this result may be written
3X 5abcdef, or 15abcdef.
Hence we deduce the following

RULE.

Multiply the coefficients of the two terms together, and to the
product annex all the different letters in succession.

EXAMPLES.
Multiply 122 5a 7Tab Tazy  6xyz
By 8 6z Sac  6ay ayz

Product 36ab

From Article 48, it appears to be immaterial in what order
the letters of a term are arranged; it is, however, generally
most convenient to arrange them alphabetically.

(50.) We have seen in Art. 21, that when the same letter
appears several times as a factor in a product, this is briefly
expressed by means of an exponent. Thus, aaa is written a*,
the number 3 showing that a enters three times as a factor.
Hence, if the same letters are found in two monomials which
are to be multiplied together, the expression for the product
may be abbreviated by adding the exponents of the same let-
ters. Thus, if we are to multiply a* by &*, we find @’ equiva-
lent to @aa, and a*to aa. Therefore the product will be aaaaa,
which may be written a*, a result which we might have ob-
tained aponce by adding together 3 and 2, the exponents of
the common letter a. . ' .

Hence, since every factor of both multiplier and multipli
cand must appear in the product we h2ve the following
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RULE FOR THE EXPONENTS.

Powers of the same quantity may be multiplied by adding
their exponents.

EXAMPLES.
Multiply  8a’b¢* 2a'bc  5a'd’c 2ab'c*
By Tabed®  8abc’ Ta’b'c’d  5a°bc’
Product 56a’b’c’@
CASE IL

(51.) When the multiplicand is a polynomal.

If a+b is to be multiplied by c, this implies that the sum of
the units in @ and b is to be repeated ¢ times; that is, the units
iny repeated ¢ times must be added to the units in @ repeated
also ¢ timegg. Hence we deduce the following

RULE.

Multiply each term of the multiplicand separately by the mul-
tiplier, and add together the products.

EXAMPLES.
Multiply 3a+20 a'+2z+1 8y*+5zy+2 3z'+zy+2y*
By 4a 4z zy 52y )
- Product 124’+8ab :
CASE IIL

(52.) When both the factors are polynomials.

If a+b is to be multiplied by c+d, this implies that the
quantity a+b is to be repeated as many times as there are
units in the sum of ¢ and d; that is, we are to multiply a+b
by ¢ and d successively, and add the partial products. Hence
we deduce the following h

RBULE. :
L 2
" Multiply each term of the multiplicand by each term of the
multiplier separately, and add together the products.
2'
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EXAMPLES.

Multiply a+bd 3z+2y az+b 3@+ z
By a+b 2+3y = cx+d 2a+4a:

- Product a*+2ab+b*

When several terms in the product are similar, it is most
convenient to set them under each other,: and then unite them
by the rules for addition. '

(58.) The examples thus far given in multlpllcatlon have
been confined to positive quantities, and the products have all
been positive. We must now establish a’ general rule for the
signs of the product

First, if +a is to be multiplied by -+, this sxgmﬁes that +a

is to be repeated as many times as there are units in b, and
the result is +ab. That is, a plus quantity multiplied by a
plus quantity gives a plus result.,
7 Secondly, if —a is to-be multiplied by +b, this snﬁmﬁes tha&
—a is to be repeated as many times as there gre units in b.
Now —a tq.ken twice is obviously —2a, taken three times is
—38a, &ec. ; hence, if —aq is repeated b times, it will make —ba
or —ab. That is, a minus quantity multiplied by a plus quan-
tity gives minus.

Thzrdly, to determine the sign of the product when the mul-
tiplier is a minus quantity, let it be proposed to multiply 8—5
by 6—2. By this we understand that the quantlty 8—5is to
be repeated as many times as there are units in 6—2. If we .
multiply 8—5 by 6, we obtain 48—30; that is, we have re-
peated 8—5 six times. But it was only required to repeat the
multiplicand four times, or (6—2). We must therefore dimin-
ish this product by twice (8—5), which is 16—10; and this
subtraction is performed by changing the mgns of the subtra-
hend ; hence we have

48—30—16+10,
which is equal to 12. This result is obviously correct; for
8—5 is equal to 8, and 6—2 is equal to 4; that is, it was re-
quired to multlply 8 by 4, the result of which is 12, as found
above.

In order to generahze this reagoning, let it be proposed to
multiply e—b by ¢—d.

I¢ we multiply a—b by & we obtain ac—bc. But a— b was
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only to be taken c—d times ; thergfore, m this first operation, ‘
we have repeated it too many times by the quantity d. Hence,
to have the true product, we must subtract d times a—b from

ac—be. But d times a—b is equal to ad—bd, which, subtract-
ed from ac—bc, gives
. ac—be—ad+-bd.

Thus we see that +e multiplied by —d gives —ad; and —b
multiplied by —d gives +bd. Hence a plus quantity maulti-
plied by a minus quantity gives minus, and a minus quantity
multiplied by a minus quantity gives plus.

(54.) The preceding results may be briefly expressed as folt
lows :

+ multiplied by +, and — multiplied by —, give +-.

+ multiplied by —, and — multiplied by +, give —. E

Or, the product of two quantities having the same sign, has
the sign plus; the product of two quantities having different
signs, ha!ine sign minus.

(55.) The wholé®doctrine of multiplieation is ther#ore com-
prehended in the following

RULE.

- Multiply each term of the multiplicand by each term of the
multzpher, and add together all the partial products, observing
that like signs require +- in the product, and unlike signs —

A EXAMPLE I.
Multiply = 5e'— 220+ 4a'h*
By a'— 4a’b+ 28 i
. ba— 2a'b+ 4ab . .
g“’;‘“‘ 4{ —~20a'b+ 8a'b'—16a'0"
roduct +10a'b"—4a"b* +8a"
Result 5a'—22a°b+12a’*— 6a‘b*—4a’b*+8a’d*.

Ez. 2. Multiply 4a*—5a'b—8ab*+-2b* by, 2a’—3ab—4b".
Ans. 8a*—22a'b—17a'b*+48a"b"+26adb*—8b".
Exz. 3. Multiply 3a*—5bd+ef by —5a’+4bd—8ef.
Ans. —15a'+37abd—29a’ef —20b°d’+44bdef—8ef*.
Ez. 4. Multiply *'+22°+32*+2z+1 by 2*'—2z+1.
Ans. z*~22"'+1.
Ez. 5. Multiply 14a’e—6a’bc+c* by 14a’-+6abc—c*

-
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- Ez 6. Multiply 8a'+35a'b—17ab’—13b" by 84'+26ab—

B

- (56.) Since in the multiplication of two monomials every
factor of both quantities appears in the product, it is obvious
that the degree of the product will be equal to the sum of the
degrees of the multiplier and multiplicand. Hence, also, if
two polynomials are homogeneous, their product will be honfo-
geneous,

Thus, in the first of the preceding examples, all the terms
of the multiplicand being of the fourth degree, and those of

e multiplier of the third degree, all the terms of the product
are of the seventh degree. For a like reason, in the second
example, all the terms of the product are of the fifth degree ;
in the third example, they are of the fourth degree ; and in the
sixth example, they are of the fifth degree.

This remark will enable us to detect any error in the mul-
tiplication, so far as concerns the exponents. For gxample, if
we find in one of the terms of a product Whiok should be ho-
mogeneous, the sum of the exponents equal to 6, while in all
the other terms it is equal to 7, a mistake has evidently been
committed in the formation of one of the terms.

(57.) When the product arising from the multiplication of
two polynomials does not admit of any reduction of similar
terms, the whole number of terms in the product is equal to the
number of terms in the multiplicand, multiplied by the number
of terms in the multiplier.

Thus, if we have five terms in the multiplicand and four
terms in the multiplier, the whole number of terms in the prod-
uct will be 5X4,0r 20. In general,if there be m terms in the
muftlphcand and » terms in the multiplier, the whole number
of terms in the product will be mXn.

(58.) If the product contains similar terms, the number of
terms in the product when reduced may be much less; but it
is important to observe, that among the different terms of the
product there are always two which can not be combmed with
any others. These are,

1. The term arising from the multiplication of the two terms
affected with the highest exponent of the same letter.

2. The term arising from the multiplication of the two terms
affected with the lowest exponent ot the same letter.
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For. it is evident, from the rule of exponents, that these two
partial products must involve the letter in question, the one
with a higher, and the other with a lower exponent than any
of the other partial products, and therefore can not be similax
to any of them. Hence the product of two polynomials can
never contain less than two terms.

(59.) For many purposes, it is sufficient merely to indicate
the multiplication of two polynomials, without actuz'ly per-
forming the operation. This is effected by inclosing the quan-
titics in parentheses, and writing them in succession with or
without the interposition of any sign.

. Thus, (a+b+c) (d+e+f) signifies that the sum of a, b, and
¢ is to be multiplied by the sum of 4, e, and f.

When the multiplication is actually performed, the expres
sion is said to be ezpanded.

(60.) The fullowing Theorems are of such extensive appli-
cation that they should be carefully committed to memory.

THEOREM 1L

The square of the sum of two quantiiics is equal to the square
of the first, plus twice the product of the ﬁrst by the second, plu:
the square of the second. .

Thus, if we multiply a + b
By a+ b
a'+ ab
. ab-+b*
We obtain the product a+2ab+b.

Hence, if we wish to obtain the square of a binomial, we
can write out the terms of the result at once according to this
theorem without the necessity of performmg, an actual multi-
plication.

EXAMPLES.
1. (Ra+bd)’=. 6. (5a*+Tab)’=
g 2. (a+3b)'=. 1. (5a'+b)'=
3. (8a+3by'=. © 8. (5a*+8a’b)’=
4. (4a+38b)’=. 9. (1+})'=.
5. (5a*+b)'=. 10. (3+1)'=.

This theorem deserves particular attention, for cne of the
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most common mistakes of beginners is to call the square of
a+b equal to a*+b".

THEOREM IIL

(61.) The square of the difference of two quantities is equal
to the square of the first, minus twice the product of the first and
second, plus the square of the second.

<

Thus, if we multiply a—b
By a— b
- a’— ab
— ab+¥d
‘We obtain the product a*—2ab+-b’.
. EXAMPLES.
1. (e—2b)*=. 6. (1a*'—b)'=.
2. (2a—8b)*=. 7. (7a’=12ab)’=.
3. (5a—4b)’=. 8. (7a’h*—12ab)*=.
4. (6a’—2z)'=., 9. R—Y=.
5. (6a'—3z)'=. 10. (4—1)=.

Here, also, beginners often’ commit the mistake of putting
the square of a—b equal to a’—b".

THEOREM IIL

(62.) The product of the sum and differedce of two quantities
ts equal to the difference of their squares.
Thus, if we multiply a+b
By u—b
a*+ab
: —ab—-b’
We obtain £1e product a—b.

EXAMPLES.
. (2a+b) (Ra—bd)=.

. (3a+4b) (8a—4b)=.
(Ta+z) (Ta—z)=.

. (Tab+z) (Tab—z)=.

. (8a+Dd) (8a—b)=.

. (8a+7bc) (Ba—"Tbc)=.

. (5a*+-6b") (5a’—6b")=
(82’y+3zy’) (52y—3zy’)=:

(2 ]

®ao
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9. (8+}) (8—1)=.
10. (443) @—P)=.

The student should be drilled upon examples like those ap-
pended to the preceding theorems until he can produce the re-
sults mentally with as great facility as he cduld read them if
exhibited upon paper.

The utility of these theorems will be the more apparent, the
more complicated the expressions to which they are applied.
Frequent examples of their application will be seen hereafter.

(63.) The same theorems will enable us to resolve many
complicated expressions into their factors.

1. Resolve a’+4ab+-4b* into its factors.
Ans. (a4-2b) (a+2b).
2. Resolve a*—6ab+9b* into its factors.
8. Resolve 9a*'—24ab+16}* into its factors.
4. Resolve a*—b* into three factors.
5. Resolve a®—b° into its factors.
6. Resolve a"—b"® into four factors.
7. Resolve 25a*—604°b*+36b° into its factors.
Resolve n'+2n41 into its factors.
. Resolve 4mn*—4mn+-1 into its factors.
10. Resolve 49a'b*—168a'h’+ 1444’ into its factors.
11. Resolve #’+2n’+n into three factors.
12. Resolve 1—y% into two factors.
18. Resolve 4— % into two factors.

°®

MULTIPLICATION BY DETACHED COEFFICIENTS.

(64.) The coefficients of a product depend simply upon the
coefficients of the two factors, and not upon the literal parts
of the terms. Hence we may obtain the coefficients of the
product by multiplying the coefficients of the multiplicand sev-
erally by the coefficients of the multiplier. To these coeffi
cients the proper letters may afterward be annexed. This
will be best understood from a few examples.

Thas, take tre first example of Art 52, to multiply a+b by
a +b. :
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The coefficients of the multiplicand are 1+1

« .« multiplier 141
1+1
1+1
Coefficients of the product 1+2+1
or, supplying the letters, we obtain a'+2ab+-b',

which is the same result as before obtained.
Exz. 2. Multiply 3a*+4az—52" by 2a’—6az+4z".

Coeflicients of multiplicand 3+ 4— 5
“ multiplier 2— 6+ 4
6+ 8—10
—18—24+30
+12+18-20
Coeflicients of the product 6—10—22+46—20

It may seem difficult in this case to supply the letters; but
a little consideratioh will render it perfectly plain. Thus,
8a’X 2a’ is equal to 6a*; hence a' is the proper letter to be at-
tached to the first coefficient. For the same reason, z* is the
proper letter to be attached to the last coefficient. Moreover.
we see that both the proposed polynomials are homogeneous,
and of the second degree. Hence the product must be ho-
mogeneous, and of the fourth degree. The powers of a must
decrease successxvely by unity, beginning with the first term,
while those of z increase by unity. Hence the required prod-
uct is

' 6a'—10a'z—22a’z* +46az’ — 20z,

Exz. 3. Multiply z'+z'y+2zy*+y* by z—y. )

Ez. 4. Multiply z'—38z*+3z—1 by *—2z+1.

Ez. 5. Multiply 24'—38ab*+5b* by 2a— 5b.

If we should proceed with this example precisely in the same
manner as with the preceding, we should commit an error by
attemnpting to unite terms which are dissimilar. The reason
is, that the multiplicand does not contain the usual complete
series of powers of a. The term containing the second power
of ais wanting This does not render the method inapplica-
ble, but it is necessary to preserve dissimilar terms distinct
from each other ; and since, while we are are operating on the
coefficients, we have not the advantage of the letters to indi
cate what are similar terms, we supply the place-of the defi
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cient term by a cipher. The operation will then proceed
with entire regularity.

2+ 0—34 5

— 5

4+ 0—6+410

—10—04-15—25

4—10—6+25—25 '

Hence the product is
4a'—10a'b—6a’b*-+256ab’— 250",

Ez. 6. Multiply 2a'—3ab*+5b° by 2a*— 50"

Here there is a term in each polynomial to be supplied by a
cipher.

The preceding examples are intended to lead the student to
consider the properties of coefficients by themselves, and pre-
pare him for some investigations which are to follow, particu-
larly in Section XX. The beginner, however, in attempting
to apply the method, must be cautious not to unite dissimilar
terms.

MISCELLANEOUS EXAMPLES.
1. Multiply 15a+8b—2c+7d by 4a—8b—5c+11d.

Ans. .

2. Multiply 8z°—3z"y*+2y* by 4z°—8z’y*—6y".
Ans.

8. Multiply 32*+8zy—5 by 4z'—7zy+9.
Ans.

4. Multiply 6a’ —5az—3z by 4a'—3az+2z2".
Ans.

5. Multiply 62’ +zy+4y* by z*—2zy+3y".
Ans.

6 Multiply 2*—z'y+zy* by z*—zy*—y".

' Ans.

7. Multiply 7a2*—38a’z*—5z* by 4a’z*—2a"z’—8z".
Ans.

8. Multiply 7a'd*—5a'b*+3b° by 8a°h*+3a’b—2b"
Ans.

9. Multiply 6a*—4ab*—8c* by 7a’—5ab’—3c".
Ans.

s



SECTION V.

DIVISION.

(65.) The object of division in Algebra is the same as 1n
Arithmetie, viz.,, The product of two factors being given, and
one of the factors, to find the other factor.

The dividend is the product of the divisor and quotient, the
divisor is the given factor, and the quotient is the factor re-
quired to be found.

CASE L

(66.) When the divisor and dividend are both monomials.

Suppose we have 63 to be divided by 7. We must find such
a factor as, multiplied by 7, will give exactly 63. We per-
ceive that 9 is such a number, and therefore 9 is the quotient -
obtained when we divide 63 by 7. '

Also, if we have to divide ab by g, it is evident that the
quotient will be b; for a multiplied by b gives the dividend ab.
So, also, 12mn divided by 8m gives 4n; for 3m multiplied by
4n makes 19mn. '

Suppose we have a* to be divided by a. We must find a
number which, multiplied by a*, will produce a'. We perceive
that a* is sucha number; for, according to Art. 50, we multi-
ply @’ by a’, by adding the exponents 2 and 3, making 5.
That is, the exponent 3 of the quotient is found by subtracting
2, the exponent of the divisor, from 5, the exponent of the divi-
dend. Hence the following

BRULE OF EXPONENTS IN DIVISION.

In order to divide quahtities expressed by different powers.
of the same letter, subtract the exponent of the divisor from the
exponent of the dividend.
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EXAMPLES
Dividle o« & 5 ¢ N 2 g
By & & ¥ ¢ B 2 oy

Quotient @*

Let it be required to divide 35a* by 5¢*. We must find a
quantity which, multiplied by 5a*, will produce 35a°. Such a
quantity is 7a'; for, according to Arts. 49 and 50, 7a’X 5a’ is
equal to 35a’. Therefore, 85a* divided by 5a* gives' for a
quotient 7a'; that is, we have divided 385, the coefficient of the
dividend, by 5, the coeflicient of the divisor, and have sub-
tracted the exponent of the divisor from the exponent of the
dividend.

(67.) Hence, for the division { monomials, we have the fol-
lowing

RU".E.

1. Divide the oocﬁcmu of the dividend by the coefficient of the
divisor.

2. Subtract the exponent of each letter in the divisor from the
exponent of the same letter sa the dividend.

EXAMPLES

Divide 20z* by 4z. Ans. 5z°
Divide 25a'zy* by 5ay*.
. Divide 72ab'z* by 12b'z.
. Divide 77a'b%"* by 11ab'c*.
. Divide 272a'b'c*z* by 17a'b’cz
. Divide 250z"y"z* by 5zyz'.
. Divide 48a%'c'd by 12ab’c.
Divide 150a‘b"cd’ by 30a’b*d’.

(68.) The rule given in Art. 66 conducts, in some cases, to
negatipe exponents.

Thus, let it be required to divide a* by a’. We are directed
to subtract the exponent of the divisor from the exponent of
he dividend. We thus obtain
a—*=a".

[N T NE-CR TR

o @ .
But ¢’ divided by a* may be written —- and since the value
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of a fraction is not altered by dividing both numerator and de
nominator by the same quantity, this expression is equivalen
1

30?.

. 1
Hence a—* is the same as e

and these expressions may be used indifferently for each other
So, also, if a* is to be divided by a*, this may be written

a 1 .
P
In the same manner we find
1
a—"=—.

That is, the reczp: ocal of a quantzty is equal to the same quan
tity with the sign of its exponent changed.

So, also, . I;’z_=22—‘=ab_’c_l°
. ¢ ¢

. ad—‘_ a
And T

(69.) Hence any factor may be transferred from the numer-
ator to the denominator of a fraction, or from the denominator
to the numerator, by changing the sign of its exponent.

Thus, 7}-—ab—

e
cb—n
P

That is, the denominator of a fractmn may be entirely re-
moved, and an integral form be given to any fractional ex-
pression.

This use of, negative exponents must be understood simply
as a convenient notation, and not as a method of actually de-
stroying the denominator of a fracﬁon Still this new nota
tion has many advantages. and is often employed, as will be
seen hereafter.

When the division can not be exactly performed, it may be
expressed in the form of a fraction, and this fraction may be

=a'b—"c*d".
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reduced to its lowest terms, according to a method to be ex-
plained in Arz. 83. :

(70.) It frequently happens that the exponents of certain let-
ters in the dividend are the same as in the divisor.

Let it be required to divide @* by a*. The quotient is ob-
viously 1, for every number is contained in itself once. Bat
if we apply the rule of exponems, Art. 66, we shall have

*—* or a’.
Hence =1, '

Again, let it be required to divide a™ by a®. Tne quotient
is obv®usly 1, as before ; and applying the rule of exponents,
we obtain

a~— or a’.
That is, every quantity affected with the exponent zero, is equal
to unity.

This notation has the advantage of preserving a trace of a
letter which has disappeared in the operation of division.
Thus, let it be required to divide a'b* by a’0*. The quotient
will be al®. This expression is of the same value as a alone,
and is commonly so written. If, however, it was important to
indicatethat the letter b originally entered into the expression,
this might be done without at all aﬂ'ectmg the value of the re-
ault by writing it

ab’.

(71.) The proper sign to be prefixed to a quotient is readily .
deduced from the principles already established for multipli-
cation. The product of the divisor and quotient must be equal
to the dividend. Hence,

because +aX+b=+ab +-ab-- +b=+a.
—aX +b=—ab —ab=++b=—a.
+ax—bm—ab [ DT _ghi b= ta
—aX—b=+ab +ab+-—b=—a.

Hence we have the following .

RULE FOR THE BIGNS.
When both the dwidend and divisor have the same sign, the
quotient will have the sign + ; when they have different signs.
the quotient will have the sign —.
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EXAMPLES.
Ez. 1. Divide —15ay* by 3ay.
Ez. 2. Divide —18az'y by —9az.
Ez. 3. Divide 150a’bc by - 5ac.
Exz. 4. Divide 40a’b*c by —abc.

CASE IL

(72) When the dwzsor is a monomial, and the dividend a
polynomial.

We have seen, Art. 51, that when a single term is®multi-
plied into a polynomial, the former enters into every term of
the latter.

Thus, a(a+b)=a'+ab.
Hence . (a@*+ab)+a=a+Dd.
Whence we deduce the following

RULE.

Divide each term of the dividend by the divisor, as in the for-
mer-case.

EXAMPLES.
Ez. 1. Divide 3z*+62'+3ax—156z by 3z
Ans. z'+2z+a—85.
. Divide 3abc+12abz—9a'b by 3ab.
. Divide 40a'b*+60a'b*—17ab by —ab.
. Divide 15a*bc—10acz®+5ac’d* by —5a’c.
. Divide 8a’z'y*—12a"z'y*+15a'z"y" by 3a'z'y".
. Divide z*'—z"4-z*—2"# by 2"
. Divide 12a‘y*—16a’y*+20a‘y*—28a'y’ by —4a'y’.

E=zx.
Ezx.
Ex.
E=x.
Ezx.
Ex.

IO Ok W

"CASE IIL. -

(738.) When the divisor and dividend are both polynomials.
Let it be required to divide 2ab+a*+b* by a+b.

The object of this operation is to find a third polynomial
which, multiplied by the second, will reproduce the first. )
It is evident that the dividend is composed of all the partial
products arising from the multiplication of each term of the
divisor by each term of the quotient, these products being add-
ed together and reduced. Hence, if we can discover a term
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of the dividena wnich is derived without reduction from the
multiplication of a term of the divisor by a term of the quo-
tient, then dividing this term by the corresponding term of the

divisor, we shall be sure to obtain a term of the quotient. '

But from Art. 58, it appears that the term @ which contains
the highest exponent of the letter a, is derived, without reduc-
tion, from the multiplication of the two terms of the divisor
and quotient which are affected with the highest exponent of
the same letter. Dividing then the term a® by the term a of
the divisor, we obtain ‘a, which we are certain must be one
term of the quotient sought. Multiplying each term of the di
visor by a, and subtracting this product from the proposed
dividend, the remainder may be regarded as the product of
the divisor by the remaining terms of the quotient. We shall
then obtain another term of the quotient by dividing that term
of the remainder affected with the highest exponent of a, by
the term a of the divisor, and so on.

Thus we perceive that at each step we are obliged to search
for that term of the dividend which is affected with the high-
est exponent of one of the letters, and divide it by that term
of the divisor which is affected with the highest exponent of
the same letter. We may avoid the necessity of searching for
this term by arranging the terms of the divisor and dividend
in the order of the powers of one of the letters.

The operation will then proceed as follows:

The arranged dividend =a’+2ab+bja+b= the divisor.
a'+ ab  |a+b= the quotient.
ab+b*= first remainder.
ab+b’
0

It is generally convenient in Algebra to place the-divisor on -
the right of the dividend, and the quotient directly under the
divisor. .

(74.) From this investigation we deduce the following

RULE FOR THE DIVISION OF POLYNOMIAILS.

1. Arrange the dividend and dwisor according to the powers
of the same letter.
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2. Divide the first term of the dividend by the first term of the
divisor, the result will be the first term of the quotient.

3. Multiply the divisor by this term, and subtract the product*
Jfrom the dividend.

4. Divide the first term of the remainder by the first term of
the divisor, the result will be the second term of the quotient.

5. Multiply the divisor by this term, and subtract the product
from the last remainder. Continue the same operation till ali
the terms of the dividend are exhausted.

If ‘the divisor is not exactly contained in the dividend, the
quantity which remains after the division is finished must be
placed over the divisor in the form of a fraction, and annexed
to the quotient.

: EXAMPLES.

1. Divide 2a'b+b°+2ab*+a* by a*+b*+ab.

' Ans. a+b.

2. Divide 2*'—a'+ 8a*z—3az" by z—a. ‘

Ans. z*—2az+a'.

3. Divide a’+2°+2a%’ by a*—az+2".

Ans. a‘+a’z+az'+2'.

4. Divide a*—16a’z"+64z° by a’—4az+4z".

5. Divide a*+6a’s*—4a’c+-z'—4az’ by a’—2az+2"

Ans. a'—2az+z'.

6. Divide z'+2z"y'+y* by 2*+zy+y'.

7. Divide 122°—192 by 8z—6.

Ans. 4z°+-8z+16z+32.

8. Divide 62°—6y" by 2z*—2y"

9. Divide a*+3a’h*—3a'b*—b° by a*—3a'b+3ab*—b".

. Ans. a'+3a’b+3ab*+b°.
10. Divide @’—b* by a—b.
11. Divide a‘—b* by a—b.
If the first term of the arranged dividend is not divisible by

the first term of the arranged divisor, the complete division is

impossible.

(75.) Hitherto we have supposed the terms of the quotient
to be obtained by dividing that term of the dividend affected
with the highest exponent of a certain letter. But, from the
second remark of Art. 58, it appears that the term of the divi-
dend affected with the lowest exponent of any letter is derived.
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without reduction, from the multiplication of a term of the di-
visor by a term of the quotient. Hence we may obtain a term
of the quotient by dividing the term of the dividend affected
with the lowest exponent of any letter, by the term of the di-
visor containing the lowest power of the same letter, and
nothing prevents our operating upon the highest and lowest
exponents of a certain letter alternately in the same example.

(76.) From the examples of Art. 74, we perceive that a*—b°
18 divisible by a—b ; and a*—b* is divisible by a—b We shal
find the same to hold true, whatever may be the value of the
exponents of the two letters. That is, the difference of any
two powers of the same degree is divisible by the difference of
their roots.

Thus, Yet us divide @'~ by a—b.

a*-b* a—b
a*—a'bla®
4b bl

The first term of the quotient is a*, and the ﬁrst remainder
18 a‘b—b*, which may be written

b(a*—bY).

Now if] after a division has been partially performed, the re-
mainder is divisible by the divisor, it is obvious that the divi- -
dend is completely divisible by the divisor. But we have al-
ready found that a‘—b* is divisible by a—b; therefore a*—b*
is also divisible by a—b; and in the same manner it may be
proved that a*—" is divisible by a—b, and so on.

To exhibit this reasoning in a more general form, let us
represent any exponent whatever by the letter n, and let us
divide a*—b" by a—b.

a—-b |a—b
a"—ba—|a—
First remainder = ba——b".

Dividing a" by a, we have, by the rule of exponents, a*" for
the quotient." Multiplying a—b by this quantity, and subtract-
ing the product from the dividend, we have for the first re-
mainder ba——b", which may be written

b (a—=—b—).

Now if this remainder is divisible by a—b, it is obvious that

the dividend is divisible by a—b. That is tb say, if tha diffar.
: 3
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ence of the same powers of two quantities is divisible ty thelr
difference, the différence of the powers of the next hzghe; de-
gree is also divisible by that difference. Therefore, since a*—b*
is divisible by a—b, a*—b* must be divisible by a—b; also,
a’—b° and so on.

The quotients obtained by dividing the difference of the
powers of two quantities by the difference of those quantities
follow a simple law. Thus,

(@'—b")+(a—b)=a+b.
(@'—b)+(a—b)=a’+adb+b'. .
(¢* =)+ (a—b)=a'+a’b+ab*+b".
(@*'—b")+(a—b)=a'+a'b+a'b’+ab’+-b'.

&ec., &e., &ec. .
(@—=b") = (a—b)=a—"+ab+a—b'+. . +a't+ab—+b—

The exponents of a decrease by unity, while those of b in-
crease by unity.

(77.) It may also be proved that the difference of two even

~ powers of the same degree i divisible by the sum of their roots.

Thus,

(a’—b")+ (a+d)=a—>.

(a'—b*)+ (a+b)=a'—a'b+ab*—b".

(a*—b°) =+ (a+b)=a*—a'b+a’b*—a’b’+ab*— V"
&ec., &ec., &e.

Also, the sum of two odd powers of the same degree is divisi
ble by the sum of their roots.

Thus,

(a'+b") = (a+b)=a’—ab+b"

(*+b) = (a+b)=a'—a’b+a’b* —ab*+b

(@’ +b") = (a+b)=a*—a'b+a'd’—a’b"+a'b* —abs+ bt
&ec., &e., &e.

(78.) The preceding principles will enable us to resolve va
rious algebraic expressjons into their factors.

1. Resolve a *—b* into its factors.

Ans. (a*+ab+b*) (a—-b).
. Resolve a’+b’ into its factors.
Resolve a*—b° into four factors.
. Resolve a'—8b* into its factors.
Resolve 8a’—1 into its factors.
Resolve 8a’—8b" into three factors.

FoA®N
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7. Resolve 14-278* into its factors.

8. Resolve 8a'+27)" into its factors.

(79.) One polynomial can not be divided by another poly-
nomial containing a letter which is not found in the dividend ;
for it is impossible that one quantity multiplied by another
which contains a certain letter, should give a product not con-
taining that letter.

A monomial is never divisible by a polynomial, because
every polynomial multiplied by another quantity gives a prod-
uct containing at least two terms not susceptible of reduction.

Yet a binomial may be divided by a polynomial containing
any number of terms.

Thus, a*—b* is divisible by a +a’b+ab’+b’ and gives for a
quotient a—b.

So, also, a binomial may be divided by a polynomial of a
hundred terms, a thousand terms, or, ipdeed, any finite num-
ber.

DIVISION BY DETACHED COEFFICIENTS.

(80.) We have shown, in Art. 64, how multiplication may
sometimes be conveniently performed by operating upon the
coefficients alone. The same principle is applicable to divi-
sion. Thus, take the example of Art. 78, to divide a’+2ab+-b*
by a+b; we may proceed as follows:

14241141

141 [T+1
“141
1+1

The caeflicients of the quotient are 1+1. Moreover, a'+-a
=a; and therefore a is the first term of the quotient, and  the
second. -

Ez. 2. Divide z*—3az'—8a'z"+18a'z—8a* by z*+2azx—2a".

—3— 8+18-—8]l+2 2

142— 2 1—5+4
—5— 6+18—8
—5—10+10

4+ 8—8

4+ 8—8

The coefficients of the quotient are 1—5+4, and it remains to
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supp y the letters, Now 2'+-2'=2"; and a‘+a'=a’. Hence
', ax, and a® are the literal parts of the terms, and therefore
the quotient is

z'—5azx+4a’.

Ez. 3. Divide 6a*—96 by 3a—6.

Here, as we have the fourth power of a without the lower
powers, we must supply the coefficients of the absent terms,
as in Enultiplication, with zero.

6+ 0+0+0—96|3—6
6—12 |2+4+8+16
12
12—24
24
24—48
48—96
. 48—96
But a <a=a’; hence the quotient is
2a'+4a*+8a+16.

Ez. 4. Divide 3y*+3zy’—42’y—4z" by z+y.

Ans. 3y’—42",

Fiz. 5. Divide 8a’—4a'z—2a’z*+a'z’ by 4a’—z".

Ans. 2a'—a’z.

E:c 6. Divide a'+4a’—8a'~25a’+85a’+21a—28 by a’+
bad 4. >

" Ans. a'*—a'—Ya*+14a—".

MISCELLANEOUS EXAMPLES.
1. Divide 3a'—19ab+25ab*—25ab* by 8a’—4ab+-5b".
Ans, a’'—5ab.
2. Divide z*'+22*—4x'y*+16zy—15 by z*'—2zy+-5.
Ans. 2'+2zy—8.
3. Divide a’z'—4a’br+3acz+3a'b’+abc—10¢" by -az—3ab
+5c. Ans. ax—ab—2c.
4. Divide 20a*'b*—~22a'0"+11a’0*—3ab® by 4a'b*—2ab*+b".
Ans. 5a’b*—3ab’.
5. Divide 2°—z'y*+2zy*—y* by z'—z'y+y"
Ans. 2*+z'y—y'.
6. Divide 32z’ + 152°y* — 22az* — 2z*y* — 10z°y* + 14azy’
~5az’y'+7a'z by z'+5zy"—Ta. Ans. 3z'—2zy’—ax.
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FRACTIONS. -

\

(81.) When a quotient is expressed as described in Art. 16
by placing the divisor under the dividend with a line between
them, it is called a fraction ; the dividend is called the numer-
ator, and the divisor the denominator of the fraction. Alge
braic fractions do not differ essentially from arithmetical frac-
tions, and the same principles are applicable to both.

The following principles form the basis of most of the oper-
ations upon fractions:

" 1. In order to multiply a fraction by any number, we must
multiply its numerator, or divide its denominator by that num-
ber.

Thus, the value of the fraction Ea—b is b. If we multiply the

numerator by @, we obtain aTb or ab; and if we divide the de-

nominator of the same fraction by a, we obtain also ab; that

is, the original value of the fraction b has been multiplied by a.
2. In order to divide a fraction by any number, we must di-

vide its numerator or multiply its denominator by that number.

Thus, the value of the fraction ——b is ab. If we divide the

numerator by a, we obtain g_b or b; and if we multiply the de-

nominator of the same fraction by a, we obtain —b or b; that

is, the original value of the fraction ab has been dmded by a.
8. The value of a fraction is not changed if we multiply or
divide both numerator and denominator by the same number.

4
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Thus, —_———=p,
a az

Every quantity which is not expressed under a fractional
form, is called an entire quantity.

An algebraic expression composed partly of an entire quan-
tity and partly of a fraction, is called a mized quantity.

(82.) The proper sign to be prefixed to a fraction may be
determined by the rules already established for division. The
sign prefixed to the numerator of a fraction affects merely the
dividend ; the sign prefixed to the denominator affects merely
the divisor ; but the sign prefixed to the dividing line of a
fraction affects the quotient.

Thus, ab_ +b, for + divided by + gives +.

—ab

. _a-=—b, for — divided by + gives —.
_%b=;b, for + divided by — gives —.
—%b=_+b for — divided by — gives +.

So, also, —-ak—-—b for tlns shows that the former quotient
b is to be subtracted, which is done by changing its sign.
———(:i=+b, because the former quotient —b is to be
subtracted, whence it becomes -}+5.

ab
-—= +-b, for the same reason ;

—ab : .
and Ea——— —b, also for the same reason.

Hence we have the following equivalent forms:
ab —ab —ab ab

4 —a p —a +b;
&]80, ——ab=£= —-a—b= —_—ab=—b,
a —-—a a —a

That is, of the three signs belonging to the numerator, de
nominator, and dividing line of a fraction, any two m’zy be
changed from + to — or from — to +, without affecting the
value of the fractioa. :
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In the examples of fractions here employed for illustration,
both numerator and denominator have consisted of ynonomials
The same principles are applicable to polynomials; but it
must be remarked, that by the sign of the numerator we un-
derstand the entire numerator as distinguished from the sign
of any one of its terms taken singly.

Thus, _.a+‘l;+c is equal to +__—a—‘;b—-c

When no sign is prefixed either to the terms of a fraction ot
to its dividing line, + is always to be understood.

N

REDUCTION OF FRACTIONS.

PROBLEM 1.
(83.) To reduce a fraction to lower terms.

RULE.
Divide both numerator and demominator by any quantity
which will divide them both without a remainder.
According to Remark 3, Arz. 81, this will not change the
value of the fraction.

ar_a
Thus, E-_:E.
abc ¢ . ..
Also, Sab5b (dividing both numerator and de
aominator by a'b.) ‘ )
az’ az
And wie otz

If the numerator and denominator are both divided by their
greatest common divisor, it is evident the fraction will be re-
duced to its lowest terms. The method of finding the greatest
common divisor is considered in Section XV.; but in the fol-
lowing examples the greatest common divisor is®easily found,
by resolving the quantities into factors according to methods
already indicated.

EXAMPLES.
3

cz+x

————— to its lowest terms.
a‘c+a'z to1

1. Beduce

x
Ans. py
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14a*—%ab ’ '

2. Reduce Toae—5bc 1° its lowest terms.
7a
AM.“ 5.
‘ £—a
8. Reduce ——; P e its lowest terms.
’ 1
Ans. 51
2z'—162—6
4. Reduce 32 —942—9 to its lowest terms.
2
Ans. 3
32'y+3zy' .
5. Reduce m to its lowest terms.
zy
Ans. 4y
! ! .
6. Reduce -—é—bw to its lowest. terms.

a’—z .
7. Reduce Py to its lowest terms.

PROBLEM II. ‘
(84.) To reduce a fraction to an entire or mized quantity.

RULE.

Divide the numerator by the denominator for the entire part,
and place the remainder, if any, over the denomnator for the

Jractional part.
»

Thus, 237=27+5=5§.
;]
Also, aj:—“:(az+a’)—:-z=a+§.

EXAMPLES.

 ar—z* . .
1. Reduce to an entire quantity.
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2. Reduce ab

—b2a to a mixed quantity.

3
8. Reduce ii: to a mixed quantity.

22
Ans. a+z+a—_-_-5.

4. Reduce 7y
T

e to an entire quantity.

102*—5z+3
S5z

_b___l_(;?—j_f: to a mixed quantity.

5. Reduce to a mixed quantity.

6. Reduce

PROBLEM IIL
(85.) To reduce a mized quantity to the form of a fraction.
L]
RULE. _

Multiply the entire part by the denominator of the fraction .
to the product add the numerator with its proper sign, and place
the result over the denominator.

3x5+2_15+2_17
Thos, Sp=—F—=—5"=7%"
This result may be proved by the preceding Rule. For

-15'—7= 17--5=38%.
b aXc+b ac+b
c c

Also,

EXAMPLES.
. e

to the form of a fraction.

1. Reduce z+a ;z’

Ans. -a—.
) z
2. Reduce z+u;;z' to the form of a fraction.
8az+4-z*
Ans. %a "
a'
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8. Reduce 5+ 7 to the form of a fraction.

" 4. Reduce l-}-x_ —1 to the form of a fraction.

5 Reduce l+2:c+£.-_—§ to the form of a fraction.

6. Reduce '7+ :, to the form of a fraction.
PROBLEM IV,
(88.) To reduce fractions to a common denominator

RULE.

Multiply each numerator into all the denominators, except its
own, Jor a new numerator, and all the denominators together for

a common denommator . R
EXAMPLES.
1. Reduce % and 2 to a common denominator. _
ad bc
Ans. 337 ba

Here it will be seen that the numerator and denominator of
the first fraction are both multiplied by d, and in the second
fraction they are both multiplied by b. The value, of the frac-
tions, therefore, i8 not changed by this operation. -

2. Reduce % and i-{-é to equivalent fractions having a ggpm-

mon denominator.

¢ " ac. ab+b
Ans b’ " be -

8. Reduce

b . .
g—c, and d to fractions havmg a common de-
nominator. ) ‘

3z
2_a)

4. Reduce 3

2 4z .
T3 and a+—5— to fractions having a common

denominator.
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5 Reduce _ 3:, and to fractlons having a common
'lenominator.
d z+1 11—z ions havi
6. Re uce - and 1Tz to fractlox}s aving a com(mon
ienommator
a+2z . .
7. Reduce 2 and to fractions having a common de-

D0 3 4z
nominator.

Following the Rule, we obtain

8azx d 8az’+-62"

1228 ¢ T1gz
which fractions have a common denominator, and are equiva
lent to those originally proposed. Nevertheless, it may be ob-
served, that these fractions are not reduced to their least com-
mon denominator, for every term is divisible by z. The least
common denominator is the least common multiple of the de-
nominators of the proposed fractions.

A common multiple of two or more numbers is any number
which they will divide without a remainder ; and the least com-
mon multiple is the least number which they will so divide.
Thus, 12z* is the least common multiple of 3z* and 4z ; and
the above fractions reduced to their least common denomina
tor are

8a 4 ezt
. 1z ¢ g

- The least common multiple of two numbers is their product

divided by their greatest common divisor.

8. Reduce 18:1 and 7 to equivalent fractions having the least

common denommator.
The product of the denominators is 294, which, divided by
7 (their greatest common divisor), gives 42, the least common
denominator, and the required fractions are
3 d 19 B
2%
' N 11 .
9. Reduce the fractions 0 and T3 to others which have the
east common denorninator.
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2 bd
10. Reduce and — o] to equivalent fractions having the
least common denommator.
dac d
_ Ans, Bb—c; and W.

a+b c+d

11. Reduce s and ——; Py L equivalent fractions having

the least common denominator.

. (a+D) and ct+d

Ans a-b a'—-b"

PROBLEM V.
(87.) To add fractional quantities together.

EULE. ’

Reduce the fractions to a common denominator ; add the nu-
merators together, and place their sum over the common denom-
inator.

The fractions must first be reduced to a common denomina
tor to render them like parts of unity. Before this reduction,
they must be considered as unlike quantities.

.
EXAMPLES.

1. What is the sum of g and gt

Reducing to a common denominator, the fractions become

3z 2z
[ -6- and 'E‘.
. . 5z
Adding the numerators, we obtain -=-.
It 18 plain that three sixths of z and two sixths of z make
. five sixths of z.
. ac €
2. Required the sum of 7T and 7

Ans. adf+£¢:;‘+bde.
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b
3. Required the sum of — +b and — poy

a+2zx
“ L]
5. Required the sum of 2a, 3a+2—:, and a+8—:.

4. Required the sum of 5z, -3?, and

’ - 582
Ans. 6a+75-.

6. Required the sum of a+z, z’ and -

Ans. a+z+2+ .z
a'—azx

7. Required the sum of ﬁk and 222

Ans. a

a—2m a+2m
i and e
ma—b na+b
9. Required the sum of s and o

8. Required the sum of f_

PROBLEM VI
(88) To subtract one fractional quantity from another.

RULE.

Reduce the fractions to a common denominator, subtra.t one
rumerator from the other, and place their difference over the
common denominator.

@ EXAMPLES.
x 8z
1. From 3 subtract 5
Reducing to a common denominator, the fractions become
020
15°
lO:c 9z =z
Hence 516 15°

and it is plain that ten fifteenths of z, diminished by nine fif-
teenths of z, equals one fifteenth of z. :
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' : 12 3z
2 From = subtract —.
7 5
9r—4 —_
8. From z7 y subtract — 333/ .

It must be remembered, that the minus sign before the di-
viding line of a fraction affects the quotient (Art. 82); and
since a. quantity is subtracted by changing its sign, the result
of the subtraction in this case is

9z—4y 5S5z—3y

— g
which fractions may be reduced to a common denommator,
and the like terms united, as in addition.

azr ar
4, From '5:; subtract m.
. 2acx
Ans. -b,—_?
" =
5. From 2z+2+ z subtract z-—g—z—?.
N 8 21
~ . 355z—6
Ans. — 55—
8. From 3:c+£ subtract x_:c_—g_.
‘ 2b c
, 7. From ﬁ—b subtract a_——b. ' » .
2 2 |
‘ Sa— "a—
8. Froml a—5b subtract 2 2b.
4 : 6
25a—11b
Ans. —12—-

PROBLEM VII.
(89.) To multiply fractional quantities together.

BULE. -

Multiply all the numerators together for a mew numerafor,
and all the denominators together for a new denominator.

Let it be required to multiply% by s.
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First, let us multiply g— by ¢. According to Remark first of
ac
Art. 81 the product must be X

But the proposed multlpher was d’ that is, we have used a
mulupher d times too great. We must. therefore divide the
result o + by d; and, according to Remark second of Art 81,

we obtam

a—c .
_ bd’ N
which result conforms to the Rule above given.

EXAMPLES.

: . z 2z
1. Multiply 8 by} R
z
Ans. >
10z
2. What is the continued product of 5 and 21 ?
z+a
3. Multlply by —— a¥e’
4. What is the continued product of -72;, g::i-b, and 82;‘:1 .
Ans. 9axz.
5. Multiply n_"—‘” by S,
b+
. 6. Multiply —-by T
b
Ans. m
z+1 -1
7 What is the continyed product of z, ——, and ?
. a a+b
r’—z
Ans. m
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8. Multiply ,-H;, by — ::_Ib) ’
al +bl
. Ans. m.

. 1 1
(90.) Ez. 1. Multiply p by pe 3
According to the preceding Article. the result must be %
But, according to Art. 68, — l, may be written a—>; may be

written a—*; and -;. may be written a—*.

Therefore, a—*Xa—*=a"".

That is, the Rule of Art. 50 is general, and apphes to nega
tive as well as positive exponents.

Ez. 2. Multiply —b—* by b~
Ans. —b—".
8. Multiply a—* by a'. :
4. Multiply b~ by d"
5. Maltiply = by a—.
6. Multiply &— by b~.
7. Multiply (a—0b)* by (a—b)~".

PROBLEM VIIL
(91.) To divide one fractional quantity by another.

-

RULE.
Invert the divisor, and proceed as in multipﬁcation.
If the two fractions have the same denominator, then the
quotient of the fractions will be the same as the quotlent of
their numerators.

3 9
Thus it is plain that 5 is contained in < as often as 3 is

12
contameq in 9.
But when the two fractions have not the same denominator
we must reduce them to this form by Problem IV.

Let it be required to divide % by s.
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Reducing to a common denominator, we have -;% to be di

vided by :-‘—;.

It is now plain that the quotient must be represented by the
division of ad by bc, which gives

ad
be
the same result as obtained by the above Rule.
Th a. c_a d_al
uss bTd b%C be
EXAMPLES.
., T, 2
1. Divide § by. —9-.
Ans. 14
2. Divide - > by 7
22"
3. Dmde prrape 5 by — z +¢
.oy Z+1
< 4. Divide e by 5
5. Divide =— Scd by "
z—b
‘ Ans. -6-6—';.
6. Divide 222+% +" by ==
P
Ra+zx
~ A e
7. Divide ——4—>— by 2
POV S T a—8 ) a—b at+b

Ans. Unity,
(92.) Ez. 1. Divide — by p :
Aecording to the Rule of the preceding Article, we have

1 a a 1
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But -l- may le written a—*; 1 - may be written a—*; and'—zl
is equal to a.
Hence : a2t ta=a

That is, the Rule of Art. 66 is general, and applies to nega-
tive as well as positive exponents.
Exz. 2. Divide —b—° by —b—=.

Ans. b,

3. Divide a* by a—'. :

4. Divide 1 by a—.

5. Divide 6a” by —2a>.

6. Divide 5™ by b".

. Divide 12z—*y—* by —4zy".
8. Divide (z—y)— by (z—y)—"
(93.) According to the definition, Art. 33,4he reciprocal of

a quantity is the quotient arising from dividing a unit by that

quantity,

-2

Hence the reciprocal of %

a b b o
is l—-5=l><;—;

That is, the reciprocal of a fraction is the fraction inverted.
. btz

. a
Thus the reciprocal of 3z g

>

The reclprocal of — ! is b+c.

b+c
Hence, to divide by any quantity is the same as to multiply
by its reciprocal, and to multiply by any quantity is the same
as to divide by its reciprocal.
(94.) The numerator or denominator of a fraction may be
itself a fraction ;

As

a1l
S
el

Such expressions are easily reduced by applying the pre-
ceding principles.
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a
Thus, (b) means g =c,
: c
o which, according to Remark second, Art. 81, equals bﬁc'
2 b
Again, (é) means a--,

which, according to Art. 91, equals %—c

a

b
Also, (T means the same as %_. ¢
D

which, according to Art. 91, equals %-‘:

Ez. 1. Find the value of the fraction %

E=z. 2. Find the value of the fraction %}-

MISCELLANEOUS EXAMPLES.

. o
1. Divide 7a’—3z+g by b’--aé, Ans, 2L@n—9nz+3m

3b'n—an
2. Divide 5a’+E by m'—:-t;—y. Ans. m:‘—‘f“jgf_—@.
3. Divide 15.1:‘——- by z-—?:—b Ans. 5%5;—3:%.
4. Divide 23y by -32:'-;/—2"/ . Ans %‘%_-2—:%
5. Dwide 72‘;; by a7;:-g’ . o Ans. g—a%.
6. Divide z’+:_'b by a‘-lfb y. Ans. %3;—;_%‘5.



SECTION VIL

SIMPLE EQUATIONS.

(95.) An equation is a proposition which declares the equality
of two quantities expressed algebraically.

Thus, z—4=>b—xz, is a proposition expresging the equality
of the quantities z—4 and b—z.

The quantity on the left side of the sign of equality is called
the first member of the equation ; the quantity on the right, the
second member.

Equations are usually composed of certain quantities which
are known, and others which are unknown. The known quan-
tities are represented either by numbers or by the first letters
of the alphabet, q, b, ¢, &c. ; the unknown quantities by the last
letters, z, y, z, &c.

_An identical equation is one in which the two members are
identical, or may be reduced to identity by performing the op-
erations which ard indicated in them.

Thus, 2z—5=2—5

3z+4x="Tx
@+y) @—y)=2'—y"

A root of an equation is the value of the unknown quantity
in the equation.

(96.) Equations are divided into degrees, according to the
highest power of the unknown quantity which they contain.

Those which contain only the first power of the unknown
quantity are called simple equations, or equations of the first
degree.

As az+b=cz+d.

$Those in which the highest power of .the unknown quantity
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18 8 square, are called quadratic equations, ox equauons of the
second degree
As . ‘ 42'—2x=5

' "Those in which the highest power is a cube, are called cubic
equatzons, or equations of the third degree.

z'+pz’=24.
! So, also, we have biquadratic equations, or equations of the
fourth degree; equations of the fifth, sizth, — — — — — nth

degree.

Thus, z"+pz"—'=r, is an equation of the nth degree.

In general, the degree of an equation is determined by the -
highest of the exponents with which the unknown quantity is af-
Jected.

(97.) Numerical equations are those which contain only par-
ticular numbers, with the exception of the unknown quantity,
which is always ®enoted by a letter.

Thus, z'+42'=38z+12 is a numerical equation.

Literal equations are those in which the known quantities
are represented by letters, or by letters and numbers.

Thus, z*+pz*+qz=r

z*—3pz*+5qz*=>5

To solve an equation is to find the value of the unknown
quantity, or to find a number which, substituted for the un-
known quantity in the equation, renders the first member
‘dentical with the second.

The difficulty of solving equations depends upon their de-
gree, and the number of unknown quantities. We will begin
with the most simple case.

are literal equations.

SIMPLE EQUATIONS CONTAINING BUT ONE UNKNOWN QUAN-
TITY.

(98.) The various operations which we perform upon equa-
tions in order to deduce the value of the unknown quantities,
are founded upon the following principles:

1. If to two equal quantities the same quantity be added, the,
sums will be, equal. .
2. If from two equal quantities the same quantxty b8 sud-

tracted, the remainders will be equal. .

8. If two equal quantities be multiplied by the same quan-

tity the products will be equal. .

oy €
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4. If two equal quantities be divided by the same quantity,
the quotients will be equal.

(99.) The unknown quantlty may be combined With the
known quantities in the given equation by the operations of
addition. subtraction, multiplication, or division.

We shall consider these different cases in succession.

I. The unknown quantity may be combined with known
quantities by addition. .

Let it be required to solve the equation

z+6=24.

If from the two equal quantities, z+6 and 24, we subtract
the same quantity 6, the remainders will be equal, according
to the last Article, and we shall have

z+6—6=24—86,
or r=24—6,
=18, the valu® of z required,
So, also, in the equation
. z+a=b,
suotractmg a from each of the equai quantmes, z+a and b, the
result is
z=b—a, the value of = required.

(100.) II. The unknown quantity may be combined with
known quantities by subtraction.

Let the equation be

z—6=24.

If to the two equal quantities, z—6 and 24, the same quan-
tity 6 be added, the sums will be equal, according to Art. 98,
and we have

z—6+6=24+186,
or =30, the value of = required
So, also, in the equation
z—a=b,
adding a to each of these equal quantities, the result is
z=>b+a, the value of z required.

From the preceding examples, it follows that.

We may transpose any term of an equation from one member
to the other by changing its sign.

- We may change the sign of every term qf an equatwn with-
oflt destraymg the equality.
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This is, in fact, the same thing as 'transposing every term in
each member of the equation.

If the same quantity appear in each member qf the equation
affected with the same sign, it may be suppre:sed.

(101.) III. The unknown quantity may be combined with
known quantities by multiplication.

Let the equation be

6z=24. .

If we divide each of the equal quantities, 6z and 24, by the

same quantity 6, the quotients will be equal, and we shall have

. =4, the value of z required.
So, also, in the equation
. ax=b,
dividing each of these equals by g, the result is

z=%, the value of z required.

From this it follows, that

When the unknown quantity is multiplied by a known quan-
tity, the equation is solved by dividing both members by this
known quantity.

(102.) IV. The unknown quantity may be combmed with
known quantities by division.

Let the equation be

=24.

0

If we multiply each of the equal quantities,%’ and 24, by the

same quantity 6, the products will be equal, and we shall have
x=144, the value of z required.
So, also,l in the equation

=b.
a
multiplying each of these equals by a, the result is

z=ab, the value of z required.

From this if follows, that
When the uhknown quantity is divided by a known quaniity;

N
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the equation is solved by multiplying both members by this known
quantity. .
(103.) V. Several terms of an equation may be fractional.
Let the equation be

‘z 2 4
23ty
Multnplymg each of these equals by 2, the result is
. 4 8
$—§+B.
Multiplying each of these last equals by 3, we obtain -
. . 3:c=4+-2;1 ;

and multiplying again by 5, we obtain
: 152=20-+424,
an equation free from fractions.

We might have obtained the same result by multiplying the
original equation at once by the product of all the denom-
inators.

Thus, multiplying by 2X3X 5, we have

30z_60 120
2 3 5"’
or reducing, we have
’ 152=20-24, as before.
So, also, in the equation
z b d

..—_+._
a ¢ e

multiplying successively by all the denominators, or by a ¢ e
at once, we obtain
acex _abce  acde
. a c e
Canceling from each term the Jetter which is common to its
numerator and denominator, we have
cex=abe+acd,
«n equation clear of fractions.
Hence it appears that
An equation may be cleared of fractions by multiplying each
wember into all the denominators.
(104.) From the preceding remarks, we deduce the fol-

lowing
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RULE FOR THE SOLUTION OF A SIMPLE EQUATION CONTAININU
ONE UNKNOWN QUANTITY.

1. Clear the equation of fractions, and perform in both mem-
bers all the algebraic operations indicated.

2. Transpose all the terms containing the unknown quantity
to one side, and all the remaining terms to the other side of the
equation, and reduce each member to its most simple form.

8. Divide each member by the coefficient of the unknown quan
tity.

EXAMPLES.

1. Given 524-8=4x+-10, to find the value of x.

Transposing 4z to the first member of the equation, and 8 to
the second member, taking care to change their signs (Arz. 100)
we have

5z—4x=10—8.

Uniting similar terms, x=2.

In order to verify this result, put 2 in the place of = wherever
it occurs in the original equation, and we shall obtain

5x2+4+8=4x2+10.

That is, 104+8=8410,
or 18=18,
an identical equation, which proves that we have found the cor
rect value of z.

2. Given w—7=§+§, to find the value of x.

Multiplying every term of the equation by 5 and also by 3, in
order to clear it of fractions (Art. 103), we obtain
152—105=32+ 5.
Hence, by transposition,
152—3z—52=105,

or Tx=105, *
and therefore w_lgs_ 15.

To verify this result, put 15 in the place of 2 in the ongmal

equation, and we have

15-—7=l—5-+ 15

4
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That is, ' 15—7=38+5,
or 8=S§,
an identical equation.
3. Given 3axr— 4ab=2ab— 6ac, to find the value of  in terms
of b and c.
Dividing every term by a, we have
8x—4b=2r—6c.
By transposition,
3z—22r=4b—6e,
or - x=4b—6c. .
This result may be verified in the same manner as the pre
ceding.
4. Given 32— 10x=8z-+2?, to find the value of z.
Ans. £=9.

ad+a)_ ax
T _ac+ to find 2.

5. Given ———= d ,

6. Given ””Z‘”nrsm:%‘*;‘”, to find .

7. Given %b=bc+d+:%, to find =

Ans. z=

+6 112—37

8. Given 3:z-+2w =5+ 5 , to find 2.

« 10. Given 2+ 3'”2— 5= 12 2’”—4, to find the value of .

3
Ans. x=5
to fird .

11. leen2l+3m 11_5'”;5_‘_97;-7:»

(105.) An equation may always be cleared of fractions by
tmultiplying each member into all the denominators accorling
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to Art. 103. But sometimes the same object may be attained
by a less amount of multiplication.

Thus, in the preceding example, the equation may be ¢cleared
of fractions by multiplying each term by 16, instead of 16 x8
X 2, and it is important to avoid all useless multiplication. In
general, it is sufficient to multiply by the least common multiple
of all the denominators. See Art. 86.

4 52414 1

) z—
12. Given 3z— 7 —4= 3 19 to find 2.
13. Given 3w—a+cw—a-l3-w b—w , to find 2.
Ans. o= 44*—3b
: w_8a+3ac—3'

- 3z T _ g_a:
14 Given —a-—c+5_4w+ R to find .

abcd
3bd+ad—4abd —2ab

15. Given (a-+2) (b-+&)—a(b+)=5+a%, to find .
[ ]

Ans, =

Ans. w:%.
17—382 4242 7m+ 14

5 _T‘5—6 x4+ ,t o find

17. Given w—sﬁg'ﬁ—4=-2%f—6”7 8+4“ 4 to find .

, Tx+16 248 _
18.  Given BT R " 5, to find x.
6z+7 Tr—13 2.1.‘+4

9 6z+3 38

16. Given

19. Given LIS t find x.

20. Given gab+3ac—§cm=zac+ 2ab—6cz, to find the va'ue

of x.
70ab— 3ac

Ans. x= 3900

'SOLUTION OF PROBLEMS,

(106.) The solution of a Problem by Algebra consists of two
distinct parts:
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1. To express the conditions of the problem algebraically ;
that is, to form the equation,

2. To solve the equation.

The second operation has already been explained, but the
first is often more embarrassing to beginners than the second.”
Sometimes the statement of a problem furnishes the equation
directly ; and sometimes it is necessary to deduce from the
statement new conditions, which-are to be expressed algebraic-
ally. The former are called explicit conditions; and those
which are deduced from them, ¢mplicit conditions.

