
The PracTEX Journal, 2007, No. 1
Article revision 2007/08/27

Graphics in LATEX
Claudio Beccari

Email claudio.beccari@polito.it

Address Politecnico di Torino, Turin, Italy

Abstract This tutorial describes some facilities offered by LATEX and its extension
packages for producing line art graphics directly in the source document.
Some of these facilities are standalone, in the sense that they do not re-
quire functionalities of external programs; some, on the other hand, rely on
external programs.

1 Introduction

When a book is produced it is very unlikely that it does not contain some graphic
material, be it pictures, diagrams, line art, and the like.

In this paper I will focus on ways to produce graphics within the TEX or
LATEX systems. I will not discuss how to insert graphics that are already available
in files produced by external equipment (for example photo cameras) or external
programs, such as any of the commercial or freeware drawing programs available
outside the TEX-system distributions, or even METAPOST, that comes with the
distribution.

The standard package graphics and its “extension” graphicx, already available
with the system, offer simple macros with which such inclusion may be per-
formed with a number of optional actions available, such as rotation, scaling,
trimming, clipping, et cetera.

Maybe these extension packages assume that the user is well aware that if
LATEX is being used the only graphic formats that can be included are those
belonging to the PostScript family (including the METAPOSToutput), while if
pdfLATEX is being used, the only formats admissible are PDF, JPEG, PNG, and
METAPOSToutput, provided in the latter that its file extension is changed to mps.
It is true that some other formats may be included if a separate file containing

2007 Claudio Beccari

mailto:claudio.beccari@polito.it?subject=Re:%20PracTeX%20Journal%20article%20

the bounding box information is available, but as far as I know this possibility is
seldom used because it requires some hacking ability.

At the same time, any or most TEX-system distributions contain such little
programs as ps2pdf in order to transform (encapsulated) PostScript file into PDF
ones, or jpegtops to transform JPEG files to PostScript format. A number of
such programs are available so that a transformation from one format to another
allows the use of any image with both “plain” LATEX or pdfLATEX, or ConTEXt,
or. . .

Here I focus my attention on native and imported graphic functionality that
is available with (pdf)LATEX and ConTEXt. With that I mean the standard graphics
macros and the extended macros available with extension packages that conform
with the LATEX “language”; METAPOSTwill be left out of this tutorial, even if it
belongs to the TEX-system bundle, because its macros require the user to learn
another language. The interested reader may look up the METAPOSTdocumenta-
tion, [1]; be aware, though, that ConTEXt MetaFun package, [2], allows exploiting
modern TEX-system implementations in order to simultaneously run the TEX and
METAPOSTengines and to produce line art graphics directly from one source
file.

2 The standard LATEX picture environment

LATEX was born in 1984 with a native picture environment that allowed one to
draw lines, vectors, circles and ‘ovals’ with some limitations; special fonts were
used to draw all graphic objects. This was a severe limitation, because at LATEX’s
birth all fonts usable with LATEX could contain only 128 glyphs; this was true with
text fonts as well as with LATEX special drawing fonts.

This implied that there were only two thicknesses available for all graphic
objects, and, worst of all, the line and vector slopes and the circle diameters
were available in only a limited number. Line slope parameters could only be
integer relatively prime numbers in the range −6 — +6, while for vectors they
could range only within −4 — +4. This means that the only lines and vectors
that could be drawn are represented (with just positive slopes) in figure 1. Filled
circles (disks) were limited to diameters from 1pt to 15pt, while unfilled circles
were limited to diameters from 1pt to 40pt; circles of diameter larger than 15pt
were drawn as four quarter circles, and each of these were available also for the

2

-

6

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
�
��

��
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
��

��
��

��
��

��
��

��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

���
���

���
��

���
��

��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
""

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%%

((((
((((

((((
((((

((((

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,,

-

6

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

��
�
��

��
�
�
�
�
�
�
�
�
�
�
�
��*

�

��
��

��
��

��
��

��
��

��
��1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��7

���
���

���
��

���
��

��
��:

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��>

Figure 1: Possible positive slopes for lines and vectors in the standard picture

LATEX environment

cm 1 2 3 4 5

��� ���u ucar
HH

HY

Figure 2: A LATEX picture environment simple drawing

rounded corners of ‘ovals’.
This environment allowed typesetting of text by means of extensions of the

\makebox macros, and framed text by means of \framebox; fine tuning of the
position of the text allowed placement of any text in the precise required position
and, most important of all, the fonts used were the same ones used in the text
of the document as a whole. Typographically, this feature was and remains the
most valuable of this built-in environment. Figure 2 displays the same drawing
Lamport used in his handbook to describe his picture environment.

3

3 PiCTEX

The first graphic extension available on the market was PiCTEX[3]. It was de-
signed to work with plain TEX, in an initial stage of TEX’s “history”; after LATEX
became available, some macros were set up in order to let LATEX import those
PiCTEX macros and use them at almost full power. Those were the times when
TEX and LATEX were run on mainframes and PCs were in their infancy; the TEX-
system was already available for those small PCs, but the memory limitations
were so strong that on such machines it was quite normal to get the dreadful
message that there had been a memory overflow and processing aborted.

Nowadays the PC memory limitations have substantially vanished, and a
medium price PC has enough main memory, virtual memory and disk space
to do more than the mainframes available in the eighties. As a matter of fact, a
new version of PiCTEX, named m-PiCTEX, [4], is part of the ConTEXt system as a
normal accessory.

Although the functionalities of PiCTEX, or most of them, were transferred
to more modern extensions, I often dig into its code in order to learn the ex-
ceptionally clever tricks implemented by Michael Wichura in order to have the
TEX-engine perform fractional decimal number computations, from logarithms
to trigonometric functions, and the like.

The problem with PiCTEX (and also with more recent macro sets) is that arbi-
trary lines are drawn by setting a myriad of dots partially superimposed on one
another so as to simulate continuous line drawing; this multitude of dots implies
such a heavy memory usage that remains locked until the picture is shipped out
into the dvi file; a single picture may saturate the available memory during its
processing, not to speak of what happens when several figures containing PiCTEX
graphics are queued by LATEX before shipping them out.

