
HIGHER MATHEMATICS

Chapter I.

THE SOLUTION OF EQUATIONS.

By Mansfield Merriman,

Professor of Civil Engineering in Lehigh University.

Art. 1. Introduction.

In this Chapter will be presented a brief outline of methods,

not commonly found in text-books, for the solution of an

equation containing one unknown quantity. Graphic, numeric,

and algebraic solutions will be given by which the real roots

of both algebraic and transcendental equations may be ob-

tained, together with historical information and theoretic

discussions.

An algebraic equation is one that involves only the opera-

tions of arithmetic. It is to be first freed from radicals so as

to make the exponents of the unknown quantity all integers

;

the degree of the equation is then indicated by the highest ex-

ponent of the unknown quantity. The algebraic solution of an

algebraic equation is the expression of its roots in terms of

the literal coefficients ; this is possible, in general, only for linear,

quadratic, cubic, and quartic equations, that is, for equations

of the first, second, third, and fourth degrees. A numerical

equation is an algebraic equation having all its coefficients real

numbers, either positive or negative. For the four degrees
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above mentioned the roots of numerical equations may be

computed from the formulas for the algebraic solutions, unless

they fall under the so-called irreducible case wherein real

quantities are expressed in imaginary forms.

An algebraic equation of the nth degree may be written

with all its terms transposed to the first member, thus:

x" + a
x
xn- 1 + a,x"-

2 + . . . + an.,x+ a„ = O,

and, for brevity, the first member will be called fix) and the

equation be referred to as/(^) = 0. The roots of this equa-

tion are the values of x which satisfy it, that is, those values of

x that reduce f(x) to o. When all the coefficients alt a
t ,. ..an

are real, as will always be supposed to be the case, Sturm's

theorem gives the number of real roots, provided they are un-

equal, as also the number of real roots lying between two

assumed values of x, while Horner's method furnishes a con-

venient process for obtaining the values of the roots to any

required degree of precision.

A transcendental equation is one involving the operations

of trigonometry or of logarithms, as, for example, x -\- cos.r = o,

or A2* -[~ xb* = °- No general method for the literal solution

of these equations exists ; but when all known quantities are

expressed as real numbers, the real roots may be located and

computed by tentative methods. Here also the equation may
be designated as f{x) = o, and the discussions in Arts. 2-5 will

apply equally well to both algebraic and transcendental forms.

The methods to be given are thus, in a sense, more valuable

than Sturm's theorem and Horner's process, although for

algebraic equations they may be somewhat longer. It should

be remembered, however, that algebraic equations higher than

the fourth degree do not often occur in physical problems, and

that the value of a method of solution is to be measured not

merely by the rapidity of computation, but also by the ease

with which it can be kept in mind and applied.

Prob. 1. Reduce the equation [a + x)i + [a — x)l = 2b to an
equation having the exponents of the unknown quantity all integers.
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Art. 2. Graphic Solutions.

Approximate values of the real roots of two simultaneous

algebraic equations may be found by the methods of plane

analytic geometry when the coefficients are numerically

expressed. For example, let the given equations be

x 1
-\-y = a\ x' — bx =y — cy,

the first representing a circle and the second a hyperbola.

Drawing two rectangular axes OX and OY, the circle is de-

scribed from O with the radius a. The coordinates of the

center of the hyperbola are found to be OA = \b and AC = \c,

while its diameter BD =\/b* — c', from which the two

branches may be described.

The intersections of the circle

with the hyperbola give the

real values of x and y. If

a = i, b = 4, and c = 3, there

are but two real values for x

and two real values for y,

since the circle intersects but

one branch of the hyperbola
;

here Om is the positive and

Op the negative value of x, while mn is the positive and pq
the negative value of y. When the radius a is so large that

the circle intersects both branches of the hyperbola there are

four real values of both x and y.

By a similar method approximate values of the real roots of

an algebraic equation containing but one unknown quantity may

be graphically found. For instance, let the cubic equation

xa + ax — b — o be required to be solved.* This may be

written as the two simultaneous equations

y = xs

, y = — ax -f- b,

*See Proceedings of the Engineers' Club of Philadelphia, 1884, Vcl. IV,

PP. 47-49
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and the giaph of each being plotted, the abscissas of their

points of intersection give the real roots of the cubic. The

curve y = x° should be_ plotted upon

I cross-section paper by the help of a

\ / table of cubes ; then OB is laid off

"" /*"\ equal to b, and OC equal to a/b, tak-

^ _XjQ ing care to observe the signs of a and

b. The line joining B and C cuts

the curve at p, and hence qp is the

real root of x' -J- ax — b = O. If the

cubic equation have three real roots the straight line BC will

intersect the curve in three points.

Some algebraic equations of higher degrees may be graphic-

ally solved in a similar manner. For the quartic equation

z' -\- Az 1
-\- Bz — C=O

t
it is best to put z=A'kx, and thus

reduce it to the form x' -\-
x'

-\- bx — c — O; then the two
equations to be plotted are

y = x* + x\ y=—bx-\-c,

the first of which may be drawn once for all upon cross-section

paper, while the straight line represented by the second may
be drawn for each particular case, as described above.*

This method is also applicable to many transcendental equa-
tions

;
thus for the equation Ax — Bs'm x — o it is best to

write ax — sinx=o; then y = sin* is readily plotted by help
of a table of sines, while y = ax is a straight line passing
through the origin. In the same way a* — x' = o gives the
curve represented by y = a* and the parabola represented by
y = x\ the intersections of which determine the real roots of

the given equation.

Prob. 2. Devise a graphic solution for finding approximate
values of the real roots of the equation x"-\- ax*-\- dx'+ ex + d= o.

Prob. 3. Determine graphically the number and the approximate
values of the real roots of the equation arc x - 8 sin x = o
(Ans.—Six real roots, x = ± 159°, ± 430°, and ± 456 .)

*For an extension of this method to the determination of imaginary roots,
see Phillips and Beebe's Graphic Algebra, New York, 1S82.
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Art. 3. The Regula Falsi.

One of the oldest methods for computing the real root of

an equation is the rule known as "regula falsi," often called

the method of double position.* It depends upon the princi-

ple that if two numbers x^ and x^ be substituted in the expres-

sion/^), and if one of these renders /(V) positive and the other

renders it negative, then at least one real root of the equation

f{x) = o lies between x
l
and x,. Let the figure represent a

part of the real graph of the equation y =/(x). The point X,

where the curve crosses the axis of abscissas, gives a real root

OX of the equation /(;r) = o. Let OA and OB be inferior and

superior limits of the root OX which are determined either by

trial or by the method of Art. 5.

Let Aa and Bb be the values of

f(x) corresponding to these limits. q j^

Join ab, then the intersection C of

the straight line ab with the axis

OB gives an approximate value

OC for the root. Now compute

Cc and join ac, then the intersection D gives a value OD which

is closer still to the root OX.