It is impossible to give a general rule which will enable us to
translate every problem into algebraic language. The power
of doing this with facility can only be acquired by reflection
and practice.

The following directions may be found of some service.

Denote one of the required quantities by x ; then, by means of
this letter, with the algebraic signs, perform the same operations
which would be necessary to venfy its value if it was already
known.

Problem 1. What number is that, to the dquble of which if
16 be added, the sum is equal to four times the required num- -
ber?

Let x represent the number required.

The double of this will be 2z.

This increased by 16 should equal 4z.

Hence, by the conditions, 2r416=4z.

The problem is now translated into algebraic language, and
it only remains to solve the equation in the usual way.

Transposing, we obtain . ]

16=4r—2r=2x,
and 8=z,
or x=8.

To verify this number, we have but to double 8, and add 16
to the result ; the sum is 82, which is equal to four times 8, ac-
cording to the conditions of the problem.

Prob. 2. What number is that, the double of which exceeds
its half by 6?7

*Lé&t x=the number required.

Then, by the conditions,

’
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@
21‘—§=6. )
Clearing of fractions, .
dr—2=12,
or 3r=12.
Hence x=4.

Toverify this result, double 4, which makes 8, and diminisk
1t by the half of 4, or 2; the result is 6, according to the condi-
tions of the problem.

Prob. 3. The sum of two numbers is 8, and their difference
2. 'What are those numbers ?

Let 2=the least number.

Then z+2 will be the greater number.

The sum of these is 22+ 2, which is required to equal 8
Hence we have

2z+42=8.
By transposition 2r=8—2=6,
and =3, the least number.
Also, z+2=>5, the greater number.

Verification. 5+3=8
6—3=2

The following is a generalization of the preceding Problem.

Prob. 4. The sum of two numbers is @, and their dlﬂ"erence

h. What are those numbers ?

Let x represent the least number.

Then 2+ b will represent the greater number.

The sum of these is 22+ b, which is required to equal a.

Hence we ha~e _

} according to the conditions.

2z+b=a.
By transposition, 2z=a—>b,
a=b a b
or g=—p—=o—3, the less number.

Hence w+b=§—g+b=§+§, the greater number.
- As these results are independent of any particular value at-
tributed to the letters @ and b, it follows that

Half the difference of two quantities, added to half their sum_
1s equal to the greater ; and

N
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Half the dzﬁ"erenoe subtracted Jfrom half the sum is equal to
the less.

The expressions g+% and g-—g are called formulas, because

they may be regarded as comprehending the solution of all

questions of the same kind ; that is, of all problems in which we

have given the sum and difference of two quantities. ¢
Thus, let a=8

b—o } as in the preceding problem.

+ ;=——="5, the greater number.

_g=8—:3=3, the less number.

= 10; their difference = 6; required the numbers.

g g 12 « 2 «
- 'g 23 « 11 «
s F 100 “ 50 “
5o 100 @« 1 .
| E 5 T 3 «
Og 10 « 3 «

Prob. 5. From two towns which are 54 miles distant, two
travelers set out at the same time with an intention of meeting.
One of them goes 4 miles and the other 5 miles per hour. In
how many hours will they meet ?

Let z represent the required number of hours.

Then 4z will represent the number of miles one traveled

and 5z the number the other traveled ;
and since they meet, they must together have traveled the

whole distance.
']

Consequently, 4z+ 5x=>54.
Hence 9 =>54,
or x=6.

Proof. In 6 hours, at 4 miles an hour, one would travel 24
miles ; the other, at 5 miles an hour, would travel 30 miles.
..The sum of 24 and 30 is 54 miles, which is the whole distance.

- This Problem may be generalized as follows :

Piob. 6. From two points which are a miles apart, two bodies

move toward each other, the one at the rate of m miles per hour

Fl
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the other at the rate of n miles per hour. In how many hours
will they meet ?

Let x represent the required number of hours.

Then maz will represent the number of miles one body
moves, '

and nz the miles the other body moves,
and we shall obviously have

mrx+nr=a.
a
Hence =
This is a general formula, comprehending the solution of all
problems of this kind. Thus,

=150; [ 6; 5 4 =

€8 e F8 8 £ 1 2%

gE 1% ag 15 s 12 FEy

| 210 6 20 € 15 &,
Required the time of meeting.

‘We see that an infinite number of problems may be proposed,
sl similar to Prob. 5; but they are all solved by the formula
of Prob. 6. We also see what is necessary in order that the
answers may be obtained in whole numbers. The given distance
(a) must be exactly divisible by m+-n. ‘

Frob. 7. A gentleman meeting three poor persons, divided 60
cents among them ; to the second he gave twice, and to the
shird three times as much as to the ﬁrst What did he give to
each?

Let x=the sum given to the first.

Then 2z=the sum given to the second,
and 3z=the sum given to the third.

Then, by the conditions,
2422+ 3r=60.
That is, . 62=60,
or 2=10.

Therefore he gave 10, 20, and 30 cents to them respectively..
The learner should verify this, and all the subsequent results.

The same problem generalized.
Prob. 8. Divide the number a into three such parts, that the

.



70 SIMPLE EQUATIONS.

second may be m times, and the thn'd n times as great as th
first.

a . ma na
"1+m+n’ 1+m+n’ 1+m+n’

What is necessary in order that the preceding values may be
expressed in whole numbers ?

Prob. 9. A bookseller sold 10 books at a certain price, and
afterward 15 more at the same rate. Now at the last sale he
received 25 dollars more than at the first. 'What did he receive
for each book ?

Ans

: Ans. Five dollars.
The same Problem generalized.
Prob. 10. Find a number such that when multiplied success
ively by m and by n, the difference of the products shall be a.

Ans.

m—n
Prob. 11. A gentleman dying, bequeathed 1000 dollars to
three servants. A was to have twice as much as B, and B
three times as much as C. What were their respective
shares ?
Ans. A received $600, B $300, and C $100.
Prob. 12. Divide the number a into three such parts that the
second may be m times as great as the first, and the third »
times as great as the second.
Ans a . ma  mna
“14m4mn’ 14+m+4mn’ 1+m+mn’
Prob. 13. A hogshead which held 120 gallons was filled
with a mixture of brandy, wine, and water. There were 10
gallons of wine more than there were of brandy, and as much
water as both wine and brandy. What quantity was there of
each? '
Ans. Brandy 25 gallons, wine 35, and water 60 gallons.
Prob. 14. Divide the number a into three such parts, that the
second shall exceed the first by m, and the third shall be equal

- to the sum of the first and second.

¢—2m a42m a
4 4 2
Prob. 15. A person employed four workmen, to the first of
whom he gave 2 shillings more than to the second; to the

Ans
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second 3 shillings more than to the third; and to the third 4
shillings more than to the fourth. Their wages amount to 32
shillings. What did each receive ?
Ans. They received 12, 10, 7, and 3 shillings respectively.
Prob. 16. Divide the number a into four such parts, that the
second shall exceed the first by m, the third shall exceed the
second by n, and the fourth shall exceed the third by p.

Ans. a—3m—2n—p a+m—2i—p

4 ’ 4 ’
a+m+2n—p d+m+2n+3p
4 ! 4 :

(107.) Problems which involve several unknown quantities
may often be solved by the use of a single unknown letter
Most of the preceding examples are of this kind. In general,
when we have given the sum or difference of two quantities,
both of them may be expressed by means of the same letter
For the difference of two quantities added to the less must be
equal to the greater; and if one of the two quantities be sub-
tracted from their sum, the remainder will be equal to the
other.

Prob. 17. At a certain election 36,000 votes were polled ;
and the candidate chosen wanted but 3000 of having twice as
many votes as his opponent. How many voted for each ?

Let 2=the number of votes for the unsuccessful candidate.

Then 36,000—z=the number the successful one had

and 36,000 —2+ 3000 =2z.

Ans. 13,000 and 23,000.

Prob. 18. Divide the number a into two such parts, that one
part increased by b shall be equal to 7 times the other part

Ans —— ma—b _a_+_b
m+1 e b

Prob. 19. A train of cars moving at the rate of 20 miles per
hour, had been gone three hours, when a second train followed
at the rate of 25 miles per hour. In what time will the second
train overtake the first ?

Let x=the number of hours the second train is in motion,

x+3=the time of the first train.

Then 252=the number of miles traveled by the second train,

20 (z+ 3)=the miles traveled by the first train.
4*
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But at the time of meeting they must both have traveled the
same distance.

Therefore 25z=20z+ 60.

By transposition, 52=60,
and z=12.

Proof. In 12 hours, at 25 miles per hour, the second train
goes 30Q miles; and in 15 hours, at 20 miles per hour, the first
train also goes 300 miles ; that is, it is overtaken by the second
" train.

Prob. 20. Two bodies move in the same direction from two
places at a distance of a miles apart; the one at the rate of n
miles per hour, the other pursuing at the rate of m miles per
hour. When will they meet ?

a
A m—n

This Problem, it will be seen, is essentially the same as
Prob, 10.

Prob. 21. Divide the number 197 into two such parts, that
four times the greater may exceed five times the less by 50.

Ans. 82 and 115.

Prob. 22. Divide the number a into two such parts, that m

times the greater may exceed n times the less by b.

ma—b na+b
Ans. m+n’' m+n
When n=1, this Problem reduces to Problem 18.
When b=0, this Problem reduces to Problem 24.

Prob. 23. A prize of 2329 dollars was divided between two
persons, A and B, whose shares were in the ratio of 5 to 12,
‘What was the share of each?

Beginners almost invariably put « to represent one of the
quantities sought in a problem; but a solution may often be
very much simplified by pursuing a different method. Thus, in
the preceding problem, we may put x to represent one fifth of
A’s share. Then 52 will be A’s share, and 12z will be B’s, and
we shall have the equation

S5z 122=2329,
and x=137,
consequently their shares were 685 and 1644 dollars.

Ans. In hours.
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Prob. 24. Divide the number a into two such parts, that the
first part may be to the second as m to n.

ma_  na
myn’ min
Prob. 25. What number is that whose third part exceeds 1ts
fourth part by 16 ?
Let 12z=the number.
Then 42—3r=16,
or ) . #=16.
Therefore the number=12 x 16=192.
Prob. 26. Find a number such that when it is divided suc
cessively by m and by n, the difference of the quotients shall
be a.

Ans.

mna
‘n—m

Prob. 27. What two numbers are as 2 to 3,'to each of which,
if four be added, the sums will be as 5 to 7?

A strict adherence to system would have required this exam
ple to be placed after the subject of Proportion, which is treated
of in Section XIII. It is,"however, only necessary to assume
one simple principle which is employed in Arithmetic, viz., If
four quantities are proportional, the product of the extremes is
equal to the product of the means.

Thus, if a:b::c:d
Then ad=bc.

"In the preceding Problem, let 2z and 8z be the numbers.
Then 2+4:324+4::5:7,
and by the last principle,
1424-28=152+20.

Prob. 28. What two numbers are as m to n, to each of which,
*# a be added, the sums shall be as p to ¢ ?
Ans, ™4p—=9), ralp—q)
mg—np - mq—np
Prob. 29. A gentleman divides a dollar among 12 children,
giving to some 9 cents each, and to the rest 7 cents. How

many were there of each class?
Prob. 30. Divide the number a into two such parts, that if .

L)

Ans

- N
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the first is multiplied by m and the second by 7, the sum of the

products shall be &.
. b—na ma—b

. “me—n’ m—n’

Prob. 31. If the sun moves every day one degree, and the
moon thirteen, and the sun is now sixty degrees in advance of
the moon, when will they be in conjunction for the first time,
second time, and so on?

Prob. 32. If two bodies move in the same direction upon the
circumference of a circle which measures @ miles, the one at
the rate of » miles per day, the other pursuing at the rate of m
miles per day, when will they meet for the first time, second
tlme, &ec., supposing them to be b miles apart at starting ?

Ans. In b ; atb. 20+b , &ec., days.
m—n’ m—n’ m—n’

It will be seen that this Problem includes Prob. 20.

" Prob. 33. Divide the number 12 into two such parts, that the
difference of their squares may be 48.

Prob. 34. Divide the number a into two such parts, that the

difference of their squares may be b.

Ans

a?—-b a*+b
B Ans. 20 M 7.
Prob. 35. The estate of a bankrupt, valued at 21,000 dollars, 1»
to be divided among three creditors according to their respect-
ive claims. The debts due to A and B are as 2 to 3, while B’s
claims and C’s are in the ratio of 4 to 5. What sum must each
receive ?
Prob. 36. Divide the number a into three parts, which shall
be to each other as m : n: p.
s, 2 na__. __pa
’ m+n+p m+n+p’ m+n+tp
When p=1, Prob. 36 reduces to the same form as Prob. 8.
Prob. 37. A grocer has two kinds of tea, one worth 72 cents
per pound, the other 40 cents. How many pounds of each must
be taken to form a chest of 80 pounds, which shall be worth 60
cents?
Ans. 50 pounds at 72 cents, and 30 pounds at 40 cents.
Prob. 38. A grocer has two kinds of tea, one worth a cents
per pound, the other ﬁ cents. How many pounds of each must
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be taken to foim a mixture of » pounds, which shall be worth

¢ cents ?
Ans "(0 b)

n( )

pounds at a cents,

-and pounds at b cents.

Prob. 89. A can perform a piece oi work in 6 days; B can
perform the same work in 8 days; and C can perform the
same work in 24 days. In what time will they finish it if all
work together ?

Prob. 40. A can perform a piece of work in @ days, B in &
days, and C in ¢ days. In what time will they perform it if all .
work together?

Prob. 41. There are three workmen, A, B, and C. A and
B together can perform a piece of work in 27 days; A and C
together in 36 days; and B and C together in 54 days. In
what time could they finish it if all worked together?

A and B together can perform 44 of the work in one day.

Aand C “ s “ one

Band C ¢ 5 “ one

Therefore, adding these three results,

2A4-2B+2C can perform g%+ 3% +3% in oue day.
=y in one day.

Therefore, A, B, and C together can perform ¢, of the work
m one day ; that is, they can finish it in 24 days. If we put z
to represent the time in which they would all finish it, th¢n they
would together perform ! part of the work in one day, and we .
should have

P+ +d=t

Prob. 42. A and B can perform a piece of labor in a days;

A ‘and C together in b days; and B and C together in c days.

In what time could they finish it if all work together ?
2abc

This result, it w111 be seen, is of the same form as that of
Problem 40.

|
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Prob. 43. A broker has two kinds of change. It takes 20

pieces of the first to make a dollar, and 4 pieces of the second

‘to make the same. Now a.person wishes to have 8 pieces
for a dollar. How many of each kind must the broker give
him ?

Prob. 44. A has two kinds of change there must be a pieces
of the first o make a dollar, and b pieces of the second to make
the same.” Now B wishes to have ¢ pieces for a dollar. How
many pieces of each kind must A give him?

a(c b)

Ans of the first kind ; b(a C) of the second.

Prob. 45. Dmde the number 45 into four such parts, that
the first increased by 2, the second diminished by 2, the third
multiplied by 2, and the fourth divided by 2, shall all be
equal.

In solving examples of this kind, several unknown quantities
are usually introduced, but this practice is worse than superflu-
ous. The four parts into which 45 is to be divided, may be rep .
resented thus:

. The first =x—2,
second _ =242,
third =3,
fourth =2x;

for if the first expression be increased by 2, the second dimin-
ished by 2, the third multiplied by 2, and the.fourth divided by
2, the result in each case willbe 2. The sum of the four parts
« is 4§z, which must equal 45.

Hence 2=10.
- Therefore the parts are 8, 12, 5, and 20.

Prob. 46. Divide the number @ into four such parts, that
the first increased by m, the second diminished by m, the third
multiplied by m, and the fourth divided by m, shall all be
equal.

ns, O __ . _mE a . mha )
(m+12 7 (m412 " 77 (m+1)2° (m+1)?
Prob. 47. A merchant maintained himself for three years at

an expeuse of $500 a year; and each year augmented that part
of his stock which was not thus expended by one third thereof.
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At the end of the third year his origina' stock was doubled.
What was that stock ?

Prob. 48. A merchant supported himself for three years at an
expense of a dollars per year; and each year-augmented that
part of his stock which was not thus expended by one third
thereof. At the end of the third year his original stock was
doubled. 'What was that stock ?

Ans, 1450
T

Prob. 49. A father, aged 54 years, has a son aged 9 years.

In how many years will the age of the father be four times that
. of the son?

Prob. 50. The age of a father is represented by a, the age of
his son by & In how many years will the age of the father be
n times that of the son? ’

a—nb
n—1"

Ans.



SECTION VIIL

SIMPLE EQUATIONS CONTAINING TWO
OR MORE UNKNOWN QUANTITIES.

(108.) In the examples which have been hitherto given, each
problem has contained but one unknown quantity ; or, if there
have been more, they have been so related to each other that
all have been expressed by means of the same letter. This,
however, can not always be done, and we are now to consider
how equations of this kind are resolved.

If we have two equations, with two unknown quantities, we
must endeavor to deduce from them a single equation, con-
taining only one unknown quantity. We must, therefore, make
one of the unknown quantities disappear, or, as it is termed,
we must eliminate it. There are three different methods of
elimination which may be practiced.

The first is by substitution,

“ second “ comparison,
“ third “ addition and subtraction.

ELIMINATION BY SUBSTITUTION."

(109.) Let it be proposed to solve the system of equations
=12

~ vt w

From the second equation, we find the value of z in terms
of y, which gives

z=y+6.

Substituting the expression y-+6 for  in the first equation

it hecomes
y+6+y=12;
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from which we find that y=38; and since we have already
seen that 2=y 6, we find that z=3+4-6=9.

To verify these values, substitute them for z and y in the
original equations, and we shall obtain

94-3=12
9—3= 6.
Again, take the equations

2z+3y=13 g
sz+ay=22.) @)
From the first equation we find
\ _13—2z
=—a
Substituting this value of y in the second equation, it becomes
) otax
an equation containing only z, which, when solved glves
r=2,
and this value of z, substituted in either of the original equa-
tions, gives

—22,

y=38.
The method thus exemplified is expressed in the following

RULE.

Find an expression for the value of one of the unknown quan
tities in one of the equations ; then substitute this value in the
place of its equal in the other equation.

ELIMINATION BY COMPARISON.

(110.) To illustrate this method, take equations (1.) of the -

preceding Article. Derive from each equation an expression
for z in terms of y, and we shall have
z=12—1y,
z= 6+y.
These two va]ues of z must be equal to each other, and by
comparing them we shall obtain
12—y=6+y,
an equation involving only one unknown quantity ;
whence y=38.
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Substituting this value of y in the expression =6 +y, and
we find =9, as before.

Again, take equations (2.) of the preceding Article.

From equation first, we find

13—2x
’ y = 3 ’
and from equation second,
22-—5:2:
y= .

Putting these values of y equa] to each other, we have
. 13—2z 22—5z
3 4
an equation containing only z, whence we obtain
z=
Substxtutmg this value of z in exther of the preceding ex-
pressions for y, we find

=3.
The method thus exemplified is expressed in the following

RULE.

Find an expression for the value of the same unknown quan-
tity in each of the equations, and form a new equation by put-
ting one of these values equal to the other. -

ELIMINATION BY ADDITION AND SUBTRACTION.

(111.) To illustrate this method, take equations (1.) of Arz.
109. Since the coefficients of y in the two equations are
equal and have contrary signs, we may eliminate this letter by
adding the two equations together, whence we obtain

Rx=18,
. orz= 9. )

We may now deduce the value of y by substituting the
value of z in one of the original equations. Taking the first
for example, we have

9+y=12,
whence y= 38

Since the coefficients of z are equal in the two original

equations, we might have eliminated .this letter by subtracting
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one equation from the other. Subtracting the first from the
second, we obtain
2y=6,
or y=3.

Let us apply the same method to equations (2.) of Arz. 109.
We perceive that if we could deduce from the proposed equa-
tions two other equations, in which the coefficients of y should
be equal, the elimination of y might be effected by subtracting
one of these new equations from the other.

It is easily seen that we shall obtain two equations of the
form required, if we multiply all the terms of each equation by
the coefficient of y in the other. Multiplying, therefore, all
the terms of equation first by 4, and all the terms of equation
second by 38, they become

8z+12y=>52, .
152+ 12y=66.
Subtracting the former of these equations from the latter, we
find

whence z= 2.

In like manner, in order to eliminate z, multiply the first of
the proposed equations by 5, and the second by 2, they will
become

10z+15y=65,
10z+ 8y=44.

Subtracting the latter of these two equations from the for-
mer, we have

Ty=2l1,
whence y= 8

This last method is &&pressed in the following

RULE.

Multiply or divide the equations, if necessary, in such a man-
ner, that one of the unknown quantities shall have the same coef-
ficient in both. Then subtract one equation from the other, if
the signs of these coefficients are the same, or add them together
if the signs are different
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EXAMPLES.

(112.) Ez. 1. Given 5z44y=>58 ) to find the values of
3z4Ty=67 and y.

By the first method.
From the second equation we find
3z=67—"1y.
Therefore =67;7y .

Substituting this value of z in the first equation,
sx % -5 —T 4 ay=s8.

Hence . 335—35y+ 12y=174.
By transposition, 335—174=35y— 12y,
or 161=23y.
Therefore y=".
Substituting this value of y in the expression for the value
of z given above, it becomes
67—7TX"7 67—49 18

3 3 3 . 6.
Thus we have y="17, and z=6.
By the second method.
" From the first equation we find
. 5z=56—4y,
—4 .
whence :o:=58 3 Y .
T'rom the second équation, z=67;7’.
8—4y 67—17 .
Therefore 5 3 Y =—8-—"!.

Clearing of fractions, 174—12y=3835—85y. °
By transposition, 35y—12y=335—174,

or 23y=161.
Therefore y=1,

whence, as before, z=6.
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By the third method.
Multiplyng the second equation by 5 and the first by 3, we

obtain
152+ 85y=335,

and 15z+412y=174.
By subtraction, 23y=161,
or y= 7.

‘Whence, from equation first,

5z=58—4y="58—28=30,
and therefore =6.

Thus the same example may be solved by either of the three
methods, and each method has its advantages in particular
cases. Generally, however, the first two methods give rise to
fractional expressions which occasion inconvenience in prac-
tice, while the third. method is not liable to this objection.
When the coeflicient of one of the unknown quantities in one
of the equations is equal to unity, this inconvenience does not
occur, and the method by substitution may be preferable ; the
third gvill, however, commonly be found most convenient.

Ez. 2. Given 11z+3y=100

4x—"Ty=

Multiplying the first equation by 7 and the second by 3, we
obtain ‘

g to find the values of z and y.

77z+2ly—700,
12z—21y=
Therefore, by addition, 89.1:—-712
or z= 8.
From equation first, 3y=100—11z,
=100—-88=12,
and y=4.
These values of z and y may be easily verified by substitu-
tion in the original equations.
Thus, 11X84-3X4=100; or 884-12=100.

And 4X8—TX4= 4; or32—28= 4
.z Y
Ez. 3. Given 2+3——

to find the values of z and y.

- Ans. z=6, y=12.




84 SIMPLE EQUATIONS

Ez 4 Given ’5—"—2+ 8y=31

to find the values of z and 3
Y +5+10x—192
. z+3 | 3z—2
Ez. 5. Given 2y 4 =7+ 5 to find the values of
8— 2z+1 z-and y.
4z 8” 24}—=> ¥
Exz. 6. Given :+l—)—m
. z to find the values of z and y.
_+—-_—_—n
z' Yy

4 be—ad bc—ad
n T=rb—md’ ¥ mc—na
(113.) When a problem involves a large number of quanti-
ties, it is common to designate a part of them by different let-
ters, and for the remaining qfiantities to employ the same let-
ters accented or numbered. :

Thus, a, a’, a", &', @' . . . ® =~
a¥, a®, a®, a¥® . . . . .« a™
ay Gy a3 a . . . . . Gn
Qy By Ay @y . A

are used to denote different quantities, though they generally
imply some connection between the quantities which they rep-
resent. a' is read e prime; a’, a second; a'', a third, &c.
We must carefully distinguish between a; and a*; between a,
and a', &c. In the one case, the numerals are exponents, and
denote powers of a; while in the other case, the numerals are
only used for the sake of convenience to denote distinct quan-
tities. Examples showing the convenience of this notation will
be found in Sections XIX. and XX.
Ez. 1. Given Zfzi% ;Zi to find the values of z and y.
be—bc' ac'—a'c
Ans. =5 V= —a

The symmetry of these expressions is well calculated to fix
them in the memory.
Ez.8. What fractxon is that, to the numerator cf Which, if 4
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be added, 1';he value is one half; but if 7 be added to the de-
nominator, its value is one fifth ?

Let 5 represent the fraction required.

Then, by the first condition,

_‘”ﬂ=%; whence 22+8=y.
By the second condition,
z 1
7575 whence 5z=y+7.
Subtracting the first equation from the second, we have
3r—8= 7,
whence 3r=15,
or T a=5.
Therefore, y=22+8=10+8=18,
and the fraction is N
544 1
Proof. 18 —3
5 1

Ez. 9. A certain sum of money, put out at simple interest,
amounts in 8 months to $1488, and in 15 months it amounts to
$1530. What is the sum and rate per cent. ?

Ez. 10. A sum of money put out at simple interest amounts
in 7 months to a dollars, and in » months to b dollars.

Required the sum and rate per cent.

Ans. The sum is na—mb ; the rate is 1200 x .b;a.
n—m na—mb

Egz. 11. There is a number consisting of two digits, the
second of which is greater than the first ; and if the number be
divided by the sum of its digits, the quotient is 4; but if the
digits be inverted, and that number be divided by a number
greater by two than the difference of the digits, the quotient is
14.

Requirey the number.

Let « represent the left hand digit,
and y “ right hand digit. .

Then, since 2 stands in the place of tens, the number will be
represented by 10z+4v.

3
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Hence, by the first condition,

10z4y 4
x4y
Bv the second condition,
10y+x
. m— 14.
Whence z=4, y=8,

and the required number is 48.

Ez. 12. A boy expends thirty pence in apples and pears, .
buying his apples at 4 and his pears at 5 for a penny, and
afterward accommodates his friend with half his apples, and
one third of his pears for 13 pence. How many did he buy of
each?

Ez. 13. A father leaves a sum of money to be divided among
his children, as follows: the first is to receive $300 and the
sixth part of the remainder; the sécond $600 and the sixth part
of the remainder ; and, generally, each succeeding one receives
$300 more than the one immediately preceding, together with
the sixth part of what remains. At last it is found that all the
children receive the same sum. - What was the fortune left and
the number of children ?

Ans. The fortune was $7500, the nuimber of children 5

Ez. 14. A sum of money is to be divided among several per-
sons, as follows: the first receives a dollars together with the
.nth part of the remainder; the second 2a together with the
nth part of the remainder; and each succeeding one a dollars
more than the preceding, together with the nth part of the
remainder; and it is found, at last, that all have received the
same sum. What was the amount divided, and the number of
persons ?

Ans. The amount =a(n—1)?, the number of persons =n—1.

EQUATIONS WHICH CONTAIN THREE OR MORE UNKNOWN
QUANTITIES.

(114.) Let us now consider the case of three equations in-
volving three unknown quantities :
Take the system of equations,
3z2+2y+ z=16, (1.)
2z+2y+22=18, (2.)
22+ 3y + £=17. (8.)
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In order to eliminate z between equations (1.) and (2.), we
will divide both members of the second equation by two ; we'
thus obtain

z+y+2z=90.

Subtracting this from the first equation, we find a new equa-

tion containing but two unknown quantities,
2z+y=". (a.)

In order to eliminate z between equations (1.) and (3.), sub-

tract the former from the latter, which gives
—z+y=1. 8.)

From the two equations (a.) and (B.), one may be deduced
containing only one unknown quantity. For, by subtracting
the one from the other, we have

- 3z=6, or z=2.

Substituting this value of  in equation (3.), we obtain

y=3.

Substituting these values of z and y in equation (1.), we ob
tain :

3X2+2X3+2=16.

Hence. z=4.

These values of z, y, and z may be verified by substitution
in the original equations.

We have effected the elimination in this case by method
third, Art. 111 ; but either of the other methods might have
been employed. Hence, to solve three equations containing
three unknown quantities, we have the following

RULE.

(115.) From the three equations, deduce two containing only
two. unknown quantities; then from these two deduce one con
taining only one unknown quantity.

Ez. 15. Given z+ y+ 2=29 (1.)

z+2y+32=62 (2.) g to find z, y, and z.
1z+iy+32=10 (3.
Subtract equation (1.) from (2.), and we obtain

y+2:=33; (a)
clearing equation (3.) of fractions, we have
62-+4y+32=120. «.)

5
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Multiplying equation (1.) by 6, o
' 6z+6y+62=174. (5.)
Subtracting (4.) from (5.), 2y+32=>54. ®)
We have thus obtained two equations, (a.) and (8.) cortamn
ing two unknown quantities.
Multiplying (a.) by 2, we have 2y+42=66. (6.)
Subtracting (8.) from (8.), 2=12.
Substituting this value of z in (3.), we obtain

2y+86="54.
Whence y=9.
Substituting these values of y and z in equation (1.),
z+9+12=29. °
Whence z=8.

These values may be verified as in former examples.
Ez. 16. Given 2z-+4y—32z=22 -
§to find z, y, and 2.

/

Ans. z=38, y="1, z=4.

4z—2y+52=18
6z+Ty— 2=63

Ez. 17. Given z+y=a
z+2=b %to find z, y, and z.
y+z=c

Ez. 18. Giverr z+}y+}2=32 .

jz+iy+iz=15 %to find z, y, and 2.
lz+ly+§z=12.

(116.) If we had four equations involving four unknown
quantities, we might, by the methods already explained, elim-
inate one of the unknown quantities. We should thus obtain
three equations between three unknown quantities, which might
be solved according to Art. 114. So, also, if we had five
equations involving Jive unknown quantities, we might, by the
same process, reduce them to four equations involving four
unknown quantities ; then to three, and so on. By following
the same method, we might resolve a system of any number
of equations of the first degree. Hence, if we have m equa-
tions involving m unknown quantities, we proceed by the fol-
lowing -

RULE.

1. Combine successively any one of the equations with each
of the others, so as to eliminate the same unknown quantity we
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thus obtain m—1 new equations containing m—1 unknown
quantities.

2. Eliminate another unknown gquantity by combining any
one of these new equations with the others; there will result
m—2 equations containing m—2 unknown quantities.

8. Continue this series of operations until there results a
single equation containing but one unknown quantity, from
which the value of this unknown quantity is easily deduced.
Then by going back, step by step, to one of the original equa-
tions, the values of the other unknown quantities may be suc
cessively determined.

Ez. 19. Given 7z—2z +3u=17 .
y—2z+ t=11|— .
5y—8r—2u= 8 > to find z, y, 2, u, and ¢.
4y—3u+2t= 9 ‘
8z +8u=33 .
Ans, z=2, y=4, 2=38, u=38, t=1.

Either of the unknown quantities may be selected as the
one to be first exterminated: It is, however, generally best to
begin with that which has the smallest coefficients ; and if each
of the unknown quantities is not contained in all the proposed
equations, it is generally best to begin with that which is found
in the least number of equations.

" Ez.20. A person owes a certain sum to two creditors. At
one time he pays them $530, giving to one four elevenths of
the sum which is due, and to the other $30 more than one
sixth of his debt to him. Ata second time he pays them $420,
giving to the first three sevenths of what remains due to him,
and to the other one third of what remains due to him. What
were the debts?

Ez. 21. If A and B together can perform a piece of work
in 12 days, A and C together in 15 days, and B and C in 20
days, how many days will it take each person to perform the
same work alone ? . i

This Problem is readily solved by first finding in what time
they could finish it if all worked together.

Ez. 22. If A and B together can perform a piece of work
in a days, A and C together in b days, and B and C in ¢ days,
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how many days will it take each person to perform the same
work alone ?
2abe
ac+bc—ab days,
2abc
B ¢ ab+bc—ac days,
© 2abe

c “ ab+ac—be days.

(117.) Hitherto we have supposed the number of equations
equal to the number of symbols employed to denote the un-
known quantities. This must be the case with every problem,
in order that it may be determinate; that is, that it may not
admit of an indefinite number of solutions.

Suppose, for example, that a problem mvolvmg two un-
known quantities (z and y) leads to the single equation

z—y=3.

Now 1f we make y=1, then 2=4;

y=2, then =53

y=38, then z=6;

y=4, then z=1,

&e., &ec. ;

and each of these systems of values, 1 and 4, 2 and 5, 8 and 6,
&ec., substituted for z and y in the original equation, will sat-
isfy it equally well. Hence the problem is indeterminate ; that
is, admits of an indefinite number of solutions,

(118.) If we had fwo equations involving three unknown
quantities, we could, in the first place, eliminate one of the un-
known quantities by means of the proposed equations, and
thus obtain one equation containing {wo unknown quantities,
- which would be satisfied by an infinite number of systems of
valués. Therefore, in order that a problem may be determ-
inate, its enunciation must contain as many different condi-
tions as there are unknown quantities, and each of these con-
ditions must be expressed by an independent equation.

Eguations are said to be independent when they express
conditions essentially different; and dependent when they ex-
press the same conditions under different forms.

'y = 7 . . .
Thos 2213.—:10 g are independent equations.

Ans. A requires
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But 2:123;; 14 }are net independent,
because the one may be deduced from the other.

(119.) If, on the contrary, the number of independent equa
tions exceeds the number of unknown quantities, these equa-
tions will be contradictory.

For example, let it be required to find two numbers such
that their sum shall be 7, their difference 1, and their product
100.

From these conditions we derive the following equations.

z+y= 1,
z—y= 1,
zy=100.

"From the first two equations we easily find

: z=4, and y=38.

Hence the third condition, which requires that thelr product

shall be equal to 100, car not be fulfilled.
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- SECTION IX.

DISCUSSION OF EQUATIONS OF THE
FIRST DEGREE. INEQUALITIES.

(120.) To discuss a problem or an equation is to determine
the valpes which the unknown quantities assume for particular
- hypotheses made upon the values of the given quantities, and
to interpret the peculiar results obtained. The term, there-
fore, is not strictly applicable, except to problems which are
stated in the most general form, like some of those in Arts. 106
and 107. If the sum of two numbers is represented by a and
their difference by b, the greater number will be expressed by

a b a b
2ty and the less by 3 % Here a and b may have any

values whatever, and still these formule will always hold true.
It frequently happens that, by attributing different values to the
letters which represent known quantities, the values of the un-
known quantities assume peculiar forms which deserve con-
sideration.

(121.) We may obtain five species of values for the unknown
quantity in a problem of the first degree.

-I. Positive values.

II. Negative values.

II1. Values of the form of zero, or %.
1V. Values of the form of —':;

V. Values of the form of g-

‘We will consider these fivs cases in succession.
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1. Positive values are generally answers to problems in the
sense in which they are proposed. Nevertheless, all positive
values will not always satisfy the enunciation of a problem.
If, for example, a problem requires an answer in whole num-
bers and we obtain a fractional value, the problem is impossi-
ble. Thus,in Problem 17, page 71, it is implied that the value
of z must be a whole number, although this condition is not
expressed in the equations. It would be easy to change the
data of the problem so as to obtain a fractional value of z,
which would indicate an 1mposs1b1hty in the problem pro-
posed. Problem 43, page 76,is of the same kind; also Ez.
11, page 85.

If the value obtained for the unknown quantity, even when
positive, does not satisfy all the conditions of the problem, the
problem is impossible in the form proposed.

(122.) II. Negative values.

Let it be proposed to find a number, which, added to the
number b, gives for a sum the number a.

Let = = the required number.

Then, by the terms of the problem,

z+b=a, whence z=a—b.

This formula will give the value of z for every case of the
proposed problem.

For example, let a=", and b=4.

Then z=T7—4=38.

Again, let =5, and b=S8.

Then z=5—8=-—3.

We thus obtain for z a negative value. How is it to be in-
terpreted ?

By referring to the problem, we see that it is proposed to
find a number which, added to 8, shall make it equal to 5.
Considered arithmetically, the problem is plainly impossible.
Nevertheless, if in the equation 84+z=5, we substitute for +z
its value,—3, it becomes

8—3=5,
. an identical equation ; that is, 8 diminished by 3 is equal to 5.

The negative solution z=—3, shows, therefore, the impossi-
bility of satisfying the enunciation of the problem as above
stated : but, taking this value of z with a contrary sign, we see
that it satisfies the enunciation when modified as follows:
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To find a number which, subtracted from 8, gives a diffen
ence of 5; an enunciation which differs from the former only
in this, that we put subtract for add, and difference for sum.

If we wish to solve this new question directly, we shall
have

8—z=5.

Whence - z=8—5, or z=38.

- (123.) For another example, take Problem 50, page 77.
The age of the father being represented by a, and that of the

son by b; then an—;nb will represent the number of years be-

1
fore the age of the father will be » times that of the son.

Thus, suppose  a=54, b=9, and n=4.

Then . $=—3—=-—3-= o

That is, the father having lived 54 years and the son 9, in 6
years more the father will be 60 years old and the son 15.
But 60 is 4 times 15; hence this value, =6, satisfiss the enun-
ciation of the problem.

Again, suppose a=45, b=15, and n=4,

45—60 —15
Then z 3 3 =5
Here again we obtain a negatwe solution. How are we to

interpret it ?

- By referring to the problem, we sée that the age of the son
is already more than one fourth that of the father, so that the
time required is already past by five years. The value of =
just obtained, taken with a contrary sign, satisfies the following
enunciation:

A father is 45 years old, his son 15; how many years since
the age of the father was four times that of his son?

The equation corresponding to this new enunciation is
45—z

e

‘Whence 60—4zx=45—z; and z=5.

(124.) Reasoning from analogy, we deduce the following
general principles:

1. Every negative value found for the unknown quantity in a

15—z=
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problem of the first degree, indicates an absurdity in the condi-
tions of the problem, or at least in its algebraic statement.

2. This value, taken with a contrary Sign, may be regarded
as the answer to a problem, whose enunciation only differs from
that of the proposed problem in this, that certain quantztzes
which were ApDED should have been sSUBTRACTED, and _recipro-

cally.

) (125) In what case would the value of the unknown quan-
tity in Prob. 20, page 72, be negative ?

ns. When 2>m.
Thus, let m=20, =25, and a=60 miles.
60 60
Then B x—20—_23—:-5-——12.

To interpret this result, observe that it is impossible that the
second train, which moves the slowgst, should overtake the
first. At the time of starting, the distance between them was -
60 miles, and every subsequent hour the distance increases.
If, however, we suppose the two trains to have been moving
uniformly along an endless road, it is obvious that at some
former time they must have been together. _

This negative solution then shows an absurdity in the con-
ditions of the problem. The problem should have been stated
thus: -.

Two trains of cars, 60 miles apart, are moving in the same
direction, the forward one 25 miles per hour, the other 20.
How lorig since they were Together ?

To solve this problem, let = = the required number of hours.

Then 25z = the distance traveled by the first train,

20z =’ “ “ second train.
And since they are now 60 miles apart,
25x=2024-60.
Hence 5z=60,
and z=+12.

.We thus obtain a positive value of z.

In order to include both of these cases in the same enuncia-
tion, the question should have been asked, Required the time oy
their being together, leaving it uncertain whether the time was
past or future.

In what case would the value of one of the unknown quan

5’.
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tities in Problem 34, page 74, be negative? Why should it e
negative ! and how could the enunciation be corrected for this
case {
In what case would the value of one of the unknown quan-
tities in Problem 4, page 67, be negative !
(126.) IIL. Values of the form of zero, or :’—1

In what case would the value of the unknown quantity in

Problem 20, page 72, become zero, and what would this value
" signify ?

Ans. This value becomes zero when a=0, which signifies
that the two trains are together at the outset.

In what case would the value of the unknown quantity in
Problem 50, page 77, become zero, and what would this value
signify ?

Ans. When a=nb, whlch signifies that the age of the fa-
ther is now = times that of the son.

In what case would the values of the unknown quantities in
Problem 38, page 75, become zero, and what would this sig-
nify ? -

When a problem gives zero for the value of the unknown
quantity, this value is sometimes applicable to the problem,
and somstimes it indicates an impossibility in the proposed
question

(127.) V. Values of the form of %

In whit case does the value of the unknown quantity in
Problem 20, page 72, reduce to -64? and how shall we inter-

pret this result?
Ans. When m=n.

On referring to the enunciation of the problem, we see that
it is absolutely impossible to satisfy it ; that is, there can be
no point of meeting, for the two trains being separated by the
distance a, and moving equally fast, will always continue at

. ; a
the same distance from each other. The-result o may then

be regarded as indicating an impossibility.
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The symbol g is sometimes employed to represent i’nﬁnity,

and for the following reason :
When the difference m—n, without being absolutely nothing,
a
m—n
For example, let m—n=0.01.

Then z2=——=——=100a.

is very small, the Auotient is very large. .

Let m—n=0.0001,
a a
m—m—IOOOOa.
Hence, if the difference in the rates of motion is not zero,
the two trains must meet, and the time will become greater
and greater as this difference is diminished. If, then, we sup-

pose this difference less than any assignable quantity, the time
represented by 1_75%—1; will be greater than any assignable quan-
tity, or infinite.

Hence we infer, that every expression of the form %, found

for the unknown quantity, indicates the impossibility of satie-
fying the problem, at least in finite numbers.
In what case would the value of the unknown quantity in

Problem 10, page 70, reduce to the form %’! and how shall
we interpret this result?

(128.) V Values of the form of g

In what case does the value of the unknown quantity in
Problem 20, page 72, reduce to g 7 and how shall we interpret

this result?
Ans. When a=0, and m=mn,
To interpret this result, let us recur to the enunciation, and
observe that, since a is zero, both trains start from the same
point ; and since they both travel at the same rate, they will
ahoays remain together, and therefore the required point of
meeting will be any where in the road traveled over. The
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problem, then, is entirely indeterminate, or admits of an infinite

. .0
number of solutions, and the expression p may represent any

finite quantity.
We infer, therefore, that an expression o the form g found

for the unknown quantity, generally indicates that it may have
any value whatever. In some cases, however, this value is
subject to limitations.

In what case would the values of the unknown quantities 1n

Problem 44, page 76, reduce to g’! and how would they satisfy

Ans. When a=b=c,
which indicates that the coins are all of the same value. B
might therefore be paid in either kind of coin; but there is a
limitation, viz., that the value of the coins must be one dollar.
In what case do the values of the unknown quantities in

the conditions of the problem ?

Problem 88, page 75, reduce to %'! and how shall we interpret
this result

OF ZERO AND INFINITY.

(129.) From Art. 127, it is seen that in Algebra we some-
times have occasion to consider infinite quantities. It is nec-
essary, therefore, to establish some general principles respect
ing them. .

An infinite quantity is one which exceeds any assignable limit
It is often expressed by the character @. Thus, a line pro
duced beyond any assignable limit is said to be of infinite
length. A surface indefinitely extended, and also a solid of
indefinite extent in any one of its three dimensions, are ex-
amples of infinity.

Anr’ infinite quantity does not mean an infinite number of
terms. Thus, the fraction } reduced to a decimal,is.333333,
&c., without end, but the value of this series is less than
unity.

Infinite quantities are not all equal amoung themselves.
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Thus the series 1+1+141414, &ec.,
' 242424242+, &c,,
8+4-34-3+3+43+, &c.,
continued to an infinite number of terms, will each be infinite,
* although the second series will be double, and the third treble
the first.

So, also, a line may be infinitely extended both ways; or it
may be infinitely extended in one direction, and limited in the
other. In either case, the line is said to be infinite.

A quantity less than any assignable quantity is called an in
finitesimal, and is sometimes represented by 0.

Thus, take the series of fractions v, 134 1% rsiss &C
By increasing the denominator, we diminish the value of the
fraction ; and if the denominator be made infinitely great, the
quotient will be infinitely small.

130.) We have seen, in Art. 127, that afSP , Where @ ma
0 _ y

represent any finite quantity. That is,
If a finite quantity be divided by zero, the quotient is infinite.

From the same equation we deduce -g—=0. That is,

If a finite quantity be divided by infinity, the quotient is zero.
From the same equation we deduce a=0X®. That is,
If zero be multiplied by infinity, the product is a finite quan-
aty. ‘

If a finite quantity be multiplied by a proper fraction, it will
be diminished, and the smaller the multiplier, the less the prod-
uct. Hence, if the multiplier be infinitely small, the product
will be infinitely small, or 2X0=0. That is,

If a finite quantity be multiplied by zero, the product will be
zéero.

From this equation we deduce a=g; that is,

If zero be divided by zero, the quotient may be any finute
quantity.

The greater the multiplier, the greater will be the product.
Hence, if a finite quantity be multiplied by infinity, the produrt
will be infinite ; that is,

. axom=wo.
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. @ .
Froin this equation we deduce a == that is,

If infinity be divided by infinity, the quotient may be and
firite quantity.

An infinite quantity can not pe increased by the addition of )

a finite quantity, or diminished by its subtraction ; that is,
o ta=wo. _

So, also, a finite quantity is not altered by the addition or
subtraction of zero ; that is, a=0—=a.

OF INEQUALITES,

(131.) In discussing algebraical problems, as shown in Arzs.
120-128, it .is frequently necessary to employ inequalities, or
expressions of two quantities which are not equal to each oth
er. Generally, the principles already established for the trans-
formation of equations are applicable to inequalities also.
There are, however, some important exceptions to be noted,
arising chiefly from the use of negative expressions as quan-
tities.

Two inequalities are said to subsist in the samg sense when
the greater quantity stands at the left in both, or at the right
in both; and in @ contrary sense when the greater quantity
stands at the right in one, and at the left in the other.

Thus, 9>7 and 7>6.

As also - 5<8 and 3<4,
are inequalities which subsist in the same sense; but the ine-
qualities :
10>6 and 8<%,
subsist in a contrary sense.

- (182.) L If we add the same quantity to both members of -an

wnequality, or subtract the same quantity from both members, the

resulting inequality will always subsist in the same sense.
Thus, 8>3.
Addmg 5 to each member,
8+5>3+5; -
and subtractmg 5 from each member,
8—5>3—-5.
Again, take the inequality —3< ~2. :
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Adding 6 to each member, we have
—846<—2+86, or 3<4;
and subtracting 6 from each member,
—8—6<L—2—6,0r —9L—8.

The student must here bear in mind what was stated in Art.
47, of two negative quantities, that is the least whose numer-
ical value is the greatest.

This principle enables us to transpose any term from one
member of an inequality to the other by changing its sign

Thus, o' +-5'>3b'—2a’
Adding 2a* to each member of the inequality, it becomes
a'+b'+2a>3b"

Subtracting b* from each member,
a’+2a’>3b*—b’,
or 3a’>2b.
(133) IL If we add together the correspondmg members of
two or more inequalities which subsist in the same sense, the re-
sulting inequality will always subsist in the same sense.

Thus, 5>4

' 4>2 e
7>3
. Adding, we obtain 16>9.

III. But if we subtract the corresponding members of two or
more inequalities which subsist in the same sense, the resulting
inequality will NoT ALwAYs subsist in the same sense.

Take the inequalities 4<7

2«3
Subtracting, we have 4—2<L7—8, or 2<L4,
where the resulting inequality subsists in the same sense.

But take 9<10
and 6< 8.

Subtracting, the result is 9—6> (not <) 10—8, or 3>2,
where the resulting inequality subsists in the contrary sense.

We should therefore avoid as much as possible the use of
this transformation, or when we employ it, determme in what
sense the resulting inequality subsists.

(134.) 1V. If we multiply or divide the two members of an in-
equahty by a positive number, the resulting inequality will svb.
sist in the same sense.
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Thus, if al b
Then ma<mb.

a b
And ;<;.
Also, if —a>-—b.
Then : —na> —nb.
And —2> —'l.

This principle will enable us to clear an inequality of frac-
“ong. Thus, suppose we have

a-b_c—-a
2d = 8a’

Multiplying both members by 6ad, it becomes

8a(a’—b")>2d(c*—d").

V. [f we multiply or divide the two members of an mequahty
by a negative number, the resulting inequality will subsist in a
contrary sense.

_ Take, for example, 8>1.

Multiplying both members by —3, we have the opposite in.
equality, .

—24<—21.
So, also, 15>12.
Dividing each member by —3, we have
—5<—4.

Therefore, if we multiply or divide the two members of an
inequality by an algebraic quantity, it is necessary to ascer-
tain whether the multiplier or divisor is negative, for in this
case the inequality subsists in a contrary sense.

VI. If. we change the signs of both members of an inequality,
we must reverse the sense of the inequality, for this transforma-

“tion is evidently the same as mu.tiplying both members by
-1. :
(185.) VIL If both members of an inequality are positive
numbers, we can raise them to any power withcut changing the
~ sense of the inequality.
Thus, 5>3,
so also, 5'>8" or 25>9.
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And if a >b,
then will . a>b". .

VIIL If both members of an inequality are not positive num-
bers, and they be raised to any power, the resulting inequality
will not always subsist in the same sense.

Thus, —2<+3,

gives (—2)'<3%, or 4<9,

where the resulting inequality subsists in the same sense.
But —8>—5,

gives (—3)*<(—5)* or 9<25,

where the resulting inequality subsists in a contrary sense.

IX. In extracting the root of both members of aninequah
ty, it is sometimes mecessary to reverse the semse of the ine
quality. ’

Thus, from ’ 925,
by extracting the square root, we obtain
either 3«5,
or - . —3>—5.

EXAMPLES.

1. Given 7z—8<25, to find the limit of z.
Ans. x<4.

2. Given 2x+§—e<s, to find the limit of z.

Ans. 2<6.9
. T Tz T T T ..
3. Given §+§+Z+§+ﬁ—7>9’ to find the limit of .
ab
2

> be

4. Given %f+cz—ac<

v ‘ix_bd
ex+ 3

5. A man being asked how many dollars he gave for his
watch, replied, If you multiply the price by 4, and to the
product add 60, the sum will exceed 256 ; but if you multiply
the price by 3, and from the product subtract 40, the re-

, to find the limits of z.

a h
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mamnder will se less than 113. Required the price of the

watch. .
6. What number is that whose half and third part added

together are less than 105, but its half diminished by its fifth

part is greater than 337

7. The double of a number diminished by 6 is greater than
22, and triple the number diminished by 6 is less than double
the number increased by 10. Required the number.



SECTION X.

. INVOLUTION AND POWERS.

(186.) According to Art. 20, the products formed by the suc-
cessive multiplication of the same number by itself are called the
powers of that number.

Thus, the first power of 3 is 3.

The second power of 3 is 9, or 3X3.

The fourth power of 3 is 81, or 3X3Xx3X3,

&e., &e., &ec.

According to Art. 21, the exponent is a number or letter writ-
ten a little above a quantity to the right, and denotes the number
of times that quantity enters as a factor into a product.

Thus, the first power of @ is a', where the exponent is 1,
which, however, is commonly omitted.

The second power of a is aXa, or a’, where the exponent 2
denotes that a is taken twice as a factor to produce the pow-
er aa.

The third power of ais aXaXa, or a', where the exponent
3 denotes that a is taken three times as a factor to produce
the power aaa.

The fourth power of a is aXaXaXa, or a'. ,

Also, the nth power of a is aXaXaxXa . . . repeated
as a factor = times, and is written a™

Exponents may be applied to polynomials as well as to mo-
nomials.

Thus (a+b+c)’ is the same as

(@a+b+c)x (a+d+c) X (a+b+c),
or the third power of the entire expression a+b+c.

(187.) According to the rule for the multiplication of mono-

mials, Arts 49 and 50.
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(3ad’)*=3ab* x 3ab*=9a"b".
So, also, (4a’®c’)'=4a’bc’ X 4a’bc*=16a'b’c".
_ Hence it appears that, in order to square a monomial, we must-
square its coefficient, and multiply the exponent of each of the
letters by 2.

EXAMPLES.

-
.

Required the square of '7axy.
Ans. 49a’z’y".
2. Required the square of 11a*bcd’. :
3. Required the square of 12a’zy.
4. Required the square of 15ab’cz*.
Required the square of 18zy2".
According to Art. 53, + multiplied by +, and — multiplied by
-, give +. Now the square of any quantity being the product
of that quantlty by itself, it necessarily follows that whatever
may be the sign of a monomial, its square must be affected with
the sign +.
Thus the square of +3ax or of —3az is +9a’z".
(138.) The method of involving a quantity to any power, is
easily derived from the preceding principles.
Let it be required to form the fifth power of 2a'd".
According to the rules for multiplication,
(2a’0")*=2a"b’ X 2a"D* X 2a’b* X 2a'b* X 2a"D"
=32a""b".
Where we perceive
-1. That the coefficient has been raised to the fifth power.
2. That the exponent of each of the letters has been multi-
plied by 5.
In like manner,
(8ab’c)*=38a’b"c X 3a’b’c X 3a’b’c
=8g* e
=27a°b'c’.
Hence, to raise a monomial to any power, we have the fol-
lowing

oy

RULE.

Raise the numerical coefficient to the given power, and multi-
ply the exponent of each of the letters by the exponent of the
power required.
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’ EX AMPLES.

1. Required the fourth power of 4abc".

Ans. 256a‘b°c™,

2. Required the fifth power of 3az’y".

8. Required the third power of 6zy"z".

4. Required the sixth power of 2ad’y'v.

5. Required the seventh power of 2a%c*

6. Required the sixth power of 5w'zy’z.

(139.) Let us now consider the sign with which the power
should be affected.

We have seen, Art. 137, that whatever may be the sign of a
monomial, its square is always positive. It is obvious, from the
same considerations, that the product of an evern number of
negative factors is positive, but the product of an odd number
of negative factors is negative }

Thus, —aX—a=+a'

—aX—aX—a=—a'

—aX—aX—aX—a=+a'

—aX—aX—aX—aX—a=—a’
&e., &e., &e,

The product of several factors which are all positive, is in
variably positive. Hence,

Every eveN power is positive, but an obp power has the same
sign as its root.

EXAMPLES.
Required the square of =-2z°.

[
.

Ans. +4z*.

Required the square of —38z".
Required the cube of —3a°.
. Required the fourth power of —3a'b*.
Required the fifth power of —2a*X 3z*y.
(140.) A fraction is involved by involving both the numerator
snd denominator.

o ®

oo

1. Thus, the square of 1'? 18 I—‘: xg; which, by Art. 89, is

3 .
equal to ;’—l;, which, by Art. 68, may be written a’b—.
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2 Required the cube of 2: b .

Ans. Sa'te

356
7"°r27 @
!

8. Requirea the nth power of ;y—b,;.

(141.) Hence, expressions with negative exponents are in-
olved by the same rule as those with positive exponents.
Thus, let it be required to find the square of a—.

. . . 1 . .
This expression may be written ) which, raised to the

1
second power, becomes i a—*, the same result as would be

obtained by multiplying the exponent —3 by 2.

Ez. 1. Required the square of 3a*b—.

Fz. 2. Required the square of 7Ta—"b’c—*dz—".

Ez. 8. Required the cube of —8ab—*dy—*,

Ez. 4. Required the fourth power of 8a—"b.

Ez. 5. Required the fifth powerof —2ab—*c".

(142.) A polynomial is involved by multiplying it into itself
as many times less one as is denoted by the exponent of the
power.

Ez. 1. Required the fourth power of a+d. -

a-+b
a+b
a'+ab
+ab+b*
(a+b)’=a'+2ab+b*, the second power of a+b.
a+bd
a*+2a’b+ab’
+ a'b+2ab*+-b’
(a+b)'=a'+3a’b+3ab*+b’, the third power.
a+b
a‘'+3a’h+3a’b*+ ab® -
+ a'b43a%*+3ab’+b*
(a+.b)'=a*+4a*+6a’t’+4ab>+b", the fourth power.
Ez. 2. Required the fourth power of a—b.
- Ans. a*—4a'b+6a’b*—4ad’+1*
Exz. 3. Required the cube of 2a—1.
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Ez. 4. Required the fourth power of 3a—A#.

Ez. 5. Required the square of a+b+-c.

Hence it appears that the square of a trinomial is composed
of the sum of the squares of all the terms, together with twice the
sum of the products of all the terms multiplied together two and
two

Exz. 6. Required the cube of 2ab+-cd.

Exz. 7. Required the fourth power of a3+ b".
Ez. 8. Required the cube of a+%.

Ez. 9. Required the cube of x+%.

Ez. 10. Required the square of a+b+c+d-+e.

From this example we infer that the square of any polynomial
is composed of the sum of the squares of all the terms, together
with twice the sum of the products of all the terms multiplied to-
gether two and two, and this proposition may be rigorously
demonstrated.

It is obvious that this rule for a polynomial includes the pre-
ceding rule for a trinomial, and that in Ar¢. 60 for a binomial.

Ez. 11. Required the fourth power of 2z—3y.

Ans. 16z*—96z'y+216z'y'—216zy"+81y".

Ez. 12. Required the square of a+m—n.

Ans. a’+2am—2an+m*'—2mn+n’.

Ez. 13. Required the cube of a+b—=z.

Ans. @'+b'—z'+8ab’+8az+8a’b—3a*z+3bz" — 8b'z — Babz.

Ez. 14. Required the cube of 2a+ib
8a’ +36a’b+54ab’+2’76'

m'—3m'n+3mn’—n*
—bz’

Am.

Ez. 186. Required the cube of a-a——:bzi

Ans

Ez: 15. Reqmred the square of

a’z*—2abzy+- by’
@'y’ —2abzy+b'2*

a'—3a‘'b+3a’h*- -0’

Ans. a",_aa’ba_*_sabO,,__—bc ‘
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EVOLUTION AND RADICAL QUANTITIES.

(148.) The square root of a quantity is a factor which, multi-
plied by itself once, will produce that quantity.

Thus, the square root of @ is a, because @ when multiplied )
by itself produces a’.

The square root of 144 is 12 for the same reason.

According to Art. 22, the square root is mdlcated by the

sign v
" Thus, va'=a,
and ) v 1440*=12a.

(144.) According to Art, 137, in order to square a monomial,
we must square its coefficient, and multiply the exponent of
each of its letters by 2. Therefore, in order to derive the
square root of a monomial from its square, we must

I. Eztract the square root of its coefficient. -

I. Divide each of the exponents by 2.

Thus we shall have

' V64a't'=84"b".

‘This is manifestly the true result, for

(8a't*)*=8a'b* X 8a’b*=64a"d".

So, also, _

v 625a’b*c*=25ab'c’.

