ERIKA Enterprise Multicore Tutorial

for the Altera Nios II platform

version: 1.1.1
December 11, 2012

AAA

EVIDENCE®

About Evidence S.r.l.

Evidence is a spin-off company of the ReTiS Lab of the Scuola Superiore S. Anna, Pisa,
Italy. We are experts in the domain of embedded and real-time systems with a deep
knowledge of the design and specification of embedded SW. We keep providing signifi-
cant advances in the state of the art of real-time analysis and multiprocessor scheduling.
Our methodologies and tools aim at bringing innovative solutions for next-generation
embedded systems architectures and designs, such as multiprocessor-on-a-chip, recon-
figurable hardware, dynamic scheduling and much more!

Contact Info

Address:

Evidence Srl,

Via Carducci 56

Localita Ghezzano

56010 S.Giuliano Terme

Pisa - Italy

Tel: +39 050 991 1122, +39 050 991 1224
Fax: +39 050 991 0812, +39 050 991 0855

For more information on Evidence Products, please send an e-mail to the following
address: info@evidence.eu.com. Other informations about the Evidence product line
can be found at the Evidence web site at: http://www.evidence.eu.com.

' '
EVIDENCE’

This document is Copyright 2005-2012 Evidence S.r.1.

Information and images contained within this document are copyright and the property of Evidence
S.r.l. All trademarks are hereby acknowledged to be the properties of their respective owners. The
information, text and graphics contained in this document are provided for information purposes only by
Evidence S.r.l. Evidence S.r.l. does not warrant the accuracy, or completeness of the information, text,
and other items contained in this document. Matlab, Simulink, Mathworks are registered trademarks
of Matworks Inc. Microsoft, Windows are registered trademarks of Microsoft Inc. Java is a registered
trademark of Sun Microsystems. The OSEK trademark is registered by Continental Automotive GmbH,
Vahrenwalderstrale 9, 30165 Hannover, Germany. The Microchip Name and Logo, and Microchip In
Control are registered trademarks or trademarks of Microchip Technology Inc. in the USA. and other
countries, and are used under license. All other trademarks used are properties of their respective

owners. This document has been written using LaTeX and LyX.

http://www.evidence.eu.com

Contents

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios Il

1.1 The hardware design.

1.1.1 Importing an already existing hardware design

1.1.2 Creating an hardware design from scratch
1.2 Creating the Altera System Libraries.
1.3 The RT-Druid Project
1.4 Updating the OIL File,
1.5 Compiling the application
1.6 Running the application
1.7 Partitioning the software 00
1.8 Flashing the demo on the evaluation board
1.9 Running the demo from flash without the Nios I IDE

2 History

1 RT-Druid and ERIKA Enterprise tutorial for
Altera Nios Il

This small tutorial describes a set of steps needed to design a simple two CPU multi-
processor application that shows the main features of Erika Enterprise and RT-Druid.

This tutorial suppose that the reader is familiar to design of multiprocessor systems
as explained in the Altera document named “Creating Multiprocessor Nios II systems
tutorial” available on the Altera web site [1].

The following sections subsumes the Altera tools have been installed under c:\altera.
This tutorial has been tested on a Stratix 2s60 evaluation board; This tutorial will
work with all Nios II evaluation boards, because all the specific multiprocessor hardware
involved in the multiprocessor design is a composition of the Altera Avalon Mutex and of
the Altera Avalon PIO peripherals, that are provided by Altera on all Nios-II supported
FPGAs.

Other tutorials are available for download from the Evidence web site. In particular,
we suggest to consider the API Tutorial, containing a set of demos working on the
standard and full_featured single-CPU Altera examples showing the behavior of the
various Erika Enterprise primitives.

1.1 The hardware design.

This Section describes how to create a multicore hardware suitable to be used with Erika
Enterprise.

There are two options available: use a template design, or create a design starting
from an Altera default example.

1.1.1 Importing an already existing hardware design

Evidence Srl provides an already compiled hardware design that can be used to test
Erika Enterprise. The hardware design of a four processor demo is available for download
from the Evidence website, under the Nios II Download section. Please refer to Figure
1.1 for a screenshot of the SOPC blocks used to create the demo.

To open the demo, you have select “Restore Archived Project...” under the Quartus
IT Project menu. When you select that option, a dialog box appears. Fill the required
informations giving the name of the QAR file. Please remember that you will have to
use the directory of the project inside the OIL file.

The design is basically a modification of the “standard” Altera demo available under
C:\altera\81\nios2eds\examples\verilog\niosII_stratix_2s60_ROHS\standard. The

Y

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

|Llse Connections Mocule Name Description Clock Base End RG!