Let x
x
and x^ be the assumed values OA and OB, and let

f(x\) and_/(^2)
be the corresponding values of f{x) represented

by Aa and Bb, these values being with contrary signs. Then

from the similar triangle AaC and BbC the abscissa OC is

xjixj - *•,/(•<> {x-x,)f{x,)_. (*, — -*,)/Q3 )
x'~

/(*,) - /OO 1+
A*>) -A*.) *

+
/(*,) - /K)

"

By a second application of the rule to x^ and x
s , another value

x
t

is computed, and by continuing the process the value of x

can be obtained to any required degree of precision.

As an example let fix) — x* + 5^ + 7 = °- Here lt ma-Y
be found by trial that a real root lies between —2 and — 1.8.

*This originated in India, and its first publication in Europe was by Abra-

ham ben Esra, in 1130. See Matthiesen, Grundziige der antiken und moder-

nen Algebra der litteralen Gleichungen, Leipzig, 1878.
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For.*-, = - 2,f(x) = -5, and for x,= - 1.8, /«) = + 4-3°4;

then by the regula falsi there is found x
s
= — 1.90 nearly.

Again, for x
%
= — 1.90, f(xa )

= + 0.290, and these combined

with x
l
and /(#,) give *

4
= — 1.906, which is correct to the

third decimal.

As a second example let f[x) = arc.*- — sin x — o. 5 = 0.

Here a graphic solution shows that there is but one real root,

and that the value of it lies between 85 and 86° For jt,= 85°,

flx t)
= - 0.01266, and for x, = 86°, f(x,) = + 0.00342 ;

then

by the rule x
3
= 85" 44', which givesf(x3)

= — 0.00090. Again,

combining the values for x^ and x
s
there is found x

t = 85° A7 •

which gives f(xt)
= — 0.00009. Lastly, combining the values

for x^ and x
t
there is found x

6
= 85- 47'.^, ft'hich is as close an

approximation as can be made with five-place tables.

In the application of this method it is to be observed that

the signs of the values of x and f(x) are to be carefully re-

garded, and also that the values of f(x) to be combined in one

operation should have opposite signs. For the quickest

approximation the values of /(.*•) to be selected should be those

having the smallest numerical values.

Prob. 4. Compute by the regula falsi the real roots of .X
s— 0.25= 0.

Also those of x* -f- sin 2X = o.

Art. 4. Newton's Approximation Rule.

Another useful method for approximating to the value of

the real root of an equation is that devised by Newton in 1666.*

If y =/(x) be the equation of a

curve, OX in the figure represents a

real root of the equation f(x) = o.

Let OA be an approximate value of

OX, and Aa the corresponding value

/b o(f(x). At a let aB be drawn tangent

to the curve; then OB is another approximate value of OX.
* See Analysis per equationes numero terminorum infinitas, p. 269, Vol. I

of Horsely's edition of Newton's works (London, 1779), where tne method is

given in a somewhat different form.
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Let Bb be the value of f{x) corresponding to OB, and at b

let the tangent bC be drawn ; then OC is a closer approxima-

tion to OX, and thus the process may be continued.

Let/'(>) be the first derivative o\ f(x)\ or,f'{x) = df[x)/dx.

For x = x
1
= OA in the figure, the value of f(x^) is the ordi-

nate Aa, and the value of /'(#,) is the tangent of the angle

aBA ; this tangent is also Aa/AB. Hence AB = f{x J)/f'(x 1 ),

and accordingly OB and CC are found by

which is Newton's approximation rule. By a third application

to x^ the closer value .r
4

is found, and the process may be con-

tinued to any degree of precision required.

For example, let f(x) = x" -)- ^x"
1

-(-7 = 0. The first deriv-

ative is/~'(;r) = $x' -(- 10^. Here it may be found by trial that

— 2 is an approximate value of the real root. For x
s
= — 2

f(x^) = — 5, and f'{x^) = 60, whence by the rule x^ — — 1.92.

Now for ;r
2
= — 1.92 are found /(^2)

= — 0.6599 and

f(zt)
= 29.052, whence by the rule x

3
= — 1.906, which is

correct to the third decimal.

As a second example let fix) = x 1
-\~ 4sin x = o. Here

the first derivative is f'{x) = 2x -\- 4 cos x. An approximate

value of x found either by trial or by a graphic solution is

;r=— 1.94, corresponding to about — in°09'. For ^, = — 1.94,

/(x^ = 0.03304 and f\x,) = — 5.323, whence by the rule

.*•,= — I.934. By a second application x
s
= — 1.9328, which

corresponds to an angle of — 1 10° 54^'.

In the application of Newton's rule it is best that the

assumed value of x
l
should be such as to render f{x^) as small

as possible, and also /"'(.*,) as large as possible. The method

will fail if the curve has a maximum or minimum between a

and b. It is seen that Newton's rule, like the regula falsi,

applies equally well to both transcendental and algebraic equa-

tions, and moreover that the rule itself is readily kept in mind

by help of the diagram.
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Prob.
s-

Compute by Newton's rule the real roots of the alge-

braic equation x" — jx + 6 = o. Also the real roots of the trans-

cendental equation sin x -f- arc x — 2 = o.

Art. 5. Separation of the Roots.

The roots of an equation are of two kinds, real roots and

imaginary roots. Equal real roots may be regarded as a spe-

cial class, which lie at the limit between the real and the imagi-

nary. If an equation has^> equal roots of one value and q equal

roots of another value, then its first derivative equation has

p— 1 roots of the first value and ^ — 1 roots of the second

value, and thus all the equal roots are contained in a factor

common to both primitive and derivative. Equal roots may
hence always be readily detected and removed from the given

equation. For instance, let xi — 9^' -j- \x -\- 12 == o, of which

the derivative equation is 4x° — i8x -\- 4 = o ; as x — 2 is a

factor of these two equations, two of the roots of the primitive

equation are -f- 2.

The problem of determining the number of the real and

imaginary roots of an algebraic equation is completely solved

by Sturm's theorem. If, then, two values be assigned to x the

number of real roots between those limits is found by the same
theorem, and thus by a sufficient number of assumptions limits

may be found for each real root. As Sturm's theorem is known
to all who read these pages, no applications of it will be here

given, but instead an older method due to Hudde will be

presented which has the merit of giving a comprehensive view

of the subject, and which moreover applies to transcendental

as well as to algebraic equations.*

If any equation y = j\x) be plotted with values of x as

abscissas and values of y as ordinates, a real graph is obtained

whose intersections with the axis CUT give the real roots of the

* Devised by Hudde in 1659 and published by Rolle in 1690. See OSuvres

de Lagrange, Vol. VIII,. p. 190.
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equal ion fix) = o. Thus in the figure the three points marked

Xg'vre three values OX for three real roots. The curve which

represents y = f(x) has points of maxima and minima marked

A, 3-nd inflection points marked B. Now let the first deriva-

tive equation dy/dx— f'{x) be formed and be plotted in the

same manner on the axis O'X'. The condition f'{x)= o gives

the abscissas of the points A, and thus the real roots O'X' give

limits separating the real roots of fix) = o. To ascertain if a

real root OX lies between two values of O'X' these two values

are to be substituted in/(;tr): if the signs of/(;tr) are unlike in

the two cases, a real root of fix) = o lies between the two

limits ; if the signs are the same, a real root does not lie between

those limits.