For, (25ab‘c‘)’—25ab‘c X25ab'c’,

=625a’b"".

1. Required the square root of 196a’b*c’d".

2. Required the square root of 225a™b"z".

(145.) According to Art. 140, a fraction is involved by in-
volving both the numerator and denominator ; bence it is ob-
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vious that the square root of a fraction 1s equal to the root of
_the numerator divided by the root of the denominator.

Thus the square root of Z—, is ;}—l.

1. Find the square root of -4—?;

!b‘
16c°d™

(146.) It appears, from Art. 144, that a monomial can mnot
be a perfect square unless its coefficient be a square number, and
the exponents of its letters all even numbers.

Thus, 7ab® is not a perfect square, for 7 is not a square num-
ber, and the exponent of a is not an ever number. Its square
- oot may be indicated by the usual sign, thus, v7ab’. Ex-
pressions of this nature are called surds, or radicals of the sec-
ond degree.

(147.) We have seen, Art. 137, that whatever may be the
sign of a monomial, its square must be affected with the sign
+. Hence we conclude that

If a monomial be positive, ils square root may be either posi-
tive or negative.

Thus, V9a'=43a", or —3a’,
for either of these quantities, when multiplied by itself, pro-
duces 9a. We therefore always affect the square root of a
quantity with the double sign ==, which is read plus or minus.
. Thus, Viad'=£2"

V25a%b'=:5ab"

(148.) If a monomial be affected with a negative sign, the
extraction of its square root is impossible, since we have just
seen that the square of qvery quantity, whether positive or
negative, is necessarily positive.

Thus, v =4, /=9, V=5a,
are algebraic symbols representing operations which it is im
possible to execute. Quaatities of this nature are called im.
aginary or impossible quantities, and are symbols of absurdity
which we frequently meet with in resolving quadratic equa-
tions.

2. Find the square root of

(/]
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Such quantities may be represented by the form
v —a, which equals
Vax—1=vav—l.

So that vav—1 is a general form for all imaginary quan-
aties of the second degree. Thus,

V—4 =v4 x=1= 2 V-],
V=9 =v9 Xx—1= 3 V=1,
v —ba=Vbax —1=+v5av —1.

That is, the square root of a negutive quantity may always be
represented by the square root of a positive quantity multiplied
by the square root of —1.

(149.) According to Art. 138, in order to raise a monomial
to any power, we raise the numerical coefficient to the given
power, and multiply the exponent of each of the letters by the
exponent of the power required. Hence, reciprocally, to ex-
tract any root of a monomial, we obtain the following

N

RULE.

I. Exztract the root of the numerical coefficient.

IL. Divide the exponent of each letter by the index qf the re-
quired root.

Thus, . ¥ 64a°t* =4a’.

¥ 16b7c**=2b""

From Art. 145, it is obvious that fo extract any root of a
fraction, we must divide the root of the numerator by the root
of the denominator.

27a°b* . 3a'd

Thus the cube root of ——- =y is —; ermt
which may be written §a’bz“y"'.

(150.) Let us now consider the sign with which the root
should be affected. We have seen, Art. 139, that every even
power is pOSItlve, but an odd power has the same sign as 1ts

root. . .
Thus — a, when raised to different powers in succession,
will give

—a, +a', —a', +a', —a', +a’, —a', &c.;
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and +aq, in like manner, will give
+a, +a', +a’, +a', +a*, +a°, +a’, &ec. .
Since every even number may be expressed by 2n,every even
power may be considered as the square of the nth power, or
a™=(a")’, and must, therefore, be positive ; and, in like manner,
since an odd number may be expressed by 2n+1, every power
of an uneven degree may be considered as the product of the
2nth power by the original quantity, and must, therefore, have
the same sign with the monomial.
Hence it appears,
I." An odd root of any quantity must have the same sign as the
quantity itself.
Thus, V' +8a'=+2a.
" Y —8d'=—2a
¥ —382a'°b*=—2a’b.
Y +82a"b'=+2a%.
II. An even root of a positive quantity is ambiguous.
Thus, Y81a'b*==:3abd".
¥ 64g"==2a".
I1I. An even root of a negative quantity 13 impossible.
For no quantity can be found which, when raised to an even
power, can give a negative result.
Thus, ¥ —a, ¥ —b, are symbols of operations which can
not be performed, and they are therefore called impossible or

imaginary quantities, as v —a, in Art. 148,

‘EXAMPLES.

1. Find the fourth root of 814"

Ans. £8a°.
2. Find the fifth root of —243a"b°c—".
8. Find the cube root of — 125a’:r"y'.

‘ .

¢. Find the square root of

5. Find the fifth root of ——

(151.) According to the rule of Art. 149, we perceive that,
in order that a monomial may be a perfect power of any degree,
its coefficient must be a perfect power of that degree, and the

-
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exponent of each letter must be divisible by the index of the
root.

When the quantlty whose root is required is not a perfect
power of the given degree, we can only indicate the operation
to be performed. Thus, if it be required to extract the cube
root of '4a’d", the operation may be indicated by writing the
expression thus,

¥ 4a'".

Expressions of this nature are called surds, or irrational
quantities, or radicals of the second, third, or nth degree, ac-
cording to the index of the root required.

(152.) The method of extracting the roots of polynomials
will be considered in Section XVII. There is, however, one
class so simple and of so frequent occurrence that it may prop-
erly be introdiced here. In Arts. 60 and 61 we have seen that
the square of a+b is a’+2ab+-b,
and the square of a—b is a’®—2ab+ b

Therefore, the square root of a*+=2ab+b* is a=+b.

Hence a trinomial is a perfect square when two of its terms
are squares, and the third is the double product of the roots of
these squares.

Whenever, therefore, we meet with a quantity of this de-
scription, we may know that its square root is a binomial ; and
the root may be found by extracting the roots of the two terms
which are complete squares, and connecting them by the sign ot
the other term.

Ez. 1. Find the square root of a*+4ab+4b".

The two terms, a* and 4b* are complete squares, and the
third term 4ab is twice the product of the roots @ and 2b;
hence a-}-2b is the root required.

Ez. 2. Find the square root of 94*—24ab+160".

Ez. 8. Find the square root of 9a‘—30ab4-25a’b"

Exz. 4. Find the square root of 4a’+14ab+9b".

(153.) No binomial can be a perfect square. For the square
of a monomial is a monomial ; and the square of a binomial
consists of three distinct terms, which do no* admit of being
reduced with each other.

Thus such an expression as .
@+
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* 13 not a square; it wants the term ==2ab to render it the square
of axb. This remark should be continually borne in mind
as beginners often put the square root of a*+b* equal to a+b.

-

IRRATIONAL QUANTITIES, OR SURDS.

(154.) A rational quantity is one which can be expressed ir
finite terms, and without any radical sign; as q, 5a*, &c.

Irrdtional quantities, or surds, are quantities affected with a
radical sign, and which have no exact root, or a root which can
be exactly expressed in numbers.

Thus, 3 is a surd, because the square root of 3 can not be
expressed in numbers with perfect exactness. :
In decimals it is 1.7320508 nearly.

(155.) We have seen, Art. 144, that in order to extract the
square root of a monomial, we must divide each of its expo-
nents by 2.

Thus the square Toot of a* is @’ or a; that of a* is @ ; that
of a*is a*, and so on ; and as this principle is general, the square

root of a® must neceEsarily be a%, and that of a® must be a‘g;

1
and, in the same rhanner, we shall have a? for the square root
of a’. Whence we see that

1
a® is equal to va,

3 Ju—
a’ is the same as va',
a® is equivalent to v a",

&e., &ec.

We have also seen, Art. 149, that in orﬁar to extract any
root of a monomial, we must divide the expdfient of each letter
by the index of the requlred root.

Thus, the cube root of @ is a’, or a; the cube root of a* is
a'; the cube root of a® is a’, and so on. So, also, the cube

root of a 1s ag, the cube root of a* is aé' the cube root of a
or a',is a'. Whence it appears that
1 —_—
a® is the same as ¥ g,

a! is equivalent 10 V@,
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a* is equivalent to Va",
&e., &ec. .
In the same_manner, the fourth root of a is a*, which expres-
‘sion has therefore the same value as ¥ a; the fifth root of a

.

will be a}, which is, consequently, equivalent to Y, and the
same principle may be extended to all roots of a higher de-
gree. :

(156.) Other fractional exponents are to be understood in

]
the same way. Thus, if we have a*, this means that we must
first take the fifth power of a, and then extract its fourth root ;

3

go that @ is the same as {/a".

So, also, to find the value of a®, we must first take the mth
power of a, which is ¢”, and then extract the nth root of that

power : so that a* is the same as Va™.
Hence the numerator of a fractional expoment denoves the
power, and the denominator the root to be extracted.

N . Y 1
Again, let it be required to extract the cube root of -

In the first place, %:a-‘. Now, to extract the cube root
of a—, we must divide its exponent by 3, which gives us
4
—4
a’.

Baut the cube root of % may also be represented by ;_i

1. -
Hence 3 is equivalent to @ *.
a
FY [

So, also, T}'is equivalent to a—},
a

1
is equivalent to @ *,

is equivalent to a *.

= Rl

aﬂ

Thus we see that the principle of Art 69, that a factor may
be transferred from the numerator to the denominator of a
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fraction, or from the denominator to the numerator by chang-
ing the sign of its exponent, is applicable also to fractional ex-
ponents.

We may therefore entirely reject the radical signs hitherto
made use of, and employ, in their stead, the fractional expo-
nents which we have just explained ; and, indeed, many of the
difficulties in the reduction of radical quantities disappear when
fractional exponents are substituted for the radical signs.

o R L '
‘ ROBLEM I

To reduce surds to their most simple forms.

(157.) Surds may frequently be simplified by the application
of the following prmclple the square root of the product of two
or more factors is equal to the product of the square roots qf
those factors

Or, in algebraic language,

Vab=yaX vb.
For each member of this equation squared will give the
same quantity.

Thus, the square of vab is ab.

And the square of vaX vbis (va)'X (vb)'=ab.

Hence, since the squares of the quantities vab and vaX vo
are equal, the quantities themselves must be equal.

Let it be required to reduce v'4a to its most simple form.

This expression may be put under the form /4X va.

But /4 is equal to 2.

Hence, Vda=v4X ya=2 Ja-—2a’
2ya is considered a simpler form than v 4q, for reasons which
will be better understood hereafter.

Again, reduce /48 to its most simple form.

v48 is équal to V16X3=y16x v3=4y3

Therefore, in order to simplify a monomial radical of the
second degree, separate it into two factors, one of which is a
perfect square ; extract its root ; and prefix it to the other factor
with the radical sign between them.

In the expressions 2/a and 43, the quantities 2 and 4 are
called the coefficients of the radical.
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EXAMPLES.

—t

Reduce 2/32 to its most simple form.
Ans. 82
2 Reduce V1254* to its most simple form.
. Ans. 50 v5a.
3. Reduce v'98ab* to its most simple form.
Ans. T V2a.
. Reduce v'294ab’ to its most simple form.
. Reduce 7V 80abc® to its most simple form.
. Reduce v 98a’z"" to its most simple form.
. Reduce v45a'b°c*d to its most simple form.

8. Reduce v864a’b'c" to its most simple form.

(158.) Surds of any degree may be’ snmphﬁed by the appli-
cation of the following principle, which is merely an extension
of that already proved in the preceding Article.

The nth root of the product of any number of factors is equal
to the product of the nth roots of those factors.

Or, in algebralc language,

Vab=Vax Vb. '
For, raise each of these expressions to the nth power, and we
shall obtain the same result.  °~

Thus, the nth power of ¥ ab is ab.

And the nth power of ¥VaX ¥b is (Va)"X (Vb)*=ab.

Hence, since the same powers of the quantities Yab and
¥ax Vb are equal, the quantities themselves must be equal.

Let it be required to reduce /84’ to its most simple form.

This is equivalent to ¥8X ¥ a?, which is equal to 2¥a"

Again, take the expression ,

484’

This is equivalent to ¥16a*X ¥/8a, which is equal to 2a ¥/3a.

Hence, to simplify a monomia’ radical of any degree, we
have the following

X RULE.

Separate the quantity into two factors, one qf which is an ex

T D>
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act power of the same name with the root ; extract its root; and
prefix it to the other factor with the radical sign between them.
In the expressions 2¥/a* and 2a ¥/ 3a, the quantities 2 and 2a

placed before the radical sign are called the coefficients of the
radical.

- EXAMPLES.

1. Reduce V56ah® to its most simple form. -
: ' Ans. 2ab*V7a’.
2. Reduce ¥54a'6’c’ to its most simple form. =~
: Ans. 3ab¥/ 2ac’
. Reduce /484" to its most simple form. .
Ans. 2ab’c ¥ 3ac’.
4. Reduce ¥192a’bc™ to its most simple form.
-6. Reduce ¥192a*b’c* to its most simple form.
6. Reduce 9¥/81%" to its most simple form.

(159.) There is another principle which can frequently be
employed to advantage in simplifying radicals.

The square of the cube of a is equal to the sizth power of a.

For the square of the,cube of a is a’X a’,
which equals a**'=q".

So, also, the fourth power of the cube of a is equal to the
twelfth power of a.

For (@)'=a'Xa'xXa'xa’

=a'+’+l+'

W

=a"
And, in general, the mth power of the nth power of any
quantity is equal to the mnth power of that quantity.
That is (¢*)"=a™.
Hence, conversely,
The mnth root of any quantity is equal to the mth root of the
ath root of that quantity.
Thus, the fourth root = the square root of the square root ;
“ the sixth root = the square root of the cube root, or
) the cube root of the square root;
% the eighth root = the square root of the fourth root, or
the fourth root of the square root;
¢« the ninth root = the cube root of the cube root.
a*
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Hence, when the indez of a root is the product of two or more
Jactors, we may obtain the root required by extracting in suc-
cession the roots denoted by those factors.

.E=z. 1. Let it be required to extract the sixth root of 64.
The sixth root is equal to the cube root of the square root.
The square root of 64 is 8, '

and the cube root of 8 is 2. - .

Hence the sixth root of 64 is 2.

E=z. 2. Letit be required to extract the eighth root of 256.

The eighth root is equal to the fourth root of the square root;
or to the square root of the square root of the square root.

The square root of 256 is 16,
and the fourth root of 16 is 2.

Hence the eighth root of 256 is 2.

When one of the roots can be extracted, and the other can
not, a radical may be simplified by extracting one of the roots.’

Thus, the fourth root of 9 is equal to the square root of the
square root of 9; that is, the square root of 3.

Or, algebraically, y9=vs. ~

Ez. 3. Reduce ¥/44’ to its most simple form.

) Ans. Y2a.

Ez. 4. Reduce V364" to its most simple form.

Ez. 5. Reduce "¥a" to its most simple form.

Ez. 6. Reduce ¥/25a'b* to its most simple form.

»

" PROBLEM II Y

(160.) To reduce a rational quantity to the form of a surd.
The square root of the square of a is obviously a; that is,

a= \/?=a%.
So, also, the cube root of the cube of ¢ is a ;
that is, a= Va’=a§.

Hence, to reduce a rational quantity to the form of a surd
we have the following

RULE.
Raise the quantity to a power of the same name with the given
root, and then apply the rorvssponding radical sign.
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EXAMPLES. .

1. Reduce 3 to the form of the square root.
Here 3X8=3'=9; whence 3= ,/9. A4ns.
2. Reduce az to the form of the square root.
. Ans. Va'z', or (a’a:’)*.
8. Reduce 22* to the form of the cube root.
Ans. ¥/8z%.
4. Reduce 5+b to the form of the square root.
5. Reduce —3z to the form of the cube root.
6. Reduce —}z* to the form of the fourth root.
7. Reduce a’b* to the form of the square root.
8. Reduce a" to the form of the nth root.
It will be observed, that this Problem is nearly the reverse of
the preceding, and, consequently, brings quantities into a less
simple form ; nevertheless, this form is sometimes better suited

to subsequent operations, as will be seen hereafter.
L

PROBLEM IIL

(161.) To -reduce surds which have different indices to others
of the same value having a common index. -

Ez. 1. Reduce a* and a* to surds having the same radical
sign. o

From the preceding Article, it is obvious that the square
root of a is equal to the sixth root of the cube of @;

that is, a’}=a‘s’= Ya'
So, also, = L Ya.

Thus, the quantities a% and aé are reduced to @' and Va',
which are of the same value, and have the common index 6.

Ez. 2. Reduce. 3% and 2% to a bommon index.
st=gl=(ant=ort,
gt—gt—(29i=4t.

Hence V27 and ¥4 are the quantities required.
Whence we derive the following
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RULE.

Reduce the fractional exponents to a common denominator,
raise each quantity to the power denoted by the numerator of its
reduced exponent; and take the root denoted by the common de-
nominator.

Ez. 3. Reduce 2’ and 4} to a common index.
Ans. V4 and vs.

Ez. 4. Reduce a* and a% to a common index. -
Ez. 5. Reduce a* and b’ to a common index.

32’ 3
E=z. 6. Reduce 5° and 7* to a common index.

1 1
E=z. 7. Reduce a" and b to a common index.

W V7 G\PROBLEM Iv.

To add surd quantities together.

(162.) Two radicals are similar when they have the same
index, and the same quantity under the radical sign.

Thus, 3V a and 5V a are similar radicals.

So, also, 7V/b and 10 ¥ are similar radicals.

But va and ¥/aare not similar radicals; for, although they
‘have the same quantity under the radical sign, they have not
the same index.

Ez. 1. Find the sum of 2V a and 3V a.

As these are similar radicals, we may unite their coefficients
by the usual rule ; for it is evident that twice the square root of
a and three times the square root of a make five times the
square root of a. Hence the following

RULE.

When the radicals are similar, add the coefficients, and annex
the radical part.

But if the quantities are dissimilar, and can not be made sim-
ilar by the reductions in the preceding~Articles, they can only be
cannected together by the sign of addition.

Ez. 2. Add v6to 2+/6.

Ans. 3V6.
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Ez. 3. Add 5V a and —2Va.
Ez.4. Add avb+c and zvVi+e.

If the radical parts are originally different, they must, if pos-
sible, be made alike by the preceding methods.

Ez. 5. Add v27 to V48.

Here vV21=+v 9x38=3V3,
and V48=+v16X3=4V3.
Whence their sum =7V3.
Ez. 8. Add together ¥/500 and V108.
Ans. 8Y/4.
Ez. 7. Add together 4V 147 and 3v75.
Ans. 43V3.

Ez.8. Add together 3v'} and 2V .
Here ! 3v3 =3yv1i2 =3 V10,
and 2V 15=2v =15 v10.
Whence their sum =4 y10.
Ez. 9. Add together /72 and /128.
Ez. 10. Add together /180 and ,/405.
Ez. 11. Add together ¥/40 and ¥/135.
Ez. 12. Add together 8432 and 5¥2.

 PROBLEM V.

To find the difference of surd quantities.

(163.) It is evident that the subtraction of surd quantities
may be performed in the same manner as addition, except that
the signs in the subtrahend are to be changed according to
Art. 43.

Ez. 1. Required to find the difference between 448 and
v1ia.

Here V8=V 64X T=8 /1,

and v112= V16x7—4¢7.

Whence the difference =41.
Ez. 2. Find the difference between /192 and V24
Here V192=364Xx3=4V3,

and V24 =V 8x3=2V3.

Whence the difference =2V8.
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Ez. 3. Find the difference between 5,/20 and 8 /45,

Here 5vV20=5+v 4X5=10vV5,
and 3vV45=3vV9X5= 9V5.
Whence the difference = V5.

Ez. 4. Find the difference between 2./50 and /18.

Ez. 5. Find the difference between 2¥ 320 and 3¥40.
Ez. 6. Find the difference between v80a'z and v20a'z’ -
Ez. 7. Find the difference between 2 v'724* and V1624’

PROBLEM VI

To multigly surd quantities together.
(164.) Let it be required to multiply ¥a by ¥b. .
. The product will be Vab.
For if we raise each of these quantities to the power of =,
we obtain the same result, ab; hence these two expressions
are equal. We therefore have the following

RULE.
When the surds have the same index, multiply the quantities
under the sign by each other, and prefix the common radical
sign. If there are coefficients, these must be multiplied separ-
ately. '
Exz. 1. Required the product of 3v8 and 2V6.

Here 3V 8,
multiplied by - 2V 6, ]
gives 6V48=6vV16X3=24V3. Ans.

Proof. Square 38, and we obtain 9X8="172.
Square 26, and we obtain 4X 6=24.
72 multiplied by 24=1728.

Also, 24 /8 squared =576 X8=1728.

Ez. 2. Required the product of 5v8 and 8 V5.

. Ans. 80V10.
Ez. 8. Required the product of 7¥18 and 5¥4.
’ Ans. 70¥9.

Ez. 4. Required the product of } ¥6 and & ¥ 17.
Ez. 5. Required the product of } ¥ 18 and 5¥20.
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In the preceding examples, let all the results be reduced to
their simplest form. '

If the surds have not the same index, they must first be re-
duced to a common index, by Arz. 161.

Ez. 6. Required the product of /2 and ¥3.

Here ve=2f=@)’=V s,
and y3=at=@) =¥y 9.
‘Whence the product = V2.

(165.) We have seen, in Art. 50, that powers of the same
quantity may be multiplied by adding their exponents. The
same principle may be extended to roots of the same quantity.

Let it be required to multiply va by Va, or o by o,

‘We have seen, in Art. 161, that a’—a and a’—ag

But a —a*Xa’Xa*

+

and a'—a xXa'.

. The product, therefore, is a%x a®x a’xa‘x at=d".

Hence, roots of the same quantity may be multiplied by add-
ing their fractional exponents.
_Exz. 1. Multiply 5a¥ by R
Ans. 15,
Ez. 2. Multiply 34* by 214*.
Ez. 8. Multiply 3.1:'}3/% by &z’}yg.

1 1
Ez. 4. Multiply (a+b)* by (a+b)=. ,
(166.) If the rational quantities, instead of being coefficients
-of the radical quantities, are connected with them by the signs
+ or —, each term of the multiplier must be multiplied into
each term of the multiphcand

1. Let it be requu'ed to multiply 8+ 5

by 2— v5
6+2/5

—38v5—5.

We obtain the product 6— v5-—5,

which reduces to 1— V5.
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2. Multiply 7426 by 9—5y86.
Ans. 83—1786
8. Multiply 9+2v10 by 9—210.
Ans. 41.

PROBLEM VII.

To divide one surd gquantity by another.

(167.) Let it be requu'ed to divide ¥a’ by ¥Ya'.

The quotient must be a quantity which, multiplied by the
divisor, shall produce the dividend ; we thus obtain ¥a; for,

according to Art. 164, ¥ a*X Va--Va ; /
. Va'
thatis, - D7 =Y¥Ya.

Hence the following

RULE.

Quantztws under the same radical sign may be divided like
rational quantities, the quotient being affected with the commbn
radical sign. If there are coefficients, they must be divided
separately.

If the radicals have not the same index, we must first reduce
them to a common index.

EXAMPLES.

1. It is required to divide 8,/108 by 2/6.
8+/108 J—

Here 206 =4/18=4V9X2=12y2. Ans.

2. Divide 8¥512 by 4¥/2.

Here 81/-—3;—2=2 V256=2V64x4=8V4. Ans.
3. Divide 6%/54 by 3¥/2.
: Ans. 6.
4. Divide 4V72 by 2¥V/18.
5. Divide 4v6a’y by 2v3y.
Ans, 2av2,

8. Divide 16(ab)* by 8(ac)*.
7. Divide 4V12 by 28.

-
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As the radicals in this last example have not the same in-

dex, they must be reduced to a common index.
2

4v12=4(12)* =412 =1(149)},

2.3 —2(3)* =23 =2027)%.

(144)'
- 20t

(168.) We have seen, in Art. 67, that, in order to divide
quantities expressed by the same letter, we must subtract the

exponent of the divisor from the exponent of the dividend.
The same principle may be extended to fractional exponents.

Hence

=2(y)i=2y)i=2 vy,

Thus, let it be required to divide ot by . .
According to the preceding Article,

P ,
—_——=t = =a®

3 \/Z ;= VY a=d".

Hence a root is divided by another root of the same letter or

quantity, by subtracting the exponent of the divisor from that
of the dividend.

Ee. 1. Divide (ab)? by (ab)*.

Ans. (ab)},
Ez. 2. Divide a' by .
Ez. 3. Divide af by at.
Exz. 4. Divide a'l' by a:'
Ez.5. Divide 4/ab by 2 ¥ab.
Ans. 2V ab,

PROBLEM VIIL
(169.) To raise surd quantities to any power.
1
Let it be required to find the square of a®.
The square of a quantity is found by multiplying it by itself
once.

1 1 141 2
Hence the square of a is equal to @*X d=a"=4",

That is, (a¥) "=d.



128 IRRATIONAL QUANTITIES.

Again, let it be required to find the cube of o,

The cube of a quantity is found by multiplying it by itself
twice. ' .

3

Hence the cube of a? is equal to Fxatxad=a;

that is, (a%)a=a%.
1 »
In the same manner we should find the nth power of a*=a~.
Hence we have the following

RULE.

Radical quantities are involved by multiplying their fractional
exponents by the exponent of the required power.

Exz. 1. Required the fourth power of ga}.

EZ. 2. Required the cube of 23,

Ans, $8.
Ez. 3. Required the square of 3¥3.
Ez. 4. Required the cube of 17 v21.
Ez. 5. Required the fourth power of }/6.-
Ans. 3.

- (170.) If the radical quantities are connected with others by
the signs + and —, they must be involved by a multiplication of
the several terms.

Ez. 1. Required the square of 3+ /5.

8+ b
9+3y5
3v5+5

The square is 9+6.5+5
or 144-6 /5. Ans.

Ez. 2. Required the square of 3+2/5.

These two examples are comprehended under the rule in
Art. 60, that the square of the sum of two quantities is equal
to the square of the first, plus twice the product of the first by
the second. plus the square of the second.

Ez. 3. Required the cube of /z+3y.

Ez. 4. Reqiired the fourth power of /83— 2.

Ans. 49—20v6.

-
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PROBLEM IX.

To find the roots of surd quantities.

(171.) A root of a quantity is a factor which, multiplied by
tself a certain number of times, will produce the given quan-
tity. But we have seen that a radical quantity is involved by
multiplying its exponent by the exponent of the required pow-
er. Hence,

To find the roots of surd quantities,

Divide the fractiona] exponent by the index of the required
root.

1

1 1
Thus, the square root of a® is a®*"=a®. 4

For, by Art. 169, we obtain the square of a by multiplying

the exponent & by 2;
that is, (@)=dt=d.
EXAMPLES.
1. Find the square root of 9(3)5.

Here (9(3)) =0t x 3" =3(3)"=3¥3. 4ns.

2. Required the cube root of } 2.

Ans. V2.
3. Required the square root of 10° :
4. Required the cube root of %a'.

5. Required the fourth root of }ga*.

6. Required the cube root of %%a’.
7. Required the cube root of §/3.

\)‘.Q % ) Ans. 1’?-

PROBLEM X.

To find multipliers which shall cause surds to become rational.

(172.) 1. When the surd is a monomial.

The quartity va is rendered rational by multiplying it by
vYa.

For vaX ¢a=a§x a¥=a.
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So, also, a} is rendered rational by multiplying it by a;.

For . a’l’Xa§= ”’=a.
Also, dt is rendered rational by multiplying it by a%.
For a*xa2=a§=a.

1 - 1
In general, @* is rendered rational by multiplying it by a ™.
1 n—1 n—14 » ’

For a@Xa* =a * =d=a.
Hence we deduce the following

v RULE.

Multiply the surd by the same quantity having such an ez-
ponent as, when added to the exponent of the given surd, shall be
equal to unity.

(178.) II. When the surd is a binomial.

If the binomial contains only the square root, multiply the
given binomial by the same expression with the sign of one of its
terms changed, and it will give a rational product.

Ez. 1. The expression ya+ b

Multiplied by va—vb )

a+Vab

—Vab—b

Gives a product a —b, which is rational.
Ez. 2. Find a multiplier which shall render 5+ /3 rational.
Given surd, ' 543 ’
Multiplier, 5—yv3
Product, 25—8=22, as required.

These two examples are comprehended under the Rule in
Art. 62, the product of the sum and difference of two quantities
is equal to the difference of their squares.

Ez. 3. Find a multiplier that shall make 5+ /8 rational,
and determine the product.

Ez. 4. Find a multiplier that shall make /5— y/z rational
and determine the product.

Ez. 5. Find a multiplier that shall make va—~ vabc ra
tional. .
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III. When the surd is a lrinomial, it may be reduced, by
successive multiplications first to a binomial surd, and then to
a rational quantity.

Ez. 1. Find multxphers that shall make v5+v8— 2 ra- -
tional.

Given surd, Vvo+/3—y2
First multiplier, 54+ v3+v2
54 v15— 10
+v154+ 3—y6

+ v 104 /6—2
First product, 2415+ 6
Second multiplier, = 2y15— 6

60412415

—12y,15—36

Sécond product, 60—36=24, a rational quantity.

Ez. 2. Find multipliers that shall make a+ b+ /¢ ra-
tional, and determine the product.

PROBLEM XIL

(174.) To reduce a fraction containing surds to another hav
ing a rational numerator or denominator.

RULE.

Multiply both numerator and denominator by a factor whick
will render either of them rational, as the case may require.

Ez. 1. If both terms of the fraction —‘Lg be multiplied by

va, it will become — ‘/ —ab in which the numerator is ratlonal

Or if both terms be multiplied by /b, it will become -VT—b-, in

which the denominator is rational.
. 2
Ez. 2. Reduce the fraction 73 to one that shall have a ra-
tional denominator.
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' 1 . . .
Ez. 3 Reduce ——— to a fraction having a rational de

Vi—v2
nominator.
Ans, V53 V2
3 3
V2 . . .
Ez. 4. Reduce 3—va to a fraction having a rational de-
nominator.
Ans. 3‘/2+2-
_ 7
Ez. 5. Reduce — vb

P to a fraction having a rational de

nominator.

4 . .
Ez. 6. Reduce 3T veTl to an expression having a

ational denominator.
Ans. 2+ /2— /6.

Ez. 1. Reduce 5+ 2 to a fraction having a rational
numerator. ‘

(175.) The utility of the preceding transformations may be
illustrated by computing the numerical value of a fractional
surd.

Ez. 1. Suppose it is required to find tne square root of 3,

that is, it is required to find the value of the fraction 5—3

If we make the denominator rational, we shall have \/T2l’ in

which it is only necessary to extract the square root of the
numerator, and the value of the fraction is found to be 0.6546.

V5
vVi1l+ 3

7 -7
V55 - \/15’ the

Ez.2. Itis required to find the value of the fraction

Making the denominator rational, we have

value of which is 3.1003.
v Ev:
Ans. 0.5595.

”~
Ez. 3. Required the value of the expression
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Ez. 4. Required the value of the expression
V3
2v8+8y5—Tv2

Ans. 0.7025.
94-2 /10
9—210"
Ans. 5.7278.

Ez. 5. Required the value of the expression

PROBLEM XIIL

(176.) To free an equation from radical quantities.

This may generally be done by successive involutions. For
this purpose, we first free the equation from fractions. If there
is but one radical expression, we bring that to stand alone on
one side of the equation, and involve the whole equation to a
power denoted by the jndex of the radical.

Ez. 1. Free the equation

a+ v 2az+2*
a

=b

from radical quantities.

Clearing of fractions, and transposing a, we obtain

v2az+z*=ab—a.

The square of this equation is

- Rax+z*=a’b*—2a'b+-a',
which is free from radical quantities.

Exz. 2. Free the equation

. 2“’
z+ Va'+zi= = ot
from radical quantities.

If the equation contains fwo radical expressions, combmed
with other terms which are rational, it will generally be best
to bring one of the radicals to stand alone on one side of the
equation before involution. One of the radicals will thus be
made to disappear, and, by repeating the operation, the re-
maining radical may be exterminated.

Ez 3. Free the equation

Yatz+ Vbty=c
from radical quantities.
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Transposing one of the radicals, we obtain
Vatz=c— Vb+y.

Squaring, we have
‘ a+z=c"—3¢ Voty+b+y.

Transposing, so as to bring ‘the radical to stand alone, we
have

2c Vb—-l-y—-c'+b+y—a—-:c,
which may be freed from radicals by squaring a second time.

Sometimes the two radicals may be of such a form that it
is best to bring both to the same member of the equation be-
fore involution.

When an equation contains several radical quantities, it may
generally be freed from them by successive involutions, but
the best mode of procedure can only be determined by trial.

Ez. 4. Free the equation’

V2zr+7+vV32—18=vVT1z+1
- from radical quantities.
. Ans. 62'—15x—126=x"+122+38.

When an equation contains a fraction involving radieal
quantities in both numerator and denominator, it is sometimes
best to render the denominator rational by Problem XI.

Ez, 5. Free the equation '

Vz+Vz—a an'
Vz—Vz—a *—6
from radical quantities.

Multiply both terms of the first fraction by Vz+ vz—a,and
we have

(Vz+Vz—a)* an’

z—(x—a) z—a

or (Va+ s’x—a)'=-g—7i-.
z—a
Extracting the square root, we obtain
an
Vz+ Vz—a="7—— Too

Clearing of fractions, we have

Vz'—az+z—a=an,
which is easily freed from radicals.




£ -

IRRATIONAL QUANTITIES.

Ez. 8. Free the equation
z+vz_z' r—x \ .
‘ z—JT 4
from radical quantities.

~ Ans. r'gizt+i=zx.
Ez. 1. Free the equation

~z—Yz+1_5
z+Vz+1 11
from radical quantities. ’
Ans. 9z*=64x+164.
A
Ez. 8. Free the equation
vai—z'— Vb'+az* m

' va'—a+ Vbt

from radieal quantities. )

(177.) The preceding rules for the reduction of radicals, are
exact so long as we treat of absolute numbers, but require
some modifications when we consider zmagmary expressions,
such as v—3, v—a, &ec.

Let it be required, for example, to determine the product of
V—aby v=a..

By the rule given in Art. 164,

V=ax v—a=+v—ax—a
=V +a

Now, v +a*=xa, so that there is apparently a doubt as to
the sign with which a ought to be affected in order to answer
the question. However, the true result is —a, because and
quantity must be equal to the square of its square root.

That is, V—ax v —a is the same as (v —a)*, and, conse-
quently, is equal to —a. .

Again, let it be required to determine the product of v —a
by v —b.

By the rule in Art. 164. :

vV—ax vV=b=v—ax—b
+ab '
=== /ab.

The result, however, is not properly ambiguous, and should

be — vab; for we have, according to Art. 148,
7 .

i

8
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v=a=vav=1,

and vV=b=vbV-1. .
Hence TN
v—ax ¥Y—b=vab(¥v—-1)
=vabx—1 -

=—+vVab.

In the same manner we shall find for the different powers
of ¥ —1 the following:results.

Vv —1 =+ —1, the first power.
(v'—=1)*=—1, the second power.
(V=1)=—1xv—-1

=— v/ —1, the third power. .
(VT =(/ D X(VT

=—1x-1

=+-1, the fourth power.

Since the four following powers will be found by multiply-

ing +1 by the first, the second, the third, and the fourth
“powers, we shall again find for the four next powers
+ ‘i:"_io -1, - V_;_l-’ +1;
so that all the powers of v —1 will form a repeating cycle of
these four terms.

Wherever the student is at a loss to determine the product
of two imaginary quantities, it is best to resolve each of them
into two factors, one the square root of a positive quantity, and
the other v —1, Art. 148.

v EXAMPLES.
1. Let it be required to multiply v —9 by v—4.
~ Here we have v—9=8vV—1,
and v—4=2v -1
Therefore, V=X vV—4=8v—1x2v—1
=6V (—1)
=—6.

2. Multiply 1+ v —1 by 1— v —1.

3. Multiply v18 by v —2.
4. Multiply 5+2v —3 by 2— vV —3.
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EQUATIONS OF THE SECOND DEGREE.

_ (178.) According to Art. 96, quadratic equations, or equa-
tz%'seqf the second degree, are those in which the highest power
of the unknown quantity is a square.

Quadratic equations are divided into two classes.

I. Equations which involve only the square of the unknown
quantity and known terms. These are called pure quadratics.
Of this description are the equations

axzr’=b; 82’+12=150—2", &c.

They are sometimes called quadratic equations of two terms,
because, by transposition and reduction, they can always be
exhibited under the general form

az'=b.

II. Equations which involve both the square and the first
power of the unknown quantity, together with a known term.
These are called affected or complete quadratics. Of this de-
scription are the equations

6z z 38
ar’+br=c; 2’'—10z=7; — 8 5—!-;

They are sometimes called quadratic equations of three
terms, because, by. transposition and reduction, they can al-
ways be exhibited under the general form

ax’+br=c.

.

PURE QUADRATIC EQUATIONS.

(179.) The equation
az*=>b
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is easily solved. Dividing each member by a, it becomes

‘Whence = :Iz\/g.

If % be a particular number, either integral or fractional, we

can extract its square root either exactly or approximately by
the rules of arithmetic.

It is to be remarked, that since the square both of +m and
—m is +m?, so, in like manner, the square of +\/ -z- and that

of —\/ -3 are both +%. Hence the above equation is suscep-

tible of two solutions, or has two roots; that is, there are two
quantities which, when substituted for z in the original equation,
will render the two members identical. These are

b b
+\/ = and — \/ p
For, substituting each of these values in the original equation
az*=b, it becomes

ax(.}.\/;b) =}, or a)(%:b; i. e., b=b,

and aX(— \/2) =}, or ax%:_b; 1. e., b=b.

EXAMPLE I.

Find the values of 2 which satisfy the equation

4z'—7=38z"+9.
Transposing terms, 4z'—3z'=94-7.
Reducing, *=16.

Extracting the square root,
z=:=*16==4.
Hence the two values of z are +4 and —4, and they may
both be verified by substitution in the original equation.
Thus, taking the first value, we have
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3 4X (+4)'—T=3X (+4)'+9,
or 4X16—7=3xX1649;
that is, 57=5".

Taking the second value of 2, we have
4X (—4)'—7=3X (—4)'+9,
or 4X16—7=38X16+9, as before.
From the preceding examples we deduce the following

PR
ARV L \A& RULE.
Reduce the equation to the form ax'=b; then divide by the
coefficient of x', and extract the square root qf both members of
the equation.

Ez. 2. Given z'—17=180—2z", to find the values of z.

By transposition, 8x'=147;
therefore, z'=49, -
and z ==k,
Ez. 3. Given 2*+ab=>5z", to find the values of z.
By transposition, ab=42";
therefore, =+ vab=2z,
' =+ vab
and . = .
2
2a*

Ez. 4. Given z+ v a’+:c'=_‘,—aj—+;;, to find the values of .

Clearing of fractions, we obtain z v a’+z*+a'+2z’+24".
By transposition, zVa'+z'=a'—-2"
Squaring both sides, a'z'+z'=a'—24a"z'+2*;

therefore, 3a’z*=a’,

and 82'=a";
a’

whence x’=§ ;

— d:___ .

therefore, = \/ 3

Ez. 5. Given u;' 5

Ez. 6. Given az'—5c=bz"—8c+d, to find the values ot »

=45, to find the values of x.

’
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Ez. 7. vaen —_—— 3+ :z: 27 —z’+2—297§. to find the values
ofz.
. z*+3z—"7
Ez. 8. Given m}-T_S_l’ to find the valups of z.
l, ‘ z

Ans, z==%3.
Clearing of fractions and transposing, we find in each mem-

ber of this equation a binomial factor, which being canceled,
the equation is easily solved.

o PROBLEMS.

Prob. 1. What two numbers are those whose sum is to the
greater as 10 to 7; and whose sum, multiplied by the less, pro-
duces 2707

~ Let v 10z= their sum,

- Then 7z= the greater number,
and 8z= the less.
Whence 30z*=270,
and z*=9; -
therefore, x=:k8,

and the pumbers'are =+=21 and =+9.

Prob. 2. What two numbers are those whose sum is to the
greater as m to »; and whose sum, multiplied by the less, is
equal to g ?

A a(m—n)

Ans. :b\/ i n) and =+

Prob. 3. What number is that, the third part of whose
square being subtracted from 20, leaves a remainder equal
to 87

Prob. 4. What number is that, the mth part of whose square
being subtracted from a, leaves a remainder equal to b?

Ans. v m(a—-b)
Prob. 5. Find three numbers in. the ratxo of 2, and , the

sum of whose squares is 724.

~

T | j
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Prob. 6. Find three numbers in the ratio of m, n, and p, the
_sum of whose squares is equal to a.
Ans,

Sy A __a&
mﬁ+n’+P2’ \/m +n +p2’ and m!+n!+pl
Prbb. 7. Divide the number 49 into two such parts, that the
quotient of the greater divided by the less, may be to the quo-
tient of the less dmded by the greater, as 4 to-2.
Ans. 21 and 28.

Prob. 8. Divide the number  into two such parts, that the
quotient of the greater divided by the less, may be to the quo-
tient of the less divided by the greater, as m to n.

aym ayn
| Ans a2 T v
‘grob. 9. There are two square grass plats, a side of one of
which is 10 yards longer than a side of the other, and their
areas are as 25 to 9. What are the lengths of the sides?

Prob. 10. There are two squares whose areas are as m to n,
and a side of one exceeds a side of the other by a, What are
the lengths of the sides? # - et

. ; aym ay/n
; ( r(/) SRTAAAL A- \/m—\/nand vm—yn

“Prob. 11. Two travelers, A and B, set out to meet each other,
A leaving Hartford at the same time that B left New York.
On meeting, it appeared that A had traveled 18 miles more
than B, and that A could have gone B’s journey in 152 hours,
but B would have been 28 hours in performing A’s.journey.
Wbat was the dis?nce between Hartford and New York?

.f' ‘A /. " S ‘6 Ans. 126 miles.

Prob. 12. From two placé{p at an unknown distance, two
bodies, A and B, move toward each other, A going @ miles more
than B. A would have described B’s distance in » hours, and
B would have described A’s distance in m hours. What was
the distance of the two places from each other?

vm+n
vm—yn
Prob. 13 A vintner draws a certain quantity of wine out of

Ans. aX
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a full vessel that holds 256 gallons; and then, filling the vessd
with water, draws off the same quantity of liquor as before,
and so on for four draughts, when there were only 81 gallons™
of pure wine left. How much wine did he draw each time?

Ans. 64, 48, 36, and 27 gallons.

Prob. 14. A number « is diminished by the nth -part of it
self, this remainder is diminished by the nth part of itself, and
80 on to the fourth remainder, which is equal to . Required

the value ot n.
VYa
y dns. 7o %

Prob. 15 Two workmen, A and B, were engaged to work
for a certain number of days at different rates. At the end of
the time, A, who had played 4 of those days, received 75 shil-
lings, but B, who had played 7 of those days, received only
48 shillings. Now had B only played 4 days, and A played 7
days, they would have received the same sum. For how
many days werp the engaged ? .

'/ ,,",: "‘L 4%+ -7 f'.‘“'u_/ Ans. 19days

Prob. 16. A person employed two laborers, allowing them
different wages. At the end of a certain number of days, the
first, who had played a days, received m shillings, and thes
-second, who had played b days, received = shillings. Now if
the second had played a days, and the other b days, they
would both have received the same sum. For how many days
‘were they engaged 1

bym—ayn

Ans. Jm—un

days.

COMPLETE QUADRATIC EQUATIONS.

(180.) Suppose we have the equation

z*—6z+49=1,
in which it is required to find the value of z.

Since each member of the equation is a complete square, i
we extract the square root, we shall obtain a new equation
involving only the first power of z, which may be easily
solved.
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‘We thus have z—3=:=1,

and, by transposition,
z=8+1=4, or 2.

In order to verify these values, substitute each of them
place of z in the given equation. Taking the first value, we
shall have '

. 4'—8Xx4+9=1;
that is, 16—24+9=1, an identical equation,
Taking the second value of 2, we obtain
2'—6x24+9=1;
that is, ] 4—12+49=1, an identical equation,

Hence we see that a complete quadratic equation is readily
solved, provided each member of the equation is a perfect
square. But equations seldom occur under this form. Take,
for example,

z'—6z=-—8.

The preceding method seems to be inapplicable, because the
first member is not a complete square. We may, however,
render it a complete square by the addition of 9, which must
also be added to the second member to preserve the equality.
The equation thus becomes

z'—6z1+9=9—8=1,
which is the equation first proposed.

The peculiar difficulty, then, in resolving complete equa-
tions of the second degree, consists in rendering the first mem-
ber an exact square.

(181.) In order to discover a general method of solution, let
us take the equation

azr*+br=c,
which is the general form of equations of the second degree
We begin by dividing both members by a, the coefficient of 2°.
The equation then becomes
bz ¢

o —_———
2+ a a

For convenience, let us put p—é and g= -, we shall then

have ’ -
z*+pr=gq.
A ’

e
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We have seen that if we can by any transformation render
the first member of this equation the perfect square of a bino-
mial, we can reduce the equation to one of the first degree by
extracting the square root.

Now we know that the square of a binomial, z+ a, or 2+
2az+-a*, is composed of the square of the first term, plus twice
the product of the first term by the second, plus the square of
the second term.

Hence, considering z*+pz as the first two terms of the
square of a binomial, and, consequently, pz as being twice the
product of the first term of the binomial by the second, it is

P

evident that the second term of this binomial must be > for

P
P

In order, therefore, that the expression z’+pz may be ren-
dered a perfect square, we must add to it the square of this

second term %; that is, the square of half the coefficient of the

2X S Xz=px.

first power of z ; it thus becomes

:c’+pz+%: .

which is the square of x+€. But since we have added % to

the left-hand member of the equation, in order that the equality
may not be destroyed, we must add the same quantity to the
right-hand ‘member also; the equation thus transformed will
become

U Y
z tpzt+ =9+
Extracting its square root, we have
’2 ot
;v+“2-==’=\/ q+%-.
Whence . z= —g:’: \/ q+%.

‘We prefix the double .sign %, because the square both of
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+4/q+Z, and also of - \/ g+L is +(q+%), and every

quadratic equation must therefore have two roots.

(182.) From the preceding discussion We deduce the follow-
ing general

RULE FOR THE SOLUTION OF A Jgg;ETE QUADRATIC EQUATION.

1. Transpose all the known quantities to one side of the equa-
tion, and all the terms tnvolving the unknown gquantity to the
other side, and reduce the equation to the form ax’+bx=c.

2. Divide each side of the equation by the coefficient of %*, and
add to each member the square of half the coefficient of the Jirst
power of x.

8. Extract the square root of both sides, and the equatwn will
be reduced to one of the first degree, which may be solved in the
usual manner.

EXAMPLE 1.

Solve the equation 2*—10z=—16.
Completing the square by adding to each member the square
of half the coefficient of the second term, we have
z*—10x+25=25—16=9.
Extracting the root, z—5= =+3.
Hence x=5%38.
z=5+38=S8,
Ans. g z=5—38=2.
Thus z has two values, either 8 or 2. To verify them, sub-
stitute in the original equation, and we shall have
8'—10X8=-—186, i. e., 64—80=—16;
also, 2'—10X2=-—16, i. e., 4—20=-—186,
both of which are identical equations.

EXAMPLE 2.

Solve the equation ~ z'+6x=—8.
Completing the square, z’+6z+9=9—8=1.
Extracting the root, =z +8==1."
Hence z =—8=%1.,
Ans. { ==3+1=-2,

z=—8—1=—4.
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Proof. (—2)'+6X—2=—8,i. e, 4—12=—8;
also, - (—4)'+6x —4=—8, i. e, 16—24=—"

Hence z has two values, both negative. In verifying them
it is to be observed, that the square of —2 is +4, and —2 mul
tiplied by +6 gives —12. '

EXAMPLE 3.
Solve the equation z'4-62=217.
Comopleting the square, z’-+6z+9=27-9=36.
Extracting the root, z +3===6.

a. Hence ‘ =—3+6=+3,0r —9.
EXAMPLE 4.
Solve the equation z*'—2r=24.
' Here x =1%5=+486, or —4,
EXAMPLE 5.

Solve the equation ~ 2*'—8z=-—18,

Completing the square, z*—8z+16=16—18=—2,
Hence z=4%v -2,

Here both values of z are imaginary.

EXAMPLE 6,
Solve the equation ' —6z=—9.
Completing the square, z*—6z4-9=9—9=0.
Extracting the rodt, z —8===0.
Hence z =38=+0.

Here the two values of = are equal to each other.

Ez. 1. Given 2z*+8z—20="70, to find the values of z.

' Ans. z=5,0or —9. ~
X Ez. 8. Given 8z’—3a:+6—5%, to find the values of .
Ans. z="%, or .

(183.) The Rule given on page 145 for solving a complete
quadratic equation is applicable to all cases; nevertheless, a
modification of this method is sometimes preferable.

The object is to render the first member of the equation a
perfect square. After the equation has been reduced to the
form )

ax'+bxr=o, ~
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X :
_ the square may be completed by multiplying the equation by
four times the coefficient of x', and adding to both sides the

square of the coefficient of x.
Thus the above equation multiplied by 4a becomes

4a’z*+4abr=4ac.
Adding b* to both members, we have
) 4a'z'+4abz+b'=4ac+b"

Extracting the square root, \

* 20z+b=%Vaact+b. ° Y,

Transposmg b and dividing by 2a, ¥

—bx Vaac+b'
= . 2a ?
which is, the same result as would be obtained by the former
Rule; but by this new method we have avoided the introduc-
tion of fractions in completing the square.

When the coefficient of z* is unity, the above Rule becomes,
Multiply the equation by four, and add to each member the
square of the coefficient of x.

Either of these methods of completing the square may be
practiced at pleasure; but the first method is to be preferred, ex-
cept when its application would involve inconvenient fractions

Ez. 9. Given }z*— jz120}=42%, to find the values of z.

Ans. =", or —61L.
Ez. 10. Given z'—2z—40=170, to find the values of z.
Ans. z=15, or —14.
Ez 11. Given 3z'+42z—9=16, to find the values of z. «-~ .. - &¥

Ez. 12. Given }z'—}z+73=S8, to find the values of z. + = - ; »

. 6z'—40 3z—10 ‘

Ez. 13. Given 3z %=1 0—%2
of z.

We must first clear this equation of fractions, which is done
by multiplying by the denominators ; we thus obtain

—122" 4602’ — 272+ 122" — 542+ 360— 80z — 62" 28z — 10

=40z -8z"'—18. .

Here the two terms containing z* balance each other, and
uniting similar terms, we obtain

8z'—1242x=-—368,

=2, to find the values

N oL
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Dividing by 8, we have
z'—15lx=—46,
Completing the square,

. (31) P, (31 _225

16
Extracting the root, z—af:=i-l4—5
31
Hence 4 x——‘i-i——-ll}, or 4. Aks.
L DRI . 90 90 27
Ez. 14. Given P R 0, to find the values of z.

(184) The preceding rules will enable us to solve not only
" quadratic equations, but all equations which can be reduced to
the form

‘ " 4-pat=q;
that is, all equations which contain only two powers of the un- .

known quantity, and in which one of the exponents is double of
the other.
For if, in the above equation, we assume y=z", then y*=a2™
and it becomes
y'+py=gq.
Solving this according to the rule, we find

z"—y————d: \/q+p .

Extracting the nth reat of both sides,
' 1/ _2 r
) r= \/ 2:!: q+ g

EXAMPLE 1.

Given z*—252"=—144, to find the values of z,
Assuming -z*=y, the above becomes

Y —25y=—144.
Whernce y= 16, or 9.-
But, since 2’=y, z=%yy.
Therefore, z=== 16, er = /9.

Thus z has four values, viz., +4, —4, +3, —3.
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To verify these values: -t
1st value, (+4)*—25X (+4)'=—144, i..e.; 256—400=—144,
2d value, (—4)*—25X (—4)*=—144, i. e., 256—400=—144,
3d value, (+3)‘—25X(+8)’=—144, i. e., 81—225=—144,
4th value, (—8)*—25X (—8)'==—144, i. &, 81—225=—144.

EXAMPLE 2.
Given z*—7z'=8, to find the values of z.
Assuming z*=y, we have
y'—Ty=5.
Whence y =8, or —1.
Therefore, z== V8, or = v —1, the two last of which roots
are imaginary.

’ EXAMPLE 3.
Given z*—22'=48, to find tKe values of z.

Assuming z'=y, the above becomes
y'—2y=48
Whence y =8, or —6.

And since z*=y, therefore z= Vy.

Hence two of the roots of the above equation are 2 and— ¥/6.

This equation has four other roots, which can not be de- .
termined by this process.

PLE 4.

the values of z.
ation becomes

Given 22—7/z=
Assuming yz=y,

2 —Ty=99.
Whence y=9, or —12-1-.
And since /z=y, therefore z=y".,
Whence z=8l, or -f—f- .

Although the square root of 81 is generally ambiguous, and
may be either +9 or —9, still, in verifying the preceding
values, 'z can not be taken equal to —9, because 81 was ob-
tained by multiplying +9 by itself. For a like reason, vz

can not be taken equal to +—2-. A similar remark is applica-
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ble to Ezs. 13 anﬂ l?pn the vext page, and also to Ez. 7,
page 186. ,’.',".-"
o a
EXAMPLE 5.
Given vz+12+ ¥ z+12=6, to find the values of z.
Assuming z+12=y, this equation becomes
1}+_t/"—6
which evidently belongs to the same class as the previous ex-
amples. Completing the square, we shal have '
' y*—2, or —3.
Raising both sides of the equation to the fourth power,
y=186, or 81.

Therefore, z or (y—12)=4, or 69.
‘v
EXAMPLE 6.
Given 22+ v 2x’+l=il, to find the values of .
A lding 1 to each member of the equation, it becomes
2z'+1+ V2 +1=12.

Assuming 22'+1=y, then '
.'/+y%=l2. \
Completing the square, we find ."° >+ . = /7 1’

y'}=3, o

that is, Verfi=

Therefore, 2x’+l 9,0r16, , -
: 1

’a.nd - a'=4, or —, 5

Henqe r=+2, —2, +\/ 15 \/ 15

1
It may be remarked, that in equations of this kind it is ger
erally unnecessary to substitute a new letter, y, which has been:
done in the preceding examples simply for the sake of per-
spicuity. -
Ez. 7. Given z*+42'=12, to find the values of z.
Ans. =%+ y2,0or =v -8
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Exzx. 8. Given 2°—82'=5183, to ﬁnd the values of 2.
Ans. 2=3, 00 — ¥19.

Ez. 9. Given z§+x%=756, to find the values of z.
Ans. £=243, or — V28",
' Ez. 10. Given }z*—}z'=—4, to find one value of z.
Ans. z=} 2.

: Ez. 11. Given 2x§+3z‘ =2, to find the values of z.
Ans. z=1, or —8.
Ez. 12. Given z*—12z°'+442"— 482x=9009, to find the values
of z. .
This equation may be expressed as follows:
(z°—62)*+8("— 62) =9009. .
Ans. =18, or —"7, or 3= v —90
Exz. 13. Given jz—}/x=22}, to find the values of z.
361
To
Ez. 14. leen V10+z— ¥10+z=2, to find the values of 2
Ans. =6, or —9.
Ez. 15. Given z*+20z'—10=59 to find the values of z.
Ans. z=¥3, or ¥/ —23.
Ez 16. Given 3z™—2z"+48=11, to find the values of z. -«
Ans. z=¥2, or V4.
5’ Ea: 17. Given 2'—z+/8=2—1}y3, to find the values of 2.\
Ans \/ 32+3’ or v 32 1
\ f.Ez:. 18. Given Vm—2(l +z—z")=1, to find the values
. of z.

Ans. r=49, or

Ans. 3£} v41, or §£3 V11,

(185.) We have seen that every equation of the second de-
gree has two roots, or that there are two quantities which, when
substituted for z in the original equation, will render the two
members identical. In like manner, we shall find that every
equation of the third degree has three roots ; an equation of the
fourth degree has four roots; and, in general, an equation has
as many roots as it has dimensions.

vz
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Before determining the degree of an equation, it should be
freed from fractions from negative exponents, and from the
radical signs which affect its unknown quantities. Examples
4, 5, 13, and 14 are thus found to furnish equations of the sec-
ond degree, while examples 6 and 18 furnish equations of the
fourth degree.

The above method of solving the equation z*+pz"=q will
not always give us all of the roots, and we must have recoursg
to different processes to discover the remaining roots. The
subject will.be resumed in Section XX.

PBDBhEMS PRODUCING QUADRATIC EQUATIONS.

Prob. 1. It is required to find two numbers, such that their
dxﬂ'erence shall be 8, and their product 240.
Let z = the least number.
Then will 248 = the greater.
And by the question z(z+8)=z"+82=240.
Therefore, =12, the less number,
z+8=20, the greater.
Proof. 20—12=S8, the first condition.
20X 12=240, the second condition.
Prob. 2. The Receiving Reservoir at Yorkville is a rectan-
gle, 60 rods longer than it is broad, and its area is 5500 square
rods. Required its length and breadth?

Prob. 3. What two numbers are those whose difference is

- 2a, and product b? .

Ans. ax vVa*+b, and —ax Va'+b.

+ Prob. 4. It is required to divide the number 60 into two such
parts that their product shall be 864.
Let = = one of the parts.
Then will 60—z = the other part.
And by the question, z(60—z)=60z—2"'=864.
The parts are 36 and 24. Ans.

" Prob. 5. In a parcel which contains 52 coins of silver and
copper, each silver coin is worth as many cents as there are
eopper coins, and each copper coin is worth as many cents as
there are silver coins, and the whole are worth two dollars
How many are there of each?
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Prob. 6. What two numbers are those whose sum is 2a,and »

product b7
‘ Ans. a+vVa*—b, and a— vVa'—b.

Prob. 7. There is a number consisting of two digits whose ™

sum is 10, and the sum of their squares is 58. Required the
number.

Let z = the first digit.

Then will 10—z = the second digit.

And '+ (10—2z)*=22"—202+4-100=58. *
That is, z'—10x=-—21,

z'—10z+4-25=4,
z=5x2=17, or 3.
Hence the number is 73, or 37.

The two.values of z are the required digits whose sum is
10. It will be observed that we put = to represent the first
digi{, whereas we find it may equal the second as well as the
first. The reason is, that we have here imposed a condition

which does not enter into the equation. If z represent either’

of the réfjuired digits, then 10—z will represent the other, and
hence the values of z found by solving the equation should
give both digits. Beginners are very apt thus, in the state-
ment of a problem, to impose conditions which do not appear
in the equation.

The preceding example, and all others of the same class,
may be solved without completing the square. Thus,
~+ Let z represent the half difference of the two digits.

Then, according to the principle on page 67,
6+ will represent the greater of the two digits,

5—=z “ the less “

The square of 54z is 254102+ 27,

“ 5—x 25—10z+ z°,

The sum is 50 +2z*, which, according to the
problem, =58,

Hence = 8,
or r= 4,
and z ==%2.

Therefore, 5+z =17, the greater digit,

65—z =38, the less digit.