= i PLL
sl ‘Avalon Memory Wapped Slave ik 0302001040 [0x0200105¢
"] 2 cpu_n Mios || Processor
instruction_master \Avalon Memory Mapped Master cik2
data_master \Auraln Memery Wapped Master 1m0 IRQ 3Ly
tau_debug_module Weralon Memary Mapped Slave 0202000800 [0x0Z000££E
@ —————————————— @ led_display Character LCD clk2 0302001100 [0x0200110%
@ ————————| & led_pio PIO (Parallel 1) clk2 0302001020 [0x02Z0010e1
@ button_pio PIO (Parallel LO) clk2 0x020010£0 (0x020010£F —]
@ jtag_uart_0 TAG UART clk2 0x02004130 [0x02001137]
= sys_clk_timer_0 Interval Timer clk2 002001000 [0x020010Lf 1
) high_res_timer_0 Interval Timer clk2 0x02001020 [0x0zOD103E —1
I} timer_capacity_0 Interval Timer olk2 0x02001060 [0x0z00107f P—1
[timer _r 0 Interval Timer elk2 0x02001080 [0x0200109f b—1
@ timer_dicheck_0 Interval Timer clk2 0x020010a0 [0x020010bE —1
) timer_sem_0 Interval Timer clk2 0202001000 [0x0Z0010dE —1
e Bl pipeline_bridge 0 \wralon-hh Pipefine Bridoe
sl ‘Avalon Memory Wapped Slave clk2 0301000000 [0x0LLEfrES
mt \Avalon Memory Mapped Master
73] [B ext_ssram_bus \Awvalon-W Tristate Bridge
avalon_slave Auraln Memery Wapped Slave clk2
I8 iristate_master Aoralon Memory Wapped Tristate Master
I ext_ssram Cypress CY7C1350C SERAM clk2 A 0380000000 [0x00LEEEEE
& 2 epu Mios || Processor
instruction_master \Avalon Memory Mapped Master cik2
[data_master \Avalon Memory Mapped Master IR0 0 IRQ 2L
tau_debug_module Weralon Memary Mapped Slave 0200000800 [0x00000££E
@ jtag_uart 1 ATAG UART clk2 0x00001040 [0x00001047 P—1—]
@ sys_clk_timer_1 Interval Timer clk2 0300001000 [0x0000101F P—1—]
@ high_res_timer 1 Interval Timer clk2 0x00001020 [0x0000103 £ p—t—1
& timer_capacity_1 Interval Timer clk2 0x00001040 [0x0000105 £ it
= timer_r 1 Interval Timer clk2 0200001060 [0x0000107 £ p—1—t
) timer_dicheck 1 Interval Timer elk2 0300001080 [0x0000109f —1—f
I} timer_sem_1 Interval Timer clk2 0300001020 [0x000010bF P—1—
|72 B cpu_2 Mios || Processor
instruction_master \Avalon Memory Mapped Master cik2
[T data_master Awralon Memory Mapped Master InQ o IR FLE—TY
tau_debug_module Weralon Memary Mapped Slave 0200001800 [0x00001££E
I ['——— @ jtag_uart_2 ATAG UART clk2 0300001048 [0x0000104%
=] e sys_clk_timer_2 Interval Timer k2 0300001020 [0x000010£f
® | @ high_res_timer_2 Intervai Timer eik2 0x00001100 (0x0000111 ¢
& M1 er_capacity_2 Interval Timer clk2 0x00001120 [0x00001131
]| [~—t— @ timer_recharging_2 Interval Timer clk2 000001140 [0x0000115¢
& [——— @ timer_dicheck_2 Interval Timer clk2 0300001160 [0x0000117%
& [*——— @ timer_sem_2 Interval Timer clk2 0%00001180 [0x0000119¢
=] B cpu_3 Mios || Processor
| instruction_master \Avalon Memory Mapped Master clk2
E}—c data_master Awralon Memory Mapped Master InQ o IRQ 31
| ey debug_modus Awalon Memory Wapped Slave 0300002000 [0x000027£%
@ [—| @ jtag_uart_3 ATAG UART clk2 0300001280 [0x00001287 |
®@ M| @ sys_clk_timer_3 Interval Timer cik2 0x000011c0 (0x0000114F I
® M| @ high_res_timer_3 Intervai Timer cik2 0x000011e0 (0x000011 £ I
& [—| B timer_capacity_3 Interval Timer clk2 0x00001200 [0x0000121¢ |
& [—>| B timer_recharging_3 Intervail Timer clk2 0%00001220 [0x0000123 ¢ |
5 [—| @ timer_dicheck_3 Interval Timer clk2 0300001240 [0x0000125% |
@ S Interva Timer ez 0x00001260 [0x0000127 ¢
®@ PIO (Parallel 1) cik2 0x02001110 (0x0Z00111
& PIO (Parallel 110) elk2 002001120 [0x0200112f —F
@ IO (Parallel 103 elk2 0200001008 (020000102t —T]
& [—t—r| FIO (Parallel 110 clk2 0%000011a0 [0x000011af fil
@ - put_; PIO (Paralel 110 clk2 0%000011b0 (Dx000011k¢ il
] —— - L] Mutex cik2 0x02001138 [0x0200113f

Figure 1.1: The SOPCBuilder blocks created for the 4CPU demo available on the Evi-
dence website.

Hardware design is basically a SOPCBuilder block with 4 CPUs, an input PIO for each
processor, and an output PIO plus a mutex connected to all the CPU data masters. It
also includes an SRAM, leds, additional timers to run FRSH applications, and a bridge
to overcome a bug in the Avalon implementation that appears as a bus lock when more
than one master is present.

The input and output PIOs are then connected together outside the SOPCBuilder
block to form the InterProcessor Interrupt Controller (IPIC). Instructions on how to
create and connect the various PIO needed for the Interprocessor interrupt are in Section
??. can be found inside the Erika Enterprise reference manual.

A SOF file for the example design is already available in the project directory, so there
is no need to recompile the system.

1.1.2 Creating an hardware design from scratch

This subsection describes the steps needed to create an hardware design suitable for
Erika Enterprise.

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

The result will be a dual processor design that will include all the peripheral needed
for a proper multiprocessor communication; the design will only include standard Altera
SOPCBuilder blocks.

The description is done based on the Altera Stratix II 2s60 Rohs Evaluation board.
Similar results can be obtained using other Altera evaluation boards.

1. As the first step, copy the entire directory containing the standard example from
Altera in a separate directory called evidence_2cpu. The typical location of the
standard example is c:\altera\80\nios2eds\examples\verilog\boardname\standard
where boardname is for example niosII_cyclone_1c20. Please create the directory
evidence_2cpu at the same level of the standard example directory.

2. Open Quartus II by double clicking on the standard. qpf file inside the evidence_2cpu
directory just created.

Note: Some of the new Altera design examples comes with a VHDL/Verilog
main file instead of the traditional BDF file. We chose to put the screenshots
of the traditional BDF representation of the project, because the graphical
representation is easier to understand.

3. Disconnect the pins from the SOPCBuilder Block. Disconnecting the pins will
help you in the next steps, because the SOPCBuilder block will change its size
after adding the peripherals described in the following paragraphs.

4. Open SOPCBuilder by double clicking on the SOPCBuilder block. A window
similar to the one showed in Figure 1.2 appears.