In like manner if the second derivative equation, that is,

d*y/dxl= f"ix), be plotted on 0"X", the intersections give

limits which separate the real roots of f'(x)=o. It is also

seen that the roots of the second derivative equation are the

abscissas of the points of inflection of the curve y = f{x).

To illustrate this method let the given equation be the

quintic fix) = x & — c,x
3

-f- 6x -f- 2 — o. The first derivative

equation is fix) = 5x" — 1

5

x"
1 + 6 = o, the ro'ots of which are

approximately — 1.59, —0.69, +0.69, + 1.59. Now let each

of these values be substituted for x in the given quintic, as also

the values — 00 , o, and + °° > and let the corresponding values

of fix) be determined as follows :
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CO

CO
,

x = — °o, —1.59, —0.69, o, +0.69, +1.59, +
/(*)=- 00, +2.4, -0.6, +2, +4.7, +1.6, +
Since f(x) changes sign between x =— 00 and x, — — 1.59,

one real root lies between these limits ;
since f(x) changes sign

between^, = — 1.59 and x^ = — 0.69, one real root lies between

these limits ; since fix) changes sign between x, = — 0.69 and

x, = 0, one real root lies between these limits; since f(x) does

not change sign between x
3
= and x

t
= 00 , a pair of imagi-

nary roots is indicated, the sum of which lies between + 0.69

and 00

.

As a second example let f(x) = rc — ?* — 4 = 0. The first

derivative equation is f'(x) = e" — 2e*
x = O, which has two

roots e" = i and e" = o, the latter corresponding to x = — 00

.

For x — — 00 , f(x) is negative; for e* — i, f{x) is negative ; for

x — + 00
, f[x) is negative. The equation ^—^ — 4 =

has, therefore, no real roots.

When the first derivative equation is not easily solved, the

second, third, and following derivatives may be taken until an

equation is found whose roots may be obtained. Then, by
working backward, limits may be found in succession for the

roots of the derivative equations until finally those of the

primative are ascertained. In many cases, it is true, this proc-

ess may prove lengthy and difficult, and in some it may fail

entirely; nevertheless the method is one of great theoretical

and practical value.

Prob. 6. Show that e* + e' Sx —4 = has two real roots, one
positive and one negative.

Prob. 7. Show that x° + * + 1 = o has no real roots; also that
x° — x — 1 = o has two real roots, one positive and one negative.

Art. 6. Numerical Algebraic Equations.

An algebraic equation of the nih degree may be written

with all its terms transposed to the first member, thus

:

j- + fli
*--i+ a^*-* + . . . + a n .,x + an

= O
;
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and if all the coefficients and the absolute term are real num-

bers, this is commonly called a numerical equation. The first

member may for brevity be denoted by/(^) and the equation

itself by/(V) = o.

The following principles of the theory of algebraic equations

with real coefficients, deduced in text-books on algebra, are

here recapitulated for convenience of reference

:

(i) If x
t
is a root of the equation, /(x) is divisible by x — x

t ;

and conversely, if f{x) is divisible by x —x
s
, then x

1
is a root of the

equation.

(2) An equation of the n th degree has n roots and no more.

(3) If x
t

, x 2 , . . . x„ are the roots of the equation, then the prod-

uct (x — x^){x — x,) . . . (x — x„) is equal to/(x).

(4) The sum of the roots is equal to — a,; the sum of the prod-

ucts of the roots, taken two in a set, is equal to + <z
2 ; the sum of

the products of the roots, taken three in a set, is equal to — a
3 ; and

so on. The product of all the roots is equal to — a„ when n is

odd, and to -f- a„ when n is even.

(5) The equation f{x) — o may be reduced to an equation lack-

ing its second term by substituting^ — ajn for x.*

(6) If an equation has imaginary roots, they occur in pairs of

the form/ ± qi where i represents y — i.

(7) An equation of odd degree has at least one real root whose

sign is opposite to that of a„.

(8) An equation of even degree, having an negative, has at least

two real roots, one being positive and the other negative.

(9) A complete equation cannot have more positive roots than

variations in the signs of its terms, nor more negative roots than

permanences in signs. If all roots be real, there are as many posi-

tive roots as variations, and as many negative roots as permanences.

f

(10) In an incomplete equation, if an even number of terms,

say 2m, are lacking between two other terms, then it has at least 2m

* By substituting y
1 -\-py-\-1 f° r *. tne quantities/ and q maybe determined

so as to remove the second and third terms by means of a quadratic equation,

the second and fourth terms by means of a cubic equation, or the second and

fifth terms by means of a quartic equation.

f The law deduced by Harriot in 1631 and by Descartes in 1639.
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imaginary roots; if an odd number of terms, say 2tn + i, are lacking

between two other terms, then it has at least either 2* + z or zm

imaginary roots, according as the two terms have like or unlike

signs.*

(n) Sturm's theorem gives the number of real roots, provided

that they are unequal, as also the number of real roots lying be-

tween two assumed values of x.

(12) If ar is the greatest negative coefficient, and if a s is the

greatest negative coefficient after x is changed into — x, then all

real roots lie between the limits ar + t and — (as + 1).

(13) If ak is the first negative and ar the greatest negative co-

I

efficient, then ar

"~h + 1 is a superior limit of the positive roots. If

ak be the first negative and as the greatest negative coefficient after

I

x is changed into — x, then as

"~k + 1 is a numerically superior limit

of the negative roots.

(14) Inferior limits of the positive and negative roots may be

found by placing x — z'
v and thus obtaining an equation f(s) = o

whose roots are the reciprocals of /(ar) = o.

(15) Horner's method, using the substitution x = z — r where r

is an approximate value of x
l

, enables the real root x
l
to be com-

puted to any required degree of precision.

The application of these principles and methods will be

familiar to all who read these pages. Horner's method may
be also modified so as to apply to the computation of imagi-

nary roots after their approximate values have been found.

t

The older method of Hudde and Rolle, set forth in Art. 5, is

however one of frequent convenient application, for such alge-

braic equations as actually arise in practice. By its use,

together with principles (13) and (14) above, and the regula

falsi of Art. 3, the real roots may be computed without any
assumptions whatever regarding their values.

For example, let a sphere of diameter D and specific gravity

* Established by Du Gua; see Memoirs Paris Academy, 1741, pp. 435-494.

fSheffler, Die Auflosung der algebraischen und transzendenten Gleichung-

en, Braunschweig, 1859; and Jelink, Die AuflQsung der hoheren numerischen

Gleichungen, Leipzig, 186s.
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g float in water, and let it be required to find the depth of im-

mersion. The solution of the problem gives for the depth x

the cubic equation

As a particular case let D = 2 feet and ^=0.65; then the

equation
x* — $x7

-\- 2.6 = o

is to be solved. The first derivative equation is 3^' — 6x = o
whose roots are o and 2. Substituting these, there is found,

one negative root, one positive root less than 2, and one posi-

tive root greater than 2. The physical aspect of the question-

excludes the first and last root, and the second is to be computed..

By (13) and (14) an inferior limit of this root is about 0.5, so-

that it lies between 0.5 and 2. For x
x
= 0.5, f(x s )

= -4- 1-975,

and for x^ = 2, f(x,) = —1.4; then by the regula falsi ^3=1.35.

