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INTRODUCTION

It is customary to think that arithmetic precedes algebra, and
that it is a more elementary part of mathematics. At school,
arithmetic is taught from the first form while algebra only from the
fifth. Since a vast majority of people know about mathematics
mainly from what they have learnt at school, the idea about the
elementariness of arithmetic has taken deep roots. Meanwhile
arithmetic, if considered as a study of properties of integers, and
of operations upon them, is a difficult and far from elementary
section of mathematics. True, in such a generalized sense, this
section is rather known as “higher arithmetic” or “theory of num-
bers” so as to distinguish it from school arithmetic. But these
designations do not alter facts. And the fact.is that both school
arithmetic and higher arithmetic belong to one and the same sphere
of knowledge. In my view, it would be very useful if schoolboys
from higher. classes, having interest in mathematics, enriched the
knowledge that they have acquired in lower classes. Actually,
such an enrichment is also essential in order to get acquainted
with higher arithmetic in future.

This brochure is intended to be of help in this direction.

As a starting point, we shall consider the so-called fundamental
theorem of arithmetic. This somewhat scientific designation need
not be frightening: everybody knows this theorem well and often
use it for arithmetical calculations (e. g. while finding the common
denominator of fractions), not realizing at the same time that this
is an important theorem requiring a careful and detailed proof.
We shall explain what it is all about.

Every integer can be expressed as a product of prime numbers.
For example,

420=2x2x3x5x%x7 (1)

Now, if the number is sufficiently large, then for finding the
corresponding factorization, it is necessary sometimes to spend
a long time. Nevertheless, we can accomplish this factorization
in all cases if we like. But may be, we have been just lucky
so far? Are we sure that any arbitrary whole number can be
represented as a product of prime numbers? It is actually so,
but this fact requires a proof. The first part of the fundamental
theorem in fact comprises the statement:

Every whole number can be represented as a product of prime
numbers.
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The proof of this statement is carried out in this brochure.
In fact it is very simple and it would be useful for the reader to
work it out independently. The proof of the second part of the
theorem is more difficult (it is, however, considered self-evident at
school).

Before going on to its formulation, let us once again consider
the above example of factorization of the number 420 into prime
multipliers. The procedure, well-known from school, also represented
schematically thus:

4201 2
210 | 2
105 | 3
* 3515
717

actually gives the factorization (1). But may be, there are also
other methods of factorization? How to know whether they will
also give the same result? Of course, for example, we can try to
expand the given number as a product of two smaller numbers
(not necessarily prime numbers) and then each of them as a product
of smaller numbers and so on until we arrive at numbers which
cannot be factorized further (i. e. at prime numbers). However, from
the very first step it is clear that such a process is not unique.
In fact, for example, for the same number 420, we have

420 = 20 x 21, 420 =15 x 28

Thus it is quite natural to ask: are there whole numbers which
can be expressed in different ways -as products of prime numbers?
It turns out that such whole numbers do not exist, and the
corresponding statement about the uniqueness of factorization of
numbers as product of prime multipliers does, actually, constitute
the second part of the fundamental theorem:

If some whole number n is expanded in two ways as a product
of prime multipliers

n=pi'Pr ... Pk=4q1°92 --- q
then these factorizations exactly coincide except for the order of
multipliers: both of them contain one and the same number of

8



multipliers, k = I, and every multiplier occurring in the frst factorization
is repeated the same number of times in the secondV.

We shall give quite a detailed proof of this statement. It is,
as we pointed out earlier, much more complicated than the proof
of the first statement. This complication is not accidental but is
connected with the fundamental properties of the arithmetic of whole
numbers. It turns out that apart from this primary arithmetic,
there are in existence, and of great use, many other ‘arithmetics’.
In some of the arithmetics, the statements of the fundamental
theorem are valid, in others — not, more so, the statement about
uniqueness of expansion is not fulfilled. We shall give examples of
arithmetics of the first as well as second kind.

We shall consider in greater detail one arithmetic of the
first kind — the arithmetic of complex whole numbers, or as they
are often called, Gaussian whole numbers. V}’e may mention, by
the way, that we shall sometimes call the ordinary whole numbers
as rational whole numbers (so as not to confuse them with
Gaussian whole numbers). However, at places where they don’t
lead to confusion, we shall be speaking of just whole numbers,
meaning thereby rational whole numbers. In the arithmetic of
Gaussian whole numbers, the theorem is likewise applicable and
this applicability carries along with it a whole lot of interesting
and far from obvious properties of rational whole numbers.

At the end of this brochure, we shall give an example of the
arithmetic in which the fundamental theorem is not applicable:
true, the numbers being considered there may be expressed as a
product of prime multipliers, but it may turn out that the prime
numbers occurring in the two expansions are different. We shall
not investigate this arithmetic in greater detail: this would require
the introduction of a number of new concepts and a study of
their properties, which is possible only in the framework of a
serious university course.

For an understanding of our exposition, the reader is not
required to possess more knowledge than is imparted by a school
curriculum in mathematics, but for one important exception. While
proving the theorems, we shall be making extensive use of the
method of mathematical induction ). This method in mathematics is

D If we consider any artitrary whole number (positive or negative),
then by the uniqueness of factorization into prime multipliers it should
be understood that two factorizations n=p,-p, ... pyand n=gq,-q, ... q,
may differ not only in the order of -the multipliers, but also in signs of
corresponding multipliers; see § 1 — formulation’ of the fundamental theorem.

2 Sometimes it is also called “complete induction”.



unfortunately rarely taught at school. A detailed substantiation and
elucidation of this theory would lead us too far from our topic.
To the readers, who would like to get acquainted with the method
of proof by induction, we may recommend the brochure by
I. S. Sominsky “The Method of Mathematical Induction” (Mir
Publishers, 1975) which was published in the series “Little Mathema-
tics Library”, or the book “On Mathematical Induction” in the
series “Popular Lectures on Mathematics” (Nauka, 1967) by
I. S. Sominsky, L. I. Golovina and I. M. Yaglom.

At the end of this brochure, we shall mention some books which
explain in a comprehensible form the theoretical-numerical facts
that are more or less closely linked with the question being
investigated here.

