Présentation de l'article An efficient boosting algorithm for combining preferences (Y. Freund et al., 1998)

François ROUSSEAU Jérémie DECOCK

UPMC

13 octobre 2010

Plan

Le boosting

Rankboost

Résultats

Le boosting

Le boosting

Face à un problème de classification complexe, il est difficile de construire un classifieur

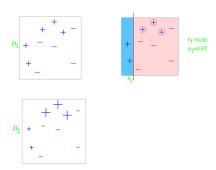
- efficace
- qui généralise bien

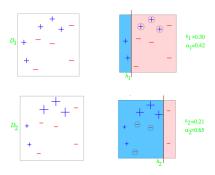
En revanche, il est plus facile de construire un classifieur « faible »

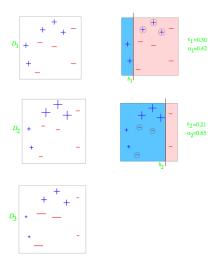
- classant un peu mieux que le hasard
- sur un sous ensemble des données

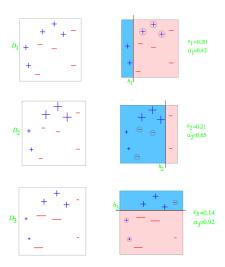
Boosting

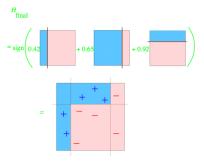
On peut résoudre un problème complexe en combinant intelligement plusieurs classifieurs faibles











Historique

Historique

- ► [Kearns and Valiant 88] : does weak learnability imply strong learnability?
- ► [Schapire 90] : premier algorithme prouvé *The strength of weak learnability* (boosting par sous ensembles)
- ► [Freund and Schapire 95] : Adaboost (l'algorithme de référence)
- ▶ [Freund and Schapire 98] : Rankboost

Adaboost

Ensemble d'apprentissage étiqueté

$$\mathcal{S} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}, \ \mathbf{x}_i \in \mathcal{X}, \ y_i \in \{+1, -1\}, \ i = 1, m$$

Initialisation la distribution des exemples

$$D_1(i) = \frac{1}{m}, i = 1, \ldots, m$$

Déroulement

Pour $t = 1, \ldots, T$

- lacktriangle tirer un échantillon d'apprentissage \mathcal{S}_t dans \mathcal{S} selon D_t
- lacktriangleright trouver une *hypothèse faible* $h_t: \mathcal{X}
 ightarrow \{+1,-1\}/h_t = \mathop{argmin}_{\epsilon_t}$
- **>** calculer le poids α_t de h_t : typiquement $\alpha_t = \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t}$
- lacksquare $D_{t+1}(i) = rac{D_t(i)\,e^{-lpha_t y_i h_t(\mathbf{x}_i)}}{Z_t}$, Z_t un facteur de normalisation

Hypothèse finale

$$H(\mathbf{x}) = sign(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x}))$$

Rankboost

Rankboost

On ne fait plus de la classification mais du ranking

- ensemble d'instances $\mathcal{X} = \{x_0, \dots, x_m\}$
- ▶ distribution des exemples $D(x_i, x_j) = c.max(0, \phi(x_i, x_j))$ avec $\phi : \mathcal{X}^2 \to \mathbf{R}$ une relation de préférence

$$h(x) = \begin{cases} 1 & \text{si} \quad f_i(x) > \theta \\ 0 & \text{si} \quad f_i(x) \le \theta \\ q_{def} & \text{si} \quad f_i(x) = \phi \end{cases}$$

$$\text{avec } \theta \in \mathbf{R} \text{ et } q_{def} \in \{0, 1\}$$

Rankboost

Initialisation la distribution des exemples

$$D_1(x_i, x_j) = c.max\{0, \phi(x_i, x_j)\}$$

Déroulement

Pour $t = 1, \ldots, T$

- ▶ weak hypothesis $h_t : \mathcal{X} \to \mathbf{R}, h_t = \underset{r_t}{\operatorname{argmax}}, h_t \in \mathcal{H},$ $r_t = \sum_{x_i, x_j} D_t(x_i, x_j) (h_t(x_j) h_t(x_i))$
- **>** poids du classifieur : $\alpha_t \in \mathbf{R}, \alpha_t = \frac{1}{2} \ln \frac{1+r_t}{1-r_t}$
- $D_{t+1}(x_i,x_j) = \frac{D_t(x_i,x_j) e^{\alpha_t(h_t(x_i)-h_t(x_j))}}{Z_t}$

Hypothèse finale

$$H(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

Résultats

Résultats

Données

- recommandation de films (sources : Digital Equipment Corporation)
- ▶ 61 625 utilisateurs
- ▶ 1628 films
- 2 811 983 classements

Résultats

Méthodes comparées

- régression
- K plus proche voisin

Critères de performance

- disagreement
- predicted-rank-of top
- coverage
- rank-of-predicted-top

Résultats

Rankboost > KNN > Regression

Conclusion

Conclusion

- résultats probants sur les exemples de ranking
- ▶ le boosting permet d'améliorer sensiblement les performances des lors que l'hypothèse faible est bien choisie

Critiques

- comparaison avec des versions très simplifiées des algorithmes (surtout pour KNN)
- valeurs non mentionnées et à priori arbitraires pour truly top-rated instances
- sensibilité au bruit/valeur aberrante (< exponentielle)