In spite of these drawbacks, PiCTEX is very good at drawing line art of arbi-
trary complexity, including that form of graphical mathematical objects known as
commutative diagrams. It is true that 2-dimensional commutative diagrams may
be typeset with the cmd.sty package made available by the American Mathemat-
ical Society; but PiCTEX can draw 3-dimensional ones; a very attractive commu-
tative diagram decorates the first page of the PiCTEX manual, which is not free,
so I can’t reproduce it; a partial imitation is shown in figure 3, where I used the
standard macros available within the LATEX picture environment.

4

Hq πq+1 Hq+1

H′
q π′q+1 H′

q+1

Hq Πq+1 Hq+1

H′
q Π′

q+1 H′
q+1

- --

- -

-- --

-- --

?
?

?
?

?
?

?
?

?
?

?
?

@
@@R

@
@@R

@
@@R

@
@@R

@
@@R

@
@@R

�
�
��

�
�
��a b c' '

' ' 'α β γ

ω′ h′q+1

Ω′ H′

Ω H

pq η pq+1

p′q η′ p′q+1

f
g

Figure 3: A three dimensional commutative diagram

4 The epic and eepic picture extensions

In 1986 Sunil Podar published his extension package epic [5], to the standard
LATEX picture environment; in 1988 Conrad Kwok published the further enhance-
ment eepic [6].

Both were conceived so as to relieve the strong limitations of the standard
LATEX picture environment, in particular the limitation on the line and vector
slopes and the limited range of circle radii.

Both programs were conceived for use under the ‘old’ LATEX, today known as
LATEX 209, in contrast with the new LATEX2ε(which is not ‘new’ anymore, since it
is about twelve years old). In particular eepic was conceived in order to translate
pictures drawn with the xfig program into a set of macros that epic could use for
composing complex drawings. xfig is a drawing program, originally from UNIX
platforms, that can output its contents into a variety of formats, including LATEX
picture commands. Nevertheless, such commands bear the limitations described
above, so that the fig format is preferred, but such a format must be translated
into commands LATEX can actually execute by itself or with the intermediary of a
macro package. This is exactly what eepic is for.

It must be said that most of the limitations of the old LATEX picture envi-
ronment are overcome by the set of macros available with the pict2e extension
package, which I will speak about in section 8. Therefore these extensions epic

and eepic, although not obsolete, are essentially outdated.

5

5 The curves package

The ctan archives contain the package prepared by Ian Maclaine-Cross initially
in 1991, then revised for LATEX2ε. The latest release in the year 2000 is the current
one, [7].

The package curves accepts a number of options designed to simplify the
output file. These options allow many graphic objects to be drawn by the pro-
grams that process TEX’s output (device drivers). Without these specifications,
the curves drawn by the package are done by the superposition of a multitude of
black disks; this creates a lot of overhead and when possible it is better to use the
specific driver option. While there is an option for dvips there is unfortunately
not one for pdfTEX. If a PDF output format is desired, it is necessary to obtain it
through the lengthy path LATEX −→ dvips −→ pstopdf.

In any case, the main package curves contains many new features compared
with the standard situation; in fact all of the graphic objects can be drawn with
‘arbitrarily’ thick lines and lines with arbitrary slopes, and curves may be drawn
by means of second-degree Bèzier splines (parabolas) where it is necessary to
specify only the interpolation nodes, since control points are determined by the
macros themselves. If the user is inclined to specify few nodes, the macros try
to do their best, but more often than not curves end up having spurious loops,
especially if inflection points are implied. But if the user does not spare the
interpolation nodes, the curves turn out to be very nice and smooth, even if
inflection points are involved. Let’s remember that second-order Bèzier splines
are those used to describe the contours of the TrueType fonts, while the third
order splines are used to describe fonts in the METAFONToutput format and in
PostScript Type 1 format.

This package allows one to draw objects, save them and redraw them with
‘arbitrary’ transformations (rotation, x-scaling and y-scaling) so that fine com-
position of such objects is possible. Figure 4 represents a perspective view of a
square washer drawn with curves.

6 PSTricks

The previous package curves, although capable of working as a standalone LATEX
macro package, is the first example of a drawing package where some of the

6

\renewcommand{\xscale}{1}
\renewcommand{\xscaley}{-1}
\renewcommand{\yscale}{0.6}
\renewcommand{\yscalex}{0.6}
\scaleput(10,10){\bigcircle{10}}
\put(0,-2){

\scaleput(10,10){\arc(5,0){121}}
\scaleput(10,10){\arc(5,0){-31}}
}

}

(20,5) are the drawing coordinates of the upper vertex of the washer closest to
the reader. The angles for the \arcs were found by trial and error.

������ ������

������������

������

������

..
..................

...

Square washers are sometimes preferred for soft materials.

5 Symbols
Curves can also place symbols. \curvesymbol must first define the symbol as\curvesymbol

\curve anything a \put or \multiput may draw. A negative symbol count between
drawing command and coordinates e.g., \tagcurve[-3](0,100,...) fixes the
number of symbols per curve segment.

These commands draw flight times and successive positions in the following
drawing:

\newcounter{time}
\curvesymbol{\thetime\,s\addtocounter{time}{1}}
\put(5,4){\curve[-2](0,0, 9.8,19.6, 19.6,0)}
\curvesymbol{\phantom{\circle*{1}}\circle*{1}}
\put(5,2){\curve[-2](0,0, 9.8,19.6, 19.6,0)}

where \phantom is a plain TEX command from the TEXbook2.

6

Figure 4: A square washer drawn with curves

functionality is provided by an external program, in this case dvips and a few
other similar PostScript-based drivers.

The set of packages that are collectively known as PSTricks do the same, in
the sense that they exploit the PostScript language to a great degree by writing to
the output file, a dvi one in our case, all the \special commands that introduce
the raw PostScript code necessary to draw all of the required objects.

The PostScript language is a very powerful programming language specifi-
cally designed to describe a typeset page and all the objects it contains; of course
images and line art are at home in a typeset page, so that graphics handling is an
integral part of the PostScript language.