§ 1. The Fundamental Theorem of Arithmetic.
Proof of the First Part

We shall give a single formulation for the statements given in
the introduction, i. e. formulate completely the fundamental theorem
of arithmetic.

Any non-zero whole number may be represented in the form of a
product of prime numbers; moreover, such a representation is unique
except for the order-of the multipliers and their signs.

As has already been stated, the above-mentioned theorem contains
two statements: first, a statement about the existence of a repre-
sentation for any number as a product of prime numbers, and
second, a statement about the uniqueness of such a representation.
We shall prove both these statements. In this paragraph, we shall
prove only the first of these. To begin with, ‘we shall make two
simple observations:

1. One (1) is, for many reasons, not considered as a prime
number in spite of the fact that it cannot be expressed as a product
of smaller numbers. Then the question arises: in what way is the
above-mentioned theorem valid for integer 1? Or, in other words,
in what way is integer 1 represented in the form of a product of
prime numbers? Mathematics, in contrast with, say, grammar, does
not like exceptions. We shall consider that

1=1 ;

actually is the expansion of integer 1 into a product of prime numbers.
Moreover, the number of prime multipliers in the right hand side is
equal to zero. This relation reminds the definition of zero order
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a® = 1 (number of multipliers a is equal to zero) and is convenient
in many ways. We make a similar agreement for integer —1 also.

2. As a second remark, we shall simply give an example to
explain the concept of uniqueness of expansion of a whole number
into prime multipliers. Two expansions for number 18

18=2x3x3

and
18=(—=3)x(—-2)x3

are considered indistinguishable.

Proof for the existence of expansion of a rational whole number
into a product of prime multipliers. We shall first confine ourselves
to the case of positive whole numbers. The possibility of their
expansion into prime multipliers is proved by the method of mathema-
tical induction:

(@) For n=11=1 is the required representation: 1 is a product
of merely a large number of prime numbers.

(b) Let us suppose that for all positive numbers m, that are less
than n, expansion into a product of prime numbers is already
established. We shall then go on to show that for number n also
such an expansion will occur. If n is a prime number, then

n=n

is the required expansion (one prime multiplier).

Let n be a complex number. Then it is a product n=n,-n,
of two whole numbers n, and n, each of which is ditferent from 1
or from n. Consequently, n, <n and n, < n. But then, by the
principles of induction, the expansion of numbers n, and n, as
products of prime numbers is already established:

ny=pi-p2 --- Pr
n;=4qy°q2 ... gs

where p; and g; are prime numbers. We have n=p,-p, ...
.. Py q1°q2 ... g5 1. €. We have got the required expansion of the
number n.

If n is a negative whole number, then —n is a positive number.
As has already been proved, —n is expandable into a product of
prime numbers. Let

—n=pipy ... P



Then
n=(—=1)py-ps ... P

or, for example, n=(—p;)-p, ... pi is the required expansion of
the number n. This also proves the first part of the theorem.
There are many proofs for uniqueness of expansion. The one which
we shall deduce is neither the shortest nor the simplest. However,
our proof has the advantage that it can be directly generali-
zed into a number of other cases, for example, to the case of
polynomials of one variable, and to the case of complex whole
numbers. Apart from this, during the course of the proof, we shall
obtain a number of important theorems of arithmetic as a sort of
by-product.

§ 2. Division with Remainder and Greatest Common
Divisor (GCD) of Two Numbers.
Proof of the Second Part
of the Fundamental Theorem

The statement about the possibility of “division with a remainder”
in the case of whole number is the starting point for our
consideration. This statement can be precisely formulated as under:

THEOREM 1. Let a and b be whole numbers and b # 0. Then there
exist whole numbers q and r'), where 0 < |r| < b, such that

a=q-b+r ) (1)

The equality r = 0 in the equation (1) is equivalent to the fact that
number a is divisible by b?. We shall denote such a fact in future
by b|a — this is an accepted notation in the number theory.

We shall prove the possibility of such a representation. For this,
we observe that for every rational number t a whole number ¢

D The remainder r can be any whole humber — positive, negative, or zero.
2 For two whole numbers a and b, the statements “number a is
divisible by number b”, “number a is a multiple of number b”,
“number b is a divisor of number a”, or, finally, “number b divides
number a” mean one and the same thing; we shall use each one of them.
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can be found so that |‘L' - t| <1V Lett= %; a and b being whole

numbers. We select a whole number g so that % - ql < 1 and express
r=b(%—gq)=a—b
- b q)=a q

Thus r is a whole number |r| = |b| ’% - q’ < |b| x 1 =1b| and

a=q-b+r,
qed.?

Theorem (1) allows us to deduce the idea of GCD of two
numbers and prove many of its properties.

DEFINITION 1. If a and b are two non-zero whole numbers
and if ¢ is a number such that c|a and c|b, then c is called a
common divisor of numbers a and b. We shall note that any two
numbers always have common divisors. These are numbers 1
and —1. If no other divisors exist, then numbers a and b are
called mutually prime numbers. We shall talk about the mutually
prime numbers later.

DEFINITION 2. Number d is called the greatest common divisor
of numbers a and b (GCD), if: (1) d is a common divisor of a
and b and (2) d is divisible by any other common divisor of
numbers a and b. (Thus, for example, 6 is GCD of numbers 18
and 30, since 6|18 and 6]30, and on the other hand, 6 is
divisible by all common divisors of these numbers: 1, —1, 2,
-2,3, —-3,6, —6.)

The reader must be aware even from school that a GCD exists
for any pair of whole numbers and must also be conversant with
the method of its determination. But if we recall and carefully

! As a matter of fact the nearest whole number to t differs from
1
it by not more than 3 but we shall not require the precision.

2 We note that in representation (1), the whole numbers g and r are
not determined uniquely. For example for a =13 and b =3 we have
13=4-3+1@g=4r=1or13=5-3+(-2)(g=S5,r= —2). This is also
seen from our proof. In fact if a is not divisible by b, then

a a .

b is a fractional number but then n < —<n+ 1 where n is a whole
number. For number g we can choose q=n3‘or g =n+ 1 which gives
two representations of the form (1). Only in case where b|a, is the number g

singularly represented, a = q-b; in this case r =0.
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analyze this method we can easily deduce that it makes use of
the factorization of numbers a and b into prime multipliers and
of the uniqueness of such a factorization. This method is still
forbidden to us since we are just going to prove the corresponding
theorem.