5. Since multiple instances of some SOPCBuilder components will be inserted in the
design, change the names of the existing components to represent the CPU to
which are connected. To rename a component, right click on the component name
and choose Rename. First of all, rename the CPU from cpu to cpu_0.

6. Rename the System Clock Timer from sys_clk_timer to sys_clk_timer_O.
7. Rename the JTAG UART from jtag_uart to jtag_uart_O.
8. Rename the High Resolution Timer from high_res_timer to high_res_timer_0.

9. Add a second CPU named cpu_1. In the example, we choose a Nios II/s, with
JTAG debug level 2 (you can leave the other options unchanged).

10. Connect both address and data bus of cpu_1 to the available memories in the
system. Also connect other external buses.

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

1 Alters SOPC Builder - NiosIL strathdl_ 2560 RoHS full featured sopc.sape (€ B0y s\verilogynios] [2550 RoHSIful f MiosIl stra..
File Edit Module System View Tools HNiosl Help

Systern Corterts || System Generstian|

43 Aitera SOPC Builder Target Clock Seftings
3 Creste new companet. -
b ey Device Famiy. Stralic | v | [name — i
51+ Briciges and Adapters : e
¢literface Protocals lle Eatoiol ki
- Legacy Components pil_s0] pee =
) Memoriss and Memory Sontrollers et Pl Bs0
£ Peripherais
- Debug and Parformance Use Comections Module Name Description Clock Base Endl
1 Display =
5 PG, Perighersls @ B el HE =
- Microconirolls Perfherals - e \Aaralon Memory Mapped Slave elic akyzoRiez |0shens |
= Muliprocessor Caardination L Bepu [lies I[racossor =
e nstruction master Avaion Memory Mapped aster il_so ‘
i tightly_coupled instru... [svalon Memory Mappex Master B
— dota_master axvsion Memory Mapped Master e o
it —————| tiohily_coupled_deta_... Aveion Memory Mapped Master
- Videw and Image Processing _ e _debug modde Avalon Memory Mapped Siave 0x02120000 |0x0212
= Bl ext_flash_enet bus | Avalon-MM Tristate Bridge
svaion_slave \Aursion Memary Mapped Siave lpil_co
ristete_master \Ayreion Memory Mappect Tristete Master
= B sys_clk_timer Interval Timer
1 (avelon Memory Mapped Siave loh_co 0x02120800 |0x0212
= B sysid System D Peripheral
control_slave \aavelon Memery Mapped Slave loll_c0 0x0212088 020212
IEil El reconfig_request_pio [PIO (Paralisl LO) -
Rl v
s A Remave Edit & oy Up ¥ ave Down

. Warning: recanfig_request_pio: PIO inputs are net hardired in st bench, Undefinest vakues wil ke read from PIO inputs shaing simulation.
. Warning ddr_sdram_0: Mutipls ports named: wite_olk (s1 _exgort expor and s1_export export)
4\ Warning: ddr_sdram_0: Mutipe ports namedt: write:_clk (s1_export export andl s1_export export)

@ o ext_nash: Flashmemory capacty: 16,0 MBytes (16777215 byes)

oo | G

Figure 1.2: The SOPCBuilder windows that appears by opening an Altera project.

12 Interval Timer - sys_clock_timer_1 =

Interval Timer

Timeout period

Periodt: |10 ™=

Timer counter size

Counter Size: | 32 - bits

Hardware aptions
Presets: |Ful festured -]
Registers
Writable period

Readakle snapshot

StartrStop cortrol bits

Qutput signals
Timeout pulse (1 clock wide)

System reset on timeout (Watchdog)

Figure 1.3: When creating sys_clk_timer_1, use a 10 ms periods.

11.

12.

13.

14.
15.

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

4 Interval Tirmer - high_res_timer_1 2

“ Interval Timer

Megeters

Dacurmentation

Timeout period

Periad: |1 s

Timer counter size

Courter Size: | 32 - hits
Hardware options
Presets: [Ful featured -]
Registers
Wirttable period

Readable snapshot

StartiStop cortrol bits

Output signals
Timeout pulse (1 clock wide)

System reset on timeout (Watchdog)

Figure 1.4: When creating high_res_timer_1, use a 1 ms periods.

Add an Interval Timer component (you can find it under the “Other” tab of
SOPCBuilder) named sys_clk_timer_1. Set the period to 10 ms. This timer is
required by the Altera HAL for the system clock (see Figure 1.3).

Add another Interval Timer named high_res_timer_1. Leave the proposed options
unchanged (see Figure 1.4). This timer is required by the Altera HAL for high
resolution time measurement.

Add a JTAG Uart (you can find it under the “Communication” tab of SOPCBuilder)
named jtag_uart_1. Leave the proposed options unchanged. The JTAG UART
will be used during the software example to print some messages on the consoles
using printf.

Connect the two timers and the JTAG UART only to the data master of cpu_1.

At that point, a basic multiprocessor system has been created. The resulting
system is at this point very similar to the one obtained following the Altera Multi-
processor Tutorial [1]. The following three paragraphs describe the actions to setup
the SOPCBuilder components needed to implement mutual exclusion between the
various CPUs, and to implement the interprocessor interrupt controller.

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

 PIO (Parallel 1/0) - ipic_output ==

Figure 1.5: Output part of the Interprocessor Interrupt. The Figure shows the Avalon

16.

17.

18.

19.

20.

PIO output settings.

Add an Altera Mutex (under the “Other” tab of SOPCBuilder) named mutex. Give
an “Initial Value” equal to 0x1, and an “Initial Owner” equal to 0x0'. Connect
the Altera Mutex peripheral to the data bus of both CPUs. Please refer to the
Erika Enterprise reference manual for Nios II for more information about the usage
of the Altera Mutex inside hardware designs compatible with Erika Enterprise.

Add an Avalon PIO named ipic_output. The output PIO should have an output
bit for each CPU in the system. A screenshot of the PIO dialog box can be found
in Figure 1.5. This PIO will be used by the two CPUs to send interprocessor
interrupts. Connect the PIO to the data master of both CPUs.

