Tailcut 000	Wavelets 000	Conclusion O	References

The Second CTA Pipeline Developer's Workshop Advanced Image Cleaning

Jérémie Decock

CEA Saclay - Irfu/SAp

October 11, 2016

CEA Saclay - Irfu/SAp

< 17 ▶

∃ >

The Second CTA Pipeline Developer's Workshop

Introduction	Tailcut	Wavelets	Conclusion	References
O	000	000	O	

Introduction

Decock

CEA Saclay - Irfu/SAp

O > <
 O >

Introduction •	Tailcut 000	Wavelets 000	Conclusion O	References
Introduction				

Subject

Try to improve image cleaning before *Hilas parametrization* Improve methods to remove:

- Instrumental noise
- Background noise

Motivations:

- Keep more signal (deeper into the noise)
- Reduce threshold
- Maybe eventually do cleaning and time-integration all at once

< □ > < 同 >

-∢ ≣ ▶

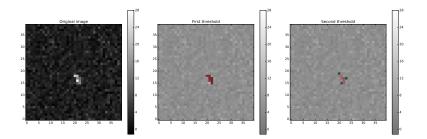
CEA Saclay - Irfu/SAp

Tailcut 000	Wavelets 000	Conclusion O	References

Current method (HESS)

Decock

CEA Saclay - Irfu/SAp

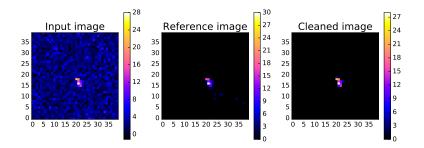

Image: A mathematical states and a mathem

	Tailcut	Conclusion	References
	•00		
Description			

The "Tailcuts clean" algorithm

A very simple cleaning procedure:

- ► Keep pixels above a given threshold (e.g. 10 PE)
- Keep some neighbors of these selected pixels: those above a second (lower) threshold (e.g. 5 PE)



CEA Saclay - Irfu/SAp

The Second CTA Pipeline Developer's Workshop

	Tailcut 0●0	Wavelets 000	Conclusion O	References
Description				

Example

The Second CTA Pipeline Developer's Workshop

	Tailcut 00●	Wavelets 000	Conclusion O	References
Description				

Remarks

- Fast and simple
- Sufficient for bright showers
- But surely we can do better for faint showers

Image: A mathematical states and a mathem

The Second CTA Pipeline Developer's Workshop

Tailcut 000	Wavelets 000	Conclusion O	References

An alternative method

CEA Saclay - Irfu/SAp

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Second CTA Pipeline Developer's Workshop

	Tailcut 000	Wavelets ●00	Conclusion	References
Description	000	000	Ũ	

Basic idea

- Tailcut method: threshold in the main space
- Better idea: threshold in a different space where signal and noise can be easily separated

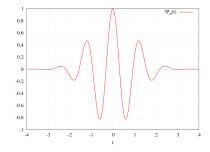
The Second CTA Pipeline Developer's Workshop

	Tailcut 000	Wavelets 0●0	Conclusion O	References
Description				

Wavelet Transform method

Roughly the same idea than doing filtering with Fourier Transform

- Apply the transform on the signal
- Apply a threshold in the transformed space
- Invert the transform to go back to the original signal space


Differences with Fourier Transform

- Use wavelets instead sin and cos functions as new bases in the transformed space
- The transformed space contains spatial information

	Tailcut 000	Wavelets 00●	Conclusion O	References
Description				

Overview

A wavelet looks like this (Morlet):

"A wave-like oscillation with an amplitude that begins at zero, increases, and then decreases back to zero"

Tailcut 000	Wavelets 000	Conclusion ○	References

Conclusion

Decock

CEA Saclay - Irfu/SAp

ъ

A B +
 A
 B +
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	Tailcut 000	Wavelets 000	Conclusion •	References
Conclusion				

Conclusion

This is a work is in progress... We will try to give some first results in Bologna Meeting or soon after

Thanks to CosmoStat we have some tools to apply wavelet transforms ("mr_transform")

Tailcut 000	Wavelets 000	Conclusion O	References

References I

○◆□▼ ▲国▼ ▲国▼ ▲国▼ ◇○○

CEA Saclay - Irfu/SAp

The Second CTA Pipeline Developer's Workshop

Appendix

Decock

CEA Saclay - Irfu/SAp

Э

三日 のへで

・ロン ・回 と ・ ヨン ・

Appendix
0000000
Noise

Decock

Clarifications

Different kind of "noise" in telescope images (to be completed...)

- 1. Instrumental noise (Photomultiplier Tubes, ...)
 - Thermionic emission
 - Radiations
 - Electric noise
- 2. Background noise (*Night Sky Background* or NSB)
 - Parasite light (moon, stars, planes, light pollution, ...)

・ロン ・回 と ・ 回 と ・

```
Appendix

••••••••

Tailcut
```

The "Tailcuts clean" listing (Python)

```
tailcuts_clean(geom, image, pedvars,
   def
       picture_thresh=4.25, boundary_thresh=2.25):
2
3
       clean_mask = image >= picture_thresh * pedvars
       boundary_mask = image >= boundary_thresh * pedvars
4
5
6
       boundary_ids = []
7
       for pix_id in geom.pix_id[boundary_mask]:
8
           if clean_mask[geom.neighbors[pix_id]].any():
9
               boundary_ids.append(pix_id)
       clean_mask[boundary_ids] = True
12
       return clean_mask
```

listings/tailcuts_clean.py

< 冊

< ∃ >

CEA Saclay - Irfu/SAp

Appendix
0000000
FFT

Decock

First alternative

- Previous filter: threshold in the main space
- Better idea: threshold in a different space where signal and noise can be easily separated

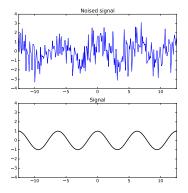
< □ > < 同 >

Appendix 00000000 FFT

Fourier transform

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nt) + b_n \sin(nt))$$
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$$

メロト メ団ト メヨト メ


CEA Saclay - Irfu/SAp

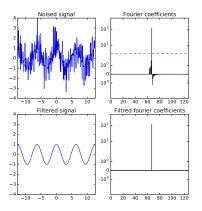
Discrete Fourier Transform (DFT)

Fourier Transform for discrete signals (digital pictures, ...)

Clean signals with DFT

Remove noise in direct space: difficult (here)

CEA Saclay - Irfu/SAp


Decock

Decock

Clean signals with DFT

Remove noise in transformed space: easy (here)

- Apply DFT
- Apply a threshold
- Apply invert DFT

< 何

Appendix
00000000
FFT

Remarks

FFT can be applied to any T-periodic function f verifying the *Dirichlet conditions*:

- f must be continuous
- and monotonic
- ▶ on a finite number of sub-intervals (of *T*)

Signals defined on bounded intervals (e.g. images) can be considered as periodic functions (applying infinite repetitions)

CEA Saclay - Irfu/SAp

Decock

Analyse

Works well:

- when the Fourier coefficients for the signal and the noise can easily be separated in the Fourier space (obviously...)
- e.g. when either the signal *or* the noise can be defined with few big Fourier coefficients (i.e. signal or noise have a few number of significant harmonics)