Basically this language can handle fonts and their glyphs and can draw lines
and curves and fill the paths they enclose with colors and/or patterns; but the
most important feature is that PostScript can define macros more or less in the
same way that the TEX-engine does. These macros contain a full set of control
statements, so that PostScript is capable of doing actions that one might reserve
only for higher programming languages. The difficult part of the PostScript lan-
guage is that it uses Reverse Polish notation, which seems unnatural to humans.
The code appears cryptic to anybody who is not a PostScript programmer (at
least it is cryptic to me). Fortunately, Timothy van Zandt, who wrote the inter-
face, spares the user from Reverse Polish notation by providing a large set of
TEX macros that allow the user to write in the usual (LA)TEX style. These macros
translate the (LA)TEX information into PostScript code. In addition, the macros do
the necessary calculation for transferring all the internal quantities in typesetter’s
points (72.27pt to 1in) into PostScript points (72bp to 1in); the difference might
appear small and may be negligible, but after many calculations the accumulated
error affects the precise positioning of graphic objects. In any case the user does
not have to learn the PostScript language.

7

It would be too lengthy to describe the available commands; suffice to say
that the bundle of PSTricks packages covers almost any possible graphics situa-
tion; from structured graphs, to electric circuits, from optics setups to mechanical
springs, from box diagrams to 2- and 3-dimensional graphics.

The point is that LATEX can process files where one or more PSTricks packages
have been used to draw something; the raw PostScript code written in the output
dvi file by means of the \special commands may be processed only by further
programs that understand and execute PostScript code; typically this program is
dvips and the result of this process is a PostScript file. This is good for many
applications, but more often than not a PDF file is required, so that the PS file
must be ‘distilled’ by any of the various programs that convert a PS file into a
PDF one. The normal process, therefore, is LATEX −→ dvips −→ pstopdf; many
TEX-system distributed editors already contain a ‘button’ to click that execute the
complete triple process, so that the user need not be bothered.

But all this implies also that the user cannot employ pdfLATEX as the engine
to process an input LATEX file, because the pdfLATEX engine is not capable of
understanding and executing the raw PostScript code, in spite of the fact that
the uncompressed PDF page description language is a subset of PostScript.

This incompatibility shows up in other areas, for example the inclusion of ex-
ternal graphic material; since LATEX is the only program that can process PSTricks
macros and their \special commands, this implies that all external graphic ma-
terial must be in encapsulated PostScript format, besides the METAPOSToutput;
if the user wants to include pictures coming from a digital photo camera, s/he
must first transform the picture format, probably JPEG, into an encapsulated
PostScript.

7 XY-pic

Another very powerful graphics package that relies on using an external software
for actually rendering graphic objects is XY-pic, [9].

This package is designed to work with LATEX, plain TEX, and AMS-TEX. It can
draw diagrams of any ‘mathematical’ kind, from commutative diagrams to those
used in category theory, automata theory, algebra, neural networks, and database
theory.

The feature that makes it so versatile is that mathematicians were the first ones

8

PSTricks:

PostScript macros for Generic TeX.

Dripping Faucet

M

m

g

Mathematical Model for
a Dripping Faucet

le
ec

he
ng

User’s Guide

Timothy Van Zandt

12 March 1993
Version 0.93a

Author’s address:
Department of Economics, Princeton University,
Princeton, NJ 08544-1021, USA. Internet:tvz@Princeton.EDU

Figure 5: A PostScript line art figure drawn with PSTricks; this appears on the
cover page of the PSTricks manual

to use plain TEX, and, apparently keep preferring this incarnation of the TEX-
system rather than using more user-friendly packages; plain TEX and AMSTEX
are similar and refrain from using those bells and whistles that make LATEX so
widespread. Nevertheless, the developers adapted it also to LATEX, but the users
must cope with what the authors consider a ‘logical composition of visual compo-
nents’. The idea is brilliant, but in practice I find the syntax of the various object
descriptions a little too cryptic, or maybe I am too old to learn new sophisticated
graphic description languages.

I can read the manual, see the examples and agree that the power of XY-pic is
highly underestimated; I am guilty on my own for not daring to sit down and try
hard to get the best out of it. In any case I show a simple figure taken from the
manual, figure 6; the commutative diagram is simple, but it contains objects such
as the curved and dotted arrows that are not easily drawn with other packages.

What is amazing with XY-pic is the fact that its syntax is extremely compact;
the whole commutative diagram of figure 6 is described in just six lines of code
in the two-column formatted XY-pic Guide.

One little point of warning: XY-pic uses several characters as special purpose
ones; among these characters there is the double quote ", which acts also as an ac-

9

XY-pic User’s Guide

Kristoffer H. Rose 〈krisrose@ens-lyon.fr〉×

Version 3.7, February 16, 1999

Abstract

XY-pic is a package for typesetting graphs and diagrams
using Knuth’s TEX typesetting system. XY-pic works with
most of the many formats available; e.g., plain TEX,
LATEX, and AMS-TEX. Several styles of input for various
diagram types are supported; they all share a mnemonic
notation based on the logical composition of visual com-
ponents. This guide concentrates on how to typeset
“matrix-like” diagrams, such as commutative diagrams,
in the following style:

U

y

x

(x,y)

X ×Z Y

q

p X

f

Y
g

Z

was typeset by the XY-pic input lines

\xymatrix{
U \ar@/_/[ddr]_y \ar@/^/[drr]^x
\ar@{.>}[dr]|-{(x,y)} \\
& X \times_Z Y \ar[d]^q \ar[r]_p

& X \ar[d]_f \\
& Y \ar[r]^g & Z }

Such diagrams have the following characteristics:

• Specified as a matrix of entries that are automati-
cally aligned in rows and columns.

• Any entry may be connected to any other en-
try using a variety of arrow styles all rotated and
stretched as required.

• Arrows may be decorated with labels that are tied
to a specified point along the arrow and extend in
a particular direction; and arrows may be paired,
cross, and visit/bend around other entries “on the
way.”

Several other styles of input are supported; a short survey
of the possibilities is included last at the end along with
information on how XY-pic can be obtained.