. 1Fda
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y  Prob. 8. Find two numbers such that the product of their
sum and difference may be 5, and the product of the sum of
their squares and the difference of their squares may be 65,

.. Prob. 9. Find two numbers such that the product of theit
% sum and difference may be a, and the prodyct of the sum of
their squares and the difference of their squares may be ma.

m+a m—a
Ans. \/ 2 \/ 2
Prob. 10. A laborer dug two trenches, whose united length
was 26 yards, for 356 shillings, and the digging of each of
them cost as many shillings per yard as there were yards in
itq length. What was the length of each?
K 6r(+ar L 356 ' Ans. 10, or 16 yards.

. Prob. 11. What two numbers are those whose sum is 2g,
and the sum of their squares is 25 ?
Ans. a+ vb—a’, and a— vVb—ée'.

Prob. 12. A farmer bought a number of sheeﬁ for 80 dollars,
and if he had bought four more for the same money, he would
have paid one dollar less for each. How many did he buy ?

Let z represent the number of sheep.

Then will 8—3 be the price of each. .

And :-0—8_‘0:1 would be the price of each: if he had bought fom

"more for the same money.
But by the question we have

80 80
Zozrath

Solving this equation, we obtain’
z=16. Ans.

Prob. 13. A person bought a number $f articles for a dol-
lars. If he had bought 2b more for the safpe money, he would
have paid ¢ dollars less for each. How many did he buy?

o T L 8.
Ans. —b:I:\/ 2“”;"” <.

) Pl’?b. 14. It is required to fina three numbers such that the

L LI AN MY A
/ ) Log v -y,
IR }"' }-
(4
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oroduct of tne first and second may be 15,-the product of the
first and third 21, and the sum of the squares of the second and
third 74.

Ans. 3,5,and 7.

Prob. 15. It is required to find three numbers such that the
product of the first and second may be a, the product of the
first and third b, and the sum of the squares of the second and

third c.
: a*+b* ’ c \/ c
Ans.\/ c '’ a*+b*’ b a@*+b"

Prob. 16. The sum of two numbers is 16, and the sum of
their cubes 1072. What are those numbers ?

Ans. 7 and 9.

Prob. 17. The sum of two numbers is 2a, and the sum of
their cubes is 2b. What are the numbers ?
b—a’ b—a
Aes. a+\/ 3a and a—\/ %0
Prob. 18. Two magnets, whose powers of attraction are as
4 to 9, are placed at a distance of 20 inches from each other.
It is required to find, on the line which joins their centers, the
point where a needle would be equally attracted" by both, ad-
mitting that the intensity of magnetic attraction varies inverse-
ly as the square of the distance. .,
Ans 8 inches from the weakest magnet,
N " lor —40 inches from the weakest magnet.

Prob. 19. Two magnets, whose powers are as m to =, are
placed at a distance of a feet from each other. It is required
to find, on the line which joins their centers, the point which is
equally attracted by both.

aym
vmEtyn

*ay/n
vmxyn

Prob 20. A set out from C toward D, and traveled 6 miles
an hour After he had gone 45 miles, B set out from D to-
ward C, and went every hour #; of the entire distance ; and
- after he had traveled as many hours as he went miles in one

The distance from the magnet m is
Ans. :
The distance from the magnet = is
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hour, he met A. Required the distance between the places C
and D.
Ans. Either 100 miles, or 180 miles,

Prob. 21. A set out from C toward D, and traveled a miles
per hour. After he had gone b miles, B set out from D toward
\ C, and went every hour ;th of the entire distance; and afier

he had traveled as many hours as he went miles in one hour,
he met A. Required the distance between the places C and D.

PINE/ )}

Prob. 22. By selling my horse for 24 dollars, I lose as much
per cent. as the horse cost me. What was the first cost of
the horse ? ‘4 .

LI Ans. 40, or 60 dollars.

- ja

QUADRATIC EQUATIONS CONTAINING TWO UNENOWN QUAK-
TITIES.

(186.) An equatioh containing two unknown quantities is
-said to be of the second degree when it involves terms in which
the sum of the exponents of the unknown quantztzes is equal to 2,
but never exceeds 2. Thus,

3z —4z+y'=25,
and Tzy—4zx+y =40,
are equations of the second degree.

The solution of two equations of the second degree contain-
ing two unknown quantities, generally involves the solution of
an equation of the fourth degree containing one unknown quan-
tity. Hence the principles hitherto established are not suffi
cient to enable us to solve all equations of this description
Yet there are particular cases in which. they may be reduced
either to pure or affected quadratics, and the rootwdetermined
in the ordinary manner. '

(187.) When one of the equations is a simple equation, it i»
generally best to find an expression for the value of one of the
unknown quantities from the simple equation, and substitute
this value in the place of its equal in the other equation. The
resulting equation will be of the second degree, and may be
solved by the ordinary rules.
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Ez. 1. Given 2*+3zy— y'=28 | to find the values of z
z 42 ="7) andy.
From the second equation, we find
z =7—2y.
Whence z'=49—28y+4y".
And., substituting this value in the first equation, we have
49—28y+4y’+-21y—6y"—y*=23,
a common quadratic equation, which may be solved in the
usual manner. .
. Ans. =38, and y=2.
Ez. 2. Given 22"+ zy—5y'=20 ) to find the values of 2
2z —3y=1 and y.
Ans. z=5, y=38.
. 102+
Ez. 3. Given 3 y=zy gto find the values of z and y.
9y—9z=18
Ans. =2, y=4.
(188.) When the same algebraic expression is involved to
different powers, it is sometimes best to regard this expression
as the unknown quantity.
Ez. 4. Given z*+2zy+y" +22=120~—2y | to find the val-
. zy—y' =8 ues of zand y
Here the first equation may be put under the form
(z+y)*+2(z+y)=120,
where z+y may be regarded as a single quantity, and by
completing the square, we shall find its value to be
either 10, or —12.
Proceeding now as in the last Article, we shall find
=6, or 9, or —9x /5,
y=4, or 1, or —3+ /5.
Ez. 5. Given 4zxy=96—zy"
z+y=6
Here we may regard zy as the unknown quantity, and we
shall find its value from the first equation to be
either 8, or —12.

Proceeding again as in the former Article, we shail find
.

Bl

E to find the values of z and y.

S A
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z=2, or 4, or 321
y=4, or 2, or 3 v21

z 4z 85
Ez. 6. Given .+ —=—
vy

gto find the values of z and y.
r—y=2

Here .'_l may be treated as the unknown quantity, and we

shall ﬁnd its value to be

. - 5 17
exther For—3
From which we find
1
x=35, or 10’
3
y=38, or —o

(189.) When the sum of the dimensions of the unknown
quantities is the same in every term of the two equations, it is
sometimes best to substitute for one of the unknown quantities
the product of the ‘other by a third unknown quantity.

Ez. 7. Given *+zy =56 to find the values of z and ¥.

zy +2y'=60
Here, if we assume z=vy, we 8hall have
v'y"+vy'=56,
v y'+2y'=60.
From the first of these equations,
56
y’ _va +”9
and from the second =80 .
T e second, y’—v T3’
60 56
therefore, P S el ’
From which, after completing the square, we obtain
7
v=§, (0) —'-5-.

Substituting either of these values in one of the preceding
expressions for y*,. we shall obtain the values of y; and since
o=vy, we may easily obtain the values of z.

Ans 3 z=:=14, or =42,
‘ty==x10, or £8/2.

|
|
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Ez. 8. Given 2z*+32zy+ y*=20 ) to find the values of 2
5z* +4y’=41) andy.
If we assume z=vy, we shall find

1 13
’ = !or 2 1]
whence, as hefore, we shall obtain o
+
. z=:=%x1, or E..
- Ans. ‘:/:21
y=:=%38, or —
Va1
A Ez. 9. Given x’+z{/ =71 z to find the values of z and y. .
zy-‘.‘l =12 ()’t 17’2_.,.__"”'
If we assume z=vy, we shall find P S I
11 7 [ &T
v=-, Or —, ¢ C
- 4 8’ ‘
whence, as before,
+
x==+7, or -—11
vz’
Ans.
—::i:4 or Eﬁ
y— 4 \/2

(190.) When the unknown quantities in each equation are
similarly involved, it.is sometimes best to substitute for the
unknown quantities the sum and difference of two other quan-
tities, or the sum and product of two other quantities.

oy
E=z. 10. Given ;-+;—1 to find the values of z and y.

z +y =12
Here let us assume

z=z2+v,
y=z—v. ¥

Then, by adding these two equations together, we shall have
z+y=22=12, or 2=6;

. that is, z—6+v, and y=6-—v. /
But, from the first equation, we find
2 +y'=18zy.

8
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Substituting the preceding values of z and y in this equa

ion, and reducing, we obtain
432+ 361v'=648—18v".,

Whence v==k2.
Therefore, z=4, or 8,
and y=8, or 4.
ot Bz 11 Given 2'+4'=3368
) z+y= 8 to find the values of z and y.
=3, oums, _
' Ans. g y=>5, or 3.
Ezx. 12. Given 2* +1y* =341
R x’y+{ 4*=330 ; to find the values of z and y
x=>5, or 6,
Ans, i y=6, or 5.

PROBLEMS.

1 Divide the number 100 into two such parts, that the sum
of their square roots may be 14." )
" Ans. 64 and 36.

2. Divide the number a into two such parts, that the suw
of their square roots may be b.

Ans. ‘—l:bll vV2a—1.

8. The sum of two numbers is 8, and the sum of thelr fourt}
owers is 706. What are the numbers ?
) Ans. 8 and 5.
4. The sum of two numbers is 2a, and the sum of theu
fourth powers is 2b. What are the numbers?

Ans. a:i:\/—aa’+s/8a‘ b.

5. The sum of two numbers is 6, and the sum of their fift
powers is 1056. 'What are the numbers ?
. Ans. 2 and 4.

6. The sum of two numbers is 24, and the sum of their fifth
'~ owers is b. What are the numbers ?

Ans. a*x \/\/l 0a+— -a
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7. What two numbers are those whose product is 120 ; and
if the greater be increased by 8 and the less by 5, the proauet
of the two numbers thus obtained shall be 300?

Ans. 12 and 10, or 16 and 7.5.

8. What two numbers are those whose product is ¢; and
if the greater be increased by b and the less by c, the product

of the two numbers thus obtained shall be i .
a
m m' ab m m*' ab
Ans. E:t R and E:f: T
d—a—bc
where m= p
9. Find two numbers such that their sxim, . product,
and the difference of their squares may bvll eqt¥l to one an-
ther U

Ans. §+ \/Z, and %-{- \/Z,
that is, 2.618, and 1.618, nearly.
10. Divide the number 100 into two such parts, that their
product may be equal to the difference of their squares.
, Ans. 38.197, and 61.803.
11. Divide the number a into two such parts, that their prod-t
uct may be equal to the difference of their squares.
 Ans. 8atay5 and —azxay/5
. ] ]
o

DISCUSSION OF THE GENERAL EQUATION OF THE SECOND
DEGREE.

(191.) We have seen, Art. 181, that every equation of the
second degree may be reduced to the form
: z'+pr=q,
where p and g represent known quantities, either positive or
negative, integral ogfactional.
The value of  in this equatlon is

either ’ z———+ %+
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And, since these values necessarily result from the geners,
equation, we infer,

o o (e

Every equation of the second degree has two roots, and only
two.

A root of an ezuatlo'n is such a number as, being substituted
for the unknown quantity, will satisfy the equation.

This principle has been often exemplified in the preceding
pages. Two values have uniformly been found for z, although
both values may not be applicable to the problem which fur-
nishes the equation. This property will be found demon-
strated in a general manner in Art. 294.

(192.) If we multiply

2_ \/qTE;

by :c+—+ \/ q+ —0,

we shall obtain ' z'+pr—g=0,

which was the equation originally proposed.
Hence,

PROPERTY IL

Every equation of the second degree, whose roots are a and b
may be resolved into the two factors x—a and x+b.
Ez. 1. Thus the equanon
*—10z-+ 16—9,
—8=0,
=0,
where 8 and 2 are the roots of the given equation.

Itis also obvious that if @ is a root of an equanon of the sec-
ond degree, this equation must be divisible by z—a. Thus
the preceding equation is divisible by z—8, giving the quotient
z—2.

. Ez. 2 The roots of the equation

\

may be resolved into the. factors i

M)
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2'4-6z+8=0,
are —2 and —4. Resolve it into its factors.
Ez. 3. The roots of the equation
z'+-6z—27=0,
are +3and —9. Resolve it into its factors.
Ez. 4. The roots of the equation
: z'—2x—24=0,
are 46 and —4. Resolve it into its factors.
(193.) If we add together the two values of = in the gam
eral equation of the second degree, the radical parts having
opposite signs disappear, and we obtain

. P_P

———=—p.

Hence,
[ 4

PROPERTY IIL T
The algebraic sum of the two-roots is equal to the coefficient
of the second term of the equation, taken wiv3 a contrary signy
Thus, in Ez. 1, page 145, '
z'—10z=-186,

the twd roots are 8 and 2, whose sum is +10, the coefficient
of = taken with a contrary sign.

In the equation
2*+6z=—8,
the two roots are . —2and —4.
In the equation .
2’4 162=—60,
the two roots are —6 and —10.

If the two roots are equal numerically, but have opposite
signs, their sum is zero, and the second term of the equation
vanishes. .Thus the two roots of the equation z’=186, are +4
and —4, whose sum is zero. This equation may be written

z'+0zx=16.

(194.) If we multiply together the two values of z (observ
ing that the product of the sum and difference of two quan
tities is equal to the difference of their squares), we obtain



‘e
164 i DISCUSSION OF THE

P z)__"
4.(7""4 =7

Hence,

PROPERTY IV.

The praduct of the two roots is equal to the second member of
the equation, taken with a contrary sign.

Thus, in the equation -
*—102=-—16,
the product of the two roots 8 and 2 is 4-16, which is equal to
the second member of the equation taken with a contrary sign.

So, also, in the equation ,

o' +6z=21,

whose twp roots are +8 and —9, their product is —27.

The two last properties enable us readily to form an equa-
tion when its roots are known.

Ez. 1. Let1t be required to form the equation whose roots
are 2 and 8.

According to Property IIL, the coefficient of the second
term of the equation must be —10; and, from Property IV.
the second member of the equation must be —16. Helice the
equation is

#*—10z=—186.’ - _
Ez. 2. Form the equation whose roots are 3 and 5.
Ez. 3. Form the equation whose roots are —4 and ~7 )
Ez. 4. Form the equation whose roots are 5 and —9.
Ez. 5. Form the equation whose roots are —6 and +11

. v

REAL AND IMAGINARY VALUES OF THE UNENOWN QUANTITY.
(195.) The values of 2 in the general equation of the second

degree are .
]
—£=1: \/ q+£—.

Values of the. unknown quantity which are not imaginary
sre, fcr the sake of distinction, called roal
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. . : :
Since £_ being a square, is positive for all real values of p,

t follows that the expressxon q+ can only be rendered neg-

ative by the sign of g. .
When q 1s posmve, or when ¢ is negative and numdrically

less than £, then will q+p be positive, and, consequently,

\/ g+% will be real. This happens in nearly all the preced-
ing examples. '

When ¢ is negative, and numerically greater than %, then

q+’—;- will be negativé, and, consequently, \/ q+% will be m-
aginary. This happens in Ez. 5, page 146.

CASE 1L

7.
When VT‘T is ’real.
1. When, in the equation z*+pz=gq, p is neggtive, and %

18 numerically greater than \/ q+ » both values of x will be

real and positive. :
This happeng in the equation
z --62: -8,
whose two roots are 4 and 2.
Also in the equation
z'—10z=—186,
whose two roots are 8 and 2.

2 When p is positive, and g is numerically greater than

t]
\/ q+%, both values of x will be real and negative.
This happens in the equatior:
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' +6z=—8, ~ ' \
whose two roots are —2 and —4.
Also in the equation )
z*+16z=—60, .
whose two roots are —6 and —10.

8. When g is numerically less than q+%, both values of
x will be real, the one positive and the other ngg&tive.

This happens in\the equation N b
z2'4-6x=217, . ’;?: ﬁ‘zlx’;\./
whose roots are +8 and —9. IR

Also m the equation
F=2,. - K o
whose roots are +6 and —4.- ' ﬁ A1

CASE IL

(196.) When q+% is imaginary.

’
;

In this case, both values of x are imaginary.
This happens in the equation 4 ‘»\
z'—8z=—18,

whose roots are 4% v —2.

We will now prove that in this case the conditions of tne
question are incompatible with each other, and therefore the
values of z ought to be imaginary. The demonstration de
pends upon the following principle :

The greatest product which can be obtained by dividing a
number into two parts and multiplying them together, is the
square of half that number. -

Let p = the given number,
and d = the difference of the parts.

Then, from page 67, §+t—l = the greater part,

wl“s
m&.

the less part,

Y
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and —i—-—% = the product of the parts.

Now, since p is a given quantity, it is plain that this expres-

sion will be the greatest possible when d=0; that is, —4— is the

greatest product, which is the square of , half the gwen

number. ‘
For example, let 12 be the number to be divided.
We have 12=1+411; and 11X1=11.
12=2+10; and 10X2=20.
12=8+ 9; and 9X3=27.
12=44 8; and 8Xx4=32.
12=5+ 7; and 7X5=85.
12=6+ 6; and 6Xx6=36.

We here see that the smaller the difference of the two parts,
tne greater is their product ; and this product is greatest when
the two parts are equal.

Now, in the equation

'—pr=—g, :
p is the sum of the two roots, and q is their product. There-

fore ¢ cgp never be greater than £ T

If, then, any problem furmshes an equatlon in whlch qis

negative, and greater than ‘%, we infer that the conditions of

the question are mcompauble with each other
Thus, in the example

:c’—6x=-10,'
%-:9, which is numerically less than ¢g. The equation re-

quires us to divide the number 6 into two parts whose product
shall be 10, which is an, 1mpossxb111ty ; and, accordingly, in
solving the equation, we obtain imaginary values for z.

Hence an imaginary root indicates an absurdity in the pro-
posed question which furnished the equation.

Suppose it is required to divide 8 into two such.parts that
their product shall be 18.

: g
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Let "z = one of the parts, -
and 8—z = the other.
Then, by the conditions, *
z(8—z)=18.
‘Whente z'—~8z=—18.

This equation, solved by the usual method, gives ‘

=4+ 72, an imaginary expression.

Hence we infer that it is impossible to find two numbers
whose sum is 8, and product 18. This is obvious from the
Proposition above demonstrated, from which it appears that
16 is the greatest product which can be obtained by dividing
8 into two parts, and multiplying them together.

(197.) When ¢ is negative, and numerically equal to 7 — tne
radical part of both valpes of z becomes zero, and both values
of z reduce to -—g. The two roots are then said to be equal.

Thus, in the equation
z*—6rx=—9,
the two roots are 3 and 8.

We say that in this case the equation has two roots, because
it is the product of the two factors, z—3=0, and z—3=0

DISCUSSION OF PARTICULAR PROBLEMS.

(198.) In discussing particular problems which involve equa-
tions of the second degree, we meet with all the different cases
which are presented by equations of the first degree, and some
peculiarities besides. We may therefore have,

1. Positive values of z.

2. Negative values.

3. Values of the form of %.

4. Values of the form of 1:—

8. Values of the form of -g.
All these different cases are presented by Probldm 19
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page 155, when we make different suppositions upon the values
of a, m, and n; but we need not dwell upon them here.

The peculiarities exhibited by equations of the second de-
gree are,

6. Double values of z.

7. Imaginary values.

We will consider the last two cases.

(199.) Double values of the unknown quantity.

We have seen that every equation of the second degree has
two roots. Sometimes both of these values are applicable to
the problem which furnishes the equation. Thus, in Problem
20, page 155, we obtain either 100 or 180 miles for the dis-
tance between the places C and D.

C E D
L I J

Let E represent the situation of A when B sets out on his
journey. Then, if -we suppose CD squals 100 miles, ED will
equal 55 miles, of which A will travel 80 miles (being 6 miles
an hour for 5 hours), and B will travel 25 miles (being 5 miles
an hour for 5 hours).

If we suppose CD equals 180 miles, ED will equal 135 miles,
of which A will travel 54 miles (being 6 miles an hour for 9
hours), and B will travel 81 miles (being 9 miles an hour for
9 hours). :

This problem, therefore, admits of two positive answers,
both equally applicable to the question.

Problem 22, page 156, is of the same kind; and another
will be found on page 198.

In Problem 18, page 155, one of the values of z is positive
and the other negative.

c A C B
L | I |

Let the weakest magnet be placed at A, and the strongest
&t B; then C will represent the situation of a needle equally
attracted by both magnets. According to the first value, the
distance AC=8 inches, and CB=12. Now at the distance of
8 inches, the attraction of the weakest magnet will be repre-

sented by :-,; and at the dietance of 12 inches, the attraction
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- Y
of the other magnet will be represented by ov and thes¢ wou

vowers are equal ; for
4_9
8 12"

But there is another point, C/, which equally satisfies the
conditions of the question; and this point is 40 inches to the
left of A, and therefore 60 inches to the left of B; for

4 9
10° 60"

{200.) Imaginary values of the unknown gquantity.

We have seen that an imaginary root indicates an absurdity
in the proposed question which furnished the equation.

In several of the preceding problems, the values of z be
come imaginary in particular cases.

When will the values of z in Problem 6, page 153, be im
aginary ?

Ans. When b>a*

What is the absurdity involved in this supposition ?

Ans. It is absurd to suppose that the product of two num
bers can be greater than the square of half their sum. .

When will the values of z in Problem 11, page 154, be imag-
mary ?

Ans. When a*>b; or (2a2)'>4b

What is the absurdity of this supposition ?

Ans. The square of the sum of two numbers can not be
greater than twice the sum of their squares.

When will the values of z in Problem 1%, page 155, be im-
aginary 1 .
Ans. When a*>b; or (2a)*'>8b
What is the absurdity of this supposition?
. Ans. The cube of the sum of two numbers can not be

greater than four times the sum of their cubes.

- When will the values of = in Problem 4, page 140, be im-
aginary, and what is the absurditv of this supposition !
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(201.) Numbers may be compared in two ways : either by
means of their difference, or by their quotient. We may in-
quire how much one quantity is greater than another; or, how
many times the one contains the other. One is called Anth-
metical, and the other Geomejrical Ratio.

The difference between two numbers is called their Arith-
metical Ratio. Thus, the arithmetical ratio of 9 to 7 is 9—7,
or 2; and if @ and b designate two numbers, their arithmetical
ratio is represented by a—b.

Numbers are more generally compared by means of quo-
tients ; that is, by inquiring how many times onesnumber con-
tains another. The quotient of one number divided by another
is called their Geometrical Ratio. The term Ratio, when used
without any qualification, is always understood to signify a
geometrical ratio, and we shall confine our attentxon to ratios
of this description.

(202.) By the ratio of two numbers, then, We mean the quo-
tient which arises from dwzdmg one of these numbers by the
other.

Thus, the ratio of 12 to 4 is represented by -4—, or 8.

. . 5
The ratio of 5 to 2 is 3 of 2.5.

. r
The ratio of 1 to 8 is 3Or .383, &e.

We here perceive that-the value of a ratio can not always
he expressed exactly in decimals; bnt, by taking a sufficient

et
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number of terms, we can approach as nearly as we please to
the true value.

If @ and b designate two numbers, the ratio of a to b is the
quotient arising from dividing a by b, and may be represented

by writing them a:b, or %. The first term, a, is called the

antecedent of the ratio ; the last term, b, is called the consequenl
of the ratio.

Hence it appears that the theory of ratios is included in the
theory of fractions, and a ratio may be considered as a fraction
whose numerator is the antecedent, and whose denominator is the
consequent.

(203.) When the antecedent of a ratio is greater than the
consequent, the ratio is called a ratio of greater inequality ; as,
g, %2 When the antecedent is less than the consequent, it is

called a ratio of less inequalityw as, g, -:- When the antece-
dent and consequent are equal, it is called a ratio of equality ;

3 8
8, o g It is plain that a ratio of equality may alvg'ays be

‘represented by unity,
(204.) When the corresponding terms of two or more sim-
- ple ratios are multiplied together, the ratios are said to be

compounded. Thus, the ratio of g, compounded with the ratio

of 5, b =

7 becomes +-.

When a ratio is compounded with itself, the result is called
a duplicate ratio. Thus, the duplicate ratio of g is g; and the

. a
2T ,
A ratio compounded of three equsl ratios is called a tripa-

. . ca
duplicate ratio of + i

cate ratio. Thus, the triplicate ratio of 3 is — 27 ; and the tripli-

cate ratio of = 5 is l? .
The ratio of the square roots of two quantities 1s called o
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subduplicate ratio. Thus, the subduplicate ratio of is g; and
va
Vb
The ratio of the cube roots of two quantities is called a sub-

the subduplicate ratio of 'If’-l is

triplicate ;'atio. Thus, the subtriplicate ratio of :, and

’
the subtriplicate ratio of 2 318 —%

(205.) If the terms of a ratio are both multzV*'ed, or both di-
vided by the same quantity, the value of the ratio remains un-
changed. o

The ratio of a to b is represented by the fraction 2, and the

b’
value of a fraction is not changed if we multiply or divide both
numerator and denominator by the same quantity. Thus,

a
a_ma_n .
5=mb b
n
or a:b=ma: mb=g : 2
n'n

(206.) Ratios are compared with each other by reducing
the fractions which represent them to a common denominator.
In order to ascertain whether the ratio of 2 to 7 is greate.
or less than that of 8 to 8, we represent these ratios by the
.2 3 .
fractions 7 and P and reduce them to a common denominator
They thus become

16 d 21
5 " 56’
and, since the latter of these is the greatest, we infer that the
ratio of 2 to 7 is less than the ratio of.3 to 8.
(207.) A ratio of greater inequality is diminished, and a ratio
of less 1nequality is increased, by adding the same quantity to
both terms.

. 38_8+1 4
Thus, 2>2+l.or
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2 2+1 3
3531 1
To prove the proposition generally, let 2 j Tepresent any ra

tio, and let = be added to each of its terms. The two ratios
will then be o

which, reduced to a common denominator, become
$  abtaz abibe
. b@+z) b(b+z)
Now if a>b, that is, if % is a ratio of greater inequality, then,
since az is greater than bz, the ﬁrst of these fractions is great-
5 is diminished by the addi-

tion of the same quantity to each of its terms.

er than the second, and therefore

But if a<b, that is, if g— is a ratio of less inequality, then,
since ax is-less than bz, the first of the above fractions is less
than the second, and therefore g is increased by the addition

of the same quantity to each of its terms.

(208.) If, in a series of ratios, the consequent of each is the
antecedent of the following ratio, then the ratio of the ﬁrst an-
tecedent to the last consequent is equal to that which is com-
pounded of all the intervening ratios.

Let the proposed ratios be

Compoundmg them by Art. 204, we obtain
_abede
bedef’
which being dmded by bcde, reduces to

»

-8
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PROPORTION.

(209.) Proportion 1s an equality o; ratios. e
Thus, if a, b, ¢, d are four quantities, such that a,-when di-
vided by b, gives the same quotient as ¢ when divided by d,
then a, b, ¢, d are called proportionals, and we say that a is to.
b as cis to d; and this is expressed by wr'ting them thus :
a:b::c:d,
or a:b=c:d,
a_c
or —a
So, also, 8, 4, 9, 12 are_proportionals; that is,
3: 4 9 12
8 K

or 112

In ordinary language, the terms ratio and proportion are
confounded with each other. Thus, two quantities are said to
be in the proportion of 3 to 5, instead of the ratio of 3 to 5. -
A ratio subsists between two quantities, a proportion-only be-
tween four. Ratio is the quotient arising from dividing one
quantity by another ; two equal ratios form a propomon

(210.) In the proportlon

ieid,
a, b, ¢, d are called the terms of the proportion. The first and
last terms are called the extremes, the second and third the
means. The first term is called the first antecedent, the second
term the first consequent, the third term the second antecedent,
and the fourth term the second consequent.

The word term, when applied to a proportxon, is used in a
slightly different sense from that explained in Art. 27. The
terms of a proportion may be polynomials. Thus,

atbictd::e+f: gt+h.

(211.) When the second and third terms of a proportion are
identical, this quantity is ¢alled a mean proportional between
the other two. Thus, if we have three quantities, a, b, ¢, such

that . -
a:b::b:e, //}‘M

et
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then b s called a mean proportional between a and ¢, and : 18
called a third proportional to a and b. )

If, in a series of proportional magnitudes, each consequent is
identical with the next antecedent, these quantities are said to
be in continued proportion. Thus, if we have a, b, ¢, d, e, f
such that

azb::b:citc:dizdiesze:f,
a b c d e

or P e d e T
the quantities @, b, c, d, ¢, f are in continued proportion.

(212.) If four quantities are proportional, the product of tae
extremes is equal to the product of the means.

Let azb::ic:d
Then will ad=bc.
For, since the four quantities are proportional,
a c
o -

Multiplying each of these equals by bd, the expression be-
comes 0

“abd bed
T
or ad=bec. -
Thus, if 8:4::9:12,
.hen 83X 12=4X9.

(213.) Conversely, if the product of two quantities is equal
to the product of two others, the first two quantities may be
made the extremes, and the other two the means of a proportion.

Let ad=bc.
Then will a:b::c:d.
"For, since ad=bc, .

dividing each of these equals by bd, the expression becomes
a c c a

=7 T

that is, a:b::c:dyorc:d::a:h.
Thus, if 3X12=4X9,
then 3 4::9:12,

or 9:12::8:4. '
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(214.) The preceding proposition is called the test of propor-
tions, and any change may be made in the form of a propor-
tion which is consistent with the application of this test. In
order, then, to decide whether four quantities are proportional,
we must compare the product of the extremes with the product
of the means.

Thus, to determine whether 5, 6, 7, 8 are proportional, we
multiply 5 by 8, and obtain 40. Multiplying 6 by 7, we ob-
tain 42. As these two products are not equal, we conclude
that the numbers 5, 6, 7, 8 are not proportional.

Again, take the numbers 5, 6, 10, 12. The product of 5 by
12 is 60, and the product of 6 by 10 is also 60. Hence these
numbers are proportional; that is,

:10:12.

(215.) If three quantmes are in continued proportion, the
product of the extremes is equal to the square of the mean.

If ) a:b::b:ec.

Then, by Art. 212, ac=>bb, which is equal to b

Conversely, if the product of two quantities is equal to the -
square of a third, the last quanmy is a mean proportional be-
tween the other two. < .

Thus, let ac=b.
Dividing these equals by bc, we obtain
a b
b ¢
or a:b::b:c
Thus,if (4B ey
then 4X9="6"

And conversely, if  4X9=6",
then 6 is a mean proportional between 4 and 9.

EXAMPLES. —“\

1. Given the first three terms of a proportion, 24, 15, and
40, to find the fourth term.

2. Given the first three terms of a proportion, 8ab*, 4a’c
and 9a, to find the fourth term.

3. Given the last three terms of a proportion, 4a'd", 8a'¥’,
and 2a'b, to find the first term.
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4. Given the first, second, and fourth terms of & proportion,
by* 7z'y’, and 21z"y, to find the third term.

5. Given the first, third, and fourth terms of a proportion,
a+b a’—b, and (a—b)* to find the second term.

“~ (R16.) Ratios that are equal to the same ratio are equal ta
- each other.

aml;et ::Zzzx:y:}thenwilla:’b::c:d.
For, since azb::z:y,
a x
we have Z=§’
And since c:d::z:y,
c z
we have Zi:;'
Therefore, | ) ¢b_z=%’
and hence " azbiic:d

= (217.) If four quantities are ‘proportional, they will be pro
portional by alternation ; that is, the first will have the same ratis
to the third that the second has to the fourth.

Let . sc:d,
then will a:c::b:d.
For since a:b::cid,
by Art. 212, ad=bc,
‘and since ad=bc,
by Art. 213, a:c::b:d.

~. (218.) If four quantities are preportional, they wnll be pro-
portional by inversion ; that is, the second will have to the first
the same ratio that the fourth has to 13e third.

Let a:b::c:d;
then will - b.a::d:ec.
For since a:b::c:d,
by Art. 212, ad=bc,
or ' be =ad. i

Therefore, by Art. 218, b:a::d:ec.
=~ (219.) If four quantities are proportionas, they will be pro-




RATIO AND PROPORTIION. 179

portional by campositioh ; that is, the sum of the first and sec-
ond will have o the second the same ratio that the sum of the
third and fou h ha: to the fourth.

Let azb::c:d;
then will atb:b:ictd:d.
For since a:b::c:d,
a ¢
we have =
Add unity to each of these equals, and we have
a+b c+d

FHi=gth or 5

hat is, a+b:biictd:d. '
= (220.) If four quantities are proportional, they will be pro-
portional by division ; that is, the difference of the first and sec-

ond will have to the second the same ratio that the difference of
the third and fourth has to the fourth.

d ’

Let azb::c:d;
then will a—b:b:ic—d:d
For since a:b::c:d,
. a c
we have ‘ =7
Subtract unity from each of these equals, and we have
NI P )
- b d b d "’
that is, a—b:b::c=d:d.

(221.) If four quantities are proportional, they will be pro-
portional by conversion ; that is, the first will have to the dif-
Jerence of the first and second the same ratio that the third has
to the dzﬂbrem:e of the third and fourth.

Let a:b::c:d;
then will a:a—b::c:c—d
For since a:b::c:d,
by inversion, b:a::d:c;

b d
whence -,
.a ¢

Subtract each of these equals from unity, and we have B
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a c a c '~
that 1s, a—b:a::e—d:c,
or inversely, ata—b::c:c—d.

-~ (222.) If four quantities are proportional, the sum of the first
and second will have to their difference the same ratio that the
sum of the third and fourth has to their difference.

Let “aib:ic:d;
then will ‘atb:a—b::c+d:c—d.
For since . a:b::c:d,

by composition, atb:b::ctd:d,
and by alternation, a+b:c+d::b:d

Also, since a:b::c:d,
by division, a—b:b::c—~d: 4,
and by alternation, a~b:c~d::b:d.

Hence, by equality of ratios,

) a+b:a—b:c+d:c—d.

-+ (223.) If four quantities are proportional, like powers or ronts
of these quantities will also be proportional.

Let . a:b::c:d;
then will a: b" it dn
For since a:b::c:d,
a c-
we have ) =7 ]
Raising each of these equals to the nth power, we obtam
a c
‘ FTE
that is, a:b::c:d

where n may be either a whole number or a fraction.
- (224.) If there is any number of proportional quantities all
having the same ratio, the first will have to the second the same
ratio that the sum of all the antecedents has to the sum of all the
consequents.

Let a, b, ¢,.d, e, f be any number of proportional quantities

such that
a.b::c.d..e.f,

then will a:bd::atcde: bdd+f
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For since a:b::c:d,
we have " ad=be;
and since ’ azb:etf, .
we have ‘ af=be.

To these equals add ab=ba,
and we obtain a(b+d+f)=b(atc+e).

Hence, by Art. 218, a: b:: a+c+e: b+d+f.

(225.) If.three quantities are in continued propcrtion, the
first will have to the third the. duplicate ratio of that which it
has to the second.

Let a:b::b:e
Then a:c::a b\
For since a:b::b:ec
by Art. 212, : ac=b".
Multiplying each of these equals by a, we obtain
a‘c=ab";
that is, a*Xc=aXxb.

Resolving this equatwn into a proportion by Art. 218, we

have
azc::a*: b

(226.) If four quantities are in continued proportion, the first
will have to the fourth the triplicate ratio of that which it has to
the second.

Let a, b, ¢, d be four quantities in continued froportion, so
that

ab::b:c::c:d,
then will a:d::a': b
For since a:b::c:d, .
we have ad=bc;
and since a:b::b:ec,
we have ac="b",

Multiplying these equals by ab, we obtain
a*(bdc)=b'(abe),
or ’ a'xd=>b'xa.
Hence, by 4r.213, a:d‘':a*: D

/7.\ -
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L) If there are two sets of proportional quantities, the
products of the corresponding terms will be proportional. -

Let ) a:b:ic:d,
and e:f::g8:h

Then will ae: bf ::cg: dh.

For, since a:b::c:d,
by Art. 212, ad=bc.

And gince eifiigihy
by Art. 212, eh=fg.

Multiplying these equals together, we have
aeX dh=DbfX cg.

- Hence, by Art. 218, ae:bf::cg:dh.

+ (228.) Three quantities are said to be in harmonical propor
tion when the firgt is to the third as the difference between the
first and second is to the difference between the second and third.

Thus, 2, 3, 6 are in harmonical proportion ; for
2:6::3—-2:6-—-3.

Let a, b, ¢ be in harmonical proportion; then
a:c::a—b:b—c.

Multiplying the extremes and means, and reducing, we hava

ab
c=27_:1-).
Hence, to find a third harmonical proportional to two quan-

tities, divide the product of the first and second by twice the
first diminished by the second.

Ez. 1. Find a third harmonical proportional to 3 and 5.
Ez. 2. Find a third harmonical proportional to 5 and 8.
(229.) Four quantmes are said to be in harmonical propor-
tion when the ﬁrst is to the fourth as the difference between the
- first and second is to the difference between the third and fourth.
Thus, 2, 8, 4, 8 are in harmonical proportion; for
2:8::3—2:8—4.
Let a, b, ¢, d be in harmonical proportion ; then
a:d: a—b:c—d. -
" Multiplying the extremes and means, and redncing, we
ave :
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ac
=zt

Hence, to find a fourth harmonical proportional to three
quantities, divide the product of the first and third by twice
the first diminished by the second.

Ez. 1. Find a fourth harmonical proportional to 4, 5, and 6.

Ez. 2. Find a fourth harmonical proportional to 5,8, and 10.

(280.) Proportions are often expressed in an abridged form.
Thus, if A and B represent two sums of money put out for
one year at the same rate of interest, then

A : B :: interest of A : interest of B.

This is briefly expressed by saying that the interest varies
as the principal. A peculiar character @ is used to denote
this relation. Thus, we write

the interest @ the principal.

One quantity varies directly as another, when both increase
or diminish together in the same ratio. Thus, in' the above
example, A varies directly as the interest of A. Insuch a case
either quantity is equal to the other multiplied by some con
stant number. Thus, if the interest varies as the principal,
then the interest equals the principal multiplied by a constant
quantity, which is the rate of interest.

If - A @ B, then A=mB.

If the space (S) described by a falling body varies as the
square of the time (T), then .

' S=mT?,
m representing some constant quantity.

-(281.) One quantity may vary directly.as the product ol

. several others. Thus, if a body moves with uniform velocity
the space described is measured by the product of the time
by the velocity. If we put S to represent the space described,
T the time of motion, and V the uniform velocity, then we
shall have
Sao TXV.

Also the area of a rectangle varies as the product of its

length and breadth.
_ The weight of a stick of timber varies as its length X its
breadth X its depth X its density.
9
*
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If the density 1s given, then the weight varies as the lengta
X the breadth X the depth.

. Ifthe depth also is given, then the weight varies as the length
X the breadth.

If the breadth is given, then the weight varies as the length.

Finally, if the length also is given,.then the weight is-equal
to a constant quantity.

(2382.) One quantity varies inversely as another when one
increases in the same ratio that the other diminishes. Thus,
the altitude of a triangle whose area is given, varies inversely
as its base. -

If the product of two quantities is constant, then one varies
inversely as the other.

In uniform motion, the space is measured by the product of
the time by the velocity ; that is,

S=TxV.
S
Whence =¥
If the space be supposed to remain constant, then
Tws
@ v H

that is, the time requirea to travel a given distance varies 1n-
versely as the velocity. Suppose the distance is 360 miles:

then, .

if the velocity is 12 miles per hour, the time will be 80 hours ;
“ 20 « “ 18 «
[ 24 [ (13 15 &6

enat is, if the velocity is doubled, the time is halved. . The one
varies inversgly as the other.
Conversely. if one quantity varies inversely as another, the
“product of the «wo quantities is constant.

Thus, if Ta
then the space (S) 1s a constant quantity.
(233.) One quantity may vary directly as a second, and in-
versely as a third. Thus, according to the Newtonian law of
ravitation, the attraction (G) of any heavenly body varies
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directly as the quantity of matter (Q), and inversely as the
square of the distance (D).

That is. - - G %—,.

(284.) Application of the preceding principles.

Ez. 1. Given zy: 2 _5 3 i to find the valuesof z and y.
zy=6, .
z+y:x::6:8.

Bince
By division, Art. 220, y:z::2:8.
Therefore, 8y=2z, and y=%.
Substituting this value of y in the second equation, we obtam
] .
2 e
Therefore, =3,
and y==+2,
Ez. 2. Givenz+y:z—y::3: 1,% to find the values of z
z*'—y*=56, and y.

From the first equation, by 4rt. 222, we obtain
Q2K 4:2;
ziy::2:1,

whence, > .
and : =2y.

Substituting this value of = in the second equation, we ob-
tain

' y=2, z=4. -
S S
Ez. 8. Given 24y : z—y :: 64 : 1, ) to find the values of z
zy=63, and y.
By Art. 223, z+y:z—y::8:1
By Art. 222, 2 :2::9:7;
whence Tiy::9:7.
Therefore, :c=97,z.

Substituting this value of z in the second equation, we ob-

y= +7, z=:£90,
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° 3
Ez. 4. Given z'—y* : z—y :: 61 : 1, ) to find the values oi
zy=320, z and y.

Since z'—y': 2*—38z'y+3zy'—y' :: 61 : I
) 3
By division, Art. 220, 3ryX(z—y) :z—y ::60: 1.

Hence 960 : z—y::60.1,
L
wad 16:z—y::1:1
‘Therefore, z—y=:t4.
Also, since z'—2zxy+y'=16. i
And , 4zy=1280.
By addition, z'+2zy+y'=1206.
Extracting the root, z-+y=:36.
Hence z==20, or *186,

y==16, or +=20.

~Ez. 5. Given 2*—y' : 2'y—zy’ :: 7: 2, }to find the values
) z+y=6, of z and y.

Ans. z=4, or 2; y=2, or 4.
— Ez. 6. Given vy —vVa—z=vVy—az, % to find the
Vy—z+va—z: va—z::5:2,) valuesof
cand y.
. 4a 5a
Ans. z=-5- H y='4—.

~~Ez. 7. Given 24z :2— 2z :: 83/2+8: 27z, to find the
values of . '
) Ans. z=9, or 4. !
Ez.8. What number is that to which, if 1, 5, and 18 be sev
erally added, the first sum fhall be to the second as the second ‘
tothe third? " '/  ¥™% A3l y-j}
1 A v Ans, 3.
co e - A0
Ez. 9. What number is that to which, if , b, gnd ¢ be sev- '
erally added, the first sum shall be to the second as the second
to the third ?
b’--ac

Ans. e
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Ez.10. What two numbers aré those whose difference, sum '
and product are as the numbers 2, 3, and 5 respectively ?
Ans. 2 and 10.
Ez. 11. Whai two numbers are those whose difference, sum,
. and product are as the numbers m, n, and p? *
.  Ani. 2P and 2.
atm’ O n—m
Zz. 12. Find two numbers, the greater of which shall be to
the less as their sum to 42, and as their difference to 6.
Ans. 32 and 24.
Ez. 13. Find two numbers, the greater of which shall be to
the less as their sum to @, and their difference to b.
(a+b) a+b
Ans. 2(a—b)’ and 3
" Ez. 14. ‘There are two numbers which are in the ratio of 3
to 2, the difference of whose fourth powers is to the sum of
their cubes as 26 to 7. Required the numbers.
Ans. 6 and 4.
Ez, 15. What two numbers are in the ratio of m to n, the
difference of whose fourth powers is to the sum of their cubes
asptog?

m’-’l—n andy—’ m'+4n’
q .4 q m‘-—n"

Au.



SECTION XIV.

PROGRESSIONS.

ARITHMETICAL PROGRESSION.

(285) An Arithmetical Progression is a séries of quantities
whichk increase or decrease by the continued addition or subtrac-
tion of the same quantity.

Thus, the numbers

1,851,911, &,
which are obtained by the addition of 2 to each successive
torm, form what is called an increasing Arithmetical Progres-
sion; and the numifrs
20, 17, 14, 11, 8, 5, &c.,

which are obtained by the subtraction of 8 from each success-
ive term, form what is called a decreasing Arithmetical Pro-
gression, '

(236.) To find the last term of an Arithmetical Progression

If a represent the first term of an arithmetical progression,
and d the common difference, the successive terms of an in-
rreasing series will be

a, a+d, a+2d, a+3d, a+4d, &c.
The successive terms of a decreasing series will be
a, a—d, a—2d, a—38d, a—4d, &c.
Since the cogfficient of d in the second term is 1, in the third

.rm 2, in the fourth term 8, and so on, the nth term of the
series will be

ax(n—1)d,
which may be called the last term when the number of terms
is n. Hence,
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The last term of an arithmetical progression is equal to the
first, = the product of the common difference into the number of
terms less one.

In what follows we shall consider the progression an increas-
ing one, since all the results which we obtain can be immediate-
ly applied to a decreasing series by changing the sign of d.

If we put 7 to represent . the last term of the series, we shall
accordingly have

I=a+(n—1)d.

This equation contains four variable quantities, any one ot
which may be computed when the other three are known.

(237.) To find the sum of n terms of the series.

Take any series, and under it set the same terms in an mn
werted order, thus:

Let the series be 1, 8, 5, 7, 9,11, 13, 15,
the same series inverted is 15,18,11, 9, 7, 5 8, 1.
The sums are, 16, 16, 16, 16, 16, 16, 16, 16.

The sums of the two series mustbe double the sum of a sin-
gle series, and is equal to the sum of the extremes repeated as
many times as there are terms.

In order to generalize this method, let S represent the sum
of the series,

Then S=a+a+d+a+2d+a+8d+. ... ... RS
If we write the same series in an inverted order, thus
S—l+l—d+l—2d+l—3d+ ........ e . ota,
vnd add the two series together, term by term, we obtain
Ws=lt+a+itatitatita+ ......... +ita
Represent the number of terms in the series by = ; then
28=n(l+a).
Hence S="-l(l—_;a—).
Therefore,

The sum of an Arithmetical Progression is equal to half the
- axm of the two extremes; multiplied by the number of terms.

It also appears from the above, that the sum of the extremes
is equal to the sum of any other two terms equally distant from
the extremes
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(238.) The two fundamental equations \
I=a+(n—1)d, ,_ 2( S AR
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.'.
« ar

\

l+a

S=——2— . N s (.L/Tm,«)
contain five variable quantities,
aldn,S,

£ - cn L(;h:

of which any three being given, the other two may be founa.
Accordingly, 20 different cases may arise, all of which are
solved by combining the formulee above given. These cases
are exhibited in the following table, and should be verified by
the student :

"No. Given. | Required. Formule.
l|adn l=a+(n—1)d,
2| adS I=—4d+ V2dS+(a—1d)’,
8|an S l =g§—a,
n
S (n—1d
4 Il, n, S —; b}
5| adn S={n{2a+(n—1)d},
6|adl s={t‘.+?_i, '
S ‘ 2 2d
7| an,l S=%—‘-‘Xn,
d,nl S={n{21—(n—1)d}.
l—a
9|an,l =—
n—1
10| a,n, 8 d=2s—_22,-',
. d n(n—1)
P—a*
11| a1, S d=2s—_'l—_—a',
2nl—28
12 », 0, S d-——m.
18 | d, n,1 a=l—(n—1)d,
14|das g=S_(=Dd
n 2
15|d,8| ¢ a=}d=+ v (I+3d)'—2dS,
16 | n, 1, S =§—l
n .
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“Fo. Given. Required. Formales.
17 | a,d, 1 n—-l—d—a-i-l
' = Ga—dy T6d8— .
18|ads v(a d);J-SdS 2a+d
n
. 2S
19| a,, S n—m’
=+ L
20|ars _2l+d J(;ziw)_ds’s .

EXAMPLES.

(2389.) Ez. 1. Required the sum of 60 terms of an arithmetica
progression whose first term is 5, and common difference 10.
Ans. 18000,
This example affords an application of Formula 5.
Ez. 2. Required the number of terms of a progression whose
sum is 442, whose first term is 2, and common difference 3.
Ans. 17,
This example is solved by Formula 18.
Ez.3. Required the first term of a progression whose sum
18 99, whose last term is 19, and common difference 2.
Ans. 8.
Ez.4. The sum of a progression is 1455, the first term 5, and
‘tbqlast term 92. What is the c\mmon difference ?
- - « Ans. 3
Ez 5. A body falls 16 feewunng the first second, and in -
each succeeding second 32 feet more than in the one immea -
diately precedinge® If it continue falling for 20 seconds, how
many feet will itspass over in the last second, and how many
n the whole time ?
Ans. 624 feet in the last second, and 6400 feet in the whols
time.
Ez. 6. Required the sum of 101 terms of the series
1,8,5717,09, &c.
Ans. 10201.
Ez. 1. Find the ath term of the series
1, 8,579, &c.
Ans. 2n—13
['1d
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that is, the last term of this series is one less than twice the num
ber of terms.
Exz. 8. Find the sum of n terms of the series
® 1, 3,519, &c.
o Ans, »';
that s, the sum of the terms of this series is equal to the square
of the number of terms. :
Thus, 148 = 4=2"
14345 = 9=3°
143+5+7 =16=4"
148+5474+9=25=>5"
Ez. 9. Find the sum of the natural series o1 numbers
L,2,3,4,5 & -
up to n terms. s

n(n+1)
Aws. —
‘Ez. 10. Find the sum of the even numbers *
2,4, 6,8, &c.,
up to n terms. 4 :
st Ans. n(n+1).

" Ez. 11. One hundred stones being placed on the ground in
a straight line, at the distapce of two yards from each other,

‘how far will a person travel who shall bring them one by one

to a basket which is placed two ;ards from the first stone ?
. Ans. 20200 yards.

Ez. 12. Find m arithmetical means between two given num-
oers.

In order to solve thls problem, we m trﬁrst find the com-
mon difference. The whole number of ternis consists of the
two extremes and all the intermediate terms. If, then, m rep-
resent the number of means, m+2 will be the whole number
of terms.

Substituting m+2 for n, in Formula 9, page 190, we have

d_L-FaT—' the common difference,
whence the required means are easily obtained by addition.

-Ex 13. Find 6 arithmetical means between 1 and 50.
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Ez.14. Find three numbers in anthmetlcal progression, the
sum of whose squares shall be 1232, and the square of the
mean greater than the product of the two extremes by 16.

Ans. 16, 20, and 24.

In examples of this kind,.it is generally best to represent the
series in such a manner that the common difference may dis-
appear in taking the sum of the terms. Thus a progression
of three terms may Be represented by :

a—d, a, a +d;
one of four terms by a—8d, a—d, a+d, a+3d, &ec.

Ez. 15. Find three numbers in arithmetical progression, the
sum of whose squares shall be «, and the square, of the mean
greater than the product of the two extremes by b.

Ans. \/a;2b_ Vb; \/___a;2b; and \/a;2b+.¢b.

Ez. 16. Find four numbers in arithmetical progression
whose sum is 28, and continued product 585.
Ans. 1, 5, 9, 13.
Exz. 17. A sets out for a certain place, and travels'1 mile .
the first day, 2 the second, 8 the third, and so on. In five days
afterward B sets out, and travels 12 miles a day. How long
will A travel before he is overtaken by B?
Ans. 8 or 15 days.
This is another example of an equation of the second de-
gree, in which the two roots are both positive. The following
dlagram exhibits tHe daily progress of each traveler. The di-
visions above the horizontal line represent the distances trav-
eled each day by A ; those below the line the distances trav-
eled by B.
Al123456 7 8 9 10 11 12 13 14 15
111 T O O Y | | l 1 | | j

l I | | [ | I i | ]
B. 1 2 8 4’ b 6 7 8 9 0.

It is readily seen from the figure that A is in advance of B
until the end of his 8th day, when B overtakes and passes hir.
After the 12th day, A gams upon B, and passes him on the-
15th day, after which he is continually gaining upon B, and
eould not be again overtaken.

Ez. 18. A goes 1 mile the first day, 2 The second, and so on.

~

-



194 PROGRESEIONS,
*

B starts a days later, and travels b miles per day. How long
will A travel before he is overtaken by B?

—14 1) —8ab
dng, 21 \/(Zb 1y'—8ab .

in what case would B never ovértake A'I

Ans. When a> (2b l)’.

Yror instance, in the preceding example, if B had started one
day later, he could never have overtaken A.

Exz. 19. A traveler set out from a certain place and went 1
mile the first day, 8 the second, 5 the third, and so en, ¢ After
he had been gore three days, a second traveler sets out, and
goes 12 miles the first day, 13 the second, and so on. In how
many days will the second overtake the first ?

" Ans. In 2 or 9 days.

Let the student illustrate this example by a dlagram like the
preceding.

GEOMETRICAL PROGRESSION. .

(240.) A Geometrical Progression is a series of quanttties,
each of which is equal to the product qf that which precedes it by
a constant number.

Thus, the series
S 2, 4, 8, 16, 32, &c.,

_and 81, 27, 9, 8, &c.,

-are geometrical progressions. In the former, each number is
*~~derived from the preceding by multiplying it by 2, and the
series forms an increasing geometrical progression. In the
latter, each number is derived from the preceding by multiply
ing it by 1, and the series forms a decreasing geometrical pro-
gression.

In each of these cases, the common multiplier is called the
common ratio.

(241.) To find the last term of a geometrical progresswn

Let a represent the first term of the progression, and r the
common ratio ; then the successive terms of the series will be

a, ar, ar', ar’, ar*, &c.
The exponent of- Mn the second term is 1, in the third term
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18 2, in the fourth term 3, and so on; hence the nth term of the

series ‘will be
ar*,

If, therefore, we put [ for the last term and » the number of

.erms of the series, we shall have
- I=ar—,

That is,

The last term of a geometrical progression is equal to the
product of the first term by that power of the ratio whose expo-
nent is one less than the number of terms.

(242.) To find the sum of all the terms of a geometrzcal pro-
gression.

If we take any geometrical series, and multiply each of its
terms by the ratio, a new series will be formed, of which ev-
ery term except the last will have its corresponding term in
the first series. Thus, take the series

1,24, 8, 16, 32,
the sum of which we will represent by S, so that
S=1+2+4+8+16432.

Multiplying each term by 2, we obtain

29=2+4+8+16+32+64.

The terms of the two series are identical, except the first
term of the first series and the last term of the second series.
If, then, we subtract one of these equations from the other, al}
the remaining terms will disappear, and we shall have

28 —S=64—1.
In order to generalize this method, let e, ar, ar’, &c., rep
* rcsent any geometrical series, and S its sum ; then
=a+ar+ar'tar'+...... +ar**+ar.
Multiplying this equation by r, we have
r8=ar+tar*tar*tar'+...... +ar3+ars,
Subtractmg the first equation from the second, we obtain
rS—S=ar"—a.
Hence 4 S= ar”—l ;.
or, substituting the value of / already found, we shall heve
S_h—a
T =1
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Hence, to find the sum of the terms of a geometrical pro-
gression,

Multiply the last term by the ratio, subtract the first term, and
divide the remainder by the ratio less one.

If the series is a decreasing one, and r consequently repre-
sents a fraction, it is convenient to change the signs of both
numerator and denominator in this expression, which then' be-
comes

_a—ar" _a—'-
. T l=r  1-r’

(2438.) In the two fundamental equations

l=ar,
S_lr—a

Tr—1°

here are five variable quantities,
a,lr,nS,

of which any three being given, the other two may be founa
Accordingly, as in arithmetical progression, 20 different cases
may arise, all of which are readily solved, with the exception
of those in which » is the quantity sought. The value of n
can only be found by the solution of an-exponential equation.
See Art. 352. These different cases are all exhibited in the
following table for convenient reference.

No. Given. Required. Formule.
1|arnrn l=ar,
2| anrS ' l=gi(r_r—_lﬁ’
8|{anS I I(S—I)""'=a(S—a)""" .
r—1)Sr~!
4| r,n S l=(—;,lT-.
ar'—a
5|anr,n p S="r—_-l—,
6|anrl S=l_r:_g’
8 r—1
. VEYF
7| anl S=w'
=1
—8 r,n,l S=r"—r’"" .
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No. Given. Required. - Formuim.
9|anl r=" -l,
a
10 [ g, 2, S - ar*—rS=a—S.
, - S—a
11 | a, 1, S . r=g—p
12 | n, ], S S=-Dr—Sr1==1
7 T
13 r,n, l a=F’
14|r,nS| a a==DS
r—1
15| r 1 S| a=lr—(r—1)S,
16 | 2,1, S aS—a)~'=IS-]~".
17 ani n-_log. I—log. a+l,
log. r
18 | a1, S log [a+4(r—1)S]—log. a
n log. r
log.l—log. a
191418 log (S—a)—log.(S— l)+l’
20 | r1 S log I—log.[lr— (r-—l)S]+L

log.r

EXAMPLES.

Ez. 1. Required the sum of the series
- 1, 8, 9, 27, &c.,
continued to 12 terms.
. Ans, 26572v,
This example is solved by Formula 5.
Ez. 2. Required the sum of the series
1,2, 4, 8, 16, &ec.,
- continued to 14 terms.
Ans. 16388, .
Ez. 8. Given the first term 2, the ratio 3, and the number
of terms 10, to find the last term. N
Ans. 39366.
Ex. 4. Given the first term 1,the last term 512, and the sun
of the terms 1028, to find the ratio.
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Exz. 5. Given the last term 2048, the number of terms 12
and the ratio 2, to find the first term.

Ez. 6. A person being asked to dispose of his horse, said he
wéuld sell him on condition of receiving one cent for the first
nail in his shoes, two cents for the second, and so on, doubling
the price of every nail to 32, the number of nails in his four
shoes. What would the horse cost at that rate?

. Ans. $42,949,672.95

(244.) To find any number of geometrical means between two
given numbers.

In order to solve this problem, it is necessary to know the
ratio. If m represent the number of means, m+2 will be the
whole number of terms. Substituting m+-2 for # in Formula 9
Art. 243, we obtain '

i
(—l.

That is, to find the ratio, divide the last term by the first term,
and extract the root denoted by the number of means plus one.

When the ratio is known, the required means are obtained
by continued multiplication.

Ez. 1. Find three geometrical means between 2 and 162.

Ez. 2. Find twe geometrical means between 4 and 256.

r=

(245.) Of decreasing progressions having an infinite number
of terms.
The formula

a—ar"
8= 1-r,’
which represents the sum of » terms of a decreasing series,
may be put under the form

a ar"
S_l—r_l—r'

In a decreasing progression, since r is a proper fraction, r*
is less than unity, and the larger the number 7, the smaller will
ve the quantity . If, therefore, we take a very large num.
ber of terms of the series, the quantity ", and, consequently

Coart .
the term T—» Will be very small; and if we take n greatet
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than any assignable'number, then la_:.r will be less than any

assignable number. We shall therefore have
a
S—lTr.
Hence the sum of an infinite series decreasing in geometrica
progression is found by the following

RULE.