From our definition (Definition 2) it does not directly follow
that, for any two numbers a and b, a GCD always exists. We
shall now prove that it is actually so; moreover, this proof shall
not make use of factorization of numbers a and b into prime
multipliers.

THEOREM 2. For any pair of whole numbers a# 0 and b # 0,
there exists a GCD.

PROOF. In addition to numbers a and b, we shall consider all
the possible numbers of the type xa + yb where x and y are any
integers. Numbers of such kind,

v=xa+ yb 2

are called linear combinations of numbers a and b. For example,
for a=6, b=22, the linear combination will be numbers 28
28=1-6+1-22), 10(10=(-2)-6+1-22), —92(—-92=3-6+
+ (—5)-22), etc. Generally, for any given numbers a and b there
exists an infinitely large number of their linear combinations.
We shall denote the set of such numbers through M. We
observe that this set contains, in particular, also the numbers a
(for y=0, x=1) and b (for x=0, y=1) as well as number
0 (x=0, y=0). All numbers v from the set M are obviously
whole numbers. If v belongs to M then —v also belongs to M
(if v = xa + yb, then —v =(—x)a + (— y)-b). We also notice one
more property of numbers v belonging to M, that we shall need
at once: all such numbers are divisible by all common divisors. of
numbers a and b. In fact, if cla and c|b and say a=a'c
and b=b'c, then v=xa+ yb=xa'c+ yb'c=(xa' + yb')c, i. e.
c|v. Now let d # 0 — the minimum number by taking modulus
out of all non-zero numbers in M. We shall prove that d
is the GCD for numbers a and b. It satisfies the property of
GCD as per definition (2), since all numbers from M possess this

) Such number in the set M actually does exist. We notice that in
the set M are contained numbers which are not equal to zero (for
example a or b) and their moduli are positive integers, i. e. natural numbers.
But one of the fundamental properties of natural numbers, usually applied
as an axiom (see LS. Sominsky, “The Method of Mathematical
Induction™) is that any non-void collection of natural numbers always
contains a minimum number.
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property. All that is now required is to establish that it also
possesses the property (1), i. €. d is a common divisor of numbers
a and b. We shall show that d|a. Since d belongs to M, it can be
expressed in the form d = sa + tb where s and t are suitable integers.
We shall divide a by d with remainder, i. e. we shall find such
numbers q and r, r < |d|, so that

a=qd+r
But then the remainder r also must belong to set M. Actually,
r=a—qd=a—q(sa+tb)=(1—gs)a+tb

We now recall that d by modulus is the minimum number among
non-zero numbers of set M and r <d. It follows that r =0 and
dla. In exactly similar way the divisibility d|b is proved. The
theorem is thus proved.

We have established the existence of GCD of two non-zero
whole numbers. Apart from that we shall deduce from the proof the
following fact which we shall soon require:

THEOREM 3. GCD of numbers a and b is represented in the
form of a linear combination of these numbers.

The question arises: has the GCD of numbers a and b been
singularly determined? The answer is, of course, in the negative:
if number d possesses the properties (1) and (2) of the definition
of GCD, then —d also possesses these properties. But this
exhausts the non-singularity. Actually, let d and d’ be two GCDs of
numbers a and b. Since d possesses the property (2) and d’' —

property (1), d'|d. But analogously d|d’. Thus o = %, and —=

d
1 1 . . .
W= 5 are integers. But the only integers whose reciprocals
are also integers are numbers 1| and —1. Thus a =1 or a = —1,

whence d'=d or d = —d. If in the definition of GCD, we
require that this number were positive — it sometimes (but not always)
is convenient — then it could be said that GCD of two non-zero
integers exists and is singularly determined.

In future we shall express GCD of numbers a and b through
(a, b) as is usually the practice in the literature on number theory.

Let’s go over to the question of pairs of mutually prime numbers.
We have already come across this concept. Now we shall repeat
its definition.

DEFINITION 3. Integers a# 0 and b# 0 are called mutually
prime if their GCD is equal to 1.
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In other words, it may be said that mutually prime numbers
are such numbers for which the only common divisors are numbers
1 and —1.

From the aforesaid (Theorem 3), it follows that if (a, b) =1,
then 1 can be expressed in the form

l=sa+th 3)

with suitable integers s and t. Conversely, if the equality (3) holds
for suitable s and ¢, then a and b are mutually prime. Really
(see proof of Theorem 1), d = (a, b) — this is the lowest number by
modulus among non-zero numbers of the type xa + yb. Consequently,
if (3) holds, then |d| <1 and d #0, so d = +1.

From this directly follows the most important property of
mutually prime numbers.

THEOREM 4. If a|bc and (a, b) = 1, then a|c (this property reads:
if number a divides the product of two numbers and is mutually
prime to one of them, then it is a divisor of the other).

PROOF. Since (a, b) = 1, we can find such numbers s and ¢ so that

l=sa+th “4)

Multiplying both sides by ¢ we have
¢ =(sc)a + t(bc)
Both items on the right-hand side are divisible by a, consequently ¢
is divisible by a.
The following statement is also useful.
THEOREM 5. If number a is mutually prime with numbers b and c,
then it is mutually prime with the product bc.

PROOF. Since (a4, b) =1, we can find whole* numbers s and ¢t
satisfying the equality

l=sa+tb
Analogously, since (a, ¢) = 1, then
1 =ua+vc

for suitable u and v. Multiplying these two equations we get

1 = (sa + tb)(ua + vc) = sua® + savc + thua + thve = (sua + svc +
+ tbu)a + (tv)- (bc)

If m = sua + svc + tbu and n = tv, then m and n are integers and

1 = ma + n(bc)
16



This shows that a and bc are mutually prime.

The statement of the last theorem can be easily extended for
an indefinite number of factors.

THEOREM 6. If a is mutually prime with numbers b, b,,
b., then a is mutually prime with the product b,-b, ... b,.

The proof of this theorem is carried out by the method" of
mathematical induction for k factors.

"PROOF of uniqueness of factorization of an integer as a product
of prime multipliers.