Contents

Preface 2

1 Basics 2
1.1 Loading 2
1.2 Entries 2
1.3 Arrows 2
1.4 Labels 3
1.5 Breaks 3
1.6 Curving 4
1.7 Speeding up typesetting 4

2 More Arrows and Labels 4
2.1 Explicit label positioning 4
2.2 Labeling with any object 5
2.3 More arrow styles 5
2.4 Sliding arrows sideways 6
2.5 More targets 6
2.6 Changing the target 7
2.7 Arrows passing under 7
2.8 More bending arrows 8
2.9 Defining new arrow types 8

3 More Entries 9
3.1 Manual entry formatting 9
3.2 Extra entries outside the matrix . . . 9
3.3 Spacing and rotation 9
3.4 Entry style 10
3.5 Naming for later use as targets 10
3.6 Grouping objects 10

4 Availability and Further Information 11
4.1 Getting XY-pic 11
4.2 Backwards compatibility 11
4.3 Further reading 12
4.4 Credits 13

A Answers to all exercises 13

References 14

Index 15
×Laboratoire de l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon; 46, Allée d’Italie; F–69364 Lyon 7, France.

1

Figure 6: A simple commutative diagram drawn with XY-pic

tive character in most babel language description files, perhaps all languages but
English. In order to use XY-pic, it is necessary to turn off the shortcuts associated
with the double quote by means of the babel command \shorthandoff{"}; this
can be done just upon entering the xypic environment, and without this action
XY-pic is virtually unusable when the current language option is different from
english!

8 The pict2e and curve2e extensions to the standard
LATEX picture environment

Leslie Lamport, in his second edition of the LATEX handbook [10], fixed the syntax
of a new extended picture environment, where most if not all limitations of
the standard implementation could be overcome: unlimited slopes of lines and
vectors, any circle radius, arbitrary line thickness also for curved lines, real third
order Bèzier curves, et cetera.

Eventually in 2003 H.Gäßlein and R.Niepraschk published an implementation
of Lamport’s extensions with their package pict2e [11], which implements these
extensions by means of the driver capabilities.

Figure 7 shows some of the new possibilities: vectors of any slope and thick-

10

Original Commands New Commands

-��
���

���*

�
�

�
�

�
�

���

�
�
�
�
�
�
���6

@
@

@
@

@
@

@@I

�
�

�
�

�
�

��	

@
@

@
@

@
@

@@R

?
�I

Figure 2: Vector

Figure 3: Vector: shape variants of the arrow-heads. Top: LATEX style vectors. Bottom:
PSTricks style vectors.

The (hollow) circles and disks (filled circles) of the Standard LATEX implementation had severe
restrictions on the number of different diameters and maximum diameters available.

From [1, p. 222]:

With the pict2e package, any size circle or disk can be drawn.

With the new implementation there are no more restrictions to the diameter argument. (How-
ever, negative diameters are now trapped as an error.)

Furthermore, hollow circles (like sloped lines) can now be drawn with any line thickness.
Figure 4 shows the difference.

2.3.4 Oval

\oval[〈rad〉](〈X,Y 〉)[〈POS 〉]\oval

In the Standard LATEX implementation, the user has no control over the shape of an oval
besides its size, since its corners would always consist of the “quarter circles of the largest
possible radius less than or equal to rad” [1, p. 223].

From [1, p. 223]:

An explicit rad argument can be used only with the pict2e package; the default
value is the radius of the largest quarter-circle LATEX can draw without the pict2e
package.

This default value is 20 pt, a length. However, in an early reimplementation of the picture
commands [5], there is such an optional argument too, but it is given as a mere number, to be
multiplied by \unitlength.

6

Original Commands New Commands

������
��
"!