Add two Avalon PIOs named ipic_input_0 and ipic_input_1. The PIO must
be a 1 bit Input PIO, with Synchronous capture on the rising edge, and an Edge
IRQ. Screenshots of the PIO dialog boxes can be found in Figures 1.6, 1.7, and
1.8. These PIO will be used by each CPU to receive interprocessor interrupts.
Connect ipic_input_0 to the cpu_0 data bus, and ipic_input_1 to the cpu_1 data
bus. This is the last component that have to be added to SOPCBuilder for this
demo. Let’s now remove all the errors that appears in the bottom of the window,
and setup the other tabs of SOPCBuilder.

First of all, IRQ and Base addresses for all the SOPCBuilder peripherals have to
be set. To do that, execute the commands “Auto Assign Base Addresses” and
“Auto Assign IRQs” under the System menu.

If the design you are developing includes a component connected to the exter-
nal bus, then you have to verify the connections of interrupt lines that may be

!The initial owner has always value 0x0 if you are using Nios II 6.0. Otherwise, it must be the CPUID
of the first CPU (in our case, cpu_0.

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

-~ PIG (Parallel 10) - pic_input_b

“ PIO (Parallel I/0)

Wicth (1-32 bits) ¢

Direction

@ Input ports ey
©) Bothinput and output ports
© Output pors only

Output Port Reset Value

Reset Vale: 1

VWarning: PIO inguts are ot harchwired in test bench. Undefined values willbe read from PIC inp

J v

Figure 1.6: Input part of the Interprocessor Interrupt. The Figure shows the Avalon
PIO basic settings.

" PIO (Parallel 170) - ipic_input 0

“ PIO (Parallel I/0)

Simulation

Edge capture register
Synchronausly capture
® Rising sdge
© Faling ecige
) Ether cdge
] Enshile ht-clearing for edge capture register
Interrupt
Generste RQ
) Level
(rterrupt CPL when any unasked IO pin i Ingic tis)
® Edge

(rterrupt CPU when any unmasked bitinthe edge-capture register
s Iogictrue)

Varning. PIO inputs are ot harchwired in test bench. Undefined values will be read from PIC inp

i]

r

Figure 1.7: Input part of the Interprocessor Interrupt. The Figure shows the Avalon
PIO input settings.

10

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

PIO (Parallel 1F0) - ipic_input_0 (=]

Figure 1.8: Input part of the Interprocessor Interrupt. The Figure shows the Avalon

PIO simulation settings.

connected to more than one CPU.

Warning: The interrupt lines of every Altera SOPCBuilder component have
to be connected to only one CPU!

21.

22.

23.

The standard example for Stratix 1s40 Evaluation board contains an instance of
the LAN91¢111 SOPCBuilder component. When adding the second CPU cpu_1,
SOPCBuilder allows the user to set an interrupt line for both CPUs. To solve
the problem, you have to set the interrupt priority of the cpu_1 connection to
“NC” (Not Connected). A hand-made renumbering of the interrupts may also be
optionally done.

Figure 1.9 shows the various components and the interrupt connections (the picture
was taken after removing all the errors in the bottom part of the window as dis-
cussed in the following paragraphs). The following paragraphs discuss the settings
of the “Board Settings” and the “Nios II CPU Settings” tabs of SOPCBuilder.

Looking at the Board Settings tab, the PIO components used for the input and
output part of the interprocessor interrupt generate a set of unassigned pins. To
remove the error, if you are using Nios II version 5.0, set the assignment of these
pins to “No Assignment”; if you are using Nios II 5.1 or 6.0, as shown in Figure
1.10, set the assignment of these pins to “Assign in Quartus II Project”.

As the last thing, set the Reset and Exception address of the Nios II CPUs as in
Figure 1.11 and 1.12. In this example, the values are set considering the following
rules:

11

RT-Druid and ERIKA Enterprise tutorial for Altera Nios II

4 Altera SOPC Builder - multi_cpu_2560.50pc* (Ci\altera\B0hniosZeds\examples\vhdliniosT_stratidl_2560_RoHS\frsh_multi\Stratic I ROHS_Multi_CPUNmulti_cpu_2s... [= || & |[52 |
T
[Atera SOPC Buikler T “Clock Seftings
Device Family. Stratix i - Neme Source: MHZ @
Ik_85 ‘Pl-m 50 =|
T e ‘
(5 Memriesonct Memary Cortoters e {svelon Wemory opped ister mao |
& Dsbug anc perormance = 1 oye_clock fimer 8 e T 4
So . .
 Mrocessor Conramtion B threc_otpuaky spu 8 i T
. s
I 5 B N oo o
o @ et o e
sk [erdrestionsians
- i et :
7 ‘ =
| © into ext_flash: Flasn memery capscty. 16,0 NEtes (16777216 bytes).

Altera SOPC Builder - std_1c20
File Module System View Tools Help

Figure 1.9: The list of SOPCBuilder components composing this demo.

System Content:

oard Settings | Nios T More "cpu_0" Settings | Nios T More "tpu_L" Settings | System Generation

Fin Mapper

The pin mapper lets you map signals on the system module b pins on target devices on the printed circuit board,
SOPC Builder will make pin assigrments for the Quartus 1 project when you generate the system,

Source Signal
2 System
-7k global_signals
F-4TF oxt_flash
-4k ext_ram
£k lan91c11l
+F button_pio
£ led_pio
£ Ied_display
-k seven_seg_pio
-4 reconfig_request_pio

F ipic_output
AF ipic_input_0
- ipic_input _1

Target Device

click ta assigt.