For x
s =1.35, /(•*„) = — 0.408, and combining this with x, the

regula falsi gives x
t
= 1.204 feet, which, except in the last

decimal, is the correct depth of immersion of the sphere.

Prob. 8. The diameter of a water-pipe whose length is 200 feet

and which is to discharge 100 cubic feet per second under a head

of 10 feet is given by the real root of the quintic equation

x b — 38.* — 101 = o. Find the value of x.

Art. 7. Transcendental Equations.

Rules (1) to (15) of the last article have no application to-

trigonometrical or exponential equations, but the general prin-

ciples and methods of Arts. 2-5 may be always used in

attempting their solution. Transcendental equations may

have one, many, or no real roots, but those arising from prob-

lems in physical science must have at least one real root. Two
examples of such equations will be presented.

A cylinder of specific gravity^" floats in water, and it is

required to find the immersed arc of the circumference. If

this be expressed in circular measure it is given by the trans-

cedental equation

f{x) = x — sin x — 2 rg — o.
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The first derivative equation is i — cos x = o, whose root is

any even multiple of 2n. Substituting such multiples in fix)

it is found that the equation has but one real root, and that

this lies between o and 2n; substituting £tt, \n, and n for x, it

is further found that- this root lies between |7r and n.

As a particular case let g - 0.424, and for convenience in

using the tables let x be expressed in degrees; then

fix) — x — 57" .2958 sin x — 1 52 .64.

Now proceeding by the regula falsi (Art. 3) let x
l
= 180° and

^=135°. giving/^,) =+ 27°. 36 and /(.r
2)
=-58°. 16, whence

x
3
=166°. For ^-3=166°, f(x,) =— 0° .469, and hence 166° is an

approximate value of the root. Continuing the process, x is

found to be 166°. 237, or in circular measure ^=2.9014 radians.

As a second example let it be required to find the horizon-

tal tension of a catenary cable whose length is 22 feet, span 20

feet, and weight 10 pounds per linear foot, the ends being sus-

pended from two points on the same level. If / be the span, s

the length of the cable, and z a length of the cable whose weight

equals the horizontal tension, the solution of the problem leads

i
L - L

\
to the transcendental equation s= \e" — e "'

s, or inserting

the numerical values,

f(z) = 22 —\e'—e z
)z = o

is the equation to be solved. The first derivative equation is

and this substituted in f(z) shows that one real root is less than
about 20. Assume z, = 15, then /(>,)= 0.486 and /'fa) =0.206,
whence by Newton's rule (Art. 4) ^=13 nearly. Next for

^ = 13. /«) = - 0.0298 and /'(*,) = 0.322, whence z, = 13.1.

Lastly for z, = 13.1 f(z3 ) =0.0012 and /'(a,) = 0.3142, whence
z* = T 3-096, which is a sufficiently close approximation. The
horizontal tension in the given catenary is hence 1 30.96 pounds*

* Since e — e~ =2sinh8. this equation may be written iiS-iosinh6,
where 6 = ios"*, and the solution rmy be expedited by the help of tables of
hyperbolic functions. See Chapter IV
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Prob. 9. Show that the equation 3 sin x — 2x — 5 = o has but

one real root, and compute its value.

Prob. 10. Find the number of real roots of the equation

2X -(- log x — 10 000 = o, and show that the value of one of them is

x — 4995-74-

Art. 8. Algebraic Solutions.

Algebraic solutions of complete algebraic equations are

only possible when the degree n is less than 5. It frequently

happens, moreover, that the algebraic solution cannot be used

to determine numerical values of the roots as the formulas

expressing them are in irreducible imaginary form. Neverthe-

less the algebraic solutions of quadratic, cubic, and quartic

equations are of great practical value, and the theory of the

subject is of the highest importance, having given rise in fact

to a large part of modern algebra.

The solution of the quadratic has been known from very

early times, and solutions of the cubic and quartic equations

were effected in the sixteenth century. A complete investiga-

tion of the fundamental principles of these solutions was, how-

ever, first given by Lagrange in 1770.* This discussion showed,

if the general equation of the «th degree, f(x) =0, be deprived

of its second term, thus giving the equation f(y) = o, that the

expression for the root y is given by

y= cos, + go's, -f . . . + oo"-'s„_.
1 ,

in which n is the degree of the given equation, go is, in suc-

cession, each of the n th roots of unity, 1, e, e
2

, . . . e"'\ and

jr,, s,, . . . sn _, are the so-called elements which in soluble cases

are determined by an equation of the n — I
th degree. For

instance, if n = 3 the equation is of the third degree or a cubic,

the three values of go are

co, = 1, go= — £+ £-/— 3 = e- <» = — i — iV— 3 = £2
>

*Memoirs of Berlin Academy, 1769 and 1770; reprinted in CEuvres de

Lagrange (Paris, 1868), Vol. II, pp. 539-562. See also Traite de la resolution

des Equations numeriques, Paris, 1798 and 1808.
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and the three roots are expressed by

.Pi = *. + *. > ^=es
l
-{-e\, yt = e\+esa ,

in which s' and s,
s

are found to be the roots of a quadratic

equation (Art. 9).

The n values of go are the n roots of the binomial equation

gj" — 1 = o. If n be odd, one of these is real and the others

are imaginary ; if n be even, two are real and n — 2 are imagi-

nary* Thus the roots of w1 — 1 = O are -(- l and — 1 '< those

of go
3 — 1 = o are given above ; those of go* — 1 = O are

+ 1, + i, — 1, and — i where i is-v/— 1. For the equation

oo
b — 1 = o the real root is -f- 1, and the imaginary roots are

denoted by e, e\ e
3

, e
4

; to find^these let go" — 1 =0 be divided

by (»— 1, giving

00* -\- go
3
-\- go' + 00 -\- I = O,

which being a reciprocal equation can be reduced to a quad-

ratic, and the solution of this furnishes the four values,

e =— i(i- Vs + ^-10-2^5), b» = _j(i + V5 + 4/_ 10 + 2^5)^

e' = -i(l-V5_ iZ-io-aVs), es = -i(l+ V5_ V-io + 2V5),

where it will be seen that e.e* = 1 and e
2

.e
3 = 1, as should be

the case, since e
6 = 1.

In order to solve a quadratic equation by this general

method let it be of the form

x* -j- 2ax -f- b = o,

and let x be replaced by y — a, thus reducing it to

/ - (a' -b) = o.

Now the two roots of this are yx
= -\- s, and ya

= — slt whence
the product of (y — s

x) and (y -\- s
t )

is

f - j» = o.

Thus the value of s' is given by an equation of the first degree,

* The values of a> are, in short, those of the n " vectors " drawn from the

center which divide a circle of radius unity into n equal parts, the first vector

co 1 = J being measured on the axis of real quantities. See Chapter X.
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s' — d2 — b; and since x = — a-\-y, the roots of the given

equation are

x
1
= — a -j- yd' — b, x^— — a — yd' — b,

which is the algebraic solution of the quadratic.

The equation of-the n — I
th degree upon which the solution

of the equation of the nth degree depends is called a resolvent.

If such a resolvent exists, the given equation is algebraically

solvable ; but, as before remarked, this is only the case for

quadratic, cubic, and quartic equations.