&%
'$
&%
'$
&%
'$
&%
'$
&%
'$

~~~~~|x s
Figure 4: Circle and Dot

Original Commands New Commands$

%

$

%
�
�

�
��	����

'

&

'

&
�
�
�
��
����

Figure 5: Oval: Radius argument for \oval vs. \maxovalrad

Since both alternatives may make sense, we left the choice to the user. (See Figure 6 for
the differences.) I.e., this implementation of \oval will “auto-detect” whether its [〈rad〉]
argument is a length or a number. Furthermore, the default value is not hard-wired either;\maxovalrad

the user may access it under the moniker \maxovalrad, by the means of \renewcommand*.
(Names or values of length and counter registers may be given as well, both as an explicit
[〈rad〉] argument and when redefining \maxovalrad.)

(Both [〈rad〉] and the default value \maxovalrad are ignored in “standard LATEX mode”).
The behaviour of \oval in the absence of the [〈rad〉] argument is shown in Figure 5, left

half of each picture. Note that in the Standard LATEX implementation there is a minimum
radius as well (innermost “salami” is “broken”). In the right half of each picture, a [〈rad〉]
argument has been used: it has no effect with the original \oval command.

Both [〈rad〉] and \maxovalrad may be given as an explicit (rigid) length (i.e., with unit)
or as a number. In the latter case the value is used as a factor to multiply by \unitlength.
(A length or counter register will do as well, of course.)

If a number is given, the rounded corners of an oval will scale according to the current
value of \unitlength. (See Figure 6, first row.)

If a length is specified, the rounded corners of an oval will be the same regardless of the
current value of \unitlength. (See Figure 6, second row.)

The default value is 20 pt as specified for the [〈rad〉] argument of \oval by the LATEX
manual [1, p. 223]. (See Figure 6, third row.)

2.3.5 Bezier Curves

\bezier{〈N 〉}(〈AX,AY 〉)(〈BX,BY 〉)(〈CX,CY 〉)\bezier

\qbezier

\cbezier

\qbeziermax

\qbezier[〈N 〉](〈AX,AY 〉)(〈BX,BY 〉)(〈CX,CY 〉)
\cbezier[〈N 〉](〈AX,AY 〉)(〈BX,BY 〉)(〈CX,CY 〉)(〈DX,DY 〉)
In Standard LATEX, the N argument specifies the number of points to plot, with the maximum
defined by \qbeziermax. With LATEX versions prior to 2003/12/01, the quadratic Bezier curves

7

Figure 7: Some examples of pict2e capabilities

ness and circles and disks of any diameter. Of course that is a simple example,
but it gives a good idea of the progress made with the pict2e extension.

I did some personal extensions to the already available extensions offered by
pict2e [12]. My goal was to prove the point that pict2e could be freed from
the remaining constraints of integer slope parameters imposed by Lamport to the
new package syntax; it is true that the new slope parameters are constrained to
be any signed three-digit integer, but this does not improve the performance of
tracing lines and vectors.

As any TEX-system user knows, the TEX-engine is not capable of making com-
putations with decimal fractional numbers; the only ones it deals with are the
scale factors for dimensions. It is not difficult to create macros for simulating
addition, subtraction and multiplication, but division is another thing; let’s not
speak of square roots or, even worse, trigonometric and other transcendental
functions. Many of the described graphic packages worked around these limita-
tions with very clever algorithms, but apparently Lamport did not want to extend
his new picture environment that far.

But with a suitable division routine even the line and vector tracing algo-
rithms can exploit any fractional slope parameter; and this opens the door for
‘turtle graphics’. My package curve2e does exactly that, allowing also for circu-

11



LATEX, pict2e
and complex

numbers

Claudio Beccari

A short
historical
perspective

The extensions
to the picture
environment

Proposed
arithmetical
extensions

Complex
numbers

Advanced
extensions

Conclusion

TUG 2006
Digital Typography & Electronic Publishing:

Localization & Internationalization
The 27th Annual Meeting & International Conference of the TEX Users Group

Announcement and Call for Papers

After TUG 2003 in America (Hawaii, USA), TUG 2004 in Europe (Xanthi, Greece), TUG
2005 in Asia (Wuhan, China), it is fitting that TUG 2006 be held in Africa— in Marrakesh,
Morocco. The conference will be hosted by Cadi Ayyad University’s Sciences Faculty.

Processing multilingual e-documents will go beyond the limits of its traditional cultural areas
and new horizons in the internationalization of TEX will be explored. The conference consists
of scientific and technical talks, panels and poster sessions, as well as tutorials, all dedicated
to present investigations of e-document technology.

The topics of interest include:

System design:
Document design
Digital typography
Electronic publishing
Internationalization and localization
Presentation and content
Calligraphy
Standards
Recognition

Web technology:
Multimedia and hypertext
Web semantics and structured data
Structure transformations
Digital libraries

Educational technology:
Learning support systems
Interactive e-learning
Learning and dynamic e-documents

Program committee:
C. Beccari, PT, Italy
K. Berry, TUG, USA

H. Hagen, Pragma ADE, Netherlands
K. Hoeppner, DANTE, Germany

B. Hughes, UM, Australia
A. Lazrek, UCAM-FSSM, Morocco

A. Lindsay, Lancs Uni, UK
S. Peter, Beech Stave Press, USA

J. Plaice, UNSW, Australia
B. Raichle, US, Germany

K. Sami, UCAM-FSSM, Morocco
V.R.W. Schaa, DANTE, Germany

C. Swanepoel, UNISA, South Africa
A. Syropoulos, GTF, Greece

Organizing committee:
K. Berry, TUG, USA

M. El Adnani – A. Lazrek –
K. Sami, UCAM-FSSM, Morocco

Tutorial days: November 7–8, 2006

Main conference: November 9–11, 2006

June 30, 2006 : Paper submission

August 30, 2006 : Early registration

For more information, paper submission, and online registration

please visit: http://www.tug.org/tug2006

or email: tug2006@tug.org

Arc geometrical parameters

The geometrical construction of the arc parameters is an
interesting application of what has been exposed up to now.

O

P1P2
B

A
Q1Q2

θθ

Claudio Beccari (TUG & guIt) LATEX, pict2e and complex numbers Marrakesh, 9–11 november 2006 34 / 50

LATEX, pict2e
and complex

numbers

Claudio Beccari

A short
historical
perspective

The extensions
to the picture
environment

Proposed
arithmetical
extensions

Complex
numbers

Advanced
extensions

Conclusion

TUG 2006
Digital Typography & Electronic Publishing:

Localization & Internationalization
The 27th Annual Meeting & International Conference of the TEX Users Group

Announcement and Call for Papers

After TUG 2003 in America (Hawaii, USA), TUG 2004 in Europe (Xanthi, Greece), TUG
2005 in Asia (Wuhan, China), it is fitting that TUG 2006 be held in Africa— in Marrakesh,
Morocco. The conference will be hosted by Cadi Ayyad University’s Sciences Faculty.

Processing multilingual e-documents will go beyond the limits of its traditional cultural areas
and new horizons in the internationalization of TEX will be explored. The conference consists
of scientific and technical talks, panels and poster sessions, as well as tutorials, all dedicated
