Selection and expansion 000000

Image: A math and A

Monte-Carlo Tree Search An introduction

Jérémie DECOCK

Inria Saclay - LRI

May 2012

Decock

Monte-Carlo Tree Search

Inria Saclay - LRI

Selection and expansion 000000

(日)

2

Inria Saclay - LRI

Introduction

Decock

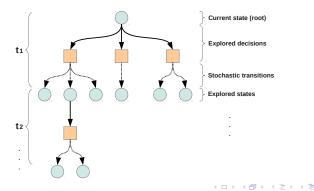
3

Inria Saclav - LRI

Monte-Carlo Tree Search (MCTS)

- MCTS is a recent algorithm for sequential decision making
- It applies to Markov Decision Processes (MDP)
 - discrete-time t with finite horizon T
 - ▶ state $\mathbf{s}_t \in \mathcal{S}$
 - ▶ action $\mathbf{a}_t \in \mathcal{A}$
 - transition function $\mathbf{s}_{t+1} = \mathcal{P}(\mathbf{s}_t, \mathbf{a}_t)$
 - cost function $r_t = \mathcal{R}_{\mathcal{P}}(\mathbf{s}_t)$
 - reward $R = \sum_{t=0}^{T} r_t$
 - policy function $\mathbf{a}_t = \pi_{\mathcal{P}}(\mathbf{s}_t)$
 - we look for the policy π^* that maximizes expected R

MCTS strength


- Mcts is a versatile algorithm (it does not require knowledge about the problem)
- especially, does not require any knowledge about the Bellman value function
- stable on high dimensional problems
- it outperforms all other algorithms on some problems (difficult games like Go, general game playing, ...)

Introduction 00●	<i>Monte-Carlo Tree Search</i> 000	Selection and expansion	References
Introduction			

MCTS

Problems are represented as a tree structure:

- blue circles = states
- plain edges + red squares = decisions
- dashed edges = stochastic transitions between two states

Inria Saclav - LRI

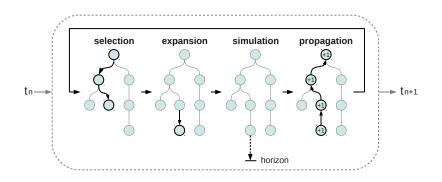
Introduction 000 Monte-Carlo Tree Search

Selection and expansion

Image: Image:

-

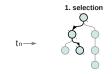
References


6

Inria Saclay - LRI

Monte-Carlo Tree Search

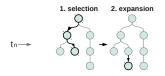
Decock


Introduction 000	Monte-Carlo Tree Search ●00	Selection and expansion	References
Monte-Carlo Tree Search			

7

Decock

Introduction 000	Monte-Carlo Tree Search ○●○	Selection and expansion	References
Monte-Carlo Tree Search			
Main steps of	MCTS		


--> tn+1

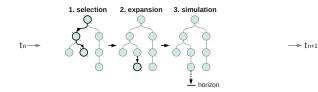
Starting from an initial state:

 $1. \ \mbox{select the state we want to expand from}$

Decock

Introduction 000	Monte-Carlo Tree Search ○●○	Selection and expansion	References
Monte-Carlo Tree Search			

—> tn+1

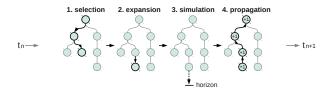

8

Inria Saclay - LRI

Starting from an initial state:

- 1. select the state we want to expand from
- 2. add the generated state in memory

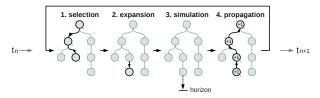
Introduction 000	Monte-Carlo Tree Search 0●0	Selection and expansion	References
Monte-Carlo Tree Search			


Starting from an initial state:

- $1. \ \mbox{select the state we want to expand from}$
- 2. add the generated state in memory
- 3. evaluate the new state with a default policy until horizon is reached

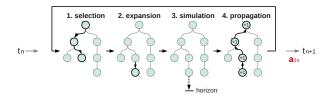
8

Inria Saclav - LRI


Introduction 000	Monte-Carlo Tree Search ○●○	Selection and expansion	References
Monte-Carlo Tree Search			

Starting from an initial state:

- 1. select the state we want to expand from
- 2. add the generated state in memory
- 3. evaluate the new state with a default policy until horizon is reached
- 4. back-propagation of some information:
 - $n(\mathbf{s}, \mathbf{a})$: number of times decision \mathbf{a} has been simulated in \mathbf{s}
 - $n(\mathbf{s})$: number of time **s** has been visited in simulations
 - $\hat{Q}(\mathbf{s}, \mathbf{a})$: mean reward of simulations where \mathbf{a} was whosen in \mathbf{s}


Introduction 000	Monte-Carlo Tree Search ○●○	Selection and expansion	References
Monte-Carlo Tree Search			

Starting from an initial state:

- 1. select the state we want to expand from
- 2. add the generated state in memory
- 3. evaluate the new state with a default policy until horizon is reached
- 4. back-propagation of some information:
 - $n(\mathbf{s}, \mathbf{a})$: number of times decision \mathbf{a} has been simulated in \mathbf{s}
 - $n(\mathbf{s})$: number of time **s** has been visited in simulations
 - $\hat{Q}(\mathbf{s}, \mathbf{a})$: mean reward of simulations where \mathbf{a} was whosen in \mathbf{s}

Introduction 000	Monte-Carlo Tree Search ○○●	Selection and expansion	References
Monte-Carlo Tree Search			

The selected decision

 \mathbf{a}_{t_n} = the most visited decision form the current state (root node)

Inria Saclay - LRI

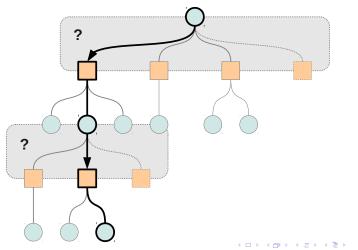
Introduction 000 Monte-Carlo Tree Search

Selection and expansion

References

10

Inria Saclay - LRI

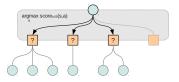

Selection and expansion

Decock

Introduction 000	Monte-Carlo Tree Search	Selection and expansion •00000	References
Selection and expansion			

Selection step

How to select the state to expand ?


11

Inria Saclay - LRI

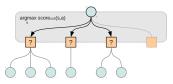
Decock

Introduction 000	<i>Monte-Carlo Tree Search</i> 000	Selection and expansion	References
Selection and expansion			

How to select the state to expand ?

The selection phase is driven by Upper Confidence Bound

$$\text{score}_{\text{ucb}}(\mathbf{s}, \mathbf{a}) = \underbrace{\hat{Q}(\mathbf{s}, \mathbf{a})}_{1} + \underbrace{\sqrt{\frac{\log(2 + n(\mathbf{s}))}{2 + n(\mathbf{s}, \mathbf{a})}}}_{2}$$


- 1. mean reward of simulations including action \mathbf{a} in state \mathbf{s}
- 2. the uncertainty on this estimation of the action's value

Decock

Inria Saclav - LRI

Introduction 000	<i>Monte-Carlo Tree Search</i> 000	Selection and expansion	References
Selection and expansion			

How to select the state to expand ?

The selection phase is driven by Upper Confidence Bound

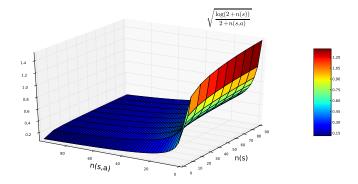
$$score_{ucb}(\mathbf{s}, \mathbf{a}) = \underbrace{\hat{Q}(\mathbf{s}, \mathbf{a})}_{1} + \underbrace{\sqrt{\frac{\log(2 + n(\mathbf{s}))}{2 + n(\mathbf{s}, \mathbf{a})}}}_{2}$$

The selected action:

$$\mathbf{a}^{\star} = \arg \max_{\mathbf{a}} \operatorname{score}_{\operatorname{ucb}}(\mathbf{s}, \mathbf{a})$$

12

Inria Saclav - LRI

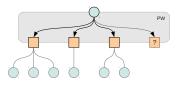

Decock

Monte-Carlo Tree Search

Selection and expansion 000000

Selection and expansion

How to select the state to expand ?

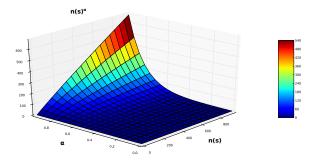


Decock

Introduction 000	<i>Monte-Carlo Tree Search</i> 000	Selection and expansion	References
Selection and expansion			

When should we expand?

One standard way of tackling the exploration/exploitation dilemma is *Progressive Widening*.


A new parameter $\alpha \in [0; 1]$ is introduced, to choose between exploration (add a decision to the tree) and exploitation (go to an existing node)

14

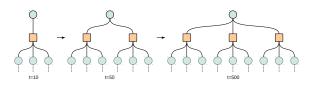
Inria Saclav - LRI

Decock

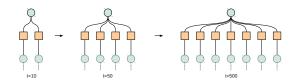
Introduction 000	Monte-Carlo Tree Search 000	Selection and expansion

15

Inria Saclav - LRI


- if $(|\mathcal{A}'_{\mathbf{s}}| < n(\mathbf{s})^{\alpha})$ then we explore a new decision
- else we simulate a known decision
- With $|\mathcal{A}'_{\mathbf{s}}|$ the number of legal actions in state \mathbf{s}

Decock


Introduction	<i>Monte-Carlo Tree Search</i>	Selection and expansion	References
000	000	00000●	
Selection and expansion			

When should we expand?

 $\alpha = 0.2$

 $\alpha = \mathbf{0.8}$

Inria Saclay - LRI

16

Decock

Introduction 000 Monte-Carlo Tree Search

Selection and expansion

References

References I

Decock