Prob. ii. Show that the six 6 th roots of unity are -j- i,

+i(i+ ^~3), -t(r~ ^~3), -i, -*(i+ ^~3), -i(i~ V~2,)-

Art. 9. The Cubic Equation.

All methods for the solution of the cubic equation lead to

the result commonly known as Cardan's formula.* Let the

cubic be
x%

-\- lax* -\- 2,bx -(- 2c = o, (i)

and let the second term be removed by substituting y — a for

x, giving the form,

y + 3By+2C=o, (i')

in which the values of B and C are

B = - d + b, C'- a' — %ab + c. (2)

Now by the Lagrangian method of Art. 8 the values of y are

y, = *i + *. . y% = «"i + e
2
s,

, y% = e's, + es,

,

in which e and e
2

are- the imaginary cube roots of unity.

Forming the products of the roots, and remembering that

e
s — 1 and e

3
-\- <? + l — o, there are found

y,y,
Jry,y*+y*y* = - 3v. = + 3.5,

.

y,y*ys = s* + V = -2C.

For the determination of s, and s
2
there are hence two equa-

tions from which results the quadratic resolvent

s°+ 2Cs' — B' = o, and thus

,, = (-c+Vb* + c)\ s, = (-c-</£r+cy. (3)

* Deduced by Ferreo in 1515, and first published by Cardan in 1545.
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One of the roots of the cubic in y therefore is

yi = (-c+V^Tc^y+ (- c - SW+r>y,
and this is the well-known formula of Cardan.

The algebraic solution of the cubic equation (i) hence con-

sists in finding B and C by (2) in terms of the given coefficients,

.and then by (3) the elements ^ and s, are determined. Finally,

x, — — a + (j, + s,),

*
t = — *-ifo + J

i) + *•/""—
3(J .

-0> (4)

x, = - a - iO. -4- j,) — hV - 3(^1 — •*,).

which are the algebraic expressions of the three roots.

When B3
-j- C 2

is negative the numerical solution of the

cubic is not possible by these formulas, as then both s
1
and s,

are in irreducible imaginary form. This, as is well known, is

the case of three real roots, 5, -f- s, being a real, while s
l
— j

2
is

a pure imaginary.* When B3
-\- C* is o the elements J, and s,

are equal, and there are two equal roots, x
t
= x

3
= — « -(- C*,

while the other root is x^ = — a — 2(7*.

When B" -f- C" is positive the equation has one real and

two imaginary roots, and formulas (2), (3), and (4) furnish the

numerical values of the roots of (1). For example, take the

cubic
x' — 4.5*' 4- 12X —5 = 0,

whence by comparison with (1) are found a = — 1.5, b = 4- 4,

c = —2.5. Then from (2) are computed B = 1.75, £"=4-3.125.

These values inserted in (3) give s
l
= -|- 0.9142, s

2
= — 1.9142 ;

thus j, 4- s, = — 1.0 and s,— st
= -\- 2.8284. Finally, from (4)

x, = 1.5 - 1.0 = +0.5,

*, = i-5 +o.S + I-4H2 V^~3 = 2 -f 2.4495?,

** = i-5 + 0.5 - 1.4142 \/zri = 2 — 2.44952,

which are the three roots of the given cubic.

* The numerical solution of this case is possible whenever the angle whdse

cosine is — C/ V'— B% ran be eeomeirically trisected.
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Prob. 12. Compute the roots of x' — 2x— 5= o. Also the roots

of x 3
-\- o.6x

2 — 5.76.x -|- 4.32 = o.

Prob. 13. A cone has its altitude 6 inches and the diameter of

its base 5 inches. It is placed with vertex downwards and one fifth

of its volume is filled with water. If a sphere 4 inches in diameter

be then put into the cone, what part of its radius is immersed in the

water ? (Ans. 0.5459 inches).

Art. 10. The Quartic Equation.

The quartic equation was first solved in 1545 by Ferrari,

who separated it into the difference of two squares. Lagrange

in 1637 resolved it into the product of two quadratic factors.

Tschirnhausen in 1683 removed the second and fourth terms.

Euler in 1732 and Lagrange in 1767 effected solutions by

assuming the form of the roots. All these methods lead to

cubic resolvents, the roots of which are first to be found in

order to determine those of the quartic.

The methods of Euler and Lagrange, which are closely

similar, first reduce the quartic to one lacking the second term,

/ + 6Bf -\-4Cy + D = o\

and the general form of the roots being taken as

yx
= + V7, + V7, + Vs„ J>,= -V7. + Vs.- Vi„

yt
= 4- VI, - V7, - v7M yt

= - VI, - V72 + V7% ,

the values slt s„ s
s , are shown to be the roots of the resolvent,

1 s
3 + 3Bs' + i(gB* - D)s - \0 = o.

Thus the roots of the quartic are algebraically expressed in

terms of the coefficients of the quartic, since the resolvent is

solvable by the process of Art. 9.

Whatever method of solution be followed, the following

final formulas, deduced by the author in 1892, will result*

Let the complete quartic equation be written in the form

xl +4ax' + 66x* + $cx + d = o. (1)

* See American Journal Mathematics, 1892, Vol. XIV, pp. 237-245.
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First, let g, h, and k be determined from

g = a*-b, h = b*-\-c'-2abc + dg, k = iac-P-\d. (2)

Secondly, let / be obtained by

/ = \(]i + VW+P? + Xh - VFTT')
1

(3)

Thirdly, let u, v, and w be found from

U=g+l, V=2g-l, W = \l? + lk - \2gl. (4)

Then the four roots of the quartic equation are

x^-a + VZ+^v+V w
x

t
= — a-\-Vu — ^v-\- Vw,

x. = — a — Vu 4- Vv — Vzv,

(5)

x
t
= — a — Vu — 'v — Vw,

in which the signs are to be used as written provided that

2a
2 — 3<z3 -\- c is a negative number; but if this is positive all

radicals except Vw are to be reversed in sign.

These formulas not only serve for the complete theoretic

discussion of the quartic (1), but they enable numerical solu-

tions to be made whenever (3) can be computed, that is, when-

ever W -\-k* is positive. For this case the quartic has two real

and two imaginary roots. If there be either four real roots or

four imaginary roots If -\- k3
is negative, and the irreducible

case arises where convenient numerical values cannot be ob-

tained, although they are correctly represented by the formulas.

As an example let a given rectangle have the sides p and q,

and let it be required to find the length of an inscribed rec-

tangle whose width is m. If x be this length, this is a root of

the quartic equation

x* - (t>' + q
2 + 2m')x* + tyqmx — (p*+ tf

— m^m1 = o,

and thus the problem is numerically solvable by the above

formulas if two roots are real and two imaginary. As a special

case let p = 4 feet, q — 3 feet, and m = 1 foot ; then

x* — 2jx'' -\- 48* — 24 = o.
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By comparison with (i) are found a = o, b = — 4%, c = + 12,

and </=— 24. Then from (2), .g = +4ib k=—^-, and

k = -\- 4j9-. Thus A' -)- £s
is positive, and from (3) the value of /

is— 3.6067. From (4) are now found, «= -(-0.8933,^= 12.6067,

and w = -\- 161.20. Then, since c is positive, the values of the

four roots are, by (5),

x
x
— — 0.945 — 1/12.607 -+- 12.697 = — 5.975 feet,

x
t
— — 0.945 + I

7
1 2.607 + 12.697 = -\- 4.085 feet,

x
%
= — 0.945 + Vi 2.607 — 12.697 = -f- 0.945 -f- 0.302,

x
t
= — 0.945 — V12.607 — 12.697 = -|- 0.945 — 0.30/,

the second of which is evidently the required length. Each of

these roots closely satisfies the given equation, the slight dis-

crepancy in each case being due to the rounding off at the third

decimal.*

Prob. 14. Compute the roots of the equation x* -\- >jx -\- 6 = o.