to present investigations of e-document technology.

The topics of interest include:

System design:
Document design
Digital typography
Electronic publishing
Internationalization and localization
Presentation and content
Calligraphy
Standards
Recognition

Web technology:
Multimedia and hypertext
Web semantics and structured data
Structure transformations
Digital libraries

Educational technology:
Learning support systems
Interactive e-learning
Learning and dynamic e-documents

Program committee:
C. Beccari, PT, Italy
K. Berry, TUG, USA

H. Hagen, Pragma ADE, Netherlands
K. Hoeppner, DANTE, Germany

B. Hughes, UM, Australia
A. Lazrek, UCAM-FSSM, Morocco

A. Lindsay, Lancs Uni, UK
S. Peter, Beech Stave Press, USA

J. Plaice, UNSW, Australia
B. Raichle, US, Germany

K. Sami, UCAM-FSSM, Morocco
V.R.W. Schaa, DANTE, Germany

C. Swanepoel, UNISA, South Africa
A. Syropoulos, GTF, Greece

Organizing committee:
K. Berry, TUG, USA

M. El Adnani – A. Lazrek –
K. Sami, UCAM-FSSM, Morocco

Tutorial days: November 7–8, 2006

Main conference: November 9–11, 2006

June 30, 2006 : Paper submission

August 30, 2006 : Early registration

For more information, paper submission, and online registration

please visit: http://www.tug.org/tug2006

or email: tug2006@tug.org

A curve with cusps

The relevant code is the following

\Curve(2.5,0)<1,1>(5,3.5)<0,1>%
(2.5,3.5)<-.5,-1.2>[-.5,1.2]%
(0,3.5)<0,-1>(2.5,0)<1,-1>

Claudio Beccari (TUG & guIt) LATEX, pict2e and complex numbers Marrakesh, 9–11 november 2006 43 / 50

Figure 8: Some examples with package curve2e

lar arcs, circular vectors with the arrow tip at one or both ends, to generic curves
obtained by specifying just the interpolation nodes and the tangent directions in
such nodes. The simple examples in figure 8 show some of the functionality of
this package.

9 The pgf and xcolor packages

The acronym PGF stands for ‘Portable Graphics Format’; the package pgf [13],
implements or re-implements all commands of the standard LATEX picture envi-
ronment and those of the graphics package so as to create a coherent set of com-
mands capable of doing most of the graphic operations in LATEX and in pdfLATEX.
Many commands are added to that fundamental set so as to extend the LATEX
graphic capabilities almost to the level of PSTricks; its capabilities are further ex-
tended by means of the xcolor package that on its own extends the possibilities
of color handling offered by the standard color package.

This package automatically examines the default configuration files and in-
serts in the output files the \special commands suited for the output driver;
if LATEX is being used (and therefore dvips or some of its kin is used) the suit-

12



able PostScript code is inserted in the output file. If pdfLATEX is being used,
the \specials contains PDF code that is therefore immediately active within the
output PDF file.

Since PDF code at the moment is not as powerful as the PostScript code, when
pdfLATEX acts as the typesetting engine it is not possible to exploit the full power
of the PSTricks package, but Till Tantau is working hard to extend this excellent
graphic package so that the full functionality may be achieved.

A personal experience: in September 2006 I bought myself a new laptop;
I installed all the packages I am used to, among which, of course, the whole
TEX distribution, the latest version available at that time. I had to prepare my
presentation for the Marrakech TUG2006 Conference, so I polished up what I
had already prepared using my previous laptop. I did not realize that the PGF
package had changed so much; I used the facilities I was used to, but I was not
aware that a major revision had added a lot of new features to that package.
If I had known, I would have withdrawn my contribution to that conference.
Fortunately enough, in my presentation I was praising the PGF bundle, but I was
not describing it, so that my presentation was still “presentable”. . .

What I discovered while preparing this paper was that a completely new in-
terface had been created so that PGF graphics could be drawn in a much simpler
way.

The new PGF bundle, version 1.10, contained a new package and its new
graphic environment that is called TikZ; this acronym stands for “TikZ ist kein
Zeichenprogramm” (TikZ is not a drawing program), but this is an understate-
ment set forth by Till Tantau in order to avoid bragging.

Yes, dear readers, PGF and its new package tikz is a very nice drawing in-
terface can produce almost anything. It does not have the full power of PSTricks,
but goes a long way in that direction. The manual explains in good detail what
can’t be done with the PostScript interface, and, what’s best, it explains that the
PGF format and program were specifically designed to be used with pdfLATEX,
where it performs best.

I had little time to get familiar with and to master TikZ, but after my first
experiments and using it for actual drawings I can definitely state that I will
stick to this software for the duration. Of course, the first thing I have to do is
transform the circuit drawing environment I spoke about in my earlier paper [12]
in order to exploit the best features of TikZ. But for other drawings I’ll use TikZ

13



2 Tutorial: A Picture for Karl’s Students

This tutorial is intended for new users of pgf and TikZ. It does not give an exhaustive account of all the
features of TikZ or pgf, just of those that you are likely to use right away.

Karl is a math and chemistry high-school teacher. He used to create the graphics in his worksheets and
exams using LATEX’s {picture} environment. While the results were acceptable, creating the graphics often
turned out to be a lengthy process. Also, there tended to be problems with lines having slightly wrong angles
and circles also seemed to be hard to get right. Naturally, his students could not care less whether the lines
had the exact right angles and they find Karl’s exams too difficult no matter how nicely they were drawn.
But Karl was never entirely satisfied with the result.

Karl’s son, who was even less satisfied with the results (he did not have to take the exams, after all),
told Karl that he might wish to try out a new package for creating graphics. A bit confusingly, this package
seems to have two names: First, Karl had to download and install a package called pgf. Then it turns out
that inside this package there is another package called TikZ, which is supposed to stand for “TikZ ist kein
Zeichenprogramm.” Karl finds this all a bit strange and TikZ seems to indicate that the package does not
do what he needs. However, having used gnu software for quite some time and “gnu not being Unix,” there
seems to be hope yet. His son assures him that TikZ’s name is intended to warn people that TikZ is not a
program that you can use to draw graphics with your mouse or tablet. Rather, it is more like a “graphics
language.”

2.1 Problem Statement

Karl wants to put a graphic on the next worksheet for his students. He is currently teaching his students
about sine and cosine. What he would like to have is something that looks like this (ideally):

x

y

−1 − 1
2

1

−1

− 1
2

1
2