LIS (CFI Flash Mernory)
LI35-Li36 (SRAMY

L4 (Ethernet Adpater)
SWHD-SW3 (User Switches)
D0-D7 (LED Banik)

12 (LCD Display Connectar)
Lg-U3 (Seven Segment Display]
113 (Canfiguration Cantraller)
119 (Main Serial Port)

LIS7 (SORAM)

Assign in Quartus 11 Project

Device Pin

ext_flash
Al pins are assigned|

4 Incomplete mapping

~ Board Documertation

LF Al signals mapped
The top-level pins in the Quartus 11 project must have the same names as the source signals on the system module,

48 Pins auto-assigned

T Assign in Quartus T

Manual for Nios 1620 Cyclone Board Schematics for Mios 1620 Cyclore Board

Exit

[=pe | [(vet>]

[cenerate

Figure 1.10: The Board Settings tab after assigning the Interprocessor interrupt pins
(Nios II Version 5.1 and 6.0).

12

24.

25.

26.

27.

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

4 Nios T Processor - cpu_0 5=

\{* Nios II Processor

Advanced Features > ITAGDebugModule > Custom Instructions)

> MMU and MPU Settings

> Cathes and Memary Interfaces

Care Mios |-

Select a Hios ll core:

ONios Ilfe ©Nios Iifs ONios IIF

N RISC RISC RISC
Nios Il 32-bit Iz-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Stratix Branch Prediction Eranch Presiction
Hardware Multiply Hardvvare Mutiply
Teystem: 85,0 MHz Hardware Divide Hardware Divids
Barrel Shifter
o0
P! Data Cache
Dynamic Branch Prediction
Pertaormance at 83,0 MHz Upto 13 DMIPS Up to 54 DMIPS U to 96 DMPS
Logic Usage 600700 LE: 1200-1400 LES 14001800 LEs
Memary Usage T WK (O Scuiv.) Tuvo Mdks + cache Three MaKs + cache
Hardware Mullioly: pep gook =[] Hardware Divids
Reset Wector. Memory: | ext flash + Offset oy | 005000000
Exception Vector: Memory: | der_sorem - Offset |gyen 0x02000020
Inclic bt

Only Inclutie the MWL when ising an operating system that explictly susparts an MU
Fast TLE Miss Excention Vector: Memory: . [Offset: [,

Inciutle MPL

< Back Firish

Figure 1.11: The settings for the cpu_0.

The Reset addresses of both CPUs are set to the external flash;
The Exception address of both CPUs are set to SDRAM;

The Reset and Exception addresses of cpu_0 are set to the start of the re-
spective memories;

The Reset and Exception addresses of cpu_1 are set around the middle of the
address space of the respective Flash and SDRAM memories.

The Reset is always placed at the startup of a flash block (see Section 1.8).

Generate the SOPCBuilder Block.

As the result of the generation, a .PTF file is created. If you are using nios II
version 5.0 or 5.1, please check inside the PTF File that cpu_0 has CPUID 0, and
that cpu_1 has CPUID 1. That is important, because as explained in the Erika
Enterprise Reference Manual, influences the Startup Barrier behavior. The check
is not needed if you are using nios II 6.0.

Go back to Quartus II, and update the symbol. Connect back all the various pins
of the standard design, to their respective components.

Connect the PIO components created for the interprocessor interrupt as shown in
Figure 1.13. Each pin of the output PIO have to be connected to the correspon-
dent CPU. The usage of the named pins of Quartus II simplifies the connection.

13

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

< Mins I Pracessar - cpu_L

\{* Nios II Processor

Documentation

Advanced Features ‘ MU and MPU Settings > ITAG Debug Module > Custom Instructions)

i

» Caches and Memory Interfaces

Care Mios |l

Select a Hios ll core:

ONios Ilfe IgNins Ii/'s ONios I

N RISC RISC RISC
Nios Il 32-bit Iz-bit 32-bit
Selector Guide Instruction Cache Instruction Cache
Family: Stratix Branch Prediction Eranch Presiction
Hardware Multiply Hardvvare Mutiply
Teystem: 85,0 MHz Hardware Divide Hardware Divids
Barrel Shifter
o 1
P! Data Cache
Dynamic Branch Prediction
Pertaormance at 83,0 MHz Upto 13 DMIPS Up to 54 DMIPS U to 96 DMPS
Logic Usage 600700 LE: 1200-1400 LES 14001800 LEs
Memary Usage Tuwo MAKs (ar ecuiy.) Two Miks + cache: Three M4Ks + cache.
Hardware Mullioly: | pep gook +] Hardware Divids
Reset Yector: Memary: | et flash ~+ Oftset | ne100000 005100000
Exception Vector: Memory: | dor_screm - Offset 0100020 0x02100020
Inclic bt
Oy inclutle the MM when using an operating system that exgictly sugports an MU
Fast TLE Miss Exception Vector: Memoary. Offset: [
Inciuice MPL)

Figure 1.12: The settings for the cpu_1.

Cpic_pif] © D0
M————————+—in_paort_to_the_ipic_input_0

inic_piol1]

in_port_to_the_ipic_input_1

 fpic_piad) | -

out_port_frorm_the_ipic_output[7.0] —u_x

Figure 1.13: Connecting the output part of the Interprocessor interrupt to the input part
of the Interprocessor interrupt.

Basically, pin 0 of the output PIO have to be connected to the CPU with CPUID 0
(typically, cpu_0); pin 1 of the output PIO have to be connected to the CPU with
CPUID 1 (typically, cpu_1), and so on.

28. Finally, you can compile the Quartus II design to produce your first design com-
patible with Erika Enterprise.

1.2 Creating the Altera System Libraries.

Erika Enterprise applications uses the Altera System Libraries as the base for linker
scripts, boot code and device drivers. This Section shortly describes which are the main
steps to create the System Libraries needed to be linked to the tutorial application.
For more informations on Altera System Libraries, please refer to official Altera Nios II

documentation.

14

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

BB Hew Project ==
RT-Druid C/C+ + Project .
Evidence RT-Druid will create and manage this praject. The prajectwill use the ERIKA Enterprise RTQS, &
The user have to create Altera system libraries manually,
Create a project using one of these ternplates
This is a simple demo that shows how to
set the various options for a multicore
design using ERTKA Enterprise.