Dhvide the first term by unity diminished by the ratio.
Ez. 1. Find the sum of the infinite series

14+14+3+44+, &ec.
Here a=1, r=4}.
Therefore, S=—a—=-L=2.
1—r 1—3
Ez. 2. Find the sum of the infinite series
1+4+3+4+, &c.

Ans. 3.
Ez. 3. Find the sum of the infinite series
1+3+15+o5+, &e.
Ez. 4. Find the ratio of an infinite progression, whose first

term is 1, and the sum of the series §.
Ans. 3.

Ez. 5. Find the first term of an infinite progression, whose
ratio is y%, and the sum 2.
Ans. 3

Ez. 6. Find the first term of an infinite progression, of which

.. 1 n
the ratio is —, and the sum ——.
n n—1

PROBLEMS.

(246.) Prob. 1. Of fourmumbers in geometrical progression,
the sum of the first and second is 15, and the sum of the third
and fourth is 60. Required the numbers.

Let z, zy, zy', zy", be the numbers g

Therefore z+zy =15,
and zy'+zy'=60
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Multiplying the first equation by ¥
‘ zy'+xy'=15y"=60.

Therefore, y'=4,

and y= +2.
Also, zx2x=15.
Therefore, z=>5, or —15.

Taking the first value of z, and the corresponding value of
y, we obtain the series
5, 10, 20, 40;
which numbers may be easily verified.
Taking the second value of z, and the correspondmg valus
of y, We obtain the series
—15, +30, —60, 1+120;

which numbers also perfectly satisfy the problem understood
algebraically. If, however, it is required that the terms of the
progression be positive, the last value of z would be inapplica-
ble to the problem, though satisfying the algebraic equation.

" Several of the following problems also have two solutions,
if we admit negative values.

Prob. 2. There are three numbers in geometrical progres-
sion whose sum is 210, and the last exceeds the first by 90
What are the numbers ?

~ Ans. 30, 60, and 120.

Prob. 8. There are three numbers in geometrical progres
sion whose continued product is 64, and the sum of their cubes
is 584. Required the numbers.

Ans. 2, 4, and 8.

Prob. 4. There are four numbers in geometrical progres-
sion, the second of which is less than the fourth by 24 ; and the
sum of the extremes is to the sum of the means as 7to 3. Re-
quired the numbers.

Ans. 1, 8,9, and 27.

Prob. 5. Of four numbers in geometrical progression, the
difference between the first and second is 4, and the difference
between the third and fourthis 36. What are the numbers?

Ans. 2, 6, 18, and 54.

Prob. 6. Of four numbers in geometrical progressmn. the
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sum of the first and third is a, the sum of the second and fourth
is b What are the numbers ?
: A a' ab ab b

ns. an+bi’ ai+bu a:+bl’ al+b!'

HABMQNIOAL PROGRESSION.
(247.) A series of quantities is said to be in harmonical pro-
gression when, of any three consecutive terms, the first is to the

third as the difference of the first and second is to the difference
of the second and third.

Thus the numbers -
60, 30, 20, 15, 12, 10, '
are in harmonical progression ; for
60 :20::60—30:30—20
30:15::30—20:20—15
0:12::20—15: 153—12
15:10::15—12: 12—10.
So, also, the numbers
1, '}, %‘s {‘1 %" '}s &c°’
form an harmonical progression.
(248.) The reciprocals of a series of terms in harmwnical pro-
gression form an arithmetical progression.
Thus, the reciprocals of 60, 30, 20, &c., are

U‘ih 3"6', '!lb" 1139 T‘i‘v ]!'n'v
which are respectively equal to

7o % @ ot o O

being an arithmetical progression whose common difference
18 #5.

If six musical strings of equal weight and tension have theis
lengths in the ratio of the numbers
' Lbbbbd
the second will sound the octave of the first; the third will
sound the twelfth; the fourth will sound the double octave;
the fifth will sound the seventeenth; and the sixth will sound
the nineteenth, and so on. Hence the origin of the term has
monical or musical proportion.
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Let a, b, ¢ be three quantities in harmonical progression:
then :
a:c::a—~b:b—c;
h _ Rac
whnence —-;z—_i_—é.
That is, an harmonical mean between two quantities is egua.
to twice their product divided by their sum.



SECTION XV.

GREATEST COMMON DIVISOR.—CONTIN-
UED FRACTIONS.—PERMUTATIONS AND
COMBINATIONS.

(249.) The greatest common divisor of two or more quan-
tihes is the greatest factor which is common to each of the
quantities.

THEOREM.

The greatest common divisor of two quantities is the same
with the greatest common divisor of the least quantity, and their
remainder after division.

To prove this principle, let the greatest of the two quantities
be represented by A, and the least by B. Divide A by B;
let the entire part of the quotient be represented by Q, and the
remainder by R. Then, since the dividend must be equal to
the product of the divisor by the quotient + the remainder, we
shall have

A=QB+R.

Now every number which will divid# B will dividle QB;
and every number which will divide R and QB will divide
R+QB or A. That is, every number which is a common di-
visor of B and R is a common divisor of A and B.

Again, every number which will divide A and B will divide
A and QB it will also divide A—QB or R. That is, every
number which is a common divisor of A and B is also a com-
mon divisor of B and R. Hepce the greatest common divisor
of A and B must be the same as the greatest common divisor
of B and R,
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(250.) To find, then, the greatest common divisor ot twe
quantities, we divide the greater by the less; and the remain
der, which is necessarily less than either of the given quanti
ties, is by the last Article divisible by the greatest'common di
visor.

Dividing the preceding divisor by the last remainder, a still
smaller remainder will be found, which is divisible by the
greatest common divisor ; and by continuing this process with
each remainder and the preceding divisor, quantities smaller
and smaller are found, which are all divisible by the greatest
common divisor, until at length the greatest common divisor
must be obtained. Hence the following

RULE.
Divide the greater quantity by the less, and the preceding di-
visor by the last remainder, till nothing remains ; the last din-
sor will be the greatest common divisor.

- When the remainders decrease to unity, the given quanti-
ties have no common divisor greater than unity, and are said
to be incommensurable, or prime to each other.

EXAMPLES, .
Ez. 1. What is the greatest common divisor of 872 and 2461
372|246
o 246( 1
246?6, first Remainder.
126] 1
126|120, second Remainder.
T
120 6, third Remainder.
120 20

Here we have continued the operation of division until we
obtain 0 for a remainder; the- last divisor (6) is the greatest
common divisor. Thus, 246 and 872 being each divided by
6, give 41 and 62, and these quotients are prime with respect
to each other; that is, have no.ccmmon divisor greater than
unity.

“
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Fz. 2 What is the greatest common divisor of
336 and 7207 :
Ans. 48,
Ez. 3. What is the greatest common divisor of
918 and 5227
. Ans. 18.

(251.) In applying this rule to polynomials, some modifica
tion may become necessary. It may happen that the first term
of the dividend is not divisible by the first term of the divisor.
This may arise from the presence of a factor in the divisor
which is not found in the dividend, and may therefore be sup-
pressed. For, since the greatest common divisor of two quan-
tities is only the product of their common factors, it can not be
affected by a factor of the one quantity which. is not found in
the other. 3

We may theiefore suppress in the first polynomial all the
factors common to each of its terms. We do the same with
the second polynomial, and if the suppressed factors have a
common divisor, we reserve it as forming part of the common
divisor sought. .

But if, after this reduction, the first term of the dividend,
when arranged according to the powers of some letter, is not
divisible by the first term of the arranged divisor, we may mul-
tiply the dividend by any monomial factor which will render its
Jirst term divisible by the first term of the divisor.

This will not affect the greatest common divisor, because
we introduce into the dividend a factor which belongs only to
the first term of the divisor; for by supposition, all the factors
eommon to each of its terms have been suppressed. ‘

EXAMPLES.

Ez. 1. Required the greatest common divisor of
z*+z' and z'—1.
The operation will here stand as follows :
z*+z’|zt—1
'~z |z
, " Z'+z, first Remainder
8uppressing z, we have 2°+1.
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z'—1|z"+1

42z =1
—z'—1
—z*—1.

Whence z*+1 is the greatest common divisor. To verify
this result, divide z°+z*' by z*+1, and. we obtain z'; divide
z'—1 by z*+1, and we obtain z’—1.

Ez. 2. Required the greatest common divisor of

z'—b'z and 2*+2bz+b"

Suppressing.the factor z in the first polynomial, we proceed

as follows:

z*+-2bz+ b2 — b N
z —b"1
: 2bz+2b*, first Remainder.
Suppressing the factor 25,
z*—b* |[z+b
2 +bz|z—b
b=
. , —bz—b*
Whence z+b is the greatest common divisor.
Ez. 8. Required the greatest common divisor of
4a'—2a"—38a+1 and 3a’—2a—1.
Ans. a—1.

Ez. 4. Find the greatest common divisor of
z'—a* and z°*—a".
Ans. z—a
Ez. 5. Find the greatest common divisor of
a@'—3ab+2)" and a’—ab—2b".
. Ans. a—2B,
Ez. 8. Find the greatest common divisor of
a'—z* and a'—a’z—az’+2'.
: Ans. a*—2*
Ez. 7. Find the greatest common divisor of
a@’—&'b+3ab*—3b! and a’—5ab+-4b.
Ans, a—b
&:. 8. Find the greatest common divisor of
64'+19a5+100" and 32~ 13256 105".
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) )
CONTINUED FRACTIONS.

(252.) From the operation on page 204, we see that the

. 246,
fraction 373 18 equal to Trin FrTy ,
Also, the fraction 126 is equal to
246

LI
1+ 43¢
246 . 1
Therefore, 373 18 equal to i1 .
1+434

. . 120. .
Again, the fraction 120 18 equal to L __ o .

126 T O T49

Therefore, —g%g is equal to :—_H- .

. ST
1+
which is called a continued fraction. ‘

A continued fraction is one whose numerator is unity, and s
denominator an integer plus a fraction whose numerator 18 like
wise unity, and its denomyvator an integer plus a fraction, and
20 on.

The general form of a continued fraction is

afl
. b+1
c+1
a+1
e+1, &e.

(253.) Any fraction may be transformed into a continued
frection by the method of finding the greatest confmon divisor
of the pumerator and denominator.

Ez. 1. Transform 114 into a continued fraction.

347
Ans. 1
3+1
ATi
1+}

10
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351 . . .
Ez. 2. Transform — into a continued fraction.

965
Ans. 1
241
1+1
8 -3
T+

491, . .
Ez. 3. Transform ;——7§ into a continued fraction.

251 . . .
Ez. 4. Transform T6d into a continued fraction.

130 . . <
Ez. 5. Transform oY) into a continued fraction.

(254.) The value of a continued fraction, when compowea of
2 finite number of terms, is easily found.

_ Ez. 1. Find the value of the continued fraction

1
2¥1
| i
Beginning with the last fraction, we have
o, 13
3+{~—-a-.
1 4
Hence m=ﬁ°
Therefore, 2+;_-ﬁ=l§g‘
1
And ® Wl__=;—3~ Ans.
3+%
Ez. 2. Find the value of the continued fraction
1
” 3+1
2+1
i

Ez. 8. Find the value of the continued fractiom
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%
2+1
3+1
2+1
2+3.
(255.) When a fraction has been transformed into a con-
tinued fraction, its approximate value may be found by taking
a few of the first terms of the continued fraction.

14

Thus, an approximate value of 1s 1, which is the first
term of its continued fraction.

By taking two terms, we obtain &7 which is ‘a nearer ap-
proximation ; and three terms would give a still more accurate
value.

532
1193°
14 33
29" 14

Ez. 1. Find approximate values of the fraction ———

Ans.

. 115
Ez. 2. Find approximate values of the fraction Yoy

119
Ez. 8. Find approximate values of the fraction — 209°

(256.) By this method we are enabled to discover the ap-
proximate value of a fraction expressed in largé numbers ; and
this principle has some important applications, particularly in
Astronomy.

Ez. 4. The ratio of the circumference of a circle to its
diameter is .1415926. Find approximate values for this
ratio.

22 333 3855
. Ans. < Yoo’ 113"

Ez. 5. In 87969 years, tbe Earth makes 277287 conjunc-

tions with Mercury. Find approximate values for the frac-
87969

tion ooveeT
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Ez. 6. In 57551 years, the Earth makes 36000 conjunctions
57551
36000’
8 235
5 147

Ez. 7. In 295306 years, the Moon makes 3652422 synod-
cal revolutions. Find an approximate value,of the fraction
295306

8652422 ___,_,..\-—M-

with Venus. Find approximate values for the fraction

Ans.

19

Ans. ‘23.

THEORY OF PERMUTATIONS AND COMBINATIONS.

(257.) The different orders in which quantities may be ar-
ranged are called their Permutations. Thus,

ra’ b
acb
the permutations of the three letters g, b, ¢, taken all ) b, q, ¢,
together, are . . . . . . . . 3 b, c, a,
¢, a, b,
XX
(a, b,
. ’ a, c,
The permutations of the same letters taken two and J b, a,
swo, are . . . . . . . . 1b¢
¢ a,
.G, b.
The permutations o the same letters taken s'.gly, org :’
one by one, are . . . . . . . . c’

(258.) To find the number of permutations of n letters, taken
m and m together. .

Let a,b,c,d.....kE bethe nletters.

The number of permutations of n letters taken singly, or one
by one, is evidently equal to the number of letters, or to n.

The number of permutations of = letters taken two and two
18 n(n—1). For if we reserve one of the letters, as a, there

will remain n—1 letters,
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boeed.o... k 7
Writing a before each of these letters, we shall have

ab,ac,ad.....ak;

that is, we obtain n—1 permutations of the = letters taken two
and two, in which a stands first. Proceeding in the same
manner with b, we shall find —1 permutations of the n letters
taken two andq two, in which b stands first; and so for each
of the n letters. Hence the whole number of permutations
will be

n(n—1).

The number of permutations of n letters taken three and
three together is

n(n—1) (n—2).

For if we reserve one of the letters, as a, there will remain
n—1 letters. Now we have found the number of permuta-
tions of n letters taken two and two to be n(n—1). Hence
the permutations of n—1 letters taken two and two must be

(n—1) (n—2).

%Vriting a before each of these permutations, we shall have .
(»—1) (n—2) permutations of the n letters taken three and
three, in which a stands first. Proceeding in the same manner
with b, we shall find (r—1) (n—2) permutations of the = let-
ters taken three and three, in which b stands first; and so for
each of the n le*ters. Hence the whole number of permuta-
tions will be -

‘n(n—1) (n—2).

In like manner, we can prove that the number of permuta-

tions of x letters taken four and four is
- n(rn—1) (r—2) (n—38).

When the letters are taken two and two, the last factor in
ne formula representing the number of permutations is n—1.
When the letters are taken three and three, the last factor is
n—2. When the letters are taken four and four, the last
factor is n—3.

Hence, when the letters are taken m and m together, the last
factor will be n—(m—1) or n—m-+1; and the number of per
mutations of n letters taken m and m together will according:
ly be )

n(n—1) (n—2) (n—3).....(n—m+1).
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EXAMPLES,

Exz. 1. Required the number of permutations of the 8 letters
& b, c,d, e f, g h, taken 5 and 5 together.
Here n=8, m=>5, n—m+1=4¢,
and the above formula becomes
. 8.7.6.5.456720, Ans.
Ez. 2. Required the number of permutations of the 26 let-
ters of the alphabet, taken 4 and 4 together.
Ans. 358800.
Ez. 8. Required the number of permutations of 12 letters,
taken 6 and 6 together.
_ Ans. 665280,
(259.) If we suppose that each permutation comprehends all
the n letters ; that is, if m=n, the preceding formula becomes

a(n—1) (n—2)..... 2X1;
or, inverting the order of the factors,
1234..... (n—1)n; ’

which expresses the number of permutations of n letters taken
all together.

Ez. 1. Required the number of changes which can be rung
upon 8 bells.
According to the preceding formula, we have
1.2.3.4.5.6.7.8=40320, Ans.
Ez. 2. How many permutations may be formed from the
letters of the word Roma ?

Ez. 3. What is the number of permutations which may be
formed from the letters composing the word  virtue 7”

Ez. 4. What is the number of different arrangements which
can be made of 12 persons at a dinner-table ?
Ans. 479001600.

' (260.) The combinations of any number of quantities signify
the different collections which may be formed of these quanti-
ties, without regard to the order of their arrangement.

Thus, the three letters a, b, ¢, taken all together, form bu
one combination, abc.
Taken two and two, they form three combinations.
ab, ac, be
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®ul.) To find the number of combinations of n letters, taken
m and m together.

The number of combinations of n letters taken separately, or
ome by one, is evidently. n.

The number of combinations of x letters taken two and two,
s n(n—1)

1.2

For the number of permutations of = letters taken two and
wwo is n(r—1) ; and there are two permutations (ab, ba) cor-
responding to one combination of two letters. Therefore th.
number of combinations will be found by dividing the numbe
of permutations by 2.

The number of combinations of n letters taken three and
n(n—1) (n—2)

1.2.3 ‘

For the number of permutations of n letters taken three and
three, is n(n—1) (n—2) ; and there are 1.2.3 permutations for
one combination of three letters. Therefore the number of
combinations will be found by dividing the number of permu-
tations by 1.2.3.

In the same manner, we shall find the number of combina-
tions of = letters, taken m and m together, to be

n(n—1) (n—2)..... (n—m-1)
1.23  ..... m )

Ez 1. Required the number of combinations of six letters
taken three and three together.

three together, is

Here n=6, m=38, n—m+1=4,
and the formula becomes
6.5.4
. . I'z.—s—20.

Exz. 2. Required the number of combinations of 8 letters

taken 4 and 4.
. Ans. 70.

Ez. 8. Required the number of combinations of 10 letters

taken 6 and 6.

Ans. 210

The following table, which is comptted by the preceding for-

mula shows the number of combinati-ne of 1, 2, 8, 4, &c let.
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ters taken singly, or two and two, three and three, &c. An
mportant application of these principles will be seen in the next

Section.
Letters) . J5 and 5.J6 and 6.7 and 7.8 and 6.)9 and 9. 10 and 10
{ 1] 1 ~
P2 2

3 3 Number of combinations.

4 4

5 5 1

6 6 6

7 7 - 21

8] 8 56

9 9 126

10| 10 252 1




SEEGTION XVI.

INVOLUTION OF BINOMIALS.

(262.) We have shown, in Art. 142, how to obtain any
power of a binomial by actual multiplication. We now pro-
pose to develop a theorem by which this labor may be greatly
abridged. '

Taking the binomial a-b, its successive powers found by
actual multiplication are as follows:

(a+b)'==a +b,

(a+b)*=a’+2ab +b,

(a+b)'=a’+38a’b+8ab® +b°
(e+b)*=a'+4a’b+6a'V* +4ab* +b",
(a+-b)°=a"+5a'b+10a’b*+10ab* +5ab* +b°,
(a+b)*=a’+6a"b+15a'b'+20ab’+15a%h" + Bab*+-b".

The powers of a—b, found in the same manner, are as fol-

lows:
(a—b)'=a —b,
(a—b)*=a"—2ab +b,
(a—b)'=a'—8a’b+3ab® —D",
(a—b)'=a'—4a'b+6a’d* —4ab® +b',
(a—d)’=a"—5a‘b+10a’b’—10a’h'+5ab* —b*,
(a—b)*'=a"—6a"b+15a'b*—20a’b*+15a°b* — 6ab* +b".

On comparing the powers of a+b with those of a—b, we
perceive that they only differ in the signs of certain terms. In
the powers of a-b, all the terms are positive. In the powers
of a—b, the terms containing the odd powers of b have the
sign—, while the even powers retain the sign +. The reason
of this is obvious; for, since —b is the only negative term of
the root, the terms of the power can only be rendered nega

10*
4 N
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tive by b. A term which contains the factor —b an even
number of times, will therefore be positive ; if it contain it an
odd number of times, i* must be negative. Hence it appears
that it is only necessary to seek for a method of obtaining the
powers of a+b ; for these will become the powers of a—b by
simply changing the signs of the alternate terms.

(263.) If we consider the exponents of the preceding pow-
ers, we shall find that they follow a very simple law. Thus,

ofa are 2,1,0,
g of bare 0,1,2.
of @ are 3,2,1,0,
of bare 0,1,2, 3.
ofaare 4,3,2,1,0,
of bare 0,1,2, 8,4.
&e., &ec., &ec.

In the first term of each power, a is raised to the required
power of the binomial ; and in the following terms, the expo-
nents of a continuzally decrease by unity to 0; while the ex-
ponents of b increase by unity from 0 up to the required power
of the binomial. It is cbvious that this will always be the case, -
to whatever extent the involution may be carried. Also, the
sum of the exponents of ¢ and b in,any term is equal to the ex-
ponent of the power required. Thus, in the second power, the
sum of the exponents of @ and b in each term is 2 ; in the third
power it is 3; in the fourth power, 4, &c.

We hence infer, that for the seventh power the terms, with
out the coeflicients, must be

a’, a’b, a’t’, a't’, a'b*, a’d", ab’, b';
and for the nth power,
a, @b, a0, a7 . . ... &b, ab™, b,

(264.) It remains to determine the. coefficients which belong
to these terms ; and in order to discover the law of their forma-
tion, let us take the coefficients already found by themselves.

In the square, the exponents .
In the cube, the exponents . . {

In the fourth power, the exponents 2

The crefficients >f the 1st power are 1 1
“ 2d « 1 2 1
“ ad “ 1 3 3 1
“ 4th « 14 6 41
“ | 5th « 15 10 10 561

. 6th « 1 6 15 20 15 8 )
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The numbers in this table are identical with those in the ta-
ble of combinations on page 214. For example, the coefficients
of the fifth power denote the number of combinations of five
letters taken one and one, two and two, &c.; the coefficients
of the sixth power denote the number of combinations of six
letters taken one and one, two and two, &c. The reason of
this will appear if we observe the law of the product of several
binomial factors, z+a, z+b, z+¢, z+d, &c.

Multiplying z+a

by z + b,
we obtain z*+(a+b)z+ab=1st product.
Multiplying by z + ¢,
we obtain z*+(a+b +c)2* + (ab + ac + be)x + abe = 2d

: - product.

Multiplying by = + d,

we obtain z*+(a+b+c+d)z*+(ab+ac+ad + be + bd+
cd)z*+ (abe+abd+acd+bed)x+abed=38d product.

We observe that in each of these products the coefficient of
x in the first term.is unity ; the coefficient of the second term is
‘the sum of the second terms of the binomial factors ; the coefficient
of the third term is the sum of all their products taken two ana
two ; the coefficient of the fourth term is the sum of all their
products taken three and three, &c.

It is easily seen that if we multiply the last product by a
new factor, z-¢, the same law of the coefficients will be pre-
served. Hence the law is general.

If now, in the preceding binomial factors, we suppose a, b
¢, d, &c., to be all equal to each other, the product -

(z+a) (z+b) (z+c) (z+d).....
becomes (z+a)

The coeficient of the second term of the product, or a+b+
ctd..... , becomes a-+a+a+a..... ; that is, a taken as
many tnmes as there are letters a, b, ¢, d, and is, consequentlv.
equal to na.

The coefficient of the third term, or ab+4-ac, &ec., reduces to
@’+a'+a*..... or a® repeated as many times as there are
different combinations of a letters taken two and two: that is.
n(n—1) ,

T2

bv Art. 261, to



218 INVOLUTION OF BINOMIALS,

The coefficient of the fourth term reduces tc a* reptatcu as -

many times as there are different combinations of z letters
. n(n—1) (n—2)
taken three and three; that is, ——i—2—3———a’, and so on.

Thus we find that the nth power of z+a may be expressed
as follows :

n(n l) n(n—

1) (n—2) ,
123 az>+.,
+na™z+-a,
which is called the BiNomiarL FormuLa, and is generally as-
cribed to Sir Isaac Newton. So important was it regarded,
that it was engraved on his monument in Westminster Abbey
as one of his greatest discoveries.

On comparing the different terms of this development, we
perceive that any coefficient may be derived from the preced-
ing one by the following rule: If the coefficient of any term be
multiplied by the exponent of x in that term, and divided by the
exponent of a increased by one, it will give the coefficient of the
succeeding term.

Thus, the fifth power of z+a is -

z*+5az* +10a’z’+ 102’z + 5a'z +a'.

If the coefficient 5 of the second term be multiplied by 4,
the exponent of z in that term, and divided by 2, which is the
exponent of @ increased by one, we obtain 10, the coefficient
of the third term.

So, also, if 10, the coefficient of the fourth term, be multi-
plied by 2, the exponent of z, and divided by 4, the exponent
of a increased by one, we obtain 5, the coeflicient of tbe fifth

term ; and so of the others.

" The coefficients of the sixth power will also be found as fol-
fows:

(z+a)'=z"+naz""+ a‘z>*+

6X5 15X4 203 15x2 6X1
2’ 3°' 4 ' 5 "6 °
that is, 1,6, 15 20, 15, 6, 1.
The coefficients of the seventh power will be
©g, 7"7)(6 21X5 85x4 35X3 21x2 7x1
2 ? 3 R 4 ? 5 L} 6 t] 7 ;
thatis. 1,7, 21, 85 35, 21. 7

1, 6,
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Therefore, the seventh power of z+a is
z'+Taz*+21a’z’+35a’z* + 354z’ +-21a*z* + Ta'x+-a'.
It is sometimes preferable to retain the factors of the coefh-
cients distinct from each other, as follows:
7.6.5 7.8.5.4
T g+ 4
(z+a) a:+aa:+ xT123x+l234 z*+
7.6.5.4.8 7.6.5.4.3.2 7.6.5.4.3.2.1
a'z'+ a'z+
1.2.3.45" 1.2.3.4.5.6 ~ ' 1.2,3.4.5.6. 7
The factor 1 is retained for the sake of symmetry, and to

exhibit more clearly the law of the coefficients.
(265.) The following, therefore, is the

BINOMIAL THEOREM.

In any power of a binomial x+a, the exponent of x begins in
the first term with the exponent of the power, and in the follow-
ing terms continually decreases by one. The exponent of a com-
mences with one in the second term of the power, and continually
increases by one.

The coefficient of the first term is one; that of the second 1s
the exponent of the power ; and if the coefficient of any term be
multiplied by the exponent of x in that term, and divided by the
exponent of a increased by one, it will give the coefficient of the
succeeding term.

(266.) The number-of terms in the power is always greate:
by unity than the exponent of the power. Thus, the numbe:
of terms in (a+b)* is 4+1, or 5; in (a+b)*is 6+1, or 7.

Also, if we examine the table in Art. 264, it will be per.
ceived that, after we pass the middle term, the same coeffi-
cients are repeated in the inverse order. Thus, the coeffi-
cients of

(a+D)* are 1, 5, 10, 10, 5, 1 ;
of (a+bd)" are 1, 6, 15, 20, 15, 6, 1.

Hence it is only necessary to compute the coefficients for
half the terms; we then repeat the same numbers in the in-
verse order.

(267.) The sum of the coefficients for each power is'equal to the
number 2 raised to the same power. For, let z=1 and a=1
then each term without the coefficients reduces to unity ana

e ’
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the value of the power is simply the sum o1 the coeflicients.
Also, in tas case, (z+a)" becomes (1+1)" or 2 Thus the
coefficients of the
first power are 1+4+1=2=2';
second 14+241=4=2;
third “ 148+43+1=8=2";
fourth “ 14+4+6+4+44+1=16=2",
&e., &ec., &ec.

EXAMPLES.
Exz. 1. Raise z+a'to the 9th power.
The terms without the coefficients are
z', az’, 'z, a'z’, a'z’, a’z', a’z% a'y?, a'z, a'.
And the coefficients are .
9X8 86X7T 84X6 126X5 126xX4 84X3 36X2 9X1
2’ 8°' 47 5’ 6’ 7T’ 8' 9

1,9,

that is,

1,9, 86, 84, 126, 126, 84, 36, 9, 1,

Prefixing the coeflicients, we obtain ,
<z +a)'=2'+9az"+36a’s’+84a'c’ +126a'z"+126a"z' +-84a°2" +

+36a'z’+9a’z+a’

It should be remembered that, according to Art. 266, it is
only necessary to compute the coefficients of kalf the terms in-
lependently.

Ez. 2. What is the 6th power of z—a?

(268.) If the terms of the given binomial are affected with
coefficients or exponents, they must be raised to the required
powers, according to the principles already established for the
involution of monomials.

Ez. 3. Raise 2z+5a’ to the fourth power.

For convenience, let-us substitute b for 2z, and ¢ for 6&*

Then (b+c)'=b*+4b'c+6bc’+4bc"+c'.
Restoring the values of b and c,
The first term will be (2z)* =16z".

The second term “ 4(2z)'X 5a° =4.8.5z'a".
The third term  «  6(2z)*X (54)*=6.4.252’a".
The fourth term «  4(2z) X (5a%)*=4.2.125z4".
The fifth term « (5a")*=6254"
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Therefore, )
(2z+5a")'= 16:0‘+160x a’+600:c’a‘+ 1000za*+-625a".

Ez. 4. What is the fourth power of 2z'+4y*?

Ez. 5. What is the seventh power of 2a—3b ?

Ans. 128a"—1344¢°b+6048a°b*— 1512045+ 22680a°b*
—20412a’b°+10206ab°—2187d".

Ez. 8. What is the si2th power of a'+3ab ?

Ans. a*+18a"b+185a"b*+540ab*+1 21 5a"'b‘
+1458a°0°+729a°b".

Ez. 7. What is the fifth power of 5c*—4y’z ?

(269.) By means of the Binémial Theorem we can raise any
polynomial to any power.

For example, let it be required to raise a+b+c to the third

- power.
For convenience, we put b+c=m ; we then have
(a+b+c)’=(a+m)*=a’+8a’m+8am’+m’.
Substituting for m its equal, b4-c, we obtain
(a+b-+c)’=a’+38a’(b+c)+3a(d+c)*+(b+c).

We must now develop the powers of the binomial b+c¢, and
perform the multiplications which are here indicated. We
thus obtain

(a+b+c)'=a'+3a’b+3ab’ +0',
+8a’c+6abc+8b’c,
+3ac® +3bc*,
+c'.

E':c 2. Raise z+a-+b to the fifth power.

(270.) When one of the terms of a binomial is unity, the
powers assume a simpler form, since every power of 1 is 1.

Thus, the fourth power of a+b, which is

a‘+4a’b+6ab*+4ab*+b',
when we make a=1, becomes
14+4b+4-65"+4b"+-b*
So, also, (1 +a)"—-l+ a nl(n.2 l)a Tn(n ll;(: 2)
Every binomial of the form (z+a)" may be reduced to the

form of :c"(l +g> .. For

a+,&ec.
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z+a.=m (l +$) .

Therefore, (z+a)*==z" (1 _*.9.) )
a, =1 & a(@-1) @=2) &
31+ 1.2 a:" 1.2.3 a+9& ;

This expression for the value of (z+a)" is equivalnt to that
on page 218, as may be easily shown by multiplying z* inte
each term within the parenthesis. For some purposes this is
regarded as the simplest form.

(271.) In the development of -the binomial (z+a)" we have
hitherto supposed n to be a positive integer. The Binomial
Theorem is, however, applicable, whatever be the nature of
the quantity n, whether it be positive or negative, integral or
fractional. 'When n.is a positive integer, the series consists
of n+1 terms. In every other case, the series never termin-
ates ; that is, the development of (z+a)" furnishes an infinite
series.

Ez. 1. 1t is required to convert — 5 °of (a+b)~" into an in-

+
finite series.
According to Art. 265, the terms without the coeflicients are
a>, ab, a*b, a=*V’, a*b*, P, a V", &ec.
The coefficient of the first term is 1.
The coefficient of the second term is —1, the exponent of
the power.

The coefficient of the third term is 12—2 +1.
“ fourth « i-_l_>;_—-3 =-—1.
« fth © o« =,
“ sixth « i—lﬁ?=-—l.

5
Wae thus obtain ’
a-:-b— (@at+b)'=at—a*b+ab*—a*b*+a~*b' —a %"+, &c.,
where the law of the series is obvious; the coeficients are al
unity, and the signs are alternately positive and negative
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We might have obtained the same result by the ordinary
method of division. The operation is as follows:

1 . a+b
b 1 5 b b
1.+; - ;’_?.g., &c., = the quotient.
—
“a
b b
“a a
b’
g
b! L]
+‘a—i a*
b’
“a

Hence, ,
1 1 b b b
atb—a a2tz 7 &ec., which may be written
a'—ab+a ' —a*b'+, &c., the same as before found ;

and it is obvious, from inspecting the operation of division, that
the series will never terminate.

Ez. 2. It is required to convert or (a+b)~* into an

_1
(a+b)*
mfinite series.

. 1 2b 3b° 4b* 5b*

Ans. P e e St &e. ;

or, a*—2a*b+8a*b*—4a°b*+ 54", &c.

Here the coefficients increase regularly by 1, and the signs
are alternately positive and negative. We might have ob-
tained the same result by division, as in the former example.

Ez. 3. Expand into a series ;zl_b or (a—b)~.

Here the coefficients furnished by the Rule are
+1, —1, +1, —1, &ec.
But the factor b being negative, all its odd powers are nega-
tive. Hence the second term contains two negative factors,
" 10 that its resulting sign is +. The same remark applies te
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the fowth and sixth terms &c., making the terms of the series
al positive.

Ez. 4. Expand into a series ——+; @ b)’ or (a— b,

Ez. 5 Expand into a series (a+b).
Ans. a>—8a~*b+6a=*0’—10a"%b*+15a7"b' —
Ez. 6. Expand into a series (a—b)™
Ans. a~*+4a °b+10a~b'+20a""b*+35a°b* +, &c.
(272.) We have now considered the powers of a binomial
when the exponent is an integer, either positive or negative.
[t remains to consider the case ‘when the exponent is a fraction.

EXAMPLES,.

Ezx. 1. Expand va+b or (a.+b)% into an infinite series.
The terms without the coefficients are
a’ —fb a 2b’ —%b‘ ’b‘ &e.
The exponents of a decrease by unity, while those of b ur
créase by unity.

The coeflicient of the first term is 1.
“ second « +%.
. iX=4__1
“« third « 5 = o4
1
“ :_ﬁx_% 1.3
fourth s~ ta46
! 13
“ s X —4§ 1.3.6
fifth “ 4 2.4.6.8°
The series, therefore, is
bt tp— —% 1 —% 135 1
(a+d) a+ a 3h —a b4 24.6 b*— —2.468% b*+, &e

The factors which form the coefficients are kept distinet, in
order to show more clearly the law of the series. The numer
ators of the coefficients contain the series of odd numbers, 1,3
5, 7, &c., while the denominators contain the even numbers,
2, 4, 6, 8, 10, &c.

The above series expresses the square root of a+b. We

shall obtain the same result if we extract the square root by
the usual method. See Art. 299,
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Ez. 2. It is required to convert (a’+x)’} into an infinite
series,
a'z a'z’ 8a—z* 35aa: , 8.5.7a'z" &
2 24 T 246 2468 '246810 ' ¢
z z 8 8.5z 8.5.7z°
o, ety T34 2.46a 24687 2468108 '™
where the law of the series is evident.

Ans. a+

Ez. 3. It is required to convert (a—az:)i into an infinite
series.

Ez, 4. 1t I8 required to convert (a+b)% into an infinite
series.

L] 3 (3

Ans. a g 1 + 20 - 2.5b 2.5.8)

3a 36a’T369a 36912a‘T’

e |

E=z. 5. Expand (a—b)r into an infinite series.
: z 3 370 3.7.11h
Ans. a* ) 1 4a 484" 4.8.124° 4.8.12.16a°

,&c.z

Ez. 6. Expand (a+:c)’ into an infinite series.

1
Ez. 7. Expand (1—2)° into an infinite series.

1 14, 149 , 14914
Ans. 1—22—10% —510.15° 5.101520 — &

Ez. 8. Expand (a'—b’)’} into an infinite series.
2 2.50° )
Ans. “(l 3¢ 360 3690 ' ©
(273.) The binomial theorem is also applicable to cases
which the value of the exponent n is a negative fraction _

EXAMPLES.

, 1
Ez. 1. Expand into a series (a+b)% or (a+b)~%

The terms without the coefficients are
a‘% a“ib a_ib’ fba ﬁ'ba !i‘bo &c.

The coefficient of the first term is 1.

1
3 [13 ——
second 7
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The coefficient of the third term is - Z : —i_ +;:
13
7] . “ 2 X— 'g- 1.8.5
fourth 3 246
“ fifth “ _ﬁx —; . 1 3.5.7

4 2.4 6.8
Hence we obtain

(@t bmab— g R

2.4.6 6
&c.
Ez. 2. Expand into an infinite series (a+z)-;
Aol 13_;,_14. —y LATI0 1tz
Ans. 3" 6* “ 369" Yo'+ t36002° %
ke.

Ez. 3. Expand (1 +z)_* into an infinite series.

z 62* 6.1l 61116::
Ans, 1— 5+510 5.10.15 5101520 —» &e.

Ez. 4. Expand (a’—a:)_’ into an infinite series.
1J 1.3z 1.3.52"  1.3.5.72'
. Ans. ot osteasToa6a 24680 T &

Ez. 5. Expand ——— into an infinite series.
\/ +c
m 1.8¢* l.3.5c"J_l.3.5.'7c“ )
Ans. (1 s toar saer T zassr &)

(274.) The binomial theorem may be employed to determine
the roots of surd numbers.

EXAMPLES.

Ez. 1. It is required to find the square root of 2.

The development of (a+b)% has been given in Ez. 1, page
224. If we make a=1 and b=1, theg(a+b)% becomes (1 +
or v2; and the terms of the development become

l+l 1 + 1.3 1.3.5 4 1.3.5.7 , &,
2 24 24.6 2468 24.6.8.10
which therefore expresses the square root of 2. The aum of
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this series is 1.41421. As, however, the series converges very
slowly, it would require a large number of terms to give the
root with tolerable accuracy. The following example affords
a hetter illustration of the utility of the method.

Ez. 2. Required the square root of 101.

i
101=100 (l+100) Therefore v101=10 (l +-l-(-)—0-)
Put a=1 and b= l(l)o in the development of (a+b)’ on page
224, and we shall have

t5100 2.4.100° T 2.4.6.100 2.4.6.8.100
This series converges so rapidly that the first two terms
give a result correct to three decimal places, and five terms
give a result correct to ten decimal places.

10_10( 1 1, 13 1.3.5 &c‘)

Thus, the value of the first term is " 1.00000000000
“ second * + .00500000000

“ third « — .00001250000

fourth « + .00000006250

“ fith  « — .00000000039

Their sum is 1.00498756211

And multiplying by 10, we have
v101=10.0498756211.

Ez. 3. 1t is required to convert ¥/9, or its equal (8+ l) into
wn infinite series, and find its value.

Ans.
1 1 5 5.8 5.8.11
d 1 1
2+30 362 15602 360.122° 36912152 " ¥o-

=2.08008.
£z. 4. It is required to extract the cube root of 81.

V3l=¥T+4=V27 (1 +—

2.4 2.5. 4' 2.5.8.4'
3.27 3.6.27 TS 6.9.27° 3.6.9.12. 27‘T’
=9 14138.

=321+ &e. |,
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SECTION XVIIL

EVOLUTION OF POLYNOMIALS.

(275.) Method of extracting the square root of a polynomias.

In order to discover a rule for extracting the square root, let
us consider. the square of a-+b, which is a’+2ab+b". If we
write the terms of the square in such a manner that the pow-
ers of one of the letters, as a, may go on continually decréas-
ing, the first term will be the square of the first term of the
root; and since in the present case the first term of the square
is a’, the first term of the root must be a.

Having found the first term of the root, we must conside
the rest of the square, namely, 2ab+-b*, to see how we can de-
rive from it the second term of the root. Now this remainder
2ab+b', may be put under the form (2z+b)b; whence it ap-
pears that we shall find the second term of the root if we di-
vide the remainder by 2a+b. The first part of this divisor,
2a, is double of the first term already determined ; the second
part, b, is yet unknown, and it is necessary at present to leave
ts place empty. Nevertheless, we may commence the divis-
ion, employing only the term 2z ; but as soon as the quotient
is found, which, in the present case, is b, we must put it in the
vacant place, and thus render the divisor complete.

The whole process, therefore, may be represented as fok
OWS:

a'+2ab+b'|at+b = tke root.
3

2ab+b
Rab+b
Hence we derive the fol'owing

2a-+b = the divisor.
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RULE FOR EXTRACTING THE SQUARB ROOT OF A POLYNOMIAL

Arrange the terms according to the powers of some one letter ;
take the square root of the first term for the first term of the re
quired root, and subtract its square from the given polynomial.

Divide the first term of the remainder by double the root al-
ready found, and annex the result both to the root and the divi-
sor. Multiply the divisor thus increased by the last term of the
root, and subtract the product from the last remainder. Pro-
ceed in the same manner to find the additional terms of the root.

Ez. 1. Required the square root of a'*—2a'z+3a’z*—2az'+z*,

a‘*—2a'z+8a’s*—2az’+2' | @' -az+2* = the root.
A =

a
—2a’z+3a'z’|2a’—az = the first divisor.
—2a’z+ a'z’

2a’z"—2az'+z'|2a*—2az +z* = the second divisor.
2a'z*—2ax’+z*

For verification, multiply the root a*—az+2z* by itself, and
we shall obtain the original polynomial.

Ez. 2. Required the square root of a*+2ab+2ac+b"+2bc+c’.

Ez. 3. Required the square root of 10z*—10z"—12z"+52"+
9z'—2z+1.

Ez. 4. Required the square root of 8az'+4a'z'+4z'+16b'z"
+16b*+-16ab'z.

Ans. 22*+2ax+4b".

Ez. 5. Extract the square root of 15a‘b*+a'—6a'b—20a'd’
+b'+15a*—6abd".

Ez. 6. Extract the square root of 8ab*+a‘—4a’b+-4b".

(276.) Method of extracting the square root of numbers.

The preceding rule is applicable to the extraction of the
square root of numbers. For every numuer may be regarded
as an Algebraic polynomial, or as composed of a certain num
ber of units, tens, hundreds, &c. Thus,

529 is equivalent to 5004-20+-9.

Also, 841 “ 800+4-4C+1.

If, then, 841 is the square of a number composed of tens
and units, it must contain the square of the tens, plus twice thn

N
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product of the tens by -the units, plus the square of the untts.
But these three terms are blended together in 841, and hence
the peculiar difficulty in determining its root. The following
principles will, however, enable us to separate these terms,
and thus detect the root.

(271.) 1. For every two figures of the square there will be one
figure in the root, and also one for any odd figure.

Thus, the square of 1 is 1,

“ 10 is 100,
R 100 is 10000,
"« 1000 is 1000000,
&ec., &ec.

The smallest number consisting of two figures is 10, and 1ts
square is the smallest number of three figures. The smallest
number of three figures is 100, and its square is the smallest

- number of five figures, and so on. Therefore, the square root
of every number composed of one or two figures will contain
one figure ; the square root of every number composed of three
or four figures will contain two figures ; of a number from five
to six figures will contain three figures; and from 2r—1 to 2a
figurés must contain n figures.

Hence, if we divide the number into periods of two figures,
proceeding from right to left, the number of figures in the root
will be equal to the number of periods.

(278.) IL. The first figure of the root will be the square rool
of the greatest square number contained in the first period om
the left.

For the square of tens can give no figure in the first right
hand period ; the square of hundreds can give no figure in the
first two periods on the right; and the square of the highes:
figure in the root can give no figure except in the first period
on the left.

Ez. 1. Suppose we wish to find the square root of 529.

The square of 23 or 204-3 is 20*42.20.3+8",
or 400+4-120+9. :

Here the three classes of terms are exhibited distinct from
each other, and we might extract the root by the rule of A:t.
275. But observe that in the number 529, since the square a1
the tens can not give a figure in the place of units or tens, it
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must be contained in the first period 5. Now this period con-
tains not only the square of the tens, but also a part of the

product of the tens by the units. The greatest square contair -

ed in 5 is 4, whose root is 2; hence 2 must be the pumber of
tens, whose square is 400; and if we subtract this from 529,
the remainder 129 contains twice the product of the tens by
the units, plus the square of the units. If, then, we divide this
remainder by twice the tens, we shall obtain the units, or pos.
sibly a number somewhat too large. This quotient figure can
never be too small, but it may be too large, because the re-
mainder 129, besides twice the product of the tens by the units,
contains the square of the units. We therefore complete the
divisor by annexing the quotient 3 to the right of the 4, and
then multiplying by 8. we evidently obtain the double product
of the tens by the units, plus the square of the units. The en-
tire operation may then be represented as follows:
5:29|23=the root
4 .
43129
129.
(279.) Hence, for the extraction of the square root of num-
hers we derive the following :

4

RULE.

1: Separate the given number into periods of two figures each,
heginning at the right hand.’

2. Find the greatest square contained in the left-hand period ;
its root is the first figure of the required root. Subtract the
square from the first period, and to the remainder bring down
the second period for a dividend.

8. Double the root already found for a divisor, and find how
wany times it is contained in the dividend, éxclusive of its right-
hand figure ; annex the result both to the root and the divisor.

4. Multiply the divisor thus increased by the last figure of the
root ; subtract the product from the dividend, and to the remaindes
bring down the next period for a new dividend.

5. Double the whole root now found for a new dz:visor, and con-
tinue the operation, as before, until the periods are all brought
down. :
: i1 ’
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Evc. 2. Find the square root of 186624.
The operation is as follows :
18-66'24|432
16 .
83] 2 66
249
862] 1724
17 24.

Ez. 3. Find the square root of 21086464. -

Ez. 4. Find the square root of 88078225.

(280.) We have’seen that the root of a fraction is equal te
the root of its numerator divided by the root of its denominator.

529

. 23 '
Hence the square root of or 5.29, is 7 or 2.3.

100’
, 186624 . 432
The square root of. 0000 °F 18.6624, is 100’ °F 4.32.

That is, the square root of a decimal fraction may be found io
the same manner as a whole number, if we divide it into periodi
commencing with the decimal point.

Ez. 5. Find the square root of 58.614336.

Ez. 6. Find the square root of 9.878449.

Hence, also, if the square root of a number can nqt be found
exactly, we may, by annexing ciphers, obtain the root ap-
proximately in decimal fractions. - .

Ez. 7. Find the square root of 2.

Ans. 1.4142136 nearly.

Ez. 8. Find the square root of 8.

Ez. 9. Find the square root of 10.

The most expeditious method of extracting roots is usually
by means of logarithms. See page 308.

(281.) Method of extracting the cube root of a polynomial.

We already know that the cube of a+b is a’+3a%b+3ab*+b'

If, then, the cube were given, and we were required to find

8 root, it might be done by the following method : ‘

When the terms are arranged according to the powers of

one letter, we at once know, from the first term «*, that @ must
be one term of the root. If, then, we subtract its cnbe from
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the proposed polynomial, we obtain the remainder 3a'b-+ 3ab®
+b', which must furnish the second term of the root.
Now this remainder may be put under the form
(3a*+8ab+b) X b ;

whence it appears that we shall find the second term of the
root, if we divide the remainder by 8a’+38ab+b". But as this
second term is supposed to be unknown, the divisor can not be
completed. Nevertheless, we know the first term 84’ that is,
thrice the square of the first term already found, and by means
of this we can find the other part b, and then complete the di-
visor before we perform the division. For this purpose, we
must add to 3a® thrice the product of the two terms, or 3ab,
and the square of the second term of the root, or »*. Hence
we derive the following

RULE FOR EXTRACTING THE CUBE ROOT OF A POLYNOMIAL

(282.) Arrange the terms according to the powers of some one
letter, take the cube root of the first term, and subtract the cube
from the given polynomial.

Divide the first term of the remainder by three times the square
of the root already found, the quotient will be the second term of
the root.

Complets the divisor by adding to it three times the product of
the two terms of the root, and the square of the second term.

Multiply the divisor thus increased by the last term of the root,
and subtract the product from the last rémainder. Proceed in
the same manner to find the additional terms of the root.

Ez. 1. Extract the cube root of a’+12a’+48a+-64.

a'+12a’+48a+64 | a+4 = the root.

al

12a*+48a + 64|3a*+12a+16 = the divisor.
12a*+48a-4-64

Having found the first tefm of the root a, and subtracted its
cube, we divide the first term of the remainder, 124", by three
times the square of g, that is, 3a*, and we obtain'4 for the sec-
ond term of the root. We then complete the divisor by add-
ing to it three fimes the product of the two terms of the root,
which is 12a, together with the square of the last term, 4
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which is 16. M» tiplying, then, the complete divisor by 4
and subtracting the product from the last remainder, nothing
is left. Hence the required cube root is a+4.
This result may be easily verified by multiplication.
Ez. 2. Extract the cube root of a*—6a’+154*—20a’+15a
—6a--1.
a'—8a'+15a'—20a'+15a’—6a+1 | a’—2a+1 = the root.
a.
- 3a*+15a*—20a’|3a*—6a’+4a’ = the first divisor.
-6a’+12a4*— 8a’ .
3a‘*—12a*+15a*—6a+1|8a*—12a*+15a*—6a+1 =
8a'—124'+18a"—6a+1 the second divisor.

We may dispense with forming the complete divisor accord-
g to the rule, if, each time that we find a new term of the
root, we raise -the entire root to the third power, and subtract
the cube from the given polynomial.

Ez. 3. Required the cube root of 6z°—40z"+z'+96z—64.

Exz. 4. Required the cube root of 18z*+36z'+24x+8+322°
+z* 462"

Ez. 5. Required the cube root of 8b*+5*—5b'—1+-8b.

(283.) "Method of extracting the cube root of numbers.

The preceding rule is applicable to the extraction of the
cube root of nnmbers; but a difficulty in applying it arises
from the fact that the terms of the power are all blended to-
gether in the given number. They may, however, be separated
oy attending to the following principles :

§. For every three figures of the cube there will be one figure

"1 the root, and also one for any additional figure or figures.

Thus, the cube of 1  is 1,

¢ 10 is 1000,

. 100 is 1000000,

“ 1000 is'IOOOOQOOOO,
&ec., &ec.

Hence we see that the cube root of a number consisting of
from 1 to 3 figures will contain one figure ; of a number from
1 to 6 figures will contain two figures ; from 7 to 9 figures will
contain three; and from 32—2 to 3n figmes must contain »
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ngures. Hence, if we divide the number into periods of three
figures, proceeding from right to left, the number of figures in
the root will be equal to the number of periods.

II. The first figure of the root will be the cube root of the great.
est cube number contained in the first period en the left.

Ez. 1. Suppose we wish to find the cube root of 12167.

The cube of 23 or 20+3 is 20°+3.20.34-3.20.3'+-3°,
aor « 8000--36004-5404-2%.

Here the four classes of terms are exhjbited distinct from
each other, and the rule of Art. 282 might be easily applied.
But obscrve that in the number 12167, since the cube of the
tens can not give a figure in the first three places, it must be
contained in the first period 12. The greatest cube contained
in this is 8, the root of which is 2. Hence 2 must be the num-
ber of tens whose cube is 8000 ; and the remainder 4167 con-
tains three times the product of the square of the tens by the units,
olus three times the product of the tens by the square of the units,
plus the cube of the units.

If, then, we divide this remainder by three times the square
of the tens, we shall obtain the units, or possibly a number too
large, because the divisor is too small. We therefore com-
plete the divisor by adding to it three times the product of the
tens by the units, plus the square of the units. The -entire
operation is then as follows:

12:167|23=the root.
8

20°x3  =1200] 4167
20 X3X3 = 180

’ 3= 9] 4167
complete divisor =1389

(284.) Hence, for the extraction of the cube root of numbers,
we derive the following

RULE.

1. Separate the given number into periods of three figures
each, beginning at the right hand.

2. Find the greatest cube contained in the left-hand period ;
)ts root is the first figure of the required root. Subtract the cube
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from the first period, and to the remainder brmg down the sec-
ond period for a dividend.

. 8. Take three hundred times the square of the root already
found for a trial divisor; find how many times it is contained
in the dividend, and place the quotient for a second figure of the
root.

4. Complete the divisor by adding to it thirty times the prod-
uct of the two figures of the root, and the square of the second
Jgure.

5. Multiply the divisor thus increased by the last figure of
the root; subtract the product from the dividend, and to the re-
mainder bring down the next period for a new dividend.

6. Take three hundred times the square of the whole root now
Jfound for a new trial divisor, and continue the operation as be-
fore until all the periods are brought down.

It will be observed that three times the square of the tens,
when their local value is regarded, is the same as three hun-
dred times the square of this digit, not-regarding its local
value.

Ez. 2. Find the cube root of 20796875, -

Ez. 3. Find the cube root of 2509911279.

- Ez. 4. Find the cube root of 895562584119.

The same method is applicable to the extraction of the cube
root of fractions, and also of imperfect powers.

Ez. 5. Find the cube root of 604.422796375.

Ez. 6. Find the cube root of 4.

Ez. 7. Find the cube root of 11.

(285.) Method of extracting any root of a polynomial.

We already know that the nth power of a+bis a"+na*b+
otner terms. The first term of the root is, therefore, the nth
root of the first term of the polynomial. Also, the second term
of the root may be found by dividing the second term of the
polynomial by na"; that is, the first term of the root raised
to the next inferior power, and multiplied by the exponent of
the given power. Hence we deduce the following

RULE FOR EXTRACTING ANY ROOT OF A POLYNOMIAL.
Arrange the terms according to the powers of one of the letters
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and take the nth root of the first term for the first term of the re-
guired root. '

Subtract its power from the given polynomial, and divide the
first term of the remainder by n times the (n—1) power of this
root ; the quotient will be the second term of the root.

Subtract the nth power of the terms already found from the
given quantity, and, using the same divisor, proceed in like man-
ner to find the remaining terms of the root.

Ez. 1. Required the fourth root of 16a'—96a’z+216a'z*—
216az’+81z". ‘

16a'—96a’z+216az"— 216az’+81z*'|2a—8z = the root.
16a*

—96a°z]32a" = the divisor.
16a*—96a’c+-216a’xr’—216az"+81z". _

Here we take the fourth root of 16a*, which is 2a, for the
first term of the required root; subtract its fourth power, and
bring down the first term of the remainder —96a’z. For a
divisor, we raise the first term of the root to the third power,
and multiply it by 4, making 324’. Dividing, we obtain —3z
for the second term of the root. The quantity 2a—38z being
raised to the fourth power, is found to be equal to the proposed
polynomial.

Ez. 2. Required the fifth root of 802"+ 32x*—80z*— 40z
10z—1.-

Ans. 2z—1.

Ez. 3. Required the fourth root of 336z'+81z'—216z"-
862" +16—224x" 464z, '

Ans. 32°—2z—2.

(286.) Method of extracting any root of numbers.

It is easy to apply the preceding Rule to the extraction of
any root of numbers. For a reason similar to that given for
the square and cube roots, we must first divide the number into
periods of n figures each. Then the first figure of the root
will be the ath root of the greatest nth power contained in the
first period on the left. If we subtract its power from the
given number, and divide the remainder by n times the (n—1)

_power of the first figure, regarding its local value, the quotient
will be the second figure of the root, or, possibly, something
po large. The result may be verified by raising the whole
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root now found to the nth power; and if there are other figures,
- they may be found in the same manner.

Ez. 1. Find the fifth root of 33554432.
335°54432|32
243
5.3'=405] 925
32°=3835 54432.
Ezx. 2. Find the fifth root of 4984209207.

Ez. 3. Find the fifth root of.10.

(287.) When the index of the root to be extracted is a mul-
tiple of two or more numbers, we may obtain the root requires
by the successive extraction of simpler roots, Art. 159.

For example, we may obtain the fourth root by extracting
the square root twice successively ; for the square root of a* is
@, and the square root of @’ is a.

The eighth root may be obtained by extracting the square
root three times successively; for the square root of a* is a',
that of @' is @*, and that of @® is a.

In the same manner, the sizteenth root may be obtained by

*extracting the square root four times successively, and so on.

The sizth root may be found by extracting the square root,
and afterward the cube root; for the square root of a* is a?,
and the cube root of a® is &. We may also take, first, the cube
root, which gives a’, and afterward the square root, which
gives a, as before. It is, however, best to extract the roots of
the lowest degree first, because the operation is less laborious.

In general, the mnth root of a number is equal to the nth rool
of the mth root of this number. That is,

Va=V Va
For, raising each member of this equation to the nth power
we have
Ye=Va °
Exz. 1. Find the fourth root of 64*b*+a*—4a’b—4ab*+b*
Exz. 2. Find the sixth root of 6a’b+15a'b*+a’+20a’’+15a%
+b°+6abd’.
Ez. 3. Find the eighth root of 1024zy+1792z"'+ 256"+
11202y +1792z"y" +4482y* +y'+1122"y* + 162y,




BVOLUTION OF POLYNOMIALS., 239

* EXTRACTION OF THE SQUARE ROOT OF A QUANTITY OF THE FORM
a=t b.

(288.) Binomials of this class require particular attention,
because they frequently occur in the solution of equations of
the fourth degree, such as are treated of in Art. 184, Thus
the equation ' ‘ :

. z'=142"-1,
gives us z'=T+4y38.

Hence, in order to find the value of z, we must extract the
square root of the binomial 7+4 /3,

In order to show that the square root of such an expressioa
may sometimes be extracted, take the binomial

2+ y8, |
and find its square.
(@£ v3)'=4Edy3+3=T+4y3.
Therefore, the square root of 7==4,/3 is 2%+ /3.
The square root of an expression of the form a% /b may,
therefore, sometimes be extracted, and’it is required to deters

mine a general method for this purpose whenever it is prac.
ticable.

' : THEOREM L

(289.) The sum or difference of two surds can not be equal to
u rational quantity.

For, if possible, let v a=/b=c, where ¢ denotes a rational
quantity, and /@, vb denote surd quantities.

By transposing b and squaring both sides, we obtain a=
«'F2cyvb+b: whence, by transposition and division, we have
b+c*—a

2

The second member of the equation contains only rational
quantities, while /b was supposed to be irrational; that is,
we find an irrational quantity equal to a rational one, which
.8 absurd. Hence the sum or difference of two surds can not
be equal to a rational quantity.

. 11*

+ b=
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.

THEOREM IL
In every equation of the form
z+ yy=a+ b,
the ration1l parts on the opposite sides are equal to each other
and also the irrational parts.
For if z is not equal to g, let it be equal to a2z
Then atzt yy=atyb;
or o=y b—vy;
that is, a rational quantity is equal to the dxﬁ'erence of two
surds, which, by the last Theorem, is impossible. Therefore,
z=a, and, consequently, vy= .

THEOREM IIL

Ir va+ Vb is equal to z+ vy,

then will va— Vb be equal to z— /y.
For, by involution, a+ vb=2+2z vy+y.
But, by the last Theorem, - =a’+y,

and vb=2zvy. . °
Subtracting, we obtain a— yb=2'—-2zy+y.
Therefore, by evolution, va~ vb=z— vy.
(290.) To find an expression for the square root of ax v b,
Let us assume Vat Vb=p+q (1), -

where p and ¢ may be both radicals, or one rational and' the
other a radical, but p* and ¢* are required to be rational.
Then, by the last Theorem,

va— vb=p—q (2).
Multiplying these equations together, we obtain
Va—b=p'—¢" (3),a rational quantity.