Now, at last, we can prove the second part of the fundamental
theorem of arithmetic. For this, we observe that by definition of a
prime number, two different prime numbers are mutually prime.
The proof of uniqueness of factorization shall be carried out by
induction for absolute value of number n.

(@ If || =1, then n= + 1 and

taey

i. e. the factorization is unique for numbers 1 and —1.

(b) Let us suppose that the property to be proved is already true
for all numbers m for which |m| < |n|. Let

n=py:p2 .- Pk=491°92 -.. q

be two factorizations for the number n as products of prime
numbers p;, p, ..., px and q,, q,, ..., q; respectively. We state
that prime number p, occurs among prime numbers ¢y, ¢,
..., q (or, may be, is opposite in sign to some one of
them). Really, if it is not so, i. e. if py# +¢q;, i=1, 2, ..., |, then
pr would be mutually prime with all the numbers g; and, conse-
quently, according to Theorem 6, also with their product, i. e.
with the number n. But this is impossible since py|n, i. €. (px, 1) = p\.
Thus p, is equal to some one of the prime numbers + g, We
may assume that p, =g, because if it is not so we can obtain
such an equality by rearranging the multipliers ¢; and then, if at
all p, = —gq,, by changing the sign of ¢, by changing it in some
other ¢; also.
Thus we get

n=pyp2 --- Pk-1"Pk=9q91°92 --- q1-1" Dk
whence

m =P1'P2 --- Pk-1=41°92 --- qi-1

_ n
Dk »
But [m| <|n| and by assumption of induction, the statement of
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theorem for m has already been proved, i. e. k—1=1[—1, the
sequences in py, pz, ..., px—1 and qy, g, ... q;—; contain, except
for the accuracy in signs, the same prime numbers and corresponding
prime numbers occur in both the factorizations the same number
of times, and since p, = ¢, then it is also valid for sequences
P1s P2s -+ Pi-15 P @0d qy, G, ..., @iy, qi, q€d.

§ 3. Algorithm of Euclid and Solution of
Linear Diophantine Equations with
Two Unknowns

According to Theorem 2 two integers a and b have a GCD.
We shall now describe a single procedure for determining GCD
which was indicated even in the ‘Elements of Euclid’ and is called
“Euclidean Algorithm”.

For this we shall assume that

|a| > |b]
First step. Let us divide a by b with remainder:
a=q1-b+r1, |r1|<|b| (1)

If ry, =0, then bla and (a, b)=b. If r, #0, then we take the
Second step. Let us divide b by r,:

b=gqy-ry+ry ral <yl (V)]
If r, # 0, then we take the -
Third step.
ri=qs-ry+rs s <|r (3)

and so on. At every step the new remainder is less than the
remainder in the previous step

Ibl > |r1| > |r2| >,
and at some kth step (k < |b|) the remainder becomes equal to zero.
kth step.
Tk—2 = qiTk—1 (k)
We shall show that the last non-zero remainder r,_, is the required
(a, b). Really, we get a chain of equalities:
(1) a—dq,- b + ry
2 b=gyri+n
3 ri=qsratry

(k= 1Dr3=qu_1Tk-2+ Ty
(k) k-2 =Gk Tk-1

18



From the last equality we get r,_,|r,—,, from the last but one —
Fe—1|r—y and r,_,|r,_, and, consequently, r,_,|r,_3;. From the
previous equality we can analogously conclude that r,_,|r,_, and
thus going step by step to earlier equations, we conclude that
vevs Te—1lray Te—1lry, re—1lb, re—ila. We see that r,_, is the
common divisor of numbers a and b.

Now let c|a and c|b. Then from (1), (2), ..., (k — 1) successively,
we get c|ry, c|ry, ..., ¢|rx—y. Thus r,_, is really the GCD for
numbers a and b.

Let us take a numerical example: a = 858, b =253. We have

(1) 858 =3.253 + 99
Q) 253=2-99+55
() 99=1-55+44
@) 55=1-44+ 11
(5 44=4-11

whence (858, 253) = 11. Thus, with the help of Euclidean algorithm,
GCD of two numbers is determined without factorizing them into
prime multipliers.

In Theorem 3 we established that (a, b) =d can be expressed
in the form

d=s-a+t-b

but in the proof there was no indication as to how the corresponding
s and ¢t can be found. With the help of Euclidean algorithm, this
problem is very easily solved. We won’t describe the procedure
for a general case, but shall explain it for the already solved numerical
example. .

So, we have to find whole numbers s and t such that

11 =5-858 +¢-253
From (4), (3), (2), (1) successively, we get
11=55+(—-1)-44
4 =99 + (—1)-55

55=2534+(-2)-99
99 = 858 + (—3)-253

Now substituting in the first of these equalities the expression
for 44 from the second, then for 55 the expression from the next
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equality and so on, we get

11 =55+ (—1)-(99 + (—1)-59)

=2-55+(—1)-99
=2-(253 +(—2)-99) + (—1)-99
=2. 53+( 5)-99

_ (= ) 858 + 17253

Finally: s = -5, t = 17.

The reader can easily make out how this algorithm can be used
in a general case. The equalities occurring in the Euclidean
algorithm while finding the GCD of numbers a and b allow us to
solve equations of the type

d=xa+ yb
(where d = (a, b)).
In general, the equation of the type

xa+ yb=c

where a, b, ¢ are the given integers for which one seeks solution
x, y in integers, is called a linear diophantine equation with two
unknowns. It is called linear since the unknowns x and y occur
in it in the first order. The term “diophantine” !’ indicates that the
coefficients of the equation are integers and the required solution
are also integers.

We observe that we have really learnt how to solve the linear
diophantine equations of the type

xa+yb=c 1))

But we must discuss the question about all the solutions of the
equation (I) in greater detail. We shall notice first that not every
equation of this type has a solution. Actually, if equation (I) does
have a solution in integers, say x =X, and y = y,: ¢ = Xxoa +
+ yob, and if d = (a, b), then, since d|a, d|b, d divides both terms
on the right-hand side and, consequently, also divides c¢. From
this we draw the following conclusion:

In order that a solution in terms of integers of equation (I)
may exist, it is necessary that the right-hand side of the equation is
divisible by the greatest common divisor of the numbers a and b.

r
) Named after the ancient Greek mathematician Diophantos (around
250 B.C.) who investigated equations for integers in his book “Arithmetica”.
At the end of our exposition we shall stop for a whlle on the quadratic
diophantine equations.
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For example, the equation
9x + 15y =7
does not have a solution, since 7 is not divisible by 3 =(9, 195).
On the contrary, if d|c, then the equation (I) does have a solution
in terms of integers and we even know how to find such a solution.