Figure 1.14: Selecting the Multicore template.

Open the Nios IT IDE from the last SOPCBuilder tab, and select “New” from the File
menu, and then “Project...”. Choose “System Library” from the Altera Nios II tab of
the New Project Dialog box. Name the system library evidence_2cpu_cpu0; the PTF
file of the hardware project should be already selected. Be sure that cpu_0 is selected.

Repeat the above steps for the second CPU cpu_1, naming the second System Library
Project as evidence_2cpu_cpul, and selecting cpu_1.

Build the two system libraries right-clicking on the project name and choosing “Build
Project”.

1.3 The RT-Druid Project

Open the Nios IT IDE from SOPCBuilder, and select “New Project...” from the File
menu. Choose “RT-Druid Nios Project” from the Evidence tab of the New Project
Dialog box. A dialog box appears. Choose the 2 CPu demo, as shown in Figure ?7.
Name the project evidence_2cpu and press the Finish button.

1.4 Updating the OIL File

This Section asks you to change the OIL file inserting the locations of the system libraries
you just created. You need to do that only if the system library names and locations
you chose are not the ones specified in this tutorial. You can go directly to the next
Section if you chose the file names specified early in this tutorial.

15

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

Inside the OIL file, look for the CPU_DATA sections located at the top of the OIL
description inside the 08 section. There is a CPU_DATA section for each CPU in the system.
Each section has two settings, called SYSTEM_LIBRARY_NAME and SYSTEM_LIBRARY_PATH.
You need to change them with the real names of the system libraries. When specifying
the pathnames, please use the slash (/) character and not the backslash (\) character.

These two settings will be used in the makefiles that are automatically generated by
RT-Druid?.

1.5 Compiling the application

Right click on the project name, and select “Build Project”. The demo application will
be compiled, and two ELF binaries will be produced.

1.6 Running the application

First of all, check if the “Allow multiple active run/debug sessions” option has been
enabled in the Nios II preferences (see Figure 1.15).

Then, click on the “Run...” option in the toolbar. A dialog box appears allowing the
specification of the Debug configurations. Create a Nios II Hardware configuration for
each CPU in the system. For each configuration:

e in the Target Hardware frame, select the project PTF file, and the right CPU in
the system;

e in the Nios II ELF Executable text box, please select the Nios II ELF executable
for the selected CPU;

e do not forget to click on the “Target Connection” tab and check that the correct
JTAG UART has been automatically selected.

Finally, create a Nios II Multiprocessor collection grouping all the Hardware configu-
rations just created.

You are now ready to start the multiprocessor application. Every time you want to
run a Multiprocessor application, you have to:

2If unsure on the value to put in these variables, you can do in one of the following two ways:

e create a normal Altera project for one of the CPUs (for example, a Hello World application),
linking it to the System library you want to use on the particular CPU. Then, compile the Altera
application, and look at the file Debug/makefile inside the Altera project. The value of the
SYSTEM_NAME variable is the value that have to be put in the OIL tag SYSTEM_LIBRARY_NAME;
the value of the variable SYSTEM_DIR is the value of the OIL tag SYSTEM_LIBRARY_DIR.

e a faster way to fill the SYSTEM_LIBRARY_PATH variable is to open the properties of the Altera
System Libraries, and then look at the “Location” value inside the info tab. Note that you have
to substitute \ with /.

16

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

B preterences = e
type filter text Nios 11 T
General

e Set global Nios I build and run settings.
o There shauld rarely be a reason to change these preferences from the defaults.
. EtpH/LI - [Show comman d lines running 'make’ fi.e, Don't use '-5' flag on make)
nstallUpdate
[T] Generate objdump file

Nios T
Rt-Druid [¥] Allow multiple active run/debug sessions

Fun/Debug [7] Confirm before starting the flash prograrmmer
Team [¥]Wam about launches in Run mode for C/C ++ Application projects using Host-based File System

Append make arguments

Restore Defaults Apply

Figure 1.15: Enabling multiprocessor debugging in the Nios II preferences.

e open the Quartus II Programmer under the Tools menu, and program the SOF
file you find in the Hardware project directory.

Warning: You need to reprogram the FPGA every time you start a debug
session, because the Altera Mutex peripheral is not reset to its initial value
upon a Debug Stop.

e choose the Multiprocessor Collection Debug configuration when pressing the “Run...”
button.

When running the application, the following behavior happens:
e Both CPUs start in Debug mode (or Run mode if you selected that).
e Both CPUs print a message like the following one:
Hello from CPU O!

Press a button to activate the tasks...

e The two CPUs synchronize at the startup barrier inside the Start0S() primitive
inside main().

e When both CPUs enters the Start0S() primitive, the synchronization barrier is
passed, and the Start0S() primitive returns.

e Press one of the buttons on the evaluation board. The press of the button provoke
the activation of three threads. Each thread prints a message on the console of the
CPU where it is allocated to. In the configuration shipped with Erika Enterprise
task 0 and 1 are allocated on CPU 0, whereas task 2 is allocated to CPU 1.

17

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

1.7 Partitioning the software

RT-Druid and Erika Enterprise allow an easy partitioning of the application software.
Changing the partitioning of the tasks into the CPUs is very simple: you just need to
change the CPU_ID parameter in the task section of the OIL file.

For example, you can put all the three tasks to CPU 0, or the tasks to CPU 1, or
choose an intermediate partitioning. In all these cases, multiprocessor resource handling
and task activations will be hided by Erika Enterprise, without changing the application
software. Please note that a different partitioning scheme does not require a change in
the application source code, but only in the OIL configuration file.

To test a different partitioning, just change the OIL File, recompile and rerun the
demo.

1.8 Flashing the demo on the evaluation board

The last phase in the development of a multiprocessor design using Nios II is typically
the flashing of the demo on the flash device that is usually present in the development
(or production) board.