(Ans. — 1.388, — 1.000, 1. 194 ± 1. 701/.)

Art. 11. Quintic Equations.

The complete equation of the fifth degree is not algebraic-

ally solvable, nor is it reducible to a solvable form. Let the

equation be

xh + $ax' + S&x* + $cx* + $dx + 2e — o,

and by substituting y — a for x let it be reduced to

/+ $Bf+ SC/ + $Dy+ 2E = o.

The five roots of this are, according to Art. 8,

y, = es
t + e\+ e\ + e\y„

y, = e% + e's, + es, + e
3
slt

yt
= e's, + es

t
-\- e

4

s
3 + e%

y*. = e% + e\+ e*s
3 + es

t ,

in which e, e', e
3

e
4
are the imaginary fifth roots of unity. Now

if the several products of these roots be taken there will be

* This example is known by civil engineers as the problem of finding the

length of a strut in a panel of the Howe truss.
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found, by (4) of Art. 6, four equations connecting the four ele-

ments j„ s
2 , s

3 , and s
t , namely,

— B — s,s
t + s,s„

— C = s*s
3 + s^s, + s,\ + s,\,

- D = s,\ + s
t\ + sfs, + j,*j, - J.V - J,V, + WA.

- 2£ = J
1

,+ J,
,+ *,'+ */ + 5(*,V*.-W.V*,+^,+V^,)

- 50.V, + Vv. + Vv* + *.V.}

;

but the solution of these leads to an equation of the 120th

degree for s, or of the 24th degree for s\ However, by taking

s,s
t
— v, or j,

6 + s," + j
3

6 + *," as the unknown quantity, a

resolvent of the 6th degree is obtained, and all efforts to find

a resolvent of the fourth degree have proved unavailing.

Another line of attack upon the quintic is in attempting to

remove all the terms intermediate between the first and the

last. By substituting y* +py -\-g for x, the values of p and q

maybe determined so as to remove the second and third terms

by a quadratic equation, or the second and third by a cubic

equation, or the second and fourth by a quartic equation, as

was first shown by Tschirnhausen in 1683. By substituting

y ~r~/J/*
~t~ iy "4" r f° r x

i
three terms may be removed, as was

shown by Bring in 1786. By substituting y*-\-py'-\- qy* -\-ry-\-t

for x it was thought by Jerrard in 1833 that four terms might

be removed, but Hamilton showed later that this leads to

equations of a degree higher than the fourth.

In 1826 Abel gave a demonstration that the algebraic solu-

tion of the general quintic is impossible, and later Galois

published a more extended investigation leading to the same
conclusion.* Although these discussions are complex, and not

devoid of points of doubt,-|- they have been generally accepted

as conclusive. Moreover, the fact that the quintic is still un-

solved in spite of the enormous amount of work done upon it

during the past two centuries, is strong evidence that the prob-

lem is an impossible one.

*See Jordan's Trait§ des substitutions et des Equations algGbriques, 1870.

fSee Kronecker, Verhandlungen der Berliner Akademie, 1853, p. 3S; also-

Cockle, Philosophical Magazine, 1854, Vol. VII, p. 134.



Art. 11.] QUINTIC EQUATIONS. 23

There are, however, numerous special forms of the quintic

whose algebraic solution is possible. The oldest of these is the

quintic of De Moivre,

f + sB/ + $By + 2E = o,

which is solved at once by making s, = s
3
= o in the element

equations ; then — B — s,s
t
and — 2E = s* + s

t\ from which

j, and s
t
are found, and y x

= j, -f- s
t , or

y, =(- E + VB'+ E'Y+ (- E - V'&+£')*,

while the other roots are jj/2
= es, -(- e's

t , yz
= e^, + e

3

s
i ,

y,= e's, + e\ , and js = e
,

s
1 + 6^, . If ^' 4- £ a be negative,

this quintic has five real roots; if positive, there are one real

and four imaginary roots.

When any relation, other than those expressed by the four

element equations, exists between s
t
,s

t , st , s
t , the quintic is

solvable algebraically. As an infinite number of such relations

may be stated, it follows that there are an infinite number of

solvable quintics. In each case of this kind, however, the co-

efficients of the quintic are also related to each other by a

certain equation of condition.

The complete solution of the quintic in terms of one of the

roots of its resolvent sextic was made by McClintock in 1884.*

By this method j,
6

, s,*, s
s\ and s

t
* are expressed as the roots of

a quartic in terms of a quantity t which is the root of a sextic

whose coefficients are rational functions of those of the given

quintic. Although this has great theoretic interest, it is, of

course, of little practical value for the determination of numer-

ical values of the roots.

By means of elliptic functions the complete quintic can,

however, be solved, as was first shown by Hermite in 1858.

For this purpose the quintic is reduced by Jerrard's transfor-

mation to the form x" -\- $dx-\-2e = o, and to this form can

also be reduced the elliptic modular equation of the sixth

degree. Other solutions by elliptic functions were made by

* American Journal of Mathematics, 1886, Vol. VIII, pp. 49-83.
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Kronecker in 1861 and by Klein in 1884* These methods,

though feasible by the help of tables, have not yet been sys-

tematized so as to be of practical advantage in the numerical

computation of roots.

Prob. 15. If the relation s,s
t
= s,s, exists, between the elements

show that V+ s
t
' + i-

3

6 + s,
6 = - zE.

Prob. 16. Compute the roots of y" + 10/ + 2oy + 6 = o, and

also those of y" — ioy
3 + 207 + 6 = 0.

Art. 12. Trigonometric Solutions.

When a cubic equation has three real roots the most con-

venient practical method of solution is by the use of a table of

sines and cosines. If the cubic be stated in the form (1) of

Art. 9, let the second term be removed, giving

y
SJrZBy+2C=o.