1

α

sinα

cos α

tanα =
sinα

cos α

The angle α is 30◦ in the example
(π/6 in radians). The sine of α, which
is the height of the red line, is

sinα = 1/2.

By the Theorem of Pythagoras we
have cos2 α + sin2 α = 1. Thus the
length of the blue line, which is the
cosine of α, must be

cos α =
√

1− 1/4 = 1
2

√
3.

This shows that tanα, which is the
height of the orange line, is

tanα =
sinα

cos α
= 1/

√
3.

2.2 Setting up the Environment

In TikZ, to draw a picture, at the start of the picture you need to tell TEX or LATEX that you want to
start a picture. In LATEX this is done using the environment {tikzpicture}, in plain TEX you just use
\tikzpicture to start the picture and \endtikzpicture to end it.

2.2.1 Setting up the Environment in LATEX

Karl, being a LATEX user, thus sets up his file as follows:

16

Figure 9: An example taken from Tantau’s manual [13]

directly. I have already been using the PGF bundle for handling pictures when
using the presentation software beamer (another achievement of Till Tantau’s),
and now almost everything can be done with it.

Tantau says that TikZ is intended to offer the user a simplified and uniform
interface to allow composing drawings with the least possible fuss; in his manual
he wrote an introductory small teaching demo so as to produce figure 9. I will
not copy the code here, because anybody can find it in the manual [13], which
in any case has to be used intensively (it’s a about 370 pages long and it is very
well done and well organized) because of the multitude of drawing commands
available for any possible situation.

As you can see in figure 9 the program allows for both black and white graph-
ics and color graphics, and the text uses the same fonts as the default ones in the
PDF document; this is one of the features that is missing from most external
drawing packages and forces the user to circumvent this vacancy with a number
of tricks. TikZ frees the user from using any trick for this purpose because it is
fully integrated with (pdf)LATEX.

14



\tikz[shading=ball]

\foreach \x / \cola in {0/red,1/green,2/blue,3/yellow}

\foreach \y / \colb in {0/red,1/green,2/blue,3/yellow}

\shade[ball color=\cola!50!\colb] (\x,\y) circle (0.4cm);

\breakforeach

If this command is given inside a \foreach command, no further executions of the 〈commands〉 will
occur. However, the current execution of the 〈commands〉 is continued normally, so it is probably best
to use this command only at the end of a \foreach command.

\begin{tikzpicture}

\foreach \x in {1,...,4}

\foreach \y in {1,...,4}

{

\fill[red!50] (\x,\y) ellipse (3pt and 6pt);

\ifnum \x<\y

\breakforeach

\fi

}

\end{tikzpicture}

205

Figure 10: Color gradients and mix-
tures from Tantau’s manual [13]

Part VI

The Basic Layer

x(t)

y(t)

−1 2

−1

1

2

3

(
x(t), y(t)

)
= (t sin 1

t , t cos 1
t )

( 2
π , 0)

\begin{tikzpicture}

\draw[gray,very thin] (-1.9,-1.9) grid (2.9,3.9)

[step=0.25cm] (-1,-1) grid (1,1);

\draw[blue] (1,-2.1) -- (1,4.1); % asymptote

\draw[->] (-2,0) -- (3,0) node[right] {$x(t)$};

\draw[->] (0,-2) -- (0,4) node[above] {$y(t)$};

\foreach \pos in {-1,2}

\draw[shift={(\pos,0)}] (0pt,2pt) -- (0pt,-2pt) node[below] {$\pos$};

\foreach \pos in {-1,1,2,3}

\draw[shift={(0,\pos)}] (2pt,0pt) -- (-2pt,0pt) node[left] {$\pos$};

\fill (0,0) circle (0.064cm);

\draw[thick,parametric,domain=0.4:1.5,samples=200]

% The plot is reparameterised such that there are more samples

% near the center.

plot[id=asymptotic-example] function{(t*t*t)*sin(1/(t*t*t)),(t*t*t)*cos(1/(t*t*t))}

node[right] {$\bigl(x(t),y(t)\bigr) = (t\sin \frac{1}{t}, t\cos \frac{1}{t})$};

\fill[red] (0.63662,0) circle (2pt)

node [below right,fill=white,yshift=-4pt] {$(\frac{2}{\pi},0)$};

\end{tikzpicture}

214

Figure 11: A spiral plotted by TikZ the
coordinates of which are computed by
GnuPlot; from Tantau’s manual [13]

Color is dealt with using advanced commands; in particular it is possible to
do gradients and to mix colors; figure 10 displays an array of balls with circular
gradients and mixes the four colors that appear in the matrix secondary diagonal.

The PGF bundle contains a lot of libraries of additional commands; the stan-
dard drawing objects are available also without resorting to these libraries, but
the latter add a lot of options and functionality. It is possible to color the inside
of closed paths and to make node drawings and automata diagrams. There is an
enormous variety of “arrow” tips. There is a large array of background choices,
including the page background over which the regular pages are typeset. It of-
fers entity-relationship diagrams, mindmap diagrams (very attractive), a choice
of background patterns for technical drawings, Petri-net drawings, and so on.

The bundle handles the drawing of plots which may be defined as a series of
two- or three-coordinate pairs or triplets for doing 3D drawings. It can interact
with GnuPlot, a freeware external program that can compute and store coordinate
pairs or triplets for subsequent use by pdfLATEX1; actually it is not necessary to

1. This feature requires activation of the \write18 (pdf)TEX facility, which is disabled by default,
but may be enabled for particular tasks to reduce the risks of using it. Note that if it was enabled
by default it could allow the user of the ever present malware to launch destructive programs,

15



launch GnuPlot from within pdfLATEX; it can be run in deferred mode by the user
himself, and in a second run of pdfLATEX it can retrieve the files produced by
GnuPlot, and then the plotting facility of TikZ executes the plots; see figure 11
for another example taken from Tantau’s manual [13]. This plotting facility is
completed by the possibility of marking the plotting nodes (the experimental
points) with different symbols so that plots presenting different lines can be better
distinguished even if colors are not used.

The “snake” library allows changing the shape of most drawing objects, specif-
ically straight or curved lines. A couple of special shapes I appreciate are the
curved arrows, that allow connecting different nodes with non-intersecting and
non-blurring arrows or lines, and the helical shape that is used so frequently in
technical drawings.

The “shape” library contains the definitions of a lot of typical shapes, that can
be colored inside and that contain text or symbols used in a lot of schematic block
diagrams. A useful one is the “forbidden sign” that can be used in a variety of
situations. The example on Tantau’s manual contains the text “Smoking” so that
the strong meaning “It’s forbidden to smoke” emerges with due emphasis.

The “to path” library allows one to draw curved lines with third-order Bèzier
splines without the need of specifying the node tangent directions. Such Bèzier
third-order splines may be used freely even without the use of this library pro-
vided the node tangents are specified. This library renders the curve drawing
task much easier.

The “tree” library allows the drawing of trees of nodes with parents and chil-
dren so that most of the logical visual drawings can be performed with no diffi-