To do that, open the Flash Programmer (under the Tools menu of the Nios IT IDE),
and create one configuration for each CPU. Each configuration for each CPU should
specify the PTF file of the multiprocessor design, selecting the appropriate cpu and
ELF file. Moreover, the first CPU should also include the flashing of the SOF file.
Figure 1.16 and 1.16 show a typical configuration of the flash programmer for the CPU
0 and 1 of the 2 CPU demo showed in this tutorial. As you can see, the SOF file is only
included in the flash configuration of CPU 0.

Please note that this way of flashing the data to the evaluation board flash memory
depends on the reset addresses used for the CPUs in SOPCBuilder. The reset addresses,
in particular, have been chosen to have non-overlapping flash regions for each CPU.

Warning: Some care have to be used when defining the addresses that will be
used in the flash.

Flash memories, in fact, are divided in blocks. The flash memory programming
model says that flash devices can be written and erased with a granularity of a block.

When writing the software for the Nios II platform, each CPU produces a separate
ELF file, that is typically programmed separately using the Altera Flash Programmer
tool.

It is important that each flash block contains data coming from a single ELF
image. To do that, reset addresses of each CPU in SOPCBuilder have to be set
preferably to the starting address of a flash block. Figure 1.18 gives an example of
the erroneous situation.

As an alternative, the various flash images from each CPU have to be packed
together in a single flash programming file.

18

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

lash Programmer

Program project to flash memory on target board
Program flash with evidence_Zcpu and standard. sof

Configurations:

g evidence_2cpu prog

Mame: | evidence_2cpu programmer

E] main]l Target Connection |

Al
Target Board: Mios Development Board, Cyclone {EP1CZ0) Help | —
¥ Program software project into flash memary

Project:

Browise. ..

] evidence_2cpu

Mios 1T ELF Executable:

I Debugjcputfevidence_Zcpu_cpul, elf

Search...

Target Hardware

SOPC Bulder System: ‘ Cihaleeralkitsynios2_g0hexamplesiveriloginios Brawse...
|

CPL: 1cnu70

W Program FPGA configuration data into hardware-image region of Flash memory

FPGA Configuration £SOF):] Cihalteralkitsinios2G0hexamples!veriog)nic Browse...

=

Hardware Image: |user: US + 0=600000

T~ Program a File into Flash memory

1

|

| >

Delete

o
Program Flash

Close J

Figure 1.16: The Flash Programmer

19

configuration for CPU 0.

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

.! Flash Programmer EJ

Program project to flash memory on target board

Program Flash with evidence_2cpu.

@

Configurations: Name: | evidence_Zcpu programmer {1)

[= @ Flash Programmer

B Main]a Target Cnnnect\nn]

Target Board: Mios Development Board, Cyclone (EP1C20)

¥ Program software project inta Flash memary

Project:

~
Help | —

] evidence_Zcpu

Mins 1T ELF Executahle;

Browse...

] Debugicpul fevidence_2cpu_cpul elf

Target Hardware

Search...

SOPC Buider System: ‘ Ciialeeraikitsinios2_g0iexamplesiveriloginios Browse...

CPL:]cpu_l

I~ Program FPGA configuration data inko hardware-image region of Flash memory

|

[

I~ Program a file into flash memary

E|

|
a

Program Flash Close J

Figure 1.17: The Flash Programmer configuration for CPU 1.

CPU 0 flash content
A Flash block

Correct Flash address assignment

CPU 0 flash content

T~ -
~ _—
\ _/
ERROR
- ~

CPU Atdsh content ~
=~

Correct Flash address assignment

Figure 1.18: This Figure shows a typical flash memory layout highlighting the error
situation that appears when a flash block contains data from two CPUs.

20

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

Warning: If you are using onchip memories, after compiling the software to be
flashed, remember to run again the Quartus II Assembler to include the generated
hex files for these memories inside the SOF file.

After that, run the flashing procedure from the Altera Flash Programmer. The fol-
lowing lines show a typical output of the flash programmer.
For CPU 0:

#! /bin/sh

#

This file was automatically generated by the Nios II IDE Flash Programmer .
#

It will be overwritten when the flash programmer options change.

#

cd c:/altera/kits/nios2/bin/eclipse/workspace3/demo_2cpu/Debug/cpul

Creating .flash file for the FPGA configuration
$SOPC_KIT_NIOS2/bin/sof2flash --flash=U5 --o0ffset=0x400000
--input=$SO0PC_KIT_NIOS2/examples/verilog/niosII_stratix_1s40/evidence_2cpu/standard.sof
--output=standard.flash
T 01 hokoskok sk ok ok ok ok ok ok ok ok sk ok ok o ok ok o ok ok ok sk ok ok ok sk ok ok ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok K ok ok K ok ok ok ok ok ok ok o ok ok ok ok ok k
Info: Running Quartus II Convert_programming_file
Info: Command: quartus_cpf --no_banner --convert
C:/altera/kits/nios2/examples/verilog/niosII_stratix_1s40/evidence_2cpu/standard.sof
standard .rbf
Info: Quartus II Convert_programming_file was successful. O errors, O warnings
Info: Processing ended: Thu Oct 27 09:36:08 2005
Info: Elapsed time: 00:00:02

Programming flash with the FPGA configuration
$SOPC_KIT_NIOS2/bin/nios2-flash-programmer --input=standard.flash
--sof=$SO0PC_KIT_NIOS2/components/altera_nios_dev_board_stratix_1s40/system/
altera_nios_dev_board_stratix_1s40.sof
--base=0x00800000
27-0tt-2005 9.36.13 - (INFO) nios2-flash-programmer :
Launching Quartus Programmer to download:
C:/altera/kits/nios2/components/altera_nios_dev_board_stratix_1s40/system/
altera_nios_dev_board_stratix_1s40.sof
Pre-Reading 1520KBytes of data from U5:
|omom i mmmdoom oo
kkkkkkkkkkkkkkkkkkxkx (12.312 sec).
Erasing 24 Sectors:
[|
ok kokokokokkokkokkkkkokkkkkx (15.61 sec).
Writing 1536KBytes
[|
kokkokkokkkkkkkkkkxkkkkkx (48.0 sec).
Verifying 1536KBytes of data:
R eIy
ok ok ok okokok kkkokkkkkokkkkkk (11.593 sec).
27-0tt-2005 9.37.49 - (INFO) nios2-flash-programmer :
Success . Verified 1536Kbytes written to U5.
27-0tt-2005 9.37.49 - (INFO) nios2-flash-programmer :
Flash programming complete