Actually let ¢ = c'd, and let s and t are such integers (they can be
found out with the help of Euclidean algorithm) that

d=as+ bt
Then
c=cd=a(sc')+ b(tc)

i. e. xo =sc', yo =tc' are the solutions of the equation (I).
Let us solve, for example, the diophantine equation
33 = 858x + 253y (In
We have already shown that

11 =858-(—5) +253-17
Multiplying this equality by 3, we get
33 =858-(—15) + 253-51

Thus x = —15, y = 51 are the solutions of the equation (II). It
should not be thought that the desired solution is unique. Generally,
it turns out that if a diophantine equation of the type (I) does
have a solution, then it has an infinite number of solutions. We shall
now study this question in greater detail: we shall prove the formulated
statement and find a general form for all possible solutions of
the equation (I). Let us begin with the elucidation of the general
form. Let us suppose that we already know that, in addition to the
solution in terms of integers x,, yo, the equatlon (I) also has the
solution x,, y,, we have

¢ = axy + by,
¢ =ax,; + by,

Subtracting the second equality from the first, we get
a(xo —x1) + b(yo —y1) =0
or
a(xo — x;) = b(y; — yo) (111
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If d = (a, b), then we put a’' =a/d, b’ =b/d, i. e.
a=ad
b=1bd
where a’ and b’ are mutually prime numbers. Dividing the equality
IIT by d, we arrive at the equality
a'(xo — x1) =b'"(y1 — yo)
But then since @', b’ are mutually prime, a’|(y, — yo) and, analogously,
b'|(xo — x;). Substituting
Vi — Yo =ak,
Xo — X = b’kz

we get abk, = a'b’k,, whence k, = k; = k. Thus, finally
a

Y1=YO+a'k=}’o+7k Iv)
b
x1=x0—b'k=x0—~7k (V)

where k is some integer. Conversely, it is easy to check that if
X0, Yo is the solution of equation (I), then all pairs of numbers
IV, V for any integer k give solution to the equation (I). Actually,

b
ax, + by, = a(xo — 7k> + b<y0 + %k)

ab b
= axg + byo + (— Tk + aTk)

=c+0=c¢

Thus, if xo, yo. are solutions of equation (1), then all numbers

b .
of the type xo, — Ek’ Yo + Sk are also solutions (it means that for

every case, there are infinite solutions — one for every k) and there are
no other solutions®

§ 4. Gaussian Numbers and Gaussian
Whole Numbers

The natural generalization of rational whole numbers is the complex
whole numbers or, as they are usually called, “Gaussian whole
numbers”, after the great German mathematician K.F. Gauss, who
first studied them in detail.
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DEFINITION 4. A complex number is called “Gaussian whole
number” if its real and imaginary parts are essentially rational
whole numbers. In other words, they are complex numbers of
the form a

o=a+bi (1)

where a and b are whole (rational) numbers. In addition to the
Gaussian whole numbers, we shall also need (simple) Gaussian
numbers, i. e. complex numbers, whose real and imaginary parts
are rational numbers.

The relation between the field of Gaussian numbers and Gaussian
whole numbers is analogous to the relation between rational
numbers and rational whole numbers. More precisely we mean the
following statement which we shall frequently use without special
reservation, and which the reader can easily verify directly.

1. Sum, di fference and product of two whole Gaussian numbers are also
Gaussian whole numbers (this property is expressed in short by
saying that Gaussian whole numbers form a ring).

I1. Sum, diflerence, product and quotient (in case the divisor is
not equal to zero) of two Gaussian numbers are also Gaussian
numbers. (This property is expressed shortly as: Gaussian numbers
form a field.)

III. Quotient of two Gaussian whole numbers is a Gaussian number
and, conversely, every Gaussian number can be represented as a quotient
of two Gaussian whole numbers.

The last statement requires a little explanation. Let o =a + bi
and B = c + di are Gaussian whole numbers (i. €. a, b, ¢, d are
whole rational numbers) and let B # 0. We shall show that y = a/p —
Gaussian number. Actually

_a+bi  (a+ bi)(c —di)
T oce+di - (c+ di)(c— di)

ac + dd — adi + bci
c? + d?

_ac + bd bc—adi
A+d* A+d?

ac + bd bc — ad
2 2 and 2 2
c*+d c“+d
number y are rational and, consequently, y is a Gaussian number.
We observe finally that obviously any rational number is Gaussian

Numbers

— real and imaginary parts of the
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Fig. 1

(imaginary part is equal to zero) and that every rational whole
number is a Gaussian whole number.

For future, it will be useful to have an idea about the arrange-
ment of Gaussian whole numbers on a complex plane. By definition
itself, the Gaussian whole numbers are represented by points with
integral coordinates (Fig. 1). They are located on top of the mesh of
squares with sides equal to unity, covering the complex surface.

From the theory of complex numbers we shall need the ideas
of norm and modulus of a complex number. We remind that
norm of a complex number o = x + yi is the non-negative real number
N (a) = x? + y?, the modulus of the complex number a denoted by

o is the real number }/x*> + y>. Geometrically, modulus of a

complex number is the distance of the corresponding point on the
complex surface from the origin of coordinates. Norm N (o) of
a number « is represented as the product N (o) = a- &, where & is the
complex conjugate x — iy of number a. The property of multipli-
cability of norm is also supposed to be a familiar property, i. e.

N(o-B) = N(a)-N(B) @

We shall at once note that if o is a Gaussian number then N ()
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is a non-negative rational number and even if a is a Gaussian
whole number, then N (x) is a non-negative whole number .

However, not every positive rational whole number is a norm
of a Gaussian whole number. In fact we shall now prove the
following theorem.

THEOREM 7. A positive rational whole number ¢ is norm of some
Gaussian whole number if and only if the number ¢, can be represented
in the form of sum of squares of two integers.