Hence we see that, in order that \/a+ vb may be expressed
by the sum of two radicals, or one rational term and the other
‘ a radical, the expression a'—b must be a Dperfect square..

Let, then, a’—b be a perfect square, and put va'—b=-¢ ;
squation (3) will thus become

P—q'=c.
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Squarmg equations (1) and (2), we obtam
P'+q'+2pq=a+ vb,
P'+¢'—2pg=a—yb.

Adding these two equations, we obtain

ptg=a
But we have already found
p'—g'=c.
. Hence 2p*=a+c,
and 2¢'=a—c.
From which we obtain ) oS
ate
p=:b P
: a—c
and q—:l': =

Therefore,

VaF Vb, or ptg=2 \/ +0+\/a—c)
va— Vb, or p—q==% \/ \/a—c)

(291.) Hence, to extraet the square root of a binomial of the
%rm e+ /b, we have the following

RULE.

From the square of the rational part (a*), take the square of
the irrational part (b) ; extract the square root of the remainder
and, calling that root c, the required root will be :

\/a+c + \/a—c

Ez. 1. Required the square root of 4+4+2./8.
Here a=4, and /b=2,/3; therefore, a*—b=c'=16—12=4a;
ir c=2. Hence, by the above formula, the required root wil.

he
442 \/4—2
\/ a TV 5 =v8+L

Verification.
The square of +3+1 is 34+2/3+1=4+2v8.

.
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Ez. 2. Required the square root of 114-6./2.

Here a=11, and /b=6./2; therefore, 5=36XxX2=72; &nd
a’—b=49=c". Hence c=7, and we find the square root of
11462 is v9+ v2, or 3+ 2. Ans.

Ez. 3. Required the square root of 11—2,/30.

Ans. v6— /5
Ez. 4. Required the square root of 2+ /8.
Ans. v3+vi.

(292.) This method is applicable even when the binomial
}ontains imaginary quantities.

Ez. 5. Required the square root of 1+4v —3.

Here a=1, and vb=4 v —=3; hence b=—48, and a*—b=49
therefore, c="7. The required square root is 4+ v —3=2+
v=38. Ans. -

Ez. 6. Required the square root of —}+} v —3.

Ans. }+3ivV =3

Ez. 1. Required the square root of 2v'—1.

Here we put a=0; hence c=2, and the required root is

1+v -1,

hich may be easily verified.

Ez. 8. Required the value of the expression

v6+25— V6—2y5. !

Ez 9. Required the value of the expression \

. Va+8vV—20+4/4—3v—20.
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SECTION XVIIL

INFINITE SERIES.

(293.) An wnfinite series is an infinite number of terms, eact
of which is derived from the preceding term or terms accord-
ing to some law.

As 1+3+3+3++, &ec,
or 1= +i—ay+ir— &e.

These are examples of geometrical progressions, in the first
of which the ratio is 1, and in the second it is —1.

Infinite series may arise from the common operations of di-
vision, the extraction of roots, and other processes of calcula-
tion, as will be seen hereafter.

A converging series is one in which the sum of any number
of its terms is finite, as in the examples just given.

A diverging series is one in which the sum of its terms is not
finite ; as,

1424344454647, &c.
, An ascending series is one in which the exponents of the un-
known quantity continually increase ; as,
az+bz*+cz’+dz' +ex*+, &e.

A descending series is one in which the exponents of the une

known quantity continually decrease; as,
ax ' +bz ez +dxt+ex "+, &ec.

PROBLEM 1.

(294.) Any series being given, to find its several orders of
Zifferences.
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RULE.

1. Take tne first term from the second, the second from une
third, the third from the fourth, &c.; and the remainders will
form a new series, called the FIRST ORDER OF DIFFERENCES.

2. Take the first term of this last series from the second, the
second from the third, &c. ; and the remainders will form a third
series, called the BECOND ORDER OF DIFFERENCES.

8. Proceed in like manner for the third, fourthy &c., orders
of differences, and so on till they terminate, or are carried as far
as may be thought necessary.

Ez. 1. Required the several orders of differences of the
series of squares,

1 4 9 16 25 386 49, &c.
3 57 9 11 13 first differences
2 2 2 2 2 second differences.
00 0 O third differences.
Ez. 2. Required the several orders of differences of the

series of cubes,
1 8 27 64 125 216, &ec.

7 19 37 61 91 . (first differences
12 18 24 30 second differences.
6 6 6 third differences.

0o 0 fourth differences.

Ez. 3. Required the several orders of differences of the

series of fourth powers,
1, 16, 81, 256, 625, 1296, &c.

Ez. 4. Required the several orders of differences of the

series of fifth powers,
-1, 82, 243, 1024, 3125, 7776, 16807, &c.

Ez. 5. Required the several orders of differences of the
series of numbers, -
1, 3, 6, 10, 15, 21, &ec.

PROBLEM IIL

(205.) T find the nth term of the series
- aboecde &ec
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Take the proposed series, and subtract each term from the
next succeeding one; we shall thus obtain for the first order
of dyferences,

- b—a, c—b, d—c, e—d, &c.

Again, subtracting each term of this series from the next
succeeding term, we find for the second order of differences,

c—2b+a, d—2c+b, e—2d+c, &e. |

Subtracting, again, each term of the preceding series from
ts next succeeding term, we find the third order of dgﬂ"erences,

d—3c¢+8b—a, e—8d+3c—b, &c.
Subtracting again, we find for the fourth order of differences,
e—4d+6c—4b+a, &e.

‘Let D', D", D", D", &c., represent the first terms of the

several orders of differences.

Then, L
D' =b—a; whence b=a+ D',
D" =¢—2b+a; & ¢=a+42D'4 D/,
D" =d—3c+8b—a; «  d=a+3D'+3D"+ D,
D'=e—4d+6c—4b+a; ¢« e=a+4D'+6D"+4D" 4+ D"

&e., &ec.

The coefficients of the value of c, the third term of the pro-
posed series, are 1, 2, 1, which are the coefficients of the sec.
ond power of a binomial ; the coefficients of the value of , the
fourth term, are 1, 8, 8, 1, which are the coeflicients of the
third power of a binomial, and so on. Hence we infer that
the coefficients of the nth term of the series are the coefficients
of the (n—1) power of a binomial. Therefore, the nth term
of the series will be .

(n l)Dr_n_(n l) (n 2)D// 1 (n l) (;";2;) (n 3)DHI+ &‘.

Ez. 1. Required the twelfth term of the series
2, 6, 12, 20, 30, &c.

The first order of differencesis 4 6 8 10, &o.
The second order of differencesis 2 2 2, &e.
The third order of differences is 0 o

Here D'=4, D"=2, and D""=0. Also, a=2, and n=12.
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(n—1) (n—2)D"
2

Hence a+(n—1)D'+ =2+11D'+55D"=

24+44+110=156 = the twelfth term.
E=z. 2. Required the twentieth term of the series
1, 3, 6, 10, 15, 21, &c. *
Here a=1, D'=2, D=1, and 2=20.
Therefore, the 20th term =1+419D'+171D"=14-38+17(
' =210, Ans.
Ez. 3. Require& the thirteenth term of the series
1, 5, 14, 30, 55, 91, &c.
E:c 4. Required the fifteenth term of the series
1, 4, 9, 16, 25, 36, &c.
Ans. 22b.
Ez. 5. Required the twentieth term of the series
1, 8, 27, 64, 125, &ec.

PROBLEM IIL

(296.) To find the sum of n terms of the series
a, b, ¢, d, e, &c.
Assume the series
0, a, a+b, a+b+4-c, a+b+c+d, &ec. )
Subtracting each term from the next succeeding, we obtan
ab,c d e &c.,
which is the series whose sum it is proposed to find. Hence
the sum of n terms of the proposed series is the (n-+1)th term
of the assumed series; and the nth order of differences in the
first series is the (n+1)th order in the other series. If, there-
fore, in-the formula of the preceding Problem, we substitute
0 for a,
n-Nl for «,
a for D,
D’ for D”, *
&e.,

we shall have

n(n 1)..,, n(n—1)(n—2) n(n—1) (n—2) (n—8)
rat D=5 — D"+ 2.3.4 D4
&e,, !
which is the sum of n terms of the proposed series.




INFINITE SERIES. 241

Ez. 1. Required the sum of n terms of the series
1, 2, 3,4, 5, 6, &c.
Here a=1, D'=1, D"=0.
n(n—l)D’=h+n’—n=n’+n n(n+1)=
2 2 2 2
the sum of n terms, the same as found in Art. 239.
Ez. 2. Required the sum of » terms of the series
1°, 2, 3, 4%, 5%, &ec.
Here ‘ a=1, D'=3, D"=2.
Therefore the general formula reduces to
‘ n+3n(n—l) , 2n(n—1) (n—2)

Therefore, na+

2 2.3 ’
22°4+-3n*+n -
=T’
=n(n_+1)6(2l'i-L)’ the sum required.

Ez. 3. Required the sum of n terms of the series
1’, 2, 8, 4°, 5°, 6°, &ec.
Here a=1, D'=%, D"=12, D=8,
N Ans.

£z, 4. Required the sum of » terms of the series
1, 8, 6, 10, 15, &c.

Ans

n*(n+1)*
’ 4

n(n+1) (n+2)
. : 2.3
Ez. 5. Required the sum of n terms of the series
1, 4, 10, 20, 35, &c.
n(n+1) (n+2) (n+3)
Ans. 2.3.4 :

. PROBLEM IV.

(297.) A series of equidistant terms, a, b, c, d, e, <., being
given, to find any intermediate term by interpolation.

This is essentially the same as Problem IL. For convenience,
let us put z to represent the distance of the required term from
the first term of the series a, in which case z=n—1, and we
shall have
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3=a t2D + (” Dy &= @=Ap, ge,

2.3
\ Ez. 1. (:lven the square root of 94, equal to 9.69536 ;
“ o 95, « 9.74679 ;
“ “ 96, “ 9.79796,

to find the square root of 94.25.
Here the first differences are +.051438, +.05117,

and the second difference is —.00026;
that is, D =+.05143, D"=—.00026. ,
But z=a+3D'—3D".

Hence the square root of 94.25 ls
9.69536+.01286+.00002,

or 9.70824. Ans.
Ez. 2. Given the square root of 160, equal to 12.64911,
& “ 162; “ 12.72792
“ “ 164, “ 12.80625, -

to find the square root of 161.

Here the interval between the given numbers is 2; the dis-
tance of the required term from the first term is 1; and, since
the interval of the given numbers is always to be reckoned as
unity, we have z=4%:

Also, D’=+.07881, D"=—.00048.

And - ‘z=a+4D'—§D".

Therefore the square root of 161 is

12.64911+4-.039414-.00006,

or 12.68858. 4ns.
Ez. 3. Given the cube root of 60, equal to 3.91487;
“« 62, “ 3.95789;
“ “ 64, “  4.00000,
“ “ 66, “  4.04124,
to find the cube root of 61.
Ans. 3.93650.
. Ez. 4. Given the fourth root of 625, equal to 5.000000 ; *
“ o - 628, “  5.005988 ;
“ “ 631, “  5.011956;
“ “ 634, “ 5.017908,

to find the fourth root of 627.
Here z=%. Therefore, z=a+3%D —3D". .
Ans. 5.003994
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Ea 5. Given the sq'lare root of 70, equal to 8.36660;

“ 74, “ 8.60233;
“ “ 78, “ 8.83176;
“ o 82, “ 9.05539,

o fnd the square root of 71. .
Ans. 8.42615.
(298.) Fractions expanded into infinite series.
When the dividend is not exactly divisible by the divisor
he quotient may be expressed by a fraction. Thus, if it is

. e . . 1
equired to divide 1 by 1—a, we obtain the fraction —a

We may, however, commence the division according to the
isual method ; thus, .

1 " 1—a

l1—a 1+a+ae’+a*+a'+, &c., = the quotiont.

-

- a‘

a‘

Hence l—é—a= 1 +a+é’+a‘+a‘+a‘+, &ec., to infinity.

Suppose a=4, we shall then have

1 1 . . .
i :}_2’ which will be equal to the series
1+4+3+3+ 75+, &e.
Suppose a=}%, we shall then have

l-l-_a=ll_§= 3, which will be equal to the series

1 +%+%+g’7+7‘r+9 &ec.

Ez. 2. Resolve F into an infinite series.
Ans. 1—a-ta*—a'+a'—a*+, &o
Suppose a=4, we shall then have
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——==%, which will be equal to the sertes
—}+i——%+1’t—i’t+’ &e.

Ez. 3. Resolve the fraction —ﬁ into an infinite series.

Ans. —— ‘—,‘——"+9 &c.

1+1}

!
Ez. 4 Resolve + into an infinite series. o

E=z. 5. Resolve 1nto an infinite series.

We may proceed in the same manner when there are more
than two terms in the divisor.

Ez. 6. Resolve —-—l——, into an infinite series.
l—a+a
Ans. 1+a—a*—a*+a*+, &c
Ez. 7. Resolve —— @y + ), into an infMte series.
(299.) Infinite series obtained by extracting the square root.
In Art. 272, v a+b has been expanded into an infinite series
by the Binomial Theorem. It was also remarked that the
same result might have been obtained by extracting the square
root according to the usual rule, Art. 275. The operation will
proceed as follows :
3 ]
a+bla*+ b ] 2 + b
2a® 8a

ra &ec., = the square root of s+b
16a

a

b 2a7 —*, first divisor.

b - .
b+u
T .
) -4—a2a +;§‘-_§9 Second dlm
» b b
“4a '8 ’+64a
b ‘
+ b

8a' 64a"
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This result is the same as that obtained in Art. 272.
Ez. 2. Extract the square root of 1--z.

Ez. 3. Extract thé square root of a’+b.
Ez. 4. Extract the square root of a*—b,

METHOD OF UNKNOWN COEFFICIENTS.

(800.) Theenethod of unknown coefficients is a method ot
developing algebraic expressions into series, by assuming a
series having unknown coefficients, and afterward finding the
value of these coefficients. This method is founded on the fol-
lowing

THEOREM.

If an equation of the form

A+Bz+Cz’+Dz'+, &c., =A'+B'z+C'a? +D’x +, &ec.,
must be verified by any value given to x, the terms involving the
same powers in the two members are respectively equal.

For, since this equation must be verified for every value of
z, it must be verified when z=0. But, upon this supposition
all the terms vanish except two, and we have

A=A
Suppressing these two equal terms, we have
Bz+Cz*+Dz*+, &c., =B'z+C'z’+D'2*+, &ec.
Dividing every term by z, we obtain
B4+Cz+-Dz*+, &c., =B'+C'z+D'z*+, &e.

Since this equation must be verified for every value of z, it

must be verified when z=0. But, upon this supposition,

B=B".
In the same manner we can prove that
C=C
D D’ &ec.
(801.) Let it be proposed to develop the expression i +3

.o a series arranged according to the powers of z. It is:
plain that this development is possible, for we may divide the
numerator bv the denominator, as explaired in Art. 298.
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Let us, then, assume
11—z
I+z
where the coefficients A, B, C, D are supposed to be inc e pend
ent of 2, but dependent on the known terms of the fraction.
In order to obtain the values of these coeflicients, let us mul-
tiply both members of the above equation by the denominator
14z, and we shall have
1—z=A+(A+B)z+(B+C)z'+(C+D)z*'+(D*E)z*+, &e.
But, according to the preceding Theorem, the terms involving
the same powers of z in the two members of the equation must
be equal to each other.
Therefore, A= 1,
A+B=—1; hence B=—2.
B+C= 0; « C=+a.
C+D= 0; « D=-2.
D+E= ¢, ¢« E=+2.
&ec., . &ec.

Substituting these values of the coefficients in the assume¢
Reries, we obtain

A+B2:+Cz +Dx +Ex +9 &c oy

11—z .
172 ——=1—32+2z’ —2x +2z—, &c.

(302.) The method thus exemphﬁed is expressed in the fol-
lowing

RULE,

Assume a series with unknown coefficients as equal to the pro-
posed expression ; then, having cleared the equation of fraction:
or raised it to ils proper power, find the value of each of thes
coefficients by equating the corresponding lerms of the two ex
pressions, or putting such of them as have no corresponding
terms, equal to zero.

1 < o .
Ez. 2. Expand the fraction I——2—T into an infinite series

1
Assume m=A+B$+C.’C’+D$’+Ex‘+ &c.

Multiplying by 1—2:+-z*, we have
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1 =A+(B—2A)z+(C—2B+A)z+(D—2C+B)z'+ (E—2D+
C)z'+, &e.
Hence we must have

A=1
B—2A=0-'B=2%2A =2,
C—2B+ A=0--C=2B—-A=3,
D—2C+ B=0"‘.-D=2C—-B=4,
E—2D+ C=0 ‘.- E=2D—-C=s5,
&ec., " &e.

1 — 2 3 ‘
Therefore, m—l+2z+l3x +42°+ 52+, &c.

Ez. 3. Expand the fraction into an infinite series

142z
ppr—
Ans. 14-8z+ 42+ 72+ 112 +18z2°4+-29z°4-, &e.,
where the coefficient of each term is equal to the sum of the
coefficients of the two precedmg terms.

Ez. 4. Expand into an mﬁmte sorxes

1—- 2.2: 31:’
Ans. 1+z+52'+132* +412*+1212* 4+, &e
What is the law of the coefficients in this series?
142z
Ex. 5. Expand e
'Ans. 1+ 5z+15z"+452°+1385z* +, &ec.
What is the law of the coefficients in this series?
Ez. 6. Expand v'1—z into an infinite series.
z z* 8 85z @ 3.5.7z
Ans. 1524 2.46 2.468 246810 ¥
(308.) The method of unknown coeflicients requires that we
should know beforehand the form of the development with re-
spect to the powers of z. Generally, we suppose the develop-
ment to proceed according to the ascending powers of z, com-
mencing with z°; but sometimes this form is inapplicable, in
which case the result of the operation is sure to indicate it.
Let it be required, for example, to develop the ¢xpression

into an infinite series.

e into a series.

Assume ﬁl —A+Bz+Cx +Dz*+, &c.
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Clearing cf fractions,-we have
1=38Az+(3B—A)2"+(3C—B)z'+, &c. 5
whence, according to Art. 300, we conclude
' 1=0,
3A=0, &c.
Now the first equation, 1=0, is absurd, and shows that the
assumed form is not applicable in the present case. Butif wa

put the fraction under the form — 1 paY-vpe and suppose that
1 1 . .
;Xa—_;=;(A+B$+Cx +Dx +, &c.),

it will become, after the reductions are made,
1=3A+(3B—A)z+(3C—B)2*+(3D—C)z'+, &e.,
which gives the equations
8A=1; whence A= 3
8B—A=0; « B=1. -
3C—B=0; % C=g.
3D—-C=0; . D=-,31-.
1 = 2°

1
Therefore, ———; 3o 3+9+27+81 +, &c.)
. —1

x x’
=319 27+81+’&°’

that is, the development contains a term affected with a nege
tive exponent. ’

We ought, then, to have assumed at the outset

1

8z—

The particular series which should be adopted in each case

may be determined by putting =0, and observing the nature

of the result. If; in this case, thg proposed expression becomes

equal to a finite quantity, the first term of the series will not

contain z. -If the expression reduces to zeto; the first term

—=Az7"+B+Cz+Da2"+Ez"+, &

. . . . ; A
_will contain z; and if the expression reduces to the form n

then the first term of the development m'1st contain x with a
negative exponent.



* SECTION XIX.

GENERAL THEORY OF EQUATIONS.

(804.) It is proposed in this Section to exhibit the most im-
portant propositions relating to the theory of equations, to-

gether with the Theorem of Sturm, by which we are enabled

to determine the number of real roots of an equation.
A function of a quantity is any expression involving that
quantity. Thus,
az'+b is a function of z.
ay'+cy+d is a function of y.
az’—by*® is a function of z and y. |
In a series of terms, two successive signs constitute a per-
manence when the signs are alike, and a variation when they
are unlike. Thaus, in the polynomial
a+b—c+d,
the signs of the first two terms constitute a permanence ; the
signs of the second and third constitute a variation: and those
of the third and fourth also a variation.
(305.) A cubic equation is one in which the highest power
of the unknown quantity is of the third degree - as, for ex-
ample,

z'—6z'+8z—15=0.

All equations of the third degree, with one unknown quan-
.ity, may be reduced to the form

z'+ax*+-bx4-c=0.

A biquadratic equation is one in which the highest power of
the unknown quantity is of the fourth degree ; as, for example.
*z*—6z'+ 72"+ 5z —4=0.

12

7
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Every equation of the fourth-degree, with one unk:own
quantity, may be reduced to the form

z'+-az’+-bz* +cx+d=0.

The general form of an equation of the fifth degree is

z*+az'+br*+cx*+dzr+e=0;
and the general form of an equation of the mth degree, with
one unknown quantity, is '
z*+Az~'+Bz™*+Cz"+..... +Tz+V=0 (m).

This equation will be frequently referred to hereafter by the
name of the general equation of the mth degree, or simply by the
letter (m).

It is obvious, that if we could solve this equation, we should
have the solution of every equation which could be proposed.
Unfortunately, no general solution has ever been discovered;
yet many important properties are known, which enable us to
solve any numerical equation which can ever oecur.

PROPOSITION I -~

(306.) If a is a root of the general equation of the mth degrec,
the equation will be exactly divisible by x—a.

For if a is one value of z, the equation must be verified when
we substitute a in the place of z. Hence we must have

a"+Aa~'+Ba~*+Ca~*+..... +Ta+V=0 (1).

Subtracting equation (1) from equation (m), we obtain
(z~—a")+A(z" ' —a~")+B@E " —a" ") +... + T(z—a)=0 (2).

But, by Art. 76, each of the expressions (z—a"), (z™'—a™),
&ec., is divisible by z—a, and therefore equation (2) is also di-
visible by z—a. New equation (m) is but another form for
equation (2); for if we take the value of V, as found from
equation (1), and substitute it for V in equation (m), it will give
us equation (2) ; therefore, equation (m) is divisible by z—a.

Conversely, if equation (m) is divisible by z—a, then a is a
root of the equation.

-It will be noticed that this property is but a generalization
of what has been proved of equations of the second degree, in
Art, 192,

Ez. 1. Prove that 1 is a root of the equation -

z'—6z'+11z2—6=0, °
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This equation is divisible by z—1, and gives z*—5.c4-6=0
Ez. 2. Prove that 2 is a root of the equation
z'—z—6=0.

This equation is divisible by z—2, and gives z*+2z+3=0
Ez. 3. Prove that 2 is a root of the equation

z'—11z" -836z—36=0.
Ez. 4. Prove that 4 is a root of the equation

z'+z'— 38424 56=0.
Ez. 5. Prove that —1 is a root of the equation

z*—88z"+42102" 4 5382+ 289=0,
Ez. 6. Prove that —5 is a root of the equation
 2462'—102'—1122'—207z—110=0.
Exz. 7. Prove that 8 is a root of the equation
z'+z'—14z°— 147 +492° + 492" — 36— 36 =0.

PROPOSITION II.

(307.) Every equation of the mth degree containing but one
unknown quantity, has m roots and no more.

- For, suppose a to be a root of the general equation of the
mth degree. By the last Proposition, this equation is divisible
by z—a; and if we actually perform the division, the equation
will be reduced to one of the next inferior degree.

If we represent the coefficients of the different powers of =
by A’, B, &ec., the quotient will be )

"'+ Az~ + B+ ..... +T'z4+V'=0.

This equation must also have a root, which we will repre-
sent by b; and dividing by z—b, the equation will be reduced
to one of the next inferior degree, and so on.

‘We may continue this series of operations (m—1) times, when
we shall arrive at a simple equation which has only one root,
Hence the proposed equation will have m roots,

: a,bed..... 1
and its successive divisors, or the factors of which it is com
posed, will be
z—a, z—b, x—c, z—d,.....z~l,
being equal in number to the uni 8 contained in m, the highes
exponent of the equation.
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We nave seen that when one root of an equation is known,
the equation is readily reduced to one of the next inferior de-
gree; and if we can depress any equation to a quadratic, its
roots can be determined by methods already explained.

Ez. 1. One root of the equation .

z'+4-3z"—16z+12=0 .
18 1. Find the remaining roots.
Exz. 2. Two roots of the equation
z*—10z*+ 352" — 502 1+24=0
are 1 and 3. Find the remaining roots.
Ez. 3. Two roots of the equation
z*—12z'+482’—68z+15=0
are 3 and 5. Find the remaining roots. :
Ans. 2 v2

Ez. 4. Two roots of the equation
4z'—14z'—52°+312+6=0
are 2 and 8. Find the remaining roots. -
) —3+
Ans. — Yo
Ez. 5. Two roots of the equation
-
z'—6z'+24z—16=0
are 2 and —2. Find the remaining roots,
Ans. 8% /5.

(308.) It should be observed that this Proposition only proves
that an equation of the mth degree may be continually depress-
ed by division, and finally exhausted after m operations. The
divisors are not necessarily unequal. Any number, and indeed
all of them, may be equal. When we say that an equation of
the mth degree has m roots, we mean that the polynomial can
be decomposed into m binomial factors, equal or unequal, each
containing one root. Thus, the equation

z*—62"4-12z—8=0
can be resolved into the factors
(z—2) (z—2) (z—2)=0; or (z—2)'=0;
whence it appears that the three roots of this equation are
2,22

But, in general, the several roots of an equation differ from

each other numerically,
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\
The equation -

z'=8

has apparently but one root, viz., 2; but by the method of the
preceding article we can discover two other roots Dividing
2'—8 by z—2, we obtain . '
z'+2x+4=0.

Solving this equation, we find

z=—1%v 3.
Thus, the three roots of the equation z*=8 are
2; —1+v—=3; —1-v =3

These last two values may be verified by multiplication as

follows :

—14 \/E_-?-o -1- V-3
-1+ v-—3 -1- V-
1— v=3 1+ V-3
- V/—3-3 + v—3-38
—2—2 1/_—_—§=the square. —2+42 VE_§=the square.
—14+ v—38 . —1— V=3
2+2v—3 2—2v—3
—2vV —3+6 +2v —346
8=the cube. 8=the cube.

If the last term of an equation vanishes, as in the example
z*+22"+32"+62=0,
the equation is divisible by z—0, and, consequently, 0 is one

of its roots.
If the last two terms vanish, then two of its roots are equas

to 0.

PROPOSITION IIL

To discover the law of the coefficients of every equation.
(309.) In order to discover the law of the coeflicients, let us
form the equation whose roots are
abec,dy..... 1L
This equation will contain the factors (z—a), (z—D), (z—¢)
&ec. ; that is, we shall have
(z=a) &=b) (z—c) (z—d)..... (z—~0=0. ®
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If we perform the multiplication as in Art. 264, we shall
have

"—ajz*+ ablz™— ahclz™>+..... —(abe..... =0,
- + ac —ab
—c +ad —acd .
—d + be — bed '
&ec. + bd| &ec.
+cd| ’ Lo~
&ec.

Hence we perceive,
1. The coefficient of the second term of any equation is equm
" to the sum of all the roots with their signs changed.

2. The coefficient of the third term is equal to the sum of ths
products of all the roots taken two and two.

8. The coefficient of the fourth term is equal to the sum of the
products of all the roots taken three and three, with their signs
changed.

4. The last term is the product of all the roots with their signs
changed.

It will be perceived that these properties include those of
quadratic equations mentioned on pages 163 and 164.

If the roots ave all negative, the signs of all the terms of the
equation will be positive, because the factors of which the
equation is composed are all positive.

If the roots are all positive, the signs of the terms will be al-
ternately + and —.

Ez. 1. Form the equation whose roots are 1, 2, and 3.

For this purpose, we must multiply together the factors
z—1, z—2, z—3, and we obtain

z'—62"+11x—6=0.

This example conforms to the rules above given for the co-
efficients. Thus, the coefficient of the second term is equal to
the sum of all the roots (1+2+3) with their signs changed.

The coefficient of the third term-is the sum of the products
of the roots taken two and two ; thus,

1X2+1X3+2X3=11.

The last term is the product of all the roots (I'’x X 3) with
» their signs changed.

~




GENERAL THEORY OF EQUATIONS. - 261

Ez. 2. Form the equation whose roots are 2, 3, 5, and —6.
Ans. z*—42"—292"+1562—180=0.

Show how these coefficients conform to the laws above
g ven.

Ex. 8. Form the equation whose roots are 1, 3, 5, —2, —4,
-6, .
' Ans. z°432*—412*—872'+400z*— 4442 —720=0.

(310.) Every rational root of an equation is a divisor of the
last term ; for, since this term is the product of all the roots, it
must be divisible by each of them. If] then, we wish to find a
root by trial, we know at once what numbers we must employ.

For example, take the equation

' —z—6=0. ‘

If this equation has a rational root, it must be a divisor ot
the last term, 6 ; hence we must try the numbers 1,2, 8, 6.
either positive or negative.

If z=1, we have 1—1—6=—86,
z=2, « 8—2—6= 0,
z=8, “ 27—3—6= 18,

z=6, « 216—6—6=204,

Hence we see that 2 is one of the roots of the given equa-
sion, and by the method of Art. 307, we shall find the remain-
‘ng roots to be )

—1£v/-2

PROPOSITION 1V.

(811.) No equation whose coefficients are all integers, and that
of the first term unity, can have a root equal to a rational frac-
tion.

For, take the general equation of the third degree,

z*+Az*+Bz+C=0,

and suppose, if possible, that the fraction g- is one value of a.

this fraction being reduced to its lowest terms. If we substi.
tute this value for z in the given equation, we shall have

a . a _a
"—,+A7_—,+B,—]+C=- 0
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Multiplying each term by %% and transposing, we obtamn

“—_—(Aa +Bab+CbY).

Now, by supposition, A, B, C, @ and b are whole numbers.
Hence the entire right-hand member of the equation is a whole
number.

But by hypothesis,g is an irreducible fraction; that is, a
and b contain no common factor. Consequently, a* and b will

contain no common factor, that is, 3 is a fraction in its lowest

o8 .
terms. Hence, if 3 Were a root of the proposed equation, we

should have a fraction in its lowest terms equal to a whole
number, which is absurd.

The same mode of demonstration is applicable to the general
equation of the mth degree.

This proposition only asserts that in an equation such as is
here described, the real roots must be integers, or they can not
be ezactly expressed in numbers. They may often be express
ed approzimately by fractions, as is seen in the examples on
pages 288-801. A real root which can not be exactly ex-
pressed in numbers-is called incommensurable.

-

-PROPOSITION V.

(812.) If the signs of the alternate terms in an equation are
changed, the signs of all the roots will be changed.

If we take the general equation of the mth degree, and change
the signs of the alternate terms, we shall have

z"—Axz""'+Bz**—Cz" '+ ..... =0 (1);
or, changing the sign of every term of the last equation,
—z"+ Az —Bz~'4+Cz~'— . . ... =0. (2).

Now, substituting +a for z in equation (m) will give the
same result as substituting —a in equation (1), if m be an even
number ; or, substituting —a in equation (2), if m be an odd
number. If, then, a is a root of equation (m), —a will be a root
of equation (1), and, of course, a root of equation (2), which is
identical with it.
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Hence we see that the positive roots may be changed into
negative roots, and the reverse, by simply changing the signs
of the alternate terms; so that the finding the real roots of any
equation is reduced to finding positive roots only.

Ez. 1. The roots of the equation
z'—2z'—5x+6=0
are 1, 3, and —2. What are the roots of the equation.
z'+2z2*—5x—6=0" .
Ez. 2. The roots of the equation
z'—6z"+11z—6=0
are 1,2, and 3. What are the roots of the equation
z'462'+112+6=01

PROPOSITION VL
(818.) If an equation whose coefficients are all real, contains
imaginary roots, the number of these roots must be even.
If an equa‘ion whose coefficients are all real, has a root of
the form

a+bv =1,
then will a—bv—1
be also a root of the equation.

For, let a+bv —1 be substituted for z in the equation, the
result will consist of a series of terms, of which those involving

only the powers of @, and the even powers of bv —1 will be

real, and those which involve the odd powers of bv—1 will
be imaginary. If we denote the sum of the real terms by P,

and the sum of the imaginary terms by @ v'—1, then we must
have

P+Qv—1=0,
which relation can only exist when P=0 and Q=0.

Again, let a—bv —1 be substituted for z in the proposed
equation, the only difference in the result will be in the signs
of the odd powers of bV —1, so that the result will be P-
Qv —1. But we have found that P=0 and Q=0; hence

P-Qv—=1=0.
12*
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And, since a—b v —1 substituted for z gives a result equal tv
zero, it must be a root of the equation.

Exz. 1. Find the roots of the equation
z'—2z+4=0. :
' Ans. —2,and 1=v—1.
Ez. 2. Find the roots of the equation
z'—z'—"Tz+15=0.
Ans. —3, and 2+ v —1.
Ez. 3. Find the roots of the equation
52" 42z —44=0.
Ans. 2,and —1v —3.4.
Hence every equation of the third degree whose coefficients

are all real, must have one real root. The same is true of
every equation of an odd degree.

PROPOSITION VIL

(314.) Every equation must have as many variations of sign
- as it has positive roots, and as many permanences of sign as |
there are negative roots. ‘
To prove this Proposition, it is only necessary to show that
the multiplication of an equation by a new factor, z—a, cor- |
responding to a positive root, will introduce at least one varia-
tion, and that the multiplication by a factor z+a will intro-
duce at least one permanence.
For an example, take the equation ' |
z'+32'—10x—24=0,
a which the signs are ++——, giving one variation. |
Multiply this equation by z—2=0, as follows:
z'+32'—10z —24 -
x —2
- 2'4-82°— 102" — 24z
—2="— 6z2'+20z+-48
T+ 2—162— 4z+48=0.
In this last product the signs are ++——+, giving two va-

=ations ; that is, the introduction of a positive root has intro-
tuced one new variation in the signs of the terms.
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To generalize this reasoning, we perceive that the signs in
the upper line of the partial products are the same as in the
given equation ; but those in the lower line are all contrary to
those of the given equation, and advanced one term toward the
right.

Now, if each coefficient of the upper line 18 greater than the
corresponding one in the lower, the signs of the upper line will
be the same as in the total product, with the exception of the
last term. But the last term introduces a new variation, since
its sign is contrary to that which immediately precedes it;
that is, the product contains one more variation than the
original equation.

When a term in the lower line is larger than the correspond-
ing one in the upper line, and has the contrary sign, there is a
change from a permanence to a variation; for the lower sign
is always contrary to the preceding upper sign. Hence, when-
ever we are obliged to descend from the upper to the lower
line in order to determine the sign of the product, there is a
variation which is not found in the proposed equation ; and as
all the remaining signs of the lower line are contrary to those
of the proposed equation, there must be the same changes of
sign in this line as in the given equation. If we are obliged to
reascend to the upper line, the result may be either a variation
or a permanence. But even if it were a permanence, since
the last sign of the product is in the lower line, it is necessary
to go once more from the upper line to the lower, than from
the lower to the upper. Hence each factor, corresponding to
a positive root, must introduce at least one new variation ; so
that there must be as many variations as there are positive
roots.

In the same manner, we may prove that the multiplication
by a factor z+a, corresponding to a negative root, must intro-
duce at least one new permanence; so that there must be as
‘many permanences as there are negative roots.

Ez. 1. The roots of the equation
z*—3z'— 52"+ 152+ 4x—12=0
are 1,2, 3, —1, and —2. There are also three variations of

sign, and two permanences, as there should be, according to
the Proposition.
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Ez. 2. The equation
z'—8z'— 152" +49z—12=0 -
has four real roots. How many of these are negative ?

Ez. 8. The equation
z°+ 82" — 412 — 872" +4002" + 4442 —"720=0

has six real roots. How many of these are positive ?

If all the roots of an equation are real, the number of pos:-
tive roots must be the same as the number of variations, and
the number of negative roots must be the same as the number
of permanences. If any term of an equation is wanting, we
must supply its place with &0 before applymg the preceding
Rule.

PROPOSITION VIIIL

(815.) If two numbers, when substituted for the unknown
quantity in an equation, give results with contrary signs, there
is at least one root comprised between those numbers.

Take, for example, the equation

z'—2z"+43zx—44=0.

If we substitute 3 for = in this equation, we obtain —20b,
and if we substitute 5 for x, we obtain +46. There must,
therefore, be a real root between 8 and 5; for, when we sup-
nose z=38, we have

o' +3z< 2 +44.
But when we suppose z=5, we have
'+3:z:>2x’+44.
Now both the quantities .
z'+8z and 2:c’+44
increase while = increases. And since the first of these quan-
tities, which was originally less than the second, has become
the greater, it must increase more rapidly than the second.
There must, therefore, be-a point at which the two magnitudes
are equal, and that value of z which renders these two magni
tudes equal must be a root of the proposea equation.
In general, if two numbers, p and ¢, substituted for z in an

equation, give results with contrary signs, we may suppose the
less of the two numbers to increase by imperceptible degrees
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until it becomes equal to the greater number. The results of
these successive substitutions must also change by impercepti-
ble degrees, and must pass through all the intermediate values
between the two extremes. But the two extreme values are
* affected with opposite signs; there must, therefore, be some
number between p and ¢ which reduces the given equation to
zero, and this number will be a root of the equation.

In the same manner, it may be proved that if any quantity -
P, and every quantity greater than p, substituted in an equation,
renders the result positive, then p is greater than the greatest
root.

Hence, also, if the signs of the alternate terms are changed,
and if q, and every quantity greater than q, renders the result
positive, then —q is less than the least root.

If the two numbers, which give results with contrary signs,
differ from each other only by unity, it is plain that we have
found the integral part of a root.

Ez. 1. Find the integral part of one of the roots of the equa-
tion

2z*—11z’+8z—16=0.

When z=2, the equation reduces to —12; and when z=3,
it reduces to +71. Hence there must be a root between 2 and
3; that is, 2 is the first figure of one of the roots.

Ez. 2. Find the first figure of one of the roots of the equa-
tion '

z'+z'+z—100=0.
Ans. 4.

Ez. 3. Fmd the first figure of each of the roots of the equa-
tion

z'—4z'—6x4-8=0.

PROPOSITION IX.

(816.) Every equation may be transformed into anotner
whose roots are greater or less than those of the former by any
given quantity.

Let it be required to transform the general equation of the
mth degree into another whose roots are greater by r thav
those of the given equation.

Take y=z+r or z=y—r,
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and substitute y—r for = in the proposed equatlon we shall
hen have

y,_mry,,,_l+m(m;l)" I?/H m(_m— 12).:(3”‘—2)’. .'IH.&c.,=0,
+A|  —@m-1A +(m-—l) (7274—2)Ar’
+B — (m—2)Br]|
, +C

which equation .evidently fulfills the required conditions, since

v is greater than = by r.’
If we take y=z—r, or z=y+r, we shall obtain in the same

way an equation whose roots are less than those of the given
.equation by r.
Exz. 1. Find the equation whose roots are greater by 1 than
those of the equation
z'+ 32" —4z+1=0.
We must here substitute y—1 in place of z.
Ans. y'—Ty+7=0.
Ez. 2. Find the equation whose roots are less by 1 than
those of the equation
’ z'—22*+3r—4=0.
Ans. y'+y*+2y—2=0.
Ez. 3. Find the equation whose roots are greater by 3 than
those of the equation °
'+ 92+ 122" — 14x=0.
Ans. y*—3y*—15y* +49y-l2—-0
Ez. 4. Find the equation whose roots are less by 2 than
.hose of the equation
5z*—122'4-82"4-4x— 5=0.
Ans. 5y'+28y'+51y"+32y—1=0.
Ez, 5. Find the equation whose roots are greater by 2 than
Jhose of the equation
z°+10z*4-422" 4862+ 702 +12=0.
- Ans. y*+2y'—6y"—10y+8=0

o PRCPOSITION X.
(317.) Any complete equation may be transformed into an
siner whose second term is wanting.
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Since r m the preceding Proposition- is indeterminate, we-
may put —mr+A equal to zero, which will cause the second

term of the general development to disappear. Hence r=%,
A
and £=y—;.

Hence, to remove the second term of an equation, substitute
for the unknown quantity a mew unknown quantity, together
with such a part of the coefficient of the second term, taken with
a conlrary sign, as is denoted by the dégree of the equation.

Exz. 1. Transform the equation

z'—6z"+8zx—2=0
into another whose second term is wanting.

Here we take a new unknown quantity, and annex to it a
third part of the coefficient of the second term of the equation
with its sign changed ; that i 1s, we put z=y-+2. Making this
substitution, we obtain

y*—4y—2=0. Ans
Ez. 2. Transform the equation
z*—16z'—6z+15=0
nto another whose second term is wanting.

Here we put z=y+4.

Ans. y*—96y’—518y—T177=0

Ez. 8. Transform the equation

_ @' +152*+122°— 202+ 14z— 25=0
mto another whose second term is wanting.
Ans. y*—"18y"+412y*—T5Ty+401=6.

Since the coefficient of the second term is equal to the sum
of the roots with their signs changed it is obvious that when
the second term of an equation is wanting, the sum of the posi-
tive roots must be equal to the sum of the negative rots

PROPOSITION XI.

(818.) To discover the law of Derived Polynomials.

When we substitute y+r for z in the general equation of
the mth degree, the coefficients of r follow a remarkable law

The equation, before it is developed, is
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y+r)"+Ay+r)""+By+n~+..... +T(y+r)+ V=0
If we actually involve the several terms (y+r)~, (y+r)=,
&c., as was done in Art. 316, we obtain certain terms inde-
pendent of r, others which contain the first power of r, others
the second power of r, and so on; and the development is of
the following form:

X,,.. X X

X+X,r+32 r+oa  tegar T +r=,
where the values of X, X,, X,, &c., are
X =y~+Ay'4+By—+Cy+ eeeed Ty+V.
X, =my™~"'+(m—1)Ay~"+(m—2)By—+..... +2Sy+T.
X,=m(m—1)y"*+(n—1) (n—2)Ay™>+.....

Each of these polynomials may be derived from that imme
diately preceding it, by multiplying each term by the exponent
of y in that term, and diminishing the exponent by unity:

The expressions X,, X,, &c., are called derived polyno-
mials of X. X, is called the first derived polynomial, X, the
second derived polynomial, X , the third, and so on.

Ez. 1. Find the equation whose roots are less by r than
those of the equation

z'—5z+6=0,
Here we shall have
X = _7/’—5y+69
X,=2y—5,
X;=2,
X,=0.

But we have seen that when y--r is substituted for z, the

equation reduces to the form

X+X,r+%r’+§.:—;r'+, &e.
Substituting the values ot X, X,, X,, &c., above found, we
obtain
(y*—5y+6)+(2y—5)r+r',
which is the development of
(y+r)*—5(y+r)+6.

Ez. 2. Find the equation whoss roots are less by r thas
t!lose of the equation
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'~ 12'+-8z—3=0.
Here we shall have
' X = y'— 7y'+8y—3,

X,=3y'—14y +8,

X, =6y —14,

X,=86,

X,=0;
and, substituting these valu® in the same formula as above
we obtain

(4= 75"+ 8y~ )+ @5~ 14y +O)r+3(0y— 19+ 61",
which-is the development of
(y+r)—7(y+r)'+8(@y+r)—3,
Ez. 3. Find the successive derived polynomials of the equa
tion
82"+ 142" +4x—8=0.
Ez. 4. Find the successive derived polynomials of the equa-
tion
z*4-8z* 22" — 32’ — 2z — 2=0.

PROPOSITION XII

(319.) To find the equal roots of an equation.

We have seen, in Art. 308, that an equation may have two
or more equal roots. Thus, the equation

z'—6z’+12z—8=0,
or (z—2)'=0,
has the three equal roots 2, 2,.2. Such an equation and 1ts
first derived polynomial always contain a common divisor ; for
the first derived polynomial of the above equation is

8z'—12x+12,

or 3(z—2)"
where it is evident that (z—2)® is a common divisor of both
equations.

In general, let a be one of the equal roots which occurs =
times as a root of the given equation; the first member wil.
therefore contain the factors (z—a), (z—a), (z—a), ———;
that is, (z—a)". The first derived polynomial will contain the
factor n(x—a)™ + that is, z—a occurs (n—1) times as a factor
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in the first derived polynomial. The greatest common divisor
of the given equation and its first derived polynomial must
therefore contain the factor (z—a) repeated once less than in
the given equation.

To determine, therefore, whether an equation has equal
roots, find the greatest common divisor between the equation and
its first derived polynomial. If there is no common divisor, the
equation has no equal roots. If there is a common divisor, solve
the equation obtained by putting t/f divisor equal to zero.

Ez. 1. Find the equal roots of the equation

] z2'=8z2'+21x—18=0.
The first derived polynomial of this equation is
: 3z*—16z4-21,

The greatest ‘common divisor between this and the given

equation is ,
: z—3. .

Hence the equation has twe roots, each equal to 3.

~ Ez. 2. Find the equal roots of the equation
z'—182"+55x—"75=0.
Ans. Two roots equal to 5.

Ez. 3. Find the equal roots of the equation

z'—T1z'+16z—12=0.
Ans. Two roots equal to £.

Ez 4. Find the equal roots of the equation

z'—62*—8z—3=0.
Ans. Three roots equal to—1

PROPOSITION XIIL

(320.) To find the number of real and imaginary roots of an
\quation. ‘

In 1829, M. Sturm discovered a theorem which determines
the precise number of real roots, and of course the number of
imaginary ones, since the real and imaginary roots are to-
gether equal in number to the degree of the equation. We

~ propose now to develop this theorem.

Let X represent the first member of the general equation of
the mth degree, which we suppose to have no equal roots, and

‘
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et X, be 1ts first derived polynomial, found by the method of
Art. 318.

Divide X by X, until the remainter is of a lower degree
than the divisor, and call this remainder —X,, ; that is, let X,,
designate the remainder with a contrary sign. Divide X, by
X,, in the same manner, and so on, designating the successive
remainders with contrary signs by X,,,, X,,,,, &c., until the di-
vision terminates by leaving a numerical remainder independ-
ent of z; which must always be the case, according to the pre-
ceding Proposition, since the equation having no equal roots,
there can be no factor, which is a function of z, common to
the equation and its first derived polynomial. Let this re-
mainder, having its signs changed, be called X..

The operatlon thus descnbed will stand as follows:

XII X_III
IQ/ IIQII QII IIIQIII QIII

X X1Q1=—XII ? X X'IIQII III ’ XII XIIIQIII IlII‘
* We thus obtain the series of quantities

X XI’ X" XIII’ X'IIII’ e s 0 Xll’
each of which is of a lower degree with respect to z than the
preceding, and the last is altogether independent of z, that is,
does not contain z.

We now substitute for z in the above functions any two
wumbers p and ¢, of which p is less than g. The substitation
of p will give results either positive or negative. If we only
take account of the signs of the results, we shall obtain a certain
number of variations and a certain number of prrmanences

The substitution of ¢ for z will’ give a second series of signs,
presenting a certain number of variations and permanences.
The following, then, is

THE THEOREM OF STURM.

The difference between the number of variations of the first
row of signs and that of the second, is equal to the number of
real roots of the given equation comprised between p and q.

(321.) In order to simplify the demonstration of this theorem,
we shall premise three Lemmas ; and, for convenience, we shall
call X the primitive function, and X, X,,, X,,» &ec., auziliary
fanctions.
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Lemma L. If we substitute any number for x in the series of
functions X, X,, X,,, &c., two consecutive functions can not both
reduce to zero at the same time.

For, from the method in which X, X,, &c., are obtained,
we haye the following equations:

X "'Xl Q/ "'X-u (l)"
X, =X,Q, _Xu/ (2)'
Xu .=XIIIQIII _qu (3)'
[13 [13 [
X = Xa i Qua—Xa (m—1). ‘

Now, if possible, suppose X,=0, and X,,=0; then, by equa-
tion (2), we shall have X,,=0. Also, since X,,=0, and X,,=
0; therefore, by equation (3), we must have X,,,=0 ; and, pro-
ceeding in the same manner, we shall find that X_,=0, which is
absurd, since it was shown, Art. 320, that this final remainder
must be independent of z, and must therefore remain un
changed for every value of .

Lemuma II. When one of the auxiliary functions vanishes fo
a partzcular value of x, the two adquent Sunctions must have
contrary signs.

For, by equation (8), we have

X, =X,RQu—Xus
and if X,,, reduces to zero, then X,=—X,,,,; that is, X, and
X,,., have contrary signs.

Lemma IIL. If a is a root of the equation X=0, the signs of
X and X, will constitute a variation for a value of x which i
a little less than a, and a pergganence for a value of x which isa
little greater than a.

For if we substitute a+r for z in the equation X=0, the de-
velopment of the function X, according to Art. 318, will be of
the form

A+A'r+ other terms involving higher powers of r.

Now if a is a root of the equation X=0, the first term of the

development becomes zero, and there remains
A'r+ other terms involving higher powers of r.

Also, if we substitute a4-r for z in the first derived polyno
mial, the development will contain

A’+ other terms involving 7.
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Now we may take r so small that each of these develop-

ments shall have the same sign as 1ts first term,
- A'r and A'.

Hence they must both have the same sign when r is positive,
and contrary signs when r is negative. That is, the slgns of
the two functions X and X,
constitute a variation for z=a—r,
and a permanence for = z=a+r.

’ DEMONSTRATION OF THE THEOREM.

(322.) Suppose all the real roots of the equations
X=0, X,=0, X,=0, X,,=0, &c.,
to be arranged in a series in the order of magnitude, beginning
with the least. Let p be Iess than the least of these roots, and
let it increase continually until it becomes equal to ¢, which
we suppose to be greater’ than the greatest of these roots.
Now so long as p is less than any of the roots, no change of
signs will occur from the substitution of p for z in any of these
functions, Art. 315; but when p arrives at a root of any of the
auxiliary equations, its substitution for z reduces that polyno-
mial to zero, and neither the preceding nor succeeding func-
tion can vanish for the same value of z (Lemma 1.), and these
two adjacent functions have contrary signs (Lemma IL).
Hence the entire number of variations of sign is not affected
by the vanishing of any of the auxiliary functions; for the
three adjacent functions must reduce to
+,0, —, or —, 0, +.

Here is one variation, and there will also be one variation
‘f we supply the place of the 0 with either + or — ; thus,

+, 4y —yor —, +, +,
+, —y —yor — —, +.

Suppose, now, p to pass from a number very little smaller,
to a number very little greater than a root of the primitive
equation .

=0,
the sign of X will be changed from + to —, or from — to +,
Art. 315. The signs of X and X, constitute a variation before
the change, and a permanence after the change (Lemma IIL)
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Henee the change of sign of the function X occasions a loss -
of one variation of sign.

Again, while p increases from a number very little smaller
to asaumber very little greater than another root of the equa-
tion X=0, a second variation will be changed into a perma-
nence, and so on for the other roots of the primitive equation.

Now, since all the real roots must be comprised Wwithin the
limits —@ and +a, if we substitute these values for z in the
series of functions X, X,, &c., the number of variations lost
will indicate the whole number of real roots. A third suppo-
sition, that z=0, will show how many of these roots are posi-
tive and how many negative ; and if we wish to determine
smaller limits of the roots, we must try other numbers. 1Itis
generally best to make trial in the first instance of such num-
bers as are most convenient in computation, as, 1, 2, 10, &c.

. EXAMPLES.

(323.) Ez. 1. How many real roots has the equation

z'—62*+112—6=01

Here we have X,=3z'—12z+11.

Dividing 2*—6z*+11z—6 by 8z°—12z+-11, as in the meth
od for finding the greatest common divisor, Art. 251, wa kave
for a remainder —2z+4. Hence, rejecting the factor & X,
~=2—2. Dividing X, by X,, we have for a remainder -}
Therefore, X,,=+1. -

Hence we have

-

X = 2'~ 62°+11z—6. .
X, =8z2"—12z +11.

X, =z— 2

X, =+1..

If we substitute —a for z in the first polynomial z*—6z*+
11z—8, the sign of the result is —; substituting'—m for z in
the second polynomial 8z*~—12z+-11, the sign of the result is
+ ; substituting the same in z—2, the sign of the result is
~; and X,,,, being independent of z, will remain 4 for every
value of z, so that by supposing z=—, we obtain the series
of signs

-+ — +.

Proceeding in the same manner for other assumed values

of z. wa shall obtain the following results :
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assumed Values of z. Resulting Signs. Varistions,
- ® - 4+ — + giving 8 varictions,
0 — + — + 3 3 [
+.9 -+ -+ “© 8
+1 0+ -+ 2 0«
+1.1 ++ -+ “ 2 o« -
+1.9 + - =+ “oe oo
+2 0—0 + “ 1«
+2.1 -—-++ “ 1«
429 -+ ++ B S
+3 0+ + + “ 0
+3.1 ++++ “ o0 o«
+ o ++ + + “ 0 “

Here the three roots of this equation are seen to be 1, 2, 3
and no change of sign in either function occurs by the substi-
tution for z of any number less than 1; but when p exceeds 1,
there is a change of sign in the original equation from — to
+, by which one variation is lost. When p=2, two of the
functions disappear simultaneously, showing that 2 is a root of
the second derived function as well as of the original equation,
and a second variation of sign is lost. Also, when p becomes
equal to 8, a third variation is lost ; and there are no further
changes of sign arising from the substitution of any numbers
between 3 and +a.

There are three changes of sign of the primitive function, two
of the first auxiliary function, and one of the second auxiliary
function ; but no variation is lost by the change of sign of any
of the augiliary functions; while every change of sign of the
primitive function occasions a loss of one variation.

Ez. 2. How many real roots has the equation

z*'—52'+8z—1=01

.

Here we find A
X = z’— 5z*4+8z—1.
X, =82’—10z +8.
X, =2z —381.
X,,=—2295. .
When z=— m, the signs are — + — —, giving 2 variations:
r=-+tw, “ + 4+ 4+ —, “ 1 “

Hence this equaticn has but one real root, and, consequen!
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lv, must have two imaginary roots. Moreover. it is eamlv
proved that the real root lies between 0 and +1.

Ez. 3. How many real roots has the equation
z'—2z'—12'+10z+10=01
Here we have

X = z'— 2'— Tz*+10z+10.
X, = 42'— 6z’—14z +10; or 2z'—3z'—Tz+b.
X, = 172'—23z —45

X,, =152z —305.
X,,,=+524535.
When £=—a, the signs are +—+—+-, giving 4 vanatlom
z=+awm, “ +++++, “ 0
Hence the four roots of this equation are real.
If we try different values for z, we shall find that
When z=—3, the signs are +—+—+, glvmg 4 varnatlom.

T=—2, “ —++—+, 3

z=—1, %  —44—+, % 3 o
z= 0, “ ++—=—+, “ 2 “
=+1, % A———, 4 2
z=+2, fo——t, « 2 o«
z=+8, ++ttd, « 0«

Hence this equation has one negative root betweerr —2 and
=38 ; one negative root between 0 and —1; and two positive
oots between 2 and 3.

Ez. 4. How many real roots has the equation
' —"Tz+7=01 e
Ans. Three: viz., two between 1 and 2, and one between
-8 and —4.

Ez. 5. How many real roots has the equation
2z'—20z+19=017 .

Ans. Two.
E.z. 6. How many real roots has the equation

z* 2z + 32 +42* + 52—20=01

Ans. One between 1 and 2.

Ez. 7. How many real roots has the equation
z'+-32'+52—178=01
Ans. One between 4 and 5
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Ez. 8. How many real roots has the equation
z*—122*+12z—-3=01
Ans. Four,
Ez. 9. How many real roots has the equation
'—8z2'4142'+42—8=01
4Ans, Four.

PROPOSITION XIV.

(824.) To discover a method of elimination for equations of
any degree.

The principle of the greatest common divisor affords one of
the most general methods for the .elimination of unknown
quantities from a system of equations.

Suppose we have two equations involving z and y reduced
.0 the form of _

A=0,
B_

If we proceed to find the greatest common divisor of A and

B, we shall have, according to Art. 249,
A=QB+R.

But since A and B are each equal to zero, it follows that R
must equal zero. Hence we see that, if we divide one of the
polynomials by the other, as in the method of finding the
greatest common divisor, each successive remainder may be
put equal to zero. If we arrange the polynomials before di-
vision with reference to the letter z, we shall at last obtain a
remainder which does not contain z; which remainder, being
put equal to zero, is the equation from which-z has been elim-
inated.

Ez. 1. Eliminate z from the equanons

z*'+y'—18=0,
z +y — 5=0.
Divide the first polynomial by the second, as follows:
z2'+y'—18 |[z+y—5
'+ (y—5)zjz—y+5
—(y—5)z+ y'—18
—(y—5)z— y'+10y—25
2y'—10y-+1% = remaindor.
18
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This remainder we have already proved must be equal ta
zero; that is,
2y'—10y+12=0,
an equation from which = has been eliminated.
Ez. 2. Eliminate z from the equations
z'+zy —56=0,
zy +2y*—60=0.
Ans. y*—118y"4-1800=
Ez. 3. Eliminate z from the equations
'y —z—y—178=0,
zy+z+y—39=0.
Ans. y'+y'—77y"—273y-¥£1404=0.
E:c 4. Eliminate z from the equations
. z'—3zy+y*+y=0,
z‘—zy+l =0,
" Ans. —5y’+2y-- =0.
f we have three equatxons containing three unknown quan-
tities, we must first eliminate one of the unknown quantities by
- combining either of the equations with each of the others. We
thus obtain two new equations involving but two unknown
quantities, from which we may obtain a final equation involv
ing but one unknown quantity.
Ez. 5. Eliminate z and y from the equations
" zyz— =0,
zz+zy+yz—b=0,
z + y+ z—a=0.
Ans. z2'—az'+bz—c=0
KEz. 6. Eliminate z and y from the equations
£+y= 1,
y'+2=13,
2 +z=18.
Ans. 2°—722°41930z —22824z’+z+100470—ll




SECTION XX.

SOLUTION OF NUMERICAL EQUATIONS,

(325.) We will first consider the method of finding the 1n.
tegral roots of an equation, and will begin with forming the
equation whose roots are 2, 3, 4, and 5. This equation must
be composed of the factors. .

(z—2) (z—38) (z—4) (z—5)=0.

If we perform the multiplication (which is most expeditious-
ly done by the method of detached coefficients shown in Art,
64), we obtain the equation

z'—142"' 472" — 1542 +120=0.

We know that this equation is divisible by z—5. Let us
perform the division by the method of detached coefficients
shown in Art. 80. -

A B C D V a A
1—144+71—1544120|1—5= divisor.
1- 5 1—9--26—24 = quotient.
- 9471
- 9445
+20—154
+26—130
— 244120
— 244-120.

Supplying the powers of z, we obtain for a quotient
z'—9z' 426z —24=0.
This operation may be still further abridged, as follows.