Now suppose y = 2r sin 8, then this equation becomes

B C
8 sin

3 84-6-, sin 0+2-5 = 0,
r r

and by comparison with the known trigonometric formula

8 sin
3

8 — 6 sin 0-f- 2 sin 36 = o,

there are found for r and sin 38 the values

r = V- B, sin 38 = C/ V— B\

in which B is always negative for the case of three real roots

(Art. 9). Nowsin 38 being computed, 38 is found from a table

of sines, and then 6 is known. Thus,

jj/, = 2r sin 8, y, = 2r sin (120° -\- 6), y, = 2r sin (240 + 8),

are the real roots of the cubic in y.f

* For an outline of these transcendental methods, see Hagen's Synopsis der

hoheren Mathematik, Vol. I, pp. 339-344.

f When B* is negative and numerically less than C 2
, as also when Bs is

positive, this solution fails, as then one root is real and two are imaginary. • In
this case, however, a similar method of solution by means of hyperbolic sines

is possible. See Grunert's Archiv fur Mathematik und Physik, Vol. xxxviii,

pp. 48-76.
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For example, the depth of flotation of a sphere whose diam-

eter is 2 feet and specific gravity 0.65, is given by the cubic

equation x3 — $x' + 2.6 — (Art. 6). Placing x = y+ 1 this

reduces to/— 37 + 0.6 = o, for which B= — i and C =+0.3.
Thus r= 1 and sin $0 = + 0.3. Next from a table of sines,

36/ = 17" 27', and accordingly = 5 49'. Then

yt
— 2 sin 5" 49' = +0.2027,

yt
= 2 sin 125 49' = + 1.6218,

y, = 2 sin 245 49' = — 1.8245.

Adding I to each of these, the values of x are

x, = + 1.203 feet, #„ = + 2.622 feet, x, = —0.825 feet

;

and evidently, from the physical aspect of the question, the

first of these is the required depth. It may be noted that the

number 0.3 is also the sine of 162° n', but by using this the

three roots have the same values in a different order.

When the quartic equation has four real roots its cubic re-

solvent has also three real roots. In this case the formulas of

Art. 10 will furnish the solution if the three values of / be ob-

tained from (3) by the help of a table of sines. The quartic

being given, g, h, and k are found as before, and the value of

k will always be negative for four real roots. Then

r = V— k, sin 36* = — -h/r*,

and 3# is taken from a table ; thus is known, and the three

values of /are

/, = r sin 0, h = r sin ( 1 20° + 0), l,~r sin (240 + 0).

Next the three values of u, of v, and of w are computed, and

those selected which give u, w, and v — Vw all positive quanti-

ties. Then (5) gives the required roots of the quartic.

As an example, take the case of the inscribed rectangle in

Art. 10, and let/ = 4 feet, q = 3 feet, m = V13 feet; then the

quartic equation is

X* — 5 !*•'+ 48 Vl3 X — 156 = 0.
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Here a = o, b = — 8J, c = + 12 V13", and </= — 156. Next

£- =+ 8J, /4= — *£&, and £ =— ^ The trigonometric work

now begins; the value of r is found to be + 4J, and that of

sin 3(9 to be + 0.7476; hence from the table 36* = 48°23', and

6= i6°07'40". The three values of / are then computed

by logarithmic tables, and found to be,

/, = + 1.250, /, = + 3,1187, /„=- 4.3687.

Next the values of u, v, and w are obtained, and it is seen that

only those corresponding to /, will render all quantities under

the radicals positive ; these quantities are u = 9.75, v = 1 5-75»

and w = 192.0. Then the four roots of the quartic are

^= -8.564, x
%
=+ 2.319, *

3=+ 1.746, x
t =+4.499 feet,

of which only the second and third belong to inscribed rec-

tangles, while the first and fourth belong to rectangles whose

corners are on the sides of the given rectangle produced.

Trigonometric solutions of the quintic equation are not

possible except for the binomial x* ± a, and the quintic of

De Moivre. The general trigonometric expression for the root

»of a quintic lacking its second term isjj/=2r
]
cos #,+2?", cos

t ,

and to render a solution possible, r
x
and r

2 , as well as cos 0,

and cos #
2 , must be found; but these in general are roots of

equations of the sixth or twelfth degree : in fact r,' is the same

as the function y, of Art. 11, and r,' is the same as s^
3 .

Here cos 0, and cos 0, may be either circular or hyperbolic

cosines, depending upon the signs and values of the coefficients

of the quintic.

Trigonometric solutions are possible for any binomial equa-

tion, and also for any equation which expresses the division of

an angle into equal parts. Thus the roots of x" + 1 =0 are

cosm 30 ± i sin m 30 , in which m has the values 1, 2, and 3.

The roots of x*— S^
3+5^ — 2 cos 5 = o are 2 cos (;« 72°+0)

where m has the values o, I, 2, 3, and 4.

Prob. 17. Compute by a trigonometric solution the four roots of

the quartic xi + 4.x
3 — 24.x

2— 76X— 29 = o. (Ans. —6.734, —1.550,
+ 0.262, + 4.022).
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Prob. 1 8. Give a trigonometric solution of the qukitic equation

x* — $bx' + $ffx — 2? = o for the case of five real roots. Compute
the roots when b =i and e = 0.752798. (Ans. —1.7940, — 1.3952,

0.2864, 0.9317, 1-9710.)

Art. 13. Real Roots by Series.

The value of x in any algebraic equation maybe expressed

as an infinite series. Let the equation be of any degree, and

by dividing by the coefficient of the term containing the first

power of x let it be placed in the form

a = x+ bx% + ex 3

-}- dx ( + ex"+fx'+ . . .

Now let it be assumed that x can be expressed by the series

x = a + mc? + nas
-{-pa*+ qa" + • •

By inserting this value of x in the equation and equating the

coefficients of like powers of #, the values of m, n, etc., are

found, and then

x=a - Z>a
i + (2t>'-£)a"-($6

!

'-5fc + d)a< + (i4bi-2iFi:+6?>d+3t:
i—e)a>

-(42^-84^+28^+28^- ibe- yed+ /)a'+. . .,

is an expression of one of the roots of the equation. In order

that this series may converge rapidly it is necessary that a

should be a small fraction.*

To apply this to a cubic equation the coefficients d, e,f, etc.,

are made equal to o, For example, let x3 — $x+ 0.6 = o ;

this reduced to the given form is 0.2 = x — \x*, hence a — 0.2,

b = O, c — — \, and then

x = 0.2 + i . 0.2
3+ i . 0.2

6 + etc. = + 0.20277,

which is the value of one of the roots correct to the fourth

decimal place. This equation has three real roots, but the

series gives only one of them ; the others can, however, be

found if their approximate values are known. Thus, one root

is about +1.6, and by placing x=y-{-i.6 there results an

equation my whose root by the series is found to be+ 0.0218,

and hence + 1.6218 is another root of x* — 3* + 0.6 = o.

*This method is given by J. B. Molt in The Analyst, 1882. Vol. IX, p. 104.
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Cardan's expression for the root of a cubic equation can be

expressed as a series by developing each of the cube roots by

the binomial formula and adding the results. Let the equa-

tion be y -j- T,By
-f- 2C = o, whose root is, by Art. 9,

y = (- C+ V£> + C 1
)* + (- C- V£°+ C>)\

then this development gives the series,

. _,V 2 2.5.8, 2. 5.8. 11 . 14 ,
\

y = 2(— C)Hi r — r
1

r~tr r — • <K
' \ 2 2.3.4 2.3.4.5.6 /'

in which r represents the quantity (J? -f- C*)/t,C*. If r = O

the equation has two equal roots and the third root is 2(— C fi.