PROOF. If o = a + bi is a Gaussian whole number, then N (a) =
=a* + b? is the sum of squares of whole numbers a and b.
Conversely, if c = x? + y? where x and y are rational whole numbers,
then ¢ = N(x + yi) where x + yi is a Gaussian whole number.
The theorem is thus proved.

It is not difficult to show that not every positive whole number
can be represented as a sum of two squares. We shall show, for
example, that a positive odd integer ¢, which can be represented
as a sum of two squares of integers, gives a remainder equal to 1
upon division by 4, i. e. is a number of the type t =4k + 1.
Actually let t = x2 + y2, then one of the numbers, say, x, must be
even, the other y —odd. Let x=2m and y=2n+ 1. Then
x> =4m?andy? = 4(n®> + n) + land, finally,t = 4(m?> + n> + n) + 1,
which proves our statement. In this way, numbers 7, 11, 15 and
others which cannot be represented in the form of a sum of two
squares are, consequently, not norms of Gaussian numbers.

We shall explain the question, precisely which whole numbers
can be represented in the form of sum of two squares or, in other
words, which numbers are the norms of Gaussian whole numbers,
after studying the arithmetic of Gaussian whole numbers. We shall
now go on to a study of this arithmetic.

As in the domain (ring) of rational whole numbers, so also in the
domain of Gaussian whole numbers, the question of divisibility
is of main interest.

We shall say that a Gaussian whole number o divides a Gaussian
whole number B and denote this fact as a|[3 — if for some Gaussian
whole number vy, the equation

B=oy 3)

holds. Since from (3) follows N (B) = N(a)- N(y), the necessary
condition for cx|B is the divisibility N (o)| N (B) where N (o) and
N (B) are rational whole numbers.

D Modulus |¢| of a Gaussian number is not necessarily a rational
number; therefore, in future we shall mainly use norm instead of modulus.
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In case of rational whole numbers, there are only two numbers
which divide all integers: +1 and —1. In case of Gaussian
whole numbers, there are four such numbers: +1, —1, +i, —i.
It is easily seen that these four numbers satisfy this property.
Actually,

a=oa-1
a=(—-a)-(-1)
o= (—ai)-i

o = (ai)-(— i)

There are no other numbers among Gaussian whole numbers with
the given properties. In fact, if some Gaussian whole number §
divides all Gaussian whole numbers, then this must, in particular,
divide number 1 (therefore such numbers are called unitary divisors).
From N (£)|1 it follows that N () = 1.If £ = x + yi, then x* + y? = 1.
It is obvious that this equation has precisely four solutions among
rational whole umbers: x=1, y=0; x= -1, y=0; x=0, y=1;
x =0, y = — 1. These four solutions exactly correspond to Gaussian
whole numbers +1, —1, i, —i.

For Gaussian whole numbers, in a way analogous to rational
whole numbers, we develop the concept of common divisor, greatest
common divisor, mutually prime numbers and prime numbers. The
first three concepts are determined exactly in the same way as in the
case of rational whole numbers. However, we must deal with the
definition of simple Gaussian integers at a little greater length.

DEFINITION 5. A Gaussian whole number = is called prime if in
all its factorizations m = t-c as product of two Gaussian whole
numbers, one of the factors (t or o) is a unitary divisor. (Here
the unitary divisors are not considered simple numbers.)

This property may be expressed in other words as follows:
a simple Gaussian number 7 is a nonzero whole Gaussian number
whose norm is greater than unity and which cannot be expanded
as a product of two Gaussian whole numbers whose norms are
less than the norm of number =.

According to this definition, simple Gaussian numbers are, for
example, numbers t; =2 + i(N(n,) =95), n, =3 + 2i(N (n,) = 13).
In general all numbers, whose norms are simple rational numbers,
are simple numbers. Below we shall see that simple Gaussian
whole numbers are not exhausted by'these examples. We shall
describe all simple Gaussian numbers. As for now, we go on to the
formulation and proof of the fundamental theorem of arithmetic
for Gaussian whole numbers.
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FUNDAMENTAL THEOREM. Any Gaussian whole number o # 0
can be expressed as a product of simple Gaussian numbers

=TTy ... T (4)

(m; are simple Gaussian numbers not necessarily different from one
another). Such an expansion is unique in the following sense: if

a&=0,-0; ... O (5)

is another expansion of number o into a product of simple Gaussian
numbers o©;, then both these expansions have one and the same
number of multipliers, k = I, and factors (4) and (5) may differ from each
other only by the order of factors and by multipliers which are
unitary divisors.

As regards the part of formulation concerning uniqueness of
expansion, we shall make yet another observation. If, say,

A=T; "My T3
is a product of simple numbers m;, m,, w3, then, for example,
o = (= m3)-(iny) - (iny) = (0, - 73 - 73)

is the other representation of number o as a product of simple
numbers — 73, in,, i, as differing from simple numbers &, ©,, n3.
However, it is easy to notice that any of the numbers — n3, in,,
in, is obtained by multiplying one of the numbers m{, m,, 7,
by some unitary divisor; moreover, the initial order of numbers is also
changed. Such differences in the expansion of one and the same number
are allowed. The second part of the formulation of the theorem
actually states that non-uniqueness of such kind in different
expansions vanishes. This case is not diflerent from the case of rational
whole numbers in arithmetic. It is simply complicated by the fact that
in case of arithmetic of Gaussian whole numbers, we are provided
with a large number of unitary divisors ’. The statement about the
uniqueness of the expansion may be formulated more briefly by
introducing the idea of associability of Gaussian whole numbers.

DEFINITION 6. Two Gaussian whole numbers are called associative
if they differ from each other by a factor equal to a unitary
divisor, i. e. B, —PB, i, —if are associative Gaussian whole
numbers if B is an arbitrary Gaussian whole number.

D We note that uniqueness of expansion, except for the signs of the
multipliers about which we talked in the case of whole rational numbers,
also means uniqueness except for multipliers which are unitary divisors,
since +1 and —1 are the only unitary divisors in this case.
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By using this definition, the statement about uniqueness in the
fundamental theorem is formulated as under:

If a=m-My ..., and & =0C,-C, ... G, where m(i=1, 2,
..., k) and o;(j=1, 2, ..., ) are prime numbers, then | =k and
the multipliers o; may be expressed so that every o; will be
associative with the corresponding prime number m;.