Creating .flash file for the project

$SOPC_KIT_NIOS2/bin/elf2flash --flash=U5 --base=0x00000000 --end=0x7fffff
--reset=0x0 --input=demo_2cpu_cpuO.elf --output=ext_flash.flash
--boot=$SOPC_KIT_NIOS2/components/altera_nios2/boot_loader_cfi.srec

Programming flash with the project

21

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

$SOPC_KIT_NIOS2/bin/nios2-flash-programmer --input=ext_flash.flash
--sof=__NO_SOF_PLEASE__ --base=0x00800000

27-0tt-2005 9.37.50 - (INFO) nios2-flash-programmer : SOF-download skipped.
Pre-Reading 72KBytes of data from U5:

[|
kokkokkokkkkkkkkkkkkkkkx (1.125 sec).
Erasing 2 Sectors:

[|

kokkokkokkkkkkkkkkxkkkkkx (1.438 sec).
Writing 128KBytes

N et Iy

ok ok ok kokok kokkokkkkkokkkkk ok (3.609 sec).
Verifying 128KBytes of data:

===t =]
kkkkkkkkkkkkkkkkkkkkx (1.312 sec).
27-0tt-2005 9.38.00 - (INFO) nios2-flash-programmer :
Success . Verified 128Kbytes written to U5.
27-0tt-2005 9.38.00 - (INFO) nios2-flash-programmer :
Flash programming complete

For CPU 1:

#! /bin/sh

#

This file was automatically generated by the Nios II IDE Flash Programmer .
#

It will be overwritten when the flash programmer options change.

#

cd c:/altera/kits/nios2/bin/eclipse/workspace3/demo_2cpu/Debug/cpul

Creating .flash file for the project

$SOPC_KIT_NIOS2/bin/elf2flash --flash=U5 --base=0x00000000 --end=0x7fffff --reset=0x100000
--input=demo_2cpu_cpul.elf --output=ext_flash.flash
--boot=$SO0PC_KIT_NIOS2/components/altera_nios2/boot_loader_cfi.srec

Programming flash with the project
$SOPC_KIT_NIOS2/bin/nios2-flash-programmer --input=ext_flash.flash
--sof=$SOPC_KIT_NIOS2/components/altera_nios_dev_board_stratix_1s40/system/
altera_nios_dev_board_stratix_1s40.sof --base=0x00800000
27-0tt-2005 9.39.54 - (INFO) nios2-flash-programmer :
Launching Quartus Programmer to download:
C:/altera/kits/nios2/components/altera_nios_dev_board_stratix_1s40/system/
altera_nios_dev_board_stratix_1s40.sof
Pre-Reading 66KBytes of data from U5:
R ey
kkkkkkkkkkkkkkkkkkkxkx (1.125 sec).
Erasing 2 Sectors:
R eIy
ok ok ok kokkkkkokkkkkokkxkkkk (1.86 sec).
Writing 128KBytes
[|
kokkokkokkkkkkkkkkkkkkkx (3.531 sec).
Verifying 128KBytes of data:
R et Iy
ok ok ok kokok kkkokkkkkokkkkk ok (1.203 sec).
27-0tt-2005 9.40.09 - (INFO) nios2-flash-programmer :
Success . Verified 128Kbytes written to U5.
27-0tt-2005 9.40.09 - (INFO) nios2-flash-programmer :
Flash programming complete

22

1 RT-Druid and ERIKA Enterprise tutorial for Altera Nios 11

1.9 Running the demo from flash without the Nios II

IDE

Once the SOF file with the FPGA setup and the ELF file with the software of each CPU
has been stored into the flash memory of the evaluation board, you can run the demo
without the need of the Altera Nios II IDE.

To do that, follow these steps:

1. Connect the USB-Blaster to the board.

2. Turn on the board. The demo starts (on a Stratix 1s40 evaluation board, with the
Design file created in this tutorial, the result is that the two 8-segments digits are
all on).

3. Open two Nios II SDK shell.

4. On the first shell, execute the command nios2-terminal --instance=1. As a
result, the terminal connects to the JTAG UART on CPU 0, displaying the hello
message of CPU 0.

Warning: The JTAG chains assigned to each JTAG UART instance may vary
with the designs.

5. On the second shell, execute the command nios2-terminal --instance=0. As a
result, the terminal connects to the JTAG UART on CPU 1, displaying the hello
message of CPU 1.

6. Press the buttons on the board to get the same output you got when debugging
the demo on the Nios II IDE.

7. By pressing the Reset CPU button, the demo starts again, displaying again the

hello message on both terminals.

23

2 History

Version

Comment

Initial version

It was Chapter 2 of the Erika Enterprise Reference Manual version 1.2.4.

1.0.0 Updated text and screenshots to Nios II 6.0.
1.0.1 Added new versioning mechanism.

1.1.0 Support for Nios II 8.0.

1.1.1 Support for Nios II 8.1, added 4CPU example.

24

Bibliography

[1] Altera Corporation. Creating multiprocessor nios ii systems tutorial. Nios II litera-
ture page, http://www.altera.com/literature/lit-nio2. jsp, 2005.

25

http://www.altera.com/literature/lit-nio2.jsp

	RT-Druid and ERIKA Enterprise tutorial for Altera Nios II
	The hardware design.
	Importing an already existing hardware design
	Creating an hardware design from scratch

	Creating the Altera System Libraries.
	The RT-Druid Project
	Updating the OIL File
	Compiling the application
	Running the application
	Partitioning the software
	Flashing the demo on the evaluation board
	Running the demo from flash without the Nios II IDE

	History