If r is numerically greater than unity the series is divergent,

and the solution fails. If r is numerically less than unity and

sufficiently small to make a quick convergence, the series will

serve for the computation of one real root. For example, take

the equation xa — 6x -\- 6 = o, where j5= — 2 and C = 3 ;

hence r = 1/8 1, and one root is

y — — 2.8845(1 — 0.01235 — 0.00051 — 0.00032—) = — 2.846,

which is correct to the third decimal. In comparatively few

cases, however, is this series of value for the solution of cubics.

Many other series for the expression of the roots of equa-

tions, particularly for trinomial equations, have been devised.

One of the oldest is that given by Lambert in 1758, whereby
the root of xn

-\- ax — b = o is developed in terms of the

.ascending powers of b/a. Other solutions were published by
Euler and Lagrange. These series usually give but one root,

and this only when the values of the coefficients are such as to

render convergence rapid.

Prob. 19. Consult Euler's Anleitung zur Algebra (St. Petersburg,

1771), pp. 143-150, and apply his method of series to the solution of
a quartic equation.

Art. 14. Computation of all Roots.

A comprehensive and valuable method for the solution of

equations by series was developed by McClintock, in 1894, by
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means of his Calculus of Enlargement.* By this method all

the roots, whether real or imaginary, may be computed from a
single series, The following is a statement of the method as

applied to trinomial equations :

Let x" = nAxn~ k + B" be the given trinomial equation.

Substitute x = By and thus reduce the equation to the form

y" = nayn
'k

-\-i where a = A/Bh
. Then if B" is positive, the

roots are given by the series

y = 00 -L-031 -* a + atf~*\\ — 2k+ ri)c?/2 !

+a>, -s*(i -3*+»)(i -3^+2«K/3

!

+<»-^(i-4^+«)(i-4/&+2«)(i-4/§+3«K/4! +. . .,

in which w represents in succession each of the roots of unity.

If, however, B" is negative, the given equation reduces to

y" = nay"~k —I, and the same series gives the roots if go be

taken in succession as each of the roots of — I.

In order that this series may be convergent the value of a"

must be numerically less than k~ k(n — k)*~n ; thus for the quar-

tic y
i = 4ax -\- I, where n = 4 and k = 3, the value of a must

be less than 27-*.

To apply this method to the cubic equation x 3=^Ax±B^,
place n — 3 and k = 2, and put ^ = .##. It then becomes

y' = $ay ± I where « = A/B2

, and the series is

y = go -f- g/# — -Jftja
3

-f- ita'a* -(-...,

in which the values to be taken for go are the cube roots of 1

or — 1, as the case may be. For example, let x3— 2x — 5 =0.

Placing y=$ix, this reduces to y* =0.684 y-\-i. Here #=0.228,

and as this is less than 4-1 the series is convergent. Making

go = 1, the first root is

y = 1 +0.2280 — O.OO39+ O.OOO9 = I.22SO.

*See Bulletin of American Mathematical Society, 1894, Vol. I, p. 3; also>

American Journal of Mathematics, 1895, Vol. XVII, pp. 89-110.
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Next making co = — \ + £ V— 3, a? is — \ —\ V— 3,

and the corresponding root is found to be

y = - 0.6125 + 0.3836 4/^3.

Again, making 00 = — i — i V— 3 the third root is found to

be the conjugate imaginary of the second. Lastly, multiplying

each value of y by 5*,

^ = 2.095, X = — I.O47 ± I-I36 V— I,

which are very nearly the roots of x* — 2x — 5=0.

In a similar manner the cubic x" -f- 2x -\- 5 =0 reduces to

y = — 0.6847 —1, for which the series is convergent. Here

the three values of oa are, in succession, — 1, \ -\-\ V— 3,

— £ -j- £ V— 3, and the three roots are y = — 0.777 and

y = 0.388 ± 1.137*-

When all the roots are real, the method as above stated

fails because the series is divergent. The given equation can,

however, be transformed so as to obtain n — k roots by one

application of the general series and k roots by another. As
an example, let x* — 243* -\- 330 = o. For the first applica-

tion this is to be written in the form

x=z— + ?32
243^243'

for which n = 1 and k — — 2. To make the last term unity

330
place x = —

—

y, and the equation becomes

whence a = 33073.243'. These values of n, k, and a are now
inserted in the above general value of y, and 00 made unity;

thus y = 0.9983, whence x, =1.368 is one of the roots. For
the second application the equation is to be written
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for which n — 2 and k = 3. Placing x = 243^, this becomes

'—& + '

whence a = — 110/2435, and the series is convergent. These

values of n, k, and a are now inserted in the formula for y,

and 00 is made + 1 and — 1 in succession, thus giving two

values for y, from which x, = 14.86 and x, = — 16.22 are the

other roots of the given cubic.

McClintock has also given a similar and more general

method applicable to other algebraic equations than trinomials.

The equation is reduced to the form y" = no. . </>y ± 1, where

na . cpy denotes all the terms except the first and the last.

Then the values of y are expressed by the series

y-=.oo -4- GDx - n4>oo . a-\-G)1-"-7-Go1
~''(cj)Goy . —

-J-

d
+(

CBl~"^) &,I ~K^a5
)

S
-

3l+-

in which the values of go are to be taken as before. The

method is one of great importance in the theory of equations,

as it enables not only the number of real and imaginary roots

to be determined, but also gives their values when the conver-

gence of the series is secured.

Prob. 20. Compute by the above method all the roots of the

quartic x* + x -f- 10 = o.

Art. 15. Conclusion.

While this Chapter forms a supplement to the theory of

equations as commonly given in college text-books, yet the

brief space allotted to it has prevented the discussion and de-

velopment of many interesting branches. Chief among these

is the topic of complex or imaginary roots, particularly of

their graphical representation and their numerical computation.

Although such roots rarely, if ever, are required in the solution

of problems in physical science, their determination is a matter

of much theoretic interest. It may be mentioned, however,
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that both the regula falsi and Newton's approximation rule

may, by a slight modification, be adapted to the computation

of these imaginary roots, approximate values of them being

first obtained by trial.

A method of solution of numerical algebraic equations,

which may be called a logarithmic process, was published by

Graffe in 1837, and exemplified by Encke in 1841.* It consists

in deriving from the given equation another equation whose

roots are high powers of those of the given one, the coefficients

of the latter then easily furnishing the real roots and the

moduluses of the imaginary roots. The method, although

little known, is without doubt one of high practical values, as

logarithmic tables are used throughout; moreover, Encke states

that the time required to completely solve an equation of

the seventh degree with six imaginary roots, as accurately as

can be done with seven-place tables, is less than three hours.

The algebraic solutions of the quadratic, cubic, and quartic

equations are valid not only for real coefficients, but also for

imaginary ones. In the latter case the imaginary roots do not

necessarily occur in pairs. The method of McClintock has the

great merit that it is applicable also to equations with imagi-

nary coefficients ; it constitutes indeed the only general method
by which the roots in such cases can be computed.

Prob. 21. Compute by McClintock's series the roots of the equa-

tion x* — ix — 1 = o.

Prob. 22. Solve the equation cos x coshx+ i = o, and also the
equation x — ex = o. (For answers see Crelle's Journal fur Mathe-
matik, 1841, Vol. XXII, pp. 1-62.)

* See Crelle's Journal fiir Mathematik, 1841, pp. 193-248.