We shall outline the proof of the fundamental theorem. It is
done in the same way as the proof of the corresponding
statements for rational whole numbers. Therefore we shall not do it
exhaustively but strongly recommend the reader to do it himself.

The first statement of the theorem — about the existence of an
expansion — may be done by induction for norm of the number:

(a If N() =1, then a =1, —1, i, —i, i. e. « can be expanded
into a product of an empty set of prime numbers .

(b) Let N(o) =n, and for all Gaussian whole numbers with
minimum norm, the statement has already been proved. Then
either o is a prime number and everything is proved, or

= p-1 where N(p) <n and N(t) <n. According to assumptions
of induction, factorization for p and 1 do exist: p=mn, %, ...

.m, and 1=0,-6, ... 6, Then a=mn,'n, ... M,-6,-0, ...

. o, is the factorization for a.

The proof of the statement about the uniqueness may be carried
out by means of establishing the properties of GCD and properties
of mutually prime numbers in the case of Gaussian whole numbers.
The statement about the possibility of division with a remainder for
the case of Gaussian whole numbers provides the clue to the
whole proof. Here it is formulated as under:

Let a, B, (B # 0) be two Gaussian whole numbers, then there exist
Gaussian whole numbers y and p, where N(p) < N(B), so that

a=y-B+p
The proof is based on a very simple geometrical fact: if P
is a point lying in a square with side a, or on one of its sides,

then the distance of this point P from the nearest corner is less than a.
Really, the centre of the square is the point farthest from all corners.

o . 1
But its distance from any corner is equal to Wa < a. Any oth-

er point in the square is situated even closer to the nearest corner.

¥

Y About ‘factorizability’ of unitary divisors into products of prime
multipliers, we accept the same terms as for + 1 in case of rational
whole numbers, see p. 11.
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Fig. 2

It is now clearly visible from this simple proof that for any
point T on a complex surface, we can find a point y with integral
coordinates — representing a Gaussian whole number — and removed
from t by a distance less than 1 (Fig. 2). In other words, for
any complex number t there exists a Gaussian whole number y
so that N(t —y) < 1. Let us find such a y for number t = o/p
and put p=a — yB. Then p is Gaussian whole number

N(p)=N(B)-N<%— >< N(B)
and
a=7vB+p

The statement is proved.

Having already got the theorem on division with remainder,
we can prove all other properties in the same way as we did
above in the case of rational numbers: (1) we prove the existence
of a GCD for two Gaussian whole numbers o and B in the
form of numbers & # 0 with minimum norm from a set of numbers
that can be represented in the form of + Bfn (§ and n are Gaussian
whole numbers), (2) the concept of Gaussian whole numbers that
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are prime to each other is introduced and the fundamental lemma is
proved: if a is mutually prime to B, and if o is mutually prime to
B,, then a is mutually prime to B,-PB,. After this it is very easy
to prove by induction of norm, the uniqueness of factorization
into prime multipliers.

§ 5. Gaussian Prime Numbers
and Representation of Rational Whole
Numbers as Sum of Two Squares

We now go on to a description of all Gaussian prime numbers.
We shall first prove some auxiliary statements — lemmae.

LEMMA 1. Every Gaussian prime number is a divisor of a prime
rational number .

Actually, since N (o) = a-&, any Gaussian whole number divides
its norm: o|N(2). Now let © be a prime Gaussian number, then

yid | N(rn), and let N(n) = p,-p, ... p, is the factorization of number
N(n) as a product of prime rational numbers. We have
n|p,-p2 ... p», hence m divides one of the prime numbers p;. In

fact, if the prime Gaussian whole number n did not divide any of the
numbers p; then it would be mutually prime to each of them
and consequently to their product N(m). But this is impossible
since n|N (r). So = is a divisor of one of the prime rational
whole numbers p; and the lemma is proved.

LEMMA 2. Norm N(n) of a prime Gaussian number T is either
a prime rational number or the square of a prime rational number.

Really, as we already know, m divides some prime rational
number p. Let p =mn-y. Taking the norms N(m)-N(y) = p?, only
two possibilities exist: (1) N(mt)= N(y)=p .and (2) N(n)=p> =
= N(p) and N(y) = 1. The lemma is thus proved.

The second case means that y is a unitary divisor and one of the
equalities 1 =p, n = —p, mn =ip, n = —ip is valid. Consequently,
p is such a prime rational number that it is also a prime

Y We observe that a prime rational number is always a whole
Gaussian number also; however, as a Gaussian number it is not necessarily
prime, but may be divided into Gaussian whole numbers with a lower norm.
Thus, for example, 2 is a prime number if it is considered as a rational
whole number. But it is not prime if we consider it as a Gaussian whole
number. Actually, in the domain of Gaussian whole numbers, 2 can be
factorized as 2 = (1 + i) (1 — i) and neither of the factors 1 +iand 1 —iis a
unitary divisor. It is obvious that 5 is also not prime in the domain of
Gaussian numbers, since 5= (2 + i)(2 — i).
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Gaussian number. In case (1) y is a prime Gaussian number since
N(y) = p. It may be stated that y =a. Actually, N(n)=p=n-#
and © is a prime number. But we also have p=m-y so that
T=1.

On the other hand, let p be some prime rational number.
Then if it is not prime Gaussian number, it is divisible by some
prime Gaussian number other than p and, in addition, as we have seen,
p=mn-ft. So p is a product of two prime Gaussian complex
conjugate numbers. In this case p is the norm of a Gaussian whole
number and can therefore be represented as a sum of two squares.
Such a prime number if it is odd (i. e. p # 2) is a number of the
form 4n + 1, representable as a sum of two squares. It can be
shown that all prime numbers of the form 4n + 1 can be represented
as a sum of two squares, i. e. they are the norms of some Gaussian
whole numbers and, consequently, belong to the class of such prime
rational numbers which can be factorized into products of two complex
conjugate prime Gaussian numbers. We shall not carry out proof of
this statement V. It is all prime rational numbers other than numbers
of the type 4n+ 1 or 2, i. e. numbers of the type 4n + 3 that
form the set of prime rational numbers which are both prime and are
in the domain of Gaussian numbers.