Represent the root 5 by a, and the coefficients of the given
eouation by A, B,C, D, ..... V.
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We first multiply —a by A, and subtract the | duct from
B; the remainder, —9, we multiply by —a, and wabtract the
product from C; the remainder, 426, we multiply again by
—a, and subtract from D; the remainder, —24, we multiply
by —a, and, subtracting from V, nothing remains. If we take
the root a with a positive sign, we may substitute addition for
subtraction in the above statement ; and if we set down onlv
the successive remainders, the work will be as follows

A B C D Va -
1—14+'7l-—154+l201§
1—-9+26— 24,

and the rule will be,

Multiply A by a, and add the product to B ; set down the sum,
multiply it by a, and add the product to C; set down the sum,
multiply it by a, and add the product to D, and so-on. The final
product should be equal to the last term 'V, taker with a contrary
sign.

The coeflicients above obtained are the coeflicients ot a
cubic equation whose roots are 2, 8, 4. The equation may
therefore be divided by z—4, and the operation will be as fol
lows :

1—9+26—24]4
1—-5+16.

These, 6gain, are the coefficients of a quadratic equation
whose roots are-2 and 3. Dividing again by z—8, we have

1-5+6(3
1-2,
which are the coefficients of the binomial factor z—2.
These three operations of division may be exhibited togedker
as follows:
- l4+7l—154+ 120]5, first divisor.
: l— 9426— 24 4, second divisor.
1— 5+ 6 38, third divisor.
1— 2,

(326.) The method here explamed will enable us to find all
the integral roots of an equation. For this purpose, we make
trial of different numbers in succession, all of which must be

. hvisors of the last term of the equation. If any division leaves
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a remainder, we reject this divisor; if the division leaves no
remainder, the divisor employed is a root of the equation.
Thus, by a few trials, all the integral roots may be easily
# »und.

Ez. 2. Find the seven roots of the equation

'+ —142*— 142' + 492"+ 492" — 362 — 36 =0.

We take the coefficients separately, as in the last example,
and try in succession all the divisors of 36, both positive and
negative, rejecting such as leave a remainder. The operation

_isas follows: .
14+1—14—14+49+49—36—36| 1, first divisor.
14+2—-12—26+423+72 436 2, second divisor.

- 144— 4—34—45—18 8, third divisor.
14+74+17+174+ 6 —1, fourth divisor.
14+6+114+ 6 . —1, fifth divisor
1+5+ 6 —2, sixth divisor.
143 —8, Yeventh divisor.

Hence the seven roots are,
1,23 -1, -1, —2, —3.
Ez. 3. Find the six roots of the equation
z%;4- 5z —81z'—852'+9642" 1780z —1584=0

1+ 5—81— 85+964+ 780—1584] 1.
1+ 6—75—160+804+1584 4,
1+10—85—300—396 6.
1+16+61+ 66 I— 2
1+14+33 -3
1+11 —11.

The- six roots, therefore, are
1, 4, 6, —2, —3, —11.
Ez. 4. Find the five roots of the equation
z*4-62'—10z"—1122*~207x—110=0:
1+6—10—112—207—110|—1.

14+5—15— 97—110 ~ |—2.
14+8—21— 55 —B.
1—2-11 )
Three of the roots, therefore. are s
-1, =2, =B
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* The two remaining roots muy ‘be found by the ordinary
method of quadratic equatjons. Supplying the letters to the
last coefficients, we have
z'—2zx—11=0.
Hence z=1%y12.
Ez. 5. Find the four roots of the equation
z*+22'—T2*—82+412=0.
Exz. 6. Find the four roots of the equation
z'—55z"— 3802+ 504=0.
Ez. 7. Find all the roots of the equation
z*—252"+-60x—36=0.
Ez. 8. Find all the roots of the equation
'+ 5z +z'— 162" —20z—16=0.
Ez. 9. Find all the roots of the equation
7' —d2z" + 472" — 12z +36=0.
. Ans. 1,2, 8, and 6.

HORNER'S METHOD.

(827.) The preceding method furnishes the roots of an equa-
tion only when they are expressed by whole numbers. When
the roots are incommensurable, we employ the following meth-
od, which is substantially the same as published by Horner in
1819,

The Theorem of Sturm, together with Art. 315, enables us
to find the integral part of any real root of the equation pro
posed. We then transform the equation into another having
its roots less than those of the precedmg by the number just
found, Art. 316. We discover again, by Art. 315, the first
figure of the root of this equation, which will be the first deci-
mal figure of the root of the original equation. Again, we
transform the last equation into another having its roots less
than those of the preceding by this decimal figure. We thus
discover the second decimal figure of the root; and proceed-
ing in this manner from one transformation to another, we are
enabled to discover the successive figures of the root, and

may car1y the approximation to any degree of accuracy re-
quired.

»
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E=z. 1. Find a root of the cubic equation

z*+38z'+5z=1178.

We have found, page 278, that this equation has but one
real root, and that it lies between 4 and 5. The first figure
of the root, therefore, is 4. To ascertain the second figure, we
transform the given equation into another in which the value
of z is diminished by 4, which is done by substituting for z,
4+y. We thus obtain

¥ +15y"+77y=18.

The first figure of the root of this equation, according to
Art. 815, is .5. Now transform the last equation into another .
in which the value of y is diminished by .5, which is done by
- substituting for y, .5+z. We thus obtain

2°+16.52"+92.752=3.625.

The first figure of the root of this equation is .03. We must
now transform this equation into another in which the value
of z is diminished by .08, which is done by substituting for z,
03+v. We thus obtain

v'+16.59v"+93.7427v=.827623.

The first figure of the*root of this equation is .008.

In order to find the next figure, we must transform the last
equation into another in which the value of v is diminished by
008, and so on.

(328.) This method would be very laborious if we were
obliged to deduce the successive equations from each other by
the ordinary method of substitution; but they may all be de-
rived from each other by a very simple law. Thus, let

Az'+B2*+Cz=D (1)
be any cubic equation; and let the first figure of its root be

denoted by a, the second by &/, the third by a”, and so on.
If we substitute a for z in equation (1), we shalt have

Aa'+Ba'+Ca=D, nearly.
D
Whence ““CiBathas @
If we put y for the sum of all the figures of the root except
the first, we shall have z=a+y ; and substituting this value

for z in equation (1), we obtain

PR N
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Aa'+8Aa’y+3Aay'+-Ay
+ Ba' +2Bay +By’§=D;
+ Ca +Cy
or, arranging according to the powers of y, we have
Ay'+(B+3Aa)y’+(C+2Ba+3Aa")y=D—Ca—Ba'—Aa* (3

Let us put B’ for the coefficient of 3, C’ for the coefficient

of y, and D’ for the right member of the equation, and we have
Ay'+By'+Cy=D" 4).
This equation is of the same form as equation (1) ; and, pro
ceeding in the same manner, we shall find
DI
sy L
where a’ is the first figure of the root of equation (4), or the
second figure of the root of equation (1).

Putting z for the sum of all the remaining figures, we have
y=a'+z; and substituting this value in equation (4), we shall
obtain a new equation of the same form, which may }Je written

Az’+B"2*+C"2=D" (8);
and in the samemanner we might proceed with the remaining
figures.

Equation (2) furnishes the value of the first figure of the
root ; equation (5) the second figure, and similar equations
would furnish the remaining figures. Each of these expres-
sions involves the unknown quantity which is sought, and might
therefore appear to be useless in practice. When, however
the root has been already found to several decimal places, the
value of the terms Ba and Ag® will be very small compared

with C, and e will be very nearly equal to g We may there-

fore employ C as an approzimate divisor, which will probably
furnish a new figure of the root. Thus, in the above example,
all the figures of the root after the first are found by division
46 =77 =.5.
3.625--92.75=.08.
.827--93.74=.008.

If we multiply the first coefficient A by a the first figure o

’,
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the root, and add the producf to the second coefficient, we
shall have '
B+Aa (7).

If we multiply this expression by a, and add the product to

the third coefficient, we snall have
C+Ba+Aa" (8).

If we multiply this expression by a, and subtract the product

rom D, we shall have
D—-Ca—Ba'—Ad’,
which is the quantity represented by D' in equation (4).

Again, multiplying the first coefficient by a, and adding the

product to expression (7), we obtain
B+2Aa (9).

Multlplymg this expression by @, and adding the product to

expression (8), we have
. ~ C+2Bu+3Ad),
which 13 the coefficient of y in equation (4).

Again, multlplymg the first coefficient by a and adding the

product to expression (9), we have
B+3Aaq,
which is the coefficient of y* in equation (4).

We have thus obtained the coefficients of the first trans-
formed equation ; and by operating in the same manner upon
these coefficients, we shall obtain the coefficients of the second
transformed equation, and so on; and the successive figures

of the root are found by dividing D by C, D’ by C, D" by C,
and so on.

(329.) The preceding method is summed up in the following

RULE.

Represent the coefficients of the different terms by A, B, C, anu .
the right-hand member of the equation by D. Having found a,
the first figure of the root, multiply A by a, and add the product
to B. Set down the sum ; multiply this sum by a, and add the
product to C. Set down the sum ; multiply it by a, and subtract
the product from D ; the remainder will be the FIRST DIVIDEND.

13*

P N
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Agawn. multiply A by a, and add the product to the last num
ber under B. Mulliply this sum by a, and add the product to
the last number under C ; this last sum will be the FIRST DIVISOR.

Again, multiply. A by a, and add the product to the last num
ber under B. ‘

Find the second figure of the root by dividing the first din
dend by the first divisor, and proceed with this second figure pre-
cisely as was done with the first figure.

The second figure of the root obtained by division will fre-
quently furnish a result too large to be subtracted from the
remainder D', in which case we must assume a different figure.
After the second figure of the root has been obtained, there
will seldom be any further uncertainty of this kind.

The operation for finding a root of the equation

' z'+8z'+5x=1178,
will then proceed as follows:

A B C )] a
1 +3 +5 =178 (4.5388=z.
4 28 132
7 33. 746 = 1st dividend.
4 44 42.375
11 77 = 1st divisor. 3.625 = 2d dividend.
4 "5 2.797377
16.5 84.75 .827623 = 3d dividend.
.5 8.00 751003872
160  92.75 = 2d divisor. .076619128 = 4th dividend
5 4959
16.53  93.2459
3 .4968
16.56  93.7427 = 3d divisor
3 .132784

16.598 93.875484
8 .132848
- 16.606  94.008332 = 4th divisor.
Having/found one root, we may depress the equation
z'+3z'+5x—178=0
to a quadratic, by dividing it by z—4.5388, We thus obtain
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‘z*+7.5388z+89.2178=0,

where z is evidently imaginagy, because ¢ is negative and
L]

greater than T See Art. 195.

After thus obtaining the root to five or six decimal places,
several more fgures will be correctly obtained by simply di-
viding the last dividend by the last divisor.

Ez. 2. Find all the roots of the equation

z'+11z'—1022=—181.

The first figure of one of the roots we readily find_to be 8
We then proceed, according to the Rule, to obtain the root tc

four decimal places, after which two more will be obtained
correctly by division. -

A B C D a
1 +11 -102 . ==181 (3.21312=z.
3 4 —-180 :
14 —60 =1 = 1st dividend.
3 51 —.992
17 —¢ = 1st divisor. —.008 = 2d dividend.
3 4.04 —.006739
202 —4.96 - —.001261 = 3d dividenda
2 4.08 —.001217403
20.4 —0.88 = 2d divisor. —.000043597 = 4th dividenc.
2 .2061 *
20.61 —.6739
1 2062
20.62 —.4677=23d divisor.
1 .061899
20.633 —.405801
8 .061908

20.636 —.343893 = 4th divisor.

The two remaining roots may be found ip the same way, or
by depressing the original equation to a quadratic. Those
roots are,

3.22952
—17.44265.

When a power of z is wanting in the proposed equation, we

must supply its place with a cipher.
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Ez. 8 Find all the roots of the cubi¢ equation
—Tr=-—".

The work of the following example is exhibited in an ab
breviated form. Thus, when we multiply A by a, and add the
product to B, we set down simply this result. We do the same
in the next column, thus dispensing with half the number of
lines employed in the preceding example. Moreover, we may
omit the ciphers on the left of the successive dividends, if we
pay proper attention to the local value of the figures. Thus,
it will be seen that in the operation for finding each successive

, figure of the root, the decimals under B increase one place,
those under C increase two places, and those under D increase
three places.

140 -7 =—7 (1.356895867=z.
1 —6 -6
2 . —4=1st div’r. —1= lst dividend.
3.3 —3.01 —.908 -
3.6 —1.93=2ddiv’r. —97=2d dividend.
895 —1.7325 . 86625
400 —1.5325=38d div’r. 10375= 3d dividend.
4.056 —1.508164 9048984
4.062 —1.483792=4th div’r. 1326016= 4th dividend
4.0688 —1.48053696 1184429568
4.0696 —1.47728128= 5thdiv’r. 141586432= 5th div’d.
4.07049 —1.4769149359 132922344231

4.07058 —1.4765485837= 6th div'r. 8664087769=6th div'd.

Having proceeded thus far, four more figures of the root,

5867, are found by dividing the sixth dividend by the sixth di-
visor.

We may find the two remaining roots by the same process
or, after having obtained one root, we may depress the equa-
tion '

z'—Tz+7=0
to a quadratic equation, by dividing by z—1.856895867, and
we shall obtain
z*'+1.856895867x—5.158833606=0.
Solving this equation, we obtain
z=—.678447933+ v5.619125204.
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Hence the three roots are . . 1.856896,

g —38.048017,°
1.692021.

Ez. 4. Find a root of the equation

22+ 32*=850.
23 0 =850 (7.0502562208
17 119 833
31 336=1st divisor.  17= lst dividend.
45.10  338.2550 16.912750
4520  340.5150= 2d divisor. 87250= 2d dividend.
45.3004 3840.52406008 - 68104812016
45.3008 340.53312024= 3d div. 19145187984= 8d div’d
45.30130 340.5353853050 17026769265250

45.30140 340.5376503750=4th div.2118418718750=4thd v.

Dividing the fourth dividend by the fourth divisqr, we ob-
tain the figures 62208, which make the root correct to the
tenth decimal place. ’

The two remaining values of z may be easily shown to be
imaginary.

When a negative root is to be found, we change the signs
of the alternate terms of the equation, Art. 312, and proceea
-as for a positive root.

. Ez. 5. Find a root of the equation
52— 62"+ 3z=—85.
Changing the signs of the alternate terms, it becomes
52°+62"+3x=+85.

b+4+6 - +3 +85 (2.16139.
16 35 70 .
26 87= 1st divisor. 15= 1st dividend.
36.5 90.65 ' 9.0685
37.0  94.35= 2d divisor. 5.935= 2d dividend.
87.80 96.6180 5.797080
88.10 98.9040= 8d divisor. 137920= 3d dividend
38.405 98.942405 98942405
88.410 98.980815= 4th divisor. 88977595= 4th dividend
388.4165 98,99233995 29697701985

88.4180 99.00386535= 5th div’r. 9279898015=>5th div'd.
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Hence one -oot of wne equatlon
. —6z'+3z=-—85

.

s —2.16139.

The same method is applicable to the extraction of the cube
root of numbers.

Ez. 6. Let it be required to extract the cube root of 9; iw
other words, it is required to find a root of the equation

z*=9.
10 0 9 (2.0800838.
2 4 8
4 12=1st divisor. 1= 1st dividend.
" 6.08 12.4864 998912
6.16 12.9792=2d divisor.  1088=2d dividend.
6.24008 12.9796992064 1038375936512
6.24016 12.9801984192=3d d. 49624063488 = 3d d1v.
6.240243 12.980217139929 38940651419787

6.240246 12.980235860667= 4th d. 10683412068213=4thd
Exz. 7. Find all the roots of the equation
z*—15z'+63z— 50=0.

1.02804.
A 3 6.57653.
7.39543.

-

Ez. 8. Find all the roots of the equation
2° 492" +242417=0.

—1.12061. °
V! g —38.34730.
—4.53209.
Ez. 9. Extract the cube root of 48228544.
- Ans. 364.

Ez. 10. There are two numbers whose difference is 2, and
whose product, multiplied by their sum, makes 120. What
are those numbers ?

Ez. 11. Find two numbers whose difference is 6, and such

that their sum, multiplied by the difference of their cubes, may
produce 5040.

Er 12. There are two numbers whose difference is 4 ; and

.
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the product of this difference, by the sum of their cubes, i;
8416. What are the numbers?

Ez. 13. Several persons form a partnership, and establish a
certain capital, to which each contributes ten times as many
dollars as there are persons in company. They gain 6 plus
the number of partners per cent., and the whole profit is $392.
How many partners were there ?

Ez. 14. There is a number consisting of three digits such
that the sum of the first and second is 9; the sum of the first
and third is 12; and if the product of the three digits be in-

« creased by 38 times the first digit, the sum will be 336. Re-
quired the number."
636,
Ans. { or 725,
or 814.

Ez. 15. A company of merchants have a common stock of
$4775, and each contributes to it twenty-five times as many
dollarkas there are partners, with which they gain as much
per cent. as there are pargners. Now, on dividing the profit,
it is found, after each has received six times as many dollars
as there are persons in the company, that there still remains
8126. Required the number of merchants.

Ans. 7,8,0r 9

EQUATIONS OF THE FOURTH AND HIGHER DEGREES.

(330.) The method already explained for cubic equations s
applicable to equations of every degree. For the fourth de-
gree, we shall have one more column of products, but the
operations are all conducted in the same manner, as will be

. seen from the following example.

Exz. 1. Find the four roots of the equation
z'—8x2"+ 142 +4x=8.

By Sturm’s Theorem, we have found that these roots are all
real; three positive, and one negative.

We then proceed as follows:
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1-8 +14 + 4 =8 (5.2360679.
-3 -1 — 1 —~5
42 + 9 +44=1stdiv’r. 13= 1st dividend. -
7 44 53288 10.6576
12.2 46.44 63.072=2d div. 2.83424=2d dividend.
124 48.92 64.626747 1.93880241

12.6 51.44 66.193068=3dd. .40359759=3d dividend
12.83 51.8249 66.509117736 .399054706416

12.86 52.2107 66.825633024= 4thd. 4542883584= 4th div
12.89 52.5974 ’
12.926 52.674956

12.932 52.752548

and by division we obtain the four ﬁgures 0679.
The other three roots may be found in the same manner
— .7320508,
7639320, -

2.7320508,
5.2360679.

Hence the four roots are

Ez, 2. Find a root of the ejuatiop
2* 422+ 82+ 42"+ 52=20,

We have found, by Sturm’s Theorem, that this equation has
a real root bettveen 1 and 2.

We then proceed as follows: -
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1 +2
3
4
5
6
7.1
7.2
7.3
7.4
7.5[2
7.54
7.5/6

7.58
7.6/05 - 24.5412025
7.6(10 24.58/0078

+3
6
10
15
21
21.71
22.43
23.16
23.90
24.05/04
24.20|12
24.35/24
24.50/40

+4 45

10 15 :

20 35=1st divisor.

35 38.7171

87.171 42.6585=2d divisor.
39.414 43.5027|2016

41.730 44.3566|2080= 3d divisor
42.211|008  44.5731(44750825
42.695(032  44.7902(83203125= 4th divisor.
43.182/080 .

43.304/790125

43.4271690500

420 (1.125789.
15
5= 1st dividend.
3.87171
1.12829=2d dividend

AWwAAF) 4 ANnOO

dividend.

= 4th dividena
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Dividirg the fourth dividend by the fourth divisor, we ob
tain the figures 789.

When we wish to obtain a root correct to a limited numbez
of places, we may save much of the labor of the operation by
cutting off all figures beyond a certain decimal. Thus if, in
the example above, we cut off all beyond five decimal places
in the successive dividends, and all beyond four decimal places
in the divisors, it will not affect the first six decimal places in
ths root.

Ez. 3. Find the roots of the equation
z'—122"+12z=38.
—3.907378,
+ .443277,
3 + .606018,
+2.858083.

Ans.

Ez. 4. Find the roots of the equation
z'—16z'+792"— 1402=—58. .
’ 4-0.58579,
+3.35425,
+3.41421,
+8.64575.

Ans.

Ez. 5. Find the roots of the equation
z°—20z'+ 150z — 5202° +806x=4017.
+0.934685,
+3.308424,
Ans. £{ +3.824325,
+4.879508,
+17.053058.

Ez. 6. Required the fourth root of 18339659776.
’ Ans. 368,

Ez. 7. Required the fifth root of 26286674882643.
Ans. 488.

Exz. 8. There is a number consisting of four digits such that
he sum of the first and second is 9; the sum of the first and
third is 10 ; the sum of the first and fourth is 11 ; and-if the
product of tile four digits be increased by 36 times the product




SOLUTION OF NUMERICA) EQUATIONS, 297

of the first and third, the sum will be equal to 3024 diminished
by 300 times the first digit. Required the number.
6345,
or 7234,
or 8123,
{or 9012.

* ns.

RESOLUTION OF EQUATIONS BY APPROXIMATION.

(831.) The method of Horner for finding the incommensura-
ble roots of a numerical equation is generally better than any
other ; nevertheless, the method by approximation may some-
times be preferred. We shall explain the method of Newton,
and that of Double Position.

. METHOD OF NEWTON.

This method supposes that we have already determined
nearly the value of one root; that we know, for example, that
such a valoe exceeds q, and that it is less than a+1. In this
case, if we suppose the exact value =a--y, we are certain that
y expresses a proper fraction. Now, as y is less than unity,
the square of y, its cube, and, in general, all its higher powers,
will be much less with respect § unity ; and for this reason,
since we only require an approximation, they may be neglect
ed in the calculation. When we have nearly determined the
fraction y, we shall know more exactly the root a+v; from
- which we proceed to determine a new value still more exact,
and we may continue the approximation as far as we please.

We will illustrate this method by an easy example, requiring
by approximation the root of the equation

z*'=20.
Here we perceive that z is greater than 4, and less than 5
If we suppose z=4+y, we shall have
z'=16+8y+y"=20.
But, as y* must be quite small, we shall neglect it, and we
have
16+8y=20, or 8y=
Whence y=.5, and =4.5, which already approaches near
the true root. If we now suppose z=4.5+z, we are sure that
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z expresses a fraction much smaller than y, and that we may
neglect 2* with greater propriety. We have, therefore,
'=20.254+92=20, or 9z=—.25.
Consequently 3=—.0278.
Therefore, =4.5—.0278=4.4722.
If we wish to approximate still nearer to the true value, we
must make 2=4.4722+v, and we should have
2'=20.00057284+8.9444v=20.
So that 8.9444v=—.00057284.
Whence v=—.0000640.
Therefore, z=4.4722—.0000640=4.4721360,

a value which is correct to the last decimal place.
(332.) The preceding method is expressed In the following

RULE.
- Find by trial a number (a) nearly equal to the root sought
and represent the true root by a+y. ]

Substitute a+y for x in the given equation, and there will re-
sult a new equation containing only y*and known quantities.

Reject all the terms of this equation which contain the second
or higher powers of y, and the approzimate value of y will then
be given by a simple equation. ,

Having applied this-correction to the assumed root, the op-
eration must be repeated with the corrected value of a, when
a second correction will be obtained which will give a nearer
value of the root, and the process may be repeated as often as
is thought necessary.

EXAMPLES.
Ez. 1. Find a root of the equation
2*+22"+82=>50.
if ‘we substitute a+y for z in this equation, and reject al. the
_terms containing the higher powers of-y, we shall have
a'+3a’y+2a*+4ay+3a-4-8y=>50.
_50—a'—24'—38a
8a'+4a+8

Whence
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" We find by trial that z is nearly equal to 8. If we substi-
tute 3 for a. we shall have

Whence z=2.9 nearly.

And if we substitute this new value instead of a, we shall find
another still more exact.

Ez. 2. Find a root of the equation
) » z*—6z=10,
If we make z=a+y, we shall have
a*+5a'y—6a—6y=10,
_10+6a—a’
. Y="5a"—=6.
. Assume a=2, and we obtain

Therefore,

5 .
y=—gp or —0.14,

Hence z=1.86 nearly. 4
If we assume a=1.86, we have
_10+11.16—22.262
59.844—6
Hence x=1.889 nearly.
If we assume a=1.839, we shall have
_10+11.034—21.033352
. 57.18694—6
Therefore, z=1.83901266.

Ez. 8. Given z*'—9z=10, to find one value of z by approx-
imation.

=—.021.

=.00001266.

‘Ans. £=38.4494897.

Exz. 4. Given z*+9z'+42=80, to find one value of = by ap-
proximation.
Ans. z=2.4721359 .

METHOD OF DOUBLE POSITION.

(333.) Another method of finding the roots of an equation 1s
by the rule of Double Position.
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_ Substitute in the given equation two numbers 2s near the
true root as possible, and observe the separate results. Then
state the following proportion :

As the difference of these results,
Is to the difference of the two assumed numbers,
So is the error of either result,

To the correction required in the corresponding assumed
number.

This being added to the number when too small, or sub-
tracted from it when too great, will give the true root nearly.
The number thus found, combined with any other that may be
supposed to approach still nearer to the true root, may be as-
sumed for another operation, which may be repeated till the
root is determined to any degree of accuracy required.

EXAMPLES.

Ez. 1. Given z*+z'+z=100, to find an approximate value
of x.

Having ascertained, by trial, that = is more than 4, and less

than 5, we substitute these two numbers in the given equation,
and calculate the results. +

By the first sup- g =l: By the second sup- f 22
position, =64 position, '—125
Result, 84 Result, 155.

Then 155—84: 5—4 :: 100—84 :.22.

Therefore, 4+.22, or. 4.22, approximates nearly to the true
190t '

If, now, 4.2 and 4.3 be taken as the assumed numbers, and
substituted in the given equation, we shall obtain the value of
2=4.264 nearly.

Again, assuming 4.264 and 4.265, and proceeding in the
same manner, we shall find 2=4.2644299 very nearly.

This rule is founded on the supposition that the differences
mn the results are proportioned to the differences in the as-
sumed numbers. This supposition is not strictly correct, but
f we employ numbers near the true values, the error is gen.
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erally not very great, and it becomes less and less the further
we carry the approximation.

Ex. 2. Given z*+22*—23z="10, to find one value of z.

Ans. x=5.13458.

Ez. 3. Given z*—32'—"752=10000, to find one value of z.
Ans, x=10.2610.
Ez. 4. Given z*+4382'+2z'—8z'—2zx=2, to find one value
of z.
Ans. z=1.059109.
(334.) We will conclude this Section by finding some of the
_ different roots of unity.
Ez. 1. Find the two roots of the equation z*=1, or the
square roots of unity.
Extracting the square root, we find
v . rx=+1,0r —1. .
Ez. 2. Find the three roots of the equation z*=1, or the cube
roots of unity.
Since one root of this equation is =1, the equation z*—1=0
must be divisible by z—1; and dividing, we obtain
’+z+1=0;
e —1ky—3
whence z=—4+4v -8, or _I_E\/_3

Hence the required roots are

—1+v -3 —1—v—3
2 ’ 2 ?

which are the cube roots of unity.

These results may be easily verified. We have seen, on
page 259, that the cube of —1% v =3 is 8, which, divided by
8, the cube of the denominator, gives +1, as required.

Ez. 3. Find the four-roots of the equation z'=:1, cr the fourth
roots of unity. .

The square root of this equation is

+1,

z'=+1, or =—1.
Hence the required roots are
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+1 -1, +vV—1,—v—1.
Ez. 4 Find the five roots of the equation z*=1.

Since one root of this equation is z=1, the equation z*~—1

must be divisible by z—1; and dividing, we obtain
z*+z2*+2'+x+1=0.
Dividing, again, by z*, we have
1 1
* —_—t—=
Szl _tm=0 (1),

1
Now put =z+-.

Whence z'=z’+2+$,
which, being substituted in equation (1), gives
2’+42z—1=0. -
This équation, solved by the usual method, gives .
z=—3%+%v5, or z2=—3—4 5.
The values of z, deduced from thg equation
z—,z+l ’ N
o

or -0 #—n=—L-

are
2 --4
-’c——-+\/ 7 and z-———\/

from which, by substituting the value of z, we obtaip
: z=}v5—1£v—=10=2y5],
or =—}[v5+1vV=10+2v5).

Hence the five fifth roots of unity are

1
H5—1+v—T0—2v5].
Hvs—1—-v—-10—-2v5].

—Hv5+1—v=T0F72v5).

—3[v64 1+ v=10F2,/8)
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Ez. 5. Find the six roots of the equation z*=1.

These are found by taking the square roots.of the cube roots
Hence we have,

+1, —1,}+3v—3, —}+£}vV—s.

Thus we see that unity has two square roots, three cube
roots, four fourth raots, five fifth roots, siz sixth roots, and
generally, the nth root of unity admits of = different algebraic
values. As, however, most of these roots are imaginary, they

can not be found by Horner’s Method.
14
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5

LOGARITHMS. o

(335.y In a system of logarithms, all numbers are cons dered
as the powers of some one number, arbitrarily assumed, which
is called the base of the system ; and the exponent of that power
of the base which is equal to any given number is called the log-
arithm of that number.

Thus, if a be the base of a system of logarithms, and a’==N,
then 2 is the logarithm of N ; that is, 2 is the exponent of the
power to which the base (a) must be raised to equal N.

If a*=N/, then 3 is the loganthm of N’ for the same reason ;
and if @*=N", then z is called the logarithm of N in the sys-
tem whose base is a. _

The base of the common system of logarithms (called, from
their inventor, Briggs’ Logarithms) is the number 10. Hence
" in this system all numbers are to be regarded as powers of 10.
Thus, since

10’=1, 0 is the loganthm of 1 in Briggs’ system.

10'=10, 1 10

10°'=100, 2 LY 100 “

10°'=1000, 38 “ 1000 ¢

10°==10000, 4 “ 10000 ¢
 &ec., . &e., ' &ec.

From this it appears that, in Brlggs system, the logarithm
of every number between 1 and 10 is some number between 0
and 1, i: e., is a proper fraction. The logarithm of every num-
ber between 10 and 100 is some number between 1 and 2, 1. e.,
is 1 plus a fraction. The logarithm of every number betwesn
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100 and 1000 is some number between 2 and 8,i.e,is 2 plus
a fraction, and so on.

(336.) The preceding principles may be extended to frac-
tions by means of negative exponents. Thus,

10 or % =0.1; therefore, —1 is the logarithm of .1
in Briggs’ system.

10~ or 19 =0.01; “ . —2 “ .01
10~ or 1oy =0.001; “ —3 “ © 001
10~ or TT%TF =0.0001 H ¢ —4 ¢ .0001,

Hence it appears that the logarithm of every number be-
tween 1 and .1 is sdme number between 0 and —1, or may be
represented by —1 plus a fraction ; the logarithm of every
number between .1 and .01 is some number between —1 and
—2, or may be represented by —2 plus a fraction; the loga-
»ithm of every number between .01 and .001 is some number
between —2 and —3, or is equal to —3 plus a fraction, and so
on. ‘

(337.) The logarithms of most numbers, therefore, consist
ot an integer and a fraction. The integral part is called the
characteristic, arid may always be known from the following

- RULE.

The characteristic of the logarithm of any number greater
than unity, is one less than the number of integral figures in the
given number.

Thus the logarithm of 297 is 2 plus a fraction ; that is, the.
characteristic of the logarithm of 297 is 2, which is one less
than the number of integral figures. The characteristic of the
18garithm of 5673 is 3; of 73254 is 4, &c.

The characteristic qf the logarithm of a decimal fraction is a
negative number, ayd is equal to the number of places by which
its first significant figure is removed from the place of units.

Thus the logarithm of .0046 is 3 plus a fraction ; that is, the
characteristic of the logarithm is —3, the first significant figure,
4, being removed three places from units.

In a series of fractions continually decreasing, the negative
togarithms continually increase. Hence, if the fraction is in-
finitely small, its logarithm will be infinitely great; that is, in
Biriggs’ system, the logarithm of zero is infinite and negative.

Py ¥
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. GENERAL PROPERTIES OF LOGARITHMS ‘

(338.) Let N and N’ be imy two numbers, 2 and ¢’ their re
spective logarithms, and a the base of the system. Then, by
he definition, Art. 385,

N=a" ().
Also N'=a" (2).
Multiplying together equations (1) and (2), we obtain
' NN'=a"a"
=a‘+”" -

Therefore, accordmg to the definition of logarithms, z+z' 1s

the logarithm of NN/, since z-2' is the exponent of that power

of the base a which is equal to NN’; hence

PROPERTY I

The logarithm of the product of two or more factors is equal

to the sum of the logarithms of those factors.

Hence we see that if it is required to multiply two or more
numbers by each other, we have only to add their logarithms ;
the sum will be the logarithm of their product. We must then
look in the Table for the number answering to that logarithm,
in order to obtain the required product.

EXAMPLES.
Ez. 1. Find the product of 8 and 9 by means of logarlthms
On page 318, the logarithm of 8 is given .  0.903090

“ 9 0.954243 °
The sum of these two logarithms is 1.857333,

which, according to the same Table, is seen to be the loga-
rithm of 72.

Ez. %. Find the continued product of 2, 5,and 14 by meaus
of logarithms.

Ez. 3. Find the continued product of 1,2, 8, 4, and 5 by
means of logarithms.

(339.) If, instead of multiplying, we divide equation (l) by
wquation (2), we shall obtain .
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Therefore, according to the definition, z—z' is the logarithm

ot 1%, since z—xz' is the exponent of that power of the base a

which is equal to %; hence,

PROPERTY IL

The logarithm of a fraction, or of the quotient of one number
divided by another, is equal to the logarithm of the numerator
minus the logarithm of the denominator.

Hence we see that if we wish to divide one number by an
other, we have only to subtract the logarithm of the diviso1
from that of the dividend ; the difference will be the logarithmr
of their quotient.

EXAMPLES.

Ez. 1. It is required to divide 108 by 12 by means of loga
rithms.

The logarithm of 108 is ) 2.033424

“« 12 1.079181
The difference is 0.954243,

which is the logarithm corresponding to the number 9.

Ez. 2. Divide 133 by 7 by means of logarithms.

Ez. 3. Divide 136 by 17 by means of logarithms.

Ez. 4. Divide 185 by 15 by means of logarithms.

The preceding examples are designed to illustrate the prop-
erties of logarithms. In order to exhibit fully their utility in
computation, it would be necessary to employ larger numbers ;
but that would require a more extensive Table than the one
given on page 318,

(340.) Logarithms are attended with still greater advantages
in the involution of powers and in the extraction of roots, For
if we raise both members of equation (1) to the mth power, we
obtain

Nr=q™
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Therefore, according to the definition, mz is the logarithm of
N~=, since mz is the exponent of that power of the base which
s equal t> N~; hence

PROPERTY IIL

The logarithm of any power of a number is equal to the loga
rithm of that number multiplied by the exponent of the power.

EXAMPLES.
Ez. 1. Find the third power of 4 by means of logarithms.
The logarithm of 4 is - 0.602060
Multiply by~ 3
The product is *1.806180,

which is the logarithm of 64.
Ez. 2. Find the fourth power of 3 by means of logarithms.
Ez. 3. Find the seventh power of 2 by means of loga.
rithms.
Ez. 4. Find the third power of 5 by means of logarithms.
(341.) Also, if we extract the mth root of both members of
equation (1), we shall obtain
1 ©
iy
therefore, according to the deﬁnition,i is the logarithm of
1

N=; hence

PROPERTY IV.

The logarithm of any root of a number is equal to the loga.
rithm of that number divided by the index of the root.

EXAMPLES.
Ez. 1. Find the square root of 81 by means of logarithms

The logarithm of 81 is . '1.908485
Divided by 2
The quotient is 954243, .

which is the logarithm of 9,
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Ez. 2. Find the square root of 121 oy means of loga:
rithms. -

Ez. 3. Find the sixth root of 64 by means of logaritﬁms.
Ez. 4. Find the third root of 125 by means of logarithms.

The preceding examples will suffice to show, that if we hae
tables which gave the logarithms of all numbers, they would
prove highly useful when we have occasion to perform fre-
quent multiplications, divisions, involutions, and extraction of
roots. .

(342.) The following examples will show the application of
some of the preceding principles.

Ez. 1. log. (abcd)= log. a+ log. b+ log. c+ log. d.
Ez. 2. log. (‘%c) = log. a+ log. b+ log. ;:— log. d— log. e.
Ez. 3. log. (a™b"c?)=m log. a+n log. b+p log. c.
Ez. 4. logs (a:b"

Ez. 5. log. (a’—z")=log. [(a+2) (a—z)]=10g. (a+2z)+
log. (a—=z).

Ez. 6. log. va'—z'=} log. (a+2z)+4% log. (a—z).

)=m log. a+n log. b—p log. c.

Ez. 1. log. (a*Va*)= log. (a%) =1 log. a. .

(343.) We shall presently explain a method by which loga
rithms may be computed. We may observe, however, that i
is not necessary to compute the logarithms of all numbers in-
dependently. From the logarithms of a few numbers, we may
readily derive the logarithms of a great many other numbers.

We have seen, in Art. 338, that the logarithm of a product
1s found by adding together the logarithms of the factors. Let
us represent the logarithm of 2 by z ; then, since the logarithm
of 10 is 1, we shall have

log.20 =z+1, log. 20000 =
log.2000=z+3, log. 2000000=, &c.

We have seen, in Art. 340, that the logarithm of any power
of a number is equal to the logarithm of that number multiplied
bv the exponent of the power.

.
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Hence, log. 4 =2z, log. 82 =
log. 16=4z, log. 128=, &e.
Hence we find, also, that
4 log. 40 =2z+1, log. 4000 =
log. 400 =2z+2, log. 40000 =, &c.
log. 80 =3z+1, log.8000 =
log. 800 =3z+2, log. 80000 =, &c.
log. 160 =4z+1, log. 16000 =

log. 1600=4z+2,

Hence, log.
log.
log.
log.
log.
log.
log.
log.
log.
log.

Required the logarithm of 9.

Required the logarithm of 27.
Required the logarithm' of 81.
Required the logarithm of 90.

50 =2%— z,
500 =3— &z,
2 =22z,
1256 =38-3z,
250 =3—2z,
2500 =42z,
1250 =4—38z,
12500=5—3z,
6250 =5—4z,
62500=6—4z,

log. 160000=, &c.

We have seen, in Art. 839, that the logarithm of a fraction
18 equal to the logarithm of the numerator minus the logarithm
-of the denominator. Hence, log. 5=log. (¥)=1—=z.

log.
log.
log.
log.
log.
log.

_ log.

log.
log.

* log.

Required the logarithm of 270 .
Required the logarithm of 900.

From the same Table, we find the logarithm of 2 to be
301030 : it is required, by the aid of the logarithms of 3 and

2, to obtain the logarithm of 6.
Required the logarithm of 12.

5000
50000
625
3126
25000
250000
125000

I3
¢

g

e e
e

1 T

1250000=, &c.

625000

6250000=, &c.

(343.) So,also, from the logarithm of 8 we might easily de-
rive a great number of other logarithms. From the Table on
page 318, we find the logarithm of 8 to be .477121: it is re-
quired to derive from this the logarithm of 30.

Required the logarithm of 3000.
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Required._the logarithm of 15.
Required the logarithm of 18.

From the same Table, we find the logarithm of 5 to be
698970. It is required from this to deduce the logarithm
of 50,

Required the logarithm of 500.
Required the logarithm of 5000.

From the same Table, we find the logarithm of 95 to pe
1.977724. Thé logarithm of 9.5, or 24, is equal to the loga
rithm of 95 minus the logarithm of 10.

Hence the logarithm of 9.5 is 0.97772_4.

Also, the logarithm of 950 is 2.977724.

Hence the decimal part of the logarithm of any number 1s the
same as that of the number multiplied or divided by 10, 160
1000, &c.

Prime numbers are such as can not be decomposed into fac-
tors; as, 2, %, 5, 7, 11, 18, 17, &c. All other numbers arise
from the multiplication of prime numbers. If, therefore, we
knew the logarithms of all the prime numbers, we could find
‘the logarithms of all other numbers by simple addition.

(345.) We will now explain'a method by which the loga
rithm of any number may be computed.

If a series of numbers be taken in Geometrical progresswn,
their logarithms will form a series in Arithmetical progression.
Thus, take the geometrical series

1,10, 100, 1000, 10000, 100000,
their logarithms are ‘
0,12, 3,4, 5
forming an arithmetical seres.

If, now, we find a geometrxcal mean between any two num-
bers in the first series, its logarithm will be the arithmetical
mean between the two corresponding numbers in the lower.
geries. .

Find, for example, a geometrical mean between 1 and 10.
It will be the square root of 10, or 8.162277. The arithmet.

cal mean between 0 and 1 is 0.5.
14*
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Therefore, the logarithm of 3.162277 18 0.5.

Find, again, a geometrical mean between 3.162277 and 10
which is 5.623413. Find, also the arithmetical mean betweer
0.5 and 1, which is 0.75.

Therefore, the logarithm of 5.6234183 is 0.75.

Find, now, a geometrical mean between 8.162277 and
5.623413, which is 4.216964. Its logarithm will be the arith-
metical mean between 0.5 apd 0.75, which is 0.625.

Therefore, the logarithm of 4.216964 is 0.625.

Find, again, a geometrical mean between 4.216964 and
5.628413, which is 4.869674. Its logarithm will be the arith-
metical mean between 0.625 and 0.75, which is 0.6875.

Thus we have found the logarithms of four new numbers,
and in this manner we might proceed to construct a table of
logarithms. It will be observed that these numbers are all
fractional, whereas it is most convenient to have the loga-
rithms of integers. By pursuing this method, however, we
might eventually find the logarithm of a whole number ; as,
for example, 5. For we have already found the logarithm o1

5.623413 to be 0.75,
and the logarithm of 4.869674 <« 0.6875.

One of these numbers is greater than 5, and the other less.
A geometrical mean between them is 5.232991, which is too
Zreat ; but the mean between this result and the last of the two
preceding is 5.048065, which is already a close approximation.
By pursuing the same method, we may come nearer and near-
er to the number 5, until at last, after finding twenty-two geo-
metrical means, the difference is inappreciable in the sixth
decimal place, and we obtain
the logarithm of 5 equal to 0.69897 ;
and, by a like process, the logarithm of any other number may
be found.

(346.) Hence, to compute the logarithm of any number, we
have the following

RULE.

Take the geometrical series 1,10, 100 1000, 10000, &c., and ap-
ply to it the arithmetical series 0, 1, 2 8, 4, &c., as logarithms
1
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Fuind a geometrical mean between 1 ana 10, 10 and 100, or
any other two terms of the first series between which the proposed
number lies. o

Between the mean thus found and the nearest term of the first
series, find another geometrical mean in the same manner, and
80 on, till you approach as near as is necessary to the number
whose logarithm is sought. _

Find, also, as many arithmetical means between the correspoznd-
ing terms 0, 1, 2, 8, 4, &c., of the other series, in the same order
as the geometrical ones were found ; the last of these will be the
logarithm answering to the number required.

In this manner were the logarithms of all the prime num
bers at first computed ; but much more expeditious methods -
have since been devised.

Having obtained the logarithm of 5, it is easy to find the
logarithm of 2. For the logarithm of 2= log. (%*)=log. 10—
log. 5=1—0.69897=0.30103.

LOGARITHMIC SERIES.

.(847.) The preceding method of computing logarithms is
very laborious in practice. It is found much more convenient
to express the logarithm of a number in the form of a series.

Let z be a number whose logarithm is required to be de-
veloped in a series, and let us employ the method of Unknown
Coeflicients. It is plain that we can not assume

log. z=A+Bz+Cz'+, &ec. ;

for when we make z=0, the first member reduces to infinity,
while the second member reduces to A, a finite quantity
Neither can we suppose

log. z=Az+Bz'+Cz'+, &c.:
for when we make =0, we have

log. 0 (which is infinite), equal to zero,
which is absurd.
But if we suppose
log. (14z)=Az+Bz'+Cz'+Dz'+, &c. (1),
wnen we make =0, the equation becomes
log. 1, equal to zero

which is conformable to Arz. 335.



314 LUGARITHMS.

Let us also assume
log. (14+2)=Az+B2"+C2*+Dz'+, &c. (2).
Subtracting equation (2) from (1), we obtain

log. 1+z)— log. (14+2)= A(z—z)+B(z’—z’)+C(:c —2Y+
&ec. (3).
The second member of this equation is divisible by w»—=2

Art. 76 ; we will reduce the first member to a form in whick
‘t ghall also be divisible.

We have log. (1+z)— log. (1+2)= log. lic) =

1+2
fog. (1 +‘f:_:)

Now, since F may be regarded asa smgle quantity, v, we

.may develop log. (1+v) in the same manner as log. (1+z),
which gives

log. (1T1+z> l+zTB(l+z> +C(l+z) + &e.
This last series must be identical with the one which we

have already obtained for log. ( l+§}:>, or its equal, log

(1+z)— log. (1+2), in equation (3); and since the terms of

both are divisible by z—2, by canceling this common factor

we sbtain

: 1 (z—z)*

A'm-’-B(l +z)'+C(l+z)
+2%)+, &a.

Since this equation, like the precedmg, must be verified for
all values of z and z, the equality mugt subsist when z=2. But
on this hypothesis, all the terms of the first series vanish ex-
eept one, and we have

;+, &c., =A+B(z+2)+C(z*+z2

i%:A+2Bz+3Cz’+4Dz’+5Ez‘+, &e.;

or, performing the division indicated in the first member. we
obtain

A(l--z+2' —2'+2'— .. )= A+2Bz+3C2*+4Ds+ . . -
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Therefare, accordmg to the prmclple of Art. 302, we have
the equations

.A=A,
A
—A=gB; whence B=—-2-.
A=8C; « C=+%.
« _ A
—A—4D; D——Z.

A=5E; « E=+%.

The law of the series is obvious ; and hence, substituting the
values of B, C, D, &c., in equation (1), we obtain, for the de-"
velopment of log. (1 +z),

— A 2 A 3 A 4
log. (l+:c)——l—.:c——2-z tgrt-gEt. .
z x’ xl xl' zl z. .
=A(F-5+5-T5%+ )

The number A is called the modulus of the system of loga-
rithms employed. Lord Napier, the illustrious inventor of log-
arithms, assumed the modulus equal to unity. If] then, we des-
ignate Naperian logarithms by log.’, we shall have

z = z > 2

log.’ (l+z)-—::—-2+3 Tti—ot & @

By giving to z in succession all possible values, we may ob-
tain from this equation the logarithms of all numbers.
If we make z=0, we shall have log.’ 1=0.
Make z=1, and we obtain
log/ 2=1—4+§—}+}—, &c,
a series which converges so slowly that it would be necessary

to employ a very large number of terms to obtain the accuracy
desirable. The series may be rendered more converging in
the following manner:

In equation (4), substitute —z for z, and it becomel

z z = z

lOg (l—z)=———E—-§—zf, &ec. (5).
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Subtract.ng equatlon (5) from equation (4), and observing
that log.’ (1+z)— log.! (—2z)= log 14z 1=, We obtain '

) o (34424242
lOg.' (-—_—; =2 l+3+5+7+9+oo. .

Put z—ﬂ—i, and the preceding series becomes, by subst

tutjon, :
1
= log/ (“) l°g (z+1)— log/ "_2(2z+1 F3@t1y T

5(2::—1)‘-'- )

(348.) The last series may be employed for computing the
Jogarithm of any number, when the logarithm of the preceding
number is known. Making successively 2=1, 2, 4, 6, &c., we

_obtain the following ‘

NAPERIAN, OB HYPERBOLIC LOGARITHMS.

log! 2=20i+35m+smt+75it...) = 0.693147
log.! 8= log’2+2(,+3,,a+5.,.+,.5q+ ...)  =1.098612
log! 4=2Ilog.’2 = 1.386294
. log! 5=log.4+2C +sht ittt ...)  =1.609438
log.! 6=Ilog.’3+ log.’ 2 = 1.791759
log.! 7=log. 6+2(5+samtiamtasit .. - )=1.945910
log. 8=3log.'2 = 2.079442
log! 9=2log.’'8 =2.197225
log.’ 10=log.’ 5+log.’2 =2.302585
&e., &c., &ec.

(349.) The Naperian logarithms being computed, it is easv
to form any other system. We have found
¢ ] 4 L] 0
log. (42)=A (F-F 55455+ --)-
Distinguishing the Naperian logarithms by an accent, we

nave
z* )
- E Y .

3 4 8

*og (4n)=A (T-545- 542
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Hence :
log. (14z) : log.’ (14+z):: A: A"

Therefore, the logarithms of the same number in different sys
tems are to each other as the meduli. ’

In Napier’s system, the modulus =1. Hence

- log. (1+z)=A.log.! (1+z).

That is, the common logarithm of a number is equal to s
Naperian logarithm multiplied by the modulus of the common
system.

If, then, we knew the modulus of the common system, we
could easily convert the preceding Naperian logarithms into
common logarithms. Now, from the equation

log. (14+z)=A.log'. (1+z), we obtain
A= log. (1+=z)
" log. (1+z)°
_ . log. 10
Suppose =9, then A—m. ‘

But log. 10=1. Hence

. r 1
“log.’ 10” 2.30258%
which is the modulus of the common system.

A =0.434294,

/850.) We can now compute the °

COMMON, OR BRIGGS' LOGARITHMS.

log. 2=0.693147X0.434294 =0.301030
log. 8=1.098612X0.434294 =0.477121
log. 4=2log. 2 =0.602060
log. 5=1log. 10— log. 2=1—log 2=0.69897C
log. 6=1log. 3+ log. 2 =0.778151
log. 7=1.945910X0.434294 =0.845098
log. 8=3log. 2 ) =0.903090
log. 9=2log. 3 =0.954243
log. 10= =1.000000

&c., &e. &ec.
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We thus obtain the following Table of Common Logarithms

[No. | Logaritum. || No. | Logarithm. || No. | Logarithm. || No. | Logarithm.
0.000000|| 36|1.556303| 71|{1.851258| 106|2.025306
0.301030| 37{1.668202 72|1.857332| 107(2.029384
0.477121| 38[1.579784| *73(1.863323| 108{2.033424
0.602060{ 39{1.591065| 74/1.869232| 109|2.087426
0.698970| 40(1.602060] 75(1.875061| 110{2.041393

0.778151] 41{1.612784| 76{1.880814| 111|2.045323
0.845098| 42|1.623249| 77(1.886491| 112(2.049218
0.903090 43(1.633468| 78|1.892095] 113|2.053078
0.954243| 44|1.843453| 79(1.897627] 114|2.056905
1.000000|| 45(1.653213 80{1.903090}] 115|2.060698

11{1.041393| 46/1.662758| 81|1.908485| 116/2.064458
12(1.079181} 47|1.672098| 82{1.913814) 117{2.068186
13{1.113943| 48/1.681241| 83(1.919078| 118(2.071882
14/1.146128| 49/1.690196( 84/1.924279/ 119|2.075547
15{1.176091| 50{1.698970| 85/1.929419 1202.079181

16/1.204120|| 51({1.707570| 86{1.934498| 121/2.082785
17|1.230449| 52/1.716003| 87(1.939519| 122(2.086360
18|1.255273) 53|1.724276] 88(1.944483| 133{2.089905
19|1.278754| 54/1.732394| 89(1.949390| 124(2.093422
20,1.301030|| 55|1.740363| 90[1.954243| 125/2.096910 .

21]1.322219| 56|1.748188| 91/1.959041| 126(2.100371
.22/1.342423| 571.755875| 92{1.963788) 1272.103804
23|1.361728|| 58|1.763428 93|1.968483| 128/2.107210
24/1.380211| 59|1.770852| 94{1.973128| 129(2.110590
25/1.397940| 60(1.778151] 95|1.977724| 130(2.113943

26/1.414973| 61|1.785330] 96(1.982271| 131[2.117271
27|1.431364 62/1.792392| 97|1.986772| 132(2.120574
© 28|1.447158| 631.799341| 98/1.991226| 1332.123852
29(1.462398| 64/1.806180| 99(1.995635| 134(2.127105
30(1.477121} 65{1.812913 100|2.000000{ 1352.130334
31{1.491362|| 66|1.819544| 101/2.004321| 136/2.133539
82(1.505150( 67/1.826075|| 102|2.008600 1372.136721
33|1.518514| 68|1.832509] 103|2.012837| 138{2.139879
34(1.531479] 69(1.838849|| 104/2.017033| 139/2.143015
35|1.544068| 70(1.845098| 105/2.021189| 140/2.146128

Pt
OO DI OO -

(851.) Let us now determine the base of Napier’s system
Designating it by a, we shall have, Art. 349,

log’ a:log. a::1:0.434294.
But log.’ a=1. Hence
log. 2=0.434291.
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That is, the modulus of the common system 1s equal to the
common logarithm of Napier’s base.

We wish, then, to find the number corresponding to the
common logarithm 0.434294. By inspecting the preceding
table, we see that this number must be a little less than 3.
More accurately, it is

. 2.718282,

which is the base of Napier’s system.

Any number, except unity, may be taken as the base of a
system of logarithms, and hence there may be an infinite num-
ber of systems. Only two systems, however, are much used ;
those of Briggs and Napier.

The base of Briggs’ system is 10.

“ Napier's ¢ 2.718282.
The modulus of Briggs’ “ 0.434294.
“ Napier's  « 1.

Hence, in Briggs’ system, all numbers are to be regarded as
powers of 10.
Thus, 10*'=2,
100.477=3’
1000 = 4,
10°=5,
&ec., &c.

In Napier’s system, all numbers aie to be regarded as pow-
ers of 2.718282.

Thus, . 2.718%*=2,

2.7181=3g,

2.718"*=4,

R.718%**=5,

&ec., &ec.
Briggs’ logarithms are employed in all the common opera-
-ons of multiplication and division, and hence they are known
by the name of common logarithms. Napier’s logarithms are
of great use in the application of the calculus to many analyt
ical and physical problems. They are also called hyperbolic
logarithms, having been originally derived from the hyperbola

’
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EXPONENTIAL EQUATIONS.

(852.) An ezponential quantity is one which is raised to
some unknown power, or which has an unknown quantity for
an exponent; as,

1 1
a- a*, 2%, or 2%, &c. .
An ezponential equation is one which contains an exponen-
tial quantity ; as, :
a@=b, r*=c, &c.

Such equations are most easily solved by means of loga-
rithms. Thus, consider the equation

a*=b.

Taking the logarithm of each member of the equation, we
have

z log. a=.log. b,

or z= log. b.
log.a” |
Ez. 1. What is the value of = in the equation 8*=811?
. log. 81
By the preceding formula, z—m'

Looking out the logarithms of 81 and 8 from the Table on
page 318, we have .

. 1:908485_
- 477121

Therefore, 3'=81. ) .
Ez. 2. What is the value of z in the equation 3*=201?
- log.'20 1.301030
=Tog. 3~ a2l

Therefore, '8¥™"=20 nearly. ‘
Ez. 8. What is the value of z in the equation §*=121

=2.727 nearly.

Ez. 4 What is the value of z in the equation (;) =§‘I

(353.) The other equation; z"=c, may be solved by trial, as

-
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in Art. 833. Thus, taking the logarithm of eacn member, we
have .
z log. z=log. c.

Find now, by trial, two numbers nearly equal to the value
of z, and substitute them for z in the given equation. Then
say, :

As the difference of these results,

Is to the difference of the two assumed numbers,

So 18 the error of either resull,

To the correction required in the corresponding assumed
number. '

Ez. 1. Gaven =100 to find the value of z.

Here we have  z log. z=log. 100=2.

Suppose z=3,
then 0.477121 X 3=1.431363, which'is too small.
Suppose z=4,

then , 0.602060X 4=2.408240, which is too great.

"Hence the value of z is between 3 and 4, but nearer to 4
Assume, then, 3.5 and 3.6 for the two numbers.

By the first supposition, By the second supposition,
z=38.5; log. z= .544068 z=38.6; log. z= .556303

Multiplied by 8.5  Multiplied by 3.6
z.log. =1.904238 z.log. z=2.002689

Diff. of results : Diff. assumed numbers : : Error of 2d result : Iis correction,
098451 : 0.1 it 002689 : .00273

Hence z=8.6—.00273=38.59727 nearly.
Therefore, 3.59727**™"=100 nearly.
If we wish a more accurate result, the operation must be re-

peated with two new numbers; as, for example, 3.59727 and
8.59728.

Ez. 2. Givén 2°=86, to find the value of z.
Ez. 8. Given z°=20z, to find an approximate value of z.

_ COMPOUND INTEREST.
(354.) In calculating compound interest, the first subject of
Inquiry is. to what sum does a given principal amount, after a

-

P N
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certain number of years, the interest being annually added to
the principal? . It is evident that $1.00, placed out at 5 per
cent., becomes, at the end of a year, a principal of $1.05. But
the amount at the end of each year must be proportioned to
the principal at the beginning of the year. In order, then, to
find the amount at the end of two years, we institute the pro-
portion
1.00: 1.05 : : 1.05 : (1.08)".
The sum 1.05' must now be considered as the principal, and
hence, to find the amount at the end of three years, we say
1.00 : 1.05 : : (1.05)" : (1.05)".
And in the same manner we find that the amount of $1.00
for » years at compound interest is (1.05)"
If the rate of interest were six per cent., we should find the
amount for n years to be (1.08)".
The amount of two dollars for a given time must obviously

be double the amount of one dollar, and the amount of $1000

must be a thousand times the amount of one dollar.
Hence, if we put P to represent the principal,
r the rate per cent. considered as a decimal,
n the number of years,
A the amount of the given principal for »
vears, we shall have
A=P.(1+r)"

This equation contains four quantities, A, P, #, r; any three
of which being given, the fourth may be found. The computa-
tions are most readily performed by means of logarithms.
Taking the logarithms of both members of the preceding equa-
tion, and reducing, we find

L. log. A ==aXlog. (14+7)+ log. P.
2 log. P =log. A—aXlog. (1+1).

. A—log. P
3. log. (l+r)=lo—g-A—n—L.

—_log. A—log. P

L = log. (1+7)

EXAMPLES.

Kr. 1. What is'the amount of twenty dollars, at 6 per cent.

compound interest, for 11 years?
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In this example we employ formula (1).
Amount of $1.00 for 1 year $1.06, log. =0.025306

Multiplying by 11, - 11

0.278366
Given principal $20. log. =1.301030
Amount $38 nearly, : 1.579396

This result is derived frem the Table on page 818. By con-
sulting a larger Table, we should find the amount $37.97.

Ez. 2. What principal at 5 per cent. interest will amount to
$66 in 13 years?
Here we employ formula (2)

14-r=1.05, log. =0.021189
Multiplying by =, 13
Subtract . 0275457
From log. A, 1.819544
P=#35 nearly, 1.544087.

Exz. 3. At what rate per cent. must $40 be put out at com
pound interest, that it may amount to $57 in 9 years?
Here we employ formula (3).

A=57, log. =1.755875

P =40, i log. =1.602060

Dividing by =, 9)0.153815
1+r=1.04 =0.017091

Consequently, r==.04, or four per cent.