culty.

The TikZ syntax is rather simple; its statements start with a command, con-
tinue with options and coordinates and finish with a semicolon; they remind of
the METAFONTor METAPOSTcommands and syntax, but TikZ is not a replace-
ment of METAPOSTor METAFONT. The options and the object names are similar
to some PSTricks commands, but TikZ is not a replacement for PSTricks.

A true novelty is the possibility of making simple inline drawings such as
this: without opening an environment. The intuitive code for drawing the
above shaded button is the following:

without the user being aware of what’s happening.

16



[...] such as this: \tikz \shade[ball color=red] (2ex,1ex) circle(1ex);

without opening [...]

A final comment: TikZ may be used also with plain TEX, pdfTEX, and Con-
TEXt; it is thought of as a modern package usable in different situations and with
different typesetting engines. It recognizes by itself which engine is being used
and changes its performance, syntax and interface accordingly, and eventually
issues the necessary \special commands, which are transparent to the user, and
which match the specific driver needed for rendering the document in human
readable form. Those who use dvips will need to run the necessary filters, but
pdfLATEX users do not have to do anything in order to display their work, because
pdfLATEX outputs directly the readable document.

10 Conclusion

This tutorial scans a variety of packages for drawing simple or complicated draw-
ings, with a variety of programming interfaces, and with different levels of so-
phistication in the complexity of the final output.

Certainly the basic standard LATEX picture environments pale in comparison
to the performance of PSTricks or those of the PGF bundle, even if the standard
environment is upgraded with pict2e and curve2e. However, this simple drawing
tool may be used by learning only a few commands. XY-pic, PSTricks, and TikZ
definitely have a larger feature set but also have a steeper learning curve.

With TikZ I am personally experiencing the satisfaction of drawing technical
line art that I wasn’t able to do with other LATEX drawing interfaces; the results
are worth the little strain of learning a new interface language.

This tutorial shows only small examples of how to use the drawing tools
discussed. For more detail the interested reader can view the required handbooks
and manuals. These are available from the international ctan archives, and are
also provided with the various bundles, most of which are already included in
most modern distributions of the TEX system, be it for a Windows, a UNIX/Linux
or a Macintosh platform.

If you explore the ctan archives you can certainly find other graphic drawing
interfaces; either they are very specific or they are overridden by the packages I
describe in this tutorial. Nevertheless if you need to draw something very special

17



(as I have to, for example, with my electronics circuits) it’s a good idea to explore
ctan, where most likely the graphics/ folder contains the specific package for
your needs.2

I set forth some little warnings derived from my experience. To tell the truth,
I do not have a lot of experience with some of these packages yet. Nevertheless
I collected information from colleagues who use them. The warning about dis-
abling the double quote active character when using XY-pic derives from a small
article written on the web site of the Italian TUG, written by a user who was
very disappointed when the Italian language description file was upgraded to
include some “double quote” driven markups. When I introduced them into the
language description file, I had the impression that all other language description
files, except for English, contained such markups, so why not in Italian, where the
keyboard deficiency is remarkable3 There are other circumstances where some
markups are necessary and the double quote stands out as the only character
that Knuth did not use for something else (well, the hexadecimal numbers, but
one can use the octal or the decimal ones instead). I am surprised that no such
complaints were raised from users writing in other languages.

I encourage (pdf)LATEX users to experiment extensively with the PGF package;
after a while they will become addicted. . .

References

[1] John Hobby, METAPOST, CTAN:graphics/metapost/

[2] Hans Hagen, MetaFun, CTAN:manuals/metafun-p.pdf

[3] Michael Wichura, PiCTEX, CTAN:graphics/pictex/

[4] Michael Wichura m-PiCTEX, CTAN:help/Catalogue/entries/m-pictex.html

[5] Sunil Podar, The epic package, CTAN:macros/latex/contrib/epic/

2. Why, then, am I going to rewrite my electronics circuit drawing package, if there is one already
there in ctan? Because even if that package contains a larger variety of components, they are
drawn according the North American standards which are not standard in Europe.
3. The Italian standard keyboard does not contain the ever present TEX characters such as both
curly braces (!), the tilde and the grave accent; the latter is the only accent to be used on any
Italian vowel, except for ‘e’ which takes the acute accent instead.

18

http://www.ctan.org/tex-archive/graphics/metapost/
http://www.ctan.org/get?fn=/manuals/metafun-p.pdf
http://www.ctan.org/tex-archive/graphics/pictex/
http://www.ctan.org/get?fn=/help/Catalogue/entries/m-pictex.html
http://www.ctan.org/tex-archive/macros/latex/contrib/epic/


[6] Conrad Kwok, The eepic package, CTAN:macros/latex/contrib/eepic/

[7] Ian Maclaine-Cross, The curves and curveslm packages, CTAN:macros/latex/
contrib/curves/

[8] Timothy van Zandt, The PSTricks bundle, CTAN:graphics/pstricks/; the doc-
umentation is in CTAN:applications/PSTricks/

[9] Kristofer Høgsbro Rose and Ross Moore, The XY-pic bundle, CTAN:

applications/Xy-pic/Xy-pic.html

[10] Leslie Lamport, A document preparation system — LATEX — User’s guide and
reference manual, Addison Wesley Publ. Co., Reading, mass., 2nd ed., 1994.

[11] Hubert Gäßlein and Rolf Niepraschk, The pict2e package, CTAN:macros/

latex/contrib/pict2e/

[12] Claudio Beccari, The curve2e package, CTAN:macros/latex/contrib/

curve2e/

[13] Till Tantau, TikZ and PGF, CTAN:graphics/pgf/

19

http://www.ctan.org/tex-archive/macros/latex/contrib/eepic/
http://www.ctan.org/tex-archive/macros/latex/contrib/curves/
http://www.ctan.org/tex-archive/macros/latex/contrib/curves/
http://www.ctan.org/tex-archive/graphics/pstricks/
http://www.ctan.org/tex-archive/applications/ PSTricks/
http://www.ctan.org/get?fn=/applications/Xy-pic/Xy-pic.html
http://www.ctan.org/get?fn=/applications/Xy-pic/Xy-pic.html
http://www.ctan.org/tex-archive/macros/latex/contrib/pict2e/
http://www.ctan.org/tex-archive/macros/latex/contrib/pict2e/
http://www.ctan.org/tex-archive/macros/latex/contrib/curve2e/
http://www.ctan.org/tex-archive/macros/latex/contrib/curve2e/
http://www.ctan.org/tex-archive/graphics/pgf/

	Introduction
	The standard LaTeX picture environment
	PiCTeX
	The epic and eepic picture extensions
	The curves package
	PSTricks
	XY-pic
	The pict2e and curve2e extensions to the standard LaTeX picture environment
	The pgf and xcolor packages
	Conclusion