Two (2) holds a special position. It is easy to see that

2=i-(1—i2 N(1-i=2

Thus 2 is divisible by the square of a prime Gaussian number
(1 —i).

Assuming that all prime numbers of the type 4n+ 1 can be
represented as a sum of two squares, we can now determine all
the rational whole numbers which can be represented as a sum
of two squares. As we already know, the only necessary and
sufficient condition for any such number ¢ is that it should be norm
of some Gaussian whole number a: t = N (o). Number « is expanded
as a product of prime Gaussian numbers

a=1t1-Tt2...Tt, (6)

We divide all prime numbers =;(i =1, 2, ..., r) into two classes.
The first class contains such numbers n; whose norms are prime,
and correspondingly the second class contains numbers whose

D The proof of this fact based on theory of comparisons and given
by L. Euler may be found in any textbook on number theory. It is dealt
with in great detail in ref. [3] in the list of literature at the end of the
brochure.
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norms are squares of prime integers V. We denote the various numbers
of first class as o;(j=1, 2, ..., ]) and those of second class as
pek=1,2,...,s). We have: N(o)) =pj, N(p) = q&, where pjisa
prime number of the type 4n+ 1 or 2, and g, is a prime number
of the type 4n+ 3. Combining the equal prime numbers in the
right-hand side of (6) we can write the product in the form of
powers of prime numbers o; and p,

b,
a=ch-~0?"P'1’““p‘ W)
Changing to norms, we get

N(@)=1=N(ot) ... N(of)-N(p}) ... N(p})

t=pi ... pigit ... g ®

We see that prime numbers g, enter the factorization of number ¢
in even powers. Conversely, suppose number ¢ can be represented in the
form (8) where each p; is a prime number of the type 4n+ 1
or number 2, g, are prime numbers of the type 4n+ 3 and
a,, ..., a, by, ..., by are non-negative whole numbers. Then, since
every p; is a sum of two squares, we may select o; so that
N(oj) = p;. Further, putting p, =g, and a =o' ... oft-ph ... pb,
we get t=N(a), i. e. ¢t can be represented as a sum of two
squares. Finally, we have the following theorem:

THEOREM 8. The necessary and sufficient condition that a rational
whole number could be represented as a sum of two squares is
that prime numbers of the type 4n + 3 in the: factorization of this
number should occur in even orders?.

We observe that this theorem gives a criterion for a diophantic
equation of 2nd order, x? + y* = t, to have a solution (whole number).
We shall not stop here to explain how such a solution is actually
found out.

D Of course, it may turn out that one of the classes is empty. This,
however, does not substantially aflect the course of our discussions. We
shall only have to consider that all numbers a; or all numbers b, (in
factorization (7) or (8)) may be zeros.

2 Such a formulation also covers the case when the factorization of
the number under consideration does not include any prime numbers of
the type 4n + 3, because 0 is also even!
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In general, a study of diophantic equations of the type

ax® +2bxy +cy’ =t

is closely linked with arithmetics whose number domains are
analogous to the domains of Gaussian whole numbers.

In such investigations, the following astonishing fact, which mathe-
maticians encountered in the middle of the last century, is important.
The theorem about uniqueness of factorization of numbers into prime
numbers does not hold in all like arithmetics. Without going into
the details of the situation arising here, we shall cite an example
of one “arithmetic” in which the fundamental theorem is not valid.

§ 6. Yet Another “Arithmetic”

We shall consider complex numbers of the type
a=x+y|/—35 (1)

where x and y are rational ‘whole numbers. It is easily seen that
sum, difference and product of numbers of type (1) are also numbers
of the same type. We denote the set of all such numbers by T.
Obviously, I' contains all rational whole numbers (for y = 0). Just
as in the case of rational and Gaussian whole numbers, we can talk
about divisibility of I': a divides B(a||3), if Blcx is again a number
from T, i. e. representable in form (1). As also in the case of
Gaussian whole numbers, the norms of numbers from I' play an
important role in the question of divisibility

N@=Nx+y)/=5=x+y)/-5x—-y}/-5)
=x? 4 5y?

In this way, the norm of any number from I' is a rational whole
number and since N (§-n) = N(§)- N(n), the condition N (o)| N (B)
is necessary (though generally not sufficient) so that a|8.

Just like the case of Gaussian whole numbers, the idea of unitary
divisors and prime numbers is introduced. As regards unitary
divisors, things are even simpler here than for Gaussian whole numbers.
That is, only numbers + 1 are unitary divisors. Actually, for unitary
divisors £ =u + v]/—5, the condition N()=u®+ 5v*> =1 must

hold. But this diophantic equation obviously cannot have any other
solution except u= + 1 and v =0.
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The fact that each number from I' can be expressed as a product
of prime numbers from TI" is proved by induction for norms in
exactly the same way as for Gaussian whole numbers. But the
statement about uniqueness of such a factorization is not valid here,
and we shall prove it by a simple example.

We shall first show that numbers 2=2+0-]/—5,3=340 x
x |/=5 1+ )/ =5, 1—]/=5 are prime numbers in I'. Actually,

N(@2) =4, N3)=9, N1+ )-5=N(1-|/-5) =6. If any of
these numbers were not prime in I', then it could be divisible
only by some number a = x + y])/—5 for which N(a)=x*+

+ 5y? =2 or N(2) = x> + 5y? = 3. But there are no such numbers
in " since, obviously, the equations

x2+5y2=2 2
and
x2+5y*=3 Q)

do not have whole number solutions.
Thus, the given 4 numbers are prime numbers in I. We now
consider an easily verifiable equality

6=2.3=(1+ /=501 -}/=5) (4

It shows that number 6 from [ has two diflerent factorizations
into prime numbers.

The German mathematician E. Kummer (1810-1893) encountered
this elfect while trying to solve the so-called great Fermi theorem.
The difficulties that arose later in connection with the non-validity
of the fundamental theorem of arithmetic in some*important domains
of numbers were successfully overcome by Kummer himself as well
as by other mathematicians — R. Dedekind, E. Zolotarev, L. Krone-
cker, etc. Thus arose a vast new branch of mathematics, called
the theory of algebraic numbers, which is being successfully developed
right till the present time.
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