How could this result be obtamed without the use of loga
tithms ?
Ez. 4. In what time will $50 amount to 890 at 5 per cent
Here we employ formula (4).
A=90, log. =1.954243
P =50, log. =1.698970
) +r=1.05, whose logarithm is 0.021189)0.255273.
Dividing one logarithm by the other, we obtain 12, Ans.
.Ez. 5. What is the amount of $52 at 8 per cent. compound
nterest for 15 years! )
Ans. 881
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. Ez. 6. What principal at 6 per cent. compound interest wi)
amount to $101 in 4 years?
' Ans, $80.
Ez. 7. At what rate will $10 amount to $16 in 16 years?
Ans. Three per cent
Ez. 8. What will $300 amount to in 10 years at compound
nterest semi-annually, the yearly rate being 6 per cent.?
Ez. 9. In what time will a sum of money double at 6 per
cent. compound interest ?
Ans. 11.89 years.
Exz. 10. In what time will a sum of money triple itself at 4
per cent. compound interest .
Ans. 28.01 years.
(855.) The natural increase of population in a country may
be computed in the same way as compound interest. Know
ing the population at two different dates, we compute the rate
of increase by formula (3), and from this we may compute the
population at any future time on the supposition of a uniform
rate of increase.

-

EXAMPLES.

Ez. 1. The number of the inhabitants of the United States
1n 1790 was 3,900,000, and in 1840, 17,000,000. What was
the average increase for every ten years !

Ans. 34 per cent.

Ez. 2. Suppose the rate of increase to remain the same for
the next ten years, what would be the number of inhabitants
in 18507 4

' Ans. 22,800,000,

Ez. 8. At the same rate, in what time would the number in
1840 be doubled ? ;

Ans. 23.54 years,

Ez. 4. At the same rate, what was the population in 17801

. Ans. 2,900,000.

E=x. 5. At the same rate, in what time would the numbter in
1840 be tripled ?

Ans. 37.31 vears
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-
FRACTIONS.

2a 5df
Ew 1. Reduce — 360’ 850 and 2 6b3 % 2% 1o equivalent fractions hav-

ing the least common denominator.

Ans 16abc 15cdf 4deg
" 24b%% 24b%* 24b%c*

" Ez.2. Reduce = o 7&2’ and£ to equivalent fractions having
the least common denommator.

Ans.

Ex. 3 Reduce (Z,da, ‘23;dz’ an d b to equivalent fractions

having the least common denommator.
Ans 2a°d® 9ab’cd® 6b°%C?
"6b'cd’ 6b'cd’ 6b'c*d’
3r—8y

To—by to equivalent fractions hav.

ing the least common denominator.

- Ez.4. Reduce 2'1; and

Ans
: 9m Tn 11lm 7(m+n)
Ez. 5. Reduc 8b, 36b, 28b, and ——4b—

tlons having the least common denominator.
¢ A
ns.

to equivalent frac.

Ez.6. Reduce 1+§w and ;:g to equivalent fractions hav-
ing the least common denominator,
Ans.
Ez.7. Required the sum of ———~_, Y=%  ap Zetn
z+y+2 x+y+2 z+y+z
Ans. 1.
Ez. 8. Required the sum of 5z—8y —Qz, 4z +9y _32, and

z—y+z z—y+z

152—6x— 42
z—y+z Ans.
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- -

3y*—2 . 1y*+3
Ez.9. Requlred the sum of =5 and -1
—7b

Ez. 10. From 3 32 subtract 55.

64ab— 154 — 632

Ans

Ez. 11. From — 2z subtract- 8z—8y .
11y Tx—5y

2
Ez.12. From %—abﬂ subtract unity.
7a—9b 5a—1Tb

27ab—

186*

. . a
Ez. 13. Unite the fractions Satob " 3at20 T3arap
. Ans 3a—2b
‘3a+2b
. . 13¢—29b "76—2la 9b—1la
Ez.14. Unite the fractions 5@y’ " B(a—b)’ ~ B(a—b)
Ans 9.
" . 3a—6b 5a—6b 4a—5b
Ez. 15. Unite the .fractions atb’ " a—b’ " axb’
+7Z:2b, Ans.
Ez. 16. Unite the fractions 2 _a—%b’ 9:;!
n P mn
2 2 _ 2
Ez. 17. Unite the fractions = +ab+¥ y ab+b,
at+b a—b
b3 —b% 4 g2
+ ac—b
. Ans. 1.
2_ —
Ez. 18. Unite the fractions f, +3.r’+y’ , JT—"%?/ -3y’ y
y xy z’y
4y’ — 2Py —yt L
- e .
. Ans. 3.
) . 1+w l—.r 1—z+22
Ez. 19. Unite the expressions — 1 e Srupe
_ltz+ta® '
T —_ —1.
' . L 2
Ez. 20. Unite the expressions y y — .
P oty T TPy
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Ex. 21. Multiply f%;"f? by 32222,

9mnz*
. Am 4p2 °
; 4pq 2
Ez. 22. Multiply (T8mnp) 8Tminz) by 9m’n.
. Ans.
Ez 23. Multiply Vil by a?bict
; (@Y a'bc N a bc) ‘
. . 5a%? 14a°m
E.r. 24. Find the value of the expression T X 25T
. x 5nllm6 9 sim
6a'®b = b°n’ .
2m°n
. Ans. W.
| . . 13(a—bd)  5(r—s)
Ez. 25. Find the value of the expression X
TPression T(p—q) *39(a—b)
x 2(p—9g)
55(r—s)’
Ezx. 26. Find the value of the expression 1lmno
13pgr
§ﬂ+3_”‘1_§12 .
4mo 6n0
Ex. 27. Divide 3,?;:" by 11ab,
Ans. =S
2 — “Tpg
Ex 28. Divide 2156’;‘): by smn. .
Ex.29. Divide 2= by (),
Exz. 30. Divide 45‘“—]2::3;'- 35as by 5a.
Ex. 81. Divide 1572=820=3) py g,
. ., 24a*BPE | 14mPy?
Ex. 32. Divide 37;2:2:!/, y g z:c’
... 1 (4 3
Ex. 33. Divide W by W. wg’
Ans. Goabice|

15 : N



328 EXAMPLES - FOR - PRACTICE.

45(z—y) | 2Nz—y)
Ez. 34. Divide 32z 1y) y To8b(z+y)
24

Ez. 35. Find the value of the fraction -g%.

22abc

Ez. 36. Find the value of the fraction ?’31; qbr .

Ans. 3.

3pr .
520p%%y?
531m*n°q®

13pxy®

9mn’q

Ez. 37. Find the value of fhe fraction

EQUATIONS OF THE FIRST DEGREE WITH ONE UNEKNOWN bUA.N‘

_TITY.
Tx 3z
Ez.1. Given 12;+3m—6—-§—-z—5;,toﬁndthevalueofw
. Ans. x=1391%.
Ez. 2. Given 1—-——+4——-—— _ +10—Il§.l-”, to find the
‘value of z.
: Ans. =74,
"Ez. 3. Given 2 5:”;1 91 ) to find the value of .

Ans. x=4%.
Ez. 4. Given m+-—n-p— , to find the value of 2.

: _(n—p—m)ab
Ans. x_-————-»———+b

2r—3 4r—9 Sax—27 . 162—81.
15 © 20 — 30 = 24 Zﬁ’tﬁnd

Ez. 5. Given
the value of .

Ans. x=6.

Ez.6. Given a’+a’b+ab’+b3=a‘;'b‘

,tofind the value of z.
Ans. x=a—>b.

4 2 3 -
Ez.7. leen 2( =t 5~ z w:b —2b+2 to findthe value of z.

Ans. x=a—b.
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3.z'7m3w7.1:

. Ez. 8. Given = 3 10+ s=—15to find the value of 2.
Ans. 2=663.
Ez.9. Given1 lga:_—.z'+ 663 —52—91, to find the value of 2
’ Ans. x=3.28,.
Exz. 10. Given 3a+.1,-_5_ p to find the value of .

Ans, 2=

3a—¢€
i

Ez. 11. Given c=a+m(a—.z-)’ to find the value of 2.
3a+x
a(m—3c+-3a)

Ans r= c—a+m
Ez. 12. Given 1- 3%—4—;@——;3, to find the value of 2.
AnS r= 7

Ez. 13. Given (m—z)(n—x)=( p+ax)(xz—q), to find the val-
ue of .

Ezx.14. leen 8r—28=(4z+ 21) , to find the value of z.
Ans. 2=7

Ez. 15, Gwen w—-a+-——+;fw, to ﬁnd the value of 2. *

3.z'+l4

Ex.16. Given ;-—l—d—:+3ab=0, to find the value of x.

ac(1—3ab)
c—ad

5 Z to find the value of x.

Ans. 2=11.
. 16.z'+7 r—. 16 _Rz+1
Ezx.18. Given 2t o= to find the value
of x. Ans. 2=17.

Ez.19. Given 9w+ 1102 81-;3 :.-}-}—-.«:, to find the value

ofx. - : : : Ans. =17

-

Ans. x=

Te—6 x—5

Ez.17. Given % 6a—10i=

4
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. 9244  4r—19 52432 1lx+13
Exzx. 20. Gwenm+ 5L = 19— Bl , to find

the value of x. Ans. x=100.

PROBLEMS INVOLVING EQUATIONS OF THE FIRST DEGREE WITH
ONE UNKNOWN QUANTITY. )

Prob. 1.- Said an old miser, For 50 years I have saved 200
dollars annually ; and for many years, each of my four sons has
saved annually the same sum, viz., the oldest for 27 years past,
the second since 24 years, the third since 19, and the fourth
since 16 years. How long since the savings of the four sons
amounted in the aggregate to as much as those of the father?

Ans. 12 years.

Prob. 2. From four towns, A, B, C, D, lying along the same
road, four persons start in the stage-coach for the same place,
E. The distance from A to B is 19 miles, from B to C 3 miles,
and from C to D 5 miles. It subsequently appeared that the
person who started from A paid as much fare as the three 6th-
er persons together; and the fare per mile was the same for
each. It is required to determine the distance from D to E.

‘ Ans. 7 miles.

Prob. 3. Five towns, A, B, C, D, E, are situated along the
same highway. The distance from A to B is 37 miles, from B
to D 34, and from.D to E 14 miles. A merchant at C, situ-
ated between A and D, receives at one time 8 tons of goods
from A, and 6 tons from B. At another time he receives 11
tons from D, and 9 from E, and in the latter case he paid the
same amount for freight as in the former, the rate of transporta-
tion being the same in both cases. It is required to compute
the distance from B to C.

Ans. 15 miles.

Prob. 4. If 20 quarts of water flow into a reservoir every 3
minutes, after a certain time it will still lJack 40 quarts of being
full. But if 52 quarts flow into it every 5 minutes during the
same period, 72 quarts of water will have overflown. What is
the capacity of the reservoir, and how many quarts of water
‘must flow into it every minute, in order that it may be just filled
in the time before mentioned ?

Ans. The capacity of the reservoir is 240 quarts,-and
8 quarts must flow into it every minute.
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Prob. 5. A mason, by working 10 hours daily, could com-
plete in a week as much over 888 cubic feet of wall, as at pres.
ent he completes less than 888 cubic feet, working only 8}
hours daily. How many cubic feet of wall does he now com-
plete weekly ? :
Ans. 816 cubic feet.

Prob. 6. After a certain time I have $670 to pay, and 4}
months later I have $980 to pay. ‘I settle both bills at once,
at 4% per cent. discount, for $1594.41. When did the first sum
become due ?

_ Ans. After 53 months.

Prob. 7. A merchant gains 8 per cent. when he sells a hogs-
head of oil at 36 dollars. How much per cent. does he gain or
lose when he sells a hogshead at 32 dollars ?

Ans. He loses 4 per cent.

Prob. 8. A merchant loses 2} per cent. when he sells a bag
of coffee for 39 dollars. How much per cent. does he gain or .
lose when he sells a bag of coffee for 41} dollars?

Ans. He gains 3% per cent.

Prob.9. A merchant owes $2007, to be paid after 5 months,
$3395 after 7 months, and $6740 after 13 months. When
should the entire sum of $12,142 be paid, so that neither party
may sustain any loss?

Ans. After 10 months.

Prob. 10. A merchant has three sums of money to pay, viz.,
31013 after 31 months, $431 four months later, and the third
sum still four months later. How large is the third sum, sup-
posing he could pay the three bills together in 6} months with-
out loss or gain?

Ans. $428.

Prob. 11. A merchant has two kinds of tobacco ; the one cost
40 cents per pound, the other 24 cents. He wishes to mix the
two kinds together, so that he may sell it 'at 34 cents per pound
without loss or gain. How much must he take of each sort in
order to have 64 pounds of the mixture ?

Ans. 40 pounds of the better sort, and 24 pounds of
the poorer.

Prob. 12. A vinegar dealer wishes to dilute his vinegar with
water. At present he sells his vinegar at 6 dollars per hogs-

N
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head (120 quarts). How much water must he add to 29}
hogsheads in order to be able to sell the mixture at 4 cents per
quart ?
Ans. 73 hogsheads. .
Prob. 13. A metallic compound consists of 4 parts copper
and 3 parts silver. How much copper must be added to 94}
pounds of the compound, in order that the proportions may be
7 parts of copper to 2 parts of silver?
' Ans. 873 pounds.
Prob. 14. In 255 pounds of spirit of wine, water and pure al-
cohol are combined by weight in the ratio of 2 to 3. How
much water must be extracted by distillation, in order that the
ratio of the water to the alcohol may be 3 to 17 by weight ?
. Ans..'75 pounds.
Prob. 15. It is required to diminish each of the factors of the
two unequal products, 52 X 45 and 66 X 87, by the same num-
ber, so that the new products may be equal to each other-
What is that number ?
Ans. 17.
Prob. 16. The square of a certain number is 1188 greater than
the square of a number smaller by 6 than the former. What
is that number? '
Ans. 102

Prob. 17. 1 have a certain number of dollars in my posses.
sion, which I undertook to arrange in the form of a square, and
found that I wanted 25 dollars to complete the square; but if
I diminish each side of the square by 2, there remain 31 dollars
over. How many dollars have I?

Ans. 200.

Prob. 18. A vine-tiller has a rectangular garden, whose
length is to its breadth as 7 to 5, which he wishes to plant with
vines. "If he sets the plants at a certain uniform distance from
each other, he finds that he has 2832 plants remaining. But
if he places them nearer together, so as to make 14 more on
each longer side, and 10 more on each shorter side, he has only
172 plants remaining. How many plants has he?

: Ans. 14,172.

Prob. 19. II.I the composition of a certain quantity of gun-
powder, the nitre was ten pounds more than two thirds of the
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~ whole; the sulphur was four and a half pounds less than one
sixth of the whole; and the charcoal was two pounds less than
one seventh of the nitre. How many pounds of gunpowder
were there ?* -
. Ans. 69 pounds.
Prob. 20. There are three numbers in the ratio of 3, 4, and
5. Five times the first number, together with four times the
second number, and three times the third number, make 690.
‘What are the three numbers ?
Ans. 45, 60, and 75.
Prob. 21. Dmde the number 165 into five such parts that
the first increased by- one, the second increased by two, the
third diminished by three, the fourth multiplied by four, and the
fifth divided by five, may all be equal.
: .Ans. 19, 18, 28, 5, and 100.
Prob. 22. A criminal, having escaped from prison, traveled’
ten hours before his escape was known. He was then pur-
sued, so as to be gained upon three miles an hour. After his
pursuers had traveled eight hours, they met an express going
at the same rate as themselves, who met the criminal two hours
and twenty-four minutes before. In what time from the com-
mencement of the pursuit will they overtake him?
Ans. 20 hours.
Prob. 23. There is a wagon with a mechanical contrivance
by which the difference of the number of revolutions of the
wheels on a journey is noted.” The circumference of the fore
wheel is a feet, and of the hind wheel b feet. 'What is the dis-
tance gone over when the fore wheel has made n revolutions
more than the hind wheel ?

Ans. zqz_n_ feet.
Prob. 24. A cistern can be filled by four pipes; by the first
in @ hours, by the second in b hours, by the third in ¢ hours,
and by the fourth in d hours. In what time will the cistern be
filled when the four pipes are opened at once?
abed

abc+abd+acd+bcd hours.
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EQUATIONS OF THE FIRST DEGREE WITH SEVERAL UNKNOWN

Ez. 1,

Ez. 2.

Ez. 5.

Ex. 7.

. Ez. 8.

QUANTITIES. »
Given 5z— 7Ty=20, .
9zr—11y=44, }to find the values of = and y.
Ans. =11, y=5.
Given 17z—13y=144,
23419y =890, } to find the values of x and ¥
Ans. x=23, y=19.
. Given -l-=m_l, .
11 to find the values of « and y.
~=——n,
y x .
2 2
Ans. R W —
. Given %ﬁ:s’} . .
l2w+97_;4 j to find the values of = and y.
, Isy—17" 7
Ans. 2=2%, y=38}.
. z+a _
Given n +y—b=2a, to find the values of »
a‘-l'-a-i—y;b'_:l +na, and y.

Ans. x=na—a, y=a+b.

. Given 1209} =60x+"77y, }to find the values of

242 —35y=—152}, x and y.

Ans. x=13, y=93.

Given’ 13,;. w+3x;8y =2+y—5%, | to find the
. lues of

11—z  4o+8y—2 va
— Zy ‘2+9y =8—(y—2z), x and y.

Ans. z=1, y=2.

5y 4y—19 =z 20—y
Given 6 3 76 3 | to find the values

3-252_‘_5 =2z-:|3-2l, ‘ of z a.nd v
4 Ans. 2=56, y="17.
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. 13 : 3
Ez.9 Given z+2y+3 =3 &1:—5y+6’1 to find the values
3 _ 19 f of z and y.
6x—5y+4~ 3z+2y+1
Ans. =17, y=8.
1 —_y2—
Ez.10. Given *—y?=a, } to find the values of x and y.
x —y =b,
a+b? a—b?
Ans, x=—7— 2 V=55
Ez. 11. Given z+42y=23,
Sw44z—57, z_to find theanrialzues of z, 9,
5y+62z=94,

Ans. =1, y=8, z=9,

to find the values of =z,

r—y+2z= 67, .y, and z.

—2+y+2=—12,
~ Ans. =987, y=654, z=321.

Ez2. 12. Given w+y—z=1320,}

Ez. 13. leen w—y+z
Cazy 45k =,

10130: —93y+11z="71,
Ans. 2=2, y=4, z=8.

z_ to find the values of
x, y, and 2.

Ezx. 14. Given §+%+§=258,

to find the values of z, y

T YL 2
7Tot5=3%0% and z.

S +L+2=296,
Ans. =815, y= 630 z=945.

. 1 1
Ez. 15. Given 5+3—/=a,

é +£=b, to find the values of , y, and .z-
11

;+;=Ca

Ans. 2= 2 2 2

a+b—c y=a—b+c’ z=b+c-a'
15*
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. 16. Given

17. Given

-

18. Given

19. Given
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1 1
_+37—;=a’
1 11 to find the values of z, y,
—--—+—=b, d
z y z and z.
1 11
—5+;+; C,
Ans. 2= 2 y= 2 z= 2 .
a+b 7 a4+ " b4c
12
2x+3y_3.z'+4z— ’
30 " 87 _g |to find the values of
3x+4z ' 5y+9z~ z, y, and 2.

222 8

5y+9z 2+ 3y=5’

2+ 5y —Tz=—288,
S5r— y+8z= 227,
Tx+6y+ z= 297,

wiy

» g
+
ol
+

KRR

y

&
X
&
&

-y

Ans.z=1, y=2, z=38.
to find the values of
z, y, and z.

Ans. =13, y=24, z=62. .

N

< ¥

+
S 03
+
Il
[¥0]
@

I
K
S

>to find the values of z, y,
2, and v.

®| ¥
+
cmle wl N

+
|

-3
L

+z+v =248,
Ans. a:_l2,y 30 z=168, v=50.

. 20. Given z+y+2z+2¢ +u=25

+y+z+u+v=26,
+y+z+t +v=27, | to find the values of .
+y+t+utv=28, z, ¥, z,t, u, and v.
+z4+t+ut+v=29,
+z4t+u4v=30,
Ans. =38, y=4, z=5, u=6, t="7, v=8,
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PROBLEMS INVOLVING EQUATIONS OF THE FIRST DEGREE WITH
SEVERAL UNKNOWN QUANTITIES.

Prob. 1. Two sums of money, which were put out at inter-
est, the one at 5 per cent., the other at 4} per cent., yielded in
one year $284.40 interest. If the former sum had been put out
at 4} per cent., and the latter at 5 per cent., they would have
yielded $4.50 less interest. What were the two sums of money ?

. Ans. One was $3420, the other $2520.

Prob. 2. A wine-dealer has two kinds of wine. If he mixes
9 quarts of the poorer with 7 quarts of the better, he can sell
the mixture at 55 cents per quart; but if he mixes 3 quarts of
the poorer with 5 quarts of the better, he can sell the mixture.
at 58 cents per quart. What was the cost of a quart ef each
kind of wine ? :
Ans. 48 cents for the poorer, and 64 for the better.
Prob. 3. A merchant sold two bales of goods for the sum of
$9873, the first at a loss of 8% per cent., the second at a loss of
111 per cent. If he had sold the first at a loss of 11} per cent.,
and the second at a loss of 82 per cent., he would have received
the sum of $9923. How much did each bale cost ?
Ans. The first $455, the second $645.

Prob. 4. Two messengers, A and B, from two towns distant
57} miles from each other, set out to meet each other. If A
starts 53 hours earlier than B, they will meet in 6} hours after
B starts; but if B starts 53 hours earlier than A, they will meet
in 5§ hours after A starts. How many mifs does each travel
in an hour? .
Ans. A 8 miles, and B 8% miles.

Prob. 5. A jeweler has two masses of gold of different de.
grees of fineness. If he mixes 10 ounces of the one with 5
ounces of the other, he obtains gold 11 carats fine; but if he
mixes 7% ounces of the former with 1} ounces of the latter, he
obtains a mixture 10 carats fine. What was the fineness of
each mass? .

Ans. The one 9 carats, the other 15 carats.

Prob. 6. A farmer has a certain number of oxen, and proven-
der for a certain number of days. If he sells 75 oxen, his prov-
ender will Jast 20 days longer; but if he buys 100 more oxen,
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his provender will be exhausted 15 days sooner. How many
oxen has he, and how many days will the provender last ?
Ans. 300 oxen, and the provender will last 60 days.

- Prob."7. A certain number of laborers remove a pile of stones
in 6 hours from one place to another. If there had been 2 more
laborers, and if each laborer had each time carried 4 pounds
more, the pile would have been removed in 5 hours ; but if there
had been 3 less laborers, and if each laborer had each time car-
ried 5 pounds less, it would have required 8 hours to remove
the pile. How many laborers were there, and how much did
each carry at one time?

Ans. There were 18 laborers, and each carried 50 pounds.

Prob. 8. A heavy wagon requires a certain time to travel
from A to B. A second wagon, which every 4 hours travels 5
miles less than the first, requires 4 hours more than the first to
go from A to B. A third wagon, which every 3 hours travels
8% miles more than the second, requires 7 hours less than the
second to make the same journey. How far 1s A from B, and
what time does each wagon require to travel this distance?

Ans From A to B is 60 miles; the first wagon requires

12 hours, the second 16, and the third 9 hours.

Prob. 9. I have two equal sums to pay, one after 9, and the
other after 15 months. If I settle them both at once, at the
same rate of discount, I must pay for the first sum $1208, and
for the second $1160. How much was each sum, and at what
per cent. was the discount reckoned ?

Ans.$1280, and the discount was 7} per cent.

Prob. 10. A small square lies with one angle in the angle of a
larger square. The excess of the side of the larger square above
that of the smaller is 118 feet ; the excess of the square itself
18 26,432 square feet. What are the contents of each of the
two squares ?

Ans. The one 29 241, the other 2809 square feet.

Prob. 11. It is required to find two numbers whose sum, dif-
ference, and product are in the ratio of the numbers 5, 1, and 18.

’ Ans. 9 and 6.

Prob. 12. Two numbers are in the ratio of 7 to 3, and their
difference is to their product as 1to 21. What are the numbers?
- ) Ans. 28 and 12.
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Prob. 13. Three towns, A, B, and C, lie at the angles of a
tnangle From A by B to C is 164 miles; from B by C to A
is 194 miles; and from C by A to B is 178 miles. How far
dre A, B, and C from each other?

Ans. From A to B 74 miles, from B to C 90, and from C to

A 104 miles.

Prob. 14. It is required to divide the number 96 into three
parts such that if we divide the first by the second, the quotient
shall be 2 with 3 for a remainder; but if we divide the second
by the third, the quotient shall be 4 with 5 for a remainder.
What are the three parts?

Ans. 61, 29, and 6.
~ Prob. 15. A father says to his two sons, of whom one was
4 years older than the other, In two years my age will be double
the sum of your ages; but 6 years ago, my age was 6 times the
sum of your ages. How old was the’father and each of the
sons? .
Ans. The father was 42, one son 11, and the other
7 years old.

Prob. 16. Three boys are playing with marbles. Said A to
B, Give me 5 marbles, and I shall have twice as many as you
will have left. Said B to C, Give me 13 marbles, and I shall
have three times as many as you will have left. Said C to A,
Give me 3 marbles, and I shall have six times as many as you
will have left. How many marbles had each boy ?

Ans. A had 7, B 11, and C 21 marbles.

Prob. 17. Tt is required to divide the number 232 into three
parts such that, if to the first we add half the sum of the oth-
er two, to the second we add one third the sum of the other
two, and to the third we add one fourth the sum of the other
two, the three results thus obtained shall be equal. What are
the parts? _
Ans. The first 40, the second 88, and the third 104.

Prob. 18. Four towns, A, B, C, and D, are situated at the
angles of a quadrilateral figure. When I travel from A by B
and C to D, I pay $6.10 passage-money; when I travel from
A by D and C to B, I pay $5.50. From A by B to C, I pay
the same as from A by D to C; but from B by A to D, I pay
40 cents less than from B by C to D. What are the distances
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of the four towns from each other, supposing I paid in each case
10 cents per mile? .
Ans. From A to B 21, from B to C 17, from C to D 23,
and from D to A 15 miles. ’

Prob. 19. Four players, A, B, C, and D, play four games at
cards. At the first game A, B, and C win, and each of them
doubles his money ; at the second game A, B, and D win, each
of them doubling the money he had at the commencement of
that game; at the third game A, C, and D win; and at the
fourth game B, C, and D win; and at each game each winner
won as much money as he had at the commencement of that
game. They now count their money, and find that each has
$64. How much had each before commencing play ?

Ans. A had $20, B had $36, C had $68, and D had $132.

Prob. 20. Each of seven baskets contains a certain number
of apples. I transfer from the first basket to each of the other
six, as many apples as it previously contained ; I next transfer
from the second basket to each of the other six, as many apples
as it previously contained, and so on to the last basket, when
it appeared that each basket contained the same number of ap-
ples, viz., 128. How many apples did each basket contain be-
fore the distribution ?

. Ans. The first 449, the second 225, the third 113, the
fourth 57, the fifth 29, the sixth 15, and the seventh
8 apples.

Prob. 21. Find three numbers such that if six be subtracted
from the first and second, the remainders will be in the ratio
of 2:3; if thirty be added to the first and third, the sums will
‘be in the ratio.of 3:4; but if ten be subtracted from the sec-
ond and third, the remainders will be as 4 : 5.

Ans. 30, 42, 50.

Prob. 22. A and B engage to reap a field of wheat in twelve
days. The times in which they could severally reap an acre
are as 2:3. After some days, finding themselves unable to
finish it in the stipulated time, they call in C to help them,
whose rate of working was such that, if he had wrought with
them from the beginning, it would have been finished in nine
days. Also, the times in which he could have reaped the field
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with A alone, and with B alone, are in the ratio of 7 : 8.

"When was C called in?

Ans. After six days.
Prob. 23. A laborer is engaged for n days, on condition that
he receives p pence for every day he works, and pays ¢ pence
for every day he is idle. At the end of the time he receives
a pence. How many days did he work, and how many was
he idle ? : '

Ans. He worked ng+ 2 and was idle 2=2 days.
p+q’ P+q y

Prob. 24. A merchant has two casks, each containing a cer-
tain quantity of wine. In order to have an equal quantity in
each, he pours out of the first cask into the second as much as
the second contained at first; then he pours from the second
into the first as much as was left in the first ; and then, again,
from the first into the second as much as was left in' the sec-
ond, when there are found to be a gallons in each cask. How
many gallons did each cask contain at first ?

1la 5a
Ans T and ’g.
EQUATIONS OF THE SECOND DEGREE WITH ONE UNKNOWN
QUANTITY.
A.—INCOMPLETE EQUATIONS OF THE SECOND DEGREE,
z+18 2—18_ 5

+—

TN —" =3 , to find the values of .

Ans, z= 14,

Ex. 1. Gwen

Ez.2. Given \/ —“35—+49— a3_49 =1, to find the values of .
Ans. x==+3.

Ez. 3. Given w+ \/wz— T=—F5—% 1/————,7; to find the values of 2.

Ans. 2= +43.
a?+a

m, to find the values of x.

Ans. x=x}(a—1).

Ez. 5. Gwen\/—-—-+m’—3.—m+l—\/-§z‘-—2, to find the
values of 2.

Ez. 4. Given x+ ya+a*=

Ans. 2==+m.
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Ez. 6. Given\/%)+29— %2—34 7, to find the val-
ues of x.
Ans. x= +4.
Ez.7. Gi 1 L _¥3 i/ find the val
z. 7. Given l—y/l—w’ 1+1/l—w2 wz,to nd the val-
ues of x.

. Ans. x==%1}.
Ez. 8. Given 27(7—x)?—43=77—3(7—x)% to find the val-
ues of .
Remark. Put T—x=y; first find the value of y, and thence the value of z.
Ans. z=5 or 9.

— 2—-
Ez.9. Given g:ﬁ—“;:b, to find the values of .
a+vyai—
Ans. x= :1:21‘;_?_/;-,.
Ez. 10. Given :7"4- jﬂ::bza, to find the values of .
r—+vr—a *—
a(l :l:b)*
Ans. 2=

Ez.1

o

. Given —"{%/1'—“'+;‘/;I/—;:”=\/ %, to find the values of .
Ans. o= +2y/ab—B.

Ez. 12. Given 1/1+w = Vi-z to find the values
1+/14+z 1—v1—=

Ans. x==+%v38.
B.—COMPLETE EQUATIONS OF THE SECOND DEGREE.

Ez. 13. Given 5572x=58011482?, to find the values of x.
Ans. x=56% or 123.

Ezx. 14. Given (7x)*—7z=1, to find the values of .
Ans. =0.2811477 or —0.0882905.

Ezx. 15. Given 122?=21+ 1w, to find the values of .
Ans, x=1% or —1y5%.
Ez.16. Given 57x—182?+143=0, to find the values of .
Ans. =453 or —13.

=2, to find the values of x.

‘ Ans. =38 or 6.

of x.

16 72—62
PXd

Ez. 17. Give
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Ez. 18. Given 2*—(a+b)r+ab=0, to find the values ot .
Ans. z=a or b.
Ez. 19. Given (3w—25)(‘7:c+29) 0, to find the values of 2.
Ans. 2=8% or —41}.
Ez.20. Given 2= ! _w—3_ ——, to find the values of «.
r—2 x—4 3
Ans. 2=5or 1.
2+3a: 6—5x 16—

Ezx. 21. Given I — 42 77 —25—287—193" to find the val-
ues of x.
Ans. =8 or —2}13%
. x a+x_5
Ez. 22. Given - +w+ = , to find the values of .
Ans x=a or —2a.
. 62*—40 10—32
fEae. 23. Given 32— o =2— T to find the values
of . :

Ans. =11} or 4.

Ez. 24. Given %9—1—72-—5—1- to find the values of z.

z+1" z+2
Ans. =4 or —13.

21—z

. Ve
Ez. 25. Given + 7z

21—z

=24, to find the -values

of x.

Ans. =49 or 196.
Ez. 26. Given v/z+ y/2=20, to find the values of .
Ans. 2=(+4)*=256 or (—5)*=625.
a’+aw+wz+a’—ax+w3_ ab , to find

Exzx. 27. Given P a—z  3a—dbtaz

the values of x.

3
Ans. z=—8a or 3a—2-bi.

a—z b—z _a+b

Ez. 28. Given bTa ata—a—b to find the values of 2.
. Ans. m==i=1/5(a—g)-—(a+b)_
a+2+ 4/2ax+x?

Ex, 29. Given =1b, to find the values of x.

+a(1F y/26—F)
VB8

a+t+x

Ans. z=
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Ez. 30. Given #*—42° 472> —62=18, to find the values of
by a quadratic equation.
Ans. 2=38.or —1.

PROBLEMS INVOLVING EQUATIONS OF THE S8ECOND DEGREE WITH
ONE UNKNOWN QUANTITY.

Prob. 1. Tt is required to find three numbers which are in the
ratio of §, 4, and 4, and the sum of whose squares is 10,309.
Ans. 718, 52, 39.

Prob. 2. A gentleman buys a certain number of pounds of
salt, four times as much sugar, and eight times as much coffee,
and for each pound of the three articles he paid as manpy cents
as he bought pounds of that article. For the whole he paid
$3.24. How many pounds of coffee did he buy ?

Ans. 16 pounds.

Prob. 3. A rectangular garden was 37 feet broad and 259 feet
long. Its breadth was increased by a certain number of feet,
and its length diminished by seven times that number, by which
neans its area was diminished 63 square feet. By how many
feet was the breadth increased ?

Ans. 8 feet.

Prob. 4. A fruit-dealer receives an order to buy 18 melons,
provided they can be bought at 18 cents apiece; but if they
should be dearer or cheaper than 18 cents, he is to buy as many
less or more than 18, as each costs more or less than 18 cents.
He paid in all $3,15. How many melons did he buy ?

Ans. Either 15 or 21.

Prob. 5. Required the solution of the preceding problem, if
we represent the number of melons ordered by @, and the num-
ber of cents paid by b.

Ans. Either a— /a*—b or a+ /a*—b.

Prob. 6. A square vineyard, in which the vines are set in
squares so as to be uniformly four feet apart, is to be replanted
so that the vines may be uniformly 3} feet apart. Supposing
8640 more vines are required for this change, what must be the
length of each side of the vmeyard ?

Ans. 672 feet.

Prob. 7. A glass mirror, 33 inches high and 22 inches wide,
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is to be set in a frame of uniform breadth, such that the surface
of the frame shall be just equal to that of the glass.” What
must be the breadth of the frame ?

Ans. 5% inches.

Prob. 8. Required the solution of the preceding problem, if
we represent the height of the mirror by @ and its breadth by b,
and it is required that the surface of the frame shall be p times
that of the mirror.

ne. VEHITEIdlp—(ah)
Prob. 9. Sixty pounds of a certain quality of sugar cost $2.40
less than sixty pounds of another quality. If I buy sugar of
each quality to the amount of $5.04, I obtain of the first kind
8 pounds more than of the second. What was the price of a
pound of each kind ?
Ans. One 14 cents, the other 18 cents.

Prob. 10. A gentleman bought a horse for a certain sum.
He afterward sold him for $144, and gained as much per cent.
as the horse cost him. How much did he pay for the horse ?

Ans. 80 dollars.

* Prob. 11. A merchant buys a certain number of barrels of
flour for $216. At another time he expended the same sum of
money for flour, but obtained three barrels less, the price of
flour having risen one dollar per barrel. How many barrels
did he buy in the first case?

Ans. 27 barrels.

Prob. 12. A and B contribute together $3400 in trade, A for
12 and B for 16 months. In the distribution, A received $2070,
capital and profits, and B received $1920. What was each
one’s capital ?

Ans. A contributed $1800, and B $1600.

Prob. 13. A reservoir can be filled by two pipes, and by one
two hours sooner than by the other. By both pipes together it
can be filled in 1 hours. In how many hours can the reser-
voir be filled by each pipe separately ?

Ans. By one in 3, and the other in 5 hours.

Prob. 14. A wall was completed in 5§ days by two masons,
one of whom commenced work 1} days later than the other.

.
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In order to complete the wall ajone, the first would have re-
quired 3 days less than the second. In how many days could
each alone complete the wall?
- Ans. The first in 8, the second in 11 days.
Prob. 15. A courier goes from a place, A, to a place, B, in
14 hours. At the same time, another courier starts for B from
a place 10 miles further distant, and expects to reach B at the
same time with the first, by gaining half an hour in every 20
miles. 'What is the distance from A to B?
Ans. 70 miles.
‘Prob. 16. From two towns, A and B, which are 104 miles
distant from each other, two wagons start at the same time, -
and meet after 10} hours. One requires for every 8 miles, a
quarter of an hour more than the other. How much time does
each require to travel one mile ? )
_ Ans. The one 4%, the other & of an hour.
Prob. 17. Two messengers start at the same time from two
towns, A and B, the first toward B, the .other toward A, and,
upon meeting, it appeared that the first had traveled 12 miles
more than the second ; also, that if each should continue on at
his former rate, the first would arrive at B in 9 hours, and the
latter at A in 16 hours. What is the distance from A to B?’
' * Ans. 84 miles.
Prob. 18. Two messengers start from the two towns, A and
B, to travel toward each other, but one started two hours ear-
lier than the other. They meet each other 24 hours after the
starting of the second messenger, and they reach the towns A
and B at the same instant. In how many hours did each mes-
senger perform the journey ?
Ans. The one in 7, the other in 5 hours.
Prob. 19. Two travelers start from two towns, A and B,
whose distance from each other is 910 miles, and travel uni-
formly toward each other. If the first starts 56 hours before
the second, they will- meet half way between A and B. If both
start at the same instant, at the end of 20 hours théy will still
be 550 miles from each other. How many hours does each
traveler require to accomplish the distance from A to B?
Ans. One 182 hours, the other 70 hours.

Prob. 20. A grocer has a cask containing 20 gallons of bran-




EXAMPLES FOR PRACTICE. ' 347

dy, from which he draws off a certain quantity into another
cask of equal size, and, having filled the last with water, the
first cask was filled with the mixture. It now appears that if
63 gallons of the mixture are drawn off from the first into the
second cask, there will be equal quantities of brandy in each.
Required the quantity of brandy first drawn off.

Ans. 10 gallons.

Prob. 21. T'wo merchants sold the same kind of cloth. The
second sold three yards more of it than the first, and together
they received $35. The first said to the second, I should have
received $24 for your cloth; the other replied, I should have
received $12} for yours. How many yards did each of them
sell? .

Ans. The first merchant 5 or 15 yards, the second mer-
chant 8 or 18 yards.

Prob. '22. A and B traveled on the same road, and at the
same rate, from Cumberland to Baltimore. At the 50th mile-
stone from Baltimore A overtook a drove of geese, which were
proceeding at the rate of three miles in two hours, and two
hours afterward met a wagon, which was moving at the rate
of nine miles in four hours. B overtook the same drove of
geese at the 45th milestone, and met the same wagon 40 min-
utes before he came to the 31st milestone. Where was B

when A reached Baltimore ?
Ans. 25 miles from Baltimore.

EQUATIONS OF THE SECOND DEGREE WITH SEVERAL UNKNOWN

QUANTITIES.
Exz. 1. Given (18z)*+2y*=177, }to find the values of
(%y)—132*= 3, and y.

Ans. z==%1, y==+2.

Ez. 2. Given 22+ y*: 2~ y*::25:7, }to find the values of
xy =48, x and y.
Ans. 2= %8, y==6.

Ez.3. Given 2(x+4)— 5(y—77%= 15, } to find the values
7(x+4)*+ 15(y—7)*=1075, of z and y.
Remark. Put z+4=¢, and y—7=v. First determine z and v, and thence

x and y.
Ans, x=+6or —14, y=12 or 2.
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Ez. 4. Given (z+y)*—22* = 49, }to find the values of =
3% +4(x+y)*=372, and y.
Ans. 2=:4, y==5 or *138.

 Ez. 5. Given - +— % :
l 0 y 1 (P find the values of = and y.
zy 18

Ans. =6 or 30, y=30 or 6.
Exz. 6. Given (7+x)6+y)=80, }to find the values of z

z+y = 5, and y.
Remark. Put 7+x=2, 6+y=0.

Ans. 2=1 or 3, y=4 or 2.
Ez. 7. Given 2?+ y*=10000,
zty= 124, }to find the values of z and y.

Ans. a:.:_96 or 28, y=28 or 96.

Ez. 8. Given 3@:1/;:2: } to find the values of and. Y.
Ans. z=9 or 4, y=4 or 9.
Ez. 9. Given (3z+4y)(Tz—2y)+ 3z +4y=44, }to find the
(3w+4y)(7w—2y) Tz+42y=30, 5 values of x
and y. Ans. =1 or 174, y=2 or —47.
Ez. 10. Given —a®+62y—9y2+4x—12y= 4, }to find the
o*—2xy+3y*—4x4+ 5y =53, I values of
and y. Ans. 2z=11 or —7}, y=38 or —3%.
Ez. 11. Given 2(*+y*)z+y) =152y, } to find the values
4(at —y*)2?—y*) =45272, of » and y.
Ans. x=2or 1, y=1or 2.
Ez. 12. Given (*—y*¥z—y) = 16xy, }to find the values
(a*—y*)2® —y*) =640z, of z and y.
Ans. z=9 or 3, y=3 or 9.

Ez. 13. Given 2z +y+2)=27, }to find the values of z, y,

Yz+y+z)=18, and z.

z(x+y+z) 36,

Ea: 14. Given ay=z,
yz=v,
av=a,

yv=ba,
Ans. w_:;b, y=vb, z=va, v=vay/b.

Ans. 2=3, y=2, z=4.

} to find the values of 2, y, 2, and v.
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to find the values ot a:,A Y, 2,
and v.

Ez.15. Given 2yz=105,
xyv=135,
xrZV= 189,}
yzv=3815,
Ans. =38, y=5, 2="7, v=9.
w‘ 2 —
?+y =84, } to find the values of x

z +%2+y =14, and Y

Ex. 16. Given 2>+

Ans. x=4, y=2 or 8.
Ez.17. Given vy—va—=z =vy—a, }to find the val

2V y—z+2Va—a=5va—z,) ues ofzand y.
* Ans. x=%a, y=3a.

Exz. 18. Given 2° +xy*=ay,
Py+ yP=bs, }to find the values of = and y.

s, /Y [V
ns. r= m,y— _a+b'

Ez. 19. Given v/5vz+5vVy+ va++vy= 10, }to find the

VB+Vy =275, § values of
and y. '
Ans. z=9, y=4.
Ez. 20. Given (2 +y*)ry=13090, }to find the values of 2
z+y = 18, and y.

Ans. z=7or 11, y=11or 7.
Ez. 21. Given 5(z*+y%)+4xy =356, ;to find the values of
2+y*taty= 62, x and y.
. Ans. x=4, y=6.
Ez. 22. Given (2*+y*)2y =300, }to find the - values of x

- a4yt =337, and y.
Ans. x=4, y=3.
Ez. 23. Given (2*+y*)2* +y°)=455, } to find the values of
z+y = 5, zand y.
Ans. =3, y=2.

' ioan BTy YR
Ex. 4. Gx:ren z+y =14, to find the values of @
B2

’ Am. = 12’ y=6
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Ezx. 25. Given (2*—zy+y*)(2*+y?) = 91, }to find the
: (z*—zy+y*Na?+xy+y*)=133, § values of z

Ans. x=2 or —3, y=3 or —2.

Ez. 26. Given (z+y)ry = 30, gto find the values of z

(7*+y*)a?y* =468, and y.
Ans. 2=2, y=3.

and y.

Ez. 21. Given x—y+- =y =—1-2—, to find the values
r+y Tty of x and y.

3‘2+y2'.—_-41’

Ans. 2=5, y=4.
Ez. 28. Given (z+y)*+2+4y=30, }to‘ﬁnd the values of =

z—y= 1, and y.

. ) Ans. z=2, y=1.

Ez. 29. Given (z +y Xz y +1)= 182y, }to find the val-
(@ +y*)(2*y®+1)=2082%y% 5 uesofxandy.
Ans.'z=2x+ /3, y=T+4+/3.
«*
PROBLEMS INVOLVING EQUATIONS OF THE SECOND DEGREE WITH
SEVERAL UNKNOWN QUANTITIES.

Prob. 1. If I increase the numerator of a certain fraction by
2, and diminish the denominator by 2, I obtain the reciprocal
of the first fraction ; also, if I diminish the numerator by 2, and
_ increase the denominator by 2, the resulting fraction, increased -
by 14, is equal to the reciprocal of the first fraction. What
is the fraction?

S Ans. §.

Prob. 2. It is required to divide the number 102 into three
parts, such that the product of the first and third shall be equal
to 102 times the second part, and the third part shall be 1}
times the first.

Ans. The first part is 34, the second 17, and the third 51.

Prob. 3. A certain number consists of two digits. If I in-
vert the digits, and multiply this new number by the first, I ob-
tain for a product 5092; but if I divide the<first dlglt by the
second, I obtain 1 for a quotlent with 1 for a remainder. What
is the number ?

Ans. 76
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Prob. 4. The fore wheel of a carriage makes 165 more rev- |
olutions than the hind wheel in going 5775 feet ; but if the cir-
cumference of each wheel be increased 21 feet, the fore wheel
will make only 112 revolutions more than the hind wheel in
the same space. Required the circumference of each wheel.

Ans. The fore wheel 10 feet, the hind wheel 14 feet.

Prob. 5. A piece of cloth, by being wet in water, shrinks one
eighth in its length and one sixteenth in its breadth. If the
perimeter of the piece is diminished 4% feet, and the surface 5%
square feet, by wetting, what were the length and breadth of the
piece?

Ans. 16 feet long and 2 feet wide.

~ Prob. 6. A certain number of laborers in 8 hours transport-a
pile of stones from one place to another. If there were 8 more
laborers, and if each carried each time 5 pounds less, the pile
would be removed in 7 hours; but if there were 8 less labor-
ers, and if each carried each time 11 pounds more, it would re-
quire 9 hours to remove the pile. How many laborers were
there employed, and how many pounds did each carry ? -
Ans. 28 laborers, and each carried 45 pounds; or 36 la-
borers, and each carried 77 pounds.

Prob. 7. A certain capital yields yearly $123} interest; a
second capital, $700 larger, and loaned at } per cent. less,
yields yearly $11} more interest than the first. How large was
the first capital, and at what per cent. was it loaned ?

Ans. The capital was $3800, loaned at 3} per cent.

Prob. 8. A reservoir half filled with water has two pipes, by
one of which it can be filled in a certain time, and by the other
it can be emptied in a different time. If both pipes are left open
for 12 hours, the reservoir will be emptied ; but if both pipes are
made smaller, so that the first requires one hour longer for fill-
ing, and the other an hour longer for emptying, when both pipes
are open, the reservoir will be emptied in 15 hours. In what
time would the empty reservoir be filled by the first pipe alone,
and in what time would the full reservoir be emptied by the
second pipe alone?

Ans. By the first pipe it would be filled in 8 hours, and by

the second pipe it would be emptied in 6 hours.

Prob. 9. A rectangular lot is 119 feet long and 19 feet broad.
16
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How much must be added to the breadth, and how much taken
from the-length, in order that the perimeter may be increased
by 24 feet, and the contents of the lot remain the same ?
Ans. The length must be diminished 102 feet, and the
breadth increased 114 feet.

Prob. 10. There are two numbers such that thelr sum and
product together amount to 47 ; also, the sum of their squares
exceeds the sum of the numbers themselves, by 62. What are
the numbers ?

Ans. 5 and 7.

Prob. 11. The sum of two numbers is @, and the sum of their
reciprocals is b. Required the numbers.

Ans. 2+ \/ zzj—z
‘2 4 b

Prob. 12. A and B engage to Teap a field for $24; and as A
alone could reap it in nine days, they promise to complete 1t in
five days. They found, however, that they were obliged to
call in C to assist them for the last two days, in consequence
of which B received one dollar less than he otherwise would
have done. In what time could B or C alone reap the field ?

~Ans. B 15 and C 1 18 days.

Prob. 13. The sum of tﬁe cubes of two numbers is 35, and
the sum of their ninth powers is 20,195. Required the numbers.
Ans. 2 and 3.

Prob. 14. There are two numbers whose product is 300 ; and
the difference of their cubes is thirty-seven times the cube of
their difference. What are the numbers ?

Ans. 20 and 15.

Prob. 15. A merchant had $26,000, which he divided into two
parts, and placed them at interest in such a manner that the in-
comes from them were equal. If he had put out the first por-
tion at the same rate as the second, he would have drawn for
this part $720 interest ; and if he had placed the second out at
- the same rate as the first, he would have drawn for it $980 in-
terest. What were the two rates of interest ?

Ans. 6 per cent. for the larger sum, and 7 for the smaller.

Prob. 16. A miner bought two cubical masses of ore for $820.
Each ot them cost as many dollars per cubic foot as there
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wete feet in a side of the other; and the base of the greater
contained a square yard more than the base of the less. - What .
was the price of each?

Ans. 500 and 320 dollars.

Prob. 17. A gentleman bought a rectangular lot of land at ~
the rate of ten dollars for every foot in the perimeter. If the
same quantity had been in a square form, and he had bought it
at the same rate, it would have cost him $330 less; but if he
had bought a square piece of the same perimeter, he would have
had 12} rods more. What were the dimensions of the lot? °

Ans. 9 by 16 rods.

Prob 18. A and B put out at interest sums amounting to
$2400. A’s rate of interest was one per cent. more than B’s;
his yearly interest was five sixths of B's ; and at the end of ten
years his principal and simple interest amounted to five sev-
enths of B’s 'What sum was put at interest by each, and at
what rate?

Ans A $960 at 5 per cent., B $1440 at 4 per cent.

Prob. 19. A person bought a quantity of cloth of two sorts'
for $63. For every yard of the best piece he gave as many
dollars as he had yards in all; and for every yard of the poor-
er, as many dollars as there were yards of the better piece more
than of the poorer. Also, the whole cost of the best piece was
six times that of the poorer. How many yards had he of each?

Ans. 6 yards of the better and 3 of the poorer.

Prob. 20. A commences a piece of work alone, and labors
for two thirds of the time that B would have required to per-
form the entire work. B then completes the job. Had both
labered together, ¥ weuld bave been completed two days soon-
er, and A would have performed -only half what he left for B.
Required the time in which they would have performed the
work separately.

Ans. A in 6 days and B in 3 days.
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PROGRESSIONS.

Ez. 1. What is the sum of the natural series of numbers
1, 2, 8, etc., up to 10007
* Ans. 500,500.

Ez. 2. What is the sum of an arithmetical progression whose
first term is 6, the last term 2833, and the number of terms 38?
Ans. 53,941.

« Ez. 3. What is the first term and the sum of the terms of an
arithmetical progression, when the last term is 24, the common
difference £, and the number of terms 22?

Ans. First term 9, and sum of terms 363.

Ez. 4. Required the number and the sum of the terms of an
arithmetical progression, when the first term is —3%, the com-
mon difference —3, and the last term —213.

Ans. Number of terms 25, and suim of terms —2811.

Ez. 5. The first term of an arithmetical progression is 5, the
last term 23, and the sum of the terms 392. What is the com-
mon difference and the number of terms?

Ans. Common difference £, and number of terms 28.

Ezx. 6. Between 7 and 13 it is required to interpolate 8 terms
which shall form an arithmetical progression.
‘ Ans. 72, 81,9, 92, 101, 11, 112, 12L.
Ez. 7. In an arithmetical progression, the sum of the 19th,
the 43d, and the 57th terms is 827; the sum of the 27th, the
58th, the 69th, and the 73d terms is 1581. ~'What is the first
term and the common difference ?
Ans. The first term is 5, and the common difference 7.

Exz. 8. In boring an artesian well 500 feet deep, $3.24 is paid
for the first foot, and 5 cents more for each subsequent foot.
How much was paid for the last foot, and how much for the
whole well ?

Ans: For the last foot $28.19, and for the entire well
$78573.

Ez.9. According to natural philosophy, a body falling in a
vacuum describes in the first second of its fall 164; feet, and
in each succeeding second 32} feet more than in the second
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imrhediately preceding. If a body has fallen 20 seconds, how
many feet will it fall in the last’ second, and how many in the
whole time ?
Ans. 6271 feet in the last second, and 6433} feet in the
whole time. '

Ez. 10. A number consisting of three digits, which are in
arithmetical progression, being divided by the sum of its digits,
gives a quotient 26; and if 198 be added to it, the digits will
. be inverted. Required the number.

Ans. 234.

Ez. 11. A and B, 165 miles distant from each other, set out
with a design to meet. A travels 1.mile the first day, 2 the
second, 3 the third, and so on. B travels 20 miles the first
day, 18 the second, 16 the third, and so on. In how many
days will they meet?

Ans 10 or 33 days.

Ez.12. A ship, with a crew of 175 men, set sail with a sup-
ply of water sufficient to last to the end of the voyage; but in
30 days the scurvy made its appearance, and cartied off three
men every day; and at the same time a storm arose which
protracted the voyage three weeks. They were, however,
just enabled to arrive in port without any diminution m each
man’s daily allowance of water. Required the time of the
passage, and the number of men alive when the vessel reached
the harbor.

Ans. The voyage lasted 79 days, and the number of men
alive was 28.

Ez.13. The number of deaths in a besieged garrison amount-
ed to 6 daily ; and, allowing for this diminution, their stock of
‘provisions was sufficient to last 8 days. But on the evening
of the sixth day 100 men were killed in a sally, and afterward
the mortality increased to 10 daily. Supposing the stock of
provisions unconsumed at the end of the sixth day to support 6
. men for 61 days, it is required to find how long it would sup-
port the garrison, and the number of men alive when the pro-
visions were exhausted.

Ans. The provisions last 6 days, and 26 men survive.

Exz. 14. The first term of a geometrical progression is 1, the

4
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ratio 2, and the number of terms 13. What is-the last term
and the sum of the terms?
Ans. The last term is 4096, and the sum of the terms
8191.

Ez. 15. The first term of a geometrical progression is 7, the
ratio 3, and the number of terms 11. What is the last term
and the sum of the terms?

Ans. The last term is 413,343, and the sum of the terms
620,011.

Ez. 16, The sum of the terms of a geometrical progression
is 411,771, the ratio 7, and the number of terms 7. Required
the first and last terms.

Ans. First term 3, and last term 352,947.

Ez. 17. Between 1 and 4 it is required to interpolate 11
terms forming a continued geometrical progression. What are
the terms ?

Ans. 0.9439, 0.8909, 0.8409, 0.7937, 0.7492, 0.7071, 0.66'74,

0.6300, 0.5946, 0.5612, 0.5297.

Ez. 18. What will $1200° amount to in 36 years at 4 per
cent. compound interest ? )
Ans. $4924.70.
Ez.19. A farmer sowed a peck of wheat, and used the whole
crop for seed the following year; the produce of the second
year he used for seed the third year, and so on. If in the 10th
year he sowed 1,048,576 pecks, by how many times must the
seed have increased each harvest, supposing the increase to
have been always the same ? »
Ans. Four times.

. ,
Ex. 20. There are three numbers in geometrical progression,
the difference of whose differences is six, and their sum is forty-
two. Required the numbers.
Ans. 6, 12, and 24.

Ez. 21. There are three numbers in geometrical progression,
the greatest of which exceeds the least by 24 ; and the differ-
ence of the squares of the greatest and the least is to the sum
of the squares of all the three numbers as 5:7. What are the
numbers ?

Ans. 8, 16, and 32.
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Ez. 22. There are three numbers in geometrical progression
whose continued product is 216, and the ‘sum of their cubes is
1971. Required the numbers.

Ans. 3, 6, and 12.

Ez. 23. There are four numbers in geometrical progression
whose sum is 350 ; and the difference between the extremes is
to the difference of the means as 87:12. What are the num-
bers?

Ans. 54, 72, 96, 128.

Exz. 24. There are three numbers in harmonical progression ;
the sum of the first and third is 18, and the product of the three
numbers is 576. Required the numbers.

Ans. 12, 8, and 6.

Ez. 25. There are three numbers in harmonical progression,

the difference of whose differences is 2, and four times the

product of the first and third is 960. Required the numbers.
Ans. 20, 15, 12.

Hints for the Solution of some of the preceding Problems.

Page 141, Prob. 13. Suppose é part is drawn each time,

5 —
256—%.-;)'9:2@(2—-1—) remains after the first draught.
1\ -
Similarly, 256(z—1)° remains after the second draught, and
50 on. . '
—1)
Hence, g—§§%z—‘—l—)=81

Prob. 14, Page 142, is solved in a similar manner.

Page 349, Ez. 19. Put 2*=+/z++y. Then, from Eq. 1,
z=1+/5, that is, Vz+/y=5. Next put va=§+v, and vy
=4—v. Substituting these values in Eq. 2, we find v*=4, or
v=':i:1}.

Page 350, Ex. 28. Multiply Eq. 1 by 2+y, and we have

(z+y)' +(z+y)* =30z +y). '

Add to each member 9(x-+y)*+ 25, and the square root of

each member of the equation may be extracted.



358 EXAMPLES FOR PRACTICE.
Page 350, Ex. 29. Divide Eq. 1 by zy, and Eq. 2 by 2*y?, and
we have

1
z +y +-— +§ = 18.

a4 y? +w2+_15_208'

Put .z'+-_z, and y+?7—v

Then 24v=18, and 22 +1v2=212.
Whence z=14 or 4, and v=4 or 14; and hence z and y are
2asily’ found.

Page 353, Prob. 20. Suppose A*would have performed the
work in 2 days, and B in y days.

A labors ?32 days, and performs 2y part of the work.

B performs 1—2Z o — 23/

31 part of the work.
-2 . ..
3, Xy=time B labored.

— 2 ° .
B_w_y?rfl + 332 =whole time consumed.

i-g-izpart both did in one day:m.

ZY_—the days of work if both labored together.

:c+y

zy 8zy —2y° 1%

w+y+2— 3z 3 . .
oy 1 p32—2y

Also, e +y_2°f 30"

Page 355, Ex. 12. Put z=days the voyage was expected
to last.
2421 =days the voyage lasted.
2421 —-30=x—9=the days after 30.
On the 31st day the number of men was 172, etc.
Last term  =172—3(z—10).
x—9

Sum of series =(344—3(x—10)) x -

Then (344—32+-30)2=2 = 175(2—30).
Whence, z=58. Also, 2+21="79 days the voyage lasted.




EXAMPLES FOR PRACTICE. 359

Page 355, Ex. 13. Put =number of men at first.

2—42=number expected at end of 8 days.

2 —42

2r—30
2

X 8=82x—168=number of days’ provisions.

X 6=6z— 90=days’ provisions exhausted at end of
6th day.
2z— 78=366=the remainder.
Whence, »=222. -
222—136=86=number of men after the sally.
Put y=number of days the provisions lasted afterward.
) —_172‘1;’(?"1) . y=366,

16*

THE